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Welcoming Address 
 

Dear Colleague, 

 

It is a pleasure to welcome you in Salt Lake City for the fifth edition of The International Conference on Image 
Formation in X-ray Computed Tomography, also known as “The CT meeting”. 

The idea for this meeting came in 2010, following a wish from many of us to have a venue where CT scientists 
could meet together to discuss in depth all aspects that impact the image formation process in CT. These aspects 
include dose evaluation and dose reduction strategies, non-linearity effects and compensation schemes for these 
effects, image reconstruction algorithms, spectral decomposition, dynamic effects, geometrical calibration, phase-
contrast physics, deep learning, and image quality assessment.  

Pleasantly, the meeting this year remains strong, as it attracted more than 100 submissions. The breadth of the 
topics being covered is amazing. I am grateful to all authors for submitting their work. Similarly to the previous 
meetings, oral presentations have been allocated significant time to allow for in-depth discussion between the 
attendees. Also, comfortable poster sessions have been planned, and attractive locations have been selected to 
promote discussion during the meals. 

The meeting could not be a success without a great scientific committee. I would like to take the opportunity here 
to once again thank the following scientists, for their support, as well as for their help with the evaluation of 
submitted abstracts, which was critical in shaping the scientific program: 
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Once again, we were also fortunate to receive generous support from 

 Siemens Medical Solutions, USA 
 Canon Medical Systems USA 
 GE Healthcare 

This financial support is essential to accommodate a lower registration fee for graduate students. This year, we 
have more than 150 attendees out of which a third are students. 



Finally, I am thankful to my research team including Zijia Guo, Viktor Haase, Mehmet “Bugra” Oktay for providing 
me with a strong hand; and I am grateful for the help from my colleague, Larry Zeng, without whom I could not 
run such a conference. 

I wish you all a pleasant meeting. 

Frederic Noo, Ph.D. 
General Chair  
Utah Center for Advanced Imaging Research (UCAIR) 
Department of Radiology and Imaging Sciences 
University of Utah 
E-mail: Frederic.Noo@hsc.utah.edu 
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pDART: Discrete algebraic reconstruction using a
polychromatic forward model

Nathanaël Six, Jan De Beenhouwer and Jan Sijbers

Abstract—The discrete algebraic reconstruction
technique (DART) is a tomographic method to recon-
struct images from X-ray projections in which prior
knowledge of the object materials’ attenuation val-
ues is exploited. In monochromatic X-ray CT (e.g.,
synchrotron), DART has been shown to lead to high
quality reconstructions, even with a low number of
projections. However, most X-ray sources are polychro-
matic, leading to beam hardening effects, which signi-
ficantly degrade the performance of DART. To reduce
beam hardening artefacts, we developed an algorithm,
pDART, that exploits sparsity in the attenuation val-
ues using DART and simultaneously accounts for the
polychromaticity of the X-ray source. The results show
that pDART leads to a vastly improved segmentation
on simulated polychromatic data.

Index Terms—Computed tomography, discrete
tomography, DART, polychromaticity, beam hardening

I. Introduction

COMPUTED tomography is a widely used technique
for non-invasive imaging of a sample. Classical recon-

struction techniques, e.g. Filtered Backprojection, assume
a linear acquisition model and a large number of projec-
tions taken from a full angular view. When these require-
ments are not met, artefacts arise in the reconstruction.

One of the main sources of reconstruction artefacts is
undersampling. When only few projections are available,
the system of equations that needs to be solved for the
reconstruction becomes severely underdetermined. By in-
cluding prior knowledge about the sample, one can reduce
this underdetermination, effectively decreasing the space
of possible solutions. One of the ways this can be achieved
is Discrete Tomography (DT), in which the grey levels in
the image corresponding to the attenuation values of the
object materials are assumed to be known a priori. This
reduces the reconstruction from a continuous problem to
a discrete problem. The Discrete Algebraic Reconstruction
Technique or DART algorithm is one of the possible DT
algorithms and has proven to be effective if the sample
consists of few materials [1].

The DART algorithm relies on the same linearized
acquisition model as most classical techniques; it assumes
that the log-corrected normalized projection is the sum of
attenuation values along a ray. This is an adequate model
for a monoenergetic source, but not for a polyenergetic

N. Six, J. De Beenhouwer and J. Sijbers are with Vision Lab, an
imec research group at the University of Antwerp, Belgium (email:
nathanael.six@uantwerpen.be)

one. Due to this model mismatch, the reconstructed im-
age will show beam hardening artefacts as the effective
energy of the spectrum shifts upwards [2]. Beam hardening
artefacts and the inability to clearly select a correct grey
level for each material, lead to inaccurate reconstructions
when DART is used in combination with polychromatic
projections. One of the current methods for reducing beam
hardening artefacts consists of placing metal filters in front
of the source, to pre-harden the beam. However, the pre-
hardened spectrum is still polychromatic and the filtering
decreases the number of photons available for imaging.
We propose to combine the DART framework, with

the polychromatic Simultaneous Algebraic Reconstruction
Technique (pSART) introduced in [3], as the underlying
reconstruction method. The pSART algorithm has pre-
viously successfully been combined with a Total Vari-
ation approach in [4]. This technique reconstructs a single
grey level image, corresponding to a simulated monochro-
matic reconstruction, while using a polychromatic forward
model.
In this paper, a short overview of DART and pSART

is given, to clarify the models and algorithms that were
used. Next, we explain the combined pDART algorithm
and where it differs from the normal DART scheme.
Finally, different discrete reconstructions from simulated
polychromatic data are compared to demonstrate the
improvements of the proposed method.

II. Method
A. Discrete reconstruction: DART
The DART algorithm is an efficient reconstruction

method for discrete tomography. A complete discussion of
DART can be found in [1]. We briefly recall the different
steps in the DART algorithm:
1) Initial reconstruction: An algebraic reconstruc-

tion method (ARM) is performed to obtain an initial
reconstruction V0.

2) Segmentation: Segment V0 based on the a pri-
ori knowledge of the grey levels and corresponding
threshold values.

3) Masking: Choose a set of fixed and free pixels. The
free pixels encompass all boundary pixels 1 and a
small percentage of randomly chosen pixels.

4) Reconstruction: Perform a number of iterations of
the ARM, on the set of free pixels only. The fixed

1A pixel is called a boundary pixel if it has a neighbouring pixel
with a different grey value.
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pixels are kept at their segmented value. This gives
us a reconstruction V .

5) Smoothing: Apply smoothing to weaken the harsh
fluctuations that can occur due to the segmentation.

6) Iteration: Set V0 = V and repeat steps 2-5 until a
stopping criterion is met.

B. Polychromatic SART (pSART)
The pSART algorithm [3] is based on the same iterative

scheme as SART [5]. In matrix form, the kth update step
can be expressed as:

V (k+1) = V (k) −CA>R
(

Proj(V (k))− s
)
, (1)

with A the system matrix of the acquisition geometry,
C and R diagonal matrices with the inverse sums of the
columns and rows of A, respectively, Proj the forward
projection operator, and s the sinogram. In the case of
SART, Proj(V ) = AV . In pSART, however, a polychro-
matic forward projection is used instead.

The polychromatic projection PLr along the ray Lr2 is
modelled as:

PLr
=
∫ εmax

εmin

I(ε) exp
(
−
∫
Lr

µ(x, ε) dx

)
dε, (2)

with µ the function giving the attenuation coefficient of
the object at a point x and an energy level ε and I the
X-ray source spectrum [2]. This model can be discretized
over Ne total energy levels and Nm different materials to
achieve the following form:

P̂Lr =
Ne∑
ε=1

w(ε) exp
(
−

Nm∑
m=1

lr,mµm(ε)
)
. (3)

Here w(ε) is the weight for each energy level, lr,m the
distance that ray Lr travels through material m, and
µm(ε) the attenuation coefficient of material m at energy
ε. By log-correcting and normalizing the projection P̂Lr

from Eq. (3) we have:

Proj(V )r = − log
(

P̂Lr∑Ne

ε=1 w(ε)

)
. (4)

The extra prior information needed for the pSART
algorithm involves the spectrum: Ne and w(·) and the
different materials in the sample: µm(·) and Nm. Note that
this knowledge about materials is also a prerequisite of the
DART algorithm.

For the forward projection of V (k), the line-lengths l(k)
r,m

need to be calculated as follows. First, a reference energy
εref is chosen, which provides reference attenuation values
µm = µm(εref ). In each step, the reconstruction represents
the monoenergetic attenuation map at energy level εref [3].
Next, for each pixel v in the current reconstruction V (k),
with value tv ∈ [µi, µi+1], the fractions in the following
decomposition are calculated:

tv = µm+1 − tv
µm+1 − µm

µm + tv − µm
µm+1 − µm

µm+1. (5)

2Lr is the ray from the source to the rth pixel on the detector.

These percentages are grouped, per material, in a mask
M

(k)
m . This essentially models each pixel v as the mixture

of two materials. The l(k)
r,m are now found as the values in

the product AM
(k)
m .

C. Polychromatic DART (pDART)

We propose a new algorithm based on the principles
of DART and pSART that combines the benefits of both
methods. As pSART returns a single grey value image,
it is suited for combination with DART. However, due
to the non-linearity of the polychromatic model and the
assumptions made in the pSART model, changes to the
masking step of DART and the material selection of
pSART are needed.
Choosing pSART as the underlying reconstruction

method implies that a weight vector and a matrix contain-
ing the energy dependent attenuation values and reference
values have to be specified. This prior knowledge allows us
to make a natural choice for the grey levels: the pSART
algorithm already uses the reference values to decide which
materials each pixel consists of and to reconstruct a single
image which represents a monochromatic reconstruction
at the reference energy level [3]. For this reason, the grey
levels for segmentation are chosen to be the same as the
reference attenuation values.
In the original DART approach, the forward projection

of the fixed voxels is subtracted from the sinogram [1].
However,

s− Proj(Vfixed) (6)

as the new sinogram data to the pSART algorithm will
not be equal to a reconstruction of the reduced system
of equations. As a result, running the DART algorithm
with the conventional settings will give rise to divergent
behaviour. Because of the fundamental non-linearity of the
polychromatic problem, the reconstruction on the reduced
set of pixels cannot be performed in an analogue way
to the monochromatic version. Instead, the line lengths
through each material are calculated once in every DART
iteration. The material locations are known, since the
image is segmented. These same fixed numbers will be
added to the calculated line lengths in each iteration of
pSART. This way the pixel values are effectively fixed in
the pSART iterations. However, the fixed values can no
longer be grouped together in an updated sinogram.
To pass more information about the segmented inter-

faces to the pSART algorithm, a different interpolation
is performed for boundary pixels. Instead of interpolating
between the two closest reference values, interpolation is
performed between the maximal and minimal attenuating
material found within the neighbourhood of the boundary
pixel.
For the implementation of the pDART algorithm, we

implemented pSART in Matlab and used the DART
framework from the ASTRA toolbox [6].
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(a) Phantom image with
three materials.

0 20 40 60 80 100 120
energy in keV

0

0.01

0.02

0.03

0.04

0.05

0.06

m
e
a
s
u
re

d
 d

o
s
e
 a

t 
d
e
te

c
to

r
(b) Polychromatic spectrum
of a 120keV source.

Figure 1: Phantom (a) and employed spectrum (b).

III. Experiments
To validate the proposed algorithm, simulation experi-

ments were set up with an image quality phantom shown
in Fig.1a. This phantom consists of three simulated ma-
terials on a vacuum background: water, cortical bone and
titanium. The attenuation values at different energy levels
were used from [7]. Different parallel beam polychromatic
sinograms of the phantom were created, based on the
weights and energy levels of a realistic spectrum, shown in
Fig.1b. Sinograms were created with a variable number of
angles, ranging from 2 to 500, equally spaced in the inter-
val [0, π). The forward model defined in Eq. (4) was used
for the polychromatic projections. To limit inverse crime,
the phantom was defined on a higher resolution grid than
the reconstruction. To study the performance under noisy
conditions, Poisson noise was added to the projections
with 50 angles, based on different source intensities I0,
ranging from 5000 to 100000 photons per detector pixel.

From the simulated polychromatic sinograms, images
were reconstructed with the following methods: FBP seg-
mented with Otsu’s method, pSART segmented, SART
segmented, DART with manually optimized grey levels3

and pDART. The segmentations of SART and pSART
were performed with the same global threshold as DART
and pDART, respectively.

All pDART reconstructions were performed with 1%
random free pixels, 100 initial and 20 inner iterations
of pSART. The same settings were used for DART. The
percentage of free pixels was chosen as advised in [1]. When
testing the influence of the variable number of angles, the
error was measured after 300 (p)SART iterations, which
corresponds to 10 (p)DART iterations.

For the noisy reconstructions we performed less
(p)SART iterations per iteration of (p)DART: only 50
initial and 4 inner iterations, to prevent overfitting to
noise. In this case, the error was measured after 210
(p)SART iterations. Due to the lower amount of initial
and inner iterations, this corresponds to 40 (p)DART
iterations. For the polychromatic reconstruction methods,
the spectrum shown in Fig. 1b was rebinned to 18 bins.

3Out of the different available attenuation values, at the different
energy levels, the one with the lowest reconstruction error was chosen.
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Figure 2: Plot of rNMP vs. (p)SART-iterations on 150
angles.

The reference energy level was set at 120keV, as higher
energy levels lead to faster convergence [3].
All parameters (e.g. percentage of free pixels, number

of inner iterations and reference energy level) were either
chosen empirically or in accordance with the literature.
All reconstructions and projections were generated using

the ASTRA toolbox [6].

IV. Results
To quantify the performance of pDART against seg-

mented FBP, DART, segmented SART and segmented
pSART, we computed the relative number of mismatched
pixels or rNMP [1]. The effects of undersampling and beam
hardening were very strong for FBP, so we have omitted
FBP from all plots to improve visibility.
In Fig.2, the rNMP of the different methods is shown in

function of the number of (p)SART iterations, for 150 pro-
jection angles between 0 and π. The rNMP for (p)SART
was calculated at every iteration, whereas the rNMP for
(p)DART was calculated at every DART iteration, i.e.
every 20 (p)SART iterations. From Fig.2, one can observe
that pDART converges more quickly than pSART. The
original DART algorithm is outperformed by the other
methods, except for FBP.
Next, the effect of varying amounts of projection angles

on the rNMP was studied. These results are shown in
Fig.3. Again, pDART outperforms the other methods in
terms of mismatched pixels, reaching a lower stable rNMP
and reaching this convergence point at a lower number of
projections. This suggests that pDART benefits from both
the beam hardening correction property of pSART and the
imposed discreteness.
Lastly, the robustness to noise of the new method was

studied. In Fig.4, the rNMP is plotted as a function of
the beam intensity (represented by the photon count per
detector element in the absence of attenuation). These
simulations were performed for 50 projection angles.
Even in the presence of noise, pDART performs the best

out of the different studied methods. However, comparing
Fig. 4 with Fig. 3 shows that the influence of noise on our
proposed method is still substantial.
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Figure 3: Plot of rNMP vs. number of angles, equally
spaced in [0, π).
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Figure 4: Plot of rNMP vs. different Poisson noise levels
at 50 projection angles.

Finally, a comparison of the different reconstruction
methods in the case of 50 noiseless projections can be
found in Fig. 5. From this figure it can be observed that the
two polychromatic methods show the least reconstruction
artefacts, with the other methods showing beam hardening
artefacts and streaks due to the low amount of projection
angles. Both pSART and pDART have some mismatched
black pixels in the interior, but the effect is less pro-
nounced in the pDART reconstruction. Furthermore, it
can be observed that pDART is the only algorithm, in our
comparison, that accurately reconstructs the bar phantom
in the center.

V. Conclusion
Many objects consist of a limited number of materials.

This prior knowledge can be exploited in the reconstruc-
tion of images from X-ray projection data using discrete
tomography. Current discrete tomography methods (such
as DART), however, do not account for polychromaticity
of X-ray sources, leading to various reconstruction arte-
facts. In this paper, pDART was proposed, a discrete
tomography method that exploits sparseness in atten-
uation values, while taking a polychromatic projection
model into account. Simulation experiments revealed that
pDART results in substantially improved image recon-
struction quality compared to DART or segmented ver-

(a) FBP (b) FBP seg. (c) DART

(d) SART (e) SART seg. (f) pSART seg.

(g) pDART

Figure 5: Comparison of the different reconstruction tech-
niques with 50 projection angles.

sions of FBP, SART or pSART for polychromatic X-ray
data.
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Joint image reconstruction for multiphase CT
Jingyan Xu and Frédéric Noo

Abstract—Joint image reconstruction for multiphase CT aims
to jointly reconstruct a sequence of CT data sets acquired
following contrast injection. Multiphase CT scans are not ac-
quired simultaneously. There exists small organ shifts and organ
boundary misalignment among different phases due to inter-scan
patient breathing. Existing multi-channel image reconstruction
algorithms with joint total variation (TV) type regularizers
introduce artifacts at misaligned organ boundaries. We propose
a multi-channel regularizer that is robust to organ misalignment.
The regularizer is based on the infimal convolution between a
joint TV and a separable TV. It can work like a joint TV, a
separable TV, and a continuum between them depending on the
local image properties, thus incorporating the shared information
if it exists. The proposed regularizer is used in a constrained
image denoising problem. The optimization problem is solved
using the linearized alternating direction method of multipliers.
Our numerical studies demonstrate that denoising using the
infimal convolution regularizer can improve upon joint TV when
misalignments are present, while maintaining the advantages of
joint TV when misalignments are absent.

I. INTRODUCTION

Multiphase CT scans are common in abdominal CT. Fol-
lowing contrast injection, multiple (2-4) acquisitions are per-
formed at different time points to capture the variation of
contrast enhancement in the organs of interest. Instead of
reconstructing each phase independently as is now done in the
clinics, joint image reconstruction for multiphase CT aims to
reconstruct the multiple data sets together, and use the shared
information among the multiple acquisitions to improve image
quality and reduce radiation dose.

Unlike other multi-acquisition schemes such as multi-energy
photon counting CT, the multiphase images are not acquired
simultaneously. The sequence of scans is often finished within
minutes while the patient remains on the table. During each
acquisition, the patient is instructed to hold his/her breath
to minimize motion; between acquisitions, the patient is in-
structed to breath. Thus the motion in each CT image is
negligible, but motion between scans causes small organ shifts
or misalignment. An example set of a patient 2-phase (arterial
and venous) CT images is shown in Fig. 1. The organ shift is
obvious around the spleen, stomach, and liver boundaries.

Joint multi-channel image reconstruction has been proposed
for multi-energy CT, simultaneous PET-MR, longitudinal PET,
multi-parameter MR, and color image processing. Many of
these methods rely on the assumption that there exist common
boundaries among the different images and design regularizers
that leverage such information. As our preliminary data will
show, the existing multi-channel regularizers can introduce

J Xu is with Deparment of Radiology, Johns Hopkins University. F Noo is
with Department of Radiology and Imaging Sciences, the University of Utah.
This project was supported by the National Cancer Institute of the National
Institutes of Health under R21CA211035.

artifacts to multiphase CT, as the organ boundaries are not
perfectly aligned. This motivates us to improve the robustness
of joint image reconstruction as applied to multiphase CT.

(a) (b)

Fig. 1: The images at the arterial phase (a) and the venous phase (b)
were acquired ∼ 38 sec apart. The organ boundaries at the arterial
phase (magenta) and the venous phase (cyan) are overlaid onto each
other. The misalignments are observed near the stomach, spleen, and
liver with kidney interface. (C, W) = (10, 400) HU.

II. PRELIMINARIES

For notational convenience, we mostly use joint two-phase
and 2-D reconstruction as our running example. The same idea
can be extended to many-phases and 3-D reconstruction in a
straightforward manner.

A. Framework of joint multi-channel image reconstruction

The joint image reconstruction problem can be formulated
as the following constrained minimization problem.

min
x1,x2

J(x1, x2) (1a)

subject to

∥∥∥∥ A1x1 − y1
A2x2 − y2

∥∥∥∥ ≤ ε

∥∥∥∥ y1
y2

∥∥∥∥ (1b)

where A1,2 is the forward projection operator for the two
scans; x1,2 are the reconstructed images at phase 1 and 2,
e.g., the arterial and the venous phase; y1,2 are the projection
data, ε is a percent error tolerance on data fitting. The objective
function to be minimized is a joint regularizer for x1 and x2.
We use the joint total variation (TV) type regularizer as an
example.

J(x1, x2) =
∑
i

‖Ti(x1, x2)‖U (2)

where Ti is the joint image gradient tensor at voxel i, i.e.

Ti(x1, x2) =
[
[Dx1]i [Dx2]i

]
and ‖T ‖U denotes a unitarily invariant matrix norm of T ,
and Dx1,2 denotes the image gradient, [Dx1,2]i the gradient
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evaluated at voxel i, a column vector composed of the neigh-
boring voxel differences at i of image 1 (or 2) along each
dimension. In (2), we consider both the Frobenius norm and
the Nuclear norm in this work, but other matrix norms have
also been proposed for multi-channel reconstruction, see, e.g.,
[1], [2]. The joint TV regularizers encourage joint sparsity in
the multiple images.

B. Infimal convolution

The infimal convolution (inf-conv) of two closed, proper,
convex functions f1, f2: Rn → R ∪ {+∞}, is defined as

f(s) = inf
t
f1(t) + f2(s− t) = inf

t+t′=s
f1(t) + f2(t

′) (3)

If f1 is coercive1 and f2 is bounded below, then from [3,
Proposition 12.11, 12.14], f(s) is also closed, proper, convex.
Further, there exists t for any s, such that f(s) = f1(t) +
f2(s − t), i.e., the infimal convolution is exact. In this case,
we may also write f(s) = f1(s)� f2(s).

Infimal convolution is a fundamental convexity preserving
operation for functions [3, page 167]. For imaging applica-
tions, infimal convolution has been used to combine regular-
izers to encourage different image properties [4]. For example,
the total generalized variation (TGV) is the infimal convolution
of the first order and the higher-order differences. The second
order TGV has been found to reduce the stair-casing artifacts
that is well known to TV. The infimal convolution has also
been used to combine spatial regularization and temporal
regularization for dynamic imaging [5], [6].

As a more familiar example, the Huber function, defined by

h(s) =

{
s2/(2δ) |s| ≤ δ
|s| − δ/2 |s| > δ

(4)

is the infimal convolution of |s| and s2/(2δ), i.e.,

h(s) = |s|� s2/(2δ) = inf
t
{|t|+ (s− t)2

2δ
}. (5)

In imaging applications, s usually represents intensity differ-
ences. The parameter δ can be regarded as a combination
parameter between the two terms. For a fixed δ, if the image
difference s is large, the Huber function is similar to |s|; when
s is small, h(s) behaves like a quadratic function. Thus the
parameter δ determines which term in the infimal convolution
plays a more dominant role at each voxel.

III. METHOD

The organ shifts in multiphase CT create artifacts if we
directly apply the joint TV regularizers. An ideal regularizer
should be robust to organ shifts: if organ shifts exist, apply
separable (channel-by-channel) regularization, and if they do
not, apply the joint regularization. In other words, a desirable
property for a robust regularizer is that it should adapt to
the local image content, instead of applying the joint or the
individual regularization invariably.

In this work, such local adaptation is accomplished by the
infimal convolution of a joint multi-channel penalty and a sep-
arable channel-by-channel penalty. A combination parameter

1f1(s) → ∞ as ‖s‖ → ∞.

between the two terms, similar to δ in (4), (5), determines
which term, the joint or the separable penalty, plays a major
role at each voxel.

Denote by X = [· · ·xj · · · ], j = 1, · · · , p, xj is the
vectorized image at phase j, i.e., X is the Casorati matrix of
the multiphase images, the proposed regularizer can be written
as

R(X ;β) = inf
Z+W=DX

J(Z) + βS(W ) (6)

where J(·) denotes a joint penalty term, and S(·) denotes a
separable penalty term, β > 0 is a parameter that determines
the relative contribution of the two. For a 2-phase problem,
(6) is simplified to

R(x1, x2;β) = inf
(z1+w1=Dx1
z2+w2=Dx2

)
‖z1, z2‖U + β(‖w1‖+ ‖w2‖)

(7)

Letting d1,i = [Dx1]i, d2,i = [Dx2]i, d1 = {[Dx1]i}, d2 =
{[Dx2]i}, the regularizer in (7) can be rewritten as

R(x1, x2;β) = min
z1,z2

∑
i

{‖z1,i, z2,i‖U

+ β(‖d1,i − z1,i‖+ ‖d2,i − z2,i‖)} (8)

the unknowns are z1 = {z1,i}, z2 = {z2,i}, where z1,i, z2,i
are column vectors of the same size as the gradient vector
[Dx1]i and [Dx2]i.

For the Huber function, the single voxel minimization
problem (5) has an analytic solution (a soft thresholding of
s), which provides insight into the properties of the Huber
function as a regularizer. Similarly, the special 2-phase prob-
lem (8) consists of separable single voxel problems that can be
solved for simple matrix norms. The solution provides insights
into the properties of the regularizer (6).

Omitting the voxel index i (and with some abuse of nota-
tion), the single voxel minimization problem involved in (8)
is

R0(d1, d2)
�
= min

z1,z2
‖z1, z2‖U + β(‖d1 − z1‖+ ‖d2 − z2‖)

(9)

where d1, d2, z1, z2 are column vectors of length m, m ≥ 2.
For example, d1 and d2 can be the horizontal and vertical
differences of image 1 and image 2 (at a certain voxel i),
then m = 2. The minimization problem (9) is convex but not
strictly convex. For some critical values of β, the minimizer
z1, z2 may not be unique; but any local minimizer is a global
minimizer.

Below we characterize the solution to (9) for two choices
of the unitarily invariant matrix norm: (a) the Frobenius norm,
and (b) the Nuclear norm. The details of our analysis are
omitted due to space limit. Again, such a characterization
is important to understand the properties of the inf-conv
regularizers and informative to select the parameter β. Ta-
ble I highlights our findings when d1 �= 0, d2 �= 0, and
‖d1‖ ≥ ‖d2‖.

The solution z1, z2 depends on β for both the Frobenius
norm and the Nuclear norm. It is easy to see that z1 and
z2 must lie in the subspace of d1 and d2 (otherwise their
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TABLE I: The solution to the single voxel problem (9) as a function
of the input vectors d1 �= 0, d2 �= 0, and ‖d1‖ ≥ ‖d2‖, for using (a)
the Frobenius norm and (b) the Nuclear norm.

(a) β ≤ β0 β0 < β < 1 β ≥ 1

z1 = 0 z1 = min{r‖d2‖, ‖d1‖}d̂1 z1 = d1
z2 = 0 z2 = d2 z2 = d2

r = β/
√

1− β2

β0 =
√

1/2

(b) β ≤ β0(θ) β0(θ) < β < 1 β ≥ 1
z1 = 0 (i) z1 ‖ z2, ‖z1‖ = ‖z2‖ z1 = d1
z2 = 0 (ii) z1 ‖ z2 = d2, ‖z1‖ > ‖d2‖ z2 = d2

β0(θ) = 1/(
√

1 + | cos θ|)
The angle θ is defined as θ = arccos〈d̂1, d̂2〉. d̂i = di/‖di‖, i = 1, 2.

projection onto the subspace of {d1, d2} would have smaller
objective values). When β ≥ 1, R0(d1, d2) = ‖d1, d2‖U , i.e.,
similar to a joint TV regularizer; when β ≤ β0, R0(d1, d2) =
β(‖d1‖ + ‖d2‖), i.e., similar to a separable TV regularizer.
For intermediate values of β, the solution z1, z2 induces a
decomposition of the input vectors d1, d2, such that z1, z2
are assigned to the joint penalty, and the remainders, d1 −
z1 and d2 − z2, are assigned to the separable penalty. These
observations are common to both the Frobenius norm and the
Nuclear norm.

For the Frobenius norm, z1 and z2 will maintain the
direction of their respective input d1 and d2. Further, the
assignment z1, z2 to the joint penalty is such that the “shorter”
input vector, say ‖d1‖ ≥ ‖d2‖, is always saturated z2 = d2,
and no more than a certain extension factor r(β) is assigned to
its partner z1, ‖z1‖ = min{r‖d2‖, ‖d1‖}, in the joint penalty.

A difference between the Frobenius norm and the Nuclear
norm is that the Frobenius norm is orientation independent,
while the Nuclear norm is orientation dependent. Here by ori-
entation we refer to the relative orientation (angle θ) between
the column vectors that make up a matrix. This difference
leads to differences in the solution z1, z2, and different proper-
ties of the regularizer R0(d1, d2). The orientation dependency
of the Nuclear norm is reflected in z1, z2 in the following
aspects.

1) The threshold β0(θ) is orientation dependent. The larger
the separation angle θ between d1, d2, the higher the
threshold. For two pairs of vectors d1 and d2 that differ
only in the relative orientation, the pair with a larger
separation angle θ will more likely be subject to the
separable TV.

2) The solutions, z1 and z2, are always parallel to each
other; this shared direction may not (case (i)) or may
(case (ii)) be one of the input directions. The solutions
also maintain the sign of their correlation.2 In other
words, if 〈d1, d2〉 ≶ 0, then 〈ẑ1, ẑ2〉 = ∓1; Case (ii)
happens when two conditions are met (1) the inputs
d1, d2 are very ”well aligned;” specifically, if d1 ·d2 > 0,

the condition is (d1 − d2) · d̂2/‖d1 − d2‖ �
= cos θ1 ≥

1/
√
2. and (2) β ≥ β1 = 1/(

√
2 cos θ1). Note that

2When the inputs are perpendicular, i.e., d1 · d2 = 0, β0(θ) = 1. We have
separable TV if β < 1 and joint TV if β > 1; when β = 1, the solution
z1 = γd1, z2 = γd2, for 0 ≤ γ ≤ 1.

β0 = 1/(
√
2 cos(θ0/2)). As θ1 ≥ θ0 ≥ θ0/2, we always

have β1 ≥ β0.
We point out that for intermediate range of β0(θ) < β < 1,

the decomposition is such that the matrix formed by z 1, z2 is
of rank-1, i.e., z1 and z2 are always aligned.

These observations echo the desirable properties for a robust
regularizer in which either the joint or the separable penalty
plays a major role depending on the local image content.

We develop a generic algorithm for multiphase image re-
construction, to minimize the joint regularizer (6) or (7) with
the constraint (1b). Our algorithm uses the linearized form
of the alternating direction method of multipliers (ADMM).
Two other methods were used for comparison: (a) conventional
joint TV as in (1) and (b) separable TV, which is simply

min
x1,x2

TV(x1) + TV(x2)

subject to ‖A1x1 − y1‖ ≤ ε‖y1‖, ‖A2x2 − y2‖ ≤ ε‖y2‖

IV. NUMERICAL STUDIES

Our numerical studies focused on three issues: (1) quali-
tative and (2) quantitative effect of anatomical misalignment
on joint image denoising; and (3) mitigating the detrimental
effects of misalignment by using the inf-conv regularizer.

To answer question (1), the patient data (Fig. 1) was
denoised using separable TV, joint TV with the Nuclear norm,
and joint TV with the Frobenius norm for various error toler-
ance values ε [Fig. 2]. Using the separable TV as a reference
for artifacts appearance, we notice that organ misalignment
creates artifacts for both the joint TV penalties. At low to
intermediate error tolerance values, these artifacts might be
mistaken for noise; but the artifacts resemble the misaligned
anatomy in the other phase, which becomes more evident at
higher error tolerance values. At very high error tolerance
values, both the artifacts and important signal features will
eventually disappear.

Comparing the two joint denoising methods, we observe that
at the same error tolerance value, using the Frobenius norm is
more prone to artifacts than using the Nuclear norm.

To provide a more quantitative answer, we created hybrid
patient data by adding two sets of 20 signals of size 3x3 pixels
and contrast 40 HU to the arterial image of the same patient
(Fig. 3). Signals of Set 1 were located at the organ misaligned
region, Set 2 at the aligned region.

The hybrid patient data were then denoised using the
separable TV, the joint TV with both the Nuclear and the
Frobenius norm, and the inf-conv regularizer between the joint
and the separable TV (for a variety of β values, cf.(7)).

We defined a two-phase contrast-to-noise (CNR) as the
quantitative figure of merit. The contrast was defined as the
mean intensity difference between the signal in the arterial
phase (for either Set 1 or Set 2) and the background in the
venous phase. The noise was defined as the summed noise in
the signal and the background. Written symbolically,

CNR(i, j) =
mean[s(i, j)]−mean[b(i, j = 2)]√

var[s(i, j)] + var[b(i, j = 2)]

i = 1, · · · , 20, j = 1, 2 (10)
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Fig. 2: Image artifacts at misaligned organ boundaries for joint TV denoising using the nuclear norm and the Frobenius norm. Image denoising
using the separable (channel-by-channel) TV is shown for reference. The error tolerance in these examples were 2%, 2.2%, 2.5%, 2.8% for
ε1, ε2, ε3, ε4, respectively. Misalignment artifacts were more observable in images using the joint Frobenius norm than the joint Nuclear
norm. The display window for the 1st column (spleen) is (C, W) = (66, 100). for the 2nd column (stomach) is (C, W) = (0, 100).

Set 1 Set 2 Background

Fig. 3: Hybrid data generation. We added two sets of 20 signals
of size 3x3 pixels and contrast of 40 HU to the arterial image at
the marked locations. Signals of Set 1 are at the arterial-venous
misaligned region (the dashed box), Set 2 at the arterial-venous
aligned region. For both sets of signals, the CNR calculation used
the same background area (divided into 20 3x3 cells, not shown)
marked by the solid (red) box. (C, W) = (66, 200) HU.

where i indexes the 20 signals of size 3x3, and j indexes the
set location, j = 1 (the misaligned) and j = 2 is the aligned
region. Both the mean and the variance in (10) were calculated
over 3x3 pixels.

Among the four error tolerance values of
2.0%, 2.2%, 2.5%, 2.8% that we used in Fig. 2, we found that
the CNR in (10) peaked at ε = 2.5%. Therefore this value
was used for comparing different methods. The (notched)
boxplots of the CNRs for the two sets (two locations) of 20
signals are shown in Fig. 4 for the different methods.

Comparing joint denoising and separable denoising
(Fig. 4(a), the first three columns), we notice that the mis-
aligned organ boundaries in Set 1 reduces the CNR, and that
the separable TV achieved higher CNR than either of the
joint denoising methods. When there was no misalignment
(Set 2, Fig. 4(b)), the joint denoising methods achieve higher
CNR than the separable TV. Comparing between the two joint

8 The fifth international conference on image formation in X-ray computed tomography



(a) Set 1 (misaligned locations) (b) Set 2 (aligned locations)

Fig. 4: Boxplots of CNR using different image denoising methods. The labels are: J-N: joint TV with Nuclear norm; S: separable TV; J-F:
joint TV with Frobenius norm; N-S(β): infimal convolution between nuclear norm TV and separable TV, with parameter β; F-S(β): infimal
convolution between Frobenius norm TV and separable TV, with parameter β.

(a) Set 1 (misaligned locations) (b) Set 2 (aligned locations)

Fig. 5: Boxplots of CNR using infimal convolution between joint nuclear TV and separable TV for different parameters β. As β ↑ 1, N-S(β)
approaches the performance of JN in Fig. 4. As β ↓ 0.707, N-S(β) approaches the performance of S (the first column). The labels are: S:
separable TV; N-S(β): infimal convolution between nuclear norm TV and separable TV, with parameter β.

denoising methods, using the Nuclear norm performed better
than using the Frobenius norm. These observations support and
strengthen the qualitative statements we made about artifacts
level between the two methods.

For proper weighting parameters β, the inf-conv regularizer
can maintain the advantages of the joint TV when there is
no organ misalignment, while improving upon joint TV when
there is.

Further, comparing between the two inf-conv regularizers,
N-S and F-S, i.e., infimal convolution between joint nuclear
TV and separable TV (N-S), and joint Frobenius TV and
separable TV (F-S), we observe that N-S achieved higher
CNR, consistent with the performance of the two joint TV
penalties.

By adjusting the weighting parameter β in (7), the infimal
convolution achieves a continuum between joint TV and
separable TV. For a 2-phase problem, as β ↑ 1, it behaves
more like joint TV; and β ↓ 0.707, it behaves more like

separable TV. These general trends can be observed from the
CNR boxplots in Fig. 5 for some sample β values.

V. DISCUSSION

We did not use computer simulations in the evaluation as
it might be difficult to simulate realistic anatomical varia-
tions, contrast uptake, and organ misalignment. Instead, our
numerical studies were based on patient data. The strength of
this approach is the realism in data generation. But the lack
of ground truth and noise variations may limit the statistical
power of our quantitative statements. Future studies should
supplement the current work with experimental data acquired
under controlled conditions.

VI. CONCLUSIONS

We evaluated the performance of joint total variation (TV)
penalty for multiphase CT when there exists organ shifts
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and boundary misalignment among the different phases. We
observed image artifacts at the misaligned organ boundaries
for the two joint TV penalties we studied (joint nuclear
norm TV and joint Frobenius norm TV). The image artifacts
might be mistaken for increased noise for low or intermediate
penalty parameters (ε in this work). The statistical noise
combined with anatomical error caused by organ misalignment
negatively affect the performance of joint TV denoising.

A simple approach to maintain the advantages of joint TV
while avoiding anatomical artifacts is to use the separable TV
when misalignments are present, and use the joint TV when
they are not. Building on this idea, we proposed to use the
infimal convolution between the joint TV and separable TV to
achieve a continuum between the two. The infimal convolution
can adapt to the local image content, incorporate the common
edge information when it exists, and resort to separable TV
when organ misalignments are present.

Our preliminary evaluation using a two-phase patient data
set demonstrated that the infimal convolution regularizer can
improve upon joint TV when misalignments are present, while
maintaining the advantage of joint TV over separable TV
when they are not. Moreover, it may be important to adapt
the weighting parameter β in the infimal convolution to truly
achieve “the best of both worlds.”
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Statistical Image Reconstruction with Sample-Based 

Beam-Hardening compensation for X-ray CT 

C. Martinez, J. A. Fessler, M. Desco, and M. Abella 

 Abstract— CT images are often affected by beam-

hardening artifacts due to the polychromatic nature of the X-

ray spectra. These artifacts appear in the image as cupping in 

homogeneous areas and streaks between dense parts in 

heterogeneous samples.  

This paper proposes a new statistical reconstruction method 

for X-ray CT based on Poisson statistics, taking into account 

the non-linearities caused by beam hardening. To avoid 

needing knowledge of the X-ray spectrum, the method obtains 

the 2D beam-hardening function using information provided 

by the acquired data itself. 

Evaluation using simulations showed beam hardening 

artifact reductions similar to those achieved with conventional 

post-processing techniques while avoiding noise and artifacts 

in low-dose studies. 

Index Terms—Beam-hardening, CT, artifacts, penalized-

likelihood, streaks, polychromatic. 

INTRODUCTION 

The beam hardening effect in computed tomography derives 

from the polychromatic nature of the radiation produced by 

X-ray tubes. Due to the energy dependence of mass 

attenuation coefficients, low energy photons are preferably 

absorbed, causing a shift of the mean energy of the X-ray 

beam to higher values. This effect leads to two main 

artifacts in uncorrected reconstructed images: cupping in 

homogeneous regions and streaks between dense areas in 

heterogeneous regions [1]. 

Several strategies can be found in the literature to 

compensate for this effect. Physical filters are generally 

used to pre-harden the beam before reaching the sample, but 

this is not enough to remove the artifacts. Another method 

implemented in most commercial scanners is the water-
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linearization, based on a prior calibration with a water-

equivalent phantom. This method models the object as 

homogeneous and corrects only cupping artifact [2]. To 

correct also streaks, Nalcioglu et al. [3] proposed a method 

that requires knowledge of the spectrum, the linear 

attenuation coefficients and the thickness of soft tissue and 

bone traversed estimated by means of a preliminary 

reconstruction. Joseph et al. [4] proposed a similar idea 

modeling the corrected data with a second-order polynomial 

dependent on the bone traversed thickness. However, the 

optimum parameters for this model could be exactly 

obtained only with a complete characterization of the 

spectrum. This need of knowledge of the spectra was 

avoided in [5, 6], also based on a linear combination of 

basis images to correct streaks. The coefficients of this 

linear combination are obtained iteratively maximizing the 

flatness of the soft tissue areas, which could reduce the soft-

tissue contrast. Cupping correction is achieved using the 

water-linearization method, which needs a calibration step. 

We recently proposed two new methods extending the 

water-linearization to a 2D linearization [7, 8]. However, 

they require a good bone and soft tissue segmentation which 

may hinder their use in low-dose studies. 

To deal with low-dose studies, Elbrakri et al. presented a 

statistical method that requires knowledge of the spectrum 

[9, 10]. This is avoided in [11, 12] with a simplified 

statistical algorithm that parametrizes the beam-hardening 

function following the model proposed by Joseph and Spital 

[4]. 

This paper presents a variation of [12] that replaces the 

approximation functions with the real measured line 

integrals of bone and soft tissue of the sample as proposed 

in [8]. 

MATERIALS AND METHODS 

A. Forward model 

We model the measurements as independently distributed 

Poisson random variables [13] contaminated by extra 

background counts, primarily scatter: 

𝑌𝑖  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 { 𝑌𝑖  }, 𝑖 = 1, … , 𝑁         (1) 

with 

 𝑌𝑖 = ∫ 𝐼𝑖(𝜀)𝑒
− ∫ 𝜇(𝜀)𝑑𝑙𝐿𝑖 𝑑𝜀 + 𝑟𝑖            (2) 

where 𝜇(𝜀) is the attenuation coefficient at each energy 𝜀, 

the integral in the exponent is taken over the line Li 
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followed by the ray, and 𝐼𝑖(𝜀) is the incident intensity and 

the term 𝑟𝑖 accounts for mean scatter and mean other 

background signals for the i-th ray. 

Following [4, 14] we model the attenuation coefficient in 

Eq. 2 at each pixel j as: 

𝜇𝑗(𝜀) = ∑ 𝑚𝑎𝑐𝑘(𝜀)𝑓𝑘
𝑗
𝜌𝑗

𝐾
𝑘=1            (3) 

where 𝑚𝑎𝑐𝑘 is the mass attenuation coefficient of the 

material k, 𝜌 the density and 𝑓𝑘
𝑗
 is a unitless fraction that 

describes the contribution of the material k to attenuation in 

the pixel j. We assume K=2, i.e., the object contains only 

soft tissue (ST) and bone (B). The contribution of each 

tissue type to the line integral along the i-th ray is: 

𝑡𝑆𝑇(𝜌) = ∑ 𝑎𝑖𝑗𝑓𝑆𝑇
𝑗

(𝜌𝑗)𝜌𝑗
𝑝
𝑗=1         (4) 

𝑡𝐵(𝜌) = ∑ 𝑎𝑖𝑗𝑓𝐵
𝑗
(𝜌𝑗)𝜌𝑗

𝑝
𝑗=1           (5) 

where 𝑎𝑖𝑗  are the elements of the system matrix. Here we 

allow the unitless fraction (𝑓𝑘
𝑗
 ) to only be 1 or 0, i.e., the 

pixels do not contain mixtures of tissues. Eq. 2 for the 

expected value of the measured data along the path i results 

in: 

𝑌𝑖(𝜌) = ∫ 𝐼𝑖(𝜀)𝑒
− ∫ 𝜇(𝜀)𝑑𝑙𝐿𝑖 𝑑𝜀 + 𝑟𝑖 = 

= 𝐼𝑖𝑒
−𝐹(𝑡𝑆𝑇

𝑖 (𝜌),𝑡𝐵
𝑖 (𝜌))

+ 𝑟𝑖                                (6) 

where 

 𝐼𝑖 ≡ ∫ 𝐼𝑖(𝜀)𝑑𝜀           (7) 

and the beam-hardening function, F, is: 

𝐹(𝑡𝑆𝑇 , 𝑡𝐵) = − log ∫
𝐼(𝜀)

𝐼
𝑒−𝑚𝑎𝑐𝑆𝑇(𝜀)𝑡𝑆𝑇−𝑚𝑎𝑐𝐵(𝜀)𝑡𝐵  𝑑𝜀   (8) 

dropping the dependence on ray i for simplicity. 

B. Beam-Hardening function 

The beam-hardening function 𝐹(𝑡𝑆𝑇 , 𝑡𝐵) could be 

analytically calculated from a known spectrum, but often 

this information is not available. To avoid assuming 

spectrum knowledge, the proposed method determines 

𝐹(𝑡𝑆𝑇 , 𝑡𝐵) experimentally using the acquired data following 

the process outlined in Fig. 1.  

 

Fig. 1. Workflow for the generation of the beam-hardening function. 

First bone and soft-tissue masks are obtained by 

thresholding a preliminary reconstructed image. These two 

masks are then multiplied by the density of each tissue and 

projected, which will be the x and y axis, where x 

corresponds to 𝑡𝑆𝑇 and y corresponds to 𝑡𝐵. The value in the 

original projection will be the z axis, corresponding to 

𝐹(𝑡𝑆𝑇 , 𝑡𝐵). 

The generated 𝐹(𝑡𝑆𝑇 , 𝑡𝐵) will not cover the whole space, 

since a specific acquisition will not have all possible 

combinations of soft tissue and bone (Fig. 2, left). To 

completely characterize the beam-hardening function, we 

“extrapolate” the incomplete function F using a quadratic 

function (Fig. 2, right). 

 

Fig. 2. Measured (left) and extrapolated (right) beam-hardening function. 

C. Cost function 

The negative log-likelihood for independent Poisson 

measurement is: 

𝐿(𝜌) = − ∑ ℎ𝑖 (𝐹(𝑡𝑆𝑇(𝜌), 𝑡𝐵(𝜌)))𝑁
𝑖=1      (9) 

where 

ℎ𝑖(𝑑) = −𝑌𝑖 log(𝐼𝑖𝑒−𝑑 + 𝑟𝑖) + 𝐼𝑖𝑒−𝑑 + 𝑟𝑖   (10) 

Since minimizing 𝐿(𝜌) is generally an ill-posed problem, 

regularization is included by adding a penalty term to 

control how much the object 𝜌 departs from our 

assumptions about image properties. In this work, we use a 

3D roughness penalty function with the convex edge-

preserving Huber potential. The resulting penalized cost 

function is: 

Φ( 𝜌) = 𝐿(𝜌) + 𝛽𝑅(𝜌)      (11) 

where 𝛽 is a scalar that controls the tradeoff between the 

data-fit and penalty terms.  

D. Algorithm 

We derive an iterative algorithm based on separable 

quadratic surrogates using the principles of optimization 

transfer [14], resulting in the following update: 

𝜌𝑛+1 = 𝜌𝑛 − 𝐷−1∇Φ(𝜌𝑛)     (12) 

where D is a diagonal matrix that influences the rate of 

convergence. We originally designed D to ensure that the 

algorithm monotonically decreases the cost function. As in 

[9], in practice we choose the elements of D approximately 

by using the precomputed curvature: 

𝑑𝑗 = (𝑚𝑎𝑐𝑆𝑇
2 (𝜀𝑒𝑓𝑓) + 𝑚𝑎𝑐𝐵

2(𝜀𝑒𝑓𝑓)) ∑ 𝑎𝑖𝑗
𝑁
𝑖=1 ∑ 𝑎𝑖𝑗𝑗 𝑌𝑖  (13) 
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where the effective 𝑚𝑎𝑐(𝜀𝑒𝑓𝑓) values for each tissue are 

approximated using the derivative of beam-hardening 

function at (0,0). 

Artifacts in the preliminary reconstruction may hinder the 

segmentation to obtain the bone and soft-tissue masks, 

resulting in an erroneous beam-hardening function. To 

tackle this problem, new bone and soft-tissue masks are 

obtained from the solution at each iteration and are used to 

recalculate the beam-hardening function. 

EVALUATION 

Preliminary evaluation used simulations of a 2D phantom 

with two cortical bone inserts having density 1.9 gr/cm3, 

one trabecular bone insert with density 1.5 gr/cm3 and one 

adipose-tissue insert with density 0.9 gr/cm3, inside of a 

soft-tissue ellipse with density 1.06 gr/cm3 (Fig. 3).  

 

Fig. 3. Test phantom with two cortical bone inserts (1), one trabecular bone 

insert (2), and one adipose-tissue insert (3) inside of a soft-tissue ellipse 

(4). 

Four polyenergetic X-ray datasets were generated using 

MIRT(http://www.eecs.umich.edu/~fessler/code/index.html) 

with a 50 kVp spectrum and 0.1 mm aluminum filtration, 

typically used in preclinical studies. The number of counts 

per ray were 105 and 106 to simulate low-SNR and high-

SNR scenarios respectively. For each scenario, we obtained 

45 and 180 projections in a span of 180 degrees with a 

matrix size of 256×256 pixels and 0.1×0.1 mm pixel size. 

The data were reconstructed with FBP, with FBP 

corrected by the free calibration method (fCM) proposed in 

[8] and by the proposed statistical algorithm. 

RESULTS 

Fig. 4 shows the segmented soft-tissue mask along 

different iterations for the low-SNR scenario with 45 

projections. The mask in the first iteration has holes due to 

the streaks from beam-hardening effect and low sampling, 

which are removed in subsequent iterations. 

 

Fig. 4. Soft tissue mask in iteration 1 (left), 5 (center) and 15 (right). 

Fig. 5 shows the results for 180 projections. The result of 

FBP corrected with fCM shows a good compensation of 

beam-hardening artifacts but it fails to correct streaks with 

high noise (low SNR scenario), while the proposed method 

results in good quality reconstructions in high-SNR and 

low-SNR scenarios. 

When the number of projection is reduced to 45 (Fig. 6) 

FBP+fCM eliminates the beam hardening artifacts in the 

high-SNR scenario, but the reconstruction is contaminated 

with streaks due to the lack of projections. For the low-SNR 

scenario, FBP+fCM also fails to compensate the streaks due 

to beam-hardening effect, because of the wrong 

segmentation used to create the beam-hardening function. 

The proposed method eliminates the beam hardening and 

the streaks in all cases. 

 

Fig. 5. Results for the 180 projections datasets using FBP (top), FBP + 

fCM (center) and the proposed algorithm (bottom). 

 

Fig. 6. Results for the 45 projections datasets using FBP (top), FBP +fCM 
(center) and the proposed algorithm (bottom). 

CONCLUSIONS 

We present a new statistical reconstruction algorithm that 

includes beam-hardening correction without needing any 

spectrum knowledge or correction parameters optimization.  

The method models the polychromatic effect via a beam-

hardening function determined from the acquired data and a 

segmentation of bone and soft-tissue masks, which are 
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iteratively improved. Results on simulated data show a 

reduction of streaks due to both beam-hardening effect and 

low number of projections. 
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Model Based Iterative Reconstruction With
Spatially Adaptive Sinogram Weights for

Wide-Cone Cardiac CT
Amirkoushyar Ziabari, Dong Hye Ye, Lin Fu, Somesh Srivastava, Ken D. Sauer, Jean-Baptiste Thibault, and 

Charles A. Bouman

Abstract—With the recent introduction of CT scanners with
large cone angles, wide coverage detectors now provide a de-
sirable scanning platform for cardiac CT that allows whole
heart imaging in a single rotation. On these scanners, while
half-scan data is strictly sufficient to produce images with the
best temporal resolution, acquiring a full 360 degree rotation
worth of data is beneficial for wide-cone image reconstruction
at negligible additional radiation dose. Applying Model-Based
Iterative Reconstruction (MBIR) algorithm to the heart has
already been shown to yield significant enhancement in image
quality for cardiac CT. But imaging the heart in large cone
angle geometry leads to apparently conflicting data usage con-
siderations. On the one hand, in addition to using the fastest
available scanner rotation speed, a minimal complete data set of
180 degrees plus the fan angle is typically used to minimize
both cardiac and respiratory motion. On the other hand, a
full 360 degree acquisition helps better handle the challenges of
missing frequencies and incomplete projections associated with
wide-cone half-scan data acquisition. In this paper, we develop a
Spatially Adaptive sinogram Weights MBIR algorithm, deemed
SAW-MBIR, that is designed to achieve the benefits of both
half-scan and full-scan reconstructions in order to maximize
temporal resolution performance over the heart region while
providing stable results over the whole volume covered with the
wide-area detector. Spatially-adaptive sinogram weights applied
to each projection measurement in SAW-MBIR are designed to
selectively perform back projection from the full-scan and half-
scan portion of the sinogram based on both projection angle and
reconstructed voxel location. We demonstrate with experimental
results of SAW-MBIR applied to whole-heart cardiac CT clinical
data that overall temporal resolution performance matches half-
scan results while full volume image quality compares positively
to the standard MBIR reconstruction of full-scan data.

Index Terms—MBIR, Selective Back Projection, Cardiac CT,
Temporal Resolution, Spatially-Adaptive

I. INTRODUCTION

CARDIAC CT reconstruction requires high temporal res-
olution to capture the moving heart. To achieve high

temporal resolution in the reconstructed image, it is desirable
to reconstruct from limited-view angle projections, i.e. a
minimal complete dataset (180 + the fan angle), also referred
to as half-scan, instead of a full-scan acquisition with 360
degrees of data [1], [2]. Although half-scan is sufficient for
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image reconstruction in the mid-plane, it results in incomplete
projections and missing spatial frequencies for image planes
under larger cone angles. Without explicit corrections, ana-
lytical algorithms such as filtered back projection (FBP) may
lead to artifacts when performing reconstruction from half-
scan data at high cone angles [3], [4].

On the other hand, wide detector apertures and large cone
angles are advantageous in cardiac CT as they allow the
acquisition of the whole heart in a single rotation, with reduced
overall scan time over the target volume and higher X-ray tube
efficiency [5]. While most conventional clinical CT platforms
with smaller detectors rely only on half-scan data for heart
imaging, wide-area detectors allow full-scan acquisitions with
360 degree projections with negligible additional radiation
dose. In this geometry, spatially-dependent sinogram weight-
ing can help conserve temporal resolution performance over
the heart region. In analytical methods such as FBP, this is
relatively straightforward because the reconstruction at each
spatial location can be carried out in a closed form equation,
independent of other spatial locations, as long as the weights
are calculated to sum to a constant over redundant projection
data contributing to the same location. However, large cone
angles result in missing data and inconsistent projections
which can lead to image distortions without explicit compen-
sation [5].

Model Based Iterative Reconstruction (MBIR) affords ad-
ditional flexibility in data handling and has been shown to
perform better than analytical methods in terms of noise,
artifact reduction, and spatial resolution performance [6]–
[8], thus allowing significant reduction in patient radiation
dose [1], [8], [9]. But specifically for cardiac imaging, MBIR
needs to balance temporal resolution performance with image
spatial resolution, noise, and uniformity. Spatially-dependent
sinogram weighting can be employed to control the contribu-
tions from full-scan and half-scan data sets depending on voxel
location in MBIR as well, as long as the algorithm provides for
consistent problem formulation that allows stable convergence
to the minimum of the cost function.

Individual voxel locations or sub-regions of the cardiac vol-
ume may be properly reconstructed with spatially-dependent
sinogram weighting in MBIR when back projecting a single
full-scan wide-cone dataset which treats differently locations
within the heart area vs. outside the heart. Parker weights [10]
can for instance be used for back projection of half-scan data
over the heart region, whereas regions outside the heart are
back projected using the corresponding full-scan sinogram
weights. In this case, the algorithm needs to deal with an

The fifth international conference on image formation in X-ray computed tomography 15



unmatched forward/backward projection pair (or dual sys-
tem matrix) [11]. Such approaches have previously been
investigated to reduce artifacts [12] as well as to accelerate
the convergence of IR algorithms [11], [13], [14]. However,
in these past works, the back projection operator does not
contain any specific information about the locations of both
the measurements and the reconstructed voxels.

In this paper, we propose the SAW-MBIR algorithm that
uses spatially-adaptive sinogram weights to perform selective
back projection from different sub-regions or voxels in the re-
constructed image, and apply it to wide-cone angle cardiac CT.
In a single iteration, SAW-MBIR selectively performs half-
scan back projection over the heart region and full-scan back
projection over the rest of the volume in order to address the
challenges normally associated with incomplete and missing
data from the half scan geometry in regions with high cone
angles. Experimental results demonstrate that the SAW-MBIR
algorithm achieves consistent temporal resolution with half
scan MBIR reconstruction over the heart region, and good
image quality consistent with full-scan MBIR reconstruction
in the rest of the reconstructed volume, all in a consistent
algorithm framework operating with a single reconstruction.

II. SAW-MBIR
A. Theoretical Formulation

The objective of this work is to develop an MBIR formula-
tion with spatially-adaptive sinogram weighting (SAW-MBIR)
for selective back projection of cardiac full-scan CT data. In
this approach, separate back projections are performed from
the sinogram residual corresponding to different sub-regions in
the reconstructed image volume. Subsequently, the back pro-
jection results are weighted using a mask applied to the spatial
location of each sub-regions. When used over half-scan and
full-scan projection regions, this supports the reconstruction
of an image volume with good temporal resolution over the
central region while using full sampling to reconstruct the rest
of the volume.

To explain the idea, we use gradient descent to find the
solution to the problem:

y = Ax (1)

where A ∈ <M×N is the system matrix, x ∈ <N is the
unknown vector of the image, and y ∈ <M is the vector
of sinogram measurements. The corresponding maximum a
posteriori (MAP) cost function is:

f(x) =
1

2
||y −Ax||2W + Φ(x) (2)

The norm in the first term is the data fidelity term, where
W is a diagonal statistical weighting matrix that models the
noise [8] and Φ(x) is the regularization function. We can then
write the gradient descent update equation as follows:

g(x) = ∇f(x) = ATW (Ax− y) +∇Φ(x) (3)

x(k+1) = xk − αg(x), (4)

where k denotes the iteration number and α is the step size.
Here, AT is the matched back projection operator to the
forward projection system matrix A.

For a cardiac CT scan that includes projections from the
full 360 degree rotation scan, we denote y the complete
set of projections (full-scan), and consider the limited view
angle measurements yh (half-scan) as a subset of the full-
scan measurements. We note yh′ the complement of yh, which
includes all the rest of the projections from outside the limited-
view angles. We define:

y ≡

[
yh

yh′

]
(5)

We also partition the image x into two regions of xm, which
corresponds to the target region (here, the heart region) and
should be back projected from half-scan measurement data,
and xm′ , which corresponds to the background region.

x ≡

[
xm

xm′

]
(6)

Consistently, we partition the A matrix into four sub-
matrices:

A ≡

[
Ahm Ahm′

Ah′m Ah′m′

]
(7)

Ahm and Ahm′ are the sub-matrices that project xm and x′m
into the half-scan measured sinogram yh, respectively. On the
other hand, Ah′m and Ah′m′ project xm and x′m into the region
outside the half-scan measured sinogram y′h.

We can rewrite equation (1) as follows:[
yh

yh′

]
=

[
Ahm Ahm′

Ah′m Ah′m′

][
xm

xm′

]
(8)

Using half-scan projections is advantageous in improving
the temporal resolution relative to the full-scan data. The
corresponding back projection matrix can be written as:

AThalf ≡

[
AThm 0

AThm′ 0

]
(9)

It is challenging to reconstruct image slices at high cone
angles from only half-scan data because of incomplete and
missing projections in the half-scan dataset. Instead, one may
benefit from using full-scan projections outside the central
primary region of interest, in conjunction with half-scan data
only for the center region, in order to both improve temporal
resolution at the center and maintain high image quality
throughout.

Algorithm 1 SAW-MBIR
y ← measured sinogram
x0 ← FBP
α← step size
For k iterations {
gs(xk) = AT

maskedW (Axk − y) +∇Φ(xk)

x(k+1) = xk − αgs(xk) }

Here, we introduce the SAW-MBIR algorithm that uses
spatially-adaptive sinogram weights to perform selective back
projection while retaining a consistent framework for iterative
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optimization. We first define the masked back projection
operator ATmasked:

ATmasked ≡

[
AThm 0

AThm′ ATh′m′

]
(10)

Compared to AT , by setting Ah′m = 0, ATmasked decouples
yh′ from xm when back projecting the sinogram residual to
the image. The back projector is masked (i.e. set to zero)
depending on the spatial location of the regions that are outside
the half-scan projection data. Putting ATmasked in equation (3),
we get the following pseudo-gradient:

g(x) = gs(x) ≡

[
[gs(x)]m

[gs(x)]m′

]
+∇Φ(x)

= ATmaskedW (Ax− y) +∇Φ(x),

(11)

where:

[gs(x)]m ≡

[
Ahm

0

]T
W (Ax− y) (12)

[gs(x)]m′ ≡

[
Ahm′

Ah′m′

]T
W (Ax− y) (13)

And the update equation becomes:

x(k+1) = xk − αgs(xk) (14)

Eqs. (12) and (13) above show how the proposed SAW-
MBIR algorithm selectively performs half-scan back projec-
tion of locations within the mask (Eq. (12)) and full-scan back
projection of locations outside the mask (Eq. (13)). A summary
of the proposed method is shown in algorithm 1.
B. Application to Wide-Cone Cardiac CT

SAW-MBIR can be applied in whole-heart wide-cone car-
diac CT to produce better results than standard MBIR. An
illustration of the transverse view of the cardiac CT data
acquisition is shown in Fig. 1a. Cone-beam projections are
drawn for two opposite view angles. Standard MBIR with
full-scan projection data can produce good image quality in
the full volume by reducing noise and artifacts compared
to analytical methods, but does not inherently produce the
temporal resolution of the half-scan acquisition over the heart
area typically covered in the fully-sampled (i.e. light purple)
region. The SAW-MBIR algorithm introduced in section II.A.
can be used to improve the temporal resolution in the heart
region relative to full-scan.

We define a mask to distinguish between the area where
complete projection data is available from the half-scan data
and the rest of the volume. We intend to reconstruct the light
purple region of Fig. 1a primarily from the half-scan data, and
the dark purple region primarily from the full-scan data. Cross
sections of the mask taken at the center, between the center
and the edge, and at the edge, are shown in Fig. 1b, c, and d,
respectively.

The mask is set to one based on the spatial location of
the voxels with respect to the light and dark purple regions
of Fig. 1a. Since the half-scan and full-scan back projection
operators only differ in the angular range of integration, the

Fig. 1. a. A schematic of the transverse view of the cardiac CT data
acquisition. Projections from two opposite view angles are drawn in red and
blue. The desired reconstruction volume is indicated by the rectangular box at
the center. A mask is defined to differentiate between half-scan and full-scan
back projected regions. Our intention is to reconstruct the light purple region
primarily based on the half-scan data, and the dark purple region primarily
based on the full-scan data. Slices of the reconstruction mask are shown: (b)
at the center, (c) between center and edge, and (d) at the edge.

mask is used to implement ATmasked of Eq. (10). The masked
back projector selectively performs back projection from the
half-scan and full-scan measurements at each iteration of
MBIR. Basically, the masked back projector works as if only
measurements inside the region corresponding to the half-scan
data are back projected by half-scan back projector of Eq. (12),
and the rest of the measurements are back projected using the
full-scan back projector of Eq. (13).

III. RESULTS AND DISCUSSIONS

Here we use the SAW-MBIR algorithm to improve upon the
standard MBIR implementation in [15], [16] applied to cardiac
CT. This approach uses a preconditioned gradient-based IR
algorithm to simultaneously update all the voxels. Further, the
ordered subset (OS) method [17] is used to calculate the sub-
gradient for each subset at each iteration, then a preconditioner
operator is used to accelerate the high frequency convergence,
and the Nesterov’s method [18] further reduces the number
of iterations to achieve convergence. The method included a
line-search step that ensures the monotonic decrease of the
cost function relative to the previous estimate.

It is worth noting that normally making the statistical
weighting dependent on location in the image volume would
result in an inconsistent problem formulation for iterative con-
vergence. Using a line search, however, mitigates the concern
of inconsistent weights, and in turn guarantees convergence
and stability. The convergence path would be influenced by
both the gradient of the original cost function 3 and the
pseudo-gradient 11. Intuitively, a fixed point of the iteration
is reached when the two gradient vectors become orthogonal
or have a negative inner product. We leave further theoretical
analysis of the properties of the convergence point to future
studies, so that this paper would focus on achieving the
intended image quality benefits for wide-cone cardiac CT.

Clinical datasets from GE Healthcare Revolution CT scan-
ner with 160 mm detector aperture at the isocenter are used
here, with a single axial rotation covering the whole heart.
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Comparisons between full-scan and half-scan MBIR as well
as the proposed SAW-MBIR algorithm are shown in Figs. 2
and 3.

Fig. 2 compares the performance of SAW-MBIR against
full-scan and half-scan MBIR for wide-cone cardiac CT recon-
struction in the chest (Figs. 2a-c), and in the liver (Figs. 2d-f)
regions. Figs. 2a-c correspond to a slice between cross sections
c and d (closer to d at the edge) in Fig. 1, and Figs. 2d-f belong
to a same region on the opposite side of the reconstruction
volume.

The full-scan and half-scan MBIR results are shown in
Figs. 2a, and d, and Figs. 2b, and e, respectively. Figs. 2c,
and f belong to SAW-MBIR results. SAW-MBIR perform
consistently as good as full-scan MBIR outside the heart
region. Half-scan MBIR, on the other hand, shows some
distortions in the regions outside the heart due to incomplete
and missing projection data.

Fig. 2. Comparison between reconstructed cardiac CT images in the chest
and liver regions. a, and d. Full-scan MBIR. b, and e. Half-scan MBIR. c,
and f. SAW-MBIR. Window settings show the [-200 200] HU range. SAW-
MBIR shows consistent image quality with full-scan outside the heart where
half-scan MBIR is distorted. Panels a-c correspond to a slice between cross
sections c and d (closer to d at the edge) in Fig. 1, and panels d-f are from
a slice on the opposite side in the reconstructed volume.

Fig. 3. Impact on temporal resolution. An expanded view of the heart region
in the reconstructed center slice of the wide-cone acquisition is shown in
(a) half-scan MBIR, and (b) SAW-MBIR. Window settings show the [-200
500] HU range.

We also compared reconstruction results specifically in the
heart region (center slices) between half-scan, and SAW-
MBIR in Figs. 3a, and b. Qualitative comparisons show close
agreement between SAW-MBIR and half-scan results.

Further, the root mean squared error (RMSE) between full-
scan MBIR and half-scan MBIR, as well as between full-scan
MBIR and SAW-MBIR at each slice location is computed.
The results are shown in Fig. 4. It is clear that in the non-heart
regions (the edge slices) SAW-MBIR matches better with full-
scan MBIR without the distortions of half-scan MBIR. The

Fig. 4. RMSE at each slice. The RMSE of half-scan MBIR (blue) and SAW-
MBIR (red) with respect to full-scan MBIR is illustrated. Background pixels
with zero intensity were excluded.

results also suggest very good agreement between the half-
scan and SAW-MBIR results in the heart region, which further
verify that the SAW-MBIR maintains comparable temporal
resolution as the half-scan MBIR.

It is worth noting that, to reduce half-scan artifacts while
maintaining temporal resolution, Cho in [19] proposed akin
approach where they use extra measurements (such as full-scan
data) to modify the statistical weighting using an extrapolation
scheme. However, the experimental results on numerical phan-
toms proved challenging to tune parameters of their model to
obtain optimum solution with temporal resolution of half-scan
and reduced artifacts as good as full-scan results.

IV. CONCLUSION

In this work, we developed the SAW-MBIR algorithm
that uses spatially-adaptive weights to perform selective back
projection of sinogram residuals to different sub-regions or
voxels in the reconstructed image. Back projection weights
may be determined based on both the measurement position
and the location of the reconstructed voxel in the field of
view. We examined the performance of the SAW-MBIR using
whole-heart cardiac CT clinical data sets with temporal heart
motion. The experimental results obtained using the SAW-
MBIR demonstrate marked performance in achieving high
temporal resolution in the heart region with similar image
quality to standard full-scan MBIR outside the heart region.
While cardiac CT is shown as an example, the method can
be extended to other scan geometries or imaging modalities
wherein image artifacts or image degradations may be spa-
tially localized, for instance with scatter, low signal, or metal
artifacts.
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A Memory-efficient Algorithm for Large-scale
Sparsity Regularized Image Reconstruction

Greg Ongie, Naveen Murthy, Laura Balzano, Jeffrey A. Fessler

Abstract—We derive a memory-efficient first-order variable
splitting algorithm for convex image reconstruction problems
with non-smooth regularization terms. The algorithm is based
on a primal-dual approach, where one of the dual variables
is updated using a step of the Frank-Wolfe algorithm, rather
than the typical proximal point step used in other primal-dual
algorithms. We show in certain cases this results in an algorithm
with far less memory demand than other first-order methods
based on proximal mappings. We demonstrate the algorithm on
the problem of sparse-view X-ray computed tomography (CT)
reconstruction with non-smooth edge-preserving regularization
and show competitive run-time with other state-of-the-art algo-
rithms while using much less memory.

Index Terms—primal-dual algorithm, Frank-Wolfe algorithm,
image reconstruction, sparse-view CT

I. INTRODUCTION

Sparsity regularized inverse problems arising in medical
imaging result in large-scale non-smooth convex optimization
problems that are computationally challenging to solve. Gen-
eral purpose first-order algorithms for nonsmooth convex opti-
mization, such as subgradient descent or smoothing techniques
[7], while memory-efficient, converge undesirably slow for
this class of problem. Instead, specialized proximal splitting
algorithms, such as the primal-dual algorithm of Chambolle-
Pock (PDCP) [2], represent the current state-of-the-art for
these problems. However, PDCP and other proximal methods
require storing and operating on one or more dual variables
with dimensions potentially several times larger than the image
volume to be reconstructed. Even for realistic problem sizes
arising in X-ray CT reconstruction, storing and operating on
these additional dual variables may be prohibitive or infeasible,
limiting the scope of these algorithms in practice. This is
especially true when using 3D regularization with all 26
neighboring voxels [11], or when computing on GPUs that
are limited in memory relative to traditional CPUs.

To address this issue, this paper introduces a novel algorithm
that has far less memory demand than previous approaches.
Specifically, we focus on reconstruction via weighted least
squares with a non-smooth edge-preserving regularization
term. This includes the total variation semi-norm and related
penalties. The proposed algorithm is based on a novel primal-
dual approach. Existing first-order primal-dual approaches [2],
[3] alternate between updating the primal variable with a

G. Ongie, N. Murthy, L. Balzano, and J.A. Fessler are with University of
Michigan, Department of Electrical Engineering and Computer Science, Ann
Arbor, MI, USA. E-mail: {gongie,nnmurthy,girasole,fessler}@umich.edu.
This work was supported in part by NIH Grant U01 EB018753, DARPA-
16-43-D3M-FP-037, and NSF ECCS-1508943.

gradient descent step and the dual variable with a projected
gradient ascent step (or their proximal equivalents). The main
idea of the proposed approach is to replace the projected
gradient ascent step in the dual update with a step of the
Frank-Wolfe algorithm [4], [6]. We show that this modification
allows for substantial memory savings over standard primal-
dual approaches. In particular, the algorithm requires storing
at most two additional auxiliary variables with dimensions
matching the primal variable. We prove convergence of the
algorithm under certain assumptions on its step-sizes.

Finally, we demonstrate the proposed algorithm by recon-
structing a sparse-view X-ray CT dataset. Empirically, the
proposed algorithm shows competitive convergence with state-
of-the-art proximal splitting methods for this problem [10], [8],
but with much less memory demand.

II. PROBLEM FORMULATION

We consider the following optimization problem:

min
x

1
2‖Ax− b‖2W + λR(x). (1)

Here x ∈ Rn represents a vectorized discrete image. The first
term in (1) measures the data-fit, where A ∈ Rm×n with
m ≤ n is a matrix representing the linear measurement oper-
ator, b ∈ Rm are the (noisy) measurements, and ‖ · ‖W is the
weighted `2-norm defined as ‖z‖W =

√
zTWz for a fixed

diagonal matrix W ∈ Rm×m with positive diagonal entries.
The second term is a regularization penalty, where λ > 0 is a
parameter balancing the tightness of data-fit and regularization.
This work focuses on regularizers of the form R(x) = ϕ(Dx)
for some regularization transform D ∈ RN×n and where
ϕ(y) :=

∑
i φ(yi) for some convex and possibly non-smooth

sparsity promoting potential function φ : R→ R+. We assume
the regularization transform D is a tall matrix (N � n) having
block form D = [DT

1 DT
2 · · · DT

` ]T with Di ∈ RNi×n.
For example, if {Di}`i=1 is a collection of first-order finite-
difference operators in each dimension and φ(x) = |x| then
ϕ(Dx) = ‖Dx‖1 is the discrete (anisotropic) total variation
(TV) of x. Other choices for {Di}`i=1 include oriented higher-
order finite differences [5] or a collection of pre-trained
sparsifying transforms [12]. Likewise, the proposed method
also generalizes to other convex potential functions φ, such as
the Huber loss or Fair potential.

III. PRIMAL-DUAL FRANK-WOLFE ALGORITHM

For ease of exposition we focus on the case ϕ(y) = ‖y‖1
in the remainder of this work, i.e., R(x) = ‖Dx‖1. Because
the `∞-norm is dual to the `1-norm, the primal problem (1)
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with an `1 regularizer has an equivalent primal-dual saddle
point formulation1 given by

min
x

max
‖y‖∞≤λ

1
2‖Ax− b‖2W + 〈Dx,y〉 (2)

Partitioning the dual vector as yT = [yT1 · · · yT` ] correspond-
ing to the blocks DT = [DT

1 · · · DT
` ], we re-express the inner

product in (2) as

〈Dx,y〉 =
∑̀
i=1

〈Dix,yi〉 =

〈
x,
∑̀
i=1

DT
i yi

〉
.

Therefore, introducing the auxiliary variable z ,
∑`
i=1 D

T
i yi,

(2) is equivalent to the equality constrained problem:

min
x

max
‖yi‖∞≤λ,
i=1,...,`

1
2‖Ax−b‖2W +〈x, z〉 s.t. z =

∑̀
i=1

DT
i yi. (3)

Below we show that the proposed algorithm only needs to
maintain an estimate of the auxiliary variable z ∈ Rn, which
has dimensions of the image volume, rather than the full dual
variable y ∈ RN that is generally several times larger.

We also dualize the data-fit term by defining
g(t) := 1

2‖t− b‖2W and using the identity

g(Ax) = max
t
〈t,Ax〉 − g∗(t),

where g∗ is the convex conjugate of g. Simple analysis yields
g∗(t) = 1

2‖t+Wb‖2W−1− 1
2‖b‖

2
W . Inserting this into (3) and

dropping constant terms yields the equivalent formulation

min
x

max
t

max
‖yi‖∞≤λ,
i=1,...,`

〈t,Ax〉 − 1

2
‖t + Wb‖2W−1 + 〈x,z〉 (4)

subject to z =
∑`
i=1 D

T
i yi.

A. Frank-Wolfe dual update

The Frank-Wolfe (FW) algorithm [4], [6], also known as
the conditional gradient method, is a projection-free approach
to solving constrained problems of the form

max
y∈C

f(y),

where f is a concave function and C is a closed, convex set. At
each iteration, the FW algorithm solves for a search-direction
s? via

s? = arg max
s∈C

〈s,∇f(y(k))〉

then updates y with a convex combination of the previous
iterate y(k) and the search direction

y(k+1) = (1− αk)y(k) + αks
?

where αk is some iteration-dependent step-size.
If we apply one step of the FW algorithm to the dual

variable y in (2) while holding the primal variable x fixed,
then the function to maximize is simply the linear function

1For a general regularization penalty of the form ϕ(Dx), we can derive a
similar saddle-point formulation (2) by writing ϕ(Dx) = maxy〈Dx,y〉 −
ϕ∗(y) where ϕ∗ is the convex conjugate of ϕ.

f(y) = 〈Dx,y〉 with ∇f(y) = Dx subject to ‖y‖∞ ≤ λ.
The FW search-direction update in this case is

s? = arg max
‖s‖∞≤λ

〈s,Dx〉 = λ sign(Dx).

where sign(·) is applied entrywise and we define sign(0) = 0.
Hence, a FW update of y has the form

y(k+1) = (1− αk)y(k) + αk λ sign(Dx).

A key to saving memory is that the above update is separable
in terms of the yi-blocks:

y
(k+1)
i = (1−αk)y

(k)
i +αk λ sign(Dix), for all i = 1, ..., `.

Applying DT
i to both sides above and summing over i yields

z(k+1) = (1− αk)z(k) + αkλ
∑̀
i=1

DT
i sign(Dix) (5)

where we define z(k) =
∑`
i=1 D

T
i y

(k)
i for all k ≥ 0.

To save memory, we compute z(k+1) incrementally, first by
rescaling the current estimate by (1 − αk) then by adding
αkλD

T
i sign(Dix) for all i = 1, ..., ` in sequence.

B. Proximal dual update

Similar to other primal-dual approaches [2], [3], to update
the dual variable t we take one step of a proximal point
algorithm applied to (4) while fixing the other variables.
Specifically, given the current iterates (x(k), t(k)), we set

t(k+1)= arg max
t
〈t,Ax(k)〉− 1

2‖t+Wb‖2W−1− 1
2σk
‖t−t(k)‖2W−1

where σk > 0 is a step-size parameter to be specified later.
This has the closed form solution

t(k+1) = 1
1+σk

t(k) + σk

1+σk
W (Ax(k) − b). (6)

C. Primal update

Finally, we update the primal variable x via a gradient
descent step (or equivalently a proximal-point step) applied
to (4) with the dual variables fixed:

x(k+1) = x(k) − τk(z(k+1) + AT t(k+1)) (7)

where τk > 0 is a step-size parameter to be specified later.
Inspired by [2] we include an optional over-relaxation step:

x(k+1) = xk+1 + θ(x(k+1) − x(k)), (8)

where θ ∈ [0, 1], and perform the dual variable updates (5)
and (6) with x(k) in place of x(k).

D. Algorithm summary and convergence

Algorithm 1 summarizes the proposed primal-dual Frank-
Wolfe (PDFW) algorithm. Using similar analysis as in [1]
we are able to prove the following convergence result for
Algorithm 1 in the special case θ = 0 by showing it is a
particular instance of an ε-subgradient descent method; we
omit the proof for brevity.

Theorem 1. Let X ∗ denote the set of minimizers to (1), and let
{xk}∞k=1 be the iterates generated by Algorithm 1 with θ = 0.
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Algorithm 1 Primal-Dual Frank-Wolfe (PDFW)

Initialize x(0) = x(0), z(0) = 0 ∈ Rn and t(0) = 0 ∈ Rm.
Choose step-sizes (τk, σk, αk), θ ∈ [0, 1].
for k = 0, ..., kmax do
t(k+1) = 1

1+σk
t(k) + σk

1+σk
W (Ax(k) − b)

z(k+1) = (1− αk)z(k) + αkλ
∑`
i=1 D

T
i sign(Dix

(k))
x(k+1) = x(k)−τk(AT t(k+1) + z(k+1))
x(k+1) = x(k+1) + θ(x(k+1) − x(k))

end for

Suppose the iterates {xk}∞k=1 are bounded. If the step-size
sequences {αk} ⊂ [0, 1], {σk} ⊂ (0,∞), and {τk} ⊂ (0,∞)
satisfy τk → 0,

∑∞
k=0 τk = +∞, and

k∑
j=1

τj−1

k∏
i=j

(1− αi)→ 0,
k∑
j=1

τj−1

k∏
i=j

1

1 + σk
→ 0

as k → ∞, then dist(xk,X ∗) → 0, where dist denotes the
Euclidean distance of a point to a set. In particular, if the
solution x∗ to (1) is unique then xk → x∗.

The step-size conditions in Theorem 1 are satisfied, for
example, when τk = O( 1

kp ), 0 < p ≤ 1, αk and σk are
constant. There are also valid choices of τk, αk, σk for which
αk → 0 and σk → ∞, such as τk = O( 1

kp ), αk = O( 1
kq ),

and σk = O( 1
τk

) with 0 < p < 1 and 0 < q < p/2.
Empirically, we observe improved convergence rates using

θ = 1 and a constant step-size τk = τ . However, our current
proof of Theorem 1 does not extend to the case θ 6= 0 nor to
the case of τk constant, and we leave its convergence under
these conditions as an open problem for future work.

E. Connections to Chambolle-Pock primal dual algorithm

Algorithm 1 is closely related to the primal-dual algorithm
of Chambolle-Pock (PDCP) [2]. If we introduce an auxiliary
variable s(k) ∈ RN and replace the z(k+1) update in Algo-
rithm 1 with the alternative update

z(k+1) = DTs(k+1) := DT proj‖·‖∞≤λ(s(k) + σkDx(k))

where proj‖·‖∞≤λ denotes Euclidean projection onto the set
{s : ‖s‖∞ ≤ λ}, then this modified version of Algorithm 1
coincides with PDCP applied to (4). In [2] it is shown that
PDCP converges when σk = σ and τk = τ are constant and
τσL2 < 1 and θ = 1, where L is the operator norm of the
concatenated matrix [AT ,DT ]T .

F. Memory benefits

Table 1 summarizes the memory requirements of different
first-order proximal methods for solving (2). An important
feature of Algorithm 1 is that it only requires storing at
most three arrays having the size of the image volume to
be reconstructed. In contrast, the linearized augmented La-
grangian method (LALM) of [8] would need to store several
arrays have the same size as the image plus two additional
arrays of size N , the output dimension of the regularization
transform. Similarly, the PDCP algorithm [2] implemented as

number of variables of size total memory
x ∈ Rn Dx ∈ RN b ∈ Rm 3D CT example
(image) (reg. transform) (data) (in GB)

LALM [8] 4 2 2 3.02
PDCP [2], [10] 2 1 2 1.60
PDFW, θ = 1 3 0 2 0.47
PDFW, θ = 0 2 0 2 0.38

TABLE I
MEMORY DEMANDS OF FIRST-ORDER METHODS FOR SOLVING (1).

in [10] needs to store at least one array of size N . The last
column of Table 1 we illustrates the memory demand of these
algorithms for the iterative reconstruction of a 3D axial CT
scan as specified in the next section. The proposed PDFW
algorithm requires an order of magnitude less memory for
this example because it avoids having to store large auxiliary
variables associated with the regularization transformed image.

IV. EXPERIMENTS

Here we demonstrate the proposed PDFW algorithm’s po-
tential for sparse-view X-ray CT reconstruction. We simu-
late an axial CT scan of the XCAT phantom [9] of size
1024 × 1024 × 154 voxels to obtain a sinogram of size
m = 888 × 64 × 120 (channels × rows × views) and
reconstruct on a coarser grid of size n = 512 × 512 × 90.
Our reconstruction is obtained by solving (1) with regularizer
R(x) = ‖Dx‖1 where D computes all finite-differences
with thirteen nearest-neighbors of each voxel. We set the
statistical weighting matrix W = I , and set the regularization
parameter λ = 4096. We compare against two state-of-the-
art first-order algorithms for solving (1): PDCP as adapted
to CT reconstruction in [10], and the linearized augmented
Lagrangian method 2 (LALM) of [8]. For the proposed PDFW
algorithm we test two sets of step-sizes. The first set (S1) is
designed to satisfy the conditions of Theorem 1:

τk = 2
2+k , σk = 1

L2τk
, αk =

(
2

2+k

)0.49

, θ = 0. (S1)

The second set (S2) uses a constant step-size τk = τ , violating
the conditions of Theorem 1, but matches the settings proposed
for the PDCP algorithm in [10] (except for the choice of αk):

τk = 1/L, σk = 1/L, αk = 2
2+k , θ = 1. (S2)

Figure 1 shows cropped images from the central transaxial
plane initial filtered back projection reconstruction, reference
solution, and the reconstruction obtained from the proposed
PDFW algorithm with settings (S2) after 500 iterations. We
obtained a reference solution to the optimization problem by
running several thousands of iterations of the LALM algo-
rithm, which reached the smallest cost among the competing
algorithms. Observe that there is almost no visual difference
between the reference solution and the PDFW solution after
500 iterations.

Figure 2 compares the performance of the algorithms with
respect to two convergence metrics: (1) the normalized cost

2An ordered subsets variant of LALM is also presented in [8]. The proposed
PDFW algorithm could also be modified to include ordered subsets updates,
but is outside the scope of this work. For fair comparison, we compare against
LALM without ordered subsets.
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Fig. 1. Reconstructions of central transaxial plane of XCAT phantom from sparse-view measurements (left to right): filtered back projection (FBP)
reconstruction, a reference solution, and a reconstruction obtained after running 500 iterations of the proposed PDFW algorithm with settings (S2). Images
displayed in HU (modified so that air is 0) clipped to range [800, 1200] and cropped to the region of interest.
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Fig. 2. Plots of convergence metrics using the proposed PDFW algorithm with settings (S1) and (S2), the PDCP algorithm [10], and LALM algorithm [8].

defined as (f(x(k))− f(x∗))/f(x∗) where f(x) is the cost
function in (1), x(k) is the kth iteration of a given algo-
rithm, and x∗ is the reference solution; and (2) the root
mean square difference (RMSD) computed as RMSD =√

1
|Ω|
∑

i∈Ω |x
(k)
i − x∗i |2 where Ω is the index set of voxels

in a cylindrical region of interest containing the phantom
anatomy. Overall, the LALM algorithm performs best in
terms of the convergence metrics, reaching the lowest cost
and RMSD after 500 iterations. However, we reiterate that
the LALM algorithm has the highest memory demand of
the compared methods (see Table I). The proposed PDFW
algorithm with step-size scheme (S1) shows a fast initial
decrease in the cost and RMSD, but slows in improvement
after 100 iterations and has the highest RMSD after 500
iterations, indicating that the (S1) step-size scheme may yield
slow asymptotic convergence. The PDFW algorithm with step-
size scheme (S2) has better long-run performance in RMSD,
yielding nearly the same as LALM after 500 iterations, and
its reduction in normalized cost is similar to PDCP.

V. CONCLUSION

We introduce a memory-efficient algorithm for solving
large-scale convex image reconstruction problems with trans-
form sparse regularization based on a novel hybrid of proximal
methods and the Frank-Wolfe algorithm. Our experiments
demonstrate that the algorithm has competitive performance
with other first-order algorithms but with substantially less
memory demand. In our experiments we use all of the sino-
gram measurements to update the primal variable in each

iteration, but the proposed algorithm could potentially be
modified to incorporate ordered subsets updates similar to [8]
for improved computational efficiency and faster convergence.
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First Experimental Validation of a Novel Concept
for Dynamic Beam Attenuation in CT

Sascha Manuel Huck1,2, Katia Parodi2, Karl Stierstorfer1

Abstract—It has been a long-standing wish in CT (Computed
Tomography) to compensate the emitted X-ray beam profile for
the patient’s changing attenuation.

Taking into account the varying conditions, the image quality
as well as the delivered patient dose could benefit. The latter
is of particular importance as it is claimed by the principle of
ALARA (as low as reasonably achievable). State of the art are
so called bowtie filters. These filters, however, are static and
constitute a compromise between different patient anatomies.
Thus, bowtie filters cannot cope for changing attenuation
profiles. Furthermore, pre-patient bowtie filters are a source
of scatter radiation impairing image quality and increasing
patient dose.

In this work, a novel concept for a dynamic beam attenu-
ator (DBA) is presented. This filter is based on an array of
closely spaced, highly absorbing sheets focused towards the
focal spot. Controlled defocussing enables a dynamic adaption
of the propagated X-ray beam to changing attenuation profiles.
The concept of intensity modulation is confirmed in simulations
as well as in first-time experiments in a CT scanner. Compared
to a conventional bowtie filter, substantial enhancements re-
garding scatter-to-primary ratio, beam hardening and effective
shielding of the patient from scatter radiation are confirmed.
Although the presented DBA is a structured object, the first
reconstructions of a water phantom are nearly free of ring
artifacts.

I. INTRODUCTION

In the field of medical diagnostics, CT imaging has
developed as a reliable modality for gaining diagnostic
information. The price to be paid for full 3D information,
however, is an increased dose compared to projectional X-
ray imaging. Hence, the goal to reduce the dose has been a
major motivation since the early days of CT.

The following common clinical scenario emphasizes the
demand for a DBA: In this example, the object under exam-
ination is an abdomen approximated as an ellipse. The fan
beam width necessary to cover the entire abdomen changes
for different gantry positions, see fig. 1. Furthermore, also
the depth of the abdomen changes during the gantry rotation
such that the propagated X-rays are attenuated more when
the tube is positioned laterally and less when the tube is in
an anterior or posterior position. The relative contribution
of noise compared to the total signal is higher in the center,
which is typically the diagnostically relevant region, than
in the periphery. Therefore, it is necessary to adapt the

1Siemens Healthineers AG, Forchheim, Germany.
2Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-
Universität München, Munich, Germany.
Contact: sascha.huck@siemens-healthineers.com

(i)

(ii)

abdomen
patient

Fig. 1: Required intensity modulation (crosshatched) in
order to compensate for the attenuation caused by the
abdomen (hatched): The X-ray source (black dot) rotates
around the abdomen. (i): lateral and (ii): frontal direction.

propagated intensity pre-patient in order to optimize dose
and equalize noise. In lateral direction (see fig. 1 position
(i)), a comparably narrow attenuation profile with large
variations of the intensity is needed for optimal exposure. In
contrast, a comparable broad attenuation profile with rather
small intensity variations is required in anterior or posterior
direction (see fig. 1 position (ii)). Apart from the angu-
lar adaptation various patient circumferences (pediatric or
bariatric) and different body areas (abdomen, head, shoulder)
require different attenuation profiles.

State of the art are so called bowtie filters, causing
increasing attenuation towards the periphery of the fan beam.
The attenuation properties are predefined by their shape.
Variations are possible only by modulations of the tube
voltage or current – which have their technical limitations [1,
7, 9]. Therefore, the present solution cannot cope with the
desired, altering attenuation profiles required to optimize
dose and noise distribution. Another drawback of the bowtie
filter is that it becomes a source of scatter radiation when
radiated, which impairs image quality and contributes to
patient dose. Different concepts have been proposed in the
past trying to overcome the mentioned difficulties [2, 4, 5,
6, 8]. None of these approaches are clinically used.

A novel concept is presented in the following which
was elaborated in detail in a previous work [3]: Several
advantages over the current bowtie filter are expected from
this concept:

• spatial and temporal modulation of the attenuation
profile according to the patient’s anatomy can:
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Fig. 2: 2a: DBA in NP: The sheets (black) are focused towards the focal spot at distance f0 covered by the fan beam (grey).
The resulting transmission is constantly at almost 1 (normalized). 2b: Defocusing the DBA by a rotation G around the y-axis
(perspective view). 2c: Attenuation of a passing X-ray by two non-central sheets (zoomed view). 2d: Lateral translation of
the transmission profile by a rotation H around the z-axis.

– provide a more homogeneous noise level
– reduce the required dynamical range of the detector

• imaging of a VOI (e.g. the heart), sparing radiosensitive
organs (e.g. the lung)

• enhanced image quality
– negligible beam hardening
– negligible scatter radiation

• reduced required space within collimator box
In particular, considerable improvements in patient dose
and image quality are valuable. In order to confirm these
features, a prototype has been designed and tested in simu-
lations as well as in experimental measurements.

Conceptional Idea

The DBA is composed of an array of closely spaced,
highly absorbing sheets focused towards the focal spot,
see fig. 2. The structure is comparable to an anti-scatter
grid (ASG), however, located pre-patient. In neutral po-
sition (NP), each sheet is parallel to its adjacent X-rays.
Hence, the overall transmission is only slightly affected,
see fig. 2a. For common CT scenarios, as described pre-
viously, suitable attenuation profiles can be achieved by
defocusing the DBA’s sheets. For this purpose, the entire
DBA is rotated around its y-axis by the attenuation angle G,
see fig. 2b. There is no effect on the central X-ray as
the adjacent sheets are still parallel. Towards the periphery,
however, the sheets are more and more tilted out of their
initial plane, see zoomed view in fig. 2c. Hence, non-central
sheets are increasingly defocused with respect to the focal
spot. The resulting transmission is still at maximum in the
center and declines towards the periphery. Depending on
the attenuation angle G, the DBA is defocused accordingly
realizing the desired attenuation profiles. Independent from
the attenuation, the profile can be moved in ϕ-direction. The
basis is a slight rotation of the DBA around its z-axis by
the translation angle H . In tilted state, a certain, non-central
sheet becomes parallel to its adjacent rays. The transmission
profile moves accordingly along the beam width, see fig. 2d.

These modifications, which can be deduced from reference
anatomy data, build the central function of a DBA.

II. METHODS AND TOOLS

Simulation: The geometrical properties of the DBA are
elaborated by an internal simulation software of Siemens
Healthcare, Forchheim. It is based on Monte Carlo simula-
tions taking into account the relevant (scatter) interaction
processes. A user selected composition of X-ray source,
prefilters, phantoms, ASG and detector can be determined
and various parameters be adjusted.

Scan Mode: Unless stated otherwise, the following
default parameters are applied: The X-ray tube operates at
120 kV anode voltage and 300 mA current. A standard high
resolution focus with flying focal spot (FFS) in ϕ- and z-
direction is selected and all data preprocessing options are
disabled.

DBA Construction: The DBA is fixed in a Cardan
suspension which is mounted onto the collimator box. It
enables a (manual) adjustment of the DBA around two axes
independently and simultaneously. The sheets of the DBA
are fastened by two opposing combs. The latter guarantee
the exact position and orientation of the sheets.

III. CHARACTERIZATION

Intensity Modulation: In experimental measurements
the intensity modulation of the propagated X-ray beam is
performed. In this context, the attenuation ratio is defined as
the quotient I0/I , with I0 the measured intensity without any
attenuator and I the one with attenuator. Since the outermost
pixels (1 to 120 and 800 to 920) are not covered by the DBA
in these measurements, this area is neglected.

The influence of the attenuation angle G on the attenuation
profile is demonstrated in fig. 3. At the center of the fan
beam the attenuation ratios of all alignments are about
1 : 1.5 compared to the absence of any attenuator. Hence,
the intensity modulation by the attenuation angle G does
not affect the intensity in the center. In NP (G = 0◦), the
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Fig. 3: Various attenuation angles G applied to the DBA
causing different attenuation ratios.

Fig. 4: Different translation angles H are applied to the
DBA at G = l = const.

attenuation ratio is nearly constant. For angles G ≥ 0◦,
however, the profiles diverge towards the periphery. The
attenuation at a given pixel is the larger, the larger the
attenuation angle (G: s < m < l) is – up to 1 : 27 for
the largest angle investigated.

As second modification, the lateral translation of the
profile is demonstrated for three different translation an-
gles (H : 0◦ ≤ s ≤ m) at G = l, see fig. 4. By increasing the
translation angle H , the profile is shifted accordingly in ϕ-
direction without changing the profile’s shape considerably.

As a first result of the measurements, the presented
concept fulfills the central function of a DBA, providing
more dose in the center and less in the periphery.

Beam Hardening: In order to quantify beam hardening,
the average energy Ēi in detector pixel i is simulated in
MOCASSIM for different attenuation modalities, see fig. 5.
As the path length through the bowtie filter (aluminum)
increases towards the periphery, the average energy ascends
about 12 keV. In contrast, the beam hardening of the DBA is
considerably less, at attenuations comparable or even higher.
Furthermore, in the region where the average energy Ēi

increases for the DBA, the absolute number of photons
(dashed line) is relatively low compared to the center. These
simulations confirm negligible beam hardening of the DBA.

Scatter Radiation: In simulations both attenuators are
exposed to a narrow beam of 104 photons. Figure 6 de-
picts the traces of secondary photons in the entire CT
system – inside and outside the CT funnel. It is apparent

Fig. 5: The average energy Ēi in keV for detector pixel i
for different attenuation modalities.

Fig. 6: Traces of scattered and K-emission photons exiting
the bowtie filter (top) or the DBA (bottom), respectively.
The focus is located on the right, the attenuator (white box)
at x = 375 mm and the detector on the left.

from fig. 6 (top) that photons scattered at the bowtie filter are
propagating in all directions. Approximately half of which
reach the inside of the CT funnel. This situation changes
substantially with the DBA installed instead, fig. 6 (bottom).
Scatter radiation and K-emission are also present but nearby
exclusively towards the focus. Only very few photons reach
the inside of the funnel. Hence, the patient is effectively
shielded from scatter radiation which contributes to patient
dose and impairs image quality.

Anode Voltage: The impact of the selected anode
spectrum on the attenuation is investigated in measurements
and quantified by a quantity κ. It is the quotient of the
attenuation ratio at 80 kV anode voltage and the one at
120 kV. In best case, it is κ = 1.0 along the entire fan beam.
A benchmark representing an impairment of 20 % is drawn
at κ = 1.2, see fig. 7. Considering the bowtie filter, only the
central part is within the benchmark. Besides, the quotient
rapidly ascends to κ ≈ 2.2. In contrast, the quotient for the
DBA is about κ ≈ 1.0 or within the benchmark for a wide
range at comparable (G = 25◦) or even higher (G = 35◦)
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Fig. 7: The impact of the spectrum on the attenuation ratio.

Fig. 8: Water phantom: 2D reconstruction with segmented
air calibration (C: 0, W: 400).

attenuation ratio, respectively. These measurements prove
that the attenuation of the DBA is hardly affected by the
anode spectrum.

Phantom Scan: In addition to the previous air measure-
ments, scans of a 30 cm water phantom are conducted and
reconstructed. The DBA alignment is G = 35◦ and H = 0◦

with default scan parameters. A segmented air calibration is
taken as reference measurement. The first reconstructed 2D
image of the water phantom shows only few ring artifacts,
see fig. 8, which could be caused by slight displacements
of the sheets during a rotation and the readjustment of the
Cardanian suspension between reference and phantom scan.

IV. CONCLUSION

In the scope of this work, a novel concept of a DBA based
on metal sheets has been presented. The concept enabling
changing fan beam attenuation profiles was validated in
simulations and first-time measurements in a CT scanner.
Intensity modulation, the core of a DBA, is required to opti-
mize radiation exposure to different patient circumferences,

body parts and gantry positions. Further, it provides a more
homogeneous noise level and reduces the required dynamic
range of the detector. Future steps might enable the definition
of a VOI whereas radiosensitive organs could be spared.
Independent of the photon energy, the DBA operates almost
as a binary filter as photons either are absorbed within a
metal sheet or pass the attenuator unscattered [3]. Moreover,
the scatter-to-primary ratio is improved.

A number of advantages over the conventional bowtie fil-
ter arise from the DBA: Since only few scattered photons are
propagated towards the examination area, the patient is effec-
tively shielded from scatter radiation which causes additional
dose and impairs image quality. Furthermore, the spectral
properties of the incoming beam remain nearly unchanged
when passing the DBA so that beam hardening is negligible.
This may be advantageous for applications in spectral CT. A
decrease in patient dose is expected and the dynamic range
of the detector may also be reduced. The reconstructed water
phantom images do not show pronounced ring artifacts,
even if the DBA represents a periodical structure within the
beam path. Precise calibration and avoidance of mechanical
motion, however, are prerequisites for the sensitive setup.

Compared to other DBA concepts, this solution offers a
highly advantageous, lean concept motivating further inves-
tigations and advancements.
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Detectability Indices in
Anisotropic X-ray Dark-Field Tomography

Theodor Cheslerean Boghiu∗, Yash Sharma†∗, Franz Pfeiffer†‡, and Tobias Lasser∗

Abstract—Anisotropic X-ray Dark-field Tomography
(AXDT) is a novel imaging modality aimed at the
reconstruction of spherical scattering functions in every
three-dimensional volume element, based on the directional
X-ray dark-field contrast as measured by an X-ray grating
interferometer. Using a spherical harmonics discretization, the
reconstruction problem boils down to a column-block linear
inverse problem. In this work, we derive a detectability index
for the AXDT forward model and use it to assess several
acquisition schemes. The results show that the detectability
index derived here is a vital tool to design and optimize
task-specific acquisition schemes for AXDT.

I. INTRODUCTION

The X-ray dark-field contrast [1] is a relatively new
contrast mechanism for X-ray imaging that is obtained using
an X-ray Grating Interferometer (XGI) [2], [3]. As the name
suggests, an XGI setup uses the concept of interference of
wavefronts that are shifted in phase with respect to each
other, in order to obtain information about the refraction
and scattering of X-rays passing through a specimen. This is
done by introducing three gratings between the X-ray source
and the detector as shown in Figure 1. The source grating
splits an incoherent wavefront into several individually co-
herent but mutually incoherent sources of X-rays, which is a
requirement for the interferometer to work. Next, the phase
grating imprints a binary phase pattern on this wavefront,
resulting in spatially varying intensity modulations, known
as moire fringes, at specific locations downstream of the
beam. Finally, an absorption grating placed in front of the
detector is used to analyze the fringes to decode three dif-
ferent contrasts, namely the attenuation contrast, differential
phase contrast, and the dark-field contrast (which is used in
this work).

The dark-field contrast originates from the small and
ultra-small angle scattering of X-rays from structures of
sizes in the order of a few micrometers. Owing to the uni-
directional sensitivity of an XGI setup with linear gratings,
the dark-field signal obtained in such a setup is anisotropic in
nature and encodes information about the three dimensional
scattering function [4], [5]. Wieczorek et al. [6] developed
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Fig. 1. Schematic of an X-ray grating interferometer (XGI) setup with an
Eulerian cradle. The cradle provides three axes of rotations, y (ψ), z′ (θ),
and y′ (φ). Figure by Sharma et al. [5] is licensed under CC BY 4.0.

a technique to reconstruct the full three dimensional scat-
tering function in every volume element inside an object
and termed it Anisotropic X-ray Dark-field Tomography
(AXDT). In order to measure the scattering function suf-
ficiently, we need to sample the unit sphere of scattering
orientations. This is achieved by placing the sample on
an Eulerian cradle, which enables three axes of rotations,
as shown in Figure 1. An AXDT acquisition pose is thus
defined as x = (ψ, θ, φ).

Owing to the long and tedious acquisition geometries for
AXDT [5], [7], there is a need to design and assess task-
specific acquisition schemes. Detectability indices [8] pro-
vide a quantitative method to assess the quality of acquisition
schemes in conventional CT. Fischer et al. [9] even used
detectability indices to generate task-specific acquisition
trajectories on-the-fly for industrial CT. In this work, we
adapt an existing formulation of detectability index for the
AXDT model in order to assess the reconstruction quality
of different acquisition geometries. We present preliminary
results on four AXDT acquisition schemes.

II. METHODS

A. System model and reconstruction

AXDT aims at the reconstruction of scattering functions
modeled as a field of spherical functions η : S2 × R3 → R.
We use a weighting function h : S2 × S2 × S2 → R
to model the relation between the dark-field measurement
at the sample pose x, the tomographic vector t(x) and
the sensitivity vector s(x). The tomographic vector and
sensitivity vector at a pose x = (ψ, θ, φ) are defined as:

s(x) = R(x) · S,
t(x) = R(x) · T,

(1)
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where R(x) ∈ R3×3 is the Euler rotation matrix for the pose
x, S ∈ S2 is the setup sensitivity, and T ∈ S2 is the direction
of beam propagation as shown in Figure 1 (here, · denotes
standard matrix-vector multiplication).

By discretizing the spherical functions η and h using
the basis of real-valued spherical harmonics truncated to
maximum degree 4, we obtain the AXDT forward model
[6]:

d(x) ≈ exp

(
− 1

4π

4∑
k=0

k∑
m=−k

hmk
(
s(x), t(x)

) ∫
T (x)

nmk (r)dr

)
,

(2)
where k is the degree and m is the order of the spherical
harmonics. Standard discretization of line integrals over
the X-ray paths T (x) yields the system matrix P , which,
when combined with diagonal matrices Wm

k containing the
hmk
(
s(x), t(x)

)
, produce the following column-block linear

system [6]:

p =
K∑
k=0

m=k∑
m=−k

Wm
k Pη

m
k

=
(
W 0

0P · · · W−K
K P · · · WK

K P
)︸ ︷︷ ︸

=: B



η00
...

η−KK
...
ηKK

 ,

(3)

where p = − log(d), and d is the vector containing the d(x)
for all poses x. We shorten (3) to:

exp(−Bη) = d, (4)

where B is the column-block linear operator defined in (3),
η is the stacked vector containing all spherical harmonics
coefficients, and d contains the dark-field measurements.
Please note that η is a stacked vector containing 15 three-
dimensional volumes, each representing the spherical har-
monics coefficient of a specific degree and order (for details
see [6]). Thus, the linear operator B is 15 times larger than
the one for a corresponding traditional X-ray CT, making the
forward and the back-projection computationally expensive.

We reconstruct η using a least-squares approach as in [10]:

arg min
η

L(η, d), L(η, d) :=
∥∥ exp(−Bη)− d

∥∥2
2
. (5)

B. Task-based performance

In order to formulate our performance measure, approx-
imations of useful imaging quality metrics are needed. In
the following, we will focus on two performance metrics,
namely the local impulse response (λj) of the system and the
local covariance (σj), which we will later use to compute the
modulation transfer function (MTFj) and the noise-power
spectrum (NPSj).

The computation of the local impulse response has been
previously derived in [11]. For the locality constraint, here
we use a composite Dirac impulse vector ej which contains

15 Dirac impulses, each one corresponding to the same
spatial location in one of the volumes of spherical harmonics
coefficients. Using ε(η) := exp(−Bη) this results in

λj(η) = [−∇20L(η, d)]−1∇11L(η, d)∇10ε(η)ej , (6)

where vector multiplication is element-by-element, and the
different gradient operators are ∇10 = ∂/∂η , ∇20 =
∂2/∂η2 and ∇11 = ∂2/∂η∂d. In order to obtain an approx-
imation of the local covariance, we use the findings from
[12]:

σj(η) ≈ [−∇20L(η, d)]−1[∇11L(η, d)]σ(d)

[∇11L(η, d)]T [−∇20L(η, d)]−1ej , (7)

where the covariance of the measurements σ(d) can be
approximated by the actual measurements d. Using (5), we
have

∇10L(η, d) = −2BT ε(η)
(
2ε(η)− d

)
, (8)

∇20L(η, d) = 2BT ε(η)
(
2ε(η)− d

)
B, (9)

∇11L(η, d) = −2BT ε(η), (10)
∇10ε(η) = BT ε(η). (11)

Putting (8) to (11) into (6) and (7), we obtain:

λj(η) =
[
− 2BT ε(η)

(
2ε(η)− d

)
B
]−1

− 2BT ε(η)BT ε(η)ej , (12)

σj(η) =
[
− 2BT ε(η)

(
− 2ε(η)− d

)
B
]−1[− 2BT ε(η)

]
d[

− 2BT ε(η)
]T [− 2BT ε(η)

(
2ε(η)− d

)
B
]−1

ej . (13)

Using (12) and (13), we can approximate the modula-
tion transfer function (MTF) and the noise-power spectrum
(NPS)

MTFj(η) ≈ F{λj(η)} =

F
{
− 2
(
BT ε(η)

)2
ej
}

F
{
− 2BT ε(η)

(
2ε(η)− d

)
Bej
} , (14)

NPSj(η) ≈ F{σ(ηj)} =

F
{

4BT ε(η)dε(η)Bej
}∣∣F{2BT ε(η)

(
− 2ε(η)− d

)
Bej
}∣∣2 . (15)

with element-by-element divisions and where the operator F
represents the three-dimensional Fourier transform for each
separate spherical component degree and order.

Having defined the MTF and the NPS, we can estimate
the detectability index for a specific task using a non-
prewhitening matched filter observer [13]:

δ2j =

[ ∫
R4(MTFjWROI)

2 df4
]2∫

R4 NPSj(MTFjWROI)2 df4
(16)

where vector multiplications are element-by-element. The
frequency template WROI should match the Fourier trans-
form of the expected signal of a region of interest (ROI). As
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a result, the frequencies corresponding to the specific ROI
inside the MTF will be assigned higher weights.

The benefit of using a non-prewhitening observer model
is, that it performs very similar to a human observer [13].
In conclusion, the performance predictor δ2j is dependent on
the acquisition scheme (B), the specific given task (W), its
location (subscript j), the reconstructed volume η and the
dark-field measurements d.

C. Acquisition Scheme

AXDT reconstruction aims at the reconstruction of a
spherical function in every volume element. Owing to this,
the measurements need to sample the unit sphere of orienta-
tions q ∈ S2. Sharma et al. [7] presented a method to design
acquisition schemes for AXDT by extending the concept
of circular tomographic trajectories to the unit sphere, and
demonstrated their compatibility with the AXDT model.
The fundamental idea of an AXDT acquisition scheme is
to design several tomographic trajectories to measure the
component of the scattering function along a sensitivity
orientation q ∈ S2.

In order to do so, we begin with a standard CT acquisition
scheme comprising of N ∈ N equally spaced points between
the angles [0,Φ):

X(Φ, N) :=

{
x = (0, 0, φ); φ ∈

{
0,

Φ

N
, . . . ,Φ− Φ

N

}}
.

(17)
However, every pose of such a scheme measures a different
component of the scattering function, which is not desirable
for tomographic reconstruction, as detailed by Sharma et
al. [7]. Therefore, we define the scheme Y (X, q) := {y =
T (x, q) ∀ x ∈ X}, where the transformation T (x, q)
transforms the pose x := (0, 0, φ) to the pose y := (ψ, θ, φ)
such that s(y) = q, see (1). Figure 2(a) shows such a scheme.

Using the above concept, we design an acquisition
scheme Z that measures L scattering orientations: Z (X) ={
Y (X, ql); l = 1, . . . , L

}
. Here, we choose a t-design with

L = 28 points distributed uniformly over one half of the
unit sphere. A scheme Z (X(180◦, 25)) is shown in Figure
2(b). As a last step, we select poses from the scheme Z
that can actually be measured in the XGI setup, resulting in
Figure 2(c). Please note that all poses cannot be measured
because the Eulerian cradle intercepts the X-ray beam for
higher values of ψ.

III. RESULTS AND DISCUSSION

We investigated the performance of the model observer
to illustrate the results of the proposed formulation. We
measured a circular thermoplastic short fiber moulding part
composed of fibers that are 7µm thick and 200µm long, at
a resolution of approximately 0.32 mm using four different
acquisition schemes:

1) A = Z (X(180◦, 25))
2) B = Z (X(135◦, 25))
3) C = Z (X(90◦, 25))

4) D = Z (X(45◦, 25))

All of the above schemes are cropped to contain only
the measurable poses as shown in Figure 2(c-f). We re-
constructed the scattering functions as spherical harmonics
coefficients up to degree 4. Next, we extracted the main
structure orientation in every voxel using the Funk-radon
transform, as presented by Wieczorek et al. [6]. Figure 3
shows a three dimensional vector in every voxel for one slice
of the result obtained using the scheme A. The structure
orientations reveal a unique feature in this slice, which is
highlighted with a red box. The feature is a weld-line, which
is not visible in conventional CT at such a coarse resolution.

Next, we computed the voxel-wise detectability index over
a region representing the weld-line using the four different
acquisition schemes. The forward and back-projections and
all the matrix-vector and vector-vector Hadamard products
have been implemented in our in-house developed CampRe-
con Toolbox [14], while the Fourier transforms have been
performed in Matlab. We used the weld-line feature to define
WROI in (16), see also the red-colored vectors in Figure 5
for an illustration. The average detectability index over the
whole region of interest for the four schemes is shown as
a bar graph in Figure 4. Additionally, we show the feature
obtained using each of the four schemes in Figure 5.

We observe a decreasing trend of the detectability index
value from scheme A to scheme D, which is also clearly
reflected in the detectability of the feature visually in Fig-
ure 5. This is also the expected outcome, since the scheme
A is an ideal scheme as presented by Sharma et al. [7],
while schemes B to D contain limited angle trajectories for
all scattering orientations, with the solid angle of the unit
sphere covered by the schemes decreasing from B to D.

Here we only cover a specific formulation of the AXDT
reconstruction problem, which leaves much room for im-
provement. Equation (4) is only the simplest of several
statistical models covered by Schilling et al. [10], and
equation (16) is also only a part of the methods presented
by Gang et al. [13]. In the future, we aim to fully integrate
all the different reconstruction models into our detectability
prediction algorithm and to also investigate the performance
of the different observer models for AXDT.

In conclusion, we have adapted an existing observer model
based method of measuring image quality performance from
conventional CT to the novel Anisotropic X-ray Dark-
field Tomography (AXDT) imaging modality. Our results
definitely show a very positive trend in correctly classifying
object-specific trajectories into optimal and suboptimal ones.
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(a) (b) (c) (d) (e) (f)
Fig. 2. Spherical representation of acquisition schemes. The blue and red points represent the tomographic and sensitivity vectors, respectively, for a
given acquisition geometry. (a) Blue points representing the points ±t(x) for a scheme Y

(
X(180◦, 25), [0.15, 0.94,−0.3]T

)
. All the poses measure

a unique component of scattering, denoted by the red point. (b) Scheme Z (X(180◦, 25)) (c) Poses out of (b) that can be measured in the setup shown
in Figure 1, also renamed to scheme A. (d-f) Schemes B, C, and D. We can observe that these schemes are analogous to limited angle trajectories in
standard CT.

Fig. 3. Three dimensional structure orientations in a single slice out of
the AXDT result obtained using the scheme A. The feature inside the red
box reveals a weld-line which cannot be seen using conventional CT at this
resolution of 0.32 mm.

Fig. 4. The mean detectability index measure for each different acquisition
scheme A-D over the ROI
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Simultaneous reconstruction and separation in a
spectral CT framework with a proximal variable

metric algorithm
Souhil Tairi and Sandrine Anthoine and Christian Morel and Yannick Boursier

Abstract—In this paper, we propose a method to simultane-
ously separate and reconstruct the physical components of an
object observed in the context of spectral Computed Tomogra-
phy. Our contribution considers the underlying polychromatic
model of the X-ray beam and combines it with a prior on
the components of the object to reconstruct. The simultaneous
separation and reconstruction of components is done by solving
a non-convex ill-posed inverse problem with a variable metric
proximal algorithm. Promising results are shown on 3D real
data acquired on the micro-CT PIXSCAN prototype with a
simple regularization that encompasses the positivity of the
quantities of interest.

I. INTRODUCTION

Spectral Computed Tomography (spectral CT) is a new
imaging modality that relies on the recent development of
photon-counting detectors. It enhances the classical tomo-
graphic measurements (which give information about spatial
localization of the mass attenuation of the sample) with
energy-dependent (i.e., spectral) attenuation properties that
are obtained by counting photons in different energy bins [1].
The spectral information can be used to discriminate differ-
ent physical phenomena such as Compton or photo-electric
effects, different components such as soft tissues, bones, or
contrast agents... This technology opens the way for using X-
ray tomography as a functional imaging tool, which would
naturally improve for example the study of biomedical or
clinical data. - Although introduced as early as 1976 by
Alvarez and Macovski [2], a growing interest for spectral
aspect in CT has started more than a decade ago, with the
advent of dual-energy CT, which can separate two materials
in specific conditions [1], [3]. The development of photons-
counting detectors has enabled to go a step further and
simultaneously reconstruct of a larger number of material
maps by exploiting a larger set of spectral measurements.

The reconstruction problem from spectral CT measure-
ments is two-fold: one issue is to disentangle the information
coming from each material, the other is to reconstruct
spatial maps from tomographic measurement. While the later
issue corresponds to the classical tomographic reconstruction
problem in CT, the first one is a source separation problem
that exploits the spectral information available in the data.

S. Tairi, C; Morel and Y. Boursier are with Centre de Physique des Par-
ticules de Marseille, Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille,
France. S. Anthoine is with Institut de Mathématiques de Marseille, Aix
Marseille Univ, CNRS, Centrale Marseille, Marseille, France.

Both problems are separately non-trivial by essence, they
raise questions pertaining to the class of ill-posed inverse
problems. Naturally, the full spectral CT problem can be
tackled by either solving both problems sequentially or
simultaneously.

Sequential methods have been proposed first. Among
these, some first handle the reconstruction problem and then
proceed to the separation in object space. This is the case
for example for the pioneering K-edge methods [1], [4].
They leverage on the spectral profile of high-Z elements such
as contrasts agents which have a characteristic spectral dis-
continuity (K-edge) to approximate the spectral separation
by simple addition/subtraction. A more detailed attention to
the physics of the acquisition lead others to consider the
spectral separation first, estimating thus the contribution of
each material in the measurement space (sinograms) and
then proceed to the spatial reconstruction of each map [5],
[6]. Although these latest methods are quite effective because
they handle the two problems separately and thus divide
the computational complexity, they might be limited by the
errors perpetrated from one step to the next. Simultaneous
treatment of the spectral CT has been explored as well, and
our contribution lies in this line of research. The global
separation and reconstruction problem can be cast as the
minimization of a functional. The spectral integration on
the detectors yields a non-convex data fidelity term, that
is usually penalized with a priori regularizations. The non-
convexity has been handled first by using quadratic ma-
jorization on smooth functionals [7]. Lately, a more involved
proximal scheme called MOCCA has been developed by
Barber and colleagues [8] that is able to incorporate non-
smooth regularization. Our work follows the same line of
research. Similarly, we propose a proximal scheme to handle
the simultaneous separation and reconstruction of spectral
CT data with non-smooth a-priori on the object. The main
difference is the algorithm itself: while MOCCA is a primal-
dual scheme inspired by [9] that has been demonstrated on
2D data only, our contribution is based on a variable-metric
primal algorithm [10], [11] and we show in this contribution
its applicability on 3D synthetic and real data.

The rest of the paper is organized as follows. The next
section establishes the physical forward model as well as
the modelization of attenuation maps. From this, we deduce
the inverse problem at stake and present the variable metric
algorithm that relies on a metric specifically designed for the
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spectral CT problem. The last section presents on results on
real data.

II. FORWARD MODEL

A. Acquisition model

A Computerized-Tomography (CT) scan is a set of mea-
surements obtained by shining a rotating X-Ray light, mod-
ulated by spectral filters through an object. In the polychro-
matic (i.e. spectral) setting, the p-th measurement depends
on
• the position of the source-detector couple with respect

to the object, this is the line of sight Lp,
• the absorption coefficients of the object µ(l, E) for l

on the line of sight Lp,
• the X-ray source beam I0(E),
• the filters attenuation factor Fi(E),
• the detectors efficiency De(E).

It is quantified by the Beer-Lambert law:

yp =

∫
R+

I0(E)Fi(E)De(E)e−
∫
Lp µ(l,E)dldE (1)

The polychromatic CT reconstruction is the estimation
of the map µ : R3 × R+ → R+ from the knowledge of
I0(E), Fi(E) and De(E) and a set of measurements yp

obtained by i) rotating the source/detector couple around
the object, ii) changing the filters and iii) modifying the
efficiency energy spectrum of the detector (e.g. by setting
an energy discrimination threshold).

Using P spatial configurations Lp, Q spectral filters
Fi and R settings per detector efficiency De, one ob-
tains a set of M = PQR measurements. Denoting
I0(E)Fiq(E)Der(E) = fm(E) the total spectral inputs,
the m-th measurement reads:

ym =

∫
R+

fm(E)e−
∫
Lm µ(l,E)dldE (2)

B. Absorption maps model

Recovering the full spatio-spectral absorption map might
still be unrealistic with a finite number of measurements.
However different components in a object, such as soft
tissues, bones, etc., have a different spectral signature. A
natural model for the absorption map is thus to consider it
as the sum of the contribution of each of its components
(say K in total): µ(l, E) =

∑K
k=1 µ

k(l, E). The spectral
signature is physically independent of the spatial location of
a component, leading to:

µ(l, E) =
K∑
k=1

µk(l, E) =
K∑
k=1

ak(l)σk(E), (3)

with ak(l) the concentration of component k at point l, and
σk(E) its interaction cross section.

The perfect measurements now read:

ym =

∫
R+

fm(E)e−
∑K

k=1 σ
k(E)

∫
Lm ak(l)dldE (4)

C. Discretization

Let us discretize the energy E in N bins, and the 3D-
volume where the object lives in D voxels and denote by
S[p, d] the contribution of the d-th voxel in the integral on
Lm. Each column of the matrices F and A respectively
contain the spectral inputs fm and concentration maps ak

and each row of the matrix Σ contains the interaction cross
section σk. The forward discretized model reads:

Y [p,m] =
N∑
n=1

F [n,m]e−
∑K

k=1

∑D
d=1 S[p,d]A[d,k]Σ[k,n]

Y = e−SAΣF, (5)

with Y ∈ RP×M , F ∈ RN×M , S ∈ RP×D, A ∈ RD×K ,
and Σ ∈ RK×N .

D. Inverse problem formulation

The measurements Y we have are in fact noisy versions of
the perfect measurement described by Eq. (5). In our case
the noise is caused by the counting rate which induces a
Poisson noise. Our goal is to recover the matrix A from the
knowledge of the noisy measurements Y , the experiment
settings S, F and the spectral signatures Σ.

We propose to tackle this inverse problem by minimizing

J(A) = G(A) +R(A) (6)

where

G(A) =
∑
p,m

{e−SAΣF}p,m − Y [p,m] log({e−SAΣF}p,m)

(7)
is the discrepancy measure naturally given by the negative
log-likelihood corresponding to the Poisson noise model.
R(A) is a nonsmooth regularization made of a term con-
straining the nonnegativity on all elements (A[d, k] ≥
0 ,∀ (d, k)) and a regularization term for each map A[·, k]

def
=

Ak :

R(A) = χ{≥0}(A) +
K∑
k=1

λkRk(Ak) (8)

where χ{≥0}(A) = 0 if A[d, k] ≥ 0, for all d, k and
χ{≥0}(A) = +∞ otherwise. The spatial regularization
Rk(Ak) are chosen according to the components for example
a sparsity term such as an l1 regularization or a total variation
penalization.

III. RECONSTRUCTION METHOD

Generally speaking, the regularization term R(A) is non-
differentiable but convex. On the other hand G(A) is C∞
but not convex. However, it can be shown that it possesses
Kurdyka-Lojasiewicz property [12], [13]. We have to handle
a non-convex minimization problem, but for which proximal
descent methods - originally developed in the convex case
- have recently been successfully extended [14]. In order
to apply this methodology to real and three-dimensional
spectral tomographic data, it is essential that the proposed
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algorithm converges quickly. We propose here to use a
variable metric proximal scheme [11], [10], which, by incor-
porating a well-chosen metric, enables to clearly accelerate
the convergence of the proximal descent.

A. Variable Metric Forward-Backward Algorithm

Given the result of iteration t, denoted by At, the variable
metric forward-backward (VMFB) algorithm proceeds in
three steps to calculate At+1:

f1) We choose a metric Mt which is a bijection of RD×K .
f2) We calculate a gradient descent step on G precondi-

tioned by Mt :

Bt = At − 1
L

{
Mt
}−1∇G(At) (9)

f3) Then a proximal point is calculated according to the
metric Mt :

At+1 = proxLMt, R(Bk) (10)

At+1 def
= argmin

y
{ 1
LR(y) + 1

2‖y −B
t‖2Mt}

where L ≥ LG, with LG the Lipschitz constant of the
gradient ∇G. Note that the metric Mt needs to be in
the set of symmetrical positive definite matrices S+ and
the calculation of the proximal point (10) is not analytical
here, we approximate it by an iterative accelerated schema
(FISTA) [15].

B. Metric Design

The convergence rate of the algorithm depends greatly on
the second order information incorporated in the metric Mt.
This information is available in the Hessian of G(A):

HG(A) = 2(Σ⊗ ST ) Φ(A) (ΣT ⊗ S) (11)

with

Φ(A) = Q1(A)(FFT ⊗ IK)Q1(A) + Q2(A) (12)

where IK is the identity matrix and⊗ the Kronecker product.
Q1(A) and Q2(A) are diagonal matrices:

Q1(A) = diag(e−SAΣ)
Q2(A) = diag((Y − e−SAΣF )FT �−e−SAΣ)

where � denotes the Hadamard product. The Hessian is not
necessarily positive definite because of the residual term Q2.
We design a metric inspired by it that will also have the two
following advantages: i) it is easily invertible (needed for
step f1)), ii) it does not depend on A so it is the same metric
for each iteration of the algorithm. Dropping the residual
term and dependence on A, we propose to use the following
metric:

M1 = 2(ΣFFTΣT ⊗ STS) (13)

M1 not only contains the needed second order informa-
tion, it is also easy to inverse. Indeed ΣFFTΣT is a small
matrix of size (K ×K) and the operator STS is a natural
candidate [16] within the monochromatic framework. Its
inverse, called the cone filter, is easy to implement because it
is diagonal in the Fourier basis in the case of parallel beam.

C. Step Choice

The constant L is an important factor of the speed of
convergence of the algorithm. It depends on the norm of
chosen metric, in our case:

L = ‖M1‖ = 2 ‖ΣFFTΣT ‖ ‖STS‖ (14)

where the norm ‖.‖ is defined as:

‖X‖ = max
λ
{|λ| ∈ R | λ eigenvalue ofX}.

IV. RESULTS ON REAL DATA

We assess the performance of the proposed algorithm on
real data acquired on the micro-CT PIXSCAN prototype
equipped with the XPAD3 hybrid pixel detector. We used
a twisted phantom given by three rubber pipes, 16 cm long
of 3 mm inner diameter. The pipes were filled with the three
following solutions: (i) AgNO3 at a concentration of 118
mg/mL of Silver, (ii) Iomeron at 95 mg/mL of Iodine and
(iii) CuSO4 at 1.0 M. We used the X-ray energy spectra
given by a Mo tube operated at 50 kVp and a Cu filter 100
µm thick. A CT scan corresponds to 360 projections (10
s/frame) spaced by a 1 degree rotation step. Three scans
were performed at the three energy thresholds: (i) 21.0 keV,
(ii) 25.5 keV and (iii) 33.2 keV. The photon statistics in
the flat field depends strongly on the applied threshold. The
reconstructed volume is of size 582× 30× 582.

The dictionary Σ has been filled in with three tabulated
spectral signatures (from the NIST XCOM database), (i)
Iomeron 350 in solution at 50 mg/mL in Iodine, (ii) AgNO3

in solution at 40 mg/mL in Ag and (iii) plastic Vinyltoluene.
The F matrix has been filled using the output of a GATE
Monte Carlo simulation of the XPAD3 detector response,
taking into account charge sharing.

Results have been obtained after 200 iterations of the pro-
posed algorithm, and 200 iterations of the proximal operator
have been done in the inner loop. Fig. 1 shows a transverse
slice though the twisted phantom and demonstrates the
spectral identification of the two contrast agents, namely
Silver and Iodine. Some artefacts remains with in particular
some cross-talks between Iodine and Plastic components.
Further work in progress include finer estimation of the
parameters of the micro-CT scanner and adding a spatial
regularization via Total Variation.
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Consistency of Fan-beam Projections of a
Translating Object Along an Arc of a Circle

Thomas Boulier, Rolf Clackdoyle, Jérôme Lesaint, Laurent Desbat

Abstract—In this article, we compute data consistency condi-
tions (DCCs) in fan-beam geometry for the case of a translating
object irradiated by an x-ray source moving along a short arc of
a circle. The DCCs are thus a generalization of those computed
in [2], where the object remained still. In a second part, we use
the DCCs in order to retrieve parameters of the object velocity.
These results are illustrated by numerical examples.

I. INTRODUCTION

In the field of CT-imaging, data consistency conditions
(DCCs) use the redundancy of the data in order to establish
relations that must be fulfilled between projections. These
conditions are called full when they are not only necessary but
also sufficient. One of the best known DCCs are the Helgason-
Ludwig (H-L) conditions [3], [4], which are full for parallel
projections. Full DCCs are also known for the case of fan-
beam projections with source position taken along a straight
line [1].

In [2], the fan-beam DCCs were modified to handle the
case of a source moving along an arc of a circle. Briefly, all
rays passing through the same point along a "virtual" source
line between the two extreme positions of the source are
gathered to form a virtual fan-beam projection. The DCCs
for fan-beam projections along a line from [1] could then
be applied; numerical examples showed a situation where an
artificial detector attenuation was added, and the DCCs were
invoked to recover the unknown attenuation coefficient. The
case of a moving object has been tackled in [7], where the
authors used parallel-beam H-L conditions for the case of an
object undergoing rigid body motion while irradiated by a
fan-beam source along a circular trajectory. Those conditions
allowed the authors to recover the parameters of the the
movement. The parameters were subsequently incorporated
into the reconstruction procedure, in order to suppress the ar-
tifacts caused by such movement. However, using the parallel-
beam H-L conditions means that the fan-beam projections
had to cover all rays in the plane so that a fan-to-parallel
rebinning could be achieved. The rebinning was achieved
mathematically; however, the requirement of at least a standard
fan-beam shortscan of 180◦ plus fan-angle was required. In our
work, we are concerned with the opposite extreme of a short
arc of fan-beam measurements.

T. Boulier, R. Clackdoyle, J. Lesaint and L. Desbat are with the TIMC-
IMAG laboratory, CNRS UMR 5525 and Université Grenoble Alpes (e-mail:
thomas.boulier@polytechnique.edu).
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In this article, we will suppose that an object is translating
while illuminated by a fan-beam source which is moving along
an arc of a circle. With an adapted reference frame, we will
use as in [2] a change of variables. Then, in a second part, we
will show how the DCCs can be used in order to identify the
translation velocity.

II. THEORY

A. Problem under consideration

Let us begin with some notation and definitions. We will
consider an object in R2 to be imaged in a fan-beam geometry
with sources on an arc of circle with center O and radius R0

(see Figure 1, top). The object is identified with its density
function x 7→ µ(x) ∈ C∞c (R2). The angular velocity of the

(xr; y0)
(xl; y0)

y

xO

s(t)

φ

(xr; y0)(xl; y0)

y

xO

s(t)

!t

φ

Mv(t)

tv

Fig. 1. Problem under consideration. The source point s(t) follows the arc
of circle depicted in bold. The circle has center O and radius R0. The object
is continually undergoing a translation during the movement of the source.

source will be denoted ω, and the time t will range from
−T/2 to T/2, where T > 0. Hence, if we use s(t) to denote
the position of the source at time t, we have

s(t) = (−R0 sin(ωt), R0 cos(ωt)) . (1)
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Furthermore, we will let s(T/2) = (xl, yl) (resp. s(−T/2) =
(xr, yr)) denote the extreme left (resp. right) position of the
source. Since yl = yr = R0 cos(ωT/2), we will call the
common value y0. In the following, we will assume that
supp(µ) lies in the half-space {y < y0}, and that y0 > 0
(i.e.0 < ωT < π, the total arc length is less than π).

We will suppose that at any time t, rays are simultaneously
emitted from the source s(t) with each ray at angle φ ranging
from −π/2 to π/2. With this setup in mind, we can define
the operator modeling the acquired data from the object.

Definition 1. The fan-beam projection data of an object with
density function µ is a function (t, φ) 7→ Fµ(t, φ) defined by

(Fµ)(t, φ) =
∫ +∞

0

µ (s(t) + l [sinφ,− cosφ]) dl, (2)

where t ∈ [−T/2, T/2], φ ∈ [−π/2, π/2] and s(t) is given
by (1). The operator µ 7→ Fµ is called the fan-beam projection
operator.

Now let us suppose that the object is translating along a
straight line with a constant velocity vector v = (v1, v2) ∈ R2

(see Figure 1, bottom). In other words, if we let Mv(t) denote
its center of mass at any time t, we have

Mv(t) =Mv(0) + (t+ T/2)v (3)

The density function of the object now depends on both the
spatial variable x ∈ R2 and the time t. If we denote the time-
varying object by µv, we have

µv(t,x) = µ (x−Mv(t)) . (4)

In this regard, the fan-beam projection data will be modified
in the following way.

Definition 2. The fan-beam projection data of a translating
object with density function µ and velocity vector v is given
by

(Fvµ)(t, φ) = (Fµv)(t, φ). (5)

The aim of this note is to derive data consistency conditions
(DCCs) from (5), in order to retrieve the velocity vector v from
the knowledge of a single element of the range of Fv.

B. Derivation of DCCs

In order to derive DCCs, we will first change our reference
frame, from (O, x, y) to (M(t), x′, y′), so that the origin is
the center of mass of the object at any time t, and the line
between the start point and the end point of the source is still
parallel to the x′-axis (see Figure 2). In other words, we are
performing the following change of variables

(x, y)↔ (x′, y′) = Rβ ((x, y)−Mv(t)) , (6)

where Rβ rotation by β. Note that the translation depends
on t, but a single global rotation is applied. The angle β is
depicted in Figure 2 (top) and is given by

β = arctan

(
Tv2

2R0 sin(ωT/2) + Tv1

)
. (7)

Note that in this equation, the denominator can be equal to
zero. This situation can occur in particular cases when v1 <

0. We have studied those particular cases, both in terms of
physical meaning and numerical implications. For the sake of
simplicity, we will assume that v1 is not too negative (e.g.
v1 > −2R0/T ) to ensure that the denominator is non-zero.

y

xMv(t)

β

(xr; yr)

(xl − Tv1; yl − Tv2)

(x0r; y
0

0)(x0l; y
0

0)

y0

x0

sv(t)
φ

(x0; y00)

Mv(t)

φ

Fig. 2. Change of reference frame: the object is now at center of the coordinate
system. Top: only translation of the center of frame; bottom: after rotation of
angle β. The virtual source position (x′, y′0) is defined in terms of sv(t) and
φ; see equation (10).

In this new reference frame, the coordinates of the source
position are given by sv(t) = Rβ (s(t)−Mv(t)). With this
in mind, the data are given by the following formula

(Fvµ)(t, φ) =∫ +∞

0

µ ◦ R−β (sv(t) + l [sin(φ+ β),− cos(φ+ β)]) dl,

(8)

In other words, we are now dealing with a fixed object
whose density function is given by µ ◦ R−β irradiated by a
source following an arc of a cycloid in the frame (M(t), x′, y′)
(see Figure 2, bottom).

Here, the extreme points sv(−T/2) and sv(T/2) have the
same y′-coordinate, y′0. We will call x′l (resp. x′r) the x′-
coordinates of sv(T/2) (resp. sv(−T/2)).

Now we define what we call the virtual fan-beam projection
from a point (x′, y′0).

Definition 3. For any point x′ between x′l and x′r, and for
any angle φ ∈ [−π/2, π/2], the virtual fan-beam projection of
the object µ is defined by(
F̃µ
)
(x′, φ′) =∫ +∞

0

µ ◦ R−β ((x′, y′0) + l [sinφ′,− cosφ′]) dl. (9)
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This is called virtual since it does not correspond to an actual
position of the source.

In the following lemma, we will make the connection
between the virtual fan-beam projection and the fan-beam
projection of the translating object.

Lemma 1. Let us fix a time t ∈ [−T/2, T/2] and an angle
φ ∈ [−π/2, π/2]. Let us define

x′ = s1,v(t) + tanφ (s2,v(t)− y′0) , (10)

where, for any time t, (s1,v(t), s2,v(t)) are the coordinates
of sv(t). Then, we have

(
F̃ (µ ◦ R−β)

)
(x′, φ + β) =

(Fvµ) (t, φ).

The idea behind the proof of lemma 1 is to note that
between x′ and sv(t), the integral of µ is equal to zero since
the support is assumed to remain in the half-space {y < y0}.
Hence, instead of starting the integration from x′ in (9), we
can start from sv(t), which will give us (8).

We can now define the DCCs for our problem.

Theorem 1. Let us fix a density function µ. For any integer
n, there exists a function (t, x′) 7→ W

(v)
n (t, x′) such that the

function B(v)
n defined by

B(v)
n (x′) =

∫ T/2

−T/2
(Fvµ)

(
t, λ(v)(t, x′)

)
W (v)
n (t, x′)dt,

(11)
is a polynomial of degree n. In the formula above, the angle
λ(v)(t, x′) is defined by

λ(v)(t, x′) = arctan
(
F (v)(t, x′)

)
, (12)

where F (v)(t, x′) is defined as the fraction A/B with

(13)A = x′ + cosβ (R0 sin(ωt) + (t+ T/2) v1) +

sinβ (R0 cos(ωt)− (t+ T/2) v2)

and

(14)B = cosβ (R0 cos(ωt)− (t+ T/2) v2)

− sinβ (R0 sin(ωt) + (t+ T/2) v1)− y′0
Moreover, it is possible to derive W

(v)
n (t, x′) analytically

using the following formula

W (v)
n (t, x′) =

tann
(
λ(v)(t, x′)

)
cos
(
λ(v)(t, x′)

) ∂λ(v)
∂t

(t, x′) (15)

We only have room here for an outline of the proof. The
idea is to change variables in the following formula, which is
known from [1] to be a polynomial in x′∫ −π/2

π/2

F̃µ(x′, φ) tan
n φ

cosφ
dφ. (16)

The change of variable occurs between φ in (16) and t in (11)
by using the definition in (12).

Although the formula for W (v)
n (t, x′) is complicated, we

observe that in the case v1 = v2 = 0, we obtain the formula
(7) in [2] since

F ((0,0))(t, x′) =
x′ +R0 sin(ωt)

R0 cos(ωt)
(17)

III. NUMERICAL SIMULATIONS

A. Principles

Let us suppose that we have the projections (Fvµ) (t, φ).
Moreover, we suppose that T is known and that the ve-
locity v is constant (although unknown) during the interval
[−T/2, T/2]. In order to recover v, we can perform the follow-
ing optimization procedure. Since B(v)

n (x′) in equation (11)
is supposed to be a polynomial of degree less than or equal
to n, we can minimize

J (v) = ‖
(

resB(v)
n

)
‖2 (18)

with respect to v, where res is the residual of the projection
onto the space of polynomials of degree n or less, and n is
the polynomial degree to be taken into account. This procedure
will give us the velocity v using only the knowledge of the
data (Fvµ) (t, φ).

B. Application

The object under consideration is an ellipse of uniform den-
sity, whose axis lengths are 30 and 15 millimeters respectively,
and making an angle of 45◦ with respect to the x-axis. The
source is rotating around the object with radius R0 = 600mm,
with angular velocity ω = 1 rad · s−1. The detector is a
plane situated at a distance of 600mm from the origin. The
computations of the forward problem were performed using
simpleRTK, a Python wrapping of RTK [6].

With the simulated velocity of the ellipse given by v1 =
0.3mm · s−1, and v2 = 0mm · s−1 we obtain the sinogram
depicted in Figure 3.

Fig. 3. Sinogram of a moving ellipse, with semi-axis a = 30 and b = 15,
translating along the x-axis with velocity v = (0.3, 0). It is irradiated by a
source at distance R0 = 600, rotating with angle velocity ω = 1. Gantry
angle represents the angular position of the source, with respect to the x-axis
(= ωt + π/2); see Figure 1. The object translation occurs between gantry
angles 45◦ and 90◦.

With this configuration in mind, the functions x′ 7→
B

(v)
n (x′) for n = 0, 1, 2, 3 were calculated from the simulated

sinogram, and are illustrated in Figure 4. Note that these
expressions for B(v)

n , follow the predicted pattern of nth-degree
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polynomials, as can be seen by the fact that root mean square
errors (RMSEs) between the actual values of B(v)

n (x) and their
best polynomial approximations are low.

With this velocity v = (0.3, 0) assumed to be unknown, we
performed the minimization of the cost function J (v) defined
in (18), with a polynomial degree of n = 2. For this purpose,
we used Powell’s conjugate direction method [5], which does
not require differentiation of the cost function.

We studied the influence of the time during which the object
was translating, i.e.the angle α of the arc traced by the source
s(t) when the object was translating. As an example, for the
sinogram depicted in Figure 3 we have α = 90◦. Table I
summarizes all the results, where v̂ stands for the estimated
value for the velocity v1. We observe that there is a limit below
which the accuracy decreased dramatically.

TABLE I
RESULTS OF OPTIMIZATION

α v̂ ‖v1 − v̂‖
95 0.300 5.55 · 10−17

90 0.300 1.11 · 10−16

85 0.300 1.11 · 10−16

84 0.300 0
83 0.300 0
82 0.376 7.60 · 10−2

81 0.415 0.115
80 0.436 0.136
75 0.436 0.136

IV. CONCLUSION

In this work, we have proposed a way to recover the velocity
parameters of a translating object in fan-beam CT from a set
of projections restricted to an arc of the circular trajectory.
The method uses data consistency conditions (DCCs), adapted
from [2]. Setting the origin of the reference frame at a point
which remains still with respect to the center of mass of the
object, we are in fact dealing with DCCs in the case of an arc
of a cycloid. Numerical examples show that these conditions
work well in the case of an object translating in a direction
which is parallel to the x-axis. Further work is in progress to
recover the same results for a general translation.
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Design and Evaluation of a Prototype

High–Throughput Micro–CT System

for In–Vivo Small Animal Imaging
Jan Kuntz, Carsten Funck, Joscha Maier, Marc Kachelrieß, Stefan Sawall

Abstract—Preclinical in–vivo micro–computed tomography
(micro–CT) is a challenging task due to the high cardiac
and respiratory rates of small animals. Commercially available
micro–CT system focus on either a high spatial resolution
or a high temporal resolution. This enables applications like
metastasis imaging in resting bones with high spatial resolution or
imaging of extensive lung tumors with a high temporal resolution.
However, it prohibits the visualization of small, rapidly moving
structures, e.g. micro–metastases of the lung. To visualize such
structures usually long scan times are required to account for
the demanding high spatial and temporal resolution and the
consequently high image noise, thus preventing to examine large
cohorts of animals. To overcome these issues we herein present
the design and first in–vivo evaluations of a novel, gantry–based,
high–throughput micro–CT system providing highest spatial and
temporal resolution within only seconds of scan time.

I. INTRODUCTION

Over the last decades micro–computed tomography (micro–

CT) has evolved as an essential tool in preclinical research.

Ex–vivo measurements with spatial resolutions exceeding

10µm are readily available in practice enabling e.g. the evalu-

ation of trabecular structures in bones [1], micro-metastases or

skeletal phenotyping [2]. In–vivo imaging of small animals, in

particular of large cohorts, remains challenging for a variety

of reasons. First, as expected by allometric estimates, small

animals show high respiratory rates of up to 300 respirations

per minute (rpm) and high cardiac rates of up to 600 beats per

minute (bpm) [3]. Second, structures of interest, e.g. tumors,

metastases or vessels, usually exhibit sizes of only a few

micrometers [4]. Third, scan times are limited to no more than

a few minutes as animals cannot be held under anesthesia

for longer time periods. To overcome these issues at least

partially, most micro–CT systems focus on either imaging

with a high spatial resolution and low temporal resolution,

e.g. sufficient to visualize metastases of resting bones, or vice

versa, e.g. sufficient to visualize extensive lung tumors. For

example, systems with a spatial resolution of 32µm and a

detector frame rate of only 7 fps have been described [5].
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Fig. 1. Photo of our micro–CT showing the micro–focus x–ray source, the
flat detector and the rotary joint mounted in the gantry. The yellow, dashed
lines indicate the cone–beam geometry of the system and the green dashed
lines enclose the rotating part of the gantry while all other components remain
stationary.

In contrast, systems with a spatial resolution of only 210µm

but a detector frame rate of 100 fps exist as well [6]. Thus,

high spatial resolution and high temporal resolution seem

to be mutually exclusive and the imaging of small rapidly

moving structures, e.g. micro–metastases of the lung, appears

to be impossible. This is further complicated by the fact

that a high spatial resolution typically results in elevated

image noise. A consequent increase in tube output, however,

inevitably results in an increase in the focal spot size, thus

diminishing spatial resolution and a trade–off has to be found.

Furthermore, a limited tube power will increase measurement

time, usually in the order of minutes, and thus increase the

burden to the animals due to anesthesia. This applies in

particular if phase–correlated images are desired and external

gating devices, e.g. ECG–electrodes, have to be attached to

the animals which is a time–consuming process prior to any

data acquisition. Similar reasoning applies to an increase in
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temporal resolution by an increase in detector frame rate or an

increase in spatial resolution by decreasing the detector pixel

size. To overcome these issues we herein present the design

and first in–vivo evaluation of a novel custom–made, gantry–

based prototype micro–CT system that provides a high spatial

and high temporal resolution with scan times in the order of

seconds allowing for a high throughput and hence the in–vivo

imaging of large cohorts.

II. MATERIALS AND METHODS

A. Mechanical and Electrical Design

The proposed high–throughput micro–CT prototype is based

on a refurbished clinical CT gantry originating from a So-

matom Volume Zoom clinical CT (Siemens Healthcare, Forch-

heim, Germany) with a bore diameter of about 50 cm, a

rotating part with a diameter of about 162 cm and a total

size of 199 × 240 × 90 cm3 (see figure 1). This mechanical

framework allows for rapid rotations with a speed of more

than 1 revolution per second and provides sufficient space and

payload to house all components with the desired geomet-

ric relations, providing a sufficient magnification. While the

system currently only contains a single x–ray source and

detector, further upgrades are possible. In particular, the field

of measurement (FOM) can be increased using a dual detector

setup or a second x–ray source–detector combination can be

added to obtain a dual–source CT, allowing for a reduction

in scan time or for dual energy examinations. Furthermore,

the rotating gantry allows placing the sample or animal under

investigation in a prone position in the center of rotation.

This enables easy injection of drugs like contrast agents, the

administration of anesthesia and prevents a compression of

the animal which is often observed in table–top micro–CT

systems, i.e. micro–CT systems with stationary x–ray source

and detector and a rotating sample. To reduce vibrations and

mechanical inaccuracies due to imbalances of the rotating

part and in consequence the loss of spatial resolution, the

system is balanced using a commercially available balanc-

ing system (Caroba Balancer Pro, Präzisionsmaschinenbau

Bobertag, Kaiserslautern, Germany). The power supply for

all components in the gantry is realized using the slip rings

where both, 230V AC and 24V DC, are transmitted to the

rotating part. Furthermore, safety-related signals, e.g. x–ray

interlock and the RS232 used to control the x–ray source,

are also routed over the slip rings. Further control signals,

10 GBit Ethernet and all detector data, e.g. up to 400MB/s in

1× 1 binning mode, is transmitted using a optical rotary joint

with 20 channels (Spinner GmbH, Munich, Germany). I.e., all

detector signals are converted from a Camera Link interface to

optical fiber, coupled out using the rotary joint and converted

to Camera Link again before they are fed to the frame grabber.

The usage of high bandwith optical transmission enables the

extension of the system, e.g. with a photon–counting detector,

and allows for the transmittance of even higher data rates,

e.g. if multiple energy bins are available at high frame rates.

B. X–Ray Source and Detector

The x–ray source is a micro–focus transmission tube

(L10951, Hamamatsu Photonics K. K., Shimokanzo, Iwata

City, Japan), providing a tube voltage of up to 110 kV and a

tube current of up to 800µA at 50W. The power–dependent

focal spot size varies between 15µm at 6W and 80µm

at 50W. The x–ray detector used is a Dexela 2923 MAM

CMOS detector (Perkin Elmer, A Varex Company, Salt Lake

City, USA), equipped with a 150µm high–resolution CsI

scintillator. The detector provides a matrix size of 3888×3072

pixels with a size of 74.8×74.8µm2. To account for the high

cardiac and respiratory rates of small animals, the detector

achieves a frame rate of up to 85 fps, 70 fps and 26 fps in

4 × 4, 2 × 2 and 1 × 1 binning modes, respectively. The x–

ray source is mounted into the gantry with a focus–isocenter–

distance RF of 90mm while the detector–isocenter–distance

RD is 500mm. Thus, the FOM has a diameter of about 40mm.

Given these components the spatial resolution ∆ of the system

can be estimated using

∆
2
=

( RD

RF +RD

WF

)2
+
( RF

RD +RF

WD

)2
, (1)

with WF and WD being the used focus size and the de-

tector aperture, respectively [7]. Thus, the ideal resolution is

about 49µm, 28µm, and 20µm for the said binning modes

assuming a focal–spot size of 20µm. For the smallest available

focus size the ideal resolution would be 46µm, 24µm, and

13µm. This seems adequate for in–vivo experiments with high

temporal and spatial resolution. The geometric calibration of

the system currently is performed on a per–acquisition basis

using Meng’s method, i.e. an intrinsic calibration procedure

using the acquired rawdata themselves to estimate the used

geometry [8].

Fig. 2. Modulation transfer function (MTF) of the system using a scan
protocol with 4× 4 binning mode, 60 kV and 800 µA.

C. Animal Experiments

While a variety of phantom measurements have been per-

formed to evaluate the system, e.g. the spatial resolution and

MTF were measured using a resolution pattern and the CT–

value stability has been investigated using a water phantom,

we herein will focus on in–vivo measurements and illustrate

the high–throughput capabilities of the system. All animal

experiments were approved by the local committee on animal

welfare (G-256/15) and were performed in accordance with the

guidelines issued by the Federation of European Laboratory

The fifth international conference on image formation in X-ray computed tomography 41



Fig. 3. Coronal slices of reconstructions of mouse one obtained after different measurement times, i.e. after 2 s to 14 s in steps of 2 s and after 70 s. The
anatomical structures are labelled as follows: AA–aortic arch, RA–right atrium, LA–left atrium, RV–right ventricle, LV–left ventricle, PT–pulmonary trunk,
GB–gallbladder. (C/W = 0HU/1500 HU)

Animal Science Associations (FELASA) [9]. In particular,

four mice with cardiac rates of 338± 78 bpm and respiratory

rates of 141 ± 34 rpm were administered with 100µL of a

blood pool contrast agent (ExiTron nano 12000, nanoPET

Pharma, Berlin, Germany) and measured using a tube voltage

of 60 kV, a tube current of 800µA in 4× 4 binning. To limit

the amount of angular blurring due to the detector frame rate

of 11.7ms the rotation speed of the gantry was limited to 4 s

per revolution. All animals were scanned for 70 s with a total

amount of 5,950 projections. However, to illustrate the image

quality achievable with short scan times we also reconstruct

fractions of the data corresponding to a scan time of 2 s to 14 s

in steps of 2 s or 180◦ of data, respectively. All images were

reconstructed using a high–performance implementation of

the Feldkamp–algorithm (RayConStruct R©–IR, RayConStruct,

Nürnberg, Germany) on a sufficiently sized grid with a voxel

size of 49µm [10].

III. RESULTS

A. Spatial Resolution

Figure 2 shows the modulation transfer function estimated

using a line pattern phantom for the scan protocol used

throughout this abstract. We observe a value of ρ50 % =

4.0 lp/mm, ρ10 % = 7.5 lp/mm, and ρ2 % = 10.0 lp/mm. Note

that the ideal resolution estimated using eq. (1) is slightly bet-

ter than what was measured herein. This most likely is caused

by the fact that eq. (1) does not consider angular blurring,

mechanical inaccuracies of the gantry and the influence of the

reconstruction.

B. Animal Experiments

Figure 3 shows the reconstructions of one of the mice for

a variety of acquisition ranges. In particular, reconstruction

results are illustrated for fractions of the acquired data cor-

responding to measurement times of 2 s to 14 s in steps of

2 s and a reconstruction after a measurement time of 70 s.

Note that the unsharpness observed in certain parts of the

image is caused by the fact that the shown reconstructions

are not phase–correlated, i.e. show an average of all cardiac

and respiratory motion states of the animal. The reconstruction

obtained after 2 s shows moderate image quality with a noise

level of about 450HU measured in soft tissue and does not

satisfy diagnostic image quality criteria. However, all major

anatomical structures, e.g. the aortic arch or the pulmonary

trunk, are visible and no streaks are apparent due to the high

frame rate of the detector and the dense angular sampling.
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The reconstruction obtained after a measurement time of only

4 s already shows sufficient diagnostic quality, i.e. all major

anatomical structures and small vessels, e.g. small liver veins,

can be easily identified and the noise level of 350HU is well

within the typical noise range of micro–CT examinations.

Image noise gradually decreases with increasing measuring

time as expected, reaching a noise level of 190HU after 10 s.

All major anatomical structures are labeled in the reconstruc-

tion obtained after 70 s for reference, which is nearly free of

noise. Considering the fact that all reconstructions have been

performed using a standard image reconstruction algorithm in-

dicates that the usage of e.g. iterative reconstruction algorithms

might allow for a further decrease in measurement time while

maintaining the desired spatial resolution.

IV. CONCLUSION AND DISCUSSION

We herein illustrated the high–speed capabilities of a novel,

gantry–based micro–CT system. A scan time of only four

seconds results in images with sufficient diagnostic quality

for most cases, thus minimizing stress to the animal caused

by anesthesia. Hence, we estimate that at least 30 mice

could be examined per hour, assuming animal preparation

can be achieved in 2min or less, e.g. by anesthetizing one

animal while the other is imaged. This will allow for the

imaging of large cohorts of animals emphasizing the high–

throughput capabilities of the developed system. Longer scan

times might be used to acquire data suitable for a phase–

correlated reconstruction or for scans with a higher spatial

resolution. However, recent publications illustrated that the

data acquired within a few seconds already might be sufficient

for cardiac– and respiratory–gated reconstructions, if sophisti-

cated iterative methods [3], [11], [12] or motion–compensation

methods are used [13], [14] and a sufficient number of cardiac

and respiratory cycles are acquired. A further decrease in

measurement time can be achieved if the time consuming

installation of an ECG is replaced by software–based gating

methods [6], [15]. While the preliminary results presented

herein are promising towards a high–throughput micro–CT

scanner with satisfying spatial and temporal resolution, future

research will be concerned with a dose optimization of this

system. This is particularly relevant in scans with higher

spatial resolution, e.g. employing the 2×2 binning mode of the

detector with a theoretical spatial resolution of up to 24µm,

and will be required to allow not only for the imaging of

large cohorts but for the repeated imaging of these cohorts in

longitudinal studies.
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Abstract—Photon counting detectors (PCDs) offer spectral 

imaging capability and improved image quality but can suffer 
from limited count rate.  One approach to reducing the 
required count rate, a piecewise-linear dynamic bowtie filter 
(Hsieh and Pelc, Med Phys 2013), provides flexible flux control 
by moving its wedge components, positioned at different fan 
angles, along the axial direction to adjust the thickness in an 
axial slice.  We previously implemented a full-size piecewise-
linear attenuator for a table-top system.  Here, our bowtie 
performance in minimizing a required maximum count rate 
for PCDs is investigated.  As compared to a conventional 
bowtie filter, simulation results suggest an average reduction 
of 6.77x in max count rate and 1.71x in dose for the tested 
chest, abdomen, and shoulder studies. 
 

Index Terms—dynamic bowtie filter, max count rate, 
photon counting detector 
 

I. INTRODUCTION 

hoton counting detectors (PCDs) offer the possibility of 
improved imaging capabilities including spectral 

detection, increased spatial resolution, higher detective 
quantum efficiency, and lower electronic noise.  An 
inherent challenge to deploying PCDs is their slow count 
rate, resulting in lost counts and pulse pileup. A promising 
approach to reduce this effect is to modulate the x-ray flux 
with a dynamic bowtie filter, reducing the flux of photons 
incident on the detectors.  Unlike conventional filters, the 
attenuation of dynamic bowtie filters can be adjusted 
dynamically according to patient attenuation as the CT 
scanner rotates.  

Among proposed bowtie designs [1-6], the piecewise-
linear attenuator [1-2] offers a flexible smooth profile and 
had promising results with practical motion control.  It 
consists of multiple wedges, producing a piecewise-linear 
thickness along fan angle, with the attenuation profile 
present in an axial slice controlled by moving the wedges in 
the axial direction. 
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Previously, we implemented a full-size piecewise-linear 
attenuator [7].  In this work, our bowtie performance in 
minimizing a required maximum count rate for PCDs is 
investigated in simulation. 

II. Bowtie implementation 
The detail of our implemented piecewise-linear bowtie 

filter can be found in [7].  Briefly, it has 13 triangular 
stainless steel wedges, each with thickness linearly 
decreasing from 6mm to 0mm toward the tip, as shown in 
Fig. 1a.  The bowtie cross-section is displayed in Fig. 1b, 
and its perspective front view is shown in Fig. 1c.  Wedges 
are aligned in this way to produce a piecewise-linear 
thickness profile vs. fan angle while avoiding collisions.  

   
Fig. 1. Bowtie wedge design (a), bowtie cross-section (b), and bowtie in 
perspective front view (c). 

Fig. 2 is a photo of the actual bowtie. It was designed for 
a table-top system that is being assembled and will include 
a PCD.  The aspect explored here is how the wedge and mA 
modulation should be controlled to minimize peak count 
rate, and the expected benefit. 

 
Fig. 2. The implemented full-size piecewise-linear attenuator. 

III. OPTIMIZATION 
Tube current (mA) modulation and bowtie wedge 

positions were determined by minimizing dynamic range, 
(ratio of maximum to minimum detected counts). With a 
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controlled mean count, this is equivalent to minimizing 
maximum count rates and was employed due to its 
accessible formula.  One approach to minimizing dynamic 
range while ensuring uniform noise level is to make the 
total attenuation of bowtie plus object flat.  Therefore, an 
ideal target attenuation profile for the bowtie can be 
computed from subtracting the object sinogram from its 
maximum value.  The optimization algorithm employed is 
similar to our previous work [7], with more detail on 
variable bounds described here. 

We seek to minimize the difference between the ideal 
target bowtie attenuation profile, 𝑓"#$%&", and the actual 
bowtie profile, 𝑓#'"(#), with the problem written as 

 
𝑑 𝛽, 𝛾 = 𝑓"#$%&" 𝛽, 𝛾 − 𝑟(𝛽) − 𝑓#'"(#) 𝛽, 𝛾  

𝑟 𝛽 = − log 𝑚𝐴 𝛽  
 

Minimize				 max 𝑑 𝛽, 𝛾 − min 𝑑 𝛽, 𝛾

+ 𝛼
1
𝑛

𝑑 𝛽, 𝛾 E 

where 𝛽 and 𝛾 are view and fan angles, respectively.  
𝑑 𝛽, 𝛾  is the difference between the original target 
𝑓"#$%&" 𝛽, 𝛾 , adjusted by the mA modulation term 𝑚𝐴 𝛽 , 
and the actual bowtie line integral 𝑓#'"(#) 𝛽, 𝛾 .  The 
objective function is the sum of log dynamic range, 
max 𝑑 𝛽, 𝛾 − min 𝑑 𝛽, 𝛾 , and 𝛼-weighted root mean 

square error, F
G

𝑑 𝛽, 𝛾 E.  n is the number of sinogram 

pixels within the object boundary, and 𝛼 was 
experimentally chosen to be 10. 

A. mA modulation 
mA modulation helps lowering the required bowtie 

attenuation and preventing tube overheating.  In this 
simulation, we assume the same bowtie dimension as our 
actual implementation, which has ~5.5 mm of stainless steel 
as maximum attenuation. 

Assuming the mA modulation is sinusoidal as a function 
of view angle with 𝜋 period, it can be written as 

𝑚𝐴 𝛽 =
𝑎 − 1
2

sin 2𝛽 −
𝜋
2

+
𝑎 + 1
2

 

where a is a ratio of peak mA along x axis to y axis, and 
this function is a scaled version of the actual mA. 

To calculate a probable range of a, we first calculated the 
desired range of 𝑟(𝛽) that minimizes the log dynamic 
range, 𝐿 = max 𝑑 𝛽, 𝛾 − min 𝑑 𝛽, 𝛾 .  Let 𝑐N#O be the 
max line integral of the implemented bowtie (~3.82), 

0 ≤ 𝑓#'"(#) 𝛽, 𝛾 ≤ 𝑐N#O. 
If the adjusted target, 𝑓"#$%&" 𝛽, 𝛾 − 𝑟(𝛽), exceeds 𝑐N#O by 
x (e.g. 𝑐N#O+x) or if it is negative (e.g. –x) both result in the 
same increase (e.g. x) in the log dynamic range L. 
Therefore, the optimal 𝑟(𝛽) could be within the following 
bounds, 
𝑟RST&$ 𝛽 = 	𝑣 𝛽 − max	(0, 𝑣 𝛽 − 𝑢 𝛽 − 𝑐N#O ) 
𝑟WXX&$ 𝛽 = 	𝑣 𝛽 − min	(0, 𝑣 𝛽 − 𝑢 𝛽 − 𝑐N#O ) 

where 𝑢 𝛽 = max
Y
𝑓"#$%&"(𝛽, 𝛾), and 𝑣 𝛽 =

min
Y
𝑓"#$%&"(𝛽, 𝛾) are max and min target in view angle 𝛽, 

respectively. 
 Therefore, the possible range of an optimized a is 	 

1 ≤ 𝑎 ≤ exp max 𝑟WXX&$ 𝛽 − min 𝑟RST&$ 𝛽  

B. Wedge positions 
In opitimization, the  bowtie profile 𝑓#'"(#) was assumed 

to be piecewise-linear in line integral with formula 
following Ref. [1].  The optimzation variables are line 
integral at the center of bowtie wedge for each wedge in 
each view. 

C. Implementation 
To solve the optimization problem (1), different values of 

a spanning the possible range were tested, and for each, the 
problem (1) was cast as a convex optimization problem.  
The CVX convex optimization package [8, 9] was used. 

IV. SIMULATION 

A. Scanner 
The CT scanner was assumed to have a fan-beam 

geometry and either a gadolinium oxysulfide energy 
integrating or a photon counting detector with 1mm2 
elements.  The X-ray rube was assumed to have 120kVp 
with spectrum computed from [10, 11].  The transmission 
profile of the conventional bowtie was retrieved from 
CATSIM software. 

B. Testing methods 
Due to inaccessibility of the vendor scanner projection 

data, the projection data were reproduced in simulation.  
Forward projection of chest, abdomen, and shoulder CT 
images were used as test data.  These images were acquired 
by scanning a Kyoto Kagaku lung cancer screening CT 
phantom LSCT0001 with GE Discovery CT750 HD, using 
a clinical protocol for routine imaging (Noise index = 37).  
The mA along x and y axes selected by the scanner were 
recorded. 

Variance maps of reconstructed images were estimated 
with the method described in [12].    The computed peak 
variances were assumed to be the clinically required image 
noise level that the scans need to obtain. 

To evaluate the performance of our piecewise-linear 
bowtie as compared to the conventional filter, an optimized 
mA modulation (with weighted sum of max count rate and 
dose as objective) was applied for the conventional filter, 
and the proposed optimization for mA modulation and 
wedge positions (Section III) were employed to the 
piecewise-linear bowtie.   Normalized to achieve the 
clinical image peak variance, the max count rate and a 
surrogate for dose (sum of energy incident on objects) were 
computed and compared. 

(1) 
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V. RESULTS 
The computed noise maps (or images of noise) are 

displayed in Fig. 3, with more uniformity observed for the 
piecewise-linear bowtie (Fig. 3d, e, f). The resulting max 
count rate for our piecewise-linear bowtie filter are 11.18, 
7.62, and 13.08 Mcps/mm2 (million counts per second per 
square millimeter) for chest, abdomen, and shoulder, 
respectively, which are ~6.77 times lower than those for the 
conventional filter on average, as shown in Table I.  Our 
bowtie filter also reduces the dose by a factor of 2.14, 1.41, 
and 1.57 for chest, abdomen, and shoulder, respectively, as 
compared to the conventional bowtie filter. 

 

Table I.  Maximum count rate (Mcps/mm2) 

 Conventional 
bowtie 

Piecewise-linear 
bowtie 

Chest 53.79 11.18 

Abdomen 55.06 7.62 

Shoulder 108.34 13.08 

 

 
Fig. 3. Noise maps (images of noise) of chest, abdomen, and shoulder 
phantoms for the conventional bowtie filter (a, b, c) and for the piecewise-
linear bowtie filter (d, e, f). 

VI. CONCLUSION 

For the same peak noise level and scan time, our 
piecewise-linear bowtie filter could lower the detector 
maximum count rates to around 10 Mcps/mm2, which is a 
reasonable functioning level for current photon counting 
detectors.  This could be improved further by increasing the 
maximum bowtie wedge thickness, especially for more dose 
reduction.  However, the trade-off between max wedge 
thickness and the precision control of wedge attenuation 
should be taken into consideration, due to potential issues 
with actuator position control. 
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Implementation and Assessment of Dynamic Fluence Field
Modulation with Multiple Aperture Devices

Grace J. Gang, Andrew Mao, Jeffrey H. Siewerdsen, and J. Webster Stayman

Abstract—This work reports experimental results of dy-
namic fluence field modulation (FFM) using a dual multi-
ple aperture devices (MAD) system. MAD filters use Moiré
patterns produced by relative motions between two sets of
thin, highly attenuating tungsten bars of varying widths and
spacings. Each MAD was affixed to a linear actuator and
installed on an experimental cone-beam CT bench. Phantom-
specific FFM profiles were designed based on a flat detected
fluence and a minimum mean variance objective and realized
through a combination of MAD translations and pulse width
modulation at a constant tube current. To properly correct for
gains associated with the MAD filters, a correction algorithm
was designed to account for focal spot shifts during scanning,
as well as spectral effects from incomplete blockage of x-rays
by the tungsten bars. The FFM designs were demonstrated
in an elliptical phantom (25.8 × 14.1 cm) and a CatPhan
module with wires and cylindrical inserts. Variance and noise
power spectrum (NPS) analysis was performed on the resulting
reconstructions. While conventional gain correction produced
reconstructions with high frequency ring artifacts in axial
slices, the proposed correction algorithm effectively removed
such artifacts while preserving phantom details. Fluence field
designs for the elliptical phantom were achieved using relative
MAD motions over a 0.44 mm range, and measured beam
profiles closely approximated the theoretically computed target
profiles. The noise properties of the resulting reconstructions
behave as expected: a flat detected fluence criterion yields
nearly isotropic NPS and more homogeneous variance across
the reconstruction as compared to an unmodulated scan; the
minimum mean variance FFM results in lower mean variance
compared to both the unmodulated and flat detected fluence
acquisition at approximately matched total bare-beam fluence.
These results suggest that a dual-MAD filter is an effective
approach to provide fluence and image quality control in CT
and can potentially accommodate a wide range of phantoms
and design objectives.

Keywords—dynamic fluence field modulation, multiple aper-
ture device, corrections, image quality

I. INTRODUCTION

Dynamic fluence field modulation (FFM) has been pro-
posed as a dose reduction strategy in computed tomography
(CT) by adaptively changing x-ray beam shape as a func-
tion of both the horizontal detector locations (u) and for
each projection angle (θ). [1] Compared to static bowties,
FFM not only accommodates varying cross sections of the
patient throughout the scan, but also helps to avoid dose
penalties for miscentered patients. [2], [3] Various hardware
designs have been proposed to achieve such modulations.
[4]–[6] Our group has proposed multiple aperture devices
(MADs) consisting of a series of highly attenuating thin
bars of varying widths and spacings along the u direction
to control the amount of x-ray blockage locally. [6] The
relative motion between the two of such devices produces

This work is supported by NIH grant U01EB018758. G. J. Gang, A.
Mao, J. W. Stayman, and J. H. Siewerdsen are with the Department of
Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205
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Moiré patterns that effect a wide range of beam modulation
profiles. The dual-MAD system designed in previous work
[7] has been installed on an experimental cone-beam CT
(CBCT) bench. This work details the implementation of
MAD-based FFM design, calibration and correction of
MAD data, and initial image quality assessments in physical
phantom reconstructions.

II. METHODS

A. MADs Design and Setup
Dual MAD filter design has been reported in previous

work. [7] Each MAD in this study consists of 137 bars
with widths and spacings designed to produce modulation
patterns that flatten fluence behind a 30 cm by 20 cm
QRM phantom (QRM GmbH, Morehendorf, Germany).
The resulting bar widths range from 0.2 mm to 0.8 mm,
and spans an effective area of 135 mm × 10 mm. Each
MAD is 2 mm thick with the bars focused towards the x-
ray source. The spacing between the two MADs is 1 cm
from center-to-center. The MADs were manufactured from
tungsten powder through a powder bed laser melting process
(Smit-Rontgen Facility, Best, Netherlands). Photographs of
the two MADs and setup of the dual-MAD system on
an experimental CBCT bench is shown in Fig.1. Each
MAD was attached to a linear actuation stage capable of
translation control with up to 0.002 mm precision. In this
work, we focus on imaging scenarios where the objects are
well-centered, i.e., the beam center remains stationary while
the beam width/shape changes throughout the scan. Such
modulations were achieved by keeping MAD0 stationary
and translating MAD1 relative to MAD0. For miscentered

Fig. 1: Photos of the two MADs and setup of the dual-MAD
system on an experimental CBCT bench.
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objects, both MADs can be translated simultaneously to
change both the beam center and beam width.

B. Phantom-Specific Dynamic FFM Design
Dynamic FFM is achieved through a combination of

beam shape modulation through MADs and overall am-
plitude modulation through pulse width modulation at a
constant tube current. For a particular phantom, a target
FFM was first calculated by approximating the phantom as
an ellipse based on measurements of the lateral and anterior-
posterior (AP) diameters. The line integrals (denoted as l) of
the ellipse were then computed using a linear forward pro-
jector matching the test bench geometry. Phantom-specific
FFM was computed based on particular design objectives.
Two example FFM objectives investigated in this work are
given by the following equation when α = 1.0 and α = 0.5
[8]:

I0(u∗, θ) =
exp{αl(u∗, θ)}∑
θ exp{αl(u∗, θ)}

Itot0 (1)

where I0 denotes bare-beam fluence and u∗ represents
detector locations behind the object. The α = 1 case cor-
responds to a flat-field criterion, i.e., uniform signal behind
the object and across projections.This FFM yields uniform
variance in a filtered-backprojection (FBP) reconstruction.
The α = 0.5 case minimizes the mean variance over all
voxels in an FBP reconstruction.

To identify the MAD1 actuation positions and pulse
widths that best approximate the target FFM, a MAD
calibration scan was first performed in air through a range
of actuation positions at 0.002 mm intervals. The optimal
MAD1 position for each projection was identified by mini-
mizing a RMSE criterion between the normalized target and
achievable profiles. X-ray pulse width was then calculated
as the scale factor required by the central detector element
to achieve the target profile.

C. Corrections of Data Acquired with MADs
The presence of MADs introduce a gain term (denoted

gM ) in the forward model in addition to typical gains
associated with x-ray beam shape and detector sensitivity.
A straightforward simple correction method would involve
acquiring gain scans with MADs at the corresponding

actuation positions in air and dividing them from the data.
However, observations indicate that such simple correction
is insufficient due to two physical effects. First, subtle
shifts or changes in the focal spot between scans and/or
during the same scan introduce mismatch between the gM
of the gain scans and data. Second, x-rays at the very
edge of the tungsten bars are not completely blocked but
exhibit significant beam hardening. Both effects results in
residual high-frequency patterns in MAD projection data,
which consequently appear as high frequency ring artifacts
in reconstructed images.

To account for these two physical effects, we formulate
the following modified data forward model:

y = t(θ)gB(u, v)gD(u, v)gM (u,∆θ)e
−κ(u,∆θ)l(u,v,θ) (2)

where t(θ) represents pulse width modulation as a func-
tion of projection angles, gB and gD in the detector do-
main (u, v) are gains associated with the intrinsic beam
shape and detector sensitivity, respectively. The MAD
gain/transmissivity, gM , presumed constant along v and
depends on the actuation position ∆. The term κ accounts
for spectral effects as a result of MADs and carries the
same dependencies as gM . For investigations in this work,
a portion of the MAD-filtered beam was acquired in air and
was preserved for retrospective focal spot monitoring.

To recover the line integrals for reconstruction, we de-
vised a full model correction method using the following
calibration scans:
• Air gain calibration: Air scan without MADs for a range

of pulse widths, 30 repeats at each pulse width.

A = t(θ)gB(u, v)gD(u, v) (3)

• MAD gain calibration: Air scan with MADs at a range
of actuation positions, 5 repeats at each position, at
a nominal pulse width, t0. The ∗ indicates potential
mismatch between gM of the calibration and data (due
to focal spot shift).

M = t0gB(u, v)gD(u, v)g∗M (u,∆θ) (4)

To match gM and g∗M , an ensemble of 1D blur kernels
was estimated to minimize the RMSE between local
segments of M/A and y/A across each projection (in
the reserved bare-beam region), i.e., in a local sense,

(b) FFM for the Elliptical Phantom
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3.0
x104

2.5

2.0

1.5

1.0

0.5

1.6
x104

1.2

0.8

0.4

2.5

0o

360o

2.0

1.5

1.0

0.5

6

5

4

3

2

1

A
chieved

A
chieved

Ta
rg

et
 P

ro
fil

e

Ta
rg

et
 P

ro
fil

e

: Flat-Field : Minimum Mean Variance

1500015000 15000

(a) Modulation Profiles vs. MAD1 Actuation

M
A

D
1 

A
ct

ua
tio

n 
(m

m
)

0.5-1.00

1.00

-0.50

0.50

0

0.4

0.3

0.2

0.1

u (Detector Pixel)u (Detector Pixel)u (Detector Pixel)

 (P
ro

je
cti

on
 A

ng
le

)

Fig. 2: (a) Modulation profiles (at a constant pulse width) achieved through actuation of MAD1 over a 2 mm range. The
modulation exhibits periodic behavior. The FFM designs in this work were selected from one period from -0.5 to -0.06 mm
as indicated. (b) Dynamic FFM designs with pulse with modulation for the ellipse phantom described in II-D1 following
the α = 0.5 (minimum mean variance) and α = 1.0 (flat-field) design objectives. Target profiles (left) show good agreement
with achieved (right). The boundary of the ellipse phantom in the sinogram domain is overlaid on the figures.
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Fig. 4: Comparison of simple vs full model correction
in a CatPhan module. The full model correction method
effectively alleviates ring artifacts in the reconstruction. The
wire and insert structures are unaffected.

gM (u,∆θ) ≈ b(u) ~ g∗M (u,∆θ). The blur-corrected gM
can then be divided from y to minimize the effect of focal
spot shift/blooming.

• Spectral calibration: Scans of PMMA blocks of four
different thickness (constant thickness along u) with
MADs at a range of actuation positions, 5 repeats at each
position. At each thickness:

P = t0gB(u, v)gD(u, v)g∗∗M (u,∆θ)e
−κ(u,∆θ)lP (u,v) (5)

To obtain κ, the blur estimation step was first performed
between each P and the blur-corrected M in order to

match the gM in P and y, i.e., gM (u,∆θ) ≈ b
′
(u) ~

g∗∗M (u,∆θ). Ideally, we can then calculate κ as the gradi-
ent of −log(P/M) as a function of lP (u, v). While we
could obtain lP (u, v) via a separate calibration scan of
the PMMA blocks without MADs, we chose to compute
the gradient as a function of the physical thickness of
the blocks and find the proper scaling factor based on a
flatness criterion in a portion of the corrected line integral
data. The resulting κ(u,∆θ) can then be divided from the
exponent of y to arrive at line integrals of the phantom
data, l.

D. Experimental Methods

1) Phantoms: Dynamic FFM designs and data acqui-
sition were performed for an elliptical PMMA phantom
(major axis=25.8 cm, minor axis=14.1 cm) following the
α = 1.0 and α = 0.5 design objectives in Eq.1. To exercise
the MAD correction algorithm on non-uniform phantoms,
a CatPhan module (CTP401) containing four slanted wires
and various contrast inserts was also imaged using the same
FFM.

2) Image Reconstruction: Reconstructions were per-
formed using the FBP algorithm to clearly illustrate the
extent of ring artifacts from the MADs as well as noise
characteristics as a result of fluence modulation. Images
were reconstructed at an isotropic voxel size of 0.5 mm
using a Hann filter with a cutoff frequency of 0.8 mm-1.

3) Image Quality Analysis: To assess the effectiveness
of the MAD correction algorithm, reconstructions following
the simple correction and the full model correction methods
(II-C) are presented for visual comparison. The effect of
FFM on noise properties is illustrated in local noise power
spectrum (NPS) measurements at multiple locations within
the reconstructions of the ellipse for an unmodulated scan
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(no MADs, constant pulse width), and acquisitions using
the α = 0.5 and α = 1.0 FFM. The total bare-beam
fluence for the three scans are matched approximately for
comparison of noise magnitude. Due to limited vertical
extent of the MADs and therefore the reconstructions, the
NPS was measured in 2D from the differences of axial
slices. Variance maps were computed within a 3×3 voxel
neighbourhood at each voxel location on an axial slice
through the reconstruction.

III. RESULTS

A. Dynamic Fluence Field Design
The full range of FFM profiles achievable with MAD1

actuation positions are shown in Fig.2(a). Note that the
modulation is periodic. For FFM design purposes (II-B),
profiles were selected from a single period over the range
of 0.44 mm to minimize actuator motion throughout the
scan. The target (left) and achieved (right) FFM profiles
for the ellipse phantom are shown in Fig.2(b). The pulse
widths used in the α = 0.5 FFM ranged from 2.6 to
6.5 ms; and in the α = 1.0 FFM, 1.4 to 14.9 ms. The
achieved FFM closely approximates the target profiles both
in terms of beam widths and relative signal magnitude in
each projection.

B. Reconstruction with MADs
Example projections and reconstructions following sim-

ple and full-model corrections are compared in Fig.3. Im-
perfect MAD gain correction by the simple method is appar-
ent as residual bar patterns in the example projection shown.
The reconstruction similarly contains high frequency rings
in the axial slice and bar patterns in the coronal and sagittal
(not shown) slices. Such artifacts are mostly suppressed in
the full model correction method. An axial slice of the
CatPhan reconstruction is shown in Fig.4 to examine the

effect of the correction algorithm on non-uniform phantoms.
The wires and contrast modules are preserved well in the
full model correction method, while ring artifacts are mostly
absent.

C. Effect of Dynamic FFM
Figure 5 shows the local NPS of the ellipse phantom

at 7 locations for an unmodulated (no MADs, constant
pulse width), an α = 0.5, and an α = 1.0 reconstruc-
tion. The NPS in the unmodulated reconstruction exhibits
strongly anisotropic shapes associated with varying attenua-
tion through the ellipse in each view. The magnitude of the
NPS also varies across locations, with the central location
being the noisiest. The α = 1.0 case presents NPS that are
much more isotropic and uniform in magnitude, indicating
that the dynamic FFM through MADs closely homogenizes
fluence across detector elements and projection angles. The
variance maps of the three cases shows similar trends. The
unmodulated scan shows the largest variation in magnitude
within the phantom. The α = 1.0 case is much flatter al-
though not perfectly flat due to limitations in experimentally
achievable modulation profiles. The α = 0.5 case achieves
the minimum mean variance over the extent of the phantom.

IV. DISCUSSIONS AND CONCLUSIONS

This work presents experimental realization of dynamic
FFM using a combination of dual MADs and pulse width
modulation on a CBCT bench. The MADs were capable of
producing a wide range of beam modulation profiles using a
limited range (0.44 mm) of relative motion. Example FFMs
for an ellipse phantom are capable of achieving two design
objectives: approximately homogeneous noise across the
phantom, and reduced mean variance within the phantom.
Methods developed in this work pave the way for dynamic
FFM studies for a wide range of phantoms and design
objectives. Ongoing work includes experimental evaluation
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Fig. 5: The local NPS and variance maps of reconstructions for an unmodulated, α = 0.5, and α = 1.0 acquisition.
The α = 1.0 case exhibits close to isotropic NPS and a more homogeneous variance map compared to the unmodulated
scan. The α = 0.5 reconstruction has the minimum mean variance out of the three cases, in agreement with theoretical
expectations.
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of FFM designs that maximize task-based image quality [9],
and integration of the dual-MAD system in a diagnostic CT
gantry.
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Abstract— Compressed sensing represents a promising approach 

for CT dose reduction based on data undersampling. Alternative to 

reduced-view undersampling, which is difficult to implement, a 

within-view undersampling scheme named SparseCT has been 

proposed. SparseCT undersamples the beam within each view by 

interrupting the continuous beam with a multislit collimator (MSC). 

This work presents a SparseCT prototype, which to our knowledge is 

the first CS implementation on a clinical CT system. Details of the 

prototype design and manufacturing, data collection and processing 

steps, reconstruction steps unique to SparseCT, and initial phantom 

results are presented. 

Index Terms— CT, compressed sensing, SparseCT, prototype, 

undersampling, multi-slit collimator (MSC), penumbra 

I. INTRODUCTION 

Compressed sensing (CS) is a promising technology for 

achieving order-of-magnitude CT dose reduction that uses 

undersampled projection data to reconstruct images [1]. The 

majority of CS studies have proposed a reduced-view 

undersampling scheme [1-3], which would require to pulse the 

x-ray tube to acquire reduced number of projections. However, 

this scheme is not feasible on a current clinical CT system, 

because the x-ray tube cannot be pulsed on the order of 

milliseconds due to the thermal inertia of the cathode. 

We have developed an alternative to reduced-view 

undersampling, named SparseCT, which performs within-view 

undersampling [4, 5]. SparseCT does not pulse the x-ray beam, 

but instead interrupts the continuous beam with a multi-slit 

collimator (MSC). The MSC undersamples projection data 

within the view along the detector row direction (Figure 1). 

Furthermore, the MSC is jittered as the gantry rotates to change 

the undersampling pattern for each view to increase 

incoherence in the acquisition to improve the performance of 

compressed sensing.  

Recently, we have built a SparseCT prototype, which to our 

knowledge is the first CS implementation on a clinical CT 

system. This work presents details of the prototype design and 

manufacturing, data collection and processing steps, a 

reconstruction algorithm tailored to SparseCT, and initial 

phantom results. 
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Figure 1: The multislit collimator (MSC) partially blocks the beam before it 

reaches the patient, such that undersampled projection data are acquired while 
reducing patient dose. 

II. METHODS

A. SparseCT prototype 

The SparseCT prototype was designed and manufactured for 

the geometry of a Siemens SOMATOM Force scanner. The 

MSC was mounted onto the tube side of the scanner, 190 mm 

from the focal spot (Figure 2). The MSC is a tungsten plate 

curved along the fan angle and has laser-cut slits perpendicular 

to the z direction (patient bed direction). The plate is thick 

enough to block the beam so that the beam can only penetrate 

through the slits. The MSC can be moved along the z-direction 

with micrometer precision to undersample different detector 

rows.  

Figure 2: SparseCT prototype. The multislit collimator (MSC) is mounted to 

the tube side of the scanner and can be shifted along the z-direction. 

First Multislit Collimator Prototype for SparseCT: 

Design, Manufacturing and Initial Validation 

Baiyu Chen, Matthew J Muckley, Aaron Sodickson, Thomas O'Donnell, Matthias Berner, Thomas Allmendinger, 

Karl Stierstorfer, Thomas Flohr, Bernhard Schmidt, Daniel Sodickson, Ricardo Otazo1 
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Two MSC designs, named W4S12 and W4S16, were 

manufactured and tested on the prototype. “W” and “S” 

represent the slit width and the slit separation, respectively. For 

example, “W4S16” means that when projected to detector 

surface, each slit is 4-detector-row-wide and the separation 

between neighboring slits is 16-detector-row-wide. W4S12 and 

W4S16 have undersampling factors of 3 and 4, respectively. 

The width of MSC slit was designed based on a previous 

study [5], which shows that the undersampled x-ray beam has 

penumbra regions on both sides of the beam, caused by the 

finite size of the focal spot (Figure 3). The penumbra’s width is 

independent of the slit width, about 3 rows on each side of the 

beam on detector surface. Consequently, as shown in Figure 4 (a 

simulation result from the previous study), the MSC slits need 

to be at least 3 to 4 rows wide (projected to detector surface) to 

ensure adequate separation between neighboring undersampled 

beam. Figure 4 also demonstrates that wider slits help reduce the 

amount of penumbra relative to umbra region, thus increasing 

dose efficiency. Based on aforementioned reasons, our 

prototype used a slit width of 4. 

Figure 3: Due to the finite size of the focal spot, the beam through the MSC 
contains penumbra.  

Figure 4: The photon distribution on the detector surface with different MSC 

designs, normalized by the photon distribution without MSC. All designs have 

the same undersampling factor of 4 but different slit width.  

B. Collection of Projection Data 

Both air scans and phantom scans were performed using the 

MSC prototype. For all scans, data were collected in a 

“step-and-shoot” fashion. The MSC was shifted along the 

z-direction to a prescribed location before an axial scan was 

taken. For W4S12 design, because the slit separation is 12 

detector rows (projected to detector surface), we repeatedly 

scan at 12 different locations, each shifting the beam coverage 

by one row on the detector surface. For W4S16 design, scans 

were performed similarly at 16 different locations. All scans 

used a tube voltage of 120 kVp, a tube current of 800 mA, and a 

rotation time of 0.5 s. 

C. Processing of Projection Data 

In addition to the common preprocessing steps (e.g., air 

calibration and beam hardening correction), the projection data 

went through three steps unique to SparseCT. 

First, a “MSC calibration” was performed to remove the 

attenuation of the MSC from the projection data of the phantom 

scans. This was done by subtracting the post-log projection data 

of the air scans from the post-log projection data of the phantom 

scans acquired at the same MSC locations.  

Second, statistical weights were estimated based on the flux 

information (without MSC, provided by the vendor) and the 

phantom scans, which were inversely proportional to the 

variance of the post-log projection data and were used for 

reconstruction [6], as detailed in the next section. 

Last, “dynamic MSC” scans were created by retrospectively 

drawing projections from scans of all MSC positions and 

stitching them together. The stitched scans simulate a linear 

MSC movement during the scan, shifting the beam by one row 

per projection.  

D. Reconstruction of Projection Data 

The processed projection data were reconstructed iteratively 

using a penalized weighted least squares cost function with 

OS-Momentum algorithm [7]. The reconstruction was tailored 

to SparseCT in two aspects.  

First, to use the portion of projection data acquired in the 

penumbra region with reduced flux, we applied statistical 

weights to the reconstruction. The statistical weights accounted 

for the dramatic variation of exposure and quantum noise in the 

penumbra region by giving noisy data of less fidelity lower 

weights.  

Second, to solve the “partial source obstruction” problem 

illustrated and explained in Figure 5, we analytically calculated 

the effective focal spot location corresponding to each detector 

row for each MSC design and MSC position, and passed on that 

information to the ray projector of the reconstruction algorithm. 
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Figure 5: a) “Partial source obstruction” problem is when the projection of a 
SparseCT air scan captures each undersampled beam in trapezoidal shape 

instead of rectangular shape. b) This partial source obstruction is caused by the 

fact that the slit of the MSC is so narrow that part of the focal spot is obstructed 
by the slit. In other words, the detector rows in the beam can only “see” part of 

the focal spot. As a result, the effective locations of the focal spot (the centroid 

of the part of focal spot being seen) are different from row to row: The row on 
the anode side of the slit sees a focal spot further away from the MSC than the 

row on the cathode side of the slit, therefore having a smaller magnification 

ratio. Due to the difference in magnification ratio on the two sides of the beam, 
a rectangular beam was captured as a trapezoidal beam on the detector surface.  

With these two aspects built into the reconstruction, the 

problem was formulated as the following optimization problem 

[8]:  

where x is the image to be reconstructed, y is the projection data, 

A is the data acquisition operator (gantry geometry and 

undersampling pattern), β is the regularization parameter that 

weights the sparsity term relative to data consistency, C is a 

finite difference operator, and ψ is a hyperbola function. The 

subscript “W” indicates the inclusion of statistical weights.  

III. RESULTS

A. Projection data 

 Figure 6 shows the projection data of a SparseCT phantom 

scan with W4S16 MSC, the projection data of a SparseCT air 

scan with W4S16 MSC at the same location, and the process of 

MSC calibration.  

 Note that the penumbra effect can be observed in Figure 6 (b), 

where the beam (the black strips) and the MSC (the white strips) 

do not have clear boundaries. Also note that although ¾ of the 

beam is interrupted by the W4S16 MSC, about ½ of the 

detector rows are irradiated due to the penumbra effect. 

B. Reconstruction 

 Figure 7 shows the reconstructed images of a liver phantom 

with two low contrast lesions. All images were reconstructed 

with 350 mm FOV and 3 mm slice thickness.  Figure 7(a) is the 

reference image acquired with full dose (no MSC) and 

reconstructed with Siemens WFBP algorithm. Figure 7(b) is the 

SparseCT image acquired with 1/3 dose (W4S12 MSC) and 

reconstructed with SparseCT algorithm. Figure 7(c) is SparseCT 

image acquired with ¼ dose (W4S16 MSC) and reconstructed 

with SparseCT algorithm.  

 Under reduced dose, SparseCT images still show the two low 

contrast lesions. However, ring artifacts are visible in the 

images, possibly because detector was calibrated for relatively 

uniform flux distribution, but the flux of the undersampled 

beam varies drastically across detector rows, even within a 

single row. In addition, the W4S16 result is noisy, which might 

be improved by changing the beta or the motion pattern of the 

MSC (currently a linear motion pattern was simulated).  

IV. CONCLUSION

A prototype of SparseCT has been built, which to our 

knowledge is the first CS CT system based on a clinical system. 

Phantom data have been collected from the prototype. Special 

processing and reconstruction procedures have been developed 

and tested on the SparseCT data.  

Figure 6: (a) A post-log projection of a SparseCT phantom scan with W4S16 MSC installed. The attenuation of the MSC is captured on top of the phantom 

attenuation in the projection. (b) A post-log projection of a SparseCT air scan with W4S16 MSC installed at the same location. (c) MSC calibration is performed by 

subtracting the aforementioned two, which removes the MSC attenuation from the projection. 
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Reconstruction of Reduced-Dose SparseCT

Data Acquired With An Interrupted-Beam

Prototype On A Clinical Scanner
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Ricardo Otazo

Abstract—Low-dose X-ray CT is a rapidly-advancing
area in medical imaging. A number of paradigms for
low-dose CT have emerged, some of which are based
on sparse sampling. Sparse sampling approaches using
view-based subsampling have been limited to simulations
due to difficult hardware implementation, but recently a
more practical within-view sparse sampling approach was
proposed called SparseCT. SparseCT operates by inter-
rupting the source beam with a multislit collimator before
it reaches the patient, thus creating a row-subsampled
projection view. By programming the multislit collimator
to move throughout the scan, undersampling is possible
in both the row and the projection angle dimensions.
Here we develop reconstruction algorithms tailored to the
interrupted-beam acquisition to compensate for partial
source obstruction and nonideal statistical weighting. We
present reconstruction of phantom data acquired with the
first multislit collimator prototype on a clinical scanner
using simulated motion patterns.

I. INTRODUCTION

X-ray CT is currently one of the most important

diagnostic tools available in the clinic. However, the

ionizing radiation dose of CT remains a risk to patients,

particularly pediatric patients and those with chronic

illnesses. Thus, radiation dose reduction is an engaging

topic of research in the CT field. A number of approaches

have been proposed for reducing radiation dose in CT.

The most common approach is to reduce the tube cur-

rent. Iterative reconstruction techniques that compensate

for the increased noise have been promising areas of

research, with successful commercial examples such as

ADMIRE [1] and research examples based on iterative

algorithms with edge-preserving regularizers [2].
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School of Medicine, New York, NY.

T. O’Donnell, M. Berner, T. Allmendinger, K. Stierstorfer, T. Flohr,
and B. Schmidt are with Siemens Healthineers.
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An alternative approach to tube-current reduction is

sparse sampling. These techniques show promise be-

cause they can be combined with standard compressed

sensing theory [3]. This allows extremely high dose

reductions. A practical way to achieve sparse sampling is

to partially block the X-ray beam. This method, called

SparseCT or interrupted-beam CT, has gained interest

since it can achieve sparse sampling by using a multislit

collimator (MSC) in replacement of the standard source

collimator on current clinical systems [4]. Contrary

to sparse-view sampling approaches that block entire

views, SparseCT achieves sparse sampling within views.

A number of aspects of SparseCT have already been

studied in simulation. These discovered that penumbra

effects can modify the noise level in the acquired sino-

gram [5]. The increased noise can be compensated for

by using larger slits with larger spacings, and these

have been observed to lead to only a modest drop in

incoherence [6]. Nonetheless, none of these studies were

done using real-world data.

In this work, we demonstrate the reconstruction of

phantom data acquired using the first SparseCT MSC

on a clinical scanner. The SparseCT collimator has four

open rows out of every 16 (W4S16). We collect data

while holding the MSC in 16 different static positions.

We then retrospectively stitch the positions together to

create a synthetic, linear motion pattern. We show new

features that the proposed sampling scheme applies to

the sinogram, including that of partial source obstruc-

tion. We outline a new reconstruction pipeline for the

prototype, which includes modifications that take into

account these new features. The images constitute the

first demonstration of SparseCT using real-world data.

II. METHODS

A. Prototype Design and Data Acquisition

SparseCT calls for an interrupted-beam scanner de-

sign. The ideal design is to apply a binary sampling
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mask along the row dimension of the sinogram. During

the scan, the MSC would be jittered along the z direction

throughout a helical scan, giving incoherent θ-z under-

sampling. We desire incoherence in the acquisition to

improve the performance of sparsity-promoting recon-

struction as predicted by compessed sensing theory.

Such a design requires building a multislit collimator

(MSC) to interrupt the X-ray beam prior to reaching the

patient. Fig. 1 shows a schematic of such a design. The

Fig. 1: Schematic of a multislit collimator (MSC) and

source with periodic slit openings. In the W4S16 design,

each slit illuminates four rows of the detector, and the

repetition period is 16 detector rows.

design places the MSC into the gantry in place of the

normal source collimator.

A number of parameters can govern the construction

and operation of the MSC. Designing the MSC so that

it has more, thinner slits produces more incoherence in

the sampling pattern [6] at the cost of reduced dose

efficiency due to penumbra effects [5]. To balance this

tradeoff, we opted for a W4S16 scanner design, which

exposes 4 detector rows out of every 16 in the ideal

binary mask case. In reality, due to the penumbra, each

slit illuminates more than 4 rows at a reduced intensity,

but the W4S16 represents a balance point between these

effects based on previous simulations [5], [6].

Data were acquired on a SOMATOM Force Scanner

(Siemens Healthineers, Forccheim, Germany) with the

MSC replacing the normal source collimator. The data

were acquired with the MSC being located at 16 different

static positions. We used a separate air scan to calibrate

the incident flux into the bore of the scanner prior

reaching the patient. After standard clinical preprocess-

ing, we synthesized a data set with a moving MSC by

retrospectively stitching together the 16 MSC positions.

The final data set simulated a linear motion of the MSC

from position 1 to position 16 over a single axial rotation.

We designate the output of these preprocessing steps as

y, the data used for reconstruction.

B. Reconstruction

For reconstruction, we adopted an iterative approach

that solves the following optimization problem:

x̂ = argmin
x

1

2
‖y −Ax‖

2

W
+ β

M∑
m=1

ψ ([Cx]
m
) , (1)

where x is the image volume to be reconstructed, y

is the preprocessed sinogram data, A is a Siddon line

projector [7] incorporating sampling patterns and scanner

geometry, C is a finite difference operator, and β is a

regularization parameter. The quadratic term in this cost

function enforces data consistency, and the regularizer

promotes edge sparsity with β determining the level of

regularization. ψ(t) is a potential function that we define

as the hyperbola function:

ψ(t) = δ2
[√

1 + (t/δ)2 − 1
]
. (2)

This potential function makes the regularizer behave

analogously to “corner-rounded” Total Variation.

W is a diagonal matrix constructed of elements wn,

n ∈ [1, ..., N ]. We calculated the weights as wn =
(bn)

0.5, where bn is the nth prelog sinogram data point.

This is a balanced method that preserves some of the

noise mitigation benefits of reducing emphasis on low-

signal projections [8] without giving too much weight to

a small number of projections [9]. We solved (1) with

the ordered subsets with momentum algorithm [2].

C. Partial Source Obstruction

Solving the problem in (1) requires building a routine

that can apply A and AT , the forward and back-

projection operations. We used the Siddon line integral

method [7]. This method draws rays between the source

location and each detector location. In normal settings,

the source is approximated as a point source for such

methods, but the insertion of the MSC partially obstructs

the source. Thus, the assumed point source center no

longer corresponds to the observed source center - ef-

fectively, a row-dependent shift in the source location.

To precompensate for this effect, we simulated what

portion of the source would be observable for each row

of the detector. Then, we jitter the source location in the

A operator during reconstruction. A schematic of this

process is shown in Fig. 2. For each row of the detector,

the assumed point source location is jittered based on

the centroid of the observable portion of the detector. To

do this, we approximated the source as a summation of

Gaussian blobs of varying intensity, and then simulated

how much of the source would be occluded in each row

of our design geometry.
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Fig. 2: Schematic of partial source obstruction. In the

absence of the MSC, the assumed point source location

for detector row q would correspond to the true source

centroid. However, in the presence of the MSC, the

observed centroid is shifted. This shift was applied to

each of the ray casting steps in calculating A.

III. RESULTS

A. Partial Source Obstruction

Fig. 3 shows sinograms of an American College of

Radiology (ACR) phantom acquired with and without

the multislit collimator (MSC). The phantom has inserts

that travel straight along the length of the phantom,

as can be seen in the sinogram in Fig. 3a. When the

MSC is inserted, the effects of partial source obstruction

lead to a varying cone beam magnification in the row

direction in Fig. 3b. The shift is most observable in

slanted line patterns where the operating table is located

in the sinogram.

To correct for partial source obstruction, we applied

the technique outlined in Section II-C to a scan in

which the MSC position was fixed. This means that parts

of the object where the MSC was fully opened were

fully sampled, and we should observe no subsampling

artifacts. Prior to partial source obstruction correction,

some areas are enlarged and others are diminished. Fig. 4

shows the effect of the partial source obstruction correc-

tion. The corrected version of the phantom is shown in

Fig 4a, while the uncorrected version subtracted from the

corrected version is shown in Fig. 4b. The dark outline

around the edge of the ACR phantom implies that the

uncorrected reconstruction was spatially diminished in

this slice.

B. Linear Motion

Fig. 5 compares results with an open collimator vs.

the MSC with linear motion by zooming in on the 7

lp/com insert of the ACR phantom. The open collimator
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Fig. 3: Effects of partial source obstruction on one

projection view. (a) shows the artifact-free ACR phantom

with an open collimator, while (b) shows how a shift-

variant magnification results with the MSC, most easily

observed in the slanted lines of the operating table.

result was obtained with the standard Siemens FBP

pipeline. Some degradation occurs around the edge of

the bar resolution pattern of the MSC image in Fig. 5d.

Nonetheless, the reconstruction with the MSC while

simulating linear motion is able to gain similar resolution

to the fully-open, ideally sampled case. When no motion

is applied, significant image degradation is observable in

penumbra regions (not shown).

IV. DISCUSSION

We have demonstrated reconstruction with an

interrupted-beam CT prototype with simulated linear
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(a) (b)

Fig. 4: Effects of partial source obstruction. (a) shows

the corrected image (-1000 HU to 1400 HU), while (b)

shows the original uncorrected image subtracted from

the corrected (-100 to 100 HU), demonstrating that the

original image was minimized in this slice.

motion. We showed that the beam interruption can intro-

duce new partial source obstruction effects and proposed

a means to correct for them. We observed that this

correction could change the size of the phantom in

various slices. Subjectively, some blurring also occurred

with the use of partial source obstruction correction -

possibly due to incorrect assumptions on the source

intensity distribution in our simulations. In the future, we

aim to get accurate measurements of the source intensity

distribution to improve this correction process.

Fig. 5 shows that SparseCT with a 4-fold dose reduc-

tion and linear motion can attain similar resolution to the

standard full-dose case using the ACR phantom, which

demonstrates practical sparsity-based dose reductions on

a clinical scanner. Our results without any motion (not

shown) indicated that moving the MSC throughout the

acquisition is essential to preserving image quality. With-

out motion, significant image degradation is observable

in the penumbra regions. In the future, we will perform

reconstructions on cases involving real-world motion.

This will require new advances in registering the air

calibration to various motion states, as well as further

developing the partial source obstruction model to handle

motion states that are not explicitly simulated.
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Stack Transition Artifact Removal for Cardiac CT
using a Symmetric Demons Algorithm

Sergej Lebedev, Eric Fournie, Karl Stierstorfer, and Marc Kachelrieß

Abstract—Cardiac CT can be achieved by performing short
scans with prospective gating. As the collimation of multi–
slice CT scanners generally does not allow for a coverage of
the entire heart, sequence scans, or step-and-shoot, can be
used, where irradiation is performed multiple times for varying
positions. Each of these short scans yields data, generally with
a longitudinal overlap, that can be reconstructed into a sub-
volume, or stack. The latter ideally corresponds to the same
phase. The issue addressed in this work is irregular motion,
such as irregular heart motion. It leads to stacks that do not
represent exactly the same volume, resulting in discontinuities
at stack transitions when assembling the complete CT volume.
We propose a stack transition artifact removal method including
a symmetric deformable registration approach, a symmetric
demons algorithm. The deformation vector fields are extended
from the overlapping regions in order to maintain smooth and
anatomically meaningful images. We validated the method using
clinical data sets. By applying a symmetric registration method
to cardiac data, we show that the stack transition artifacts can be
addressed in this fashion. The method was able to considerably
improve image quality and its performance and stability can be
further improved in the future.

I. INTRODUCTION

Cardiac CT can be achieved by performing short scans
with prospective ECG–gating and reconstructing one phase.
Reconstructions of cardiac data can include motion artifacts
due to heart motion. The issue to be addressed here is irregular
motion. It can occur in every patient and might originate
from irregular heart and respiratory motion or basically any
movement of the patient during the scan. As the collimation
of multi–slice CT scanners generally does not allow for a
coverage of the entire heart, irradiation has to be performed
multiple times for varying positions. Such a sequence scan,
also known as step–and–shoot, can be utilized for multiple
cardiac imaging tasks [1]–[3]. Each of these short scans yields
data that can be reconstructed into a sub-volume, or stack.
The stacks are used to assemble the complete CT volume,
where each one corresponds to a different time during the
scan, but ideally to the same phase. Such stacks can also
be reconstructed using data from a retrospectively ECG–gated
spiral scan, if the pitch is chosen correctly with respect to the
heart rate [4]–[7]. In this case, data from other phases would
be available as well.

Sergej Lebedev is with the German Cancer Research Center (Dkfz),
Heidelberg, Germany, with Siemens Healthineers, Forchheim, Germany and
with the University of Heidelberg, Germany. Email: sergej.lebedev@dkfz.de.
Eric Fournie and Karl Stierstorfer are with Siemens Healthineers, Forchheim,
Germany. Marc Kacherlrieß is with the German Cancer Reasearch Center
(Dkfz), Heidelberg, Germany and with the University of Heidelberg, Germany.

Irregular motion leads to stacks that do not represent exactly
the same volume and as a consequence discontinuities at stack
transitions arise when stitching the stacks together to yield
the complete CT volume. Such discontinuities can be very
apparent depending on the severity of the irregular motion
encountered. To remove artifacts and discontinuities from
irregular motion we propose a stack transition artifact removal
method. The method in this work makes use of symmetric
image registration, in particular a symmetric demons algo-
rithm. Herein, symmetric means that deformations in one
volume are symmetrically applied in the opposite direction
in the other volume. Therefore, intermediate volumes are
computed, as opposed to a more classical approach with one
volume being registered to another, static volume. Neighboring
stacks will generally have a longitudinal overlap that can
be used to compute a transformation that, applied to both
stacks, yields modified stacks (“intermediate stacks”) that are
mostly identical within the overlapping region. A series of
registrations in the overlapping regions using the demons
algorithm will compute a series of deformation vector fields
(DVF) that can be extended on to the non–overlapping parts
via linear interpolation between the overlapping regions. This
framework enables continuous and smooth DVFs covering all
stacks entirely and is illustrated in figure I.

Fig. 1. Illustration of a volume consisting of four overlapping stacks g with
DVFs d and interpolation. The DVFs are illustrated by one constant vector,
each. Stacks not to scale.

II. METHODS AND MATERIALS

Given a set of longitudinally overlapping stacks, the goal
is to compute DVFs that are applied to the stacks yielding
similar, intermediate volumes. Given two volumes f1, f2, the
aim is to compute a DVF d(r) that will match the two.
While a more common approach assumes a static volume
and a moving volume that is registered onto the static one,
the herein implemented method is symmetric in terms of the
deformations that are applied to both volumes so that the
transformed volumes T+df1(r) and T−df2(r) match:
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T+df1(r) = f1(r + d(r))

T−df2(r) = f2(r − d(r)).
(1)

Given the deformation model, an additive, symmetric
demons algorithm is derived similar to Thirion’s demons
algorithm [8], [9]. In accordance with past works in the field, a
cost function C is defined, consisting of a similarity measure,
also known as image distance, a regularization applied to the
DVF d and an auxiliary term named correspondence including
the difference between two non identical vector fields d and
e = d + ∆d that enable a decoupling of the optimization of
the similarity and the regularization in two separate steps for
computational performance. Given N voxels at positions rn,
the DVF is stored as N vectors d(rn). Assuming a vector
notation with f1, f2 ∈ RN one can write:

C(d) =‖ 1

σi(rn)
(T+ef1−T−ef2)(rn)‖22+

1

σ2
x
‖d−e‖22+

1

σ2
T
‖∇d‖22.

The cost function term weights σi ([σi] = HU) and σ−2
T

([σT] = mm) account for the image noise and the reg-
ularization strength, while σ−2

x ([σx] = mm) weights the
correspondence and therefore affects the spatial uncertainty
between d and e [9]. The choice of these parameters will
be discussed in a later paragraph. The optimization for one
iteration is performed in two steps separating the cost function:

Step 1: ∆d̂ = argmin
∆d
‖ 1

σi(rn)

(
T+d+∆d f1 − T−d−∆d f2

)
(rn)‖22

+
1

σ2
x
‖∆d‖22

Step 2: d̂ = argmin
d

1

σ2
x
‖d− e‖22 +

1

σ2
T
‖∇d‖22

In the first step an optimization with respect to ∆d is per-
formed, given a DVF d that originates from the previous
iteration or in case of the first iteration from the initialization
that can be zero. Given the thus obtained ∆d̂, the new DVF
e = d + ∆d̂ is computed and used in the optimization
in the second step to acquire a new DVF d̂ that is then
carried over to the next iteration. Similar to Thirion’s demons
algorithm the similarity term can be linearized via a first
order approximation. Using the latter and evaluating the cost
function at each voxel individually yields an analytic formula
for ∆d̂(rn) in the first optimization step that can be applied
for each voxel independently:

∆d̂(rn) =
(T+df1 − T−df2)(rn)(T+d∇f1 + T−d∇f2)(rn)

σ2
i
σ2

x
+ (T+d∇f1 − T−d∇f2)(rn)2

.

As for the second step, the cost function can once again
be evaluated at each voxel individually. Using differential
calculus and applying the Fourier transform, forth and back,
while using one of it’s unique characteristics, F

(
d2f(x)
dx2

)
=

−(2πu)2F (u), yields a convolution. We use a Gaussian kernel
for the convolution. Finally, the symmetric demons algorithm
yields the DVF for the iteration:

d̂(r) = e(r) ∗ 1√
2π(σx/σT)

exp
(
− r2

2(σx/σT)2

)
.

The volume is divided in S overlapping stacks gs, so that
S − 1 registrations between neighboring stack pairs have to
be performed. One registration includes the upper overlapping

region of a stack s and the lower overlapping region of the
subsequent stack s+1, which correspond to f1, f2 in eq. (1).
Each stack gs covers a z-axis range zs,1 to zs,2. An illustration
of the setup is shown in figure I. All registrations yield DVFs
ds that are only valid in the upper overlapping region of their
respective stack (zs+1,1 < z < zs,2). In order to compute
smooth DVFs that are valid for an entire stack each, linear
interpolations between the deformation vectors from the lower
and upper overlapping regions are performed. Based on eq.
(1), the DVF for the lower overlapping region of a stack gs is
−ds−1(r). The transformed stacks Tgs(r) can be computed
as

Tgs(r) = gs
(
r −

(
zs+1,1 − z

zs+1,1 − zs−1,2

)
ds−1(rx,y, zs−1,2)

+

(
z − zs−1,2

zs+1,1 − zs−1,2

)
ds(rx,y, zs+1,1)

)
,

(2)

where ds(rx,y, z) represents deformation vectors within a plane at
a fixed z-coordinate. Furthermore, let d0, dS+1 = 0 as well as
z0,2 = z1,1 and zS+1,1 = zS,2 in order for eq. (2) to be valid for the
outer stacks (s = 1;S;) so that the DVFs is faded out towards their
respective outer boundaries. The interpolation is illustrated in figure
I.

Given the update equations, one has to choose the parame-
ters σi, σx, σT. The voxel dependent parameter accounting for
the image noise σi(rn) is set to a local estimation of the image
noise. This further allows the use of σx to directly limit the
update length

√
‖∆dn‖22 ≤ σx/2 [9]. Finally one can define

task-specific, meaningful parameters to control the algorithm:
∆ is the maximum step length for the first optimization step
and σ defines the kernel width for the second optimization
step, where σx = 2∆ and σT = 2∆/σ. Displacements in the
range of 10mm are expected and one can set ∆ to similar
values, e.g. ∆ = 2mm. In order to be able to deform relatively
small objects, while maintaining a sufficiently smooth DVF,
we set σ = 1mm.

The registration is stopped by a convergence criterion or
after reaching a maximal amount of iterations. The conver-
gence criterion checks if the slope of a similarity measure,
here the mean squared difference between the volumes, as
a function of iteration number, drops to approximately zero.
A maximum iteration number of 200 was found sufficient to
ensure convergence, also with larger displacements between
the volumes.

III. RESULTS

The original and corrected volumes are assembled from the
individual stacks, where one stack at a time is used and the
stack transition is in the middle of each overlapping region.

Figure 2 shows the results for the stack transition artifact
removal, along with the original data (case 1). Grid like pat-
terns that illustrate the deformation via the DVFs are included
as well. This particular case includes severe stack transition
artifacts. The method is able to remove most artifacts within
the image. Feature (A), as marked in figure 2, could not be
corrected entirely. Figure 3 shows another data set (case 2) that
features smaller displacements and part of a coronary artery.
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In this case, the method is able to remove almost all artifacts.
All DVFs appear to be smooth and continuous within their
respective stacks. Figure 4 shows aquivalent axial slices at a
stack transition (at (A), see figure 2) from the lower and upper
stack for case 1. The upper stack slices include an overlay
that indicates the (absolute) differences to the lower stack.
Appart from noise, the differences are considerably reduced
by the registration, while maintaining a natural anatomy after
the deformation. Some local bluring of the noise occurs.

DISCUSSION AND CONCLUSION

By using a symmetrical demons algorithm, the stack transi-
tion artifact removal method is able to considerably improve
image quality. Almost all stack transition artifacts could be
removed. However, in case of large displacements in the range
of multiple mm, some artifacts may remain. While the demons
algorithm is generally able to achieve precise registrations, the
herein implemented, symmetrical version may fail to com-
pute large displacements. To overcome this problem, another
method that is more robust towards large displacements, but
does not have to be as precise, might be used as initialization.
For example, our previous work includes an approach that uses
patch-based similarities, i.e. the comparison of displaced sub
volumes, to compute an approximate DVF [10]. This method
qualifies as potential initializer for the symmetric demons
method.

Some local bluring may occur due to interpolation when
applying the DVF. Finally, it is also of interest how well a
stack transition artifact removal method performs with motion
compensated data. Due to the reduction of motion artifacts,
that potentially obscure stack transition artifacts, it is expected
that the latter are more apparent in motion-compensated data.
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Fig. 2. Sagittal view of an original CT volume (case 1) and the volume after processing with stack transition artifact removal (top row). Grid like patterns,
original and deformed using the demons algorithm computed DVFs, assembled with stacks just like the CT volume (bottom row). Some dominant stack
transition artifacts are marked with (A),(B),(C). The stack transitions are marked with arrows. The patterns illustrates the DVF. The distance between its dots
is 3.2 mm and 4.8 mm in y and z–direction. Brighter and darker dots indicate deformation out of and in to the image plane (White =̂ -1.6 mm, black =̂ +1.6
mm). CT images: C = 0 HU, W = 2000 HU.

Fig. 3. Sagittal view of an original CT volume (case 2) and the volume after processing with stack transition artifact removal (top row). Grid like patterns,
original and deformed using the demons algorithm computed DVFs, assembled with stacks just like the CT volume (bottom row). Some dominant stack
transition artifacts are marked with (A),(B). The stack transitions are marked with arrows. The patterns illustrates the DVF. The distance between its dots is
2.4 mm and 3.6 mm in y and z–direction. Brighter and darker dots indicate deformation out of and in to the image plane (White =̂ -1.2 mm, black =̂ +1.2
mm). CT images: C = 0 HU, W = 2000 HU.
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Fig. 4. Aquivalent axial slices at a stack transition, from a lower and upper stack, case 1 (see figure 2, transition at (A)). Original and corrected data. The
upper stack images include a color overlay indicating (absolute) differences to the lower stack slice. Darker red indicates strong gray value differences between
lung and soft tissue. Lighter red indicates differences between soft tissues and from noise. C = 0 HU, W = 2000 HU.
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Noise Reduction via Filtering Temporal Differences 

Brian E. Nett, Ph.D., Chuang Miao, Ph.D. and Jed D. Pack, Ph.D

Abstract—In cardiac CT the temporal resolution and the image 

noise are both important parameters. In state-of-the-art CT 

scanners it is possible to acquire the complete heart from an axial 

scan trajectory. This acquisition methodology inherently provides 

freedom in selection of cardiac phases, i.e. the user may select a 

narrow or wider range of cardiac phases. In the case that more 

data than the minimal amount is acquired it is useful to 

incorporate the additional information into a single image volume. 

In this work, an adaptive method is presented for incorporating 

the additional data in the static regions of the image volume. The 

method is also demonstrated on non-cardiac data as well. 

Keywords—cardiac CT 

INTRODUCTION 

In cardiac computed tomography (CT) there are several 
clinical tasks of interest including coronary angiography of 
iodinated vessels, calcium scoring, myocardial assessment from 
static or dynamic perfusion protocols, and functional imaging of 
the cardiac muscle movement throughout the cardiac cycle. In 
each of these exams it is important to reduce motion artifacts and 
reduce image noise. A number of methods have been proposed 
which apply multidimensional adaptive smoothing operations 
for noise reduction with emphasis on cardiac anatomy [1-2]. In 
this work we propose an adaptive filtration method which 
preserves the noise texture of direct Filtered BackProjection 
(FBP) reconstruction by applying the filtration operation on a 
difference image volume between the minimum motion artifacts 
image and the expanded time range image.   

In generating high quality cardiac images of rapidly moving 
objects it may be beneficial to apply motion compensated image 
reconstruction [3]. The aim of motion compensated 
reconstruction methods is to provide an image with minimal 
motion artifacts, and thus the data used during backprojection 
corresponds to the minimal trajectory, i.e. the short scan angular 
range [4]. However, it is often the case that more data is 
available. In theory, it would also be possible to apply motion 
compensated reconstruction to utilize a wider range of 
projection data to achieve lower noise in the reconstructed 
image. Such a method would provide for optimal use of 
projection data and reduced image noise. However, this 
technique would involve a significant computational burden as 
robust motion vector fields for the entire image volume would 
be required to utilize the additional projection data. In this work, 
we present a more pragmatic approach wherein the motion 

compensated reconstruction is used to generate the minimal 
motion artifacts image and an additional image is generated 
from a wider scan range with reduced temporal resolution, but 
also reduced image noise. 

METHODS 

A) Temporal Difference Filtering  

  

Definition of the terminology used in describing the 
algorithm: 

• 𝑦𝑚𝑒𝑎𝑠 -the measured projection data 

• 𝑓𝐹𝑆  -the reconstructed image with a larger temporal 
footprint such as a Full Scan 

• 𝑓𝑆𝑆  -the reconstructed image with a smaller temporal 
footprint such as a Short Scan, in the case when motion 
compensation is used the motion compensation image is 
used as this input image  

• 𝑓𝐷   - difference between the full scan and short scan 
image data 
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Figure 1: A schematic of the difference based 

temporal filtering where fFILT is the output and the 

naming convention is described below. 
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• 𝑓𝐷′  - filtered version where very low frequencies are 
attenuated 

• 𝑓   - inconsistency between the Full Scan and the Short 
Scan where the quantum noise has been suppressed 

• 𝑓 𝐷  - image volume representing the noise difference 

• 𝑓𝐹     - the output filtered image which aims to improve 
the noise in the stationary portions of the image 

The algorithmic flow is laid out in Figure 1.  The input to the 
algorithm is a full scan (fFS) and a short scan (fSS) image 
reconstruction which have already been corrected for cone-
beam artifacts in the case of large cone-angle acquisitions. The 
first step is to take a simple difference operation between the 
two volumes yielding the difference image volume (fD). This 
volume contains all the difference information between the 
full and short scans. There will be some low frequency 
differences due to the difference in the effective weighting 
function. These very low frequencies do not contain significant 
quantum noise fluctuations as these frequencies are 
attenuated by the ramp filter. A frequency filter is applied to 
the difference image where the low frequencies are removed 
for the further processing. This image is referred to as (𝑓𝐷′), 
and it is a high pass filtered version of the original. This image 
which contains both noise and differences between the full 
and short scan due to temporal inconsistency are then filtered 
using an edge preserving filter such as: Total Variation (TV) 
minimization, bilateral filtering, or non-local means [5-6]. The 
output after the filtering operation is that the image contains 
very little quantum noise and the remaining image content is 
attributable to the inconsistency between fFS and fSS, therefore 
this image volume will be referred to as fI . Finally, to isolate 
just the noise difference between fFS and fSS the inconsistency 
image fI is subtracted from the high pass filtered difference 
image (𝑓𝐷′). The resulting noise difference image is referred to 
as fND. After the noise difference has been isolated from the 
temporal inconsistencies this noise difference may be 
subtracted from the short scan image such that the final 
image, (fFILT) will preserve the temporal resolution of the short 
scan image but have noise properties very similar to the full 
scan image.  

B) Edge Preserving Filters 

Many potential methods exist to perform the edge preserving 

image filtration step. In implementing this method we 

compared the bilateral filter [5] and non-local means filter [6] 

 
and for each filter tested both 2D and 3D versions. The bilateral 

filter was selected for its speed and straightforward  manner of 

parameterization. In the results shown here a fast 

approximation of the bilateral filter was used where a single 

convolution is performed in a higher dimensional space [7]. 

When comparing the 2D and 3D bilateral filter only marginal 

gain was achieved in the noise reduction with the 3D filter and 

therefore the 2D bilateral filter was used for the results shown 

here. In the standard bilateral filter there is a distance and a 

range component to the filter and they are both filtered with 

Gaussian kernels parameterized by σd. and σr. In order to adapt 

the filtration to the noise content of each image volume the 

value of σr was calculated for each image volume. In this  study 

 
Figure 2 A schematic figure matching the same flow as 

Figure 1 where sample images at each point in the image 

chain demonstrate the algorithm. The filtering operation is 

applied in a more sparse domain than the original image 

space. The coronary vessel which is split in the fullscan 

reconstruction is preserved in the filtered output and the 

noise is suppressed compared with the shortscan 

reconstruction. 
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axial image volumes were used and the noise was estimated 

based on the central slice of the image volume. A noise mask 

was calculated based on the soft tissue and fat pixels by first 

performing a hard threshold operation selecting pixels in the 

range [-126 44] HU. The noise mask was applied to the 

difference image 𝑓𝐷′ and standard deviation within the mask 
was calculated to achieve a patient specific noise level (σPS).  
The selection of the range filter parameter was then 
performed relative to σPS, i.e. 𝜎𝑟  𝛼 ∙ 𝜎𝑝𝑠  . Given the 

differences in the expected level of motion the parameter α was 

selected separately for cardiac cases and non-cardiac cases. 

Image reviews were conducted with application  specialists in 

order to determine the parameter level such that no edge 

degradation was perceived. In the cardiac specific   case image 

reviews with application specialists yielded αcardiac =1.5 and in 

the non-cardiac case αnon-cardiac =2.0. These parameters were 

used for all of the results shown here as well as: DFOV 250mm, 

matrix size 512x512, σS =16 pixels, and the first high pass filter 

is implemented in Fourier space with a Gaussian parameterized 

by σ =64. 

C) Evaluation 

Clinical data and anthropomorphic phantom data was 
evaluated from the Revolution-CT system. Noise measurements 
were made from manually placing 2D regions of interest (ROIs) 
on uniform soft tissue regions in axial, sagittal and coronal 
slices. The results reported below represent the average of these 
measurements. The noise reduction is calculated as, 

𝑁𝐼  
𝜎𝑆𝑆  𝜎𝑚𝑒𝑎𝑠

𝜎𝑆𝑆

 

 
 

Figure 3: A representative cardiac case where the images 

from top to bottom are: short scan reconstruction, full scan 

reconstruction, and filtered output. The red arrows point to 

vessels and boundaries which are blurred in the fullscan but 

crisp in the other two images. The green ROIs are reported 

below the figure and report the std of the noise. 
 

 

Figure 4: A representative non-cardiac case where the 

images from top to bottom are: short scan reconstruction, 

full scan reconstruction, and filtered output. The red arrow 

point to an artifact introduced by motion in the fullscan 

image which is not present in the other two images. The 

green ROIs are reported below the figure and report the std 

of the noise. 
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where σmeas will be either σFS or σFILT. Additionally, the ratio 
of the noise reduction achieved with the Filtered results will be 
compared with the noise reduction of a Full Scan as this is the 
upper limit on the noise reduction expected.  

RESULTS 

Representative data is presented comparing the standard 
short scan reconstruction, a full scan reconstruction and the 
output of the temporal difference filtration [Figures 3-4]. These 
figures demonstrate the ability of the method to reduce image 
noise without introducing motion related artifacts, that would be 
more likely when using a full scan image reconstruction. As 
noted above the parameterization of the method was chosen 
separately for cardiac and non-cardiac data. The parameters 
where chosen such that in both cases there was no perceivable 
degradation in resolution and boundary delineation. The 
algorithm was applied to 5 cardiac and 7 non-cardiac datasets 
and the results of the noise reduction are given in Table 1 and 
Table 2 respectively. The tables present the percentage of noise 
reduction in comparison with that enabled by full scan image 
reconstruction. In the cardiac parameterization the filtration was 
able to achieve about 2/3 the noise reduction of the full scan and 
in the non-cardiac case the filtration was able to achieve over 
90% of the full scan result. 

 

 

 

 

CONCLUSIONS 

A method has been presented for explicitly filtering the 
temporal differences in between images which use different 
amounts of projection data. One specific instance of this method 
was tested in which axial data is the input and one reconstruction 
is from a fullscan while another reconstruction is from a 
shortscan. In this case the initial measurements estimate that the 
noise can be reduced by ~18% in cardiac images and ~26% in 
non-cardiac images without noticeable difference in spatial 
resolution. The larger improvements in non-cardiac imaging 
was attributable to less severe motion during the scanning. The 
method presented can work in conjunction with motion 
compensation algorithms. The method as presented does not 
modify the images where significant motion is occurring and 
thus it is not recommended to use very different inputs for the 
fullscan and shortscan. 
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Cardiac Clinical 

Cases 

(NI Filt/  NI 

Full)*100  

Clinical case 1 (no 

SSF) 

76.5 

Clinical case 2 (SSF) 75.6 

Clinical case 3 (no 

SSF) 

62.3 

Clinical case 4 (no 

SSF) 

66.5 

Clinical case 5 (SSF) 57 

Mean 67.6 
 

Table 1: Summary of the noise reduction measurements 

for five clinical cardiac cases. Overall, the noise 

improvement achieved ~2/3 the results of the fullscan. The 

fullscan provided a mean noise reduction of 26%, thus the 

filtering reduced noise by ~18% on average.   

Non-Cardiac Cases (NI Filt/            NI 

Full)*100  

Pediatric Motion 

Phantom 1 

94.7 

Pediatric Motion 

Phantom 2 

94.1 

Pediatric Motion 

Phantom 3 

96 

Pediatric Motion 

Phantom 4 

93.9 

Clinical Abdomen 1 99.0 

Clinical Abdomen 2 83.8 

Clinical Abdomen 3 95.7 

Mean 93.9 
 

Table 2: Summary of the noise reduction measurements for 

seven non-cardiac cases. Overall, the noise improvement 

achieved ~94% the results of the fullscan. The fullscan 

provided a mean noise reduction of 28%, thus the filtering 

reduced noise by ~26% on average.   
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Projective Invariants for Geometric Calibration
in Flat-Panel Computed Tomography

André Aichert, Bastian Bier, Leonhard Rist and Andreas K. Maier

Abstract—We present a new phantom design for geometric
calibration of flat-panel detector CT systems. This work does
not address a specific phantom but rather a toolbox for building
very different phantoms for special trajectories and a general
software to detect them and determine the geometric parameters
of the scanner. Flexible robot trajectories and almost arbitrary
distribution of metal beads in space are supported. A calibration
algorithm is devised, which exploits a projectively invariant
descriptor of four collinear points to solve the correspondence
problem and determine the projection matrix for each projection.
A proof-of-concept numerical study is presented with a randomly
generated example phantom. We present a comparison to the
frequently used PDS2 phantom.

I. INTRODUCTION

Robotic C-arms with a flat-panel detector are becoming
increasingly flexible and support circle-line, saddle, rectangu-
lar and other trajectories. Using non-circular trajectories may
be beneficial in some applications for more complete data,
less redundancy or simply working with hardware and space
constraints. However, the geometric calibration of a flat-panel
CT system based on robot odometry alone is difficult, since
small variations in joint angles have a large effect in terms of
detector pixels. Combined approaches are feasible [8]. Image-
based approaches are therefore preferable for reproducible tra-
jectories and it remains common practice to calibrate scanner
geometry using an X-ray compatible phantom prior to data ac-
quisition. These calibration phantoms are typically comprised
of radiopaque spherical markers, which are manufactured at
high accuracy, although other forms exist [3]. In addition, not
all phantoms work for general projections due to their shape
[7]. See Mennessier et al. for some design considerations [6].

Most calibration algorithms determine only few parameters
of the (perfectly elliptical, helical etc.) trajectory, instead of
the projection for individual projections, e.g. [1], [9]. Other
approaches, including this work, understand the trajectory
more generally as a set of independent projections, in no
particular order [7], [6], [3], which makes them generally
applicable. In this context, calibration with a flat-panel detector
is a standard computer vision problem, merely with X-ray
images instead of visible light photography. It is well-known,
that the determination of an 11 DOF projection matrix requires
six images of known 3D points, no more than four of which
may be coplanar. If we assume a decently manufactured X-ray
detector has square pixels, only 9 DOF remain [2]. The reason
why established methods for pose estimation, factorization and

All authors are with the Pattern Recognition Lab, Friedrich-Alexander
Universität Erlangen-Nürnberg, Germany.

Figure 1. Example 1 (left): The corss-ratio as a projectively invariant property
cr (a,b; c,d) = cr (a′,b′; c′,d′). Example 2 (right): Projective scales.
Three collinear points p0, p1 and the horizon p∞ define a projective scale
which allows us to take distance measurements directly in a photograph. Here,
cr ( p∞, p0; p1 x) = 7 is the distance of x to p0 in units of the distance
between p0 and p1.

auto-calibration are not directly applicable, is that they all rely
on descriptors for matching corresponding points. Descriptors
are usually based on texture, color or local gradients, none of
which are salient for X-ray projections of a bead-phantom.

The contribution of this paper is a flexible and general
phantom design comprised of metal beads for the determina-
tion of geometric parameters of an X-ray source and detector
from its projections images.We suggest a descriptor based on
four collinear metal beads, among them exactly one larger
bead, in the following referred to as “pins”. A phantom may
be comprised of five to about thirty of such pins, arbitrarily
arranged in space. Their detection is robust, since it is unam-
biguous and independent. We are able to solve the matching
problem with as little as three correctly detected pins. This
paper presents the underlying theory and a proof-of-concept
based on numerical simulation, as well as comparison to the
established PDS2 phantom [7]. We show that our phantom
works equally well when projected from arbitrary angles and
therefore supports not just circular, but also unusual (arbitrary)
trajectories. Manufacturing accuracy does not limit calibration
accuracy. We suggest cheap manufacturing using 3D-printing,
since our solution of the matching problem allows standard
Computer Vision algorithms to replace accurate manufacturing
of phantom hardware with an accurate measurement process
of both structure and motion.

II. ESTIMATION OF PROJECTIVE TRANSFORMATIONS

A. Objective

In the following, we outline the established gold-standard
algorithm in computer vision for the estimation of the projec-
tion matrix from detected 2D points and a known 3D geometry.
We understand geometric calibration in the sense that a single
3×4 projection matrix P must be estimated for each projection
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image, using a pre-defined 3D phantom. The phantom consists
of metal beads, which are easy to detect in 2D projection
images (see Section IV-A). The problem is then to find the
linear transformation between two unordered sets of points.
The algorithms for both geometric calibration (i.e. estimation
of a projection matrix) and registration (i.e. estimation of a
linear 2D or 3D transformation) or fiducial-based rigid body
tracking (i.e. rigid 3D pose) from points, are very similar
and can be addressed by the algorithms in this work. For a
concise mathematical notation, we will restrict ourselves to the
calibration problem and present an overview of the process in
this section.

Given detected 2D image points xi ∈ P2 in the projective
plane (image) and known 3D points yj ∈ P3 in projective
three-space (world), we seek to estimate a projection matrix
P, which minimizes the reprojection error

argmin
P

1

|M|
∑

(i,j)∈M

d (xi, P · yj) , (1)

whereM⊂ N2
0 is a set of index matches between the detected

2D points and the known 3D points and d(·, ·) is the euclidian
distance.

Given a set of at least 6 point matches one may obtain an
algebraic estimate of P using the Direct Linear Transformation
(DLT) [2, Ch. 7]. In order to be robust against outliers however,
RANdom SAmpling Consensus (RANSAC) applies DLT to
six randomly selected matches many times and determines the
quality of the current estimate. A good measure of quality is
the proportion of detected 2D points, for which a projected
3D point is close-by. The algorithm terminates when that
proportion reaches a certain upper threshold, or, after a fixed
number of iterations. Once RANSAC has produced a stable
algebraic estimate of P, bundle adjustment [2, Ch. 18] can
be used to refine the solution by minimizing the non-linear
geometric error according to Eq. 1.

B. Matching and Invariant Descriptors

The performance of RANSAC strongly depends on the
frequency of outliers in the data, i.e. the chance that a random
candidate match is incorrect. Unfortunately, there exist N !

(N−6)!
possibilities for a random point match with N points, so a
better heuristic for establishing candidate matches than random
guessing is mandatory. The common approach is to find a local
descriptor of the points, typically based either on neighboring
image data or local structure of the data. A good descriptor
is (1) invariant to the observed transformations, so it will
be possible to identify it across two images (2) local, so
that occlusion or overlap in one part of the object does not
affect the matching in other regions (3) salient, so that no two
different points shall have a similar descriptor.

We can specifically design a calibration phantom, so prior
knowledge reduces the number of possible point matches. We
demand that any metal bead in the phantom is collinear with
three other beads and that exactly one of these beads has
a significantly larger radius. This enables us to determine a
sequence of the points. We refer to a a set of four beads in this
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Figure 2. Example pin configurations. The left pins have a positive descriptor
(green background) while the right pins have negative descriptor (red backgr.)
due to the position of the big bead. Note that the 11 rows at the bottom show
pin configurations with identical descriptor to one of the top ten rows.

configuration as a “pin”. Given four collinear points, the cross-
ratio can be used as an invariant descriptor. By combining prior
knowledge and a descriptor, we will show that the matching
problem is effectively solved for a wide range of possible bead
configurations in space. The main novelty of the paper lies in
an elegant solution to the matching problem.

III. A PROJECTIVE INVARIANT FOR MATCHING POINTS

A. The Cross-Ratio

Many familiar properties of an object change under pro-
jective transformation, notably, length, area, angles and ratio
of lengths are not generally preserved under X-ray projection.
However, some invariant properties prevail, notably incidence
relations, such as two lines meet in a point and the cross-
ratio. The cross-ratio bears its name since it is also the
ratio of ratios of the distances between four points on a
line. Find an illustrative example of its application to take
distance measurements directly in photographs in Figure 1.
We are interested in this quantity, because it remains constant
under projective transformation, including translation, rotation,
scaling and especially projective distortion. Using coordinates
a, . . . , d on the line, the cross-ratio is defined

λ = cr (a, b; c, d) def
=

(a− c) · (b− d)
(a− d) · (b− c)

∈ R. (2)

B. Practical Implementation in Arbitrary Dimension

In order to work with measured 2D (or, analogously
3D) points, we take the practical approach of projecting a
set of approximately collinear points in arbitrary dimension
b, c, d, a ∈ Rn to the real line R with the scalar product
and use Equation 2 to compute the cross-ratio. W.l.o.g. let the
euclidean points c, d lie between a and b. The scalar product
with the correctly scaled vector defines a coordinate frame

i =
a− b

‖a− b‖2
, (3)

between b = 0 and a = 1 on the line with

c = i> (c− b) < d = i> (d− b) ∈ ] 0, 1 [ . (4)
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Figure 3. Left: Example of a randomly generated phantom containing
several randomly distributed pens (sets of four collinear beads each). Lines
with different cross-ratios are color-encoded by their index. Right: Imperfect
detection of the same cross-ratios in a simulated projection. In this case there
were 30 correct and 8 incorrect initial point matches in M?. After RANSAC,
all 96 detected beads were correctly matched, while 6 beads were truncated
at the top and 6 were not detected due to an overlap.

For points not exactly the measured cross-ratio is

c̃r (a, b, c, d) def
= cr (a, b, c, d) =

d− cd
c− cd

> 0. (5)

Note that i>· is itself a linear projection, to which the cross-
ratio is invariant, so this is consistent with Equation 2 provided
that the points are exactly collinear. We observe a hyperbolic
growth from λ = 0 at d = 0 towards infinity at d = 1.

C. Phantom Design

We suggest a phantom design based on several sets of four
collinear metal beads. We allow two different radii of beads
rl > rs. The difference between the radii should be sufficient
to make classification into large and small beads easy, even
under projective distortion (size is not a projective invariant).
Each collinear four-set shall contain exactly one large bead,
because the cross-ratio is symmetric with respect to the order
of points cr (a, b; c, d) = cr (d, c; b, a). We define that the
large bead shall be named either b or c, thus resolving the
ambiguity. In applications where differently sized beads are
not an option, p2 invariants [5] provide an alternative.

IV. CALIBRATION ALGORITHM

A. Bead Detection and Approximate Collinearity

We employ the fast radial symmetry transform (FRST)
[4] for bead detection, parametrized by two sets of radii in
image pixels which correspond to the sizes of projected large
and small beads. In experiments we found that running the
algorithm twice sometimes produces spurious detections of
small beads. We therefore remove detected small beads, when
their center is less than one radius away from the center of
a detected large bead. Selection of parameters for the FRST
is done manually within this work. Next, we extract sets
of collinear points. We loop over all four-sets of detected
points which contain a large bead and test for approximate
collinearity with a simple distance-threshold, called candidate
pins. We suggest two other heuristic priors for better stability.
First, we ignore all large beads which form part of more than
three candidate pins. If two coplanar 3D pins project to the

same 2D line, this produces 2 ·binomial(3, 6) = 40 candidates
of which only two are correct detections, so it is safer to just
ignore all of them. Second, we assume that beads are spread
out along the pin. If the length of a pin is larger than 20 times
the shortest distance between any two of its beads, it is an
unlikely candidate and we also ignore it.

B. Descriptor and Initial Matching

Since we require b < c < d < a, we always obtain cross-
ratios cr (a, b, c, d) > 0. This will be identical whether b
or c is the large bead in the configuration. To differentiate
between those two cases, we use λ as a descriptor if b is a
large bead, and −λ otherwise. The initial matching is defined
by assignment of the best match of all detected sets of four
collinear points, based on the descriptor. The initial matching
is given by M? ⊂ N2

0, which contains indices of two points
which are candidate matches. However, M? may still contain
a relatively large number of outliers. An example for this case
is visualized in Figure 3, right.

C. Robust Estimation of Projection Geometry

A algebraic estimate of the projection matrix P is unreliable
in the presence of outliers. We employ RANSAC to find,
with high probability, a set m ⊂ M? with |m| = 6, whose
estimated projection matrix Pm explains most detected points
given the known 3D bead locations. By assignment of these
beads to the closest projection of the known 3D beads, we can
establish an improved and relatively complete set M ⊂ N2

0,
which likely contains many more point matches than M? but
no outliers. The final step is a re-estimation of P using all
points contained in M. This work is restricted to a straight-
forward algebraic estimation using DLT. A slightly better
solution may be found using non-linear optimization of the
geometric error and bundle-adjustment.

V. VALIDATION AND EXPERIMENTS

A. Validation with Source Positions on a Sphere

For validation we created a digital phantom based on
an approximately equal distribution of points on a sphere
surface using the Fibonacci series and the golden angle. It
is randomized by misaligning collinear points from the ray
though to the center of the sphere with m = 27 lines
and n = 108 beads at a size of 3.2 mm for large beads
and 1.6 mm for small beads (same bead sizes and number
of points as the PDS2 phantom). An instance of such a
phantom is shown in Figure 3. We present 3456 noise-free
projections of 1240 px×960 px of a phantom . We presents a
validation with with a spacing of 0.308 mm

px from all directions
(sampled by equal longitudinal and latitudinal angles) with a
source-to-detector-distance of 325 mm and a source-isocenter-
distance of 200 mm, where the source positions are distributed
on a sphere instead of a circle. We simulate the phantom
instance from Figure 3, to compute projection matrix P̃ with
the proposed algorithm (without non-linear refinement) and
compare to the ground truth projection P. The target projection
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Figure 4. Distribution of errors and number of points used in 3456
calibrations from Figure 5, top. There were no outliers.

error (TPE) is evaluated on 500 random points within the field
of view of ∼ 20 cm radius according to

TPE =
∑
i

d
(
P̃ · yi, P · yi

)
. (6)

The results are themselves projected to a sphere for visual-
ization, see Figure 5. A distribution of errors, residuals and
number of points can be found in Figure 4. For all 3456
projections more than 54 points were correctly matched, with
an average of 100.1 out of 108 points detected. A mean error
of 0.73 px was achieved at a mean residual of just 0.177 px.
The mean error of the estimated source position was 0.43 mm.

We repeated the experiment for projections of the PDS2
phantom. The PDS2 phantom is designed for circular trajec-
tories so its detection for steep angles is more difficult and
a comparison is fair only close to the equator. There were
1243 usable projections with more than 54 points correctly
matched, compare Figures 5, bottom. The results for those
views are comparable to the suggested phantom with a mean
target projection error of 0.79 px. The residual of 0.21 px. The
mean error of the estimated source position was 0.63 mm.

VI. DISCUSSION AND CONCLUSION

We present a new phantom design for geometric calibration
of FD-CT systems. Users may quickly build phantoms of
arbitrary size and shape, all of which can be analyzed with the
same software. The phantoms are comprised of short pens that
contain four metal beads each. The detection and matching is
based on the cross-ratio, which allows robust detection, even
when parts of the phantom are truncated. We present a proof of
concept with a randomized numerical phantom. The suggested
phantoms can work equally well if viewed from all spacial
directions and support a more equal distribution of beads in
space. Manufacturing accuracy does not limit the calibration
accuracy, since the descriptor is the missing link to apply
standard Computer Vision algorithms such as factorization and
bundle-adjustment to recover both geometry of the phantom
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Figure 5. Evaluation of matching algorithm. Color encodes the number of
points correctly detected and used for estimation of the projection matrix.
The displayed range is from 54 (deep blue) to 108 (bright green). Top row:
Results for an evaluation with projection direction vectors on a sphere. See
also Figure 4, right. Bottom row: Results for the same evaluation using a
naive algorithm for the PDS2 phantom.

and parameters of the projection. The long-term goal of the
project is to 3D print low-cost elements (pens), which the
user can freely distribute in space. Application with unusual
trajectories or varying size of the scanned objects are ideal for
an application in material testing, for instance. The algorithm
may also be useful to research as a tool for marker based
tracking and fiducial-based registration.
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Abstract—Recently developed CBCT systems offer the 

potential for compact, portable imaging of the brain with image 

quality suitable for prompt evaluation of intracranial 

hemorrhage – a potentially major advantage to imaging at the 

point of care in the critical care setting. However, slow image 

acquisition speed often results in artifacts due to motion, since 

such patients are frequently unable to follow commands and 

remain still, and effective immobilization is limited in the 

presence of life-support systems. Moreover, the motion patterns 

encountered in critical care brain imaging are uniquely 

challenging because movements of the head tend to be rapid, 

aperiodic, and large amplitude (~1 - 3 cm). Previously 

developed autofocus motion compensation methods fail to 

recover from such large motion amplitude, with structured 

similarity index (SSIM, computed relative to a static object) 

reduced from ~0.95 for 10 mm motion to <0.75 for 30 mm 

motion.   

We propose a new framework for motion compensation that 

expands the autofocus method in two important aspects. First 

is a pre-conditioning stage in which a rough estimate of rapid, 

high amplitude components of motion is obtained using 3D-2D 

registration between the motion-contaminated CBCT and the 

projection data. Simulation studies show that this approach 

yields ~25% improvement in SSIM for large, impulse-like 

motions of the head compared to conventional autofocus.  

Second is the ability to estimate motion separately in multiple 

regions of the image – e.g., in one field-of-view (FOV) 

corresponding to the central region of the image within the 

cranium and a second FOV corresponding to the head support. 

The method allows the two FOVs to move independently (with 

the FOV of the head holder assumed to be static in work 

described below), and a novel forward projection model was 

developed to enable high-quality model-based image 

reconstruction (MBIR) via penalized weighted least squares 

(PWLS). Compared to a conventional approach that applies the 

motion pattern of the head to the entire FOV (and thus 

erroneously assumes motion of the head holder), the proposed 

multi-motion PWLS method resulted in a 35% reduction of 

residual artifact magnitude (RMSD). Together, the motion 

compensation methods were shown to recover image quality at 

a level sufficient for low-contrast (~30-60 HU) visualization of 

fresh intracranial hemorrhage for realistic motion patterns. 
Index Terms—CBCT, motion compensation, model-based 

iterative reconstruction, autofocus, intracranial hemorrhage, 

traumatic brain injury. 

I. INTRODUCTION 

ecent developments in dedicated cone-beam CT 

(CBCT) demonstrate the feasibility for soft-tissue 

imaging of the brain with compact CBCT systems through 

careful system design [1], advanced artifact correction [2], 

and model-based iterative image reconstruction [3]. The 

resulting portable systems for point of care imaging could 

enable prompt evaluation of intracranial hemorrhage in 

traumatic brain injury or stroke. 

One of the remaining challenges in brain CBCT is the 

relatively long image acquisition time (typically 15 – 60 s) 

that results in susceptibility to artifacts due to involuntary 

patient motion. Head motion often presents relatively 

sudden, large amplitude (> 10 mm) trajectories [4] and 

results in streak artifacts, blurring, and double contours. 

Motion compensation methods for such motion patterns have 

been proposed using fiducial markers or external trackers for 

motion estimation [4, 5]. However, the use of markers or 

trackers leads to undesirable disruption of the workflow in 

point-of-care brain imaging. 

 An image-based autofocus method has shown successful 

rigid motion estimation and compensation in extremities 

CBCT [6]. In such approach, a motion trajectory is estimated 

by iteratively updating a set of candidate motions that are 

used to generate a population of reconstructed volumes. The 

updates are guided by minimization of a cost function with 

an image sharpness term computed on the reconstructed 

volumes and a regularization term that penalizes motion 

roughness. The method was successfully applied to brain 

CBCT for moderate motion amplitudes of ~10 mm [7]. 

However, the movements of the head encountered in critical 

care imaging often involve even larger amplitude and rapid 

displacement, which challenges the autofocus optimization 

and requires improved preconditioning to converge upon an 

accurate motion estimate. 

An additional challenge in clinical application is the 

presence of elements in the FOV that do not follow the same 

motion trajectory as the head (e.g. the head holder or 

“cradle,” which remains relatively static during acquisition). 

This results in artifacts arising from application of the motion 

trajectory derived from moving elements (i.e., the head) to 

static elements (i.e., the head holder), even after perfect 

motion estimation. The artifacts are especially conspicuous 

when applying model-based iterative image reconstruction 

approaches, which involve a data-fidelity term that requires 

an accurate forward projection of the entire FOV. Such 

algorithms (e.g. PWLS) are important for high-quality soft-

tissue imaging, motivating development of modified 

reconstruction methods to handle a multi-motion FOV.  

We tackle these challenges to motion compensation 

through two important generalizations of our previously 

developed autofocus framework [6]. A multi-stage approach 

is  incorporated  that  includes  a  pre-conditioning  stage  in  
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which an initial estimation of the motion trajectory is 

obtained with 3D-2D registration using the motion-

contaminated CBCT and projection data. The approach is 

similar to that in [8], but in that case the authors used a 

motion-free prior CBCT scan, which is usually not available 

in the clinical scenario considered here. However, the 

motion-contaminated CBCT provides sufficient detail to 

estimate large amplitude, rapid components of head motion 

using 3D-2D registration. This initial estimate is then refined 

using the image-based autofocus algorithm. 

 Moreover, the framework includes a modified PWLS 

reconstruction method accommodating multiple FOVs in 

motion estimation – in this case, splitting the volume in two 

regions with different motion trajectory. The methods are 

tested in simulations over a broad range of realistic, known 

motion trajectories and translated to first clinical studies 

using a prototype CBCT system developed for imaging in the 

neuro critical care environment. 

II. METHODS 

This section presents the proposed motion compensation 

framework for brain CBCT, involving (i) improved pre-

conditioning of the motion estimation algorithm (subsection 

A), and (ii) an iterative reconstruction approach that includes 

motion compensation for multiple, independently moving 

objects in the field of view (“multi-motion,” subsection B). 

A. Motion Estimation Framework 

A flowchart of the proposed motion estimation algorithm 

is shown in Fig 1. Analogous to our previous approach [6], 

the head motion trajectory (T) consisted of a sequence of 

rigid (6 degrees of freedom) displacements (one for each 

projection angle ) modelled using cubic b-splines (B): 

𝑇(𝜃, 𝑗) = ∑ 𝑐𝑖𝑗𝐵(𝜃 − 𝜃𝑖)

𝑁

𝑖=0

 (1) 

where j is the degree of freedom (j = 1, …, 6), N is the number 

of spline knots, i is the projection angle corresponding to 

spline knot i, and cij are the b-spline coefficients to be 

estimated. 

The preconditioning stage (top box in Fig. 1) obtained the 

initial motion estimate T0 by minimizing the following 3D-

2D registration cost function: 

𝑇0̂ = arg min𝑇 −GC(𝑙, 𝐀(𝑇)𝜇) + 𝛽𝑚𝑅𝑚(𝑇) (2) 

where l are the log-corrected projections, A(T) is the forward 

projection operator for motion trajectory T, GC is the 

similarity metric (in this work gradient correlation, as 

defined below), and Rm(T) is a regularization term that 

penalizes abrupt motion, weighted by the scalar m. 

The gradient correlation (GC) similarity term was given 

by: 

GC(𝑓, 𝑚) =  
1

2
{NCC(∇𝑢𝑓, ∇𝑢𝑚)

+ NCC(∇𝑣𝑓, ∇𝑣𝑚)} 

(3) 

where ∇𝑢 and ∇𝑣 are gradient operators along the u 

and v directions of the projection domain, and: 
 

NCC(𝑓, 𝑚) =
∑ (𝑓𝑖 − 𝑓)̅(𝑚𝑖 − �̅�)𝑖

√∑ (𝑓𝑖 − 𝑓)̅
2

𝑖 √∑ (𝑚𝑖 − �̅�)2
𝑖

 
(4) 

where f is the fixed image (projection data l), and m is the 

moving image (forward projection A(T)). 

Analogous to [6], the term Rm(T) penalizes the first order 

difference of the position of the moving patient volume in 

subsequent projections: 

𝑅𝑚(𝑇) = ∑ ∑‖𝐫𝑘,𝑞 − 𝐫𝑘,𝑞−1‖

𝑁𝜃

𝑞=2

8

𝑘=1

 (5) 

 
Figure 1. Workflow of the motion estimation and multi-motion reconstruction framework. The pre-conditioning stage estimates large amplitude, sudden 

motion components via 3D-2D registration. The second stage uses a (conventional) autofocus approach to fine-tune the initial motion trajectory by 

maximizing image sharpness (viz., variance of gradients). The resulting estimate feeds a multi-motion iterative reconstruction method that applies a 
separate motion trajectory for different regions of the image – e.g., the outer region (head holder / cradle) and the inner region (head). 
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where rk,q are the vector coordinates of the k-th corner of the 

volume after the application of motion T for projection q.  

The 3D-2D solution T0 is used as an initial guess for the 

autofocus motion compensation (bottom box in Fig. 1). 

Analogously to [6], the following cost function is used: 

�̂� = arg min𝑇 −𝑆(𝑇, 𝜇) + 𝛽𝑚𝑅𝑚(𝑇), with �̂�(0) = 𝑇0̂ (6) 

where S(T,) is a metric of image sharpness, in this case the 

variance of the spatial gradient [6] computed on volume  

after application of candidate  motion trajectory T. 

The cost functions for both stages (Eqs. 1 and 6) are not 

convex and exhibit local minima that challenge gradient-

based methods. The minimization was performed with the 

Covariance Matrix Adaptation Evolution Strategy (CMA-

ES) [9]. 

B. Motion Compensated Iterative Reconstruction 

Even when a perfect estimate of head motion is available, 

the presence of elements that remain static or follow different 

motion trajectories than the head introduces artifacts in the 

reconstructed volume if the reconstruction algorithm 

assumes that the entire FOV follows the same motion 

pattern. We propose a “multi-motion” Penalized Weighted 

Least Squares (PWLS) approach in which the volume is split 

into a number of regions (in this application, two regions) 

that follow different motion trajectories. 

Conventional PWLS uses the following cost function: 

�̂� = arg𝜇min ‖𝐀𝜇 − 𝑙‖𝐖
2 + 𝛽𝑅(𝜇) (7) 

where �̂� is the image estimate, A is the forward projector 

operator, l are the log-corrected projections, W is the matrix 

of weighting terms (set to the inverse of the variance of the 

projection data, which are approximated by the raw 

projection measurements y, assuming a Poisson 

distribution), and R is an image roughness penalty in the 

form of a Huber function. 

 
Figure 2. (A) Partition of the image volume into regions with different 

motion trajectory T1 (blue) and T2 (orange). The digital head phantom 

(following T2) presents a natural cranium and spherical intracranial 
hemorrhages (ICH). The head holder follows a different trajectory (T1) 

from that of the head, modeling the realistic scenario in which the head 

rocks or twitches within the cradle. (B) Motion trajectories corresponding 

to the two subvolumes in (A), T1 containing the head holder (assumed 

static) and T2, containing the moving head. 

 In our approach, A is decomposed into two forward 

projection operators, following a derivation similar to the 

one used for multi-resolution PWLS, as described in [10, 11]. 

Matrices 𝐀𝑇1
 and  𝐀𝑇2

 represent the forward projection 

operators for regions affected by motion T1 and T2, 

respectively. The forward model can therefore be written as: 

�̅� = 𝐃(𝑔) exp(−�̃�𝜇)

= 𝐃(𝑔)exp ([𝐀𝑇1
 𝐀𝑇2

] [
𝜇𝑇1

𝜇𝑇2
]) 

(8) 

 where D(g) is a diagonal matrix containing the detector gain, 

and 𝜇𝑇1
 and  𝜇𝑇2

 are the subvolumes following motion 

trajectories T1 and T2, respectively, as illustrated in Fig. 2. In 

the current work, the transition between regions was 

assumed discontinuous – a reasonable choice since the 

intermediate region is “air” (a pillow). Ongoing work 

investigates smooth transition between regions. 

PWLS optimization was performed using the separable 

quadratic surrogate method with ordered subsets (OS-SQS) 

[12] with 20 subsets and 50 iterations. 

III. EXPERIMENTAL EVALUATION 

Performance of motion estimation was evaluated in 

simulations using a digital head phantom (see Fig. 2) 

including a heterogeneous brain background with spherical 

inserts simulating ICH with diameter ranging from 4 to 12 

mm, and 60 HU contrast. The brain background is combined 

with a skull with variable density extracted from an MDCT 

scan of a real skull. 

Motion was simulated with amplitudes ranging from A= 5 

mm to A = 30 mm, following the trajectory depicted in Fig. 

2B. The trajectory represents a realistic motion pattern that 

was estimated from clinical CBCT data using the prior-

image-based method in [8] (the clinical study protocol 

involves CBCT and MDCT imaging of the same patient [7], 

the MDCT was used as a prior). Projection data were 

obtained with and without presence of a (static) head holder, 

which was modelled from a segmented MDCT scan of an 

actual head holder used in clinical routine. 

Motion estimation was performed using the two-stage 

approach, with 1000 iterations of the 3D-2D registration in 

the pre-conditioning stage and 10,000 iterations of the 

“multi-motion” autofocus method, with a population of 10 

volumes in CMA-ES optimization, m = 0.05, and N = 60. 

Performance of motion compensation was quantified in 

terms of structural similarity index (SSIM) between single-

motion PWLS reconstructions obtained using estimated and 

known motion trajectories. 

Multi-motion PWLS was applied with the ROIs 𝜇𝑇1
 and  

𝜇𝑇2
 delineated manually in a motion-contaminated 

reconstruction. Residual artifacts were visually assessed and 

quantified in terms of RMSD from reconstructions of 

simulated projections that involved the same motion 

trajectory, but did not include the head holder in the FOV. 

IV. RESULTS 

The performance of the proposed motion compensation 

method is evaluated in Fig. 3 and Fig. 4. Uncompensated 

datasets (Fig. 3A, 3F) show severe motion-induced artifacts. 

For moderate motion (10 mm), motion estimation via 

conventional autofocus (without preconditioning) was 

sufficient to reduce the artifacts and achieve image quality 
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comparable to reconstruction with exactly known motion 

(Fig. 4B, SSIM = 0.96). For a large motion of 30 mm, 

however, conventional autofocus did not yield an accurate 

motion estimate (Fig. 3G), yielding residual artifacts (SSIM 

= 0.75). The estimation using only 3D-2D registration was 

also insufficient to completely suppress motion artifacts (Fig. 

3H), though it captured the major large-amplitude 

components of the motion trajectory (Fig. 4A). When this 

initialization was applied in the autofocus stage, improved 

reduction of motion artifacts (Fig. 3I) and a motion trajectory 

closer to true motion (Fig. 4A) were achieved. The resulting 

SSIM = 0.94 indicates good agreement with know-motion 

reconstruction. Final SSIM after motion compensation (Fig. 

4B) shows significantly improved image quality for the pre-

conditioned approach for amplitudes larger than 10 mm 

(minimum SSIM of 0.91). 

Computational burden for autofocus motion compensation 

in the non-optimized version used here was previously 

explored in [6, 7]. In cases involving moderate motion 

amplitudes, solvable with only autofocus (e.g. 10 mm 

motion), the better initialization provided by the 3D-2D 

registration stage resulted in ~30% reduction in the number 

of iterations required for convergence (2900 iterations with 

autofocus only vs 2000 iterations for 3D-2D initialized 

autofocus, for 10 mm motion), yielding equivalent reduction 

in running time for the autofocus stage. However, the 

computational burden added by the 3D-2D registration stage 

resulted in similar running time (~3000 s) for both cases. 

Residual artifacts were evident even when using the known 

motion trajectory. The artifacts were introduced by the 

assumption that the static head holder followed the same 

motion as the head. The performance of the proposed multi-

motion PWLS method in reducing those artifacts is shown in 

Fig. 5. Even for moderate motion amplitude (10 mm), 

conventional PWLS resulted in distortion of the 

reconstructed head holder and streak artifacts at the back of 

the head (Fig. 5B), with RMSD = 3.2x10-4 mm-1.  

 

 

Figure 4. (A) Motion trajectories obtained with the autofocus motion 
estimation with no initialization (dark grey curve), with only the 3D2D 

initialization stage (light grey) and with the two-stage approach (black), 

compared to the true motion (blue). (B) SSIM between the current image 
estimate and that for the known trajectory plotted as a function of 

iteration number for the autofocus (AF) motion estimation with 

conventional initialization and with the two-stage approach (3D2D+AF). 
(C) SSIM for the resulting motion-compensated images show better 

performance for the two-stage approach, especially for large amplitude 

motions. 

 

 
Figure 3. Motion compensation in simulated data, for moderate motion amplitude of 10 mm (A, B, C, D, E), and large motion amplitude of 30 mm (F, 

G, H, I, J). 
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Those artifacts were mitigated when using the multi-

motion PWLS (Fig. 5C), with image quality comparable to 

the reconstruction with no head holder shown in Fig. 5A 

(RMSD = 2.56x10-4 mm-1). The benefits of multi-motion 

PWLS increased with motion amplitude (Fig. 5D-F): using 

the conventional approach, the RMSD increased to 3.81 x10-

4 mm-1 for 30 mm motion (Fig. 5G). The multi-motion 

PWLS, on the other hand, yielded RMSD that was invariant 

with motion amplitude (RMSD = 2.52x10-4 mm-1 for 30 mm 

motion). 

VI. CONCLUSION 

The combination of 3D-2D registration-based 

preconditioning (using the motion-contaminated 

reconstruction), autofocus multi-motion estimation, and 

multi-motion PWLS reconstruction demonstrates the 

capability to perform purely image-based motion estimation 

(i.e., without external trackers) in the challenging scenario of 

high-quality CBCT of the brain. Ongoing application to 

clinical data of a prototype head CBCT scanner shows 

promising results for motion compensation in clinical 

environments. 
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Estimation of the Source-Detector Alignment
of Cone-Beam X-ray Systems using

Collimator Edge Tracking
Christoph Luckner, Thomas Mertelmeier, Andreas Maier, and Ludwig Ritschl

Abstract—Upcoming applications for clinically well-
established digital X-ray systems, like workflow automation,
high-quality free exposures with mobile detectors, free
tomosynthesis or weight-bearing full-body acquisitions with
dynamic wireless detectors require a precise and reproducible
method to determine the source-detector alignment. This
alignment is usually obtained once in a calibration step through
the imaging of a phantom with known marker geometry
or via online-calibration methods, which are currently still
subject to research. The former approach usually suffers
from a degrading image quality over time and the latter
complicates the clinical workflow due to the cumbersome and
prone-to-error positioning of the patient along the additional
hardware. The proposed three-step method, in contrast, only
uses the existing collimator of the X-ray system and its
projection and does not require any additional hardware.
We assume that the extrinsic projection parameters and the
orientation of the source are already known considerably
well by the system, while the intrinsic projection parameters
still have to be estimated individually for each scan. For
evaluation, we compared the result of the proposed method to
the parameters obtained through the imaging of a calibration
phantom. It could be shown that the proposed method is able
to achieve a high accuracy for the estimation of the intrinsic
projection parameters, i. e. focal length and principal point,
with a mean relative error lower than 0.5 %.

I. INTRODUCTION

In the clinical field, X-ray imaging and X-ray computed
tomography (CT) is widely used for visualizing the inside of
the human body. With upcoming applications for those clini-
cally well-established digital X-ray systems, like workflow
automation, high-quality free exposures with mobile detectors,
or free tomosynthesis acquisitions with dynamic wireless
detectors a precise and reproducible method to determine the
source-detector alignment is required. Moreover, novel X-ray
systems with independently movable source and detector
like the Multitom Rax (Siemens Healthcare) which can be
seen in Figure 1a might benefit from the presented method.
Usually, the source-detector alignment is determined once
in a calibration step through the imaging of a phantom with
known marker geometry [1], [2]. However, one drawback
of such a one-time calibration is that the behavior of the
system changes over time, which leads to a degrading image

Christoph Luckner and Andreas Maier are with the Pattern Recogni-
tion Lab, Friedrich-Alexander University Erlangen-Nürnberg, Germany
Email: christoph.luckner@fau.de
Christoph Luckner, Thomas Mertelmeier, and Ludwig Ritschl are with
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quality. There also exist several online calibration methods
which rely on either phantoms or fiducial markers [3], [4],
[5], other calibration objects [6] which have to be visible in
the acquired image or are purely image-based [7]. However,
the positioning of the patient along the additional hardware
is a cumbersome and prone-to-error process and complicates
the clinical workflow.

The proposed method, in contrast, uses only the already
existing collimator of the X-ray system and its projection to
estimate the source-detector alignment and does not require
any additional hardware.

II. MATERIALS AND METHODS

Any arbitrary 3-D point p3D in a world coordinate system
can be mapped onto the 2-D detector plane of an X-ray
imaging system using a projection matrix P

p2D = P · p3D = K [R t] · p3D, (1)

where R and t denote the extrinsic parameters of the imaging
system, i. e. rotation and translation form the world coordinate
system to the detector coordinate system, and K the intrinsic
parameters, i. e. focal length and the principal point, as
illustrated in Figure 1b.

We assume, that the position of the imaging system relative
to a point in the exam room is known. Hence, rotation and
translation are considered to be known, whereas the intrinsic
parameters still have to be estimated.

A. Algorithm

In the following a three-step algorithm to estimate the
source-detector alignment using only the collimator of the
imaging system will be presented.

1) Corner detection:
In the first step the corners of the collimator c2D

in the X-ray image I have to be detected. This can
either be done by corner detection algorithms like the
Harris corner detector [8] or by an intersection of the
collimator edges.
Due to the fact that not it might happen, that not all
corners of the collimator might be visible in the image,
we decided to use the second approach. Therefore,
we computed the Hough-transform H(I) of the input
image I to detect the outline of the collimator, indicated
as colored lines in Figure 2. Afterwards, the intersection
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(a) Twin-robotic X-ray system Multitom Rax (Siemens Healthcare)
with two independently movable ceiling-mounted robotic arms for
source and detector.

(b) Schematic illustration of acquisition geometry. The focal length
f is indicated as red arrow, the point where the principal ray hits
the detector perpendicularly is called principal point (u0, v0). The
collimator of the X-ray system is indicated as semi-transparent red
square.

Fig. 1. The used imaging system Multitom Rax (Siemens Healthcare) and a schematic illustration of the acquisition geometry.

of all lines with each other was computed, which results
in the four corners of the collimator c2D.

2) Initial estimate:
The detected corners c2D were then used as input to
a least square approximation in order to compute an
initial estimate for the focal length ḟ and the principal
point (u̇0, v̇0)

ḟ , u̇0, v̇0 = arg min
f,u0,v0

n∑
i=1

|P(f, u0, v0) ·Θ3D
i − c2D

i |22,

(2)
where Θ3D

i denotes the i-th corner of the collimator in
the world coordinate system.
This step was performed using a grid search approach,
which exhaustively considered all possible parameter
combinations.

3) Refinement step:
Since the corner detection itself might be prone to
errors, e. g. due to not clearly visible collimator edges,
we propose to use a refinement step which does not
rely on the detected corners but uses the gradient
information in the image. First, the gradient magnitude
image G of the input image I has to be computed

G(u, v) =
√
g2u + g2v , (3)

with

∇I =

[
gu
gv

]
=

[
∂I
∂u
∂I
∂v

]
. (4)

Then, based on the set of initial parameters (ḟ , u̇0, v̇0)
from the previous step, we project two adjacent
collimator points Θ3D

i onto the detector and evaluate
the line integral E between those two points utilizing

the fact that there are only vertical and horizontal edges

E(p2D
i , p2D

i+1) =

pi+1∫
pi

G(u, v) du dv (5)

and
p2D
i = P(f, u0, v0) ·Θ3D

i . (6)

Since the gradient magnitude has its maximum at the
exact location of the edge (see Figure 3), we aim to
maximize the sum over all line integrals, in order to
obtain a refined estimate (f̈ , ü0, v̈0) of the intrinsic
parameters

f̈ , ü0, v̈0 = arg max
f,u0,v0

n∑
i=1

E(p2D
i , p2D

i+1). (7)

B. Experiment: Proof of Concept

In order to evaluate the proposed method, we conducted the
following experiment. We acquired 3-D scans with the twin
robotic X-ray system Multitom Rax (Siemens Healthcare)
consisting of 152 projections along a circular trajectory.

Each scan was performed twice: first with calibration
phantom (PDS-2 phantom [1]) which was later used to
determine the ground truth and a second scan without
phantom. We used a Matlab implementation of the proposed
method to estimate the intrinsic parameters and evaluated the
relative error ε(p) for each intrinsic parameter p ∈ {f, u0, v0}
separately

ε(p) =
pGT − p̈

pGT
. (8)

For an additional visual inspection, we performed a forward
projection of the collimator edges with both the ground truth
projection matrix and the reassembled projection matrix with
the estimated intrinsic parameters and compared the results
to each other.
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Fig. 2. Hough transformed image H(I) with detected edges (colored lines)
and the computed corners (red crosses).

Fig. 3. Schematic drawing of the refinement step. The initial estimate u̇0

is moved towards the maximum of the gradient magnitude G, which yields
that ü0 finally ends up at the exact location of the edge.

III. RESULTS

Figure 4 shows the relative errors ε for each intrinsic
parameter. An overall high accuracy with a mean relative
error of ε̄(f) = 0.29 %, ε̄(u0) = 0.06 %, and ε̄(v0) = 0.43 %
could be achieved. The computation time for each projection
was about 4 seconds in a non-optimized CPU implementation.
Furthermore, an exemplary result after each step as described
in Section II-A can be seen in Figure 5.

Fig. 4. Plot of the relativ error for each intrinsic variable, ε(f) in red,
ε(u0) in blue, and ε(v0) in green

IV. CONCLUSION

The presented algorithm is capable of estimating the source-
detector alignment of cone-beam X-ray systems, utilizing
only already existing information of the X-ray system. The
proposed method might open up the possibility of further
workflow automation and image quality improvement in
well-established digital X-ray systems. In terms of online cal-
ibration, this method enables free tomosynthesis acquisitions
in case of an exactly known detector position and orientation.

Moreover, especially purely line-based trajectories where
source and detector move simultaneously in parallel planes [9]
can benefit from such a method since the orientation of the
source as well as the extrinsic parameters of the system
remain nearly constant during the entire scan. Additionally,
since the method is purely image-based we do not introduce
any complications in clinical workflow since no additional
hardware, such as calibration phantoms or markers are
required. As the initial estimation of the source-detector
alignment relies on the detected corners of the collimator,
a more sophisticated algorithm which is already used for
auto-cropping of X-ray images [10] might lead to further
improvements in the estimates.

As a topic for future research, instead of using the grid
search approach in the second stage of the algorithm, a
solution using, for instance, an SVD approach, could speed
up the algorithm.

DISCLAIMER

The presented method is commercially not available, its
availability cannot be guaranteed. The Siemens Healthineers
Multitom Rax is not available in all countries, its availability
cannot be guaranteed.
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Evaluation of Optimization-based Reduction of

Truncation Artifacts in C-arm CBCT
Dan Xia, Yu-Bing Chang, Joe Manak, Zheng Zhang, Buxin Chen, Emil Y. Sidky, and Xiaochuan Pan

Abstract—C-arm cone-beam computed tomography (CBCT)
has increasingly been used as an imaging tool for providing
3D anatomical information about the subjects in surgical and
interventional procedures. However, measured data are often
truncated due to the limited field-of-view (FOV) of the C-arm
CBCT, resulting in image artifacts that can obscure low-contrast
between soft tissue and tumor. Optimization-based reconstruction
with an additional data-derivative fidelity term can effectively
suppress the truncation artifacts. In this work, in an attempt to
evaluate the performance of the optimization-based reconstruc-
tion in truncation-artifact reduction, we propose two quantitative
metrics to characterize the recovery of the low-contrast objects
and the reduction of streak artifacts. Quantitative investigation
of the reconstruction performance demonstrates that the ap-
propriately designed optimization-based reconstruction method
can significantly reduce streak artifacts, leading to improved
visualization of low-contrast structures in the reconstruction
relative to clinical FDK reconstruction, in C-arm CBCT.

I. INTRODUCTION

C-arm cone-beam computed tomography (CBCT) is used

frequently as an tomographic imaging tool for providing 3D

anatomical information about the subjects in surgical and

interventional procedures. While it is of utility for revealing

high contrast anatomic structures, there exist increased needs

for localizing soft-tissue tumors in images of C-arm CBCT

procedure guidance and possible complication detection. In a

clinical C-arm CBCT system, the flat-panel detector forms a

limited field of view (FOV), thus may resulting in considerable

angularly-varying-data truncation when the scanned object

is larger than the FOV. Such problem becomes increasingly

serious as the surgical and interventional procedures often

involve devices and tubes that are placed outside the FOV

of C-arm CBCT.

Our previous work shows that optimization-based recon-

struction may be exploited for reducing image artifacts

caused by data truncation observed in the reconstructions

obtained with the current, standard algorithm [1], [2]. In the

optimization-based reconstruction method, the reconstruction

problem is formulated as a constrained optimization program

in which a ℓ2-norm of data-derivative fidelity is included

for effectively suppressing image artifacts caused by the data

truncation, and the generic Chambolle-Pock (CP) algorithm is

tailored to solve the optimization program [3], [4]. The results

of visual inspection suggest that the optimization-based pro-

gram with a data-derivative fidelity and the corresponding CP
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of Radiology, The University of Chicago, Chicago, IL 60637, USA. Y.-B.
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algorithm can yield images with significantly reduced artifacts.

In this work, in addition to investigate the optimization-based

reconstruction method for image-artifact reduction caused by

angularly-varying-data truncation, we design and use two

quantitative metrics of practical interest to evaluate the effec-

tiveness of the optimization-based reconstruction method in

terms of the recovery of low-contrast structures and the level

of streak-artifact reduction.

II. DATA ACQUISITION

In this work, we collected projection data by using a Canon

C-arm system in which the X-ray source has distances of

700 mm and 1100 mm to the rotation center and to the

detector. The flat-panel detector consists of a 1024x1024 array

of detector bins of size 0.29 x 0.29 mm2, which is rebinned

often to an 512 x 512 array with a bin size of 0.58 x 0.58

mm2, and forms an FOV of diameter 18.7 cm. Such an FOV

may be insufficient to cover the scanned subject, especially

with some interventional devices presented during the intra-

operative imaging process. With this system, C-arm CBCT

data were collected from a physical head phantom at 247

views over a short-scan angular range of ∼ 194◦. Therefore,

the data-array size for the phantom study is 512 x 512 x 247.

The standard calibration scheme of the clinical C-arm system

was performed on data prior to the image reconstruction.

III. OPTIMIZATION-BASED RECONSTRUCTION

The problem of image reconstruction is formulated as a

constrained optimization program [2], [5] below

f⋆ = argmin
f

D
W
(gm, Hf) s.t. ||f ||TV ≤ t1 and fj ≥ 0, (1)

where f and gm denote image vector of size N and measured

data of size M , respectively, H the system matrix of size

M × N , ||f ||TV the image total-variation (TV), t1 > 0 a

constraint parameter on the image TV, and fj entry j in image

vector f , and D
W
(gm, Hf) the data divergence. In an attempt

to reduce the truncation artifacts, we consider [1]

D
W
(gm, Hf) = ‖[cI + (1− c)Du](Hf − gm)‖

2

2
, (2)

where I denotes the identity matrix of size M×M , and matrix

Du of size M×M represents a two-point-difference operation

(i.e., an approximation of the derivative) carried out along the

horizontal axis of the detector, and c a parameter that weights

the contributions of (Hf − gm) and its derivative to the data

divergence. It has been shown [1], [2] that the appropriate

incorporation of data derivative Du can suppress effectively

truncation artifacts in reconstructed images. In the work, we
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tailor the Chambolle-Pock (CP) algorithm [4] to solve the

program because the CP algorithm is capable of solving the

non-smooth convex program in Eq. (1).

While the form of the optimization program is given by

Eq. (1), the complete specification of the program depends

also upon the selection of program parameters: H, c, and

t1. Clearly, program parameters can significantly impact the

program and thus its solution (i.e., the reconstruction.) We

will report the strategy for the selection of these program

parameters at the conference.

IV. ANALYSIS OF IMAGES RECONSTRUCTED

As a leading interest of the clinical application is in the

detection of low-contrast structures in reconstructed images,

we define a contrast-resolution metric below to characterize

the recovery of low-contrast anatomies:

CNR =
|fs − fb|√
σ2
s + σ2

b

, (3)

where fs and σs denote the mean and standard deviation within

a region of interest (ROI), and fb and σb the mean and standard

deviation within a selected background region.

In an attempt to quantitatively characterize the streak ar-

tifacts, we use the Hough transform to detect straight lines

within a two-dimensional image [6]. The Hough transform is

a 2D array specified by a pair of parameters, and each element

of the Hough transform has a value that is the summation of

the pixel values on a line specified by the pair of parameters.

The elements with the value exceeding a threshold suggest

potential straight lines in the input image (i.e., the image

containing streak artifacts.) Therefore, the number of the

elements with values exceeding a selected threshold provides

an estimate of the number of streaks and the severity of streak

artifacts. Our study suggests that the Hough transform appears

to be robust to gaps in straight lines and image noise.

V. RESULTS

The scanning geometry information was incorporated into

system matrix H in which an element was defined as the

intersection length of X-ray measured and a voxel in the

image array. The clinical FDK reconstructions is used as a

reference in the study. We use the same image voxel sizes

as those in the clinical reconstruction. The image arrays of

sizes N = 700 × 560 × 512 were used for the physical head

phantom, in which the voxel size is 0.47× 0.47× 0.47 mm3.

The program parameters c and t1 are chosen to be 0.05 and

70000 in this study.

1) Visual inspection of images reconstructed: In Figs. 1

and 2, we display the images within three transverse and

sagittal slices of the phantom reconstructed, with a narrow

display window for revealing details of both low-contrast

structures and truncation artifacts. As a result of the metal

object placed outside the FOV of the system, significant streak

artifacts can be observed in the reconstructions obtained with

the FDK algorithm. Conversely, the artifacts are suppressed

in the reconstructions of the CP algorithm, thus some of the

low-contrast structures can be discerned more readily than

a b c

Figure 1. Reconstructed (row 1) and reference (row 2) images of the head
phantom within transverse slices specified by z = 37.6 mm (a), 12.2 mm
(b), and −41.8 mm (c), respectively. Display window: [0, 200] HU.

a b c

Figure 2. Reconstructed (row 1) and reference (row 2) images of the head
phantom within sagittal slices specified by y = −24.9 mm (a), 12.2 mm (b),
and −44.2 mm (c), respectively. Display window: [0, 200] HU. The arrow
in the reference image indicates the cone-beam artifacts.

those obscured in the FDK reconstructions. Moreover, it is

interesting to observe that some of the cone-beam artifacts

near the jaw region, as pointed by the arrows in the FDK

reconstruction, appear to be reduced considerably in the re-

construction of the CP algorithm in Fig. 2.

2) Quantitative analysis of images reconstructed: We com-

pute the CNR metrics defined in Eq. (3) within ROIs selected

in reconstructed images. As an example, three ROIs containing

the cylindrical inserts at contrast level around 20 HU were

selected, as enclosed by the circles in the left panel of Fig.

3. We show in the right panel of Fig. 3 the CNRs calculated

within these ROIs, along with the CNRs computed from the

corresponding reference image. It can be observed that the

optimization-based reconstruction yields CNR higher than that

obtained with the reference image, consistent with the visual

inspection of Fig. 1.

Additionally, we display in Fig. 4 the Hough transforms
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Figure 3. Reconstructed image of the head phantom within a transverse slice
within three ROIs enclosed by the circles (left) and CNRs within the ROIs
computed from the reconstructed (square) and reference (circle) images.

a b

c d

Figure 4. The Hough transforms of the reconstructed (a) and reference
(c) images within a transverse slice of the head phantom, and the same
Hough transforms in which the values below thresholds 120 (b) and 190
(d), respectively, are set to zero. The number, Nstreaks, of non-zero values
in (b) or (d) provides an estimate of the number of leading streak artifacts in
(a) or (c).

of reconstructed and reference images within a sagittal slice,

and a set of elements within the Hough transform of the

reference image can be observed. Without loss of generality,

we threshold the Hough transforms in Fig. 4 with a thresh-

olding value selected and then estimate the number of the

non-zero elements within each of the thresholded images.

This number, denoted as Nstreaks, is used for quantitatively

characterizing the streak artifacts in the reconstructed images.

We estimate Nstreaks for all of the transverse and sagittal slices

within a reconstructed image, and show in Fig. 5 the result

estimated from the slices shown in Figs. 1 and 2. It can be

observed that Nstreaks ≈ 0 for the CP images, suggesting that

the optimization-based reconstruction reduces effectively the

leading streak artifacts observed in the reference images with

significantly non-zero Nstreakss.

The convergent reconstructions shown above were obtained
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Figure 5. Nstreaks estimated from reconstructed (square) and reference
(circle) images within transverse (top) and sagittal (bottom) slices shown in
Figs. 1 and 2, respectively.

with about 900 iterations. The number of iterations is neither

a parameter nor a concern, as our goal is to achieve the con-

vergent reconstruction thus avoiding the possible ambiguity in

results stemmed from the iteration number. However, it is often

of practical interest to inspect the reconstruction evolution

as a function of iteration numbers. We display in Fig. 6 the

reconstructions within a transverse slice at iteration numbers

100, 200, and 400, along with the convergent reconstruction

(i.e., at n = 900), and in Fig. 7 CNR computed and Nstreaks

estimated within the transverse slice as a function of iteration

numbers. It can be observed that the reconstruction at earlier

iteration (i.e., at n = 400) begins to resemble the convergent

reconstruction in terms of visualization and metrics CNR and

Nstreaks.

VI. CONCLUSIONS

In this work, we have carried out an optimization-based

reconstruction in C-arm CBCT with an aim to reduce im-

age artifacts caused by the angularly-varying-data truncation

caused by the high contrast objects outside FOV of C-arm

CBCT system. The reconstruction results demonstrate that our

optimization-based reconstruction method can significantly

reduce streak artifacts and improve the visualization of low-

contrast structures in comparison to the clinical FDK recon-

struction. In order to quantitatively evaluate the performance

of the optimization-based reconstruction, two quantitative met-

rics, CNR and Nstreak were introduced for characterizing the

the recovery of the low-contrast objects and the reduction of

streak artifacts. Results indicate that appropriately designed

optimization-based reconstruction may improve image quality

over the clinical FDK reconstruction.
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Figure 6. Reconstructions of the head phantom within a transverse slice
specified by z = 37.6 mm at iterations n =50 (a), 200 (b), and 400 (c),
respectively, along with the convergent reconstruction at n = 900 (d). Different
display windows: [−300, −100], [−300, −100], [0, 200], and [0, 200] are
used for revealing reconstruction details at different iterations.
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Figure 7. CNRs (left) in the ROI enclosed by the circle in, and Nstreaks

(right) estimated from, reconstructions within the transverse slice shown in
Fig. 6 as functions of iterations.
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Abstract—In this study, we propose a novel way to use material 

or spectral information for improved diagnoses and 

characterization: to suppress “noise” that makes diagnosis 

challenging and enhance “signals” to detect. An imaging 

technique (“X-map”) has recently been developed to identify 

acute ischemic lesions for stroke patients using 

non-contrast-enhanced dual-energy computed tomography 

(NE-DE-CT). Using the 3-material decomposition technique, the 

original X-map (“X-map 1.0”) eliminates fat and bone from the 

images, suppresses the gray matter (GM)–white matter (WM) 

tissue contrast, and makes signals of edema induced by severe 

ischemia easier to detect. There were the following two problems 

with the X-map 1.0: (1) biases near the skull of NE-DE-CT 

images; and (2) large intra- and inter-patient variations in X-map 

1.0 values. In this study, we aim at addressing these problems by 

improving both an iterative beam hardening correction method 

(iBHC) and the X-map algorithm. The new iBHC (“iBHC2”) 

modeled x-ray physics more accurately. The new X-map 

(“X-map 2.0”) estimated patient-specific, local GM values—thus, 

maximizing the ability to suppress the GM–WM contrast, make 

edema signals quantitative, and enhance the edema signals that 

denote an increased water density for each pixel.  

Index Terms—CT, dual-energy, material decomposition, 

stroke  

I. PURPOSES 

TROKE is the 5
th

 leading cause of death in the United States 

and 87% of those events are acute ischemic stroke [1, 2] 

(Fig 1D) while 10% are intracranial hemorrhage stroke 

(Fig 1C). Early treatment (within 4–6 hours from symptom 

onset) can significantly improve outcomes for acute ischemic 

stroke patients [3, 4]; however, performing treatments such as 

mechanical thrombectomy to every patient could have adverse 

effects. It has suggested that aggressive intra-arterial 

mechanical thrombectomy increases the risk of hemorrhagic 

transformation, which can be fatal, when recanalization is 

successful—particularly when the infarct core is large [5]. 

When ischemic lesions involve more than one third of the 

middle cerebral artery territory, it is a strong contraindication 

to treatment [3, 5]. Thus, while it is critical to minimize the 

“door-to-needle time” in order to obtain the best outcome of 

the therapy, it is also essential to perform non-invasive 

imaging and to evaluate the presence and the extent (size) of 

infarction in acute ischemic stroke patients.  

Non-contrast-enhanced x-ray computed tomography 

(NE-CT) is fast, easy to perform, available at many emergency 

departments, and very sensitive for detecting intracranial 

hemorrhage [6] (Fig 1C). The problem is that NE-CT indicates 

only subtle signs of ischemic stroke within the early phase of 

acute stroke (i.e., < 2–3 hours of symptom onset) (Fig 1D), 

which are mainly a loss of gray matter (GM)–white matter 

(WM) differentiation and hypodensity in parenchyma. At an 

acute ischemic site, cytotoxic edema evolves over time and 

decreases pixel values of the ischemic lesion due to increased 

water densities [7, 8]. This edema signal in acute settings, 

however, is difficult to detect consistently because the signal 

is as small as the anatomical signal difference between GM 

and WM in the healthy brain, which is typically 5–10 HU. 

Often a loss of GM–WM differentiation (or a regional 

decrease of GW–WM contrast) is a critical sign of ischemic 

lesion.  

A novel imaging method, X-map, has been developed that 

uses non-contrast-enhanced dual-energy compute tomography 

(NE-DE-CT) [9] with the dose and time duration comparable 

to the conventional NE-CT. X-map uses the dual-energy 

material decomposition technique [10, 11] (Fig. 2a) and 

projects all of the pixel values along the direction parallel to 

the fat slope onto the GM line. The projection process 

essentially eliminates the anatomical GM–WM contrast, 

making edema lesions easier to detect. X-map values denote 

relative positions of the projected point on the GM 

slope—thus, relative edema levels—100 for tissues without 

edema and <100 with edema at different levels. While X-map 

algorithm is technically a derivative of “3-material 

decomposition method” [10] and “virtual 

non-contrast-enhanced imaging,” [11] the concept of X-map is 

a diagnostic task-specific material decomposition, which is 

novel and deserve recognition.  

There have been two independent studies, which 

demonstrated the potential viability of X-map. One study 

compared X-map with diffusion weighted imaging (DWI) 

“X-map 2.0” and “iBHC2” for consistent Edema Signal 

Enhancement for Acute Ischemic Stroke using 

Non-Contrast-Enhanced Dual-Energy CT 
Katsuyuki Taguchi, Toshihide Itoh, Matthew K. Fuld, Eric Fournie, Okkyun Lee, and Kyo Noguchi 

S 

 
Figure 1.  A NE-CT image (A) delineates the brain anatomy (B) accurately, 

including gray matter (GM)–white matter (WM) differentiation with 5–10 

HU. WM has a greater fat content than GM, which makes it appear darker 

than GM on NE-CT. NE-CT clearly indicates a hyper-dense intracranial 

hemorrhage lesion (C, arrow), while NE-CT shows only a subtle hypo-dense 

signal at an acute ischemic lesion within a few hours of onset (D, arrow). 

Images are obtained from (A–B) http://www.strokecenter.org/professionals/ 

brain-anatomy/cellular-injury-during-ischemia/edema-formation/, (C)  
https://www.researchgate.net/figure/a-Ischemic-strokeshown-as-dark-black-ar

ea-b-Hemorrhagic-strokeshown-as-bright_fig1_40452206, and (D) 

http://slideplayer.com/slide/3883198/.   

K. Taguchi and O. Lee are with Johns Hopkins University School 

of Medicine. T. Itoh, M. K. Fuld, and E. Fournie are with 

Siemens Healthineers. K. Noguchi is with University of Toyama.  
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acquired 30–60 min after NE-DE-CT, and concluded that 

there was a very good agreement in acute infarctions between 

X-map and DWI, including ischemic regions that recovered 

after treatments [9]. Another study assessed X-map with 

24-hour follow-up NE-CT. They concluded that X-map can 

detect edema and quantify the core infarct volume more 

accurately than the conventional NE-CT [12]. The sensitivity, 

specificity, positive predictive value, and negative predictive 

value of X-map were 93.3%, 100%, 100%, and 91.7%, 

respectively, while those of the conventional NE-CT were 

80%, 72.7%, 80%, and 72.7%, respectively.  

It has been found, however, that the original X-map (which 

we call “X-map 1.0” in this paper) has the following two 

problems despite these promising results. First, even when an 

iterative beam-hardening correction (“iBHC1”) is employed, 

NE-DE-CT images have smearing artifacts near the brain–

skull boundaries. Second, X-map values have large 

inter-patient and intra-patient variations. We propose to 

address these problems by improving NE-DE-CT images and 

developing a new version of X-map (which we call “X-map 

2.0”) and a new scheme to enhance edema signals (ESE for 

edema signal enhancement) in this study. Quantitative 

assessments will be performed on the accuracy and variations 

of NE-DE-CT images and X-map images in this study. A part 

of the results has been presented at RSNA 2017 as a 7-min 

presentation.  

II. METHODS 

We briefly describe (A) the patients, (B) CT acquisition 

and image reconstruction with iBHC, (C) X-map, (D) Image 

and statistical analyses.  

A. Patients 
Eleven patients were included in this study, among which 6 

patients had DWI-confirmed acute ischemic stroke and 

received DE-NE-CT within 3 hours from the symptom onset 

and 5 patients with negative CT findings.  

B. CT Acquisition, image reconstruction with iBHC 
A NE-DE-CT scan was performed with two X-ray tubes 

being operated at 80 kV for 800 mAs and 150 kV with a tin 

filter for 533 mAs (SOMATOM Force, Siemens Healthineers, 

Forchheim, Germany). The other scan parameters were: 

64×0.6 mm; 1.0 s/rot; pitch, 0.7; CTDIvol, 80.08 mGy, which 

was the standard care protocol for the institution.  

Four sets of NE-DE-CT images—high and low kV images 

with iBHC1 for skull and another pair of images with the new 

iBHC (“iBHC2”)—were reconstructed using an iterative 

reconstruction algorithm ADMIRE (Siemens Healthineers, 

Forchheim, Germany) with a quantitative intermediately sharp 

soft tissue kernel (Qr40). Both of the iBHC methods were 

essentially a generic 2-pass beam-hardening correction 

discussed by Hsieh [13] and others; iBHC2 modeled X-ray 

physics more accurately than iBHC1 did.  

C. X-map with or without ESE 
A non-local mean filter was applied to all of the four sets of 

images independently, from which the following four X-map 

images were computed: X-map 1.0 without ESE (i.e., the 

original X-map algorithm), X-map 1.0 with ESE, X-map 2.0 

without ESE, and X-map 2.0 with ESE.  
X-map 1.0 projected all of the pixel values along the 

direction parallel to the fat slope onto the GM line (Fig 2a) 

and eliminated GM–WM contrast. The relative positions of 

the projected positions on the GM line were then converted to 

X-map values either with or without ESE (Fig 2c). The X-map 

value of 100 referred to brain tissues with no edema and a 

decrease of X-map values indicated edema at different levels. 

Parameters for the fat slope and GM values (see Fig 1a) were 

fixed for all of the patients with X-map 1.0. The slope of the 

GM line (aGM), calculated as aGM=GML / GMH, was also fixed 

implicitly.  

X-map 2.0 estimated and used the local GM values to 

compute X-map values using the following 5 steps: Step 1. 

Perform image segmentation on low kV images and segment 

the brain into GM, WM, and other low-density materials. Step 

 

 
Figure 2.  The principle of the X-map algorithm (a) and edema signal 

enhancement (ESE) (b). (a) WM contains more fat than GM, and thus, the 

WM point is located on the fat slope through the GM point. With edema 

evolving due to the acute ischemia, both GM and WM points move toward 

water and get to EdemaG and EdemaW, respectively. X-map projects all of 

the pixel values onto the GM line along the direction parallel to the fat 

slope. WM and EdemaW are projected onto GM and EdemaG, 

respectively. This projection process eliminates the presence of fat, hence, 

GM–WM contrast. (b) An X-map value denotes a relative position of the 

projected point on the GM line, a value of 100 corresponds to the GM 

point. The values below the GM are scaled by 100/GMH without ESE and 

by (100+αwater)/GMH with ESE. (GMH, GML) are the pixel values of GM at 

(high, low) kV images. 
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2. Estimate local GM values for high kV and low kV 

independently by using a 3-D box kernel and averaging pixel 

values within the kernel that were labeled as GM in Step 1. 

Step 3. Calculate the slope of the local GM line (aGM). Step 4. 

Project the pixel value onto the local GM line adaptively, 

either along the fat slope as X-map 1.0 did if the pixel value 

was below the GM line (Fig 2a) or to the GM point if the pixel 

value was above the GM line. The former process eliminated 

the presence of fat and GM–WM contrast on a local basis 

while the latter process decreased the source of potential false 

positives by eliminating unnaturally small X-map values. Step 

5. Convert the relative position of the projected point on the 

local GM line to the X-map value of the pixel, either with or 

without ESE (Fig 1c). Both versions of the X-map were 

implemented using Matlab (Mathworks, Inc.; Natick, MA). 

D. Image analyses 
Bias in CT pixel values: The pixel value was measured at 

GM, 6–10 locations near the skull and 2–3 locations near the 
center of the brain. The mean of the peripheral 
region-of-interest (ROI) values and the mean of the central 
ROI values were calculated. The difference between the 
central GM value and the peripheral GM value was considered 
a bias due to beam hardening artifacts.  

Inter- and intra-patient variation of X-map values: X-map 
values were measured at 5–9 locations per patient on GM 
without infarct, resulting in 76 locations for 11 patients. The 

patient-mean X-map value was calculated by averaging 

multiple ROI values per patient. A zero-mean X-map value 

was calculated for each patient by subtracting the 

corresponding patient-mean X-map value from ROI X-map 

values. The standard deviation of the patient-mean X-map 

values over multiple patients denotes the inter-patient 

variation; the standard deviation over multiple zero-mean 

X-map values denotes the intra-patient variation.  

Correlation with DWI: The ROI values at and near ischemic 

lesions were measured at 7–14 locations per patient (thus, in 

total of 45 samples) with X-map images, CT images, and DWI 

images using five patients who had DWI within 2 hours of 

NE-DE-CT. The DWI values were then converted to a relative 

increase of DWI signals from the background as d-DWI = 

(DWIlesion–DWIbackground) / DWIbackground ×100 (%). Correlation 

coefficients with d-DWI were calculated.  

III.  RESULTS 

Figure 3 shows typical CT images reconstructed with 

iBHC1 and iBHC2. The biases or whitening/cupping artifacts 

near the skull were improved substantially by iBHC2 

compared with iBHC1 and a Wilcoxon signed-rank test 

indicated the changes were statistically significant: 2.5±2.0 

HU for iBHC2 versus 6.9±2.3 HU for iBHC1 with high kV 

images, P<0.01; 1.5±3.6 HU versus 12.8±3.3 HU with low kV 

images, P<0.01.  

Figure 4 presents images of the acute stroke patient with 

NE-DE-CT performed 40 min after the symptom onset and 

DWI obtained 11.5 hours after the NE-DE-CT. The DWI 

image (Fig. 4A) showed an infarct in the left hemisphere; 

neither the high kV image (Fig. 4B) nor the low kV image 

(Fig. 4C), both after non-local mean filter being applied, 

showed any change in GM–WM contrast. The X-map 1.0 

image without ESE presented using ImageJ’s color scheme 

“fire” (Fig. 4D) had larger pixel values toward the posterior 

direction, presenting intra-patient variations of pixel values. A 

part of the infarct was presented clearly (arrows), while 

missing the rest of the infarct region (arrow-heads) due to 

larger values toward the posterior side and showing a potential 

false positive in the frontal lobe (curved arrows) due to 

smaller values toward the anterior side. In contrast, the X-map 

2.0 image with ESE had consistent pixel values throughout the 

brain region (Fig. 4E) and showed the infarct/ischemic lesion 

with an improved contrast thanks to ESE (arrows). The extent 

of the infarct lesion delineated by X-map 2.0 with ESE agreed 

quite well with the lesion DWI presented (Figs. 4E and 4A). 

Figure 5 shows images of another patient with NE-DE-CT 

performed 53 min after the symptom onset and DWI obtained 

40 min after the NE-DE-CT. The DWI image (Fig. 5A) 

showed an infarct in the left insula, frontal lobe, and temporal 

lobe; neither the high kV image (Fig. 5B) nor the low kV 

image (Fig. 5C) showed noticeable changes in GM–WM 

Figure 3. NE-DE-CT images of an acute stroke patient, reconstructed by 

the old iBHC (iBHC1) (A,B) and the new iBHC (iBHC2) (C,D). (A,C) 

High kV images, (B,D) low kV images. Biases (or whitening cupping 

artifacts) near the skull, observed with iBHC1 (A–B), were significantly 

improved by iBHC2. Window width is 50 HU. 

 
Figure 4. NE-DE-CT was taken 40 min after the symptom onset; DWI 11.5 

hours after CT. The color images were generated using “fire” in ImageJ.  

 
Figure 5. NE-DE-CT was taken 53 min after the symptom onset; DWI 40 min 

after CT.  The color images were generated using “fire” in ImageJ. 
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contrast. The X-map 1.0 image without ESE had larger pixel 

values toward the posterior direction, due to a large 

intra-patient variation of pixel values; the window center was 

set at X-map value of 105 to make the appearance of images 

similar to Fig. 4, in order to compensate for a constant bias of 

X-map value of +5 added to this patient data. A part of lesion 

was clearly seen with both of the X-map 1.0 images (Fig. 5D 

arrows), although a potential false positive (curved arrows) 

and false negative (arrow-heads) were observed. The X-map 

2.0 image with ESE had consistent pixel values for the entire 

brain and showed decreased values at the infarct lesion clearly 

(Fig. 5E, arrows), while the pixel values of the opposite 

hemisphere was maintained at ~100. The extent of the infarct 

lesion was consistent with the finding in DWI (Fig. 5A).  

The inter-patient variation of X-map values was smaller 

with X-map 2.0, either with or without ESE, than with the 

corresponding X-map 1.0. Levene’s F-test was performed to 

evaluate the statistical significance in a difference between 

algorithms in variances: The standard deviation values were 

4.3 for X-map 2.0 versus 19.0 for X-map 1.0, both with ESE, 

P<0.01; 3.0 versus 12.0 without ESE, P<0.01. The 

intra-patient variation was smaller with X-map 2.0 than with 

X-map 1.0: 6.2 versus 8.5 with ESE, P<0.01; 4.1 versus 6.3 

without ESE, P<0.01.  

Figure 6 shows a scatter plot of X-map 2.0 with ESE against 

d-DWI values. The correlation coefficient was the strongest 

between these values and it was –0.733, 95% confidence 

interval, –0.845 to –0.560; P<0.001. The fitted line went 

through 100.9 when d-DWI was 0 (healthy). The other images 

had weaker correlation coefficients and they were in the order 

of –0.642 for high kV CT, –0.631 for X-map 1.0 with ESE, –

0.609 for X-map 1.0 without ESE, etc.  

It took as little as 7.1 seconds per patient to process Step 1 

through Step 5 of the X-map 2.0 algorithm using a laptop PC 

without any code optimization for efficiency.   

IV. CONCLUSIONS 

We have proposed a novel way to use material or spectral 

information: to suppress “noise” for a given diagnostic task 

and enhance “signals” for lesion detection and 

characterization. To our best knowledge, this is the first 

approach that can be generalized for and applied to other 

diagnostic tasks. We have improved both iBHC and X-map 

algorithm for acute ischemic stroke imaging. The iBHC2 

improved the bias and visibility of GM–WM contrast 

throughout the brain space. The combination of iBHC2 and 

X-map 2.0 with ESE decreased both intra- and inter-patient 

variations significantly, improved the quantitative accuracy of 

X-map values, and provided a strong correlation with DWI 

signals.  
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Eigentissue Decomposition for Multi-Energy CT
Reconstruction

Mikaël Simard1, Arthur Lalonde1 and Hugo Bouchard1,2

Abstract— A novel material decomposition framework is
proposed in the context of multi-energy CT. Photon attenua-
tion coefficients are parametrized as a linear combination of
eigentissue cross sections weighted by partial electron densities.
The concept of eigentissue was previously proposed with the
intent of optimally representing human tissue information. By
defining virtual materials which variations of density-weighted
elemental fractions are orthogonal, the method allows for direct
reconstruction of electron density and elemental fractions from
multi-energy CT raw data using less information than the amount
of elements found in human tissues. In this work, we compare
eigentissue decomposition with other formalisms established for
dual-energy CT and we further show the generalizability of the
approach for more than two energies. The main impact of this
method is to provide accurate characterization of human tissues
in the context of radiotherapy dose calculation without the need
to parametrize tissues using unphysical parameters, such as the
energy-dependent effective atomic number.

I. INTRODUCTION

Tissue characterization using computed tomography (CT)
allows the quantification of physical properties, such as
electron density (ED), from measurements of X-ray effective
attenuation coefficients. One main field of application of
tissue characterization is radiotherapy. During radiotherapy
treatment planning, single-energy CT (SECT) is used to
provide patient-specific ED maps as an input for calculating
radiation dose. For treatment planning systems based on
Monte Carlo radiation transport simulations, the elemental
composition of tissues is additionally required. While these
physical parameters can be obtained for SECT using the gold
standard stoichiometric calibration of Schneider et al. [1], it
has recently been shown that dual-energy CT (DECT) has
the potential to provide more accurate radiotherapy-related
quantities for protontherapy [2] and low energy brachytherapy
[3] than SECT.

These studies have been performed using post-reconstruction
formalisms adapted to DECT [4], [5] or more general
models compatible with multi-energy CT (MECT) [6].
While accurate, such post-reconstruction approaches may
suffer from the presence of systematic errors such as beam
hardening artefacts in reconstructed attenuation coefficient
maps. As such, the accuracy of post-reconstruction methods is
limited by systematic errors introduced in the reconstruction
process, as well as by the inherent accuracy of semi-empirical

1 Université de Montréal, Département de Physique. 2900 Boul. Édouard
Montpetit, Montréal, Québec H3T 1J4.

2 Centre de recherche du Centre hospitalier de l’Université de Montréal,
Montréal, Québec H2X 3H8

beam hardening correction methods, which justifies the need
of pre-reconstruction approaches for tissue characterization
[2], [7]. In this work, we extend the post-reconstruction
tissue characterization method of Lalonde & Bouchard
[8] to an image reconstruction framework. The method,
called eigentissue decomposition (ETD), is a material
decomposition approach that uses virtual tissues, named
eigentissues, constructed in such a way that they optimally
describe human tissues in terms of partial elemental electron
density. ETD allows for the direct reconstruction of the
elemental composition and ED and can therefore be used to
directly provide inputs for treatment planning systems using
Monte Carlo simulations.

The adaptation of ETD to a pre-reconstruction scheme
is the main goal of the present work and is described at first.
The accuracy of the parametrization in evaluating various
radiotherapy-related quantities is then evaluated and compared
with other well-established parametrization schemes. Finally,
the generalizability of the method to MECT is shown.

II. METHODS

A. Eigentissue decomposition

The mass attenuation coefficient µmed(r,E)
ρ of a medium can

be expressed as the weighted sum of the mass attenuation
coefficients of the M elements that constitute the medium:

µmed(r, E)

ρ
=

M∑
m=1

wm
µm(r, E)

ρ
(1)

where wm is the mass fraction of element m. An alternative
expression for the linear attenuation coefficient of the medium
consists in using partial electronic densities xm = ρeλm,
where the fraction of electrons of the mth element in the
medium is λm = wm(Z/A)m

(Z/A)med
and ρe is the ED of the medium:

µ(r, E) =
M∑
m=1

xm(r)σe,m(E) (2)

where σe,m(E) is an elemental electronic cross section and
the xm sum up to the electronic density, i.e., ρe =

∑
m xm.

For Monte Carlo dose calculation, one is interested in
extracting the elemental compositions wm and ED. Including
trace elements, human tissues can be characterized fully with
M = 13 elements [9], leaving the number of unknowns to
13, including ED. In the case of MECT, where the number of
energies acquired is K ≥2, tissue characterization is generally
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an underdetermined problem as the number of unknowns is
greater than the number of measurements per voxel.

The elemental composition of human tissues is often
redundant between tissues, or in some cases, such as carbon
and oxygen in soft tissues or phosphorus and calcium in
bones, some elements are strongly correlated [1], [8]. Thus,
the elemental basis used to represent µ(E) (equation 2)
does not form an orthogonal basis and is sub-optimal - a
similar amount of information on human tissues may be
extracted by expressing tissues with an orthogonal basis and
a reduced set of variables. In order to be mapped back to
elemental composition, such a new basis should be obtained
through a base transformation of the elemental composition.
To perform this transformation, Lalonde & Bouchard [8]
applied principal component analysis (PCA) on a reference
dataset of human tissues of known elemental composition
[9]. This allows reducing the dimensionality of the problem
by extracting new materials, called eigentissues, which are
composed of elements in such a way that the most variability
throughout human tissues information is contained in the first
few eigentissues.

While M eigentissues are extracted when performing
PCA, the highest variance in chemical composition is
enclosed within the first few eigentissues - using K=2
eigentissues explains respectively 96 and >99% of the
variation of the elemental composition of soft tissues and
bones [8]. As such, one can represent human tissues as
a linear combination of the K<M first eigentissues, and
assume that the remaining (M -K) eigentissues are constant
for all media. This results in an additional term, the residual
eigentissue, corresponding to the average of the remaining
eigentissues over all tissues from the original database. This
makes the approach compatible with MECT, as one extracts
the partial electron density yk of the K first eigentissues
from K measurements obtained from MECT, while assuming
that the remaining eigentissues, which explains only a limited
amount of the variation in chemical composition, are constant.

The partial electron density of an eigentissue, yk, is
related to that of the elements, xm, by a transformation
matrix P obtained from PCA [8]. As such, extracting the
yk using an approach similar to material decomposition
leads to the knowledge of the xm, which maps back to the
elemental fractions wm through λm. The error introduced
in the estimation of wm is related to the truncation of the
remaining M -K eigentissues, and might be reduced as the
number of energies K increases. In the eigentissue basis, the
attenuation coefficient is then expressed as:

µ(r, E) =
M∑
k=1

yk(r)σ
ET
e,k(E) ≈

K∑
k=1

yk(r)σ
ET
e,k(E)+ y0σ

ET
e,0(E)

(3)
Equation 3 corresponds to the eigentissue decomposition
(ETD) approach. Here, σET

e,k(E) represents the electronic cross
section of the kth eigentissue, calculated from its elemental

composition extracted from PCA. y0, σET
e,0(E) respectively

represent the residual partial electron density and cross section
of the (M −K) remaining eigentissues. The estimator of the
ED is then given by ρ̂e ≈ y0 +

∑K
k=1 yk.

B. Adaptation to sinogram space

In CT, one is interested in the transmission ti(ξ, θ) produced
by a ray of path `(ξ, θ) defined with its projection angle θ
and detector location ξ. ti(ξ, θ) represents the detected X-
ray intensity normalized by a blank scan, using a normalized
X-ray spectrum ψi(E) (which includes contributions of the
source and detector response). A simple model to evaluate the
transmission is given by

ti(ξ, θ) =

∫
ψi(E) exp

(
−
∫
`(ξ,θ)

µ(r, E)d`

)
dE (4)

with the sinogram being equal to − ln ti(ξ, θ). Combining
ETD (equation 3) with equation 4 and separating the energy
and position dependent terms, an estimator of the transmission
in the ETD formalism is given by

t̂i(ξ, θ) =

∫
ψi(E) exp

(
−

K∑
k=1

Yk(ξ, θ)σ
ET
e,k(E)−G0(E)

)
dE

(5)
Where Yk(ξ, θ) =

∫
`(ξ,θ)

yk(r)d` is the 2D Radon transform
of the partial electron density of the kth eigentissue and
G0(E) =

∫
`(ξ,θ)

y0σ
ET
e,0 (E)d` is the 2D Radon transform of

the residual eigentissue.

Following the methodology introduced by Alvarez &
Macovski [10], one can perform a non-linear least squares fit
at each sinogram voxel (ξ, θ) to solve for the K values of
Yk(ξ, θ) given K transmission values obtained using different
spectra. Partial electron density maps yk(r) can then be
reconstructed using a filtered back-projection. Maps of ED
and elemental fractions wm can be obtained from the yk(r)
according to the methods described in section II-A.

Practically, as there are notable differences between the
elemental composition of soft tissues and bones, PCA is
performed independently on both tissue groups (labelled s
and b) in the reference database. This results in two distinct
sets of eigentissues, which are represented by different
values of σETe,k (E) and y0 in equation 3. In order to assign
the most likely decomposition basis i (where i ∈ {s, b})
for each image voxel, partial electron density maps are
obtained by solving equation 5 separately using the two sets
of eigentissues. Overall, this yields, for each image voxel,
two K × 1 vectors of partial electron densities: ỹs and ỹb,
respectively obtained using soft tissue and bone eigentissues.

The set of partial electron densities of the soft tissues
and bones in the reference database, labelled {y(p)

s } and
{y(p)

b } (where p denotes a specific tissue) are considerably
different. As such, in order to assign the correct set of partial
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electron densities on a voxel-wise basis, one can evaluate the
similarity between each ỹi and the corresponding distribution
{y(p)

i }, and assign the most likely class i. Formally, we use a
kernel density estimator (KDE) [6] to provide an estimation
of the probability density function for the partial electronic
density of soft tissues and bones. The probability pi(ỹi) that
a set of partial electron densities ỹi at a given voxel belongs
to class i is defined as (with K the kernel)

pi(ỹi) =
1

P

P∑
p=1

K(y(p)
i ; ỹi) (6)

the class is assigned such that the probability is maximized.
In this work, we use a multivariate gaussian kernel:

K(y(p)
i ; ỹi) =

1√
(2π)K |Σi|

e−
1
2

(
ỹi−y

(p)
i

)T
Σ−1

i

(
ỹi−y

(p)
i

)
(7)

The probability density function is then modelled as a sum of
gaussians each centered around a tissue of the database, with
Σi being the diagonal covariance matrix of the eigentissues.
This classification approach is particularly well suited for
ETD, as prior knowledge on the expected distribution of the
partial electron densities for human tissues arises from PCA.

C. Simulation framework

A simulation framework is developed to evaluate the
performance of ETD for MECT in extracting physical
parameters of tissues and quantities relevant to radiotherapy
in two specific situations. First, ETD is compared against
other reference methods for DECT (K = 2). Second, we
demonstrate the potential gains and generalizability of ETD
when increasing the number of energies to K = 3, i.e. using
3 eigentissues instead of 2 in equation 3.

Polyenergetic sinograms (equation 4) are modelled as a
weighted sum of monoenergetic projections at 1 keV intervals
[11], and projections are performed using a simple ray-tracing
algorithm [12]. For DECT, the 80 and 140/Sn kVp spectra
of the Siemens SOMATOM Definition Flash provided by
the manufacturer (Siemens Healthcare, Forcheim, Germany)
are used. For MECT (K = 3), the 80 kVp spectrum is
divided into bins of equals fluence to reproduce idealized
measurements from a photon counting system. Sinograms are
generated for various noise levels (0, 5, 8 and 15 HU).

For DECT, ETD is compared with two other formalisms: the
physical interactions decomposition of Alvarez and Macovski
(AM) [10] optimized for the reference database tissues [11]
and a two-material decomposition (2MD) [13] using cortical
bone and water. Elemental photon cross sections are obtained
from the XCOM database [14]. For AM and 2MD, elemental
fractions are evaluated indirectly using the parametrization of
Hünemohr et al. [5].

Formalisms are compared on their ability to accurately
reconstruct physical parameters useful for various radiotherapy
modalities, which directly translates the accuracy of the

reconstructed ED and elemental fractions. Specifically, for
hadron therapy, we estimate the stopping power relative to
water (SPR) of 200 MeV protons. For brachytherapy, we
evaluate the photon energy attenuation coefficient (EAC) of
21 KeV photons from 103Pd seeds. The SPR is estimated
from the Bethe-Bloch equation using the Bragg additivity rule
for the estimation of the I-value, while the EAC is obtained
using equation 1.

The simulated phantom contains 16 plugs with the same
geometry as in Tremblay et al. [11], each containing a human
tissue randomly selected from the 71 tissues in White &
Woodard’s database of human tissues [9]. The RMS error
and overall bias (mean error) on the quantities of interest,
averaged over all plugs, is compared across formalisms. Plugs
containing soft tissues and bone are analyzed separately. To
obtain reliable statistics, the randomized phantom is generated
and analyzed 100 times.

III. RESULTS

Figures 1 and 2 show the mean error (bias) and RMS error
for SPR and EAC for the 3 formalisms applied to DECT,
respectively for soft tissues and bones. Without noise, ETD
outperforms all other formalisms in providing lower RMS
errors and a negligible bias on SPR and EAC, for soft tissues
and bone. As the noise increases, the RMS error for ETD
stays smaller or equal to 2MD, while the bias always remains
negligible with respect to the other formalisms.

Figure 3 shows the theoretical performance gains of
ETD in estimating elemental fractions when going from 2
to 3 energies. The error is largely reduced for carbon and
oxygen fractions, while it increases slightly for remaining
elements. Overall, this leads to a reduction in the RMS error
on the SPR from 0.25 to 0.22% when increasing the number
of energies.

IV. CONCLUSION

This work shows the potential of using ETD as a
parametrization for the attenuation coefficient to accurately
and precisely describe human tissues. Concerning DECT,
for all noise levels considered, ETD provides more accurate
quantities related to dose calculation (SPR, EAC), which
suggests that ETD may be less biased in estimating
radiotherapy-related quantities for human tissues, as other
parametrizations evaluated can produce biased estimates
of ED and effective atomic number [11]. The method is
also at least as precise as 2MD with increasing noise. For
radiotherapy purposes, the advantage of ETD resides in the
fact that it allows a direct extraction of ED and elemental
composition instead of the effective atomic number, which is
an energy dependent quantity.

ETD has the advantage of being generalizable to more than
two energies, as shown in figure 3. This indicates that ETD is
potentially well suited for tissue characterization using spectral
CT, and is not limited by a two-parameter parametrization.
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Future work include developing a regularization scheme on
partial electronic densities [6] to increase the robustness of
the method with respect to noise and weak conditioning in
MECT.

Fig. 1. Mean error (full lines) and RMS errors (coloured bands) on SPR
(left) and EAC (right) averaged over all soft tissue plugs using various
parametrizations of the attenuation coefficient (top to bottom).

Fig. 2. Mean error (full lines) and RMS errors (coloured bands) on SPR (left)
and EAC (right) averaged over all bone plugs using various parametrizations
of the attenuation coefficient (top to bottom).
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Fig. 3. RMS errors (in percentage points) on the main elemental fractions of
human tissues as a function of the number of energies used, for soft tissues.
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Abstract— Dose distribution and filter thickness were 

optimized for a novel energy-integrating-detector (EID) based 

multi-energy CT (MECT) platform through theoretical analysis 

and simulation. The optimization was based on a material-

specific imaging task that involves multiple contrast agents: 

iodine, gadolinium, and water. A generic image-based method 

without/with prior information (volume conservation) was used 

for material decomposition. The dose distribution among triple 

or quadruple beams was optimized to minimize the noise in each 

basis material map. Three sets of split filters (Sn/Au) with 

thicknesses of 0.3/0.09, 0.4/0.12, 0.5/0.14 mm for high energy 

beam were employed to investigate the impact of  split-filter 

thickness on noise in each basis material map. Theoretical 

analysis demonstrated that, when the prior information was 

incorporated into the material decomposition process, the noise 

levels in iodine, gadolinium, and water maps were almost 

minimized simultaneously by distributing the dose equally among 

all the beams. Although better spectral separation was achieved 

by utilizing thicker filters, simulation results showed that filter 

thickness has little impact on image noise of basis materials when 

prior information is incorporated in the material decomposition.  

 

Index Terms—Multi-energy CT (MECT), basis material 

decomposition  

I. INTRODUCTION 

ULITI-ENERGY CT (MECT) enabled by energy-resolved 

photon-counting computed tomography (PCCT) is 

promising for material-specific imaging with multiple contrast 

agents. However, non-idealities of the photon-counting 

detector (PCD) such as pulse pileup, K-edge escape, and 

charge sharing may degrade the spectral performance [1-8]. 

Because of these non-idealities, the dose efficiency of PCCT 

did not show obvious advantages over existing energy-

integrating-detector (EID) based CT scanners for typical dual-

energy applications [9]. To perform material-specific imaging 

with multiple contrast agents, EID-based MECT approaches 

can still be employed by acquiring measurements at three or 

more different x-ray spectra.  One such approach was to 

acquire triple or quadruple x-ray beam measurements on a 

dual-source CT scanner using the split filter technique [10]. 
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Computer simulations showed that this EID-based MECT 

method appears to have at least similar or even better spectral 

separation and noise performance as in a PCCT scanner [10]. 

The main advantages of this EID-based MECT approach 

include (1) easy to implement; (2) similar or better spectrum 

separation than current PCCT scanners; (3) flexible to adjust 

dose distribution among different spectra.   

In this work, we will perform a theoretical analysis and 

computer simulation study to optimize two of the important 

technical parameters in the new EID-based MECT platform: 

dose distribution and filter thickness. In the analysis, we will 

focus on a specific MECT imaging task, multi-phase liver 

imaging in one single MECT scan [6, 7, 11], which involves 

three materials, iodine, gadolinium, and water. 

II. METHODS 

A. An EID-based MECT method  

There are many possible ways to acquire more than two x-

ray beam measurements using EID-based CT platform. We 

recently proposed a scanner configuration that can acquire 

triple- or quadruple-beam measurements nearly 

simultaneously [10]. This scanner configuration originates 

from the “Twin Beam” design proposed by Siemens on a 

single-source CT scanner to enable DECT capability. In this 

design, the same x-ray beam is pre-filtered by two different 

materials, e.g., gold (Au) and tin (Sn), each of which covers 

half of the detector rows along the longitudinal direction. The 

x-ray beam filtered by Sn is hardened to form the “high-kV” 

and the x-ray beam filtered by Au is softened because of the 

K-edge to form the “low-kV”. This split filter design can be 

readily extended to a dual-source CT scanner by operating one 

(triple-beam configuration, Fig. 1a) or both (quadruple-beam 

configuration, Fig. 1b) sources in the “Twin Beam” mode to 

acquire three or four distinct x-ray beam measurements. 

 

B. Material Decomposition Method for EID-based MECT 

A generic image-based material decomposition method 

without any noise reduction was applied on the images 

reconstructed with a filtered-back-projection (FBP) method, to 

generate three mass density maps for iodine, gadolinium, and 

water. This material decomposition method for the EID-based 

MECT with triple-beam configuration was formulated in (1), 

where 𝜇(𝐸) is the effective linear attenuation 
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coefficient from measurement at energy 𝐸, 𝜇𝑚,𝐼/𝜇𝑚,𝐺𝑑/𝜇𝑚,𝑊 

and 𝜌𝐼/𝜌𝐺𝑑/𝜌𝑊  are the mass attenuation coefficients and 

mass density for basis materials iodine/gadolinium/water, and 

the last row represents the volume conservation (prior 

information) that is optionally incorporated into the material 

decomposition [12-14].  

 

[

𝜇(𝐸𝐿)

𝜇(𝐸𝐻1)

𝜇(𝐸𝐻2)

1

] =

[
 
 
 
 
𝜇𝑚,𝐼(𝐸𝐿)

𝜇𝑚,𝐼(𝐸𝐻1)

𝜇𝑚,𝐼(𝐸𝐻2)

1/𝜌𝐼0

𝜇𝑚,𝐺𝑑(𝐸𝐿)

𝜇𝑚,𝐺𝑑(𝐸𝐿)

𝜇𝑚,𝐺𝑑(𝐸𝐻2)

1/𝜌𝐺𝑑0

𝜇𝑚,𝑊(𝐸𝐿)

𝜇𝑚,𝑊(𝐸𝐿)

𝜇𝑚,𝑊(𝐸𝐻2)

1/𝜌𝑊0 ]
 
 
 
 

[

𝜌𝐼

𝜌𝐺𝑑

𝜌𝑊

]        (1)          

For quadruple-beam configuration, the two measurements 

from low energy x-ray beam are described as 𝜇(𝐸𝐿1) and 

𝜇(𝐸𝐿2), respectively, with totally four x-ray beam 

measurements.   
 

C. Dose Distribution for Triple-Beam Configuration 

The total dose was distributed to minimize the noise in each 

basis image. In general, the radiation dose, 𝐷(𝐸) is inversely 

proportional to the variance of the measurement 𝑉𝑎𝑟[𝜇(𝐸)], as 

described in (2), where 𝑘 is the dose factor that could be 

determined empirically [9].  

 

𝐷(𝐸) =
𝑘(𝐸)

𝑉𝑎𝑟[𝜇(𝐸)]
                                       (2) 

 

In the EID-based MECT with triple beams, the total dose 

equals to the dose from all of the three beams, as in (3). 

 

𝐷𝑡𝑜𝑡 = 𝐷(𝐸𝐿) + 𝐷(𝐸𝐻1) + 𝐷(𝐸𝐻2) 

         =
𝑘(𝐸𝐿)

𝑉𝑎𝑟[𝜇(𝐸𝐿)]
+

𝑘(𝐸𝐻1)

𝑉𝑎𝑟[𝜇(𝐸𝐻1)]
+

𝑘(𝐸𝐻2)

𝑉𝑎𝑟[𝜇(𝐸𝐻2)]
                         (3) 

 

A dose distribution coefficient 𝛼, the ratio between the dose 

delivered to the low energy beam and the total dose is defined. 

The doses delivered to those two high energy beams are 

assumed to be approximately the same. 

 

𝐷(𝐸𝐿) = 𝛼𝐷𝑡𝑜𝑡                                      (4) 

 

𝐷(𝐸𝐻1) = 𝐷(𝐸𝐻2) =
(1 − 𝛼)𝐷𝑡𝑜𝑡

2
                    (5) 

 

Based on the noise propagation analysis from (1), the 

variance in the mass density map 𝑉𝑎𝑟(𝜌𝑖) for material 𝑖 can 

be expressed as the weighted sum of the variances from all of 

the three measurements, as in (6), where 𝑤𝑖𝐿
2 , 𝑤𝑖𝐻1

2 , and 𝑤𝑖𝐻2
2  are 

the weighted coefficients. 

 

𝑉𝑎𝑟(𝜌𝑖) = 𝑤𝑖𝐿
2 𝑉𝑎𝑟[𝜇(𝐸𝐿)] + 𝑤𝑖𝐻1

2 𝑉𝑎𝑟[𝜇(𝐸𝐻1)] + 𝑤𝑖𝐻2
2 𝑉𝑎𝑟[𝜇(𝐸𝐻2)] 

    = 𝑤𝑖𝐿
2 𝑘(𝐸𝐿)

𝐷(𝐸𝐿)
+ 𝑤𝑖𝐻1

2 𝑘(𝐸𝐻1)

𝐷(𝐸𝐻1)
+ 𝑤𝑖𝐻2

2 𝑘(𝐸𝐻2)

𝐷(𝐸𝐻2)
                 

      = 𝑤𝑖𝐿
2 𝑘(𝐸𝐿)

𝛼𝐷𝑡𝑜𝑡
+ 𝑤𝑖𝐻1

2 𝑘(𝐸𝐻1)

(1 − 𝛼)𝐷𝑡𝑜𝑡

2

+ 𝑤𝑖𝐻2
2 𝑘(𝐸𝐻2)

(1 − 𝛼)𝐷𝑡𝑜𝑡

2

  

      =
𝑘(𝐸𝐿)𝑤𝑖𝐿

2

𝛼𝐷𝑡𝑜𝑡
+

2[𝑘(𝐸𝐻1)𝑤𝑖𝐻1
2 + 𝑘(𝐸𝐻2)𝑤𝑖𝐻2

2 ]

(1 − 𝛼)𝐷𝑡𝑜𝑡
         (6) 

 

Differentiate 𝑉𝑎𝑟(𝜌𝑖) with respect to 𝛼, and set the result to 

0. 

 

𝜕𝑉𝑎𝑟(𝜌𝑖)

𝜕𝛼
=

−𝑘(𝐸𝐿)𝑤𝑖𝐿
2

𝛼2𝐷𝑡𝑜𝑡
+

2[𝑘(𝐸𝐻1)𝑤𝑖𝐻1
2 + 𝑘(𝐸𝐻2)𝑤𝑖𝐻2

2 ]

(1 − 𝛼)2𝐷𝑡𝑜𝑡
= 0 

𝛼 = {1 ± √
2[𝑘(𝐸𝐻1)𝑤𝑖𝐻1

2 + 𝑘(𝐸𝐻2)𝑤𝑖𝐻2
2 ]

𝑘(𝐸𝐿)𝑤𝑖𝐿
2 }

−1

           (7) 

 

D. Dose Management for Quadruple-Beam Configuration  

In the EID-based MECT with quadruple beams, the total 

dose equals to the dose from all of the four beams, as in (8). 

 

𝐷𝑡𝑜𝑡 = 𝐷(𝐸𝐿1) + 𝐷(𝐸𝐿2) + 𝐷(𝐸𝐻1) + 𝐷(𝐸𝐻2) 

=
𝑘(𝐸𝐿1)

𝑉𝑎𝑟[𝜇(𝐸𝐿1)]
+

𝑘(𝐸𝐿2)

𝑉𝑎𝑟[𝜇(𝐸𝐿2)]
+

𝑘(𝐸𝐻1)

𝑉𝑎𝑟[𝜇(𝐸𝐻1)]
+

𝑘(𝐸𝐻2)

𝑉𝑎𝑟[𝜇(𝐸𝐻2)]
  (8) 

 

Similarly, a dose distribution coefficient 𝛼, the ratio 

between the dose delivered to one of the low energy beams 

and the total dose is defined. In addition to the assumption of 

equivalent dose for two high energy beams as in triple beams, 

the doses delivered to those two low energy beams are also 

approximately the same. Thus,  

 

𝐷(𝐸𝐿1) = 𝐷(𝐸𝐿2) = 𝛼𝐷𝑡𝑜𝑡                            (9) 

𝐷(𝐸𝐻1) = 𝐷(𝐸𝐻2) =
(1 − 2𝛼)𝐷𝑡𝑜𝑡

2
                   (10) 

 

The dose distribution coefficient for quadruple-beam 

configuration is determined as in (11).  

𝛼 = {2 [1 ± √
𝑘(𝐸𝐻1)𝑤𝑖𝐻1

2 + 𝑘(𝐸𝐻2)𝑤𝑖𝐻2
2

𝑘(𝐸𝐿1)𝑤𝑖𝐿1
2 + 𝑘(𝐸𝐿2)𝑤𝑖𝐿2

2 ]}

−1

       (11) 

 

E. Computer Simulation for Filter Thickness Optimization 

The optimization of filter thickness was performed using a 

simulation tool (DRASIM, Siemens Healthcare) [15]. A 

cylindrical water phantom in a diameter of 20cm containing 9 

solutions was used in the simulation. One sample CT image 

indicating the solution types and concentrations was shown in 

Fig. 2. 

In this preliminary study, only the optimization of thickness 

for split filter associated with the high energy beams with 

140kV was investigated. The low energy beam with 80kV in 

EID-based MECT with triple beams has no additional 

          
                      (a)                                                            (b) 

Fig. 1. (a) Triple-beam configuration on a dual-source CT with a split 

filter added to one of the sources; (b) Quadruple-beam configuration 

with split filters added to both sources. 
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filtration, whereas the low energy beam with 100kV in EID-

based MECT with quadruple beams uses a split filter of 

Sn/GOS (gadolinium oxysulfide) with fixed thickness of 

0.1/0.1mm. The high energy beam with 140kV was pre-

filtered by a split filter made by Au/Sn with three different 

thickness levels: 0.09/0.3, 0.12/0.4, 0.14/0.5mm. Examples of 

x-ray spectra for triple- (80/Au140/Sn140kV) and quadruple- 

(GOS100/Sn100/Au140/Sn140kV) beam configurations were 

plotted in Fig. 3. The tube current-time products (mAs) were 

determined for each beam based on the optimization results 

from Sections II. C and D. The total radiation dose output 

(CTDIvol) for all the scan configurations was determined as 

16.4mGy. 

After performing the material decomposition, we obtained 

three material maps for iodine, gadolinium, and water for each 

filtration configuration, and then the noise levels were 

determined and compared.  

III. RESULTS 

A. Dose Distribution with Triple-Beam Configuration 

Without loss of generality, Eq. (7) was used to determine 

the dose distribution among triple beams with beam spectral 

configurations of 80kV for the low energy beam, whereas 

140kV for the high energy beam with split filter of 0.12mm 

Au and 0.4mm Sn. The determined dose distribution 

coefficients were 3.2%, 13.8%, and 9.4% for water, iodine, 

and gadolinium, respectively, when the volume conservation 

(prior information) was excluded from the material 

decomposition process. In contrast, when the volume 

conservation was included, the dose distribution coefficients 

are 38.3%, 34.5%, and 28.0%, with an average of 33.6%, 

indicating an approximately equivalent dose distribution 

among three beams. 

B. Dose Distribution with Quadruple-Beam Configuration 

Eq. (11) was used to determine the dose distribution among 

four beams with beam spectral configurations of 100kV for 

the low energy beam with split filter of: 0.1mm GOS and 0.1 

mm Sn, whereas 140kV for the high energy beam with split 

filter of 0.12mm Au and 0.4mm Sn. The determined dose 

distribution coefficients were 26.3%, 37.9%, and 36.9% for 

water, iodine, and gadolinium, respectively, when the volume 

conservation (prior information) was not used. In contrast, 

when the volume conservation was included into the material 

decomposition process, the dose distribution coefficients were 

23.1%, 27.9%, and 26.4%, with an average of 25.8%, also 

indicating an approximately equivalent dose distribution 

among four beams. 

C. Impact of Filter Thickness  

The impact of filter thickness on noise levels in each basis 

material map was summarized in Fig. 4. As the filter thickness 

increases, the noise levels in all basis material maps were 

reduced, which was attributable to better spectral separation 

among triple/quadruple beams. Though noise reductions were 

observed in both material decompositions without/with the 

volume conservation (prior information), the variation of the 

filter thickness has little impact on basis image noise after 

material decomposition with volume conservation. 

IV. DISCUSSIONS AND CONCLUSIONS  

 For an EID-based MECT platform, the optimal dose 

distribution among triple/quadruple beams was determined to 

minimize the noise of basis materials for a specific clinical 

application that involves multiple contrast agents. The impact 

of filter thickness for the high energy beam was also 

 
Fig. 2.  The linear attenuation map of the cylindrical water 

phantom acquired with 80kV with all the material type and 

concentrations of the inserted solutions labelled. 
 

 
Fig. 3.  Examples of spectra used in EID-based MECT with (a) triple beams, 

and (b) quadruple beams.  
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evaluated. By incorporating the volume conservation as an 

additional physical constraint, all the noise levels in three 

material maps may be minimized simultaneously by 

distributing the total dose approximately equally among 

triple/quadruple beams. Overall noise reduction was observed 

with increased thickness of the filter for high energy beams. 

However, the selection of filter thickness will also need to take 

into account other practical factors, such as maximum x-ray 

tube output capacity.  
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Generalized least squares for spectral and dual
energy CT: a simulation study

Cyril Mory, Bernhard Brendel, Klaus Erhard, Simon Rit

Abstract—In the presence of noise, decomposing spectral CT
projections into materials generates anti-correlated noise. Estimat-
ing the covariance of this noise and taking it into account in the re-
construction process, by minimizing a GLS data-attachment term,
is expected to lower the impact of the noise on the reconstruction.
GLS has already been used in dual energy or spectral computed
tomography, but always coupled with a regularization term, which
raises the question of the relative impact of regularization and
GLS. To our knowledge, a fair comparison between plain OLS
and plain GLS is still missing. We provide one in this paper, with
OLS and GLS reconstruction results from simulated projections,
and discuss the relevance of using GLS. Pixels of the projection
data are assumed to be independant, neglecting spatially correlated
noise, and focusing on the inter-material noise correlation only.
With these hypotheses, GLS brings little reduction of the noise
level, while significantly increasing algorithmic complexity, slowing
down convergence and requiring increased numerical precision
with respect to OLS. Furthermore, in real situations, the covariance
matrix has to be estimated, which adds another level of complexity
and a potential source of inaccuracies.

I. INTRODUCTION

In the presence of noise, decomposing spectral CT photon
counts projections into material projections generates anti-
correlated noise, since an over-estimation of the length tra-
versed through one material must be compensated by an under-
estimation of the length traversed through another to match
the total attenuation. Estimating the covariance of this noise
and taking it into account in the reconstruction process, by
minimizing a Generalized Least Squares data-attachment term,
theoretically guarantees that the estimate (the reconstructed vol-
ume) has the smallest possible variance, i.e. the least noise. GLS
data-attachment terms taking into account the inter-materials
correlation have already been used in dual energy [1] or
spectral computed tomography [2] from material-decomposed
projections, but since these studies use regularization, the impact
of GLS alone cannot be evaluated from them. Throughout the
paper, in order to avoid confusions, we use the term ‘pixel’ to
describe an element of the projection data, and the term ‘voxel’
to describe an element of the reconstructed volume, even though
the numerical experiments are actually 2-dimensional.

A. Principles of Ordinary and Generalized Least Squares

Ordinary least squares (OLS) and Generalized Least Squares
(GLS) are two ways to design the cost function in an inverse
problem. They do not dictate which algorithm should be used
to perform minimization. When trying to retrieve a vector

C. Mory & S. Rit are with the Université de Lyon, CREATIS ; CNRS
UMR5220 ; Inserm U1044 ; INSA-Lyon ; Université Lyon 1 ; Centre Léon
Bérard, France.

B. Brendel & Klaus Erhard are with Philips GmbH Innovative Technologies,
Research Laboratories, Hamburg, Germany

of parameters f from measurements p through a system of
matrix R, OLS consists in minimizing ‖Rf − p‖22. If the
errors on the measurements p are uncorrelated and of identical
variance, minimizing the OLS cost function yields the Best
Linear Unbiased Estimator (BLUE). If the errors on p are of
different variances and/or correlated, the BLUE is obtained by
minimizing the GLS cost function, i.e. (Rf−p)TC−1(Rf−p),
where C is the covariance matrix of p. Choosing C = I yields
the OLS cost function. OLS is therefore a specific case of GLS.
In our case, the matrix R is the forward projection matrix, and
f and p are column vectors representing 4D datasets: f is the
set of 3D volumes to reconstruct, one per material, and p is
the set of decomposed 2D material projections, one per X-ray
source position and material. Throughout this document, we use
the following dimension orders, from fastest to slowest:
• for f : material, then x, y, z axes of the volume
• for p: material, then u,v axes of the detector, then source

position

B. Application to spectral CT

Since the decomposition method we used [3] processes each
pixel of the projection data separately, it cannot provide spatial
covariance information. The covariance matrix C is therefore
restricted to inter-material covariance. With the dimension or-
der specified in section I-A, it is block-diagonal, each block
representing the m ×m inter-material covariance matrix for a
given pixel, where m is the number of materials. The forward
projection matrix R is designed accordingly, and since all
materials are projected the same way, it is made of blocks of
m identical rows.

II. MATERIAL AND METHODS

A. Minimization algorithm

Both OLS and GLS cost functions can be minimized by the
linear conjugate gradient (CG) algorithm. CG solves problems
of the type Af = b, where A is a symmetric positive definite
matrix, f is the unknown vector and b is a known vector. Let us
derive the expressions of A and b in the OLS and GLS cases:
• OLS: the minimum of the cost function is reached when

its gradient is null, i.e. when

RT (Rf − p) = 0

RTRf = RT p

Identifying the terms, A = RTR and b = RT p. Note that
if RTR can be inverted in a reasonable time, the Moore-
Penrose pseudo inverse reconstruction f̃ = (RTR)−1RT b
yields the same solution as a converged conjugate gradient
initialized from zero.
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• GLS: let UTU = C−1 be the Cholesky decomposition of
the inverse covariance matrix, with U an upper-triangular
matrix. Then the GLS cost function can be rewritten as
‖U(Rf − p)‖22, and its gradient is null when

RTUTU(Rf − p) = 0

RTUTURf = RTUTUp

RTC−1Rf = RTC−1p

Identifying the terms, A = RTC−1R and b = RTC−1p.
The Moore-Penrose pseudo inverse reconstruction is f̃ =
(RTC−1R)−1RTC−1b.

The conjugate gradient algorithm is guaranteed to have con-
verged after n iterations, where n is the number of elements in
f . In practice, however, iterations are usually stopped far before
that.

B. Simulation study

Simulations were performed with RTK [4]. We used a 2-
dimensional, 3-materials (iodine, gadolinium and water) phan-
tom, in which each material volume is made of 350 × 350
voxels. The phantom is composed of a small cylinder of iodine
at concentration 1mg.ml−1, a small gadolinium cylinder at
concentration 1mg.ml−1, both inside a large water cylinder at
concentration 1 g.ml−1, as shown in Fig. 1. 2400 projections of
643 × 1 pixels were computed analytically, using the geome-
try of the spectral CT scanner prototype (Philips Healthcare,
Israël) installed at the CERMEP, Lyon, France. They were
then converted to photon counts with 5 energy bins using the
scanner’s spectrum, detector response, and X-ray attenuation
functions of each material. Poisson noise was added to the
photon counts, then the noisy photon counts were decomposed
into material projections using the RTK implementation of the
method described in [3]. Since with noisy input photon count
data, this method generates aberrant results for some pixels, we
applied a Hampel filter [5] to remove the outliers. For each
pixel, in each material, a 3 × 3 × 3 neighborhood centered on
the pixel is considered, and the median and standard deviation
in this neighborhood are computed. If the pixel’s value is off the
median by more than 2σ, it is replaced by the median, otherwise
it is left unchanged. In order to obtain a reliable estimate of
the covariance of the noise on the decomposed projections,
we repeated the last three steps (Poisson noise, decomposition
and denoising) a hundred times, each time with a different
realization of Poisson noise, and for each pixel, we computed the
3× 3 covariance matrix on these hundred (3-materials) values.
For the reconstructions, only one set of material projections was
required, so we kept only the one from the first simulation.

Fig. 1: The three channels of the phantom used for simulations on RTK, shown
side-by-side. From left to right: iodine, gadolinium, water

C. Evaluation of inter-material correlation coefficients

On the RTK simulated data, during the computation of the
covariance matrix, we also computed the standard deviation
of the noise in each material and each pixel, on the hundred
realizations. Combining the covariance matrix and the standard
deviation values, we were able to calculate correlations coef-
ficients. Obviously, like the covariances, these vary from one
pixel to the other, but the mean and standard deviation over all
pixels is nevertheless interesting. The correlation coefficients we
measured were the following:
• Iodine-gadolinium correlation’s mean = -0.3963, std =

0.1185,
• Iodine-water correlation’s mean = -0.1571, std = 0.1135,
• Gadolinium-water correlation’s mean = -0.5489, std =

0.07953.
As expected, the noise is anti-correlated between materials.

D. Convergence issues and workarounds

While the mathematics of GLS are appealingly simple, we
encountered a number of practical difficulties during our inves-
tigation of this topic. These difficulties are listed in the present
section.

1) First CG iterates: It is well known that the first CG
iterates of an OLS reconstruction are (roughly) low-pass ap-
proximations of the result CG yields at convergence, and high
frequencies build up over the course of the iterations. In a GLS
reconstruction, the first CG iterates are also low frequency, but
they display a lot of cross-talk between materials (see Fig. 3).
This cross-talk disappears over the course of the iterations. Stop-
ping the iterations early is therefore much more problematic in
GLS than in OLS. This problem can be alleviated by initializing
the GLS conjugate gradient reconstruction with an early iterate
of the corresponding OLS conjugate gradient reconstruction:
with this approach, early stopping the GLS part no longer yields
a result with a lot of cross-talk. However, it does not seem to
reduce the number of iterations required to attain convergence.
Therefore all results presented in this paper were obtained from
a zero initialization.

2) Relative convergence speed: On the experiments we have
carried out, GLS required many more iterations than OLS to
reach convergence. Having to perform a lot of iterations for
the GLS case brought in additional problems: after a certain
point, each additional iteration of CG increased the noise in
the reconstructions. This was due to the forward and a back
projector not being the adjoint of one another with enough
precision.

3) Adjoint operators: Having unmatched forward and back
projectors is usually not a problem if the number of iterations
remains low (typically below 100), but we had to do more
iterations than that. We adopted the method described in [6], i.e.
we computed the ratio between < Rf, p > and < f,RT p >,
where f and p are a random volume and a random set of
projections, respectively, and < ., . > denotes the dot product.
The precision with which this ratio matches 1 is a measure of the
‘adjointness’ of R and RT . In our case, using RTK’s matched
implementations of the Joseph forward and back projector [7],
we obtained 1− ratio ≈ 10−5, which was insufficient. Switch-
ing from single precision (32-bits floats) to double precision
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(64-bits) yielded 1 − ratio ≈ 10−13, and got rid of the noise
divergence problem. With our implementations, having to use
matched forward and back projectors implies that at least one is
sub-optimally implemented (either the ray-based back projector,
like in our case, or a voxel-based forward projector, which is not
available in RTK), which slows down calculations. In addition,
having to use double precision both increases the reconstruction
time again and doubles the memory requirements.

4) Scaling as preconditioning: Preconditioning consists in
inserting a matrix D, and solving by CG the following problems
instead of the ones described in section II-A:
• OLS:

DRTRDT f̂ = DRT p

Identifying the terms, this means one must run the con-
jugate gradient algorithm with A = DRTRDT and b =
DRT p, and obtain f̂ . Then f = DT f̂ .

• GLS:
DRTC−1RDT f = DRTC−1p

Identifying the terms, this means one must run the con-
jugate gradient algorithm with A = DRTC−1RDT and
b = DRTC−1p, and obtain f̂ . Then, again, f = DT f̂ .

Any matrix D can be used, but the goal of preconditioning is to
obtain a new matrix A with a condition number closer to 1 than
the original matrix A, because this condition number has a large
impact on convergence speed (the closer it is to 1, the faster CG
converges). In case of a diagonal preconditioner, D = DT , and
multiplying by D consists in a voxel-wise multiplication. We
used

D = IN ⊗

λ1 0 0
0 λ2 0
0 0 λ3


i.e. each material was simply scaled by a fixed factor λi. In our
specific case, scaling can be performed either before or after
forward projection, therefore RD = D′R with D′ a matrix
similar to D but scaling projections instead of volumes. Defining
C ′ = D′C−1D′, the matrix A becomes A = RTC ′R and the
vector b becomes b = RTC ′D′−1p. Preconditioning can there-
fore be obtained without increasing the amount of calculations
at each iteration, simply by dividing the material projections
by the λi, i ∈ {1..m}, performing a GLS reconstruction with a
scaled covariance matrix C ′, and then multiplying the obtained
material volumes by λi. We tried several choices for the λi:
setting them all to 1, i.e. no preconditioning; setting them to
the mean of the ground truth projection of each material; and
λi = mean

E

(
µiodine(E)
µi(E)

)
, where µi(E) is the mass-attenuation

of material i at energy E. The third method, although it does not
depend of the object, and is therefore probably suboptimal in
some cases, lead to the fastest convergence in our experiments.

5) Fair comparison: Because OLS and GLS converge at
different speeds, choosing one iterate of each to perform a fair
comparison between them is a delicate problem. The only possi-
bility seems to be to wait until both have converged. After 1000
iterations, the GLS cost function reduction between successive
iterates had dropped to 10−6, which was deemed sufficient,
while OLS had reached convergence after 150 iterations. Fig. 3
shows the convergence curves in logarithmic scale.

OLS GLS Gain
MSE iodine 8.79e-07 7.85e-07 -10.7%

MSE gadolinium 4.62e-07 4.19e-07 -9.2%
MSE water 0.0352 0.0327 -7.0%
SNR iodine 0.478 0.486 +1.6%

SNR gadolinium 0.606 0.631 +4.1%
SNR water 2.497 2.572 +3.0%

TABLE I: Results on RTK simulations: compared MSEs and SNRs between
OLS and GLS

III. RESULTS

A. Photon counting experiments

Fig. 2 shows the results obtained with RTK, with one realiza-
tion of the Poisson noise on photon counts. The GLS results are
slightly less noisy than the OLS ones, but the improvement is
only noticeable in the numerical analysis, and not visually. The
MSE with respect to the ground truth and the SNR, computed
as mean(C)/std(C), where C is the set of voxels inside the
cylinder of the material considered, are displayed in Table I.

O
L

S
G

L
S

Fig. 2: RTK reconstructions with converged OLS and GLS. The GLS recon-
structions are slightly less noisy, as shown in Table I, but it is not obvious on
any of the reconstructions

B. Dual energy experiments

The small impact of GLS in the spectral CT experiments
raises a question: could GLS be more effective in reducing
the noise in a dual energy case, given that the anti-correlation
between materials is much stronger in dual energy ? We ran
the same RTK simulations as for spectral CT, only with a 2-
materials phantom (water and iodine). The products of the detec-
tor responses by the incident spectrum were obtained by digitiz-
ing the green and pink curves in Fig. 1 of [8]. With this setup, we
measured a mean correlation coefficient of -0.899. A Hampel
filtering was applied on the material-decomposed projections,
just like in spectral CT, and all subsequent results (covariance
matrix, OLS and GLS reconstructions) were computed from the
denoised projections. Despite the preconditioning, it took about
50 iterations for the OLS reconstruction to converge, and about
3000 iterations for the GLS reconstruction. Since, just like in
the spectral case, the reconstructions OLS and GLS results are
visually identical, they are not shown here, but image quality
metrics are provided in Table II.

IV. DISCUSSION

In an attempt to isolate how GLS improves over OLS from
other contributions to noise reduction, we have chosen to
perform unregularized reconstructions only, and have noticed
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Fig. 3: Cost function after each iteration minus cost function after iteration
1000, in logarithmic scale. Iodine volumes at iterates 10 and 100 are shown
below the graph for GLS and OLS.

OLS GLS Gain
MSE iodine 9.18e-7 8.12e-7 -11.6%
MSE water 0.407 0.405 -0.57%
SNR iodine 0.442 0.470 +6.27%
SNR water 3.067 3.197 +4.25%

TABLE II: Results on RTK dual energy simulations: compared MSEs and SNRs
between OLS and GLS

that GLS brought a very limited benefit. Whether this con-
clusion also holds for regularized reconstructions, and with
which regularization method and parameters, remains an open
question. Taking into account spatial correlations by accurately
modeling advanced effects like scattering or charge sharing
should increase the benefit of using GLS. However, it would
also make implementation more complex, since C−1 would no
longer be block-diagonal, therefore no longer “pixel-separable”.
In this work, the covariance matrix is estimated from a large
number of repetitions of the same simulation (here 100), where
only the Poisson noise realization changes. This empirical
estimation is undoubtedly a source of inaccuracies, which could
undermine the efficiency of GLS. To evaluate the importance
of this error in our simulations, we ran a side experiment,
adding noise with exactly the right covariance matrix (the one
estimated by the simulations) to the noiseless projections, and
reconstructing from those. This had no noticeable effect on the
image quality of the GLS results, leading us to think that the
limited impact of GLS is not caused by inaccuracies in the
covariance matrix estimation. In addition, in a real situation, the
covariance matrix estimation would most likely be less accurate
than in the presented simulations.

V. CONCLUSION

Even with a quite precise knowledge of the covariance matrix,
GLS only brings a moderate improvement of SNR in the RTK
simulated case we have studied. The inevitable inaccuracies in
estimating the covariance matrix in real situations are likely to
reduce this improvement even more. Overall, the gain in SNR
GLS can provide over OLS does not seem to be worth the
efforts it requires in implementation, the risk that an incorrect
covariance matrix might degrade the reconstruction, and the
drop in performance and increase in memory footprint implied
by matched projectors with double precision. Note that these
conclusions hold for unregularized OLS and GLS: adding a
regularizer may lead to different results.
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Abstract—Spectral CT with multiple contrast agents has 

been enabled by energy-discriminating detectors with multiple 

spectral channels. We propose a new approach that uses 

spatial-spectral filters to provide multiple beamlets with 

different incident spectra for spectral channels based on 

“source-side” control. Since these spatial-spectral filters yield 

spectral channels that are sparse, we adopt model-based 

material decomposition to directly reconstruct material 

densities from projection data. Simulation studies in three- 

and four-material decomposition experiments show the 

underlying feasibility of the spatial-spectral filtering 

technique. This methodology has the potential to facilitate 

imaging of multiple contrast agents simultaneously with 

relatively simple hardware, or to improve spectral CT 

performance via combination with other established spectral 

CT methods for additional control and flexibility.  

I. INTRODUCTION 

Spectral CT is an emerging technology that permits 

decomposition and density estimation for multiple material 

components within an image volume. In particular, spectral 

CT has enabled simultaneous imaging of multiple contrast 

agents for applications including simultaneous iodine-

bismuth imaging for angiography/lung imaging [1] and 

three-agent iodine-gadolinium-bismuth imaging [2] for 

multiphasic renal [3] studies. A number of new contrast 

agents are also in development including gold 

nanoparticles for angiography [4], mammography [5], and 

targeted imaging of HeLa cells [6], lung adenocarcinoma 

[7], and colorectal liver metastasis [8]; xenon for lung 

ventilation [9]; bismuth sulphide nanoparticles for lymph 

nodes [10]; and tantalum oxide nanoparticles for cartilage 

[11]. However, most spectral CT has focused on single 

contrast agent imaging (e.g. iodine) – inevitably leading to 

systems that are optimized for that agent. With the 

emergence of new contrast agents and simultaneous 

imaging of multiple agents, there is need for sufficient 

flexibility in data acquisition to acquire high-quality 

spectral data for many contrast agents. 

A number of different strategies have been investigated to 

enable spectral CT. Methods include the use of dual-

sources [12], kV-switching [13], split-filters [14], dual-

layer detectors [15], and energy-discriminating photon-

counting detectors [16]. Many photon-counting detectors 

have the flexibility to provide several energy bins for 

spectral discrimination which enables multi-material 

decomposition. However, individually, most of the other 

methods typically only easily allow two different spectral 

channels limiting their use in multiple contrast agent 

studies. For example, “source-side” spectral variation is 

 

often limited to two x-ray sources, alternation between two 

energies in kV-switching, or two filters in a split-filter 

design where spectral filters cover exactly one-half of the 

fan-beam x-ray. With only two spectral channels, only two 

(or, three using a constraint) different materials may be 

estimated as part of a decomposition. Thus, a strategy for 

more control over the number and form of x-ray spectra 

available for data acquisition has the potential to enable and 

improve multi-material decomposition in CT. 

In this work, we introduce a new concept wherein the x-

ray beam is spectrally modulated across the face of the 

detector using a repeating pattern of filter materials. Such 

spatial-spectral filters allow for collection of many 

different spectral channels using “source-side” control. 

However, in contrast to other spectral techniques that 

provide mathematically complete projection data, spatial-

spectral filtered data is sparse in each spectral channel – 

making traditional projection-domain [17] or image-domain 

[18] material decomposition difficult to apply. Thus, we 

adopt direct model-based material decomposition [19]–[21] 

which combines reconstruction and multi-material 

decomposition, and permits arbitrary spectral, spatial, and 

angular sampling patterns. 

Spatial-spectral filters can be interpreted as an extension 

of split-filters methods [14] that divide the beam into two 

different spectra for each half-fan – instead, dividing the x-

ray beam into several different beamlets. The proposed 

spatial-spectral approach also includes mechanical 

translation of the filter to vary spectral sampling patterns. 

Such an approach shares similarities with other recent 

“source-side” filtering innovations in CT acquisition 

including beam-shaping approaches using multiple aperture 

devices [22], interrupted-beam acquisitions for sparse data 

[23], and grating-oriented line-wise filtration for dual-

energy CT [24].  

In this paper we introduce the concept of spatial-spectral 

filtering for multi-material CT decomposition. Simulation 

experiments are conducted demonstrating the basic 

feasibility of the approach. Various spatial-spectral filter 

designs are explored and applied to multi-contrast imaging 

studies in simple digital phantom studies. 

II. METHODS 

A. Spatial-Spectral Filtering 

An overview of the spatial-spectral filtering approach is 

shown in Figure 1. The main idea is to place a tiled filter 

with different materials in front of the x-ray source. For 

example, a repeating pattern of several material types can 

be used to shape the spectrum of a number of beamlets 

across the face of the detector. This kind of spectral 

encoding through spatial filtering is widely applied in 
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optical imaging – e.g. Bayer filters [25] used in visible light 

detectors for color imaging. For x-ray imaging, practical 

filters may be constructed from materials with k-edges in 

the diagnostic range. This includes elements from Z = 50 

(tin, k-edge at 29.2 keV) to Z = 85 (bismuth, k-edge at 90.5 

keV). A sample repeating filter that uses a tiled pattern of 

bismuth, tungsten, and erbium filters is shown in Figure 1. 

The spectra produced by a 0.4 mm thick filter and a typical 

120 kVp x-ray spectrum are shown in Figure 1B. Note the 

distinct edges in the spectra that coincide with the k-edges 

of those material filters. The exact number and combination 

of materials for filter construction can be optimized for 

particular contrast agents; however, it is straightforward to 

include several different filters for a diversity of spectral 

channels. 

While one could potentially implement spectral CT with 

a static spatial-spectral filter, this has the potential to have 

poor overall sampling. For example, for a static filter, the 

center of the object being scanning may only be probed 

with a single spectrum (based on the filter placed at the 

central ray). To provide increased flexibility in the spatial-

spectral sampling pattern, we propose to translate the filter 

with rotation. Even a simple constant velocity linear 

translation will improve the sampling homogeneity across 

spectral channels. Such a linear translation and an 

illustration of the resulting projection data is shown in 

Figure 1C. Note that each spectral channel is sparse but all 

channels can be collected in a standard acquisition. 

B. Model-based Material Decomposition 

In order to reconstruct such sparse data, we will adopt a 

direct model-based material decomposition (MBMD) 

approach. The authors have previously developed a MBMD 

algorithm [26] based on related development in advanced 

high-resolution CT reconstruction [27]. This MBMD 

approach uses a forward model for projection data where 

mean measurements are 

 𝑦𝑖 = ∑ 𝑠𝑒,𝑖 exp(−∑ 𝑝𝑒,𝑚[𝐀𝑥𝑚]𝑖𝑚 )𝑒   

where the 𝑖th measurement is formed by projection (via 𝐀) 

of 𝑚 material density maps, 𝑥𝑚, and scaling by the energy-

dependent mass attenuation coefficients, 𝑝𝑒,𝑚. Each 

measurement has an energy-dependent factor, 𝑠𝑒,𝑖, which 

incorporates the local incident spectrum induced by the 

moving spectral-spatial filter as well as the detector 

sensitivity (e.g., energy-dependent scintillator stopping 

power, secondary quanta proportional to energy, etc.). 

 The objective function for the MBMD approach uses a 

Gaussian log-likelihood function and standard roughness 

penalty regularization for each material basis. The nonlinear 

objective function is solved using an optimization transfer 

approach based on separable surrogate functions. Details of 

the algorithm can be found in [26] and [27]. For all 

reconstructions/material decompositions in this work, 500 

iterations of the algorithm are applied initializing the water 

material basis with a thresholded, binarized FBP image 

with a density of 1000 mg/ml, and all other material bases 

set to zero. All reconstructions used a 256 x 256 volume of 

0.5 mm voxels. 

C. Simulation Experiments 

Two preliminary investigations of spatial-spectral filters 

are explored in this work. First, we consider a three-

material decomposition example using a digital phantom 

composed of water, iodine, and gold – emulating a multiple 

contrast agent study with both iodinated contrast agent and 

gold nanoparticles (an emerging contrast agent). The digital 

phantom is illustrated in Figure 3A and includes a 10 cm 

cylinder of water and various concentrations of iodine (2.5-

15 mg/ml) and gold (1-4 mg/ml) in 2 cm diameter 

cylinders. We simulated a CT system with 120 cm source-

to-detector distance and 60 cm source-to-axis distance with 

an indirect energy integrating detector (with 600 m thick 

CsI scintillator) with 512-0.5 mm flat-panel pixels, and 

Fig. 1.  Illustration of the spatial-spectral filtering concept. A) The spatial-spectral filter is composed of a repeating pattern of attenuating materials used to 

shape the x-ray beam into beamlets with different spectra. Materials with k-edges in the diagnostic energy range are potentially of greatest utility for 
spectral shaping. B) In a sample spatial-spectral filter application, a 120 kVp spectrum emitted from the x-ray tube is modified with a repeating pattern of 

bismuth, tungsten, and erbium filters (0.4 mm thickness) to achieve three different spectral channels. The total fluence over all energies is normalized to 

the integral of the bismuth-filtered spectrum. C) Adding the ability to translate the spatial-spectral filter permits variation of the sampling pattern. A simple 
constant velocity linear translation as a function of rotation angle is shown. 
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rotated 360° in 360-1° increments. We used a 120 kVp 

source spectrum (prior to spatial-spectral filtration but with 

typical inherent filtration due to the housing, and shown in 

Figure 1B).  

Various combinations of filtering materials were explored 

to determine their relative performance for the three-

material water-iodine-gold decomposition. To keep the 

search space reasonable, we focused on five metals with k-

edges in the diagnostic range, that are readily available, 

machinable, and with few physical hazards. These were 

bismuth (k-edge at 90.5 keV), gold (80.7 keV), tungsten 

(69.5 keV), lutetium (63.3 keV), and erbium (57.5 keV). 

For all investigations, a 0.25 mm thick filter was simulated 

passing 17.5%, 6.5%, 6.5%, 17.7%, and 8.3% of the 

incident 120 kVp spectra for each material, respectively. 

All data was normalized so that the bare-beam fluence for 

the bismuth-filtered beamlet was 5x105 photons/pixel. 

Filters were designed so that each beamlet was 8 detector 

pixels wide and the spatial-spectral filter was translated 1 

pixel per rotation angle. For these preliminary studies, 

perfect alignment of beamlets with pixel boundaries was 

presumed. All 3- and 4-element spatial-spectral filters 

possible with the above five materials were investigated. 

Root mean squared error (RMSE) was computed for 

material decomposition density estimates. Regularization 

parameters for material bases were chosen to be 3 x 108, 5 x 

1011, and 1 x 1012 for the water, iodine, and gold bases, 

respectively; and the Huber penalty delta was set to 10-3. 

A second study considered a four-material decomposition 

for a digital phantom with water, iodine (2-8 mg/ml), gold 

(1-4 mg/ml), and gadolinium (1-4 mg/ml), which is 

illustrated in Figure 4B. The same CT system geometry, 

source, detector, and filter parameters were used. In this 

case all possible 4-element filters and the one 5-element 

filter from the five aforementioned filter materials were 

explored. RMSE was computed for each material 

decomposition. Regularization parameters for material 

bases were chosen to be 3 x 108, 1 x 1011, 1 x 1012 and 1 x 

1012 for the water, iodine, gold, and gadolinium bases, 

respectively; and the Huber penalty delta was set to 10-3. 

III. RESULTS/DISCUSSION 

The results of the three-material decomposition with 

spatial-spectral filtering are shown in Figure 2. RMSE for 

both the iodine and gold contrast agents are reported and 

ranked. The best filter for estimating iodine density is the 3-

element Bi-Lu-Er filter; whereas the best filter for 

estimating gold density is the Bi-Au-Lu filter. The 4-

element Bi-Au-Lu-Er filter achieves the 2nd best 

performance for both iodine and gold – suggesting that the 

4-element filter provides some level of compromise, and 

Fig. 3.  Three-material decompositions using spatial-spectral filters. A) The ground-truth digital phantom and a representative reconstruction/material 

decomposition for the Bi-Au-Lu-Er spatial-spectral filter. B) Error image volumes for each material basis for three different spatial-spectral filters: Bi-Au-
Lu-Er (best 4-element filter); Bi-Au-Er  (best 3-element filter for gold contrast); and Bi-Lu-Er (best 3-element filter for iodine contrast).  
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gets the best of both 3-element filters. Note that the bismuth 

filter appears important for good performance. A 

reconstruction and error images associated with these three 

spatial-spectral designs is shown in Figure 3. 

A summary of the four-material decomposition results 

are shown in Figure 4A. The best overall filter was the 4-

element Bi-Au-Lu-Er filter (although the Bi-W-Lu-Er had 

very slightly better gadolinium estimates). Decomposition 

images for this filter are shown in Figure 4B including a 

colorized iodine-gold-gadolinium image. Again, the 

bismuth filter appears critical in delivering a good 

decomposition. 

These preliminary studies suggest the feasibility of 

spatial-spectral filters to provide spectral CT using 

relatively simple hardware. The filters permit a larger 

number of spectral channels that traditional “source-side” 

modifications which facilitates material decompositions 

with multiple contrast agents. Moreover, spatial-spectral 

filters may be combined with other spectral CT approaches 

for additional advantages. For example, combinations may 

help to improve the relationship between density estimates 

and radiation dose, or to help improve the low 

concentration density estimation limits (especially 

important for highly specific and targeted contrast agents). 

While these preliminary results are encouraging a 

number of ongoing studies are required to fully realize the 

spatial-spectral filter concept in a physical system. In 

particular, due to finite x-ray focal spot size, misalignment 

of beamlets with pixel boundaries, etc., more complete 

modeling of the transition regions between beamlets is 

required. Similarly, kV optimization and an exploration of 

tube efficiency and tube loading must be undertaken. 

Optimal sampling patterns driving filter actuation and the 

effects of regularization also need to be fully explored. 

Work was supported, in part, by NIH grant U01EB018758. 
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Fig. 4.  Four-material decompositions using spatial-spectral filters. A) Summary of the performance of all 4-element filters and the 5-element filter. B) 
Ground truth and estimated densities using the Bi-Ai-Lu-Er filter for the four-material decomposition experiment.  

 

B 

A 

0

1

2

3

4

5

6

7

8

9

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 200 400 600 800 1000 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 0 1 2 3 4

D
ig

it
a
l
P

h
a
n
to

m

Water Iodine Gold Gadolinium I-Au-Gd

1000

mg/ml

8

mg/ml

4

mg/ml

2

mg/ml

2

mg/ml

4

mg/ml

1

mg/ml

2

mg/ml

2

mg/ml

2

mg/ml

2

mg/ml

1

mg/ml

4

mg/ml

1

mg/ml

B
i-
A

u
-L

u
-E

r

mg/ml

Iodine 

mg/ml 

Gold 

mg/ml 

Gadolinium 

mg/ml 

The fifth international conference on image formation in X-ray computed tomography 105



Prior-Based Multi Material Decomposition
(PBMMD) for Dual Energy CT

Sabrina Dorn, Shuqing Chen, Stefan Sawall, Joscha Maier, Michael Knaup, Andreas Maier, Michael Lell,
and Marc Kachelrieß

Abstract—With the advent of dual energy CT it is possible
to obtain a quantitative analysis of the material composition
of the anatomical structures in the human body. However, the
task of material decomposition is still challenging, as organs
might be a composite of numerous materials: e.g. blood, fat,
water, air, bone and contrast media. Although multi energy
CT achieves promising material decompositions into two, three,
or more materials, this technology is not yet prevalent in the
clinical routine. In this work, we present a prior–based multi
material decomposition (PBMMD) for dual energy computed
tomography (DECT) data. The method consists of multiple
organ–dependent three material decompositions exploiting prior
anatomical information. Using a cascaded 3D fully convolutional
neural network, the CT data set is segmented and classified
into different organs. Depending on the segmented structure, the
basis material triplet is selected organ–dependently leading to
overlapping triangles in the dual energy space. The PBMMD
approach is evaluated using patient data in the arterial and
portal venous phase acquired with a dual source CT system. The
materials are quantified according to the anatomical structure
they belong to. We conclude that the proposed method provides
physically plausible volume fractions that bear the potential to
improve the material quantification for diagnosis, particularly to
evaluate the vascularization of tumors.

I. INTRODUCTION

Dual energy computed tomography (DECT) acquisition
samples the spatial distribution of the energy–dependent linear
attenuation coefficient at two different x–ray spectra. There are
two main physical mechanisms dominating the attenuation of
biological materials in the clinically relevant energy range of
30 to 150 keV: the photoelectric effect that is dominated by the
atomic number of the composite materials and the Compton
effect that depends on the irradiated beam energy. Hence, dual
energy (DE) allows the differentiation between two materials
with high atomic numbers, e.g. iodine, calcium or gadolinium,
or in clinical practice, two other basis materials, e.g. water and
bone, if no K–edge is present in the energy range. However,
there is a clinical interest in decomposing the DE data into
more than three materials. For example, the quantification of
the fat content in the liver requires the decomposition into
four basis components: liver tissue, fat, blood and contrast
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Fig. 1. Left: context–sensitive resolution and display. Right: context–sensitive
dual energy evaluation using conventional DE applications [3], [4].

media (CM) [7], [8], [11]. By making an additional assumption
on the mixing behavior, it is possible to decompose DE data
into three material components [6]. However, there are two
problems regarding the three material decomposition: the basis
materials at the vertices of the triangle may not represent
the components of the organ of interest. For instance, bone
can mathematically be represented by fat, blood and iodine,
but this representation may lack a physical interpretation. The
volume fractions may not result in meaningful values if the
voxel is outside the triangle where at least one basis material
coefficient becomes negative. One possible solution is the
tessellation of the DE diagram resulting in more than three
basis materials [8] (see Fig. 2 lower left). The three basis
materials for the decomposition are determined by the location
in the DE diagram of the voxel that should be decomposed.
Due to noise, the voxel could fall into an incorrect triangle
leading to ambiguities in the decomposition. Each point that
is located in the convex hull of the tessellation is decomposed
into its three basis materials. Even if the resulting volume
fractions are non–negative and sum up to one, wrong vertices
might be used that do not always result in a physiologically
meaningful decomposition. The major disadvantage of this
method is the isolated treatment of each voxel. Neither the
information from adjacent voxels nor the location of the
voxel within the volume is used. In our preliminary work, a
segmentation–assisted material quantification method couples
the material decomposition with a simple threshold–based
segmentation [5]. In this approach, the segmentation is very
limited because no assignment to an anatomical structure
is possible. Moreover, we have demonstrated the benefit of
more sophisticated prior anatomical knowledge for a context–
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Fig. 2. Schematic representation of the dual energy diagram, where the
CT–values of the high energy data are plotted against the CT–values of the
low energy data (upper left). Each voxel falling into one triangle can be
decomposed into its thee basis material fractions (upper right). By using
a tessellation of triangles that is constructed by a set of basis materials,
it is possible to decompose the voxel into more than three basis material
fractions (lower left) [8]. However, this does not always lead to meaningful
material fractions. An organ–dependent selection of the basis materials leads
to overlapping triangles. Prior anatomical information is used to resolve the
resulting ambiguities in an organ–specific manner (lower right).

sensitive CT image reconstruction, display and analysis [3],
[4]. Depending on the a–priori information, the individual
settings for each organ are adjusted separately. In this work,
we are aiming at transferring the principle of exploiting prior
anatomical knowledge to DECT material decomposition. We
propose a prior–based multi material decomposition (PB-
MMD) that consists of multiple organ-specific three material
decompositions. We perform an organ–dependent selection of
the basis materials leading to overlapping triangles in the DE
diagram. Prior anatomical knowledge is obtained by means of
an automatic neural network multi–organ segmentation.

II. MATERIALS AND METHODS

TABLE I
TRIPLET MATERIAL LIBRARY

Basis material library
organ material 1 material 2 material 3
lung air blood contrast media
liver fat liver tissue contrast media
bone fat contrast media cortical bone

muscles fat soft tissue contrast media
fatty tissue fat blood contrast media

aorta,vasculature blood contrast media cortical bone
spleen, kidneys fat blood contrast media

. . . . . . . . . . . .

For each DE image pair, there exist two basis material
images α1 and α2. The decomposition in image domain is
given by the linear system of equations(

fL,1 fL,2
fH,1 fH,2

)(
α1

α2

)
=

(
fL
fH

)
.

Fig. 3. 3D representation of the automatic segmentation.

In order to decompose the DE data into three basis material
components, additional constraints on volume or mass preser-
vation are necessary. We assume that each voxel consists of at
most three material constituents and is therefore a compound
of three basis materials that are known a priori. We assume that
the mixture is volume preserving, meaning that the material
composition consisting of M basis material volume fractions
αi satisfies the ideal solution constraint

M∑
i=1

αi = 1.

Related work [8] pointed out that each reasonable decompo-
sition into more than two basis materials implicitly makes an
assumption on mass conservation. Therefore, the assumption
results in a realistic approximation of the mixing behavior
in the human body. Three material decomposition assuming
volume preservation is given as follows:fL,1 fL,2 fL,3

fH,1 fH,2 fH,3
1 1 1

α1

α2

α3

 =

fL
fH
1

 ,

subject to αi ≥ 0, i = 1, 2, 3. This positivity constraint
must be fulfilled for all volume fractions to provide physically
meaningful results. As shown in Fig. 2 (upper right), the three
material decomposition can be interpreted as a triangle in the
DE diagram. Each point that is located inside one specific
triangle can be decomposed into its basis material fractions.
In order to decompose the DE data into more than three basis
material components, we propose a prior–based multi material
decomposition (PBMMD). Instead of using a complete tessel-
lation [8] of the DE space (see Fig. 2 lower left), the basis
materials are selected based on prior anatomical knowledge.
The prior knowledge is gained from an automatic multi–organ
segmentation using an cascaded fully convolutional neural
network [1] consisting of two U–Nets [10]. The first U–Net is
trained to detect the abdominal cavity in order to reduce the
search space for the automatic segmentation. The second U–
Net is then applied to segment the organs liver, kidneys, spleen,
aorta, lung and bone. The remaining yet unlabeled voxels in
the background of the organs are further classified into the
four tissue types muscle, fat, vasculature and air inclusions
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Fig. 4. Decomposition of an abdominal DECT data set into the seven constituent materials. From left to right (first row): monoenergetic reconstruction at
70 keV, volume fraction fat, air, blood. From left to right (second row): volume fraction contrast media (CM), soft tissue, liver tissue and cortical bone. Except
for CM the volume fractions are displayed in the range between 0 and 1. In order to visualize the iodine distribution, a thinner range from 0 to 0.02 is chosen.

using a simple thresholding approach. Depending on the organ
or tissue assignment, the basis material triplet is selected for
the decomposition (see Fig. 2 lower right). Possible basis
material triplets are listed in TABLE I. Hence, we assign
one basis material triplet to each voxel. The organ–dependent
assignment allows for potentially overlapping triangles in the
DE space. For instance, the triangle that is assigned to bone
overlaps with the triangle that is assigned to the liver. Each
voxel that is assigned to one triangle has to be located inside
the triangle in order to yield meaningful volume fractions.
However, due to the local noise distribution, some voxels could
be outside the triangle. In order to cope with these voxels, they
are projected onto the closest edge of the triangle [9]. Instead
of only considering the measured CT–values at two different
energies, we incorporate prior anatomical knowledge to guide
the decomposition process. Besides presenting more and more
material images to the radiologist, the volume fractions of
the material compound can be rescaled to organ–dependent
material scores (fat content of liver, iodine content of liver,
soft tissue content of liver, absolute or relative) that can be
visualized via a reasonable visualization, e.g. pie charts, and
later correlated with different diagnoses.

III. RESULTS AND DISCUSSION

Computed tomography patient data of the thorax and ab-
domen were acquired using a dual source CT system (Defi-
nition Force, Siemens Healthineers, Forchheim, Germany) in
the dual energy mode. The x–ray tube voltages were set to
70 and 150 kV, respectively. Ultravist 370 was administered
as contrast agent with body weight adapted volumes. The
study was performed for contrast–enhanced DECT patient data
sets in the arterial and in the portal venous phase. The final
segmentation result is shown in Fig. 3. Since the segmentation
accuracy is not yet completely sufficient in some cases, we
need to manually refine the organ boundaries. The used basis
materials are blood, contrast media (Ultravist 370 – iodine

Fig. 5. Pie chart visualization of the decomposition results. Instead of present-
ing evermore material images to the radiologist, the material composition is
visualized as pie chart. An arbitrarily shaped ROI is evaluated and decomposed
into its material components. The exact delineation of one specific anatomical
structure is not necessary.

contrast agent containing 370 mg iodine/mL), cortical bone
(CaHA with 250 mg/mL), fat, soft tissue, liver tissue and
air as tabulated in the literature [2]. The basis materials liver
tissue, soft tissue and blood differ by their relative density
during the simulation using the Evaluated Photon Data Library
(EPDL97) [2]. We also allow for mixtures of cortical bone
with contrast media and contrast media with fat, since in
a clinical case the contrast media is also diluted into these
anatomical structures. The triplet material library used in our
experiments (shown in TABLE I) consists of seven varying
basis material combinations. Fig. 4 shows the monoenergetic
reconstruction and decomposition of an abdominal DECT data
set into its seven basis material volume fractions using the
proposed PBMMD. Since the basis material CM is a dilution
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consisting of blood and iodine, the volume fraction of contrast
media is much smaller. Hence, we present the volume fraction
within another window. However, the volume fractions of

Fig. 6. Quantification of iodine concentration
(C = 5 mg/mL, W = 10 mg/mL).

the contrast media can easily be converted to an iodine
concentration. The location–dependent mass concentration of
any material is given by

γ(x) =
m

V
= fbasis · ρbasis.

The mass concentration of iodine in each voxel is therefore
γiodine = fCM ·370 mg/mL. Fig. 6 illustrates the distribution of
the mass concentration of iodine in each voxel. By evaluating
small regions of interest, we obtain a quantitative measure
of the average values of absolute iodine concentrations. The
value of the bone mineral density, i.e. the concentration of
pure CaHA cannot be converted as easily, since the real
concentration in the human body is not known exactly. In our
experiments, we calibrated the value with an arbitrarily chosen
value. Besides the quantification of iodine content (fat content
etc.) the proposed method is also able to detect calcifications
in the vascular system (see Fig. 7).

IV. CONCLUSION AND OUTLOOK

In this work, we have demonstrated that PBMMD is able to
decompose patient data into more than three basis materials.
Compared to the tessellation approach, where the assignment
of one DE data point to one triangle is restricted to the location
of the voxel in the DE space leading to ambiguities in the
decomposition, our novel approach shows robust decompo-
sition results. The number of possible material triplets is not
restricted to a specific number and can be extended on demand.
Exploiting the prior anatomical knowledge, each organ or
tissue type is exactly assigned to one decomposition triangle.
The materials are therefore decomposed into its material com-
pounds according to the anatomical structure they belong to.
Furthermore, PBMMD enables the quantification of the iodine
content in each voxel and facilitates the detection of small
calcifications in the vascular system. While we showed that
the decomposition into more than three materials is possible, a
quantitative evaluation of the material compound, particularly
for the quantification of the bone mineral density (BMD),

Fig. 7. Calcifications of the aorta are also apparent in the volume fraction of
the cortical bone.

is still needed. Future work includes to perform a patient-
specific calibration of the basis materials by means of the
automatic segmentation. The method yields volume fractions
that bear the potential to improve the material quantification
for diagnoses, particularly to evaluate the vascularization of
tumors.
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Divergent-beam backprojection-filtration formula
with applications to region-of-interest imaging

Aymeric Reshef, Cyril Riddell, Yves Trousset, Saı̈d Ladjal, and Isabelle Bloch

Abstract—We propose a new backprojection-filtration (BPF)
method for cone-beam computed tomography (CBCT) with flat-
panel detectors over circular orbits. The method is exact in
the fan-beam geometry and provides an approximate CBCT
reconstruction that is different from the standard Feldkamp-
Davis-Kress (FDK) method. More interestingly, it can be used
for region-of-interest (ROI) reconstruction by complementing
a truncated low-noise acquisition with dense angular sampling
by additional non-truncated views that are either high-noise or
angularly undersampled.

I. INTRODUCTION

Filtered backprojection (FBP) performs poorly when pro-
jections are truncated, unless data extrapolation is performed
prior to filtering. Alternative direct reconstruction methods
were derived to address the issue of ROI reconstruction [1].
However, when not in parallel-beam geometry, they require a
dense angular sampling of the projections.

In the case of interior tomography, it was shown that no
unique solution could be obtained from the truncated projec-
tions only. However, a tiny additional information, such as a
prior knowledge on the image itself [2] or a few additional un-
truncated measurements [3] is enough to stabilize the problem.
Unfortunately, no closed-form analytical solution exists and
iterative reconstruction has been used instead.

In this work, we propose a new backprojection-filtration
(BPF) formula in cone-beam geometries with flat-panel de-
tectors and circular orbits, which is used to design a direct
reconstruction method for ROI imaging. The formula is de-
rived in Section II. The application of the method to ROI
imaging is described in Section III. Experiments are presented
in Section IV and results are shown in Section V.

II. METHOD

A. Cone-beam geometry

Let Θ = [0, 2π]. For θ ∈ Θ, we write θ = (cos θ, sin θ, 0)
T

and θ⊥ = (− sin θ, cos θ, 0)
T . The X-ray source is located

at point ξθ = −dθ, where d is the source-to-rotation-axis
distance. The detector is located at a distance D from the X-ray
source. It is a plane orthogonal to the line passing through the
center of rotation and the source point ξθ. A 3D point x ∈ R3

A. Reshef (corresponding author: aymeric.reshef@ge.com) is with GE
Healthcare, Buc, France, and LTCI, Télécom ParisTech, Université Paris-
Saclay, Paris, France. C. Riddell and Y. Trousset are with GE Healthcare,
Buc, France. S. Ladjal and I. Bloch are with LTCI, Télécom ParisTech,
Université Paris-Saclay, France. This work was supported by the CIFRE grant
No. 873/2014 from the French Association Nationale de la Recherche et de
la Technologie (ANRT).

projects onto the detector plane at coordinates (uθ(x), vθ(x));
without loss of generality, we write, for α ∈ Θ:

x =

(
x ·α
xα⊥

)
, (1)

where xα⊥ ∈ R2 consists of the coordinates of x in the
plane of equation x · α = 0. When looking only at points x
belonging to a plane of equation: x ·α = xα, where xα ∈ R,
the relationship between (uθ(x), vθ(x)) and x is given by:sθ(x)uθ(x)

sθ(x)vθ(x)
sθ(x)

 = Hα
θ (xα)

(
xα⊥

1

)
, (2)

where the matrix Hα
θ (xα) ∈ R3×3 is a homography matrix.

The cone-beam projection of an image f at angle θ is
denoted pθ. It is defined at each detector coordinate (u, v)
as the integral of f along the line joining ξθ to (u, v). The
full-scan, cone-beam tomographic acquisition over a circular
orbit is the collection p = {pθ | θ ∈ Θ}. We define the
backprojection from angle θ of a single projection pθ as:
Bθ [pθ] = pθ(uθ, vθ).

B. Feldkamp-Davis-Kress reconstruction

The Tuy conditions [4] are not satisfied in the cone-beam
geometry with a circular orbit. Hence, only approximate direct
reconstruction methods exist, such as the Feldkamp-Davis-
Kress method [5], which is a direct extension of the fan-
beam FBP to cone-beam data. Given a full-scan tomographic
acquisition p, FDK reconstructs an image fFDK as:

fFDK =

2π∫
0

D2

s2
θ

BθD [p̃θ]dθ, (3)

where D is the ramp filter, and:

p̃θ(u, v) =
1

2
· d
D
· D√

D2 + u2 + v2
· pθ(u, v). (4)

By design, FDK is equal to FBP when z = 0, yielding an
exact reconstruction in the midplane. If the true image f is
invariant along the z-axis, the reconstructed image fFDK is
exact [5]; otherwise, it deviates from f as the cone angle
increases, yielding cone-beam artifacts.

In the following, we define {Θk}k=1···K as a subdivision
of Θ. Then by linearity of the integral:

fFDK =
K∑
k=1

gΘk , where gΘk =

∫
Θk

D2

s2
θ

BθD [p̃θ]dθ. (5)
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φ(t) H [φ] (t)

H [ψ] (t) −ψ(t)

tψ(t) tH [ψ] (t)− 1
π

∫+∞
−∞ ψ(t′)dt′

δ(t) 1
πt

1
h3t+h4

ψ
(
h1t+h2
h3t+h4

)
,

where h1h4 − h2h3 = ±1

sgn(h1h4−h2h3)
h3t+h4

H [ψ]
(
h1t+h2
h3t+h4

)

Table I: Useful Hilbert transforms to prove Eq. (7).

C. Proposed backprojection-filtration method

The proposed backprojection-filtration (BPF) formula is first
derived in the fan-beam geometry. We rely on the decomposi-
tion of the ramp filter D into a spatial derivative operator and
a Hilbert transform operator H:

D [p̃θ] =
1

2π
H
[
∂p̃θ
∂u

]
. (6)

When Θk = {θ}, we write gθ = g{θ}. Let α ∈ Θ such that
for any point x in the field of view, det (Hα

θ (x ·α)) 6= 0. We
define σαθ (x) = sgn (det (Hα

θ (x ·α))). The following holds:

gθ =
σαθ
2π
Hα [bθ] , where bθ =

D2

s2
θ

Bθ
[
∂p̃θ
∂u

]
, (7)

and Hα applies the one-dimensional Hilbert transform to each
line of the 2D plane that is colinear to α⊥. We sketch the
proof of Eq. (7). The homography matrix Hα

θ (x · α) is such
that det (Hα

θ (x ·α)) 6= 0, hence the determinant of the matrix
|detHα

θ (x ·α)|−1/2
Hα
θ (x · α) is equal to σαθ . We use the

last row of Table I to obtain the intermediate result: sθgθ =
σαθ
2πHα

[
D2

sθ
Bθ
[
∂p̃θ
∂u

]]
. We then apply again Hα to each side

of this equality and observe that sθ is an affine function of x.
Using the other properties of the Hilbert transform recalled in
Table I, we obtain Eq. (7).

If Θk = [θk−1, θk] and |θk− θk−1| < π−γ, where γ is the
fan angle, we can find a common admissible α value, denoted
αk, such that Eq. (7) holds for all θ ∈ Θk; hence:

gΘk =
1

2π

∫
Θk

Hαk [bθ] dθ =
1

2π
Hαk [bΘk ] , (8)

where bΘk =
∫

Θk
bθdθ. We propose to reconstruct an image

fBPF as:

fBPF =
1

2π

K∑
k=1

Hαk [bΘk ] . (9)

As in FDK, the reconstruction formula from Eq. (9) is always
exact in the midplane; it is exact everywhere when the true
image f is invariant along the z-axis [5].

D. Implementation

The support of the backprojection over each angular subset
Θk depends both on Θk and on the value of αk. Provided that
this support is large enough to compute all the backprojected
lines colinear to α⊥k and intersecting the image field of view
(Fig. 1), the Hilbert transform can be computed directly in the
Fourier domain using zero-padding and periodicity.

θk
αk

αk
⊥

θk−1

ξθk−1

ξθk

Fig. 1: Extended support (dashed rectangle) for filtering bΘk .
Lines colinear to α⊥k (arrow) crossing the circular field of view
(black circle) are all compactly supported (shaded area).

We divide Θ into frontal and lateral views. Frontal views
correspond to ΘFRT =

[
π
4 ,

3π
4

]
∪
[

5π
4 ,

7π
4

]
. With αFRT = π

2 ,
image bΘFRT

is filtered horizontally. Lateral views correspond
to ΘLAT = Θ\ΘFRT. With αLAT = 0, image bΘLAT is filtered
vertically. Thus:

fBPF =
1

2π

(
Hπ

2
[bΘFRT ] +H0 [bΘLAT ]

)
. (10)

III. APPLICATION TO REGION-OF-INTEREST IMAGING

Following [3], we define a dual-rotation acquisition as
follows. Let pT be a set of truncated projections that finely
sample the source-detector orbit. Projections pT are comple-
mented by additional un-truncated projections pF. We do not
intend to bring too much additional dose to the patient with
the un-truncated projections, by either lowering the dose level
per view or by reducing the number of views in pF.

Since local operations are applied to projections pT prior to
backprojection, they correctly sample the unfiltered backpro-
jected image bT within the ROI, denoted Ω′. Outside the ROI,
however, each backprojected point is observed over a limited
angular range, which differs from one point to the other. We
thus merge the ROI of bT with the unfiltered backprojected
image bF obtained from pF, yielding image M(bF, bT) such
that:

M(bF, bT) =

{
η · bF + (1− η) · bT inside Ω′;
bF outside Ω′.

(11)

The function η : R3 → [0, 1] is a continuous function that
ensures a smooth transition from bT to bF at the boundaries
of the ROI. The Fourier-based filtering step is then performed
on the hybrid image M(bF, bT). Using our BPF method, the
merging step is performed separately for backprojections of
the frontal views and of the lateral views.

IV. SIMULATIONS

All images were reconstructed on a 256 × 256 × 256 grid
with isotropic voxels of size 1.17 mm3.
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A. Full-volume reconstruction

A diagnostic CT scan of a head was forward-projected
over an ideal circular orbit using D = d = 1180 mm. A
total of 1440 projections sampling Θ was generated. The
projections were reconstructed using FDK (yielding image
fFDK) and Eq. (10) (yielding image fBPF). We computed
the mean relative error (MRE) over a mask Ω0, denoted
∆Ω0

(fBPF, fFDK), using the formula:

∆Ω(f, f∗) =
1

Card(Ω)

∑
x∈Ω

|f(x)− f∗(x)|
|f∗(x)|

(12)

Mask Ω0 was defined in order to keep only the voxels higher
than -250 HU.

We repeated the experiment using modified projection data
corresponding to 1.6 · 106 photons per ray emitted from the
X-ray source, in order to check the stability of the method
with respect to noise, yielding images fnoisy

FDK and fnoisy
BPF .

B. Region-of-interest reconstruction

The truncated projections pT were simulated by applying a
digital transaxial truncation to the previous set of 1440 noisy
projections, corresponding to a cylindrical, centered field of
view Ω′ whose edges cross the head skull. It is thus expected
that empirical projection extrapolation methods would not
perform as well. Such a reconstruction was computed using
[6], yielding image fROI

FDK. For the un-truncated projections pF,
we simulated two configurations. In the first configuration, we
simulated an acquisition of 1440 projections corresponding to
105 photons per ray emitted from the X-ray source, yielding
image fROI(1)

BPF . In the second configuration, we simulated an
acquisition of 90 projections corresponding to 1.6·106 photons
per ray, yielding image fROI(2)

BPF . In both cases, the dose ratio
between the un-truncated and the truncated acquisitions is
fixed to 1/16. The merging step was performed using the
following weighting function:

η(x) =
1

2

(
1− cos

(
π · |x| − rΩ′

∆r

))
, (13)

where rΩ′ denotes the radius of the cylindrical ROI Ω′, and
∆r is the transition zone radial width. In the following, ∆r
was arbitrarily set to 5 voxels. The MRE over the intersection
set Ω = Ω′∩Ω0 was computed with respect to the un-truncated
FDK reconstruction fnoisy

FDK .

V. RESULTS

A. Full-volume reconstruction

Noise-free reconstructed images are shown in Fig. 2. The
images fFDK and fBPF are visually very similar. Both recon-
structions are exact and identical in the fan-beam geometry of
the midplane. However, fBPF is more sensitive to the cone-
beam incomplete sampling over a circular orbit (see the dark
streaks near the temporal bones in the coronal and sagittal
slices). Similar noise behavior occurs for both methods when
reconstructing from noisy projections (images not shown). On
average, the MRE inside Ω0 is equal to 0.42% in the noise-
free case and to 0.43% in the noisy case (Table II), the higher
errors being located towards points with high cone angles.

(a) fFDK (axial) (b) fFDK (coronal) (c) fFDK (sagittal)

(d) fBPF (axial) (e) fBPF (coronal) (f) fBPF (sagittal)

Fig. 2: Noise-free, full-volume reconstructions. Display win-
dow: [10 HU, 60 HU].

Full-volume ROI

Ω Ω0 Ω′ ∩ Ω0

f

f∗

∆Ω (f, f∗)

fBPF fnoisy
BPF

fFDK fnoisy
FDK

0.42% 0.43%

f
ROI(1)
BPF f

ROI(2)
BPF

fnoisy
FDK fnoisy

FDK

0.44% 0.50%

Table II: Mean relative errors in region Ω.

B. Region-of-interest reconstruction
Results of ROI reconstruction are shown in Fig. 3. The

first column shows the FDK reconstruction from the truncated
projections only using empirical projection extrapolation. As
expected, such extrapolation cannot perform well when highly
contrasted structures such as bones lie at the edge of the field
of view. The image fROI

FDK suffers from a shift in gray values
and from low-frequency non-uniformities that prevent from
using a narrow window display.

Results from our reconstruction method are shown in the
second and third columns of Fig. 3. Both configurations yield
images that are visually similar to the reference FDK recon-
struction fnoisy

FDK (fourth column) inside the ROI Ω′. Outside
the ROI, image fROI(1)

BPF shows a very noisy reconstruction of
the head, while image f

ROI(2)
BPF shows streaks characteristic

of angular subsampling. However, neither the high noise
contained in pF in the first configuration, nor the subsampling
streaks of the second configuration propagate inside Ω′. The
values of the MRE inside region Ω = Ω′ ∩Ω0 with respect to
fnoisy

FDK remain below 1%, at 0.44% for fROI(1)
BPF and 0.50% for

f
ROI(2)
BPF (Table II).

VI. DISCUSSION

A new BPF formula was described for CBCT recon-
struction with flat-panel detectors, that is exact in the fan-
beam geometry and provides a different approximate recon-
struction from FDK in the cone-beam geometry. It coin-
cides with the parallel-beam Hilbert-transformed differentiated
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FDK (axial) (b) fROI(1)

BPF (axial) (c) fROI(2)
BPF (axial) (d) fnoisy

FDK (axial)

(e) fROI
FDK (coronal) (f) fROI(1)

BPF (coronal) (g) fROI(2)
BPF (coronal) (h) fnoisy

FDK (coronal)

(i) fROI
FDK (sagittal) (j) fROI(1)

BPF (sagittal) (k) fROI(2)
BPF (sagittal) (l) fnoisy

FDK (sagittal)

Fig. 3: ROI reconstruction. The ROI Ω′ is delineated in orange. Display windows: [-450 HU, -250 HU] (first column), [10 HU,
60 HU] (second to fourth columns).

backprojection method (DBP-HT) [1], when letting (d,D)→
(+∞,+∞) and K = 1: in this case, image bΘ becomes
the parallel-beam DBP image, and filtration needs to be per-
formed using finite Hilbert transform inversion. However, our
approach differs from the fan-beam DBP-HT formula of [1]. In
the fan-beam DBP-HT, the same DBP image is computed from
fan-beam projections through a parallel-to-fan-beam change of
variables, which requires a dense angular sampling. Instead,
we propose to compute an alternative, intrinsically fan-beam
DBP image, so that the whole backprojection step translates
into a view-wise algorithm. Moreover, when K > 1, filtration
is performed in the Fourier domain and does not require any
finite Hilbert transform inversion. The method is thus expected
to work as good as FDK with coarser angular sampling; it is
also adapted to non-ideal circular geometries using calibrated
projection matrices. As with FDK, the reconstructed images
suffer from cone-beam artifacts, however, we anticipate faster
iterative BPF reconstructions to reduce them [7]. Finally,
excellent ROI reconstruction was obtained with only 6% of

dose increase and flexible acquisition designs in terms of dose
per view and angular sampling.
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GCC and FBCC for linear tomosynthesis
Jérôme Lesaint, Simon Rit, Rolf Clackdoyle, Laurent Desbat

Abstract—Grangeat-based Consistency Conditions (GCC) and
Fan-beam Consistency Conditions (FBCC) are two ways to de-
scribe consistency (or redundancy) between cone-beam projections.
Here we consider cone-beam projections that are collected in
the linear tomosynthesis geometry. We propose a theoretical
comparison of these two sets of consistency conditions and illustrate
the comparison with numerical simulations of a thorax Forbild
phantom.

Index Terms—Cone-beam computed tomography (CBCT), data
consistency conditions (DCCs), tomosynthesis.

I. INTRODUCTION

In Computed Tomography (CT), the 3D density map of a
patient (or an object) is reconstructed from a set of 2D radio-
graphs. Should the acquisition be realized in perfect conditions
and neglecting physical side-effects (like scattering or beam-
hardening), these radiographs (after their log-transform) follow
the forward line-integral model. Unfortunately, these conditions
are never fullfilled and systematic effects always degrade the
projection data. One way to detect such effects is to quantify
how inconsistent the data are, using the concept of data consis-
tency conditions (DCC). DCC are equations that characterize the
image of the forward operator. A large amount of research has
been published on DCC. In parallel geometries, the well-known
Helgason-Ludwig DCC [1], [2] provide necessary and sufficient
conditions on the Radon transform. In divergent geometries,
[3] and [4] also give necessary and sufficient conditions for
a source moving along a linear trajectory (in 2D) or planar
trajectory (in 3D) respectively. When a set of DCC is known to
be complete (necessary and sufficient conditions), no additional
information can be expected from another set of DCC. On the
other hand, if two sets of DCC are known to be necessary
but no information on the sufficiency is available, one may
wonder which to use. Some works have introduced necessary-
only conditions, like Grangeat-based DCC (GCC) [5], [6] and
fan-beam DCC (FBCC) [3] extended to 3D projection data as
suggested by [7]. As explained below, FBCC refers to what
would be called zeroth-order conditions in [3].

Various applications of GCC and FBCC have been published.
Geometric calibration in circular cone-beam CB [5] and in x-ray
tomosynthesis [8] were described using GCC, and also jitter-
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correction in x-ray CT [9]. For FBCC, a circular cone-beam
micro CT application appeared recently [10].

In this work, we focus on GCC and FBCC and propose a
theoretical comparison of these two sets of DCC. We carry
this work in the specific context of tomosynthesis, with an X-
ray source moving along a line. It is proved that the FBCC
are stronger than the GCC, in the sense that if the FBCC are
satisfied, then so are the GCC, but not conversely. We also show
that if all the projections are complete (non-truncated) then the
FBCC and GCC are equivalent. Furthermore the hypothesis of
complete projections is essential; we show that under particular
circumstances (with truncated projections), the FBCC are more
restrictive, i.e., the FBCC can fail even when the GCC are
satisfied. We finally prove that neither of these two sets of
conditions are sufficient. The theory is detailed in Section II.
Numerical aspects are presented in Section III and finally,
Section IV contains discussion and conclusion.

II. THEORY

A. The forward X-ray model

We consider X-ray projection data g of an object function
f , acquired along a 1D trajectory of the source parametrized
by a scalar λ ∈ Λ ⊂ R. The source position is denoted ~sλ.
A projection gλ associates to each unit vector ~α ∈ S2 the
corresponding line integral:

gλ(~α) =

∫ +∞

0

f(~sλ + t~α) dt. (1)

B. The tomosynthesis geometry

In the following, we consider a tomosynthesis geometry,
where an X-ray source moves along a line parallel to the plane of
the detector. Let (O, x, y, z) be a 3D coordinate system. Without
loss of generality, the detector, denoted D, is assumed to lie in
the z = 0 plane. It is equipped with 2D coordinates (O, u, v)
where the detector origin O and the u- and v- axes coincide with
the 3D origin and the x- and y- axes respectively. Note that the
coordinates (u, v) are independent of the source position, as if
the detector was large enough to capture every projection of the
scan. (In the numerical simulations though, the detector was
displaced horizontally.) The X-ray source moves along a line L
such that ~sλ has coordinates (λ, 0, d) for λ ∈ Λ, where d is the
source-to-detector distance and Λ is an interval. The object of
interest is assumed to be entirely contained between D and the
plane parallel to D and containing L. See Figure 1.

C. The family of planes containing the source trajectory

We now focus on the family of planes which contain the
source line. They will play an important role both in the
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Fig. 1. Top-view of the tomosynthesis acquisition geometry. The X-ray source
moves at constant distance d from the detector plane, along a horizontal line.
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Fig. 2. The family of planes Pθ . Each plane is defined by a normal vector ~nθ

which makes an angle θ with the central plane. To each detector pixel (u, v)
is associated a unit vector ~α together with its spherical coordinates (θ, ϕ).

Grangeat case and in the fan-beam case. For θ ∈
]
−π2 ; π2

[
,

we let Pθ denote the plane which contains the line L and
makes an angle θ with the central plane (y = 0). We let
~nθ = (0, cos θ, sin θ) denote the unit vector orthogonal to
this plane. There is a one-to-one correspondence between the
detector’s horizontal rows (with offset v) and the planes Pθ via
the relation d tan θ = v. See Figure 2.

We assume that the detector is fixed so from de-
tector coordinates (u, v), the unit vector ~α from Equa-
tion 1 is given by ~α = ((u, v, 0)− ~sλ) /‖(u, v, 0) −
~sλ‖ = (u − λ, v,−d)/

√
(u− λ)2 + v2 + d2. Furthermore

~α can be expressed in spherical coordinates ~α(θ, ϕ) =
(sinϕ, cosϕ sin θ,− cosϕ cos θ) where θ corresponds to the
definition above, and ϕ is the latitude with respect to the
polar axis x. (Note the unusual orientation of the spheri-
cal coordinates.) With a slight abuse of notation, we write

gλ(u, v) = gλ(~α(θ, ϕ)). We also use g̃λ to denote the projection
gλ weighted by the cosine of the incidence angle of the ray.
Given the coordinates of the source position (λ, 0, d), we have:

g̃λ(u, v) = gλ(u, v)
d√

(u− λ)2 + v2 + d2
(2)

D. Grangeat-based consistency condition
Consistency conditions are equations derived from the for-

ward model that ideal projection data must satisfy. Consistency
conditions can be used to detect - and possibly correct for -
inconsistencies introduced in the data by systematic effect such
as mis-calibration, motion, scattering or beam-hardening.

Let Rf(Pθ) denote the 3D Radon transform of f over the
plane Pθ. We recall the well-known result of Grangeat [11]
(expressed with our notation):

1

cos2 θ

∂

∂v

∫ +∞

−∞
g̃λ(u, v) du =

∂

∂s
Rf(Pθ)

∣∣∣∣
s=~sλ·~nθ

(3)

where the derivative of Rf is taken in the direction ~nθ. Again,
v and θ are related through v = d tan θ.

For fixed Pθ (equivalently, for fixed v = d tan θ), we note
that ~sλ · ~nθ = d sin θ is constant throughout the trajectory,
so the right-hand-side of Equation 3 does not depend on the
source position (it only depends on v, not on λ). We let
G(λ, v) = ∂

∂v

∫
g̃λ(u, v) du, so the left-hand-side of Equation 3,

(1/ cos2 θ)G(λ, v), must be independent of λ. We thus obtain
the following necessary DCC for this particular acquisition
geometry:

The projection data (gλ)λ∈Λ are consistent only if, for all v,
G(λ, v) is a constant function of λ.

This is what will be called in the sequel, the Grangeat-based
Consistency Conditions, GCC for short.

Grangeat’s result, Equation 3, is also the basis of Epipolar
consistency conditions described in [6].

E. Fan-beam consistency conditions
Another way to quantify the redundancy/consistency of a

set of projections is to fix the v coordinate and consider the
corresponding plane Pθ and the fan-beam projections therein.
We then consider fan-beam consistency conditions (see [3] for a
complete proof) extended to 3D cone-beam projections acquired
in our particular tomosynthesis geometry: the set of projections
(gλ)λ∈Λ is consistent if and only if, for each n = 0, 1, 2... and
each θ ∈

]
−π2 ; π2

[
, the function:

Jn(λ, θ) =

∫ π
2

−π
2

gλ(α(θ, ϕ))

cosϕ
tann ϕdϕ, (4)

is a polynomial of order n in λ.
In particular, for n = 0, the quantity J0 does not depend on

the source position λ. It only depends on θ. And since there is a
one-to-one correspondence between θ and v, we will write (with
another small abuse of notation) J0(λ, v). These zeroth-order
fan-beam consistency conditions will be referred to as FBCC.
(When non-zero orders are being considered, we will state them
explicitly.) These necessary conditions can be restated as:

The projection data (gλ)λ∈Λ are consistent only if, for all v,
J0(λ, v) is a constant function of λ.

The fifth international conference on image formation in X-ray computed tomography 115



gλ cosine weights g̃λ J0 G

∂
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Fig. 3. a) Computation of both DCC for a single projection λ: projections gλ are weighted with the cosine of the incidence angle. Integrals of g̃λ over detector
rows are computed: up to a fixed factor of d, this is J0(λ, v). For each λ, J0(λ, v) is differentiated with respect to v to get G(λ, v). The dotted line indicates
the detector row used in Figures 5 and 6. b) The functions J0(λ, v) and G(λ, v) plotted as gray-value images. Note that the gray scales are different in the two.

F. Relationships between FBCC and GCC

We can now prove the theoretical contribution of this abstract:

Proposition 1 (FBCC ⇒ GCC). If the projection data satisfy
FBCC, then they necessarily satisfy GCC.

Before proving this statement, a few comments are in order.
First, the proposition means that (order-0) FBCC carry at least
as much information as GCC. Second, under some specific
circumstances, we will prove that this assertion is strict, in the
sense that we can design a projection example which satisfies
GCC but breaks FBCC. Finally, neither GCC nor FBCC are
sufficent consistency conditions because the zeroth-order fan-
beam conditions alone are insufficient; it was shown in [3] that
all orders n = 0, 1, 2... are necessary and sufficient.

Proof of Proposition 1: We start with FBCC (Equation 4)
and change the spherical variables (θ, ϕ) to the (u, v) detector
coordinates with v = d tan θ and u =

√
v2 + d2 tanϕ. After

elementary computations, we get:

J0(λ, v) =
1

d

∫ +∞

−∞
g̃(u, v) du. (5)

The FBCC state that for each v, J0 is a constant function of λ.
Therefore, J0(λ, v) is independent of λ. Now, it is clear from
the definition of G that:

G(λ, v) = d
∂

∂v
J0(λ, v), (6)

which proves that G is also independent of λ. Therefore, for
each v, G(λ, v) is a constant function of λ, so the GCC are
satisfied and the proof is complete.

If the converse of this statement holds then the two sets of
DCC would be equivalent.

Proposition 2 (FBCC ⇔ GCC). The FBCC and GCC are
equivalent in the ideal case of untruncated projections.

Proof of Proposition 2: In light of Proposition 1, we only
need to prove that if the GCC are satisfied, then the FBCC are
satisfied. From Equation 6, we obtain:

J0(λ, v) =
1

d

∫
G(λ, v) dv + κλ, (7)

where κλ depends on λ but not on v. The GCC are assumed
to be satisfied, so G(λ, v) is independent of λ, and therefore
the integral term in Equation 7 is also independent of λ. So for

each λ, J0(λ, v) is the same function of v except for the additive
constant κλ (which varies with λ). Now, since the projections
are assumed to not be truncated, there exist some v∗ (which
corresponds to an actual row of the physical detector) such that:

∀λ ∈ Λ, ∀v ≥ v∗ gλ(u, v) = 0. (8)

In particular, gλ(u, v∗) = 0 for all λ, and therefore J0(λ, v∗) =
0 for all λ. For each λ, the functions (of v) J0(λ, v) all agree
for v = v∗, and therefore the additive offsets κλ must be the
same, so κλ = κ is a constant (independent of λ). Therefore
J0(λ, v) is independent of λ and the FBCC are satisfied.

We now show that the hypothesis of untruncated projections
cannot be relaxed in Proposition 2.

Proposition 3. FBCC and GCC are not equivalent; a counter-
example.

Proof of Proposition 3: Let us modify one single projection
gλ0

as follows:

γλ0
(u, v) = gλ0

(u, v) +

√
(u− λ0)2 + v2 + d2

Ld
. (9)

Note that the modified projection is non-zero everywhere, so
it would be considered a truncated projection and would not
satisfy the hypotheses of Proposition 2. The added term is the
inverse of the cosine of the incidence angle, weighted by the
inverse of the width of the detector (L). It is easily seen that
this modification adds a constant term to J0(λ0, v) for all v,
hence breaks the FBCC without affecting the GCC.

Note that this modification of the projection is equivalent (up
to a constant) to filtering the X-ray beam with a flat filter of
constant thickness, placed perpendicularly to the z-axis.

III. NUMERICAL SIMULATIONS

We simulated 40 projections of a thorax Forbild phantom (see
Figure 3a for a sample projection). The acquisition geometry
was described in Section II-B. The source-to-detector distance
was fixed at 600 mm. The source positions were (λ, 0, 600)
where λ varies evenly from −200 mm to +190 mm. The detec-
tor size was 500× 300 pixels, with pixel size 0.3 mm2. In our
reference projections, the phantom center of mass was placed at
(0, 12, 300) (centered in x, at mid-distance between the source
and the detector plane and with a vertical offset of 12 mm). All
simulations were carried out with the Reconstruction ToolKit
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Fig. 4. Quadratic residues of the linear regression of the functions G(λ, v)
and J0(λ, v) as a function of v. On the last 60 detector rows, the signal is 0,
so are G and J0. The residues are not represented on this log-scale figure.

(RTK, [12]). The implementation of FBCC in this set up only
requires a sum over the rows of the projections. The derivative in
the v-direction involved in GCC is implemented with a central
finite difference. Note that the two DCC involve computing line
integrals in the u-direction of the projection images. Hence,
projections must not be truncated in that direction.

A. Are G and J0 constant ?

Saying that the projection data satisfy GCC or FBCC amounts
to saying that for each v (i.e. each detector row), the 1D
functions G(·, v) and J0(·, v) are constant functions of λ. For
each projection, we computed G(λ, v) and J0(λ, v) for all v
according to Equations 3 and 4 respectively (see Figure 3a) and
concatenated those 1D signals to get 300 (number of detector
rows) supposedly constant signals (see Figure 3b). To quantify
how constant those signals were, we computed the slope of their
linear regression. In both cases (FBCC and GCC), the mean over
all planes and the standard deviation were numerically zero,
as stated by the theory. To further investigate the respective
behavior of each consistency measure, for each v we computed
the sum of squared difference between the signals G(·, v) and
J0(·, v) and their regression line. These residues are presented
in Figure 4.

Both the GCC and FBCC results are theoretical in the sense
that the functions G and J0 cannot be exactly constant in
λ practically since they required numerical approximation of
integrals. The errors in this approximation are amplified by the
differentiation step in the computation of G. This amplification
of the discretization errors is the probable explanation for why
the residues for G are 106 times greater than J0.

B. Illustration of inconsistency

We examined the effect on the GCC and FBCC of a small
rigid motion of the object. After 20 projections, the phantom
was displaced vertically and 15 projections were collected in
the displaced position. The phantom was then returned to the
original position for the last 5 projections. We repeated the
study with 3 different magnitudes of displacement: 2.5 mm,
1.0 mm, and 0.2 mm. We restricted the study to one plane

46

48

50
GCC

18

20

22

2.1

2.2

2.3
FBCC

0 5 10 15 20 25 30 35 40
1.70

1.75

1.80 Static object
Motion ampl. =0.2 mm
Motion ampl. =1.0 mm
Motion ampl. =2.5 mm

Fig. 5. Sensitivity of each DCC to a vertical motion of the object. The object
is displaced between projections 20 and 35.

(row index 150) when calculating the consistency conditions.
Figure 5 shows that G(λ, v) and J0(λ, v) were both constant
(to within small numerical errors) for the consistent collections
of projections, but that the constant changed when the object
was displaced to a new position. As the displacement became
larger, the change in FBCC increased, as was expected. On the
other hand, the GCC over-reacted to the 1.0 mm displacement,
due to particular features of the phantom.

C. FBCC and GCC are not sufficient conditions

In order to illustrate the fact that both GCC and FBCC
are not sufficient conditions, we simulated 40 projections of
the same phantom which was displaced horizontally (in the x-
direction) at projection 20 and left in the displaced position for
the remaining projections. The first and last 20 projections alone
were consistent, but not the full 40 projections. Since both GCC
and FBCC involve computations of integrals along horizontal
detector rows, it is intuitive that they will fail in detecting
inconsistencies resulting from motion in the horizontal direction.
In Figure 6, we show that FBCC and GCC erroneously indicate
consistent data (both are constant as expected), while FBCC-
1 detects inconsistency (severe discontinuity in J1(λ), the
theoretical order-1 polynomial) when the object was displaced.
This study was conducted in the plane corresponding to the row
index 192. (This plane is such that J0 and G have the same order
of magnitude, which facilitates convenient plotting on a single
figure.)

IV. DISCUSSION AND CONCLUSION

In this abstract we proved that FBCC carry at least as much
information as GCC. In the non-truncated case, FBCC and GCC
are equivalent and in the truncated case, we designed projection
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Fig. 6. From projection index 20, the object was moved horizontally by 5 mm.
While GCC and FBCC fail to detect the inconsistency induced by the motion,
FBCC-1 does.

data which satisfy GCC but not FBCC. We illustrated that
both the GCC and FBCC are not sufficient conditions for this
tomosynthesis geometry. In practice, neither of the DCC are
perfectly satisfied, due to numerical errors in the quadrature
methods involved in FBCC and GCC. Based on our simulation
studies, the FBCC seem to be more robust to GCC in the
presence of numerical errors.
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Differential Tomography: Influence of Sensitivity
Direction and Noise-suppressing Windows

Sebastian Kaeppler, Andreas Maier, Christian Riess

Abstract—Phase-sensitive systems can deliver improved CT
imaging performance for materials with low attenuation contrast,
and, due to the differential nature of their images, when high
spatial resolution is required. Typically, these systems only yield a
directional derivative of a projection image along one sensitivity
direction. The sensitivity direction is usually tangential to the CT
trajectory. However, it is also conceivable to build systems with
other sensitivity directions.

The purpose of this paper is two-fold. First, we investigate
the noise behavior of differential CT for sensitivity directions
in z-direction and for bi-directional projections. Second, we use
Wiener filtering to derive noise-suppressing window functions for
all three sensitivity directions.

Our experiments indicate that the benefit that can be obtai-
ned from optimized window functions depends on the overlap
between object spectrum and the Noise Power Spectrum, and
thus on the sensitivity direction. We also find that sensitivity in
z-direction yields a noise texture that is unsuitable for CT.

Index Terms—X-ray, phase-contrast, sensitivity direction, de-
noising

I. INTRODUCTION

Recently, several measurement principles for X-ray phase
contrast haven been proposed. Most notable of these are
the Talbot-Lau interferometer [1], diffraction-enhanced sys-
tems [2] and coded apertures [3]. These systems share a
common trait: they can only obtain differential phase-contrast
contrast projection images along one sensitivity direction.

When performing CT acquisitions, these systems are typi-
cally operated such that the sensitivity direction is tangential
to the CT trajectory, and thus radial to the rotation axis when
rotating. For the Talbot-Lau interferometer (coded apertures)
this means that the grating bars (the apertures) are parallel to
the rotation axis. The noise behavior of this configuration has
been studied extensively in [4], [5], [6].

In principle, the sensitivity axis can be chosen arbitrarily by
rotating the phase-sensitive components of the system along
the optical axis. For example, it has been shown that direction-
dependent dark-field CT [7], [8] reconstruction can benefit
from having the sensitivity direction in z-direction [9], i.e.
parallel to the rotation axis. For a fan-beam-like geometry,
z-sensitivity has the further advantage that the gratings (aper-
tures) do not have to be bent to match the fan angle.

It is also conceivable to acquire two perpendicular directio-
nal derivatives. For geometries that can be approximated well
using parallel beams, this can be realized relatively easily by

All authors are with the the Pattern Recognition Lab, Depart-
ment of Computer Science, Friedrich-Alexander-University Erlangen-
Nuremberg. Contact: sebastian.kaeppler@fau.de
www5.cs.fau.de/%7Ekaeppler

using diagonal gratings (apertures) and has shown to yield
reduced reconstruction noise when compared to the standard
radial sensitivity approach [10].

In the this paper, we investigate the Noise Power Spectrum
of a differential CT system depending on its sensitivity
direction. We ignore the system-specific phase sensitivity
and noise behavior to obtain a system-neutral analysis for
CT reconstruction of differential projections. Specifically, we
consider three configurations: the standard approach of radial
sensitivity, sensitivity in z-direction and sensitivity in both
directions (at half dose for each direction).

Additionally, we use the analytical Noise Power Spectrum
and Wiener filtering to define noise-suppressing window
functions for these configuration, as each shows a vastly
different noise texture. To our knowledge, this is the first study
of the noise behavior of non-standard sensitivity configuration
and also the first paper to propose practicable window functi-
ons for differential CT.

II. METHODS

In the following sections, we will derive the Noise Power
Spectrum of differential CT and use this information to derive
noise-suppressing window functions.

A. Noise Power Spectrum

We follow the simplified model of a parallel beam recon-
struction with uniform projection Noise Power Spectrum and
multiple slices with voxel and pixel size a as in [4]. In this
case the total radial Noise Power Spectrum NPStot is given
by

NPStot(ρr, ρz) = f2RamLak · finvradon · f2interpol · f2integration .
(1)

Here, ρr denotes the radial frequency and ρz denotes the fre-
quency in z-direction, i.e. across slices. For the RamLak filter
we have fRamLak = |ρr| · rect(ρr/2a), for Radon inversion
we have finvradon = 1/|ρr| and for linear interpolation onto a
grid of voxels with size a we have finterpol = sinc(πaρr)

2 =
[sin(πaρr)/(πaρr)]

2. This yields

NPStot(ρr, ρz) = |ρr|·rect(ρr/(2a))·sinc(πaρr)4·f2integration .
(2)

The frequency response f2integration for integrating the diffe-
rential projections depends on the sensitivity direction. For the
standard approach of radial sensitivity we have for a [−1; 1]
backward discretization of the derivative operator [4]

f radintegration = a/[2 sin(πaρr)] . (3)
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a) b) c) d)
Fig. 1. Sample CT noise realizations displayed in arbitrary units, created as described in Section III. Top row: X-Y plane. Bottom row: X-Z plane. a)
Non-differential projections. b) Differential (radial). c) Differential (z-direction) d) Differential (both directions). The linear scale is identical all images, except
for the noise obtained for differential (z-direction), which was downscaled by a factor of five.

For sensitivity in z-direction we simply have to change the
integration direction

f zintegration = a/[2 sin(πaρz)] . (4)

Note that both integration steps assume that the object is
non-truncated along the integration direction. Thus, having the
sensitivity direction in z-direction requires not only a non-
truncated object in radial direction (due to the inverse Radon
transform) but also in z-direction (due to the integration across
slices).

The frequency response of 2-D integration can be calculated
by considering its closed form solution in Fourier domain,
yielding

f2Dintegration =
√
2a/[2 sin(πaρr) + 2 sin(πaρz)] . (5)

Here, the prefactor
√
2 accounts for having only half of the

dose for determining the image information for each direction.
The non-truncation requirements of 2-D integration are relaxed
compared to 1-D integration, here only one known pixel has
to be outside of the object.

Each of the integration factors lead to the amplification
of low frequency noise. For radial sensitivity NPSradtot → ∞
for ρr → 0, although the frequency response of the ramp
filter combined with the inverse Radon transform partially
compensate the low-frequency noise induced by integration.

This is not the case for integration in z-direction, where
NPSztot → ∞ for ρz → 0. Here, ramp filtering acts as a
high-pass in radial direction, while integration acts as a low-
pass in z-direction, suggesting a noise pattern with a high
autocorrelation in z-direction and negative autocorrelation in
radial direction.

For 2-D integration NPS2Dtot → ∞ only for ρr, ρr → 0,
indicating autocorrelated noise in both directions.

The quadratic scaling of the Noise Power Spectrum by the
pixel size a is identical for all sensitivity directions and can
thus be ignored when comparing the relative performance of
sensitivity directions.

Sample CT noise realizations obtained by reconstructing the
same amount of projection noise are shown in Fig. 1. The noise
texture is in accordance with the noise autocorrelation behavior
given by the Noise Power Spectrum. The approach with sen-
sitivity in z-direction suffers from strong noise amplification
due to integration being not aligned with ramp filtering.

B. Noise-Suppressing Windows

In the following, we will use Wiener Filtering to derive
noise-suppressing window functions for differential CT. Note
that in contrast to a conventional window function, our window
not only operates in radial direction, but also in z-direction.
Wiener filtering can be realized by applying window function
W in Fourier domain. The frequency-dependent window
function is given by the (also frequency-dependent) signal-
to-noise ratio:

W =
1

1 + 1
SNR

. (6)

For CT, the signal-to-noise ratio depends on the object to
be reconstructed and the noise. Both are unknown quantities,
however the noise can be estimated using the analytical model
of the Noise Power Spectrum (Eqn. 2). We thus require only
an estimate of the Power Spectrum of the object, denoted as
Ô, to estimate the SNR as Ŝ:

Ŝ(ρr, ρz) =
Ô(ρr, ρz)

NPStot(ρr, ρz)
. (7)

This step allows to define the noise-suppressing window
function independent on the noise behavior of the system.
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non-differential reconstruction, PSNR noisy: 11.7dB, PSNR denoised: 20.2dB (+8.5dB)

radial-differential reconstruction, PSNR noisy: 14.3dB, PSNR denoised: 18.0dB (+3.7dB)

z-differential reconstruction, PSNR noisy: -7.4dB, PSNR denoised: 12.4dB (+19.0dB)

bi-differential reconstruction, PSNR noisy: 14.5dB, PSNR denoised: 17.2dB (+2.7dB)
a) b) c) d)

Fig. 2. Reconstruction results of applying the proposed Wiener window to modified version of the head phantom. a) central X-Y plane, noisy. b) central
X-Y plane, denoised. c) central X-Z plane, noisy. d) central X-Z plane, denoised. The same intensity window has been applied to all images.

Note that by choosing an appropriate Ô, the tradeoff between
reconstruction fidelity and noise can be attuned to objects
of different contrast, shape, or size, given that the object is
radially symmetric.

Due to the interchangeability of filtering and backprojection,
the window function can also be applied to projections. This
results in negligible computational demand for applying the
window, as it involves replacing multiple 1-D Fourier trans-
forms (for ramp filtering) with a single 2-D Fourier transform
(for ramp filtering combined with the window function).

Note that for differential CT our approach of using a
2-D window function is more powerful than the conventional
approach of using a radial window function combined with
increasing the slice thickness, because the implicit frequency
response of this approach is linearly separable in ρr and
ρz, which is not optimal for the Noise Power Spectrum
encountered in differential CT.
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III. EXPERIMENTS & RESULTS

Before evaluating the proposed window function, we simu-
lated Noise Power Spectra for all configurations and compared
them with their analytic representations. They were in good
agreement but are omitted in this paper due to space con-
straints.

For evaluating the proposed window function, we performed
reconstruction of a modified version of the FORBILD head
phantom onto a 5123 grid with voxel size 0.5cm3. Recon-
struction parameters were selected to match our assumption of
a parallel beam geometry, rectangular apodization, and linear
interpolation. The angular increment was 0.5◦ to avoid angular
undersampling. Projection images were of size 730 × 512
pixels with a pixel size identical to the voxel size. Projections
were corrupted with additive white Gaussian noise. Recon-
struction was performed once without and with the proposed
window function.

Defining the window function requires knowledge of the
Noise Power Spectrum and the Object Power Spectrum. For
the Noise Power Spectrum, we used the analytic definition.
The Object Power Spectrum needs to estimated. To this end,
we assumed a spherically symmetric Power Spectrum which
decays exponentially towards high frequencies. We model this
power spectrum as:

Ô(ρr, ρz) = a · xb, x =
√
ρ2r + ρ2z . (8)

The model parameters a and b are estimated from the head
phantom.1

Results of the evaluation with the peak signal-to-noise
ratio (PSNR) are shown in Fig. 2. Applying the proposed
window reduces reconstruction error for all approaches, and
yields a more even residual noise texture.

The reconstruction obtained with z-sensitivity benefits most
from denoising, due to the high amount of noise. Still, it suffers
from a poor signal-to-noise ratio which renders the resulting
images unusable.

The second most benefit can be observed in the non-
differential reconstruction. We attribute this to the low overlap
between Noise Power Spectrum and Object Power Spectrum.
Here, our window shows the well-known tradeoff between
resolution and noise in conventional CT.

The least benefit is observed for the reconstruction using
two sensitivity axes. This can again be attributed to the overlap
between Noise Power Spectrum and Object Power Spectrum.
Here the overlap is high, since both spectra are strongest in
the low frequencies.

Reconstruction using the standard approach with radial
sensitivity yields a higher PSNR than the bi-directional ap-
proach after applying the window function, while its PSNR
is lower when no window is used. We attribute this to the
noise structure of this approach, which can relatively easily
be attenuated by frequency adaptive smoothing in z-direction
that is strong at low radial frequencies, and decays towards
higher radial frequencies.

1Strictly speaking, this step violates the guidelines for proper parameter
selection. However, we argue that if the shape of the Noise Power Spectrum
is known, the Object Power Spectrum could also be estimated from the noisy
reconstruction, yielding possibly even better performance.

IV. CONCLUSIONS

We have investigated the noise behavior of CT recon-
struction from directional differential projections. Our experi-
ments indicate that reconstructions from differential projecti-
ons in z-direction suffer from high noise and are unusable
in practice. This leads to a design conflict, as dark-field
reconstruction can benefit from this configuration.

Reconstruction from two directional derivatives yields a
more even noise texture than the standard radial approach.
However, our experiments indicate that this can be mitigated
by choosing an appropriate reconstruction window for the
radial direction. We will investigate this finding in further
studies.

Our investigation yields many directions for other future
work. We plan to further investigate the shape of our win-
dow function for the different configurations, and to quantify
the gain in reconstruction quality depending on the overlap
between Object and Noise Power Spectrum. Additionally, we
are interested in the implication of our findings for designing
regularizers for iterative phase-contrast CT reconstruction.
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Model-based iterative reconstruction for
propagation-based phase-contrast computed
tomography, suitable for laboratory sources
Lorenz Hehn, Kaye Morgan, Martin Dierolf, Regine Gradl, Peter B. Noël, and Franz Pfeiffer

Abstract—We present a model-based iterative reconstruc-
tion algorithm for propagation-based phase-contrast computed
tomography, suitable for laboratory sources. Thereby, we
recover the three-dimensional distribution of the phase-shifting
properties of the sample, by incorporating the relevant aspects
of the image formation process directly into the tomographic
reconstruction. Therefore, we model the extent of the source,
which is the limiting factor for the spatial coherence of the
x-rays. Furthermore, the influence of the homogeneous sample
on the intensity as well as on the phase of the x-ray wave-field
is described. In addition, we model the free-space propagation
of the x-ray wave-field from the sample to the detector, which
leads to intensity modulations crucial for the reconstruction of
the phase-shifting properties of the sample. Finally, the detector
response of a scintillator-based x-ray detector is included. We
validate our reconstruction approach on simulated data and
compare it to conventional reconstruction techniques. We find
that our integrated approach yields distinct improvements in
terms of resolution as well as contrast. As any blurring of the
system diminishes the pivotal intensity modulations, we believe
that accurately modeling the whole image formation process
might even be more beneficial in phase-contrast imaging than
for conventional attenuation imaging.

I. INTRODUCTION

As opposed to conventional x-ray absorption imaging,
which relies solely on the absorption of the x-rays in matter,
phase-contrast imaging (PCI) is sensitive to x-ray phase
shifts. This technique has become one of the most commonly
used x-ray imaging methods in laboratory and preclinical
studies, yielding distinct advantages for the visualization
of weakly absorbing details that are common in biologi-
cal and medical samples. By extending PCI to computed
tomography (CT), it has become a valuable tool for three-
dimensional visualization of thick and complex samples due
to its high sensitivity and high contrast produced between
materials with similar absorption properties [1].

The most intuitive way to detect phase contrast is via
propagation-based methods [2], which rely on the fact
that when a coherent wavefront traverses a sample and
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Study, Technical University of Munich, 85748 Garching, Germany. K.
Morgan is with the School of Physics and Astronomy, Monash University,
Clayton VIC 3800, Australia.

propagates sufficiently far to a detector, the phase shifts
induced by the sample lead to distinct variations in the
measured intensity. From these variations, the phase-shifting
properties of the sample can be extracted when imposing
certain conditions onto the sample.

II. IMAGE FORMATION PROCESS

An overview of the image formation in propagation-
based phase-contrast imaging is depicted in Fig. 1. In the
following, we derive the evolution of the intensity from the
source to the detector. Thereby, the x-ray wave-field plane
at each position along the optical axis can be written as a
monochromatic forward propagation scalar wave according
to

ψi(r⊥) =
√
Ii(r⊥)eiφi(r⊥), (1)

where r⊥ denotes the coordinates orthogonal to the propaga-
tion direction, I(r⊥) denotes the distribution of the intensity
in the corresponding plane and φ(r⊥) the relative change in
phase, compared to an undisturbed wave-field. The position
of the x-ray wave-field according to Fig. 1 is indicated by the
subscript i. Consequently, the measured intensity, which is
experimentally accessible, is given by the squared modulus
of the wave-field, namely Ii(r⊥) = |ψi(r⊥)|2.

At the source depicted in blue in Fig. 1, partially coherent
x-rays are generated. The degree of coherence is connected
to the extent of the source, making the geometric parame-
ters of the source spot crucial for this imaging technique,
as discussed later. At the first stage, between the source
and the sample, we assume a homogeneous illumination.
Therefore, we can describe the intensity of the x-ray wave-
field by a scalar I1(r⊥) = I0 and, as the wave-field is not
disturbed by the free space propagation, the relative phase
shift to an undisturbed wave-field vanishes corresponding to
φ1(r⊥) = 0.

To describe the interactions of the x-ray wave-field with
the sample, depicted in orange in Fig. 1, independently from
propagation, we assume that the sample is sufficiently thin
or scatters sufficiently weakly to neglect any propagation
effects within the sample. This is known in literature as
the projection approximation [3]. In order to describe the
interaction of the x-ray wave-field with the sample, we
impose the assumption that the sample consists of only one
material, an assumption which has proven to be extremely
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source
sample
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Fig. 1. Image formation in propagation-based phase-contrast imaging.
Depicted from left to right is an extended x-ray source, a cylindrical
homogeneous sample and an scintillator-based x-ray detector. The blue
lines indicate the evolution of the intensity of the x-ray wave-field from
the source to the detector at different stages.

successful in the propagation-based phase-contrast commu-
nity [4]. Thereby the three-dimensional density distribution
of the sample is denoted by x(r). The projection of this
density along the x-ray paths is modeled by a projection
operator P , yielding a two-dimensional map of projected
thicknesses of the sample, which is referred to as the trace
t(r⊥) of the sample

t(r⊥) = P [x(r)] . (2)

Knowing the material’s specific attenuation coefficient µ and
the deviation of the real-part of the complex refractive index
from unity δ, as well as the energy of the wave, denoted by
the wave number k, we can determine the intensity and phase
shift of the x-ray wave-field at the second stage behind the
sample as indicated in Fig. 1. The attenuation is described
by the Lambert-Beer law according to

I2(r⊥) = I0e
−µt(r⊥) (3)

and the total phase shift compared to the undisturbed refer-
ence wave-field is given by

φ2(r⊥) = −kδt(r⊥). (4)

However, as we are only sensitive to the intensity of the
wave-field, the phase information and therefore the phase-
shifting properties of the sample are experimentally not
accessible directly behind the sample.

Now, while the wave-field propagates from the sample to
the detector, the phase shifts induced by the sample lead
to distinct variations in intensity due to interference effects.
These interference effects can then be used to determine
the phase-shifting properties of the sample. By inserting the
representation of the x-ray wave-field according to (1) into
the paraxial Helmholtz equation and isolating the imaginary
part [3], the transport-of-intensity equation [5] is obtained.
If we further assume that the sample and detector are
sufficiently close to each other such that the intensity evolves
over this distance in a way that is linear with the propagation
distance, we find

I3(r⊥) = I2(r⊥)− z

k
∇⊥ · (I2(r⊥)∇⊥φ2(r⊥)) , (5)

where z now denotes the propagation distance from the
sample to the detector. Due to the limited coherence of
laboratory sources, the linear dependency of the intensity

on the propagation distance is well justified [3]. Finally, we
further discard the typically small cross-term [∇⊥I2]·∇⊥φ2,
assuming that there are no strong intensity gradients over-
laying strong phase gradients and end up with the final
expression that relates the phase and intensity behind the
sample at the second stage to the intensity in front of the
detector [6], as illustrated in Fig. 1 at the third stage

I3(r⊥) = I2(r⊥)
(

1− z

k
∇2
⊥φ2(r⊥)

)
. (6)

So far, a point-like x-ray source has been assumed.
In laboratory setups, the extent of the source eventually
diminishes the interference effects necessary for recovering
the phase-information of the sample due to blurring, which
is also connected to the spatial coherence of the x-ray
wave-field. The influence of the source is modeled by an
operator Bs. In addition, in order to be sensitive to the
interference effects, scintillator-based x-ray detectors with
comparably small pixel sizes are commonly used. However,
the conversion step from x-ray photons to visible light inside
the scintillator introduces another kind of blurring. This
contribution is modeled by another operator Bd. Finally, the
measured intensity at stage four can be written as

I4(r⊥) = Bd [Bs [I3(r⊥)]] . (7)

The reason for separating the influence of the source and the
detector is that their response to noise could be modelled
differently [7].

III. RECONSTRUCTION APPROACHES FOR TOMOGRAPHY

By acquiring an intensity map at different angles around
the object, this imaging technique can be extended to CT.
In the following, different reconstruction approaches are
discussed.

The conventional approach for the reconstruction of tomo-
graphic data, without explicitly modeling the propagation
of the x-rays, is identical to conventional CT. The most
widely used filtered back-projection algorithm that recovers
the three dimensional distribution of the sample can be
written as

x =
1

µ
FBP

[
− ln

(
y

I0

)]
, (8)

where we denote the discrete representation of our measure-
ment I4(r⊥) as y and the voxel representation of our volume
x(r) as x. Note that the product µx recovers the three-
dimensional distribution of the linear attenuation coefficient.

Recently, more advanced model-based iterative recon-
struction techniques emerged, which include models for the
source and the detector with different noise models [7]. In
particular, an intensity-based approach [8] uses the following
model

ȳ = BdBsI0e
−µAx, (9)

where ȳ denotes the expected intensity, the matrix A models
the projection operation and the matrices Bs, Bd account for
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the blurring of source and detector. In addition, a diagonal
covariance matrix is established, according to

Ky = D [y] . (10)

Thereby, D denotes the diagonal matrix, with the vector in-
side the parenthesis on its diagonal. The optimal distribution
of the sample x̂ is found by minimizing a cost-function

x̂ = arg min
x

1

2
(y − ȳ)

T
K−1y (y − ȳ)+λRQuadratic, (11)

where the first term originates from a Gaussian noise model
and the second term denotes the regularization. Thereby,
we use a quadratic penalty in order not to attribute the
reconstruction quality on prior knowledge about the sample.

Explicitly using the interference effects for reconstructing
the three-dimensional distribution of the sample has proven
to increase contrast significantly. The conventional recon-
struction approach consists of two steps. First, the phase
information is recovered from the measured intensities. The
most commonly-used phase-retrieval algorithm is the single-
material algorithm [4]. This algorithm also imposes the
homogeneity assumption and can be derived by inserting
(3) and (4) into (5) and solving for the trace t(r⊥),

t = − 1

µ
ln

(
F−1

[
F [y/I0]

z δµk
T
⊥k⊥ + 1

])
, (12)

where F denotes the two-dimensional Fourier-transform
along the spatial dimensions and k⊥ are the respective
spatial frequencies. We now denote the pixel representation
of the traces by t. The volume can be reconstructed from the
traces acquired at different angles by means of the filtered
back-projection, written as

x = FBP [t] . (13)

Finally, we can utilize the whole image formation formu-
lation as derived previously. Its discrete form can be written
as

ȳ = BdBsI0D
[
e−µAx

]
(1 + zδLAx) , (14)

where L denotes the matrix for the Laplacian operation. This
equation directly generates the detected intensity from the
three-dimensional distribution of the sample. We also use
the covariance matrix (10) and solve for x̂ according to (11).

IV. RESULTS

For the simulation, the source flux was set to I0 =
1000 photons per pixel. A symmetric Gaussian blur with
a standard deviation of one pixel each is assumed for
the source and detector blur respectively. The parameters
defining the propagation of the x-rays are z = 1, µ = 0.1
and δ = 0.0001. The pixel size of the detector is 0.01. The
dimensions of the phantom are 256 × 256 with 32 slices.
Assuming parallel-beam geometry, the 256 acquired angles
are equidistantly distributed between 0 and 180 degrees
around the sample. For the generation of the measurements,
the phantom is oversampled by a factor of four. The resulting
intensity profiles are afterwards binned by the same factor.

700 750 800 850 900 950 1000 1050 1100
intensity

(a) Simulated intensity

0.0 0.5 1.0 1.5 2.0 2.5 3.0
trace

(b) Retrieved trace

Fig. 2. Projection-based images for the first angle. In (a) the intensity
map as simulated according to (15) is depicted, which shows the edge-
enhancement effects at the borders of the sample as well as the blurring
from the source and detector. In (b), the trace of (a) recovered by (12) is
shown.

The simulation is thereby performed according to

y = BdPoisson {BsI0 exp [−µAx] (1 + zδLAx)} , (15)

where Poisson draws one realization from a Poisson distri-
bution with a mean value specified in the parenthesis. The
first projection is depicted in Fig. 2a.

Phase-retrieval is performed according to (12) and the
corresponding recovered trace is depicted in Fig. 2b.

The analytical reconstruction of the intensity values ac-
cording to (8) is depicted in Fig. 3a. As expected, the edge-
enhancement effects are visible in the reconstructed volume.
The contrast between different densities is low. In addition,
the small features on the right can hardly be identified.

The model-based iterative reconstruction approach ac-
cording to (11) for attenuation can be seen in Fig. 3b.
The edge-enhancement effects at the borders become more
apparent, as the diminishing influence of the source and
the scintillator spread are taken into account during the
reconstruction. For instance, the feature at the bottom of
the figure becomes clearly visible.

The conventional approach that uses the traces depicted in
Fig. 2b for the analytical tomographic reconstruction is seen
in Fig. 3c. The contrast is distinctively improved, however
at the cost of spatial resolution. Not only the extent of the
source and the scintillator blur, but also the phase-retrieval
step leads to the blurred character of the reconstructed
volume.

Designed to overcome these drawbacks, our model-based
iterative approach with the model shown in (14), optimized
according to (11), yields the result depicted in Fig. 3d.
Thereby, the phase-retrieval is directly integrated into the
tomographic reconstruction and the effects of the source and
the detector are accounted for. This gives the best reconstruc-
tion quality in terms of contrast as well as resolution.
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(a) Filtered back-projection
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(b) Model-based iterative reconstruction
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(d) Proposed method for phase-contrast tomography

Fig. 3. Comparison of different reconstruction approaches. The conventional filtered back-projection algorithm applied directly onto the measured
intensities is depicted in (a). A model-based reconstruction approach, which includes models for source and detector into a statistical reconstruction
algorithm, can be seen in (b). The conventional approach for propagation-based phase-contrast computed tomography is shown in (c). Thereby the traces
under each angle are recovered with the single-material phase-retrieval algorithm. The retrieved traces are then tomographically reconstructed by means
of the filtered back-projection algorithm. Finally the model-based algorithm, which additionally models the propagation of the x-rays, is shown in (d).

V. CONCLUSION

As the crucial information for propagation-based phase-
contrast tomography is encoded in the edge-enhancement
effects that are rapidly diminished by any blurring of the
system, we believe that correctly modeling the whole image
formation process might even be more beneficial than for
conventional attenuation CT. We believe that for the ongoing
transition of this imaging technique from synchrotron facil-
ities to laboratory sources, our iterative reconstruction ap-
proach can recover phase information that would otherwise
be lost due to the smearing of laboratory sources and high-
resolution scintillator-based x-ray detectors. In addition, in-
cluding a noise model will prove particularly beneficial for
the limited flux available at laboratory sources capable of
providing sufficient spatial coherence.
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    Abstract— In this work we use simulations to compare a 
new inverse Compton scattering compact x-ray light source 
with a conventional microfocus x-ray source and 
demonstrate the magnitude of improvement in x-ray phase 
contrast imaging performance. The simulation framework is 
validated with an image acquired using a propagation-based 
x-ray phase contrast imaging system with a microfocus 
source. The design of the proposed x-ray phase contrast 
imaging system with the new source is also described. As a 
compact intermediary between synchrotron and x-ray tube 
performance, this compact light source could provide high-
quality phase contrast imaging in a medical environment 
with considerably shorter exposure times than microfocus-
sources. 
    Index Terms—Phase-contrast, propagation, source, 
simulation1 

I. INTRODUCTION 

urrent clinical and preclinical imaging using x-ray 
computed tomography (CT) measures the imaginary 

component (𝛽) of the complex refractive index 𝑛 = 1 −
𝛿 − 𝑖𝛽 to determine the x-ray attenuation properties of 
materials in three-dimensions (3-D). However, linear 
attenuation coefficients are unable to discriminate 
between materials of similar composition, as is often the 
case in imaging soft tissues. The real component (𝛿), 
characterizes the phase shifting properties of the material, 
which when converted into measurable signal in an x-ray 
phase contrast imaging (XPCI) system, can be used as an 
additional independent contrast mechanism that has been 
shown to improve contrast in soft tissues [1, 2]. This 
presents new opportunities for expanding both preclinical 
and clinical x-ray imaging applications with improved 
soft tissue contrast. 

In XPCI, refractive index differences among tissue 
types are the result of small angular deviations (~10-4 to 
10-5 deg) in the x-ray beam path. One requirement for 
capturing these small angular deviations as contrast in an 
x-ray image is a highly spatially coherent x-ray source, 
which is currently unavailable in a clinical setting. While, 
several successful laboratory XPCI setups have been 
reported [1, 3-7], a key factor for the lack of clinical 
adoption has been the unavailability of an x-ray source 
with beam properties suitable for XPCI that is compact 
enough for a hospital environment. 
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Focal spot size, photon energy, energy bandwidth, 
beam divergence and flux are all important beam 
properties for XPCI and cannot all be adequately attained 
with the traditional rotating-anode x-ray tubes widely 
used in the clinic. Grating based XPCI can overcome 
some of these limitations with the use of an absorption 
grating immediately after a low-brilliance rotating anode 
source to split the beam into an array of sources with 
smaller focal spot sizes on the order of the grating period 
(20 ~ 50um) [6]. However, this technique requires high 
precision grating fabrication, which becomes more costly 
with increasing x-ray energy and size. Additionally, these 
gratings can limit the size of the imaging field of view. 
On the other hand, microfocus x-ray tubes with focal spot 
sizes on the order of 10	𝜇𝑚 can provide relatively high 
spatial coherence, important for XPCI, without using a 
source grating, but have low photon flux, making them 
impractical for clinical use. Synchrotron radiation 
sources, which provide high output, coherent and 
monoenergetic x-rays, have successfully been used for 
XPCI [1-4, 7] and are more than a billion times brighter 
than rotating x-ray tubes. However, their large size, 
infrastructure cost, and complexity preclude synchrotron 
use for routine clinical imaging. 

This work describes a new x-ray source based on 
inverse Compton scattering (ICS), referred to as a 
compact x-ray light source (CXLS), which has 
performance characteristics intermediate between a large 
synchrotron and a rotating anode x-ray tube. Similar to a 
large synchrotron, an ICS source uses a small linear 
accelerator (linac) to produce relativistic electrons. 
However, unlike a synchrotron, which uses magnetic 
undulators, an ICS source uses a laser to produce bursts of 
x-rays at much lower electron energies due to the short 
laser period, allowing for a much more compact device 
only spanning a few meters in length. The resulting x-ray 
beam shares many similarities with a synchrotron source 
x-ray beam including high average flux, a narrow cone of 
divergence, nearly monochromatic bandwidth, tunable 
photon energy, and a focal spot size of less than 10	𝜇𝑚.  

This work describes the key features and performance 
metrics of the CXLS currently being built by teams at 
MIT and Arizona State University, along with a detailed 
simulation framework that demonstrates the effectiveness 
of a CXLS in XPCI. 

II. METHODS 

A. X-Ray Production Via Inverse Compton Scattering 
X-rays are emitted by ICS when a relativistic electron 

beam collides with a laser pulse at a shallow angle to 

Simulation of a propagation-based phase-contrast 
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increase the rate of photon-electron interactions (Fig. 1). 
ICS sources are fractions of the size of synchrotron 
sources due to the lower electron energy required for x-
ray production. This is done by using a laser’s 
electromagnetic field as an undulator that has an 
undulating period more than ten thousand times smaller 
than that of synchrotrons. The electron energies required 
for ICS in our setup are produced by a small linear 
accelerator [8]. While small synchrotron approaches have 
also been used, their requirement to keep electrons 
accelerating in a circuit requires additional magnets and 
energy, and adds cost and complexity to the source 
compared to our linac-based method. 

 

 
Fig. 1: Schematic of CXLS components including laser, sample, and 

detector. The CXLS accelerator is comprised of an RF waveguide and 
solenoid magnet enclosing the photoinjector to produce the electron 
beam followed by a short linear accelerator (linac). Quadrupole magnets 
focus the electron beam to a small spot where they collide with the laser 
to produce x-rays before being rerouted via a dipole magnet to an 
electron dump. The incident angle of the laser onto the electron beam is 
exaggerated in this schematic. 

 
The x-ray wavelength is determined by the electron 

beam energy and laser wavelength and can be tuned over 
a wide range of energies quickly by changing the electron 
energy in the linac. The x-rays produced are nearly 
monochromatic, with a bandwidth of 5%, in contrast to 
the polychromatic bremsstrahlung x-rays produced by a 
conventional x-ray tube. The source size of the x-ray 
beam is approximately the same as the electron beam size 
(<10	𝜇𝑚), This small source size, combined with 
monochromatic output provide the coherence necessary 
for optimum phase-contrast imaging. Complete details 
regarding the CXLS can be found in Ref. [8]; a summary 
of the relevant parameters used in the CXLS simulation is 
presented in Table 1. 

TABLE 1. X-PARAMETER FOR THE DESCRIBED CXLS 

Parameter Value Units 
Monochromatic x-

ray energy 
<45 keV 

Time averaged flux 1×10/0 Photons/s/sr 
Source diameter 10 𝜇𝑚 

Source divergence 8 mrad 
Photons per pulse 5×102 Photons per shot 

Pulse length 1 Picosecond 
Repetition rate 1000 Hz 

B. Simulation of X-Ray Phase-Contrast Imaging 
In XPCI, the phase alteration of x-rays induced by a 

sample serves as imaging contrast. Our XPCI simulations 
consisted of two steps: (i) modeling the interaction of x-
rays with the 3-D structure of the sample, where the phase 
of the incident x-ray is altered, and (ii) modeling the 
conversion of the phase, which cannot be directly 
recorded, into modulations of the x-ray amplitude, which 
can be recorded using a conventional x-ray detector. 

In XPCI, the interaction of x-rays with the 3-D 
structure of the sample can be calculated by solving the 
wave equation, however directly doing so for large 
complicated objects is computationally prohibitive. In this 
work, the first-order Rytov approximation is used to 
simplify the wave equation and serves as an accurate 
model for XPCI. This model is applied to both the x-ray-
object interaction as well as to free-space propagation [9]. 
This full-wave approach can be used to simulate XPCI 
with a finite focal spot, either using a polychromatic or 
monochromatic beam. 

For an imaging specimen, our full–wave model XPCI 
simulation incorporates the four-dimensional extended 
cardiac-torso (XCAT) phantom, that is represented with 
nonuniform rational B-splines (NURBS) [10]. This 
continuous, nonvoxelized NURBS-based full-wave model 
allows us to simulate XPCI with high accuracy, without 
the artifacts that arise in XPCI from having a discretized 
phantom. For the complex refractive index value, we used 
the data in “Photon, Electron, Proton, and Neutron 
Interaction Data for Body Tissues” from the International 
Commission on Radiation Units and Measurements. 

Due to the small focal spot size (10	𝜇𝑚) of the CXLS, 
a plane wave is assumed incident on the imaged 
specimen. Additionally, due to the less than 5% energy 
bandwidth expected for the CXLS, we assume 
monoenergetic x-rays from the source in our simulation to 
reduce computation time. Large bandwidth polychromatic 
x-rays smooth the phase contrast signal, reducing 
contrast. However, with a less than 5% bandwidth in the 
CXLS this effect is small compared to that encountered 
with a polychromatic source. Thus, for the microfocus 
simulation, the full spectrum was used. This simulated 
microfocus source used a tungsten anode with 40 kV peak 
tube potential with a 200	𝜇𝑚 beryllium window, typical 
in experimental microfocus tubes. The CXLS, due to its 
tunable narrow energy band is left unfiltered. Using a 
single graphics card (NVIDIA, Tesla K40C), the 
computation took about 3.3 days to generate a 2048x2048 
XPCI image from a NURBS phantom with 8.8 million 
control points. Further details of the simulation method 
can be found here [11]. 

C. Simulation Validation 
The simulation framework used in this study was 

validated with the Mie solution which is the exact 
solution with minimal approximations [9]. For further 
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validation, we acquired an image of a bead using a 
propagation-based XPCI (PB-XPCI) system and 
compared it with the simulation. Figure 2(a) shows the 
imaging geometry. The source-to-sample distance was 0.2 
m and the sample-to-detector distance was 1.85 m. The 
sample was a polyethylene beam (Cospheric LLC) with a 
diameter of 600	𝜇𝑚. A microfocus source (Hamamatsu 
Corp., L8121-03) was used at a peak tube potential of 40 
kV, tube current 100	𝜇A, and an exposure time of 400 s. 
A custom-built x-ray detector from Radiation Monitoring 
Devices Inc. with a pixel size of 16	𝜇𝑚 was used in the 
simulation and experimental system. To extract a 
representative one-dimensional (1-D) profile across the 
center of the bead in the raw image [Fig. 2(c)], we 
averaged the pixel intensities radially about the 
circumference of the bead. For the simulation, we 
assumed an x-ray source with a photon flux of 3.2	×	10// 
photons/s/sr, which approximated the noise in the 
background region [square in Fig. 2(c) and 2(d)]. The 
mass attenuation coefficient of the polyethylene bead at 
different energies was derived from the NIST website of 
mass attenuation coefficients. However, a variation in the 
value is expected depending on the exact composition of 
the material. Thus, we performed a normalization step by 
adjusting the mass attenuation coefficient and electron 
densities of the simulated sample such that the magnitude 
of the simulated 1-D profile is in agreement with the 
profile derived from experimental data.  

D. Comparison of XPCI Using the CXLS and a 
Microfocus X-Ray Tube 

For this simulation, we extracted from the XCAT 
phantom the NURBS models that represented the right 
coronary artery, and one of its acute marginal branches. 
These coronary arteries were virtually embedded in a 3-
cm-thick myocardial tissue simulant. We assigned the 
complex refractive index for water to the arteries and the 
value for muscle to the surrounding tissue and applied a 
median filter of size 3 ×	3. This is a non-contrast-
enhanced imaging task aimed at comparing soft-tissue 
contrast the imaging performance of the sources used. 
The region inside the artery was assumed to be composed 
of muscle and outside the artery was assumed to be water. 
This simulated anatomy was used to compare the XPCI 
performance of both the CXLS and microfocus sources. 

III. RESULTS 

A. Validation of Simulation Framework: Comparison with 
Experimental Data 

Figure 2 shows the comparison of simulated and 
experimental images. The accurate match between the 1-
D profiles [Fig. 2(b)], together with the similarity between 
Figs. 2(c) and 2(d), confirms the validity of our 
simulation framework. 

 

 
Fig. 2: Validation of the simulation framework used in this study: (a) 

cone-beam propagation-based x-ray phase-contrast imaging geometry; 
(b) comparison of the simulated cross section profile with the 
experimental data; (c) experimentally acquired image of a polyethylene 
bead; and (d) simulated bead image. The noise texture differs between 
(c) and (d) due to detector effects that were not modeled in the 
simulation, such as imperfections in the physical detector.  

B. Design of a PB-XPCI System Using CXLS 
Figures 3(a)-3(c) compare simulated XPCI images 

using the CXLS for different exposure times: 1, 3, and 10 
s. Figure 3(d) shows the simulated XPCI image using the 
conventional microfocus x-ray source for an exposure 
time of 10 s. In Figs. 3(a) and 3(b), the arteries can be 
identified, although the inset figures show that the noise is 
as strong as the phase contrast signal. The region inside 
the artery is slightly brighter than the background because 
the linear attenuation coefficient of muscle is greater than 
that of water. Due to the differential phase contrast 
between artery and water, the boundary of the artery looks 
darker, assisting in its identification. The inset graph in 
each figure is a cross sectional profile along the dotted 
line. The diameters of the arteries are 1.7 and 1.1 mm at 
the intersections with the dotted line. When the exposure 
time increases to 10 s, the phase-contrast signals at the 
edges can be clearly distinguished from the fluctuating 
background noise. Of note, the microfocus source XPCI 
image with an exposure time of 10 s [Fig. 3(d)] does not 
show the arteries because of the high noise level of 39%. 
A microfocus tube XPCI image of similar noise 
characteristics to Fig. 3(c) would require > 30,000 s to 
acquire. 
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Fig. 3: Simulation of PB-XPCI using the design parameters for the 

system under construction. The sample is the right coronary artery 
included in the XCAT digital phantom. (a), (b), and (c) were simulated 
with CXLS, and (d) with a microfocus x-ray tube source. 

IV. DISCUSSION 

There is a demonstrated need for improved soft tissue 
contrast in x-ray applications as shown by the poor 
specificity and sensitivity of current mammography 
techniques. While research teams around the world have 
searched over decades to address this clinical need with 
XPCI, their success has been limited due to a lack of a 
coherent source of reasonable size and cost for preclinical 
and clinical implementation of XPCI. Other compact 
laser-driven x-ray light sources have been developed, 
such as the Munich Compact Light Source (MuCLS) by 
Lyncean Technologies [12]. However, it uses both a linac 
and small synchrotron to generate and maintain electron 
energies, which adds size, complexity, and cost to the 
source. In this work, we present the specifications and 
operating characteristics of a linac-based CXLS currently 
being built by teams from MIT and Arizona State 
University with a PB-XPCI setup. This source generates a 
bright, monochromatic, coherent x-ray beam using ICS 
with several features that are attractive for XPCI. The 
small focal spot size of the CXLS results in minimal 
geometric blurring and the resultant high spatial 
coherence preserves the phase information of the object. 
The high photon flux of CXLS allows image formation to 
require less than 1/3000 the time required for a 
microfocus source [Figs. 3(c) and 3(d)].  To test the 
imaging characteristics of our CXLS, we constructed a 
simulation framework using the first-order Rytov 
approximation and validated our simulation technique by 
showing agreement between simulated and 
experimentally acquired microfocus images. This 
simulation method was then used to compare the CXLS 
and microfocus source. These results showed an 
improvement in contrast using the CXLS over a 
microfocus source and the benefit of a greatly reducing 

acquisition time. For more information on these 
simulations and their role in our system design see [13]. 

V. CONCLUSION 

    This work presents the key features of a new generation 
of compact light sources and demonstrated the high-
quality phase-contrast images produced from this source 
via simulations. Further development of such simulations 
will assist us to better understand important image quality 
metrics of PB-XPCI, such as noise and contrast. This will 
allow us to better optimize system characteristics such as 
propagation distance, photon energy, and flux while 
maintaining image quality. Additionally, such models can 
assist us in developing improved forward models for 
iterative noise reduction techniques and others important 
in making XPCI more applicable to a clinical reality. 
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New X-ray Small-angle Scattering Radiography
System Design

Guang Li, Wenxiang Cong, James S. Michaelson, Hong Liu, Ge Wang†

Abstract—Abstract X-ray radiography has been used as
an effective diagnosis tool in clinical application for decades
owing to its high resolution and high sensitivity to specific
features such as calcification and hemorrhage. However, the
innate disadvantage of x-ray radiography and tomography
is the poor soft tissue contrast. Small-angle scattering has
been found to provide some special information about the
abnormality of some soft tissues. At present, there is no effective
small-angle scattering radiography system. In this paper, we
propose a new system design dedicated to capturing small-angle
scattering radiography images, which carry critical pathological
information for differentiation between normal and malignant
tissues, in theory. Our design consists of two interlaced gratings
so that both the primary flux and Compton scattering photons
are effectively blocked to leave the apertures mainly open to
small-angle scattering photons. By theoretical analysis and
Monte Carlo simulation, it is demonstrated that a small-angle
scattering radiography image can be captured directly and
effectively with our proposed radiography system.

Index Terms—Small-angle scattering, grating based x-ray
imaging, radiography, pathological studies.

I. INTRODUCTION

A variety of commercial x-ray imaging devices have been
developed for clinical and preclinical applications [1], [2],
[3]. With the advancement of the x-ray source, detector, and
reconstruction techniques, the spatial and temporal resolution
of these scanners have been significantly improved. Because
of these improvements, x-ray imaging devices become more
powerful and more popular.

At present, most of these scanners utilize only one contrast
mechanism, which is known as x-ray linear attenuation. Conse-
quently, the resulting images have poor soft tissue contrast. In-
deed, the x-ray attenuation coefficient is roughly proportional
to the fourth power of the atomic number, and biological soft
tissues are rather similar in their compositions of chemical
elements. To address this disadvantage, researchers have been
investigating alternative contrast mechanisms to reveal soft
tissue features. One popular option to improve the contrast
resolution is to introduce contrast agents containing high-Z
elements. Unfortunately, there are many cases in which a
contrast agent is not easy to be transferred to the target area
and take effect, such as in-vitro cancer specimen imaging.
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A large body of literature demonstrated that small-angle
scattering imaging provides positive correlation with the pres-
ence of breast cancer [4], [5], [6], and different tissues have
quite distinct coherent scattering profiles [7] and separate scat-
tering peaks [4]. For example, scattering profiles from normal
tissues have a sharper peak at position x = 0.11Å−1which
indicates the presence of adipose component [8], the scattering
profiles from malignant tissues present a broad scattering
peaks at x = 0.17Å−1 [9], and the scattering peaks from
fibrous collagens are positively related to fibril stacking period
and collagen fiber alignment [10]. Because of these findings,
small-angle scattering imaging techniques have been used
in preclinical studies with a synchrotron source for many
years. The emergence of both Talbot interferometers [11] with
synchrotron and micro-focus x-ray sources, and Talbot-Lau
interferometers [12] with hospital-grade x-ray sources and
recent single shot methods [13], [14], proved that small-angle
scattering imaging can provide some supplemental information
compared with traditional absorption-based CT. We call these
indirect detection methods since the small-angle scattering
signals collected are obtained indirectly by decomposing the
projection data, and we do not know where these signals come
from and how these signals are distributed.

Direct coherent scattering systems [14], [15], [16], [17] have
a great potential to differentiate subtle differences due to co-
herent scattering between different tissues. Current scattering-
based imaging techniques perform slot scanning aided by a
collimated detector. These systems can collect scattering sig-
nals at characteristic angles and obtain a 2D material map point
by point, or line by line, and hence the scanning efficiency is
very low. In the associated imaging geometry, the collimated
detector should be deviated from the direction along which the
primary x-ray travels. However, in practice it cannot capture
all the small-angle scattering signals concurrently with this
geometric design because the stronger primary beam should
be completely blocked or it will cause serious impact on the
small-angle scattering detection.

Here we propose a new dedicated small-angle scattering
radiography system composed of two interlaced gratings,
which can detect the small-angle scattering signals effectively
and efficiently. The key idea behind our design is that both the
primary x-rays and Compton scattering photons are basically
blocked so that only small-angle scattering x-rays are admitted
to go through the paired gratings and reach the detector behind
the gratings. In the remainder of this paper, we first describe
the theory and method in the second section. Then, we report
our numerical results in the parallel beam geometry. Finally,
we discuss relevant issues and conclude the paper.
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Fig. 1: Paired gratings for small-angle scattering imaging.

Fig. 2: Geometrical parameters of the paired gratings.

II. METHODS

A. Overall Setup

As our proposed small-angle scattering imaging scheme
is new, we start with the parallel beam geometry to verify
the feasibility. In the parallel-beam geometry, the schematic
design is illustrated in Fig. 1. The most important component
in this system is the combination of two absorption gratings
(red columns in Fig. 1) made of tungsten or lead or gold.
The duty cycle of each grating is 50%. The two gratings
are complementary, and all the primary parallel x-rays are
completely blocked, and only those rays that pass through the
object and scattered at small/specific angles can be detected
by the detector behind the gratings. Between the two layers,
the gap can be used to modulate the incident angle.

B. System Design and Analysis

Scattered photons are often considered as noise in practice
as they randomly diffuse over the field of view, and cannot be
effectively analyzed or removed. Here our proposed detection
scheme can specifically extract small-angle scattering signals
with appropriate geometrical parameters. All the key parame-
ters are shown in Fig. 2. Each unit of the grating contains two
cells: solid cell (red component) and hollow cell. The height
and width of each unit are h1 and 2w1 respectively, and the
widths of the solid cell and the hollow cell are both equal to
w1. The length of the gap between two layers is l1.

(a) (b)

Fig. 3: Numerical phantom used in our simulation studies. (a)
The sagittal view and (b) the coronal view of the phantom.

In order to determine these parameters optimally, we first set
up a rectangular coordinate system as shown in Fig. 2. For a
scattered photon from a point O = (x, y) to reach a point po =
(a, 0) on the detector, it must go through the three surfaces
shown in Fig. 2 without being attenuated by the grating metal.
Hence, the following four equations should be simultaneously
satisfied:

−w1

2
< a+

(2h1 + l1)(x− a)
y

<
w1

2
, (1)

−w1

2
< a+

(h1 + l1)(x− a)
y

<
w1

2
, (2)

w1

2
< a+

h1(x− a)
y

<
3w1

2
, (3)

w1

2
< a <

3w1

2
. (4)

Equation (1) to (3) respectively means that a scattered photon
from point O = (x, y) can pass through the third to first
surface, and (4) means that the photon can successfully reach
the detector. By simplifying (1) to (4), we can draw the
conclusion that if a ≥ h1w1/(h1 + l1) + w1/2, the following
relationship must hold

−w1

2 − a
2h1 + l1

y + a < x <
w1

2 − a
h1 + l1

y + a. (5)

Otherwise, we have
w1

2 − a
h1

y + a < x <
w1

2 − a
h1 + l1

y + a. (6)

Based on (5) and (6), we can derive the energy distribution
function as follows:

E(θ) = E(
τ

h1 + l1
)

=


l1

h1+l1
|τ | 0 ≤ |τ | < w1

l1
h1+l1

|w1| |τ | = w1

2w1 − 2h1+l1
h1+l1

|τ | w1 < |τ | ≤ 2(h1+l1)
2h1+l1

w1

(7)

From this function, it is seen that the acquired small-angle
scattered photons from different angles approximately form
a triangular distribution of left-right symmetry. The principal
energy cluster is around the angle

θp =
w1

h1 + l1
. (8)
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Equation (7) can be treated as a response function of the
proposed system. Assuming that the scattering signal from a
position M = (x, z) along a direction θ is f(x, z, θ) , the
captured scattering signal can be represented as

F (x′) =
∑
z

∑
x

f(x, z, θ)A(x, z, θ)E(θ)|x′=x±zθ. (9)

where A(x, z, θ) is attenuation factor. By modifying the gap
l1, the incident angle can be controlled as we demand. The
response function can also be easily to extend to 2-dimensional
case as a triangular distribution of circular symmetry. Accord-
ing to (9), we can conclude that if we limit the incident angle
to be a small value, we can get a high-resolution small angle
scattering radiography image directly.

III. RESULTS
EGSnrc is a well-known simulation software whose function

is to model the propagation of electrons and photons through
matters. Because it relies on the Monte Carlo simulation, it is
highly accurate and can be used to validate the feasibility of
our small angle scattering radiography system. Our numerical
simulations were performed in parallel beam geometry with
x-rays of mono-energy at 20 keV. In the simulation, the total
number of photons was set to 1.0×1010. The detector had a
0.4 mm pixel size with 50 × 50 pixels per frame, and each
pixel covering 16× 16 cells.

In order to demonstrate that the proposed scheme can be
effectively used to detect small angle scattering radiography
image, the experimental phantom composed of many concen-
tric cylinders as shown in Fig. 3. The solid parts (pink parts)
of the phantom were made of fibro-glandular tissue whose
intensity was 1.04 g/cm3 with the mass fraction of carbon,
hydrogen and oxygen being 0.185:0.094:0.68 [18]. The hollow
parts were filled with nothing. The solid parts and hollow
parts were alternately placed. The radii from the innermost
to outermost were 1 mm to 9 mm with common difference
of 1 mm. The red component behind the phantom was the
double grating layers made of tungsten. The height and width
of each cell were 25 µm and 120 µm respectively. The gap
between two layers was adjustable and can be used to modify
the incident angle of scattering x-rays.

In the following experiments, the length of the gap was
280 µm, meaning that the principal energy angle was about 3.6
degrees. As there were tens of thousands of separate regions
involved and the simulation based on EGSnrc was very time-
consuming, the grating was not set to the same size as the
phantom and it covered the whole phantom in the horizontal
direction but only half in the vertical direction. The parallel
beam was confined to the same size as the grating. According
to the theoretical analysis described above, if the phantom is
thin enough and put close enough to the detector (the phantom
in this experiment was 4 mm thick, and put 0.5 mm away from
the grating), we can get a small resolution.

The acquired scattering image is shown in Fig. 4a and the
profile along its central horizontal line is shown in Fig. 4b. It
is evident that the image in Fig. 4a is approximately isotropic
and very similar to the pattern inside the phantom shown in
Fig. 3a, and they are positively related, which means that the

(a)

(b)

Fig. 4: Representative scattering results. (a) The acquired
scattering signals from the phantom shown in Fig. 4 and (b)
the profile along the central horizontal line.

(a)

(b)

Fig. 5: Representative absorption results. (a) The absorption
image from the phantom and (b) the profile along the central
horizontal line.

solid parts of the phantom correspond to the bright parts of
the acquired scattering image.

Projective raw data from the conventional CT should be neg-
atively correlated with the line integrals through the phantom,
which means solid parts of the phantom correspond to the dark
parts of the projective raw data. In our simulation, projective
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views were simulated with the same number of x-ray photons.
A typical projection view is shown in Fig. 5a, and it is intuitive
that this image contains a pattern very similar to the scattering
image shown in Fig. 4a except that their corresponding pixels
were on reversed gray scales. This difference demonstrates that
the acquired image from our proposed scheme comes from
scattering signals. By comparing the profiles in Fig. 4b with
Fig. 5b, it is seen that the profile from the absorption image is
more like a piecewise constant function which is reasonable
in parallel beam geometry, but the profile from the acquired
scattering image has sharp peaks and valleys which is a little
different from the absorption image. It is because each voxel
in the phantom is diffused over a small neighboring area by
multiplying the response function.

IV. DISCUSSION AND CONCLUSIONS

By theoretical analysis and Monte Carlo simulation, we
have demonstrated that the proposed small angle radiography
system can get small angle scattering radiography image
directly and effectively in parallel-beam geometry. In the
experiments, the height of each unit is set to 120 µm to
block all the primary x-ray of 20 keV. We can adjust the
gap to set the incident principal angle. For example, in the
experiment we want to the principal angle to be about 3.6
degrees, the gap was set to 280 µm. The resolution of the
directly detected scattering data depend on the angle range
and the distance from the sample to the grating. If we put
the sample close enough to the grating, we can get the
similar high-resolution scattering image in comparison with
attenuation image which means the proposed scheme can only
be used to scan thin samples for now. Fortunately, we have also
derived the response function of the system which means we
can build a new reconstruction model to get the tomography
images of the small angle scattering in the future. There are
several dark-field forward models in the literature [19], [20]
which have provided feasible ways to address this problem.
These existing methods will be helpful to our further study for
small scattering tomography based on our proposed detection
scheme. Eventually, small-angle scattering tensor tomography
should be of our interest [21].

Though all the experiments is based on parallel-beam, it
is not very complicated to extend the scheme to fan-beam
and cone-beam geometry as we can modify the geometrical
parameters to control the incidence range of incoming scatter-
ing x-ray. Theoretical analysis demonstrates that the response
function should be isotropic, but the experiment result showed
that isotropy is only approximate. That is because the two-
dimensional grating is not isotropic either. The better design
for the single unit should be hexagonal or circular. Patho-
logically, small-angle scattering imaging can provide sensitive
and specific information about surgical specimens, and guide
surgical procedures on site. Our proposed technology should
be robust and cost-effective. Hence, we are interested in
developing the technology further and prototyping it as a novel
tool for niche surgical and pathological applications.

In summary, we have proposed a new small-angle scattering
radiography system featured by a pair of complementary x-ray

gratings. This approach is focused on small-angle scattering
signal detection, involves no mechanical stepping, and should
be practical if it is fully developed.
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High sensitivity and fast full-field X-ray fluorescence 
CT imaging method and its experimental results 

Siyuan Zhang, Liang Li, Zhiqiang Chen 

 Abstract–X-ray fluorescence computed tomography (XFCT), 
which is a quantitative imaging technique that collects x-ray 
fluorescent photons emitted from the target element, has higher 
sensitivity when detecting high Z elements compared with 
conventional transmission CT. XFCT experiments were first 
carried out on the first generation CT system with limited 
detection efficiency which resulted in a long scanning time. To 
overcome this problem, recent studies focus more on the XFCT 
implement with fan-beam (or cone-beam) source and the linear-
array (or flat panel) detector, which significantly accelerate the 
data acquisition procedure. Another method to reduce the 
scanning time is to collect the projection data by sparse sampling 
strategy and to reconstruct the image based on the few-view 
projection data and appropriate priori hypotheses. In this study, 
we presented a fast few-view XFCT imaging method with 
polychromatic source and pinhole collimation. A linear-array 
photon counting detector operating on the multi-energy-bin 
mode was used for data acquisition and corrections. A phantom 
containing Gd insertions was irradiated by a polychromatic cone 
beam produced by a conventional x-ray tube (125kVp, 25mA). 
To cover a 360° angular range, the phantom was rotated in 8° 
intervals to obtain 45 projections with an integral time of 20s per 
angle. An expectation maximization-total variation (EM-TV) 
iteration algorithm was applied for image reconstruction. The 
purpose of this study is to demonstrate a rapid XFCT imaging 
method with sparse sampling strategy and few-view 
reconstruction algorithm. The experimental results indicate that 
it is a promising method to reduce the scanning time and total 
dose of XFCT while maintaining its sensitivity and image quality. 

I. INTRODUCTION 

-ray fluorescence computed tomography (XFCT) is a 
quantitative imaging technique that collects x-ray 

fluorescent photons emitted from the target element. 
Compared with conventional transmission CT techniques, 
XFCT has higher sensitivity when determining the high Z 
element in vivo and can produce the image of the target 
element with higher contrast. 
It is generally agreed that the first XFCT was performed in 
1986 using the x-ray sources produced by NSLS [1]. 
However, although the synchrotron can produce 
monochromatic and polarized x-ray source which is ideal to 
XFCT [2]-[4], it is still impractical for clinical research due to 
its high cost and limited access. In recent years, XFCT 

Manuscript received January 5, 2018. This work was partially supported by 
the grants from NSFC 11775124, 61571256, 11525521, and The National Key 
Research and Development Program of China, 2017YFC0109100. 

Siyuan Zhang, Liang Li and Zhiqiang Chen are all with Department of 
Engineering Physics, Tsinghua University, Beijing, 100084, China & Key 
Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry 
of Education, 100084, China.  

Corresponding author: Liang Li,  lliang@tsinghua.edu.cn 
 

experiments have been carried out more on the benchtop 
systems with polychromatic x-rays produced by conventional 
x-ray tubes [5]-[8]. 

One of the biggest challenges current XFCT meets is the 
low signal intensity caused by the limited detection efficiency. 
At first, XFCT experiments were carried out on first 
generation CT devices which scan a whole phantom by 
translating the pencil-beam source. This imaging technique 
enables high signal quality but results in long scanning time 
(several hours). Therefore, recent studies focus more on the 
XFCT implement with fan-beam (or cone-beam) source and 
the linear-array (or flat panel) detector that significantly 
accelerate the data acquisition procedure [9]-[11].  

In our recent studies, we presented a set of simulations and 
experiments based on a full-field fan-beam XFCT device with 
pinhole collimation and photon counting detectors [13]-[14]. 
In that works, we obtained a 256*360 projection data in a 30 
min scan procedure with the current of the x-ray tube 
relatively low (500μA), and then successfully reconstructed 
1% gadolinium (Gd) in an acrylic phantom which was 3 cm in 
diameter. However, it is noticed that the signal intensity and 
the signal-to-noise-ratio (SNR) of the raw data of each 
projection angle is not such sufficient for image reconstruction 
in case of low dose and high sampling density. Therefore, a 
few-view data acquisition strategy with sparse angle sampling 
and higher dose in scanning each projection angle might be 
more suitable for current XFCT experiments. 

In this study, we presented a few-view XFCT imaging 
experiment with polychromatic source and pinhole 
collimation. A linear-array photon counting detector operating 
on the energy bin mode was used for data acquisition and 
scatter correction. The phantom containing Gd insertions was 
irradiated by a polychromatic cone beam produced by a 
conventional x-ray tube (125kVp, 25mA). To cover a 360° 
angular range, the phantom was rotated in 8° intervals to 
obtain 45 projections with an integral time of 20s per angle. 
An expectation maximization-total variation (EM-TV) 
iteration algorithm was applied for image reconstruction. 
Results show that 0.25% Gd solutions can be successfully 
reconstructed by using only 45 projections. The purpose of 
this study is to demonstrate a rapid XFCT imaging method 
with sparse sampling strategy and few-view reconstruction 
algorithm based on the priori hypotheses. The experimental 
results indicate that it is a promising method to reduce the 
scanning time and total dose of XFCT while maintaining its 
sensitivity and image quality, which may further improve its 
practicability in clinical research. 

X 
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II. MATERIALS AND METHODS 

A. XFCT System with Pinhole Design 
The experimental setup in this work (shown in Fig. 1) is 

based on a Full-field fan-beam XFCT imaging system. The 
data acquisition procedure can be divided into the following 
steps: 

i) One incident beam ( )0I E with the energy higher than the 
k-edge of the fluorescent material reaches arbitrary point B in 
the phantom after entering the phantom at point A. 

ii) Assume that the concentration of fluorescence material at 
point B is ( )Bρ  and the fluorescence yield is ω, then several 
fluorescent photons may be stimulated and emitted from point 
B and the emitting angle is isotropic; 

iii) A part of fluorescent photons emitted from point B will 
finally reach the p-th pixel of the detector after leaving the 
phantom at point C and then crossing through the pinhole. 

Therefore, according to our previous work, the number of 
the fluorescent photons collected by the p-th pixel that are 
emitted from point B can be expressed as: 
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where ( ),E lm  is the linear attenuation coefficient, 

( ),mpe E Bm  is the photoelectric mass absorption coefficient at 

point B and B D→Ω  is the solid angle from B to D. 
 

 
Fig. 1.  The geometry of the XFCT imaging system. 

B. Data Acquisition 
As the phantom is irradiated by the polychromatic source, 

the fluorescent signal will be contaminated by the continuous 
Compton scatter background. In order to extract the 
fluorescent signal from the scatter background, the photon 
counting detector is working at the energy bin mode and a 

triple-energy window method is applied for the scatter 
correction [12].  

In this work, Gd (k-edge=50.23 keV) was used as the 
fluorescent material. As the energy of its Kα fluorescence is 
about 42.5 keV, the energy bin was set at 39-45 keV for 
fluorescence detection. Another two energy bins were 
respectively set at 33-39 keV and 45-51 keV. The middle 
energy bin records both fluorescent photons and scattered 
photons with energies between 39 keV and 45 keV, while the 
other two bins only record the scattered photons. Therefore, 
the number of scattered photons counted in the middle energy 
bin can be estimated as 

2

middle middle
above below

above below
middle

Nsca NscaCsca Csca
Nsca Nsca

Csca
+

=         (2) 

where Nsca denotes the relative number of scattered photons 
in each energy bin which can be calculated according to KN 
formula and the incident spectrum. More details about this 
scatter correction method has been presented in our recent 
work [13]. 

C. Image Reconstruction 
As XFCT is a quantitative imaging technique that obtain the 

distribution of a certain element, a pixel value in the 
reconstructed image can be viewed as the concentration of the 
target element at corresponding position. According to the 
system geometry and the transport process of the fluorescent 
photons mentioned above, the relationship between the 
projection data and the pixel value of the reconstructed image 
can be written as 

i ij j
j

p M f= ∑                                    (3) 

where p is the projection data after scatter correction, f is the 
pixel value, M is the system matrix which can be calculated 
according to eq. (1). It should be explained that the attenuation 
map is necessary for accurate calculation of the system matrix 
and it can be obtained by transmission CT images. In this 
work, the attenuation map of the phantom was assumed to be 
known. Further research about the attenuation correction 
method will be discussed in our future work. 

Consider that the fluorescence signal is affected by the 
statistical noise which obeys Poisson distribution, the well-
known maximum likelihood expectation maximization 
(MLEM) algorithm is applied for image reconstruction [15]. 
Each iteration step of MLEM algorithm can be written as 
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               (4) 

As the projection data is sparse, the solution of eq. (3) is not 
unique. Therefore, the total-variation (TV) minimization [16] 
was added as an extra constraint and a TV gradient descent 
iteration step was added after each MLEM iteration step: 

( ) ( ) ( ) ( ) ( )1 1

2

1 TV k EM kTV k EM k EM k
j Vj j T

f ff f fα+ + +− − ×∇=
ur ur

   (5) 

where α is the parameter that controls the speed of the gradient 
descent. 
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III. EXPERIMENTS 

A. Phantom 
The phantom used in the experiment is a PMMA cylinder 

with 50mm in diameter containing Gd insertions (shown in 
Fig. 2). The insertions consist of Gd solutions with 
concentrations from 0.25% to 2%. Two of the insertions were 
respectively made of water or air as a contrast.  

 
Fig. 2.  Geometry of the phantom used in the experiments. 

B. Experimental Device 
The schematic of the top view of the experimental setup is 

shown in Fig. 3. The x-ray beam was generated by a 
conventional x-ray tube (125kVp, 25mA) and then collimated 
by lead bricks to produce a cone beam. The distance between 
the x-ray source and the rotation center is about 400mm. A 
linear-array photon counting detector covered by lead shields 
operating on the energy bin mode with single pinhole 
collimation was placed on one side of the rotation stage for 
data acquisition and scatter correction. The distance between 
the pinhole and the rotation center is about 80mm and the 
distance between the pinhole and the center of the detector is 
64mm. In order to cover a 360° range, the phantom was 
rotated in 8° intervals to obtain 45 projections with scanning 
time set at 20s per angle. 

 
Fig. 3.  Schematic of the experimental setup. 

C. Results 
The projection data of 45 angles collected by different 

energy bins and the data after scatter correction are shown in 
Fig. 4. It can be seen that the scattered photons in the middle 
energy bin are well subtracted after the scatter correction. 
However, this scatter correction method does not decrease the 
statistical noise caused by the scattered background. 
Therefore, further methods may focus on reducing the number 

of scattered photons emitted from the phantom by spectrum 
optimization or application of polarized x-ray source. 

The images reconstructed by 15 projections or 45 
projections are shown in Fig. 5. The reconstruction results 
indicate that 0.25% Gd solutions can be well reconstructed 
using only 45 projections. And if only 15 of the 45 projections 
are used for image reconstruction, although the image is 
contaminated by higher statistical noise and more artifacts, 
0.5% Gd solutions can still be seen clearly in the images, 
which validates the feasibility of the few-view scan strategy. 

 
Fig. 4. Projection data detected by different energy bins and the fluorescent 
signal in the middle energy bin after scatter correction. 

 
Fig. 5.  XFCT images reconstructed from 15 projections and 45 projections. 

 
To further investigate the image quality, the relationship 

between the Gd concentration and the corresponding pixel 
values in the reconstructed images (shown in Fig. 6). The 
pixel values are converted to concentration and 2% Gd 
solutions are used for calibration. It can be seen that the signal 
intensity in the reconstructed image after scatter correction is 
linear with the concentration and the linear relationship fits 
better with more projections. 

The contrast-to-noise ratio (CNR) of Gd insertions with 
different concentrations was also calculated and is shown in 
Fig. 7. The CNR is calculated as follows: 
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where ROI and BG respectively denote the sampling points 
of signal and background. 

It can be seen from Figs. 5 and 7 that the scatter correction 
method effectively improves the contrast of the target element, 
which helps a lot when detecting the contrast agent with very 
low concentrations.  

 
Fig. 6.  Relationship between the Gd concentration and the corresponding 
pixel values. 

 
Fig. 7.  CNR of Gd insertions of reconstructed images shown in Fig. 5. 

IV. CONCLUSION 

In this study, we presented and discussed our recent 
experimental results about the few-view XFCT imaging with 
pinhole collimation. The phantom was irradiated by the cone 
beam polychromatic source and was rotated in 8° intervals to 
obtain 45 projections with scanning time set at 20s per angle, 
which means the total scan time is only 15 min. The triple-
energy-bin method was applied for scatter correction and the 
EM-TV iteration algorithm was applied for image 
reconstruction. Results show that 0.25% Gd solutions can be 
successfully reconstructed by using only 45 projections. This 
study indicates that the few-view cone-beam XFCT imaging 
strategy can significantly reduce the scanning time and total 
dose while maintaining its sensitivity and image quality. 
Further research about the system optimization and the scatter 
reduction algorithm will be discussed in our future works. 
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Abstract—We propose a multi pass approach to reduce cone 

beam artifacts in a circular orbit cone beam computed 

tomography (CBCT) system. Employing a large 2D detector 

array reduces the  scan time, however, produces cone beam 

artifacts in FDK reconstruction. While the two-pass algorithm 

proposed by Hsieh is effective, when the bone density is 

moderate and cone angle is large, the correction performance is 

degraded. In this work, we treated the cone beam artifacts 

generated from bone and soft tissue as those from less dense 

bone objects, and corrected them iteratively. The proposed 

method was validated using an XCAT phantom data, and 

compared with two-pass algorithm. The results show that the 

proposed method is superior to the two-pass algorithm and 

reduces the overcorrection of the two-pass algorithm near bone 

regions effectively. Qualitative evaluation with mean square 

error (MSE) is also performed, demonstrating the effectiveness 

of the proposed method. 

Index Terms—Cone beam computed tomography (CBCT), 

cone beam artifacts, large cone angle, FDK, Two-pass 

algorithm 

I. INTRODUCTION 

 

HE cone beam computed tomography (CBCT) system 

has been widely used in diagnostic imaging. While the 

CBCT system provides more morphological information of 

patients with 3D volumetric data, cone beam artifacts 

generated in FDK reconstruction may degrade the diagnostic 

performance [1,2].  

To reduce the cone beam artifacts, several approaches have 

been proposed [3]-[7], which are classified into two 

categories. Since the cone beam artifacts are originated by 

insufficient sampling of the object in CBCT geometry, 

approaches in the first category change the data acquisition 

scheme (e.g., circle-and-line trajectory [3], saddle orbit [4], 

and utilizing multiple X-ray sources [5]) to acquire full 

sample data of the object. One drawback is a long scan time, 

which may introduce motion artifacts in the reconstructed 

image.  
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The methods in the second category reduce the cone beam  

artifacts by algorithmic way. Grass et al. suggested modified 

FDK algorithms (i.e., Parallel-FDK (P-FDK) and Tent-FDK  

(T-FDK) [6]), which rearranged the cone beam rays into  

parallel (P-FDK) and tent (T-FDK) geometry. A two-pass 

algorithm proposed by Hsieh tries to reduce the cone beam 

artifacts iteratively by assuming the high density materials 

are dominant factors of the cone beam artifacts [7]. While 

these approaches are effective with a moderate cone angle 

(i.e., less than 5 degrees), the correction performance 

becomes poor as the cone angle increases.  

In this work, we propose a new method to reduce the cone 

beam artifacts with a large cone angle scheme. Since the 

cone beam artifacts generated by soft tissue become severe in 

a large cone angle scheme, the proposed method incorporates 

the soft tissue effect in the cone beam artifacts reduction. The 

proposed method is validated using an XCAT phantom, and 

performance comparison with two-pass algorithm is 

conducted. 

 

II. METHODS 

A. Brief review of the two-pass algorithm and its limitation 

 

The basic assumption of two-pass algorithm is that the cone 

beam artifacts are generated dominantly by the high density 

 

 
 

Figure 1. Decomposition of the cone beam artifacts into (a) bone and soft 

tissue induced artifacts, and (b) the less dense bone induced artifacts.

Chulhee Han, and Jongduk Baek* 

A multi pass approach to reduce cone beam 
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Figure 2. Schematic diagram of proposed method. 

 

materials (e.g., high density bone). Thus, two-pass algorithm  

segments the high density materials from FDK image by simple 

thresholding, and regenerates the cone beam artifacts using the 

segmented high density materials. Then, corrected image is 

acquired by subtracting the generated cone beam artifacts from 

the original FDK image [8]. However, when the bone density is 

low or the X-ray energy used for data acquisition is high, the 

density difference between bone and soft tissue is reduced. 

Thus, the cone beam artifacts generated by the bone and soft 

tissue should be considered together in the artifact reduction, 

which would be more significant when the cone angle is large.  

 

B. Proposed Method 

 

The basic idea of the proposed method is to regenerate the 

cone beam artifacts from less dense bone objects. Consider a 

defrise phantom embedded within a cylinder phantom. Since 

the reconstruction process is linear, the cone beam artifacts can 

be decomposed as a summation of the bone and soft tissue 

induced cone beam artifacts (shown in figure 1 (a)) or purely 

generated from the less dense bone object since the uniform 

cylinder phantom does not produce cone beam artifacts (shown 

in figure 1 (b)). By assuming the density of soft tissues around 

bone objects is not varying rapidly, this approach would help to 

prevent the overcorrection of conventional two-pass algorithm, 

especially when the bone density is moderate.  

 

The schematic diagram of the proposed method is depicted in 

figure 2 and detail of each step is as follows. 

 

 

(Step 1) Set FDK reconstructed image 𝑓𝑓𝑑𝑘 as a start image. 

Then, classify bone, 𝑓𝑏𝑜𝑛𝑒,τ(1), and tissue, 𝑓𝑡𝑖𝑠𝑠𝑢𝑒,τ(1), images 

using a simple threshold value, τ(1).  
 

(Step 2) Calculate a mean value of soft tissue component, 𝜇τ(1), 

in 𝑓𝑡𝑖𝑠𝑠𝑢𝑒,τ(1).  

 

(Step 3) Subtract 𝜇τ(1)  from 𝑓𝑏𝑜𝑛𝑒,τ(1)  to obtain a less dense 

bone object, 𝑓𝑏𝑜𝑛𝑒_𝑙𝑒𝑠𝑠,τ(1). Conduct a forward projection (FP) 

on 𝑓𝑏𝑜𝑛𝑒_𝑙𝑒𝑠𝑠,τ(1), and perform FDK reconstruction to generate 

𝑓𝑏𝑜𝑛𝑒_𝑙𝑒𝑠𝑠_𝑓𝑑𝑘,τ(1).  

 

(Step 4) Errors, 𝑓𝑒𝑟𝑟𝑜𝑟𝑠,τ(1) , are calculated by subtracting 

𝑓𝑏𝑜𝑛𝑒_𝑙𝑒𝑠𝑠_𝑓𝑑𝑘,τ(1)  from 𝑓𝑏𝑜𝑛𝑒_𝑙𝑒𝑠𝑠,τ(1) , and artifacts corrected 

image, 𝑓τ(1) , is acquired by subtracting 𝑓𝑒𝑟𝑟𝑜𝑟𝑠,τ(1)  from the 

original 𝑓𝑓𝑑𝑘 image.  

 

(Step 5) Repeat (Step 1) ~ (Step 4) until mean square error 

(MSE) of the 𝑓𝑒𝑟𝑟𝑜𝑟𝑠,τ(𝑖) is converged. 

 

C. Simulations 

 

To validate the proposed method, we used an XCAT 

phantom developed by Duke OLV. We generated the XCAT 

thoracic phantom at monochromatic 60kV energy as shown in 

Figure 3, where the attenuation coefficients of bone and soft 

tissue range from 0.36  to 0.5 cm-1, and 0.22 to 0.26 cm-1, 

respectively.
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(a) (b) 

Figure 3. (a) Coronal, (b) sagittal slice of XCAT phantom at 60kV. Unit of the 

values is cm-1, and display window is [0.1 0.4].  

 

The XCAT phantom was constructed with a 300×300×320 

matrix with a voxel size of 1.2 mm3  and 4 subvoxels per voxel 

were allocated to avoid discretization errors. Projection data 

were acquired using a 3D forward projector developed by 

H.Gao [9]. We added Poisson random noise to the projection 

data, assuming ideal bow-tie filter [10]. The number of detected 

X-ray photons per detector cell was 2500. After that, a Hanning 

weighted ramp filter was applied on the projection data. FDK 

algorithm based on voxel-driven back projection using a linear 

interpolation was used for the reconstruction. The simulation 

parameters are summarized in table 1. 

 

D. Image Quality Evaluation 

 

To compare image quality of FDK, two-pass, and proposed 

method, we set 5 region of interests (ROIs) as shown in figure 3. 

For quantitative analysis, the MSE between FDK, two-pass, 

proposed algorithm, and the reference XCAT phantom were 

calculated. Averaged MSE was calculated from 20 independent 

noise realizations. The central vertical profiles in figures 3 (a) 

and (b) are also presented. 

 

III. RESULTS 

 

Figure 4 (a) shows the coronal and sagittal slices of the 

reference XCAT phantom. For visual inspection, we zoomed in 

116×116 voxel blocks in bony structures of ROIs 4 and 5, 

corresponding 10 to 17 degrees cone angles. The cone beam 

artifacts are clearly observed in FDK, showing distorted 

anatomical structure and intensity in both slices.  

 

Figure 4 (c) shows corrected image from two-pass algorithm, 

where 0.3 cm-1 was selected as a threshold to segment the bone 

materials. It is shown that two-pass algorithm improves the 

sharpness of the bones, but generates additional streak artifacts 

near the bone regions. Note that the intensity drop of the bone 

object with 0.36 cm-1 would be significant within ROI5, and 

thus simple thresholding would not be effective to segment the 

bone objects. 

 

Table 1. Simulation parameters 

Source to iso-center distance 800 mm 

Detector to iso-center distance 400 mm 

Detector cell size 
1.552 mm × 1.552 mm 

[576 (row) × 512 (column)] 

Number of views 720 

Cone angle -17° through 17° (34°) 

Reconstructed volume size 360 × 360 × 384 mm3 

Reconstructed matrix size 300 × 300 × 320 

Number of detected  

X-ray photons 
2500 

Reconstruction algorithm FDK 

 

 

Figures 4 (d) and (e) show the corrected image of the proposed 

method with 1st and 3rd iteration, respectively. In each iteration, 

we increased the threshold value linearly from 0.3 cm-1 to 0.32 

cm-1. It is shown that the correction performance is improved 

with more iterations. We found that MSE converged after 3rd 

iteration. Table 2 summarizes MSE of ROIs between reference 

and other algorithms, demonstrating the effectiveness of the 

proposed method quantitatively.  Figures 5 (a) and (b) shows 

the vertical profiles of the coronal and sagittal slices in Figure 4. 

It is shown the overcorrection of the two-pass algorithm is 

reduced significantly with the proposed method. 

 

IV. DISCUSSION AND CONCLUSION 

 

In this work, we proposed a new method to reduce cone beam 

artifacts with a large cone angle. With the presence of the 

moderate bone density objects, two-pass algorithm introduces 

additional streak artifacts near the bone regions due to the 

inappropriate bone segmentation. The proposed method solved 

this problem using different threshold values for corrected 

image at each iteration. The limitation of the proposed method 

is the computation time due to the iterative procedures, which 

would be solved using GPU based parallel computing.  
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        Reference        FDK algorithm          Two-pass algorithm Proposed;1st iteration Proposed; 3rd iteration 
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Figure 4. Coronal (upper) and sagittal (lower) XCAT phantom. (a) Reference and (b) FDK images, and corrected images by (c) two pass algorithm and proposed 

algorithm with (d) 1st iteration and (e) 3rd iteration. Unit of the values is cm-1, and display window is [0.1 0.4]. 
 

 

 

 

 

 

Table 2. MSE of coronal and sagittal slice 

ROI 
FDK algorithm Two-pass algorithm Proposed; 1st iteration Proposed; 3rd iteration 

Coronal Sagittal Coronal Sagittal Coronal Sagittal Coronal Sagittal 

1 2.22 × 10-4 2.93 × 10-4 2.12 ×  10-4 3.40 × 10-4 1.76 ×  10-4 1.99 ×  10-4 1.68 ×  10-4 1.86 ×  10-4 

2 0.88 × 10-4  0.80 × 10-4 1.37 ×  10-4 1.94 × 10-4 0.67 ×  10-4 0.56 ×  10-4 0.66 ×  10-4 0.57 ×  10-4 

3 0.91 × 10-4 7.21 × 10-4 0.96 ×  10-4 1.39 × 10-4 0.70 ×  10-4 0.47 ×  10-4 0.67 ×  10-4 0.47 ×  10-4 

4 1.09 × 10-4 1.18 × 10-4 1.27 ×  10-4 2.07 × 10-4 0.71 ×  10-4 0.61 ×  10-4 0.63 ×  10-4 0.55 ×  10-4 

5 2.07 × 10-4 3.05 × 10-4 3.27  ×  10-4 4.32 × 10-4 1.38  ×  10-4 2.28  × 10-4 1.29  ×  10-4 2.21  ×  10-4 

 

 

 

 

 

 

 

 

 

 

 

 
   (a)     (b) 

 

Figure 5. Vertical profiles of XCAT phantom image, original FDK image, and corrected images by two pass algorithm and proposed method in (a) coronal and 
(b) sagittal slice. 
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Setting up a low-cost C-arm for its use as a 

tomograph: preliminary results 

M. Abella, C. de Molina, N. Ballesteros, A. García, I. García, A. Martínez, M. Desco

Abstract—In scenarios where the use of a CT is 

cumbersome, such as intraoperative or ICU, using a C-arm 

system as a tomograph would provide interesting additional 

clinical information. Recent days are seeing the development 

of the so-called cone-beam CT based on advanced motorized 

isocentric C-arm systems. To use more basic non-motorized C-

arm systems, apart from the geometric non-idealities common 

to any CBCT, we need to solve other difficulties: (1) the 

trajectory of source-detector pair may differ from a circular 

path, (2) the system may have mechanical strains changing the 

relative positions of the source and detector for each 

projection angle, and (3) the exact position of the source and 

detector elements may not be repeatable for consecutive 

rotations due to low mechanical precision.  

In this work, we present a protocol to adapt a standard C-

arm, originally designed for planar imaging, to be used as a 

tomograph. The key parts of the new acquisition protocol are 

a geometrical calibration method that deals with high 

mechanical tolerance that prevents accurate repetition of 

source-detector position between acquisitions, and an 

advanced image reconstruction method able to deal with 

limited angle data and non-circular trajectories. Both methods 

make use of the surface information of the patient.  

The feasibility of the proposed method was ensured with an 

in-house prototype system based on a flat panel detector.  

Index Terms— C-arm, tomography, surface, geometrical 

calibration, image reconstruction. 

I. INTRODUCTION 

A C-arm is a fluoroscopic system comprising two units, 

an X-ray generator and a detector (image intensifier or flat 

panel), mounted in an arc-shaped gantry, together with a 

workstation unit used to visualize, store, and manipulate the 

images. Its main purpose is to acquire real-time planar 

images, demonstrating to be a useful qualitative assessment 

tool to guide surgical procedures thanks to its open design, 

which allows to set the C-shape around the patient lying in 

the bed [1]. In situations, where a CT system is not 

available, the use of a C-arm as a tomograph would raise 

the possibility of tomographic information, with the 

potential of improving surgical performance and precision 

[2]. The so-called cone-beam CT, based on advanced 
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isocentric motorized C-arm systems (generally attached to a 

gantry), have been applied in surgical and radiological 

scenarios.  

When cost is an important issue, it could be helpful to 

obtain tomographic information using the most basic C-arm 

systems. The use of a standard non-isocentric non-

motorized C-arm for computed tomography, presents 

several additional difficulties apart from the geometric non-

idealities common to any CBCT. On the one hand, the 

trajectory of source-detector pair may differ from a circular 

path and the system may have mechanical strains that 

change the relative positions of the source and detector for 

each projection angle, hindering the use of calibration 

methods, widely used in CT systems, that obtain global 

parameters for all projection angles, such as the one 

proposed in [3]. On the other hand, the exact position of the 

source and detector elements may not be repeatable for 

consecutive rotations due to low mechanical precision, thus 

the geometrical parameters obtained with periodical 

calibration cannot be used for consecutive acquisitions.  

In this work, we develop a method to adapt a standard C-

arm, originally designed for planar imaging, to be used as a 

tomograph. The key parts of the new method are: 1) a 

geometrical calibration procedure that deals with high 

mechanical tolerances, and 2) an advanced image 

reconstruction algorithm able to deal with limited angle 

data and non-circular trajectories. Both methods make use 

of the surface information of the patient that could be 

obtained with a 3D surface scanner. 

II. METHODS 

The workflow of the proposed method is shown in Fig. 1. 

 

Fig. 1. Workflow of the acquisition/reconstruction protocol. 
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The mask of the sample is generated from data acquired 

with a 3D surface scanner. For the preliminary 

reconstruction we used the FDK-based method proposed in 

[4]. Projections were obtained with the simulation tool 

described in [5]. Finally, both 2D and 3D registrations are 

done based on mutual information. 

A. Adaptive geometrical calibration 

We generate the system geometrical calibration, calibini, 

based on the method proposed by Cho et al. for a cone-

beam systems [6]. This method was specifically designed to 

obtain individual calibration parameters for each projection 

angle using a phantom with two circular patterns (Fig. 2, 

left). The calibration method estimates the ellipses formed 

by the balls on each projection and finds out the system 

parameters based on geometrical relationships between the 

ellipses: detector rotation (skew), inclination angles (pitch 

and roll), horizontal and vertical detector shifts, and source 

to detector distance. This calibration needs to be repeated 

periodically, as in standard CT systems.  

      

Fig. 2. Left: Calibration phantom. Right: Geometry of the C-arm system 

showing the parameters that are corrected during the fine tuning: H, V, and 

S. 

We refine the value of geometrical parameters horizontal 

shift (H), vertical shift (V), and skew (S) (Fig 2 right) 

following the process outlined in Fig 1. First, we generate a 

preliminary reconstruction, recopre, which is used to 

orientate and adjust the mask to the field of view of the C-

arm. The registered mask is then projected using calibini. 

The misalignments between the projections of the mask, 

projmask, and the acquired data, proj, reflect the errors in the 

values H, V, and S of calibini. Therefore, the parameters of a 

2D registration between projmask and proj, ΔHreg, ΔVreg and 

ΔSreg, are used to generate refined values Ucorr, Vcorr, and 

Scorr as: 

𝐻𝑐𝑜𝑟𝑟  = 𝐻 + 𝛥𝐻𝑟𝑒𝑔 + 𝑂ℎ − (𝑂ℎ ∙ 𝑐𝑜𝑠(𝛥𝑆𝑟𝑒𝑔) − 𝑂𝑣 ∙ 𝑠𝑖𝑛(𝛥𝑆𝑟𝑒𝑔))  (1) 

𝑉𝑐𝑜𝑟𝑟 =  𝑉 + 𝛥𝑉𝑟𝑒𝑔 + 𝑂𝑣 − (𝑂ℎ ∙ 𝑠𝑖𝑛(𝛥𝑆𝑟𝑒𝑔) + 𝑂𝑣 ∙ 𝑐𝑜𝑠(𝛥𝑆𝑟𝑒𝑔))   (2) 

𝑆𝑐𝑜𝑟𝑟 = 𝑆 − 𝛥𝑆𝑟𝑒𝑔                                  (3) 

where 𝑂𝑥 and 𝑂𝑦 are the coordinates of the detector center.  

B. Surface constrained image reconstruction 

Image reconstruction of the limited data is done with 

SCCS, a limited data surface-constrained reconstruction 

method [7]. The reconstruction problem follows the idea of 

the Total Variation (TV) minimization subject to a support 

constraint, which contains the a priori surface information 

and the data penalty function, formulated as: 

min
𝑢

TV(𝑢) s.t. ‖Au − f‖2
2 < σ2, 𝑢 ≥ 0, 𝑢 𝜖 𝛺   (4) 

where u is the reconstructed image, Ω the subspace that 

corresponds with the surface support of the sample, A is the 

system matrix, f is the acquired data and σ2 is the image 

noise. The L1-constrained optimization problem (shown in 

Eq. 4) is efficiently solved using the Split Bregman 

formulation [8] and formulated as the following 

unconstrained problems, which are solved at each iteration 

k: 

(𝑢𝑘+1, 𝑑𝑘+1) = min
𝑢,𝑑

‖(∇𝑥𝑢, ∇𝑦𝑢)‖
1

+
𝜇

2
‖𝐴𝑢 − 𝑓𝑘‖

2
+   

+ 
𝜆

2
‖𝑑𝑥

𝑘 − ∇𝑥𝑢 − 𝑏𝑥
𝑘‖

2

2
+

𝜆

2
‖𝑑𝑦

𝑘 − ∇𝑦𝑢 − 𝑏𝑦
𝑘‖

2

2
+ 

+
𝛾

2
‖𝑣 − 𝑢 − 𝑏𝑣

𝑘‖                 (5) 

𝑓𝑘+1 = 𝑓𝑘 + 𝑓 − 𝐴𝑢𝑘+1                            (6) 

 𝑏𝑣
𝑘+1 = 𝑏𝑣

𝑘 + 𝑢𝑘+1 − 𝑣𝑘+1 (7) 

Equation (5) leads to two sub-problems: the first one 

contains only L2 norm terms and is solved iteratively using 

a Krylov space solver, and the second one (with the L1 

terms) is solved using analytical formulas. Equations (6) 

and (7) are the Bregman iterations that impose the data 

constraint and surface constraint, respectively.  

C. Hardware 

We evaluated the proposed algorithm using an in-house 

built C-arm prototype and the hand of the PBU-60 

anthropomorphic phantom manufactured by Kyoto Kagaku 

(Fig 3).  

 

Fig. 3. Anthropomorphic hand phantom acquisition with an in-house C-

arm device. 

The detector was a wireless, light-weight flat panel, the 

XRpad 4336, with a 35 cm × 43 cm imaging area and a 

pixel size of 0.1 mm. The X-ray generator was also a light-

weight integrated system, Transportix, with 125 kVp, 100 
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mA. The useful FOV for reconstruction is 17 cm, without 

truncation. As in other conventional C-arms, not originally 

designed for tomography, the movement is completely 

manual. Experiments were done using the rotation along C-

arm plane acquiring 42 projections with an angle span of 

120 degrees.  

The phantom was also acquired in a Toshiba 

Aquilion/LB helical scanner and reconstructed as a CT 

volume of 512×512×1645 voxels, with 0.931×0.931×0.5 

mm pixel size. The mask of the sample was simulated from 

this CT by thresholding. 

III. RESULTS 

Fig 4 shows values of two of the main parameters for two 

calibrations obtained at different moments. After parameter 

refining, both calibrations coincide. 

 

Fig 4. Values of horizontal shift and skew for two system calibrations 

performed at different moments before and after fine tuning. 

Fig. 5 shows a zoom of the image reconstructed using the 

FDK-based method before and after parameter refinement. 

The direct use of the initial system calibration shows severe 

artifacts (gray arrows) in the reconstruction, which are 

compensated when using refined geometrical parameters 

Ucorr, Vcorr, and Scorr (white arrows).  

 

Fig. 5. Coronal and sagittal views of the reconstructed image before 

(left) and after correcting the calibration parameters (right). 

Finally, Fig 6 shows the result of the reconstructed image 

using the refined geometrical calibration with FDK and 

SCCS. 

 

Fig. 6. Axial and coronal views of the reconstruction of the limited data 
obtained on the C-arm with FDK (left) and SCCS (center). Axial and 

coronal views of the CT volume acquired on the helical scanner (right). 

IV. DISCUSSION AND CONCLUSIONS 

We propose a new method to incorporate tomographic 

capabilities in a standard non-motorized C-arm, originally 

designed for planar imaging, by taking advantage from the 

knowledge of the sample surface.  

One of the main problems of these systems is their high 

mechanical tolerance that prevents accurate repetition of 

source-detector position between acquisitions. We have 

proven that standard system calibration is not enough to 

prevent misalignment artifacts in the reconstructed image. 

The first algorithm in our proposed method, adaptive 

geometrical calibration, enables the refinement of three 

geometrical parameters: horizontal shift, vertical shift and 

skew. Although possible errors in the rest of the 

geometrical parameters are neglected, results showed that 

the correction is accurate enough to obtain images free of 

misalignment artifacts. 

The other two main problems to tackle when using a 

standard non-motorized C-arm as a tomograph are the 

limitations in the angular span and the difficulty of 

obtaining a high number of projections. The second 

algorithm in the proposed method, surface constrained 

reconstruction, removed the artifacts derived from the low 

number of projections and limited span angle.   

The results using data from a real C-arm system based on 

a flat panel detector showed the feasibility of the proposal. 

The surface of the sample could be obtained with a 

structure light 3D scanner. Nevertheless, since the issues 

related to the acquisition of surface information are out of 

the scope of this paper, for the evaluation of the method 

presented here, we have used a simulated surface. 
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On the Influence of Acquisition Angle and Slice
Thickness on the in-plane Spatial Resolution of
Calcifications in Digital Breast Tomosynthesis

Christoph Luckner, Frank Schebesch, Christopher Syben, Thomas Mertelmeier,
Andreas Maier, and Ludwig Ritschl

Abstract—Digital breast tomosynthesis (DBT) is a three-
dimensional (3-D) X-ray imaging modality that allows the
breast to be viewed in a 3-D format, minimizing the effect
of overlapping breast tissue. DBT is commonly known for its
high in-plane spatial resolution allowing to detect very small
structures inside the breast which makes it a powerful tool
in the clinical environment. However, since DBT is a limited
angle tomography, artifacts are inevitable. In this paper, we
investigate the influence of the angular scanning range as well
as the slice thickness, i. e. the distance between two adjacent
slices, on the in-plane spatial resolution of calcifications and
present an analytic model to describe the imaging process. For
the validation of the analytic model, 54 datasets with varying
calcification diameter, slice thickness, and angular scanning
range, were used and compared to a ray-casting simulation. It
could be shown that the overall relative mean error between the
analytic model and the generated ground truth is ε̄ = 0.0137.
The results indicate that both investigated parameters affect
the in-plane spatial resolution in a non-linear fashion which
yields that they have to be considered in a cascaded system
analysis.

I. INTRODUCTION

Digital breast tomosynthesis (DBT) is a three-dimensional
(3-D) X-ray imaging modality that allows the breast to be
viewed in a 3-D format, minimizing the effect of overlapping
breast tissue. Therefore, multiple low-dose X-ray projection
images are acquired in an arc trajectory. However, due to
the system geometry, only a limited angular range can be
covered, leading to limited-angle artifacts in the reconstructed
volume. DBT has a variety of tunable parameters, like dose,
dose distribution, the number of projections and the total
angular range of those projections [1] as well as various
reconstruction techniques and filters [2], [3], which affect the
image quality. We distinguish between the depth resolution,
which is mainly dependent on angular range [1], [4], the
in-plane resolution, i. e. the ability to resolve adjacent objects
and the slice thickness, which is a user-defined parameter
within the reconstruction and depicts the distance between
two reconstructed planes [5]. In general, DBT images have
an exceptionally high spatial in-plane resolution which allows
the detection of small calcifications and lesions in the

Christoph Luckner, Frank Schebesch, Christopher Syben, and An-
dreas Maier are with the Pattern Recognition Lab, Friedrich-Alexander Uni-
versity Erlangen-Nürnberg, Germany; Email: christoph.luckner@fau.de
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Siemens Healthcare GmbH, Forchheim, Germany

breast [6], [7]. The in-plane spatial resolution was already
subject to a lot of research which has shown, that the
resolution is mainly determined by the reconstruction filter
as well as imaging geometry [8], [9], [10]. However, these
investigations have in common, that they either rely on
simulated images, e. g. of a point or a wire, or on experimental
phantom measurements.

In this work, we will - based on the observations in
literature - investigate how the acquisition angle and the
reconstructed slice thickness affect the in-plane spatial
resolution of a calcification in the tomographic volume and
will develop and validate an analytic framework.

II. MATERIALS AND METHODS

Figure 1 shows the acquisition setup. The detector is
located in the x-y-plane and the slices are reconstructed
parallel to the detector plane in the z-direction with slice
thickness d. The scan is performed in the x-direction and
the corresponding acquisition angle is depicted by θ. The
angular spacing, i.e. the rotation between two subsequent
projections is denoted as 4θ. For simplification, we omit the
y-coordinate orthogonal to the scanning (x) and depth (z)
direction and assume a parallel projection geometry. Thus, the
calculus, as well as the simulations, will be done in 2-D. The
images are acquired using an arc trajectory with simultaneous
moving source and detector. The object at location (x, z) will
be denoted as f(x, z) and its reconstruction as f̂(x, z). The
1-D slice of thickness d which is used to assess the in-plane
resolution w. r. t. the slice thickness and the acquisition angle
is denoted as sd,θ(x).

A. Theoretical Derivation

In the following we assume that a calcification can be
modeled as a circular disk [11] with radius R centered at
the origin

f(x, z) =

{
1, if

√
x2 + z2 ≤ R

0, otherwise.
(1)

Under the assumption of a parallel beam geometry,
each projection p(t, θ) of an object f(x, z) can be writ-
ten as Radon transformation R of the object along a
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Fig. 1. For image acqusition an arc trajectory with simultaneous rotating source and detector is used. The angular range is denoted as
[
− θ0

2
, θ0

2

]
, the

angular spacing, i. e. the rotation between to subsequent projections, as 4θ.

line l = x cos θ + z sin θ with acquisition angle θ

p(t, θ) = Rf(x, z)

=

+∞∫∫
−∞

f(x, z) · δ(x cos θ + z sin θ − t) dx dz, (2)

where δ denotes the Dirac delta function and t the orthogonal
distance of the line l to the origin. Equation 2 evaluates to

p(t, θ) =

{
2
√
R2 − t2, if |t| ≤ R

0, otherwise.
(3)

Assuming a complete scan trajectory covering the angular
range θ ∈ [0, π], the reconstruction f̂(x, z) of a scanned
object f(x, z) using unfiltered backprojection [11] can be
formulated as

f̂(x, z) =

π∫
0

p(x cos θ + z sin θ, θ) dθ

=

π∫
0

2
√
R2 − (x cos θ + z sin θ)2 dθ. (4)

We deliberately chose an unfiltered backprojection approach
to exclude any influence of the filtering process on the results.

However, since the angular scanning range θ is usually
limited in tomosynthesis, the trajectory does not cover the
full 180◦ but will be denoted as θ =

[
− θ02 ,

θ0
2

]
. Changing

the limits of the integral accordingly yields

f̂(x, z) =

θ0
2∫

− θ02

2
√
R2 − (x cos θ + z sin θ)2 dθ. (5)

Now, a reconstructed slice sd,θ(x) of slice thickness d and
scanning angle θ can be defined as simple integral of f̂(x, z)

over z =
[
−d2 ,

d
2

]
sd,θ(x) =

d
2∫

− d2

θ0
2∫

− θ02

2
√
R2 − (x cos θ + z sin θ)2 dθ dz. (6)

Since the integration limits are independent of the integration
variables we may change the integration order. After the
integration w. r. t. to z we eventually obtain

sd,θ(x) =


θ0
2∫

− θ02

R2

sin(θ)
arctan

(
x cos(θ) + z sin(θ)√

R2 − (x cos θ + z sin θ)2

)

+
(
z +

x

tan θ

)√
R2 − (x cos θ + z sin θ)2 dθ

]+ d
2

− d2
.

(7)

Due to the complexity of the integrand, an analytic evaluation
of Equation 7 is not feasible, hence the remaining integral
was solved numerically.

B. Experimental Validation

In order to evaluate and validate the analytic model (Equa-
tion 7) we compared sd,θ(x) to a simulation study which
was carried out in Matlab. Therefore, various calcification
radii, acquisition angles as well as slice thicknesses were
modeled and an unfiltered backprojection algorithm was used
to generate ground truth (GT) data. The corresponding range
of each parameter is shown in Table I.

TABLE I
OVERVIEW OF THE INVESTIGATED PARAMETERS

Variable Range of values Unit
Calcification radius R {50, 75, 100} µm
Acquisition angle θ0 {15, 30, 50} ◦

Slice thickness d {50,200,500,1000,1500,2000} µm

148 The fifth international conference on image formation in X-ray computed tomography



(a) Phantom (b) Reconstruction with θ0 = 15◦

(c) Reconstruction with θ0 = 30◦ (d) Reconstruction with θ0 = 50◦

Fig. 2. Phantom data of a calcification with radius R = 75µm and its
reconstructions for the studied angular ranges. The colored lines (red: 50µm,
green: 200µm, blue: 500µm, yellow: 1000µm, magenta: 1500µm,
turqoise: 2000µm) indicate the used slice thicknesses.

In total 54 simulations were created as ground truth and
used for evaluation. To avoid aliasing artifacts, a sampling
grid of 1 px ≡ 1µm was used, which allowed us to ignore
the detector transfer function, since the grid is very dense
compared to the commonly used detector pixel spacing
(1 px ≡ 85µm) in mammography. Furthermore, to simulate
a common mammography system the angular spacing was
set to 4θ = 2◦.

For evaluation, we compared the results of the derived
analytic model (Equation 7) to the GT simulations by visual
inspection and evaluated the relative mean error ε over all
pixels in x-direction for each dataset individually

ε =
1

N

N−1∑
x=0

∣∣∣∣∣sModel
d,θ (x)− sGT

d,θ(x)

sGT
d,θ(x)

∣∣∣∣∣ . (8)

III. RESULTS

Figure 2 shows the used phantom for a calcification with
radius R = 75µm, as well as the reconstructions for all
studied acquisition angles. Additionally, the underlying slice
thicknesses used for evaluation are indicated as colored
lines. In Figure 3 the normalized profile plots for all slice
thicknesses d are presented. It can be seen that with increasing
slice thickness the blurring of the calcification is increased
for all angular ranges. However, for small slice thicknesses
up to 200µm only a minor blurring effect in the profile plots
can be observed. The individual relative error ε between
the GT simulations and the derived model for all datasets
ranges from εmin = 0.003 to εmax = 0.032 with an overall
mean error of ε̄ = 0.0137 and thus may be considered as
a numerical error.

IV. CONCLUSION

We were able to present an analytic model that describes
the backprojection process based on the angular scanning
range as well as the reconstructed slice thickness. In the
evaluation it was shown that the results of the derived analytic
model are consistent with the simulated ground truth results
with a very small mean error of ε̄ = 0.0137 We found
that up to a slice thickness of 200µm the angular range has
basically no influence on the blurring of calcifications. This
phenomenon is also considered in dedicated tomosynthesis
reconstruction algorithms [12]. Moreover, it was found that
the angular range and the slice thickness affect the in-plane
spatial resolution in a non-linear fashion, which yields that
they have to be considered in a cascaded system model [13].
For future work and in order to improve and to make
the derived analytic model more realistic noise has to be
considered.

DISCLAIMER

The presented method is not commercially available.
Due to regulatory reasons, its future availability cannot be
guaranteed.
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(a) Slice sd,θ with d = 50µm (b) Slice sd,θ for d = 200µm

(c) Slice sd,θ for d = 500µm (d) Slice sd,θ for d = 1000µm

(e) Slice sd,θ for d = 1500µm (f) Slice sd,θ for d = 2000µm

Fig. 3. Plots for various slice thicknesses d for all acquisition angles for a calcification with radius R = 75µm. The dotted lines indicate the ground
truth, the dashed lines the evaluation of the analytic model presented in Equation 7. For comparison, a forward projection of the used phantom is shown
as a black solid line. The pixel size in the x-direction is 1µm.
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Abstract—Intraoperative cone-beam CT (CBCT) is 

increasingly used for surgical navigation and validation of 

surgical device placement. In spine surgery, for example, CBCT 

provides visualization of spinal pedicle screws relative to target 

anatomy and adjacent structures. In the surgical settings, 

however, high attenuation objects in the field of view are often 

the norm, producing severe streak artifacts that can confound 

visualization in precisely the area of interest. In this work, a new 

method for metal artifact reduction (MAR) is introduced that 

uses prior information of the shape of surgical instruments to 

reduce or eliminate metal artifacts. 

The approach leverages concepts from conventional MAR 

(often limited by segmentation error [1]) and more advanced 

known-component (KC) reconstruction (KC-Recon) [2], 

maintaining the speed and simplicity of simple MAR with the 

power of prior information as in KC-Recon. The proposed 

“KC-MAR” approach uses 3D-2D registration of the 

component model to precisely identify the component in the 

projection domain, thus overcoming conventional pitfalls 

associated with (3D or 2D) segmentation in conventional MAR. 

The result (projected region of the registered component) is 

then inpainted as in conventional MAR using 2D interpolation 

or more advanced polyenergetic inpainting. Image 

reconstruction is performed either by 3D filtered back-

projection (FBP, the nominal approach in this work) or iterative 

model-based iterative reconstruction (MBIR) with 

corresponding benefits to low-dose performance. 

The KC-MAR method was investigated in phantom and 

cadaver studies presenting a range of challenging metal artifact. 

Algorithm parameters were investigated in phantom 

experiments using simple (sphere) components ranging in size 

and composition. The results were translated to a cadaver study 

involving spinal pedicle screw placement imaged using an 

interventional O-arm (Medtronic, Littleton MA). KC-MAR 

images were assessed in terms of visualization of the screw 

within cortical margins adjacent to the spinal cord, showing 

strong reduction in metal artifacts without sensitivity to 

conventional segmentation errors, maintaining the speed and 

simplicity of FBP (but also compatible with MBIR), and 

providing confident visualization adjacent to instrumentation. 

Index Terms—Metal artifact reduction, 3D-2D registration, 

cone-beam CT imaging 

I. INTRODUCTION 

Metal instrumentation within the field of view (FoV) of 

CT / CBCT systems can cause severe streak artifacts that 

degrade image quality and confound confirmation of device 

placement. Such artifacts are attributable to several effects, 

including beam-hardening, scatter, and photon starvation [1]. 

Metallic objects such as prosthetic implants or surgical 

instruments are routinely introduced in the FoV in image-

guided interventions, where they challenge visualization of 

the device relative to target anatomy and adjacent critical 

anatomy. In spine surgery, for example, such artifacts arising 

from pedicle screws can confound visualization of screw 

placement adjacent to the spinal cord – precisely the region 

of interest to identify possible breach of the pedicle cortex. 

Clear visualization right up to the boundary of the screw is 

required to confidently assure safe delivery of the implant. 

Metal artifacts originate from data inconsistency and/or 

photon starvation caused by strong energy-dependent 

attenuation. A fairly broad range of “metal artifact reduction” 

(MAR) methods have been proposed to correct or 

compensate for such errors. Algorithms can be considered in 

two broad categories: i) those that model the physics of beam 

hardening, noise, etc., implemented within a form of iterative 

model-based reconstruction; and ii) methods that simply 

modify the measured projection data within affected regions 

of strong attenuation (e.g., interpolation / inpainting) [3], [4]. 

A fundamental problem underlying such approaches 

involves accurate delineation of the metallic object and 

strong sensitivity to segmentation error. Segmentation from 

the initial (uncorrected) 3D image is significantly challenged 

by the very artifacts the method aims to reduce. 

Alternatively, segmentation directly in the 2D projection / 

sinogram domain is challenged by overlapping structures and 

the need for geometric consistency across the scan orbit. 

In image-guided surgery, prior knowledge (e.g. the 3D 

shape) of components introduced in the FoV is often 

available, even though the level of information may vary 

from a simple description (e.g., a deformable, cylindrical 

tube) to exact, vendor-specific specifications (e.g., CAD 

drawings for a particular surgical screw). Prior work by 

Stayman et al. [2] integrated the registration of such known 

components (KC) within a model-based iterative 

reconstruction algorithm (“KC-Recon”) in a powerful joint 

registration and reconstruction approach that demonstrated 

major improvement in image quality compared to FBP (with 

or without conventional MAR). The KC-Recon approach, 

however, carries a fairly large computational burden and can 

challenge time constraints of intraoperative workflow. 

In this work, a known-component metal artifact reduction 

algorithm (“KC-MAR”) method is presented that overcomes 

the sensitivity to segmentation error and preserves the 

simplicity of conventional MAR (i.e., is compatible with 3D 

FBP). Recent analogous work by Ruth et al. [5] used the 

CAD model of knee implants to improve upon an initial, 
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error-prone 3D segmentation, thereby leading to improved 

artifact reduction. Prior information of component shapes 

(e.g., CAD models specific to a particular device) are used to 

carry out 3D-2D registration and produce extremely precise 

and accurate localization of the metallic objects directly in 

the measurement domain, thus avoiding the potential pitfalls 

of methods that rely on segmentation. 

II. KNOWN-COMPONENT METAL ARTIFACT REDUCTION 

The KC-MAR algorithm is illustrated in Figure 1, 

highlighting the consecutive stages for 3D-2D registration, 

inpainting of the region in projection of the registered 

component (by simple interpolation or more sophisticated 

replacement methods), and 3D image reconstruction (by 3D 

FBP or other MBIR techniques that usually enjoy improved 

tradeoffs in noise, resolution, and dose). 

 
Figure 1. Flowchart for the KC-MAR algorithm depicting the consecutive 

stages for KC registration and MAR reconstruction with 3D FBP. The 
registration provides exact localization of the metal components, which are 

then used to correct (inpaint) projections prior to reconstruction. 

A. KC Registration 

The details of the 3D-2D registration process for known 

components (“KC-Reg”) have been previously reported by 

Uneri et al. [6]. A few simplifications to the original approach 

are possible for KC-MAR, namely: (i) a prior 3D patient 

image is not necessary, since the components are directly 

registered to the projections acquired for reconstruction; and 

(ii) while the KC-Reg method typically operates on just 2–3 

projection views, the 3D-2D registration can be rendered 

extremely precise by using more views – e.g., all of the 

projection views acquired for the 3D reconstruction. To keep 

runtimes within <1 min in the current work, 6 views with 30° 

of separation were used, with future work to include a more 

fully parallelized implementation that suffers little or no 

additional time penalty in registering more (or all) views. 

3D-2D registration of the device components is iterative, 

beginning with a digitally reconstructed radiograph (DRR) 

from the input component mesh model: 

 �̂�(𝜅, 𝑇) = ∫𝜅(𝑇) d𝑟
𝑟

 (1) 

where each pixel is computed according to the line integral 

along ray 𝑟 incident on the transformed component 𝜅. The 

framework was shown to support different component 

models (e.g., exact technical drawings or simplified 

parametric models when exact models are not available [6]), 

and transformation models (e.g. rigid or deformable [7]). 

The DRRs are then compared against the actual 

projections (𝑝) using the gradient correlation (GC) similarity 

metric [8], defined by the sum of normalized cross-

correlation (NCC) of orthogonal image gradients: 

 

GC(𝑝, �̂�) =
1

2
{NCC(∇𝑥𝑝, ∇𝑥�̂�) + NCC(∇𝑦𝑝, ∇𝑦�̂�)} 

s. t.  NCC(𝑎, 𝑏) =
∑ (𝑎𝑖 − �̅�)(𝑏𝑖 − �̅�)𝑖

√∑ (𝑎𝑖 − �̅�)2
𝑖 √∑ (𝑏𝑖 − �̅�)2

𝑖

 
(2) 

The GC metric favors the high-intensity gradients from the 

device component, improving robustness against gradients 

associated with anatomical structures (e.g., bones). 

The objective function for the registration can then be 

formulated as: 

 �̂� = arg max
𝑇

∑ GC(𝑝𝜃, �̂�𝜃(𝜅, 𝑇))
𝜃

 (3) 

which can be iteratively solved to obtain the component 

transform (�̂�) yielding the greatest similarity to the 

measurements. A stochastic, derivative-free optimization 

method referred to as the covariance matrix adaptation 

evolution strategy (CMA-ES) was used, chosen due to its 

robust convergence and amenability to parallelization [9]. 

B. MAR Reconstruction 

The second stage of KC-MAR uses the registered 

component to demarcate the region of metal and facilitate 

sinogram inpainting. Specifically, the DRR of the registered 

component is computed such that �̂�(𝜅, �̂�) > 0 demarks the 

metal regions within the original projections, 𝑝. The masked 

region can be optionally dilated to improve robustness 

against minor errors in registration that can be introduced by 

manufacturing variation, geometric calibration of the 

imaging system, or floating precision errors in computing 

ray-component intersections. 

 
Figure 2. Inpainting of pedicle screws in a cadaver study. (a) The original 

sinogram with screws, (b) a sample projection, and (c) close-up of an 

example screw. KC-MAR inpainted counterparts are in d–f, respectively. 

The 3D-2D registration yields the transformation by which 

the shape of the component is forward-projected to precisely 

define the region to be inpainted. Among the variety of 

potential inpainting methods, a simple linear interpolation 

was chosen in order to emphasize the benefits of the 

registration-based approach in isolation of other potential 
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enhancements. This is achieved by first producing a 

Delaunay triangulation over the convex hull of the masked 

regions, followed by barycentric interpolation on each 

triangle. Repeating this for all 𝜃 projections, the region of 

metal shadow is inpainted as shown in Figure 2. The images 

are then reconstructed on a 512×512×385 voxel grid with 

0.415×0.415×0.415 mm3 spacing using 3D FBP based on the 

Feldkamp-Davis-Kress (FDK) algorithm [10]. 

III. EXPERIMENTAL EVALUATION 

A. O-Arm CBCT Imaging 

CBCT images were acquired using a research prototype 

(not-for-clinical-use) implementation of the Medtronic 

O-arm (Medtronic, Littleton MA). Projection data 

(1536×1536 pixels at 194 μm pitch) were acquired in dual-

gain mode with 2×4 pixel binning. Imaging was performed 

over a 360° orbit using the manufacturer’s high-definition 

(HD) protocol, giving ~720 projections with ~0.5° radial 

separation. The geometry was calibrated using a BB phantom 

[11] to give the projective transforms used in the forward / 

back-projection operations of the algorithm. 

 
Figure 3. Phantom study. (a) O-arm setup with (b) abdomen phantom, (c) 

centerpiece containing tissue-equivalent inserts, and (d) 3 metal spheres of 

varying diameters attached to an acrylic insert. 

B. Phantom Experiments with Simple Components 

Phantom studies were performed using chest and phantom 

models (QRM, Möhrendorf, Germany) shown in Figure 3c 

including tissue-equivalent inserts (adipose, liver, and bone) 

and an assortment of metal spheres. The insert assembly was 

encased in water and placed in the center of the chest or 

abdomen QRM models. Three spheres of varying diameter 

(12.7, 6.4, and 3.2 mm) were attached to the acrylic insert 

(Figure 3d) for three types of metal (tungsten, steel, and 

titanium). Scans were acquired for each phantom 

configuration at four dose levels: x-ray tube current of 10, 12, 

16, and 25 mA (all at 110 kV). 

A simple parametric model of spherical components was 

employed for KC registration, where each metal sphere was 

modeled according to 3+1 degrees-of-freedom representing 

the 3D centroid and diameter. The 3 spheres were registered 

simultaneously with collision avoidance enforced by 

bounding boxes as in [12]. 

The magnitude of the metal artifacts was quantified in 

terms of a simple “Artifact Magnitude” metric given by the 

standard deviation (𝜎) in a homogeneous background region 

about each metal sphere. Artifact reduction was analyzed as 

a function of material type (×3), diameter (×3), and dose (×4). 

The sensitivity to segmentation error as typically evident in 

conventional MAR was evaluated in a manner that was 

agnostic / irrespective of a particular segmentation method 

(and recognizing ongoing work in improving the accuracy of 

such segmentation): specifically, the boundary of the 

forward-projected component registration was eroded or 

dilated over a range (Δ∅) ±3 mm to simulate an arbitrarily 

small or large segmentation error. 

C. Cadaver Study 

A second set of experiments was conducted to translate the 

robustness of algorithm parameters identified in the phantom 

studies and test the performance of KC-MAR under realistic 

conditions using a cadaveric human torso (77 year old male, 

medium body habitus). Pedicle screw placement was 

performed on the cadaver using a total of 5 pedicle screws in 

Figure 4. Phantom studies. (a) Evaluation of sensitivity to model mismatch (horizontal lines signify uncorrected values), (b) Artifact magnitude measured 

as a function of dose with and without metal vs. KC-MAR. (c) Axial image reconstructions with and without KC-MAR for metal spheres of varying material 

type. The largest of three diameters is shown for each material (and smaller spheres demonstrated similar or better levels of artifact reduction). 
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the lumbar spine. Manufacturer-specific CAD models 

(Solera pedicle screws, Medtronic, Littleton MA) were used 

as the known components. The component models included 

a rigid polyaxial screw and its articulating tulip head. 

IV. RESULTS 

A. Phantom Experiments 

The performance of KC-MAR in the phantom studies are 

shown in Figure 4, showing the magnitude of metal artifact 

as a function of material type, component size (sphere 

diameter), and dose. Figure 4a shows the sensitivity to 

segmentation error as often evident in simple MAR – 

showing the expected result in which underestimation of the 

true region (simulated here by erosion of the 3D2D-

registered region) suffers steep increase in artifact severity, 

whereas overestimation (dilation) offers a greater degree of 

stability and robustness to error. KC registration errors were 

observed to be less than 1 pixel (< 0.5 mm), but a single pixel 

dilation of the projected component was found to better 

handle small errors arising from possible variability in device 

manufacturing or geometric calibration. 

Figure 4b shows the performance of KC-MAR as a 

function of dose, showing the method to be robust even under 

low dose 3D imaging protocols, whereas the methods relying 

on segmentation in the 3D image would presumably suffer 

increased segmentation error. 

Finally, Figure 4c shows axial images of the phantom 

insert (adipose, liver, bone, and water in proximity to Ti, W, 

and Fe spheres). In each case, the largest diameter (12.7 mm) 

sphere is shown, and similar (or better) results were observed 

for smaller components. In each case, the KC-MAR 

approach yielded strong reduction in artifacts and improved 

visualization of adjacent structures. 

 
Figure 5. Cadaver study: pedicle screw placement in the L4 vertebra, 

showing FBP reconstruction (a) without metal artifact reduction and (b) with 

KC-MAR. The corrected image shows significant reduction in artifacts and 
allows more reliable visualization of the instrument and adjacent anatomy 

such as the pedicle cortex and spinal cord. 

B. Cadaver Study 

The cadaver study investigated KC-MAR performance in 

real anatomy using a complex component model. Figure 5a 

shows images of a pedicle screw delivered to the L4 vertebra, 

where artifacts are seen to confound visualization of adjacent 

cortical bone. Specifically, the uncorrected image is one in 

which a surgeon would be challenged to identify whether the 

screw was delivered with a lateral breach of the pedicle. The 

KC-MAR image exhibits clear improvement in image quality 

by reduction of metal artifacts, enabling visualization right 

up to the edge of the screw – in this case, demonstrating that 

the lateral pedicle cortex is intact. 

V. DISCUSSION 

An algorithm for metal artifact reduction was presented 

based on 3D-2D registration of “known components,” 

offering a variety of potential advantages over existing 

techniques. The KC-MAR approach maintains the simplicity 

of conventional MAR (e.g., consistent with 3D FBP and 

other artifact corrections that may be incorporated in the 

reconstruction process) but yields a near-perfect localization 

of the metal object – i.e., does not suffer segmentation errors 

that are often a limiting factor in conventional MAR. It 

leverages the power of prior information (i.e., the component 

model) in a manner similar to KC-Recon [2] but is not bound 

to joint model-based registration / reconstruction approaches 

that often carry large computation time that can challenge 

surgical workflow. In its current implementation (a single 

GPU GTX TITAN Black [Nvidia, SantaClara CA]), KC-

MAR registration required < 1 min with FBP reconstruction 

in < 2 min. The method benefits from precise models of the 

metal device but can be extended to simplified parametric 

models as in [6], with dilation of the resulting region shown 

to provide robustness to error. 
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Autocalibration of cone beam CT projection
matrices based on arbitrary traceable features

within a regular tomographic scan
Jonas Dittmann, Simon Zabler

Abstract—As an essential prerequisite to tomographic recon-
struction, the relative positions of X-ray source, rotary stage
and detector of a cone beam computed tomography setup need
to be known. Due to the relatively large amount of mechanical
degrees of freedom, it is for practical reasons desirable to
obtain this information directly from the imaging system, e.g.
by scanning a reference phantom. While such approaches
relying on specifically designed phantoms do exist, sufficiently
well defined phantoms become much harder to manufacture
when considering the small field of view of high resolution
micro CT systems. In the extreme case of sub-µm resolutions
and sub-mm fields of view, it is desirable to get along with
completely undefined assemblies of opaque markers or even
just traceable features within a sample itself. The most that
can be assumed about these tracers is that they follow circular
trajectories about the rotary stage’s axis. In the following,
a self consistent determination of the acquisition geometry
based solely on the assumption of circular tracer trajectories
is presented, facilitating geometrically consistent tomographic
reconstructions. The technique is demonstrated using a simple
assembly of four ball pen balls glued to a plastic rod, serving
here both as phantom and sample. Qualitative confirmation of
successful calibration is given by visual inspection of details
within the sample.

I. INTRODUCTION

Calibration of cone beam computed tomography setups,
i.e. the determination of the relative positions of X-ray
source, rotary stage and detector, is a common problem to
be solved prior to tomographic reconstruction. The problem
may be partitioned into two separate problems: The problem
of relative position and orientation of the detector with
respect to rotational and optical axes as well as the absolute
scale of the sample, which is related to its actual position
along the optical axis (i.e. the orthogonal connecting line
between X-ray source and rotational axis). While the latter
information is relevant for a metrological quantification of
the results, only the former information is actually essential
for the tomographic reconstruction process. Due to the
relatively large amount of mechanical degrees of freedom of
a cone beam tomography device, it is for practical reasons
desirable to do the calibration by means of the imaging
system itself, i.e. by scanning a reference phantom.

J. Dittmann and S. Zabler are with the Lehrstuhl für Röntgenmikroskopie
at the University of Würzburg, Germany and with the Fraunhofer NCTS
group of the Fraunhofer IIS/EZRT/MRB in Erlangen/Fürth/Würzburg, Ger-
many. (email: jonas.dittmann@physik.uni-wuerzburg.de)

Given the ubiquity of the problem, the topic of pose
determination based on reference phantoms in the context of
cone beam tomography has been covered by several authors
in the past of which only a very limited number of references
is given here. Many approaches found in literature are based
on specifically designed, i.e. fully known phantoms, see e.g.
[1], [2], [3]. Although this is a preferable situation and allows
to calibrate to absolute scales and for some approaches
also viewing angle dependent effects (particularly relevant
when the whole system, rather than only a lightweight
sample, is moved), it obviously requires the availability of a
respective phantom both at the scale of the field of view
and at the precision of the resolution of the system of
interest. While this on the one hand becomes a dominating
complication for high resolution micro CT systems, viewing
angle dependent pose determination is usually less important
for these systems on the other hand, i.e. the amount of to-
be-calibrated degrees of freedom can be reduced to those of
a single projection view. And although the knowledge of the
absolute scale of a scan is of course also of interest for micro
CT applications, it is not strictly necessary for the volume
reconstruction and can also be deferred to complementary
techniques independent of the CT scan.

Calibration techniques based on simple phantoms with
little or no requirements apart from a error free rotary stage
have been previously proposed e.g. in [4], [5], [6], [7], using
various levels of complexity to selectively extract individual
geometric parameters such as detector tilt, projection of the
rotational axis on the detector, etc. while partially assuming
some degrees of freedom fixed (e.g. [4], [5]).

The following contribution presents a simple geometry
calibration approach solely based on the assumption of
circular tracer trajectories perpendicular to and centered at
the rotational axis of the CT setup, i.e. based on a stacked-
rings-of-markers phantom virtually generated by a regular
CT scan of an uncalibrated assembly of arbitrary traceable
features. The presented technique avoids separate treatment
of individual degrees of freedom. Instead, the final result of
the procedure will be a homogeneous 3×4 projection matrix
that can be directly used for tomographic reconstruction (cf.
[8]). An example will given using a simple assembly of four
ball pen balls glued to a plastic rod, serving here both as
phantom and sample. Visual confirmation of successful auto-
calibration is provided by means of reconstructed volume
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sections showing fine details within the sample.

II. METHOD

Based on a general forward model comprising the un-
known projection matrix projecting circular orbits of as well
unknown radii and vertical positions, an iterative scheme will
be used to self consistently reconstruct both the projection
matrix and the orbit parameters simultaneously up to some
unknown affine transform.

The forward model, restricting without loss of generality
the rotational axis to the z-axis and the start (and end) of
the cyclic marker trajectories to the x-axis, is:

 P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34



r′i cosφ
r′i sinφ
z′i
wi


=

r′i(P11 cosφ+ P12 sinφ) + P13z
′
i + P14wi

r′i(P21 cosφ+ P22 sinφ) + P23z
′
i + P24wi

r′i(P31 cosφ+ P32 sinφ) + P33z
′
i + P34wi

=
r′iP1a sin(φ− φh0) + P13z

′
i + P14wi

r′iP2a sin(φ− φv0) + P23z
′
i + P24wi

r′iP3a sin(φ− φw0) + P33z
′
i + P34wi

with the unknown projection matrix P (represented by its
components Pmn) and multiple marker trajectories (indexed
by i) characterized by their respective distance from the
rotational axis ri = r′i/wi, their axis-parallel coordinate
zi = z′i/wi and their homogeneous coordinate’s scaling
component wi. The matrix-vector product can be separated
into φ-dependent sinus curves with amplitudes r′iPXa =
r′i
√
P 2
X1 + P 2

X2 and φ-independent offsets PX3z
′
i+PX4wi.

The observable projections’ horizontal (detector rows) and
vertical (detector columns) components on the detection
plane are then given by

hij =
r′iP1a sin(φj − φh0) + P13z

′
i + P14wi

r′iP3a sin(φj − φw0) + P33z′i + P34wi

vij =
r′iP2a sin(φj − φv0) + P23z

′
i + P24wi

r′iP3a sin(φj − φw0) + P33z′i + P34wi

respectively, with j indexing positions φj on the circular
trajectories.

Given that nothing more than a number of projection
samples (hij , vij) is known, the equivalent reduced model

hij =
ah,i sin(φj − φh0) + oh,i
aw,i sin(φj − φw0) + 1

vij =
av,i sin(φj − φv0) + ov,i
aw,i sin(φj − φw0) + 1

will be used to get started with the solution of the inverse
problem. Using a least squares method to fit this model to the
available projection samples, the derived observables ah,i,
av,i, aw,i, oh,i, ov,i, φh0, φv0, φw0 are obtained.

The calibration problem can now be reduced to the
solution of the following system of equations arising from

Figure 1. X-ray projection of the four ball pen balls on a hollow plastic
rod sample. The balls have a diameter of 1mm.

the comparison of the full forward model and the observable
parameters of the fit model for all i:

r′iP1a = ah,i

r′iP2a = av,i

r′iP3a = aw,i

P13z
′
i + P14wi = oh,i

P23z
′
i + P24wi = ov,i

P33z
′
i + P34wi = 1 .

After initializing the unknown trajectory parameters with
wi = 1, r′i = ah,i and z′i = ov,i, common iterative
techniques for the solution of linear systems of equations
are applied to alternatingly solve for Pnm and (r′i, z

′
i, wi)

respectively until consistency is reached. Intermediate regu-
larization steps incorporating additional knowledge on either
the projection matrix or on e.g. distances between markers
(establishing an absolute scale) may as well be incorporated
within this alternating scheme.

III. EXPERIMENT AND RESULTS

In order to apply the proposed calibration method, a
simple metal spheres phantom was assembled from ball
pens’ balls attached to a Q-tip using superglue. The spheres
are roughly equidistantly distributed over a range of about
1cm and the whole assembly is mounted eccentrically on the
rotary stage of a micro CT setup such that their trajectories
when rotating will similarly cover a horizontal range of
roughly 1cm. An exemplary projection view is shown in
Fig. 1. A total of 360 projections over the full range of 360°
have been acquired in fly-by mode. A superposition of a
subset of these is shown in Fig. 2 providing a first visual
impression of the projected circular trajectories.

Using standard threshold segmentation and subsequent
determination of the centers of mass of the spheres’ projec-
tions, point traces are extracted as depicted in Fig. 3. Based
on these projection samples (hij , vij), the corresponding
projection matrix is determined as described in the previous
section.
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Figure 2. Superposition of several projections showing the emerging virtual
stacked-rings-of-markers phantom.

Figure 3. Extracted marker trajectories (hij , vij) based on classic seg-
mentation of the X-ray projections and subsequent center-of-mass analysis.

The successful calibration based on these marker traces
shall be demonstrated with a tomographic reconstruction of
the calibration phantom itself. The reader is kindly asked to
excuse the low signal to noise ratio and the limited amount
of projections which were originally motivated by the needs
of marker segmentation rather than volume reconstruction.
Nevertheless, Figures 4 and 5 show reasonable Feldkamp
type reconstructions that were based solely on the previously
determined projection matrix without further intervention. In
particular, no double outlines or streak artifacts as typical
signs of imprecisely estimated geometry can be found. Fur-
ther, sharply defined edges and voxel-scale details within the
glue surface can be observed. Notable is a slight difference in
edge contrast between tangential and radial directions which
can be attributed to the employed fly-by acquisition mode
causing blurring in the tangential direction already within
the acquired projections.

IV. DISCUSSION AND CONCLUSION

Motivated by the difficulty to manufacture precise cal-
ibration phantoms for high resolution micro CT systems,
a self consistent calibration method has been proposed
managing to work with arbitrary traceable features. Similar
to other techniques using phantoms of reduced complexity,
the assumption of a sufficiently precise rotary stage is central

Figure 4. Section of an axial reconstruction slice showing the hollow plastic
rod with a layer of glue on the outer surface exhibiting some detailed shapes.
On the left, part of the glue detached from the rod. The slice’s center can
be identified by the subtle ring artifacts in the lower right corner of the
displayed section. The slight blurring tangential to the rotational axis is
caused by the employed fly-by acquisition mode.

Figure 5. Coronal and sagittal sections of the reconstructed volume. Both
sections show details within the glue on the outer surface of the hollow
rod. On the left, the same detachment already shown in Fig. 4 is visible.
The notable horizontal stripes are caused by the highly absorbing metal
spheres, and their increased visibility at the top and bottom of the sample
is a consequence of classic Feldkamp cone beam artifacts.
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to the present approach so that the considered features
actually follow circular trajectories throughout a CT scan.
Based on a reduced set of derived observables completely
describing the projected trajectories, the calibration problem
is formalized as the self consistent solution of a small
system of linear equations containing both unknowns with
respect to the calibration tracers as well as the projection
geometry. In contrast to e.g. the recent publication by [7],
all alignment parameters are treated simultaneously in form
of the projection matrix similar to [6]. In contrast to the
latter, the present scheme starts with a fraction-of-sinusoids
model of the projection data rather than ellipsoid fits. The
possibility to work with unknown tracers allows in particular
also for retrospective calibration of tomographic scans pro-
vided that some eccentric traceable features are contained, or
similarly for the auto-calibration of time intensive or hard to
reproduce scans. A first proof of concept was demonstrated
using a metal sphere assembly within a roughly 1cm field
of view and achieving a visually artifact-free (with respect
to geometry) reconstruction. Further quantitative analyses
are currently in progress at the time of writing and will be
presented as part of a more extensive article later on.
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Data-Fidelity Impact on Cone-beam Artifact

Reduction in Diagnostic CT
Dan Xia, Yan Liu , Zhou Yu, Buxin Chen, Zheng Zhang, Richard Thompson, Emil Y. Sidky, Xiaochuan Pan

Abstract—Adequate correction for cone-beam artifacts re-
mains an issue of practical interest in diagnostic CT imaging
with a set of detectors that form a large cone angle. It seems
that algorithms that were developed from the standard FDK
algorithm may have limited success in correction for the cone-
beam artifacts especially when soft tissue imaging is of concern.
Evidence exists suggesting that optimization-based reconstruction
may be more effective in terms of artifact reduction than the
FDK algorithm or its variants. In the work, we investigate
the effectiveness of the different designs of optimization-based
reconstruction in reduction of cone-beam artifacts in diagnostic
CT. Specifically, we investigate the performance of optimization-
based reconstructions employing three different designs of data
fidelity in minimizing the cone-beam artifacts. The three data
fidelities are considered because they have been used widely for
image reconstruction. Numerical studies from physical phantom
data show that, for the imaging system and data conditions
considered, the optimization-based reconstructions with the three
different data fidelities can correct, at a comparable level of
effectiveness, for the cone-beam artifacts observed in the FDK
reconstruction.

I. INTRODUCTION

In advanced diagnostic CT with a large number of de-

tector rows, cone-beam artifacts can be observed in images

reconstructed from circular-trajectory data by use of the FDK

algorithm or its variants especially for an imaged subject with

longitudinally strong contrast variation [1]. Such artifacts may

obscure low-contrast soft-tissue anatomy of clinical interest.

Empirical schemes have been developed for minimizing the

cone-beam artifacts by extrapolating data longitudinally and/or

by applying different weighting functions to data. While these

schemes may be useful for some cases, their success especially

in reconstruction of low-contrast soft-tissue anatomy embed-

ded in a longitudinally varying high-contrast region remains

limited.

There exists a high level of interest in optimization-based

reconstruction because evidence accumulated in the past sev-

eral years shows that optimization-based reconstruction may

yield images with improved quality over the FDK algorithm

and can be more effective in compensating for reconstruction

artifacts than existing algorithms, such as the FDK algorithm.

In the design of optimization-based reconstruction, the data

fidelity plays a key role in impacting image quality and/or

artifact correction. In this work, we investigate optimization-

based reconstruction employing different data-fidelity terms

D. Xia, B. Chen, Z. Zhang, E. Y. Sidky, and X. Pan are with the Department
of Radiology, The University of Chicago, Chicago, IL 60637, USA. Y. Liu,
Z. Yu, and R. Thomas are with Canon Medical Research USA, Inc., Vernon
Hills, IL 60061, USA.

in the context of correcting for cone-beam artifacts in image

reconstruction from circular cone-beam data collected by use

of an advanced diagnostic CT with a set of detectors forming

a large cone angle. The investigation of the effect of different

data-fidelity terms on cone-beam artifact correction is enabled

by a CP algorithm, which is tailored from the generic CP

algorithm. We use the CP algorithm because it can solve

convex optimization problems formed with different data-

fidelity terms [2], [3], [4], [5].

II. METHODS AND MATERIALS

A. Optimization-based reconstruction

We model the CT-imaging process by using a discrete-to-

discrete, linear system,

g = Hf ,

where vectors g and f denote discrete data vector of size M

and image vector of size N , and system matrix H of size

M×N describes the cone-beam X-ray transform. In this work,

element hij of matrix H is the intersection length of ray j with

voxel i.

Using this imaging model, we formulate the image recon-

struction as the solution to a constrained total variation (TV)-

minimization program containing a data-fidelity term, i.e., [3]

f⋆ = argmin
f

D(gm,Hf) s.t. ||f ||TV ≤ t1 and fj ≥ 0,

(1)

where D(f) denotes the data-fidelity term that gives rise to

measure of inconsistency between measured data gm and

model data Hf ; ||f ||TV the image TV, and t1 > 0 a pre-

selected image-TV-constraint parameter. Clearly, the optimiza-

tion program, and consequently the final image, depends

strongly upon the specific form of data fidelity D(gm,Hf).
In the work, we investigate the impact of three different

data-fidelity terms, which have been considered for image

reconstruction:

a) data-ℓ2 fidelity:

Dℓ2(gm,Hf) = ||gm −Hf ||2
2
, (2)

where || · ||
2

2
denotes the square of ℓ2-norm;

b) data-KL fidelity:

DKL(gm,Hf) =

M∑
i=1

[−Hf +gm+gmln(gm)−gmln(Hf)]i,

(3)

where DKL(gm,Hf) denotes the Kullback-Leibler divergence

and i denotes the index of the ith entry;
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c) data-ℓ1 fidelity:

Dℓ1(gm,Hf) = ||gm −Hf ||1, (4)

where || · ||1 denotes the ℓ1-norm.

The optimization programs mentioned above are non-

smooth and convex, and they can be solved by use of a primal-

dual algorithm. In the work, we focus on using a specific

primal-dual algorithm, i.e. the Chambolle-Pock (CP) algorithm

[2], [6].

B. Data acquisition

The cone-beam projection data were collected in Fujita

Health University Hospital from a physical head phantom by

using an advanced Canon Medical Systems 320-slice diagnos-

tic CT scanner with a circular trajectory. In this scanner, the

source-to-isocenter distance and source-to-detector distance

are 600 mm and 1073 mm, respectively. The curved detector

consists of 896 × 320 pixels, thus forming a fan-angle of

49.2◦ and a cone angle of 15◦. Data were acquired at 1200

projection views uniformly distributed over an angular range

of 2π. Prior to reconstruction, scatter and beam-hardening

have been corrected for with the Canon’s well-established

algorithm. The FDK reconstruction with a Hanning filter and

a cutoff at 0.6 of the Nyquist frequency from the data set was

performed and used as a reference for benchmarking the CP

reconstructions.

III. RESULTS

A. Visualization study

We have performed image reconstruction from the head-

phantom data by using the CP algorithm to solve the opti-

mization program in Eq. (1) with one of three different data-

fidelity terms in Eqs. (2)-(4). The reconstructed images within

2D transverse, sagittal, and coronal slices were displayed in

Figs. 1 and 2, respectively. In order to reveal the details of

the reduction of the cone-beam artifacts, a narrow display

window [0, 100] HU is applied to visualizing the images.

Cone-beam artifacts can be observed in FDK reconstructions,

highlighted by circles and arrows, which obscure low-contrast

structures within the region. Conversely, all of optimization-

based reconstructions employing different data-fidelity terms

show generally comparable performance in terms of cone-

beam artifact reduction. However, remaining streak artifacts

near the skull top can also be observed in the reconstruction

with data-KL fidelity, as indicated by the arrow in the third

column in Fig. 2, suggesting a reduced effectiveness of the

data-KL fidelity suppressing some of the cone-beam artifacts.

B. Quantitative analysis

In addition to visual inspection described above, we have

also performed numerical studies to evaluate quantitatively the

properties of the optimization-based reconstructions, including

spatial resolution and contrast resolution, for the regions

in which the cone-beam artifacts can be observed in FDK

reconstruction.

a b

c d

Figure 1. Images within a transverse slice reconstructed from 1200-view data
by use of the FDK-type algorithm (a)and the CP algorithms for optimization
programs with data-ℓ2 fidelity (b), data-KL fidelity (c) and data-ℓ1 fidelity
(d). A narrow display window, [0, 100] HU, is used to reveal the details of
the cone-beam artifacts enclosed by the red circle.

a b

c d

Figure 2. Images within a sagittal slice reconstructed from 1200-view
phantom data by use of the FDK-type algorithm (a) and the CP algorithms
for optimization programs with data-ℓ2 fidelity (b), data-KL fidelity (c), and
data-ℓ1 fidelity (d). A narrow display window, [0, 100] HU, is used to reveal
the details of the cone-beam artifacts, which are indicated by the red arrow
in panel (a).

1) Numerical phantom design: In this study, a numerical

phantom including bar patterns and a low-contrast sphere was

generated on a fine image grid of 1024× 1024× 640 with a

pixel size of 0.23×0.23×0.25 mm3, and was used to evaluate

both spatial and contrast resolution of the optimization-based

reconstructions. The eight bar patterns have varying line-pair

densities (i.e., 10.7 cm−1, 7.1 cm−1, 5.3 cm−1, 4.3 cm−1,

3.6 cm−1, 3.0 cm−1, 2.7 cm−1, 2.4 cm−1), whereas the low-

contrast sphere possesses a contrast level of 20 HU. From this

numerical phantom, we used the same scanning configuration

as that in Sec. II-B to generate the cone-beam projection data.

In an attempt to incorporate the partial volume effect which

may affect the spatial resolution, we subdivided uniformly the

detector element into 4 × 4 subelements. Therefore, for each

detector element, there exist 16 straight lines that are used
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for computing projection data. For each detector element, we

computed the integration of the object function over these lines

connecting the source and detector subelements, then took the

average of these integrations as the projection data. By adding

the generated cone-beam projection data to the collected head-

phantom data, we obtained cone-beam projection data for the

physical head phantom embedded with the bar patterns and

low-contrast sphere designed. The optimization-based recon-

structions with different data-fidelity terms were subsequently

from the data.

2) Spatial-resolution study: The spatial resolution was first

determined qualitatively by visual inspection of the bar pat-

terns. We displayed the optimization-based reconstructions

within 2D transverse and coronal slices containing the bar

patterns in Fig. 3, along with the corresponding FDK re-

constructions. It can be observed that the reconstructed bar

patterns in the FDK reconstruction are blurred that bar patterns

of only up to 3.6 cm−1 can be resolved. However, in the

optimization-based reconstructions, the visually resolvable bar

patterns of 7.1 cm−1 can be obtained.

In an attempt to quantitatively characterize the reconstruc-

tion performance in terms of spatial resolution, the modulation

transfer function (MTF) of the bar patterns was calculated.

The MTF values of a CT system can be obtained by use of

the standard deviation of pixel values in a region of interest

(ROI) containing a bar pattern [7]. Using the reconstructed

images within the 2D transverse slice, we calculated the MTF

values, which are shown in Fig. 4. It can be observed that, in

general, the MTF values obtained from the optimization-based

reconstructions are higher than those obtained from the FDK

reconstruction, suggesting optimization-based reconstructions

yield spatial resolution higher than does the FDK reconstruc-

tion. The MTF values obtained from the optimization-based

reconstructions were reduced to 20% at the spatial frequency

around 7.1 cm−1, while the MTF value obtained from the FDK

reconstruction was reduced to 20% at the spatial frequency 3.6
cm−1; this observation is consistent with our visual inspection.

3) Contrast-resolution study: Again, we first performed

visually an inspection of the contrast resolution of the low-

contrast sphere reconstructed, as shown in Fig. 5. It can be

observed that the low-contrast sphere was obsecured by the

cone-beam artifacts in the FDK reconstruction. Conversely, the

cone-beam artifacts appear to be considerably suppressed in

optimization-based reconstructions with data-ℓ2 fidelity, data-

KL fidelity, and data-ℓ1 fidelity, resulting in a low-contrast

sphere that can readily be discerned.

In an attempt to quantitatively characterize the contrast res-

olution for the optimization-based reconstructions, we define

a contrast-resolution metric below,

CNR =
|fs − fb|√
σ2
s + σ2

b

,

where fs and σs denote the mean and standard deviation

within a region of interest (ROI), and fb and σb denote the

mean and standard deviation within a selected background

region. It can be expected that the standard deviation, σs,

within a reconstructed ROI with the cone-beam artifacts can

be large due to the gray-level non-uniformity. CNRs were

a b

c d

Figure 3. Reconstructions and the corresponding zoomed-in views of ROI
images within the transverse slice reconstructed from 1200-view data by use
of the FDK algorithm (a) and the CP algorithms with data-ℓ2 fidelity (b),
data-KL fidelity (c), and data-ℓ1 fidelity (d). A narrow display window [0,
100] is used to reveal the details of the cone-beam artifacts.
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Figure 4. MTF values obtained from the images reconstructed by use of the
FDK algorithm (+) and the CP algorithms for optimization programs with
data-ℓ2 fidelity (o), data-KL fidelity (♦), and data-ℓ1 fidelity (△).
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a b

c d

Figure 5. Reconstructions and the corresponding zoomed-in views of ROI
images within the transverse slice reconstructed from 1200-view data by use
of the FDK algorithm (a) and the CP algorithms with data-ℓ2 fidelity (b),
data-KL fidelity (c), and data-ℓ1 fidelity (d). The narrow display window [0,
100] HU is used to reveal the details of the cone-beam artifacts.

computed in ROIs within the sphere in the reconstructed 2D

transverse, sagittal, and coronal slices, indicated by the solid

circle in the first columns of Fig. 5, and the corresponding

background regions are indicated by the dashed circle. We

show in Fig. 6 the CNRs calculated from images reconstructed

by use of these three different data fidelity terms: data-ℓ2
fidelity, data-KL fidelity, and data-ℓ1 fidelity, along with the

CNRs computed from the corresponding FDK images. It can

be observed that cone-beam artifacts lower the CNRs in the

FDK image whereas the optimization-based reconstruction

yields an enhanced CNR. The CNR results corroborated visual

inspection results of Fig. 5.

IV. CONCLUSION

In this work, we investigated the effectiveness of

optimization-based image reconstructions in correction for

cone-beam artifacts in diagnostic CT with a set of detectors

forming a large cone angle. The study was carried out with

real data of a physical head phantom collected with a Canon

Medical Systems 320-slice diagnostic CT. In an attempt to
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Figure 6. CNRs obtained from the 2D slice images reconstructed by use of
the FDK algorithm (+) and the CP algorithms for optimization programs with
data-ℓ2 fidelity (o), data-KL fidelity (♦), and data-ℓ1 fidelity (△).

investigate the impact of a data-fidelity term in an optimization

program on the cone-beam artifact reduction, we have studied

three different data-fidelity terms that are used widely for

image reconstruction. The results of our study show that

optimization-based reconstructions have the potential to reduce

cone-beam artifacts observed in the FDK reconstructions and

that the three data-fidelities appear to possess a comparable

level of effectiveness for reducing the cone-beam artifacts.

In order to quantitatively evaluate the performance of the

optimization-based reconstruction, two quantitative metrics,

MTF and CNR were used for characterizing the spatial

and contrast resolution. Results of quantitative study also

indicate that the optimization-based reconstruction improve

image quality over the FDK reconstruction in terms of spatial

and contrast resolution.
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C-arm CT imaging using the extended

line-ellipse-line trajectory: first implementation and

initial results
Zijia Guo, Günter Lauritsch, Andreas Maier, Patrick Kugler, Mohammad Islam, Florian Vogt, Frédéric Noo

Abstract—In previous work, we proposed a novel data ac-
quisition geometry, called the Extended LEL trajectory, for C-
arm CT imaging in interventional radiology. This novel geometry
aims at enabling larger axial field-of-view coverage without cone-
beam artifacts for imaging with a full X-ray beam as well
as with a collimated X-ray beam used for scatter reduction
purposes. In this work, we report on a first implementation of
the Extended LEL trajectory on a state-of-the-art C-arm system.
Highly satisfactory results are shown in terms of trajectory
fidelity and repeatability. Suitability of the data for head imaging
is also demonstrated using a Rando head phantom without and
with 50% beam collimation.

I. INTRODUCTION

C-arm Computed Tomography (CT) is a popular imaging

tool in interventional radiology. Currently, the circular short-

scan is the preferred data acquisition geometry for C-arm CT.

However, the circular short-scan presents two major shortcom-

ings: data incompleteness in terms of Tuy’s condition [1], and

limited axial coverage. Another important issue that affects

image quality is scatter, particularly because the anti-scatter

grid used in interventional C-arm systems is suboptimal due

to the large variations in source-to-detector distances required

by the clinical demands for the system. An alternative option

to reduce scatter is axial collimation of the beam, but this

further reduces the already limited axial coverage.

To overcome the issues mentioned above, novel data ac-

quisition geometries should be investigated. Recently, we

proposed using the Line-Ellipse-Line (LEL) trajectory and its

extended version, called the Extended LEL trajectory. This

trajectory is designed to provide complete data, as well as

extended axial coverage both without and with beam colli-

mation. The Extended LEL trajectory is a continuous curve

consisting of tilted ellipses joined together by segments of

line. The number of ellipses and the distance separating them

define the axial coverage, while the line segments ensure data

completeness. The angular tilt applied to the ellipses is critical

for image reconstruction at each location from a minimum

amount of contiguous projections while allowing uninterrupted

data acquisition without double coverage of view positions, as

observed with the extended arc-line-arc trajectory [2].

The theoretical properties of the Extended LEL trajec-

tory were thoroughly studied in [3], [4]. Also, experiments
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from computer simulated data demonstrated accurate image

reconstruction with no cone-beam (CB) artifacts and strong

robustness to data sampling [3]. In this work, we report on

a first implementation of the Extended LEL trajectory on

a state-of-the-art C-arm system. The implemented trajectory

consists of two ellipses and three lines. The quality of this first

implementation was evaluated in terms of geometry fidelity

and reproducibility, and also in terms of consistency with

theory for CB image reconstruction of an anthropomorphic

head phantom without and with beam collimation.

II. TRAJECTORY IMPLEMENTATION

We implemented the Extended LEL trajectory on a Siemens 
ARTIS pheno system (Siemens Healthcare, GmbH, Forchheim, 
Germany), which is a multi-axis robotic floor-mounted C-arm 
with flat panel detector. The trajectory was pre-defined through 
the use of 47 control points, using upsampling between the 
control points to enable data acquisition at 320 positions. The 
pre-defined trajectory was loaded to the C-arm system via 
a newly-developed programmable patch. X-ray exposure was 
triggered by angulations rather than time stamps, to ensure 
lower impact of motor accelerations and decelerations on 
geometrical repeatability of measurements.

Technical details regarding the trajectory configuration are

listed in Table I. The limited number of projections was

due to current software limitations. The relative number of

projections between lines and ellipses was based on the

requirement of keeping the physical distance between source

positions nearly constant. The axial coverage parameters were

chosen so as to cover a full head phantom without collimation

as well as with a beam collimation of up to 50%.

Source-to-isocenter 785 mm

Source-to-detector 1300 mm

Field-of-view radius 114 mm

Length of each line 71.6 mm

Angular length of each ellipse 210o

Ellipse-to-ellipse distance 60 mm

Axial tilt of each ellipse 12 mm

Total axial coverage 192 mm

# of control points 47
# of views 320
# of views per ellipse 140-140
# of views per line 13-14-13
Detector pixel size 0.308× 0.308 mm2

Detector size 1248 × 928

TABLE I: Trajectory configuration
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III. EVALUATION TESTS

To assess the quality of the implementation, we performed

tests evaluating the fidelity of the geometry and its repeatabil-

ity, and also tests evaluating the suitability of the data for CB

reconstruction of a head phantom.

A. Geometry fidelity and repeatability

The physical position of the source and detector during

data acquisition was determined using a geometrical phantom,

which we call the PDS-4 phantom. This phantom is specifi-

cally designed for calibration of trajectories with large axial

coverage. See [5] for details on this phantom. By analyzing

each CB projection of the PDS-4 phantom, we obtain full

information on the position of the source and the detector

relative to the phantom for each location where the X-ray

source is triggered.

Geometry fidelity of the data acquisition was performed by

comparing the calibrated source positions with the pre-defined

trajectory. Geometry repeatability was performed through

comparison of source and detector placements from one rep-

etition of the data acquisition to another; the comparison was

in terms of accuracy in backprojection for voxels within the

field-of-view. The repeatability was assessed over 5 immediate

repetitions and also over 3 short-term repetitions. The immedi-

ate repetitions amount to immediately repeating the protocol.

The short-term repetition includes the utilization of a different

protocol prior to repetition of the Extended LEL scan to force

the system to recall it from another position. The phantom

placement remained unchanged between all scan repetitions

to avoid dealing with changes in the world coordinate system,

which is attached to the phantom.

B. Image reconstruction

A Rando head phantom was used for this test. The phantom

was positioned on a foam holder in such a way that transversal

truncation is avoided. Axial positioning of the Extended LEL

trajectory was such that the first ellipse was centered on the

base of the skull and the second one was centered on the

middle of the brain.

Prior to image reconstruction, the projection data was cor-

rected for scatter and beam-hardening, and transformed into

line integrals using the conventional log transformation with

air scan providing information on the incoming fluence.

Reconstruction was formulated as a penalized least-square

optimization problem with the penalty term applied to differ-

ence between neighbor voxels. This optimization problem was

solved in an iterative manner using the GISTA method [6].

Both quadratic regularization and total variation were consid-

ered. The quadratic regularizer was used for its ability to pro-

duce results similar to a filtered-backprojection reconstruction,

which was previously applied to ideal data [3] and which we

plan to apply to real data in the future. Total variation was used

to mitigate artifacts due to few view sampling, which could

be anticipated to be significant given the limited number of

measurements over each ellipse.

To assess the suitability of the implemented trajectory

with beam collimation, we performed reconstruction from

full projections as well as from axially cropped projections

mimicking a 50% collimation of the beam.

All reconstructions were performed on a volume of 270×

270×300 cubic voxels covering the field-of-view with a voxel

size of 1mm. The number of iterations was 1000. This number

was selected on the basis that the difference between using

2000 versus 1000 iterations was negligible on one test case.

IV. EVALUATION RESULTS

A. Geometry fidelity

Figure 1 shows the Extended LEL trajectory in a 3-D

view, as well as its projections on the (x, y)-plane, on the

(x, z)-plane, and on the (y, z)-plane. The pre-defined trajectory

is indicated by the solid curve, whereas the real trajectory,

acquired from the C-arm, is shown with dots. The pre-defined

trajectory was generated by interpolating the control points,

and performing afterwards a registration to the real trajectory

using the iterative closest point method.

Figure 1 shows strong fidelity in the trajectory shape. The

ellipses appear as ellipses with the desired tilt, and the line

segments appear fairly linear. Also, the transitions between

ellipses and lines essentially occur at the desired places. Small

deviations do exist. These are best appreciated using zoom

plots.

Figure 2 shows a zoom on the connection between the

middle line and the second (top) ellipse, and also shows a

zoom on the connection between the top ellipse and the last

line segment. The regions for these two zooms are indicated as

boxes 1 and 2 in Figure 1. More deviations can be observed for

the source positions on the lines than for the source positions

on the ellipses, particularly near the transition from line to

ellipse. However, the deviations are fairly small, on the order

of 2-3mm, so that we can still say that, overall, the geometry

fidelity is highly satisfactory.

B. Geometry repeatability

As mentioned earlier, geometry repeatability was evaluated

in terms of backprojection accuracy. For each view and each

voxel, we computed the detector position to be used for

backprojection and assessed how this position changes from

one scan repetition to the next. This change in position was

scaled by the CB geometry magnifaction factor to reflect an

error near the center of the field-of-view. Our results are shown

in Figure 3 in the form of box plots that display, over the

views, the mean variation that was observed over the voxels.

For the immediate repetitions, the average backprojection

error was less than 0.05mm for at least 75% of the views. The

short-term repeatability had a larger average backprojection

error, but this error was still less than 0.15mm for at least

75% of the views, with errors below 0.4mm for the outlier

views. Compared with the standard circular short-scan, the

backprojection error for the Extended LEL trajectory is largely

comparable (not shown here) and thus promising for this first

implementation.
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Fig. 1: Plots of the Extended LEL trajectory: 3-D view (top left) and projections on the (x, y)-plane (top right), on the (x, z)-plane (bottom left), and on
the (y, z)-plane (bottom right) are shown. The pre-defined trajectory is indicated by the solid curve, whereas the real one, obtained from the C-arm, is shown
with dots. All axes are scaled in mm.
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Fig. 2: Zooms on portions of the Extended LEL trajectory indicated as boxes
1 and 2 in Figure 1. All axes are scaled in mm.

C. Image reconstruction

Figure 4 shows a few representative projections along

the Extended LEL trajectory. Our first reconstruction of the

head phantom showed unexpected artifacts. By inspecting the

projection data, we identified that the edges of the collimator

cause data inconsistencies that are irrelevant for a circular

short-scan reconstruction but matter for the Extended LEL

trajectory. After cropping out the inconsistent part from the

measurement (about 30 detector rows at both top and bottom

of the detector), a much better image quality was obtained.

Figure 5 and 6 show the reconstruction with data cropping,

using a narrow grayscale window width of 400 HU. Fine

details of the bony structures appear clear and no severe CB

artifacts are observed. Due to the limited number of projection

views and due possibly also to a few select views that showed

less repeatability, streak artifacts are observed. As anticipated,

more streaks are observed with quadratic regularization than

with total variation, which perfoms well at reducing the

strength of these streaks.

The data acquisition process with a simulated 50% colli-

mation of the beam is illustrated in Figure 7, and Figure 8

shows reconstructions from this collimated data using the

total variation penalty. In this collimated set-up, most voxels

are only seen by one ellipse. Although fewer measurements

are used for reconstruction, there is no significant difference

in noise, primarily because the total variation strength was

increased to maintain good mitigation of streak artifacts. This

experiment demonstrated that the trajectory still delivered
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Fig. 3: Box plots showing the view-to-view variations in mean backprojection error over voxels covering the field-of-view, when considering immediate
scan repetitions (left) and short-term scan repetitions (right). The horizontal axis indicates the pairs of repeated scans under comparison. The vertical axis
shows the distribution of the mean backprojection error over the 320 views. Each box accounts for 75% of the views. The crosses mark outliers.

sufficient data for reconstruction, as anticipated by the theory.

(Naturally, the upper and lower portion of the phantom are

now truncated.)

V. CONCLUSION AND DISCUSSION

We reported on a successful first implementation of the

Extended LEL trajectory on a state-of-the-art C-arm system

used in interventional radiology. Promising results were shown

in terms of trajectory fidelity, data acquisition repeatability,

and data suitability for head imaging. This work demonstrates

the feasibility of data acquisition on a C-arm system with

a trajectory other than the standard circular short scan for

axially extended field-of-view imaging, without and with

beam collimation for scatter reduction purposes. Future work

will focus on refining the software component to enable the

utilization of more projections. Once more projections are

available, analytical reconstruction, which would be clinically

more practical, will be investigated.
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Fig. 5: Reconstruction of the Rando head phantom with quadratic regular-
ization, using all acquired data. Grayscale: [−200, 200] HU.

Fig. 6: Reconstruction of the Rando head phantom with total variation
regularization, using all acquired data. Grayscale: [−200, 200] HU.

Fig. 7: Illustration of a few representative projections along the Extended
LEL trajectory obtained when scanning the Rando head phantom with a
simulated 50% collimation of the beam.

Fig. 8: Reconstruction of the Rando head phantom with total variation
regularization, using only the central 50% of the data acquired at each source
position, to simulate a 50% beam collimation. Grayscale: [−200, 200] HU.
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A Practical Dose Efficient Reconstruction Algorithm
for Circular Cone Beam X-ray Tomography

Hongbin Guo, Abdelaziz Ikhlef, Chuang Miao, and Xuelin Cui

Abstract—It is well-known that circular cone beam X-ray
scan trajectory does not provide complete data for exact image
reconstruction. Most pixels in the end slices even do not receive
enough projection angle for basic two dimensional reconstruction.
That causes difficulties for the popular analytical approximation
reconstruction method FDK. Current reconstruction methods
usually generate a small volume with z-coverage shorter than
actual beam illumination width at z-axis, which is the claimed
nominal z-coverage of CT products. In this study we propose a
new algorithm for sequential axial scans, which reconstruct the
full z-coverage volume without discarding any projection data or
introducing any overlap between consecutive rotations. It is dose
efficient and can reconstruct larger volume than volume shorten
or overlapping algorithms. In this algorithm the projection data
of consecutive rotations are jointed as a whole to complement
each other. The sampling gap, “missing” data, between two
rotations are filled in with interpolation from the data across
two rotations. The proposed algorithm has been validated with
simulated data. The data set is quite challenge. With large cone
angle data, the reconstructed images do not show strong artifacts
at joint slices no matter the high contrast regions or the off center
regions.

Index Terms—Computer Tomography, Image reconstruction,
Step and Shoot, Circular Cone Beam, Artifacts.

I. INTRODUCTION

X-ray Tomography is widely used clinically as a tool for
disease diagnosis. However, the fundamental circular cone
beam (CCB) scans suffers from artifacts due to data incomple-
tion, i.e. projection data does not satisfy the data sufficiency
condition (DSC), which hinders the exact reconstructions. In
clinical practice, the product users and developers are more
in favor of the analytical approximation reconstruction algo-
rithms, which is faster and less sensitive to noise as compared
with the exact reconstruction algorithms. FDK (Feldkamp
- Davis - Kress) type algorithms are usually adopted in
current medical scanners. FDK type methods are extended
from two-dimensional reconstruction methods which requires
projections cover angle more than π+Γ for fan beam scanning,
here Γ is the full fan angle. Unfortunately, if our reconstruction
volume z-coverage is set to the full illumination range at z-
axis, some regions at the end slices of the volume does not
satisfy this weaker requirement either even for a full circular,
360 degree, scan. see Figure 1. For FDK type reconstruction
the largest reconstruction region contains the voxels which
have projections with angle span more than π + Γ. Figure
1 shows that there are 4 slices at each end of the volume
do not have enough projections to reconstruct the full slice

All authors are affiliated with FMI Medical Systems, Inc. Solon, OH 44139,
USA. Communication email address: Hongbin.Guo@fmimaging.com

with FDK if we set the FOV to 500 mm, where the geometry
of Minfound 64 row scanner, see Section III, is used. The
two end slices only have the ONE center voxel satisfy FDK
reconstruction condition! If apply extrapolation to estimate
data beyond the maximum cone angle strong artifacts may
be introduced. Due to cone angle effects even the region with
π+ Γ projections may have artifacts. Some artifacts reduction
algorithms are introduced by adding a forward projection, [1],
[2], [3], or adding a partial exact reconstruction to compensate
the basic FDK reconstruction, [4], [5]. Various weighting
methods are also proposed for FDK to reduce the artifacts
of the reconstructed region, [6], [7], [8], [9].

In this study we are interested in sequential CCB scans,
which is also called step-and-shoot (SAS) scanning. For this
type scanning the reconstruction volume z-coverage can be set
to less than the full illumination range at z-axis, [10], [11],
so that the joint slices also have good quality. Though each
individual axial scan still do not have complete data for exactly
reconstruction of each independent scan, the neighbouring
circular scans can provide compensation data each other within
the region between two circular trajectory. Thus we can
obtain better images for the central region with FDK-type
methods. We propose algorithm to reconstruct larger volume
as compared with the method presented in [10], [11], where
shorten or overlapping is applied.

The rest of the paper is organization as follows. In Section II
we details our algorithm step by step. The proposed algorithm
is validated by simulated data in Section III. Conclusions are
presented in Section IV.

II. METHODS

The fundamental FDK algorithm is extended from two-
dimensional reconstruction algorithm. To mitigate cone beam
artifacts various weighting strategies have been developed to
be incorporated in the basic FDK. In practical industry field the
rays in fan geometry are usually rebinned to data with cone
parallel geometry. Algorithm 1 list the FDK reconstructions
step with the use of rebinning and weighting.

Mathematically the last three step of Algorithm 1 can be
expressed as follows

f(x) =
1

2

∫ 2π

0

cos(v)w(v)

∫ ∞
−∞

p(u′, v, θ)h(u− u′)du′dθ

(II.1)
here p(u, v, θ) is the rebinned cone parallel projection data,
h(u) is the ramp-filtering kernel, detector panel coordinates u
and v are actually functions of x and θ: u = u(x, θ) and
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Algorithm 1 Weighted rebinning FDK Algorithm.
1: Starting with the circular scanning data of a full scan,

360 degree, with multi-row cylindrical detector panel
p(γ, v, β). Here γ and β represent fan angle of each
channel and source position angle of each projection
respectively, variable v stands for the z-coordinate of the
detectors at iso axis.

2: Rebinning the projection data p(γ, v, β) from fan ge-
ometry to parallel geometry for each row v to produce
p(u, v, θ). Here (u, v) is local coordinate for virtual flat
detector plane passing iso of the CT system. Variable u
stands for the distance to iso of each channel.

3: Filtering the rebinned projection by ram filtering kernel
h(u).

4: Applying cosine weight.
5: Performing weighted backprojection.

v = v(x, θ). 0 If we reconstruct a volume for the full z-
coverage at z-axis, the end images reconstructed by Algorithm
1 will have artifacts since truncation in z direction some
voxels does not have 180 degree parallel projections which
is the basic requirements for FDK reconstruction. Application
dependent information compensation may relieve this issue at
some extent though. This is out of the range of this study.

We are interested in the middle region of the volume for
SAS scans. At joint region between two consecutive circular
scans these two rotations can provide partial/complete com-
plementary information each other. For example, for the rays
passing z-axis we have complete complementary as shown in
Figure 2. Let us look Figure 2a, the diamond (�) point belongs
to the subvolume of rotation 1, which does not illuminate this
point at this view while the second rotation at the opposite
view can provide a projection passing this point. It seems for
the joint region between two consecutive rotations we have
perfect 360 degree data everywhere. Unfortunately, this is not
the case. For the voxels away from the z-axis there exists a
gap between the projection data of the two rotations as shown
by the star(?) point in Figure 2b. The far the voxel from the
z-axis the large the gap. In Figure 3, we plot a plane cross
section of the volume passing z-axis, the parallel projection
view is perpendicular to this plane. The green solid curve
enclosed regions are illuminated. It is clear that the voxels
at z-axis are fully illuminated while there is a gap between
two rotations for off-center positions. In Figure 3, the size of
the gap is exaggerated instead of proportional to actual size
to emphasize the phenomena.

Köhler etal proposed to use the data enclosed inside the
dashed black rectangles only, see Figure 3, by dropping the
rest data, [10]. This strategy implies to shorten the step size
of patient table movement in practical clinical implementation.
Hsieh etal proposed overlapping between consecutive scans,
[11], thus the patient table movement step size is also shorten.
To reduce the dose to patients we propose to perform interpo-
lation to fill in the gap between two rotations. The complete
algorithm is present in Algorithm 2

Remark 2.1: During rebinning step the parallel projection

Fig. 1: Number of illuminated views vs voxel distances to
z-axis for first 5 slices. In the computation, the geometry of
Minfound 64 row scanner, see Section III, is used and the
reconstruction volume z-coverage is set to the full illumination
range at z-axis, i.e. 40mm. Slice 1 to 4 do not have enough
projections to reconstruct the full slice with FDK if we set the
FOV to 500 mm. The first slices only have the ONE center
voxel satisfy FDK reconstruction condition.

Algorithm 2 SAS reconstruction by Weighted rebinning FD-
K Algorithm using complementary projection data between
rotations.

1: Rebinning the CCB projection data p(γ, v, β) from fan
geometry to parallel geometry for each row v to produce
p(u, v, θ).

2: Filtering the rebinned projection by kernel h(u) .
3: Applying cosine weight to obtain q(u, v, θ).
4: Performing weighted backprojection to reconstruct image

volume from complementary projection data. Pseud-code
is listed below:

1) For every voxel x,
• For views θk ∈ [0, π), k = 1, 2, · · · ,K

– For half turns m = 0, 1
If x is illuminated by some axial rotation

at this view θk, do regular interpolation within
this axial rotation data and compute the weight,
otherwise use complementary data, θk+π from
next or previous rotation, to do interpolation
across neighbouring two scans to estimate the
projection data and determine the associated
weight.

– End For half turns
– Normalize weights over half turns.
– f(x) = f(x)+

∑1
m=0 w(m, k, x)∗q(u, v,m, k)

• End For views
2) End For voxel x

data of different circular trajectory are aligned to have the same
projection angles. This is crucial so that the back projection
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(a) Rays passing z-axis at one view for the 1st rotation and its complemen-
tary at the 2nd rotation

(b) Rays away from z-axis with the same distance at one view for the 1st
rotation and its complementary at the 2nd rotation

Fig. 2: Example of opposite rays of two SAS rotations. (a)
Top Figure: For the rays passing z-axis the projection data
from two rotations provide perfect complementary information
each other. The diamond (�) point belongs to the bottom half
subvolume associated with the rotation 1, however rotation 1
does not illuminate this point at this view while the second
rotation at the opposite view can provide a projection to cover
this point. (b) Bottom Figure: The opposite rays, which are
away from z-axis, from two rotations has gap between two
opposite projection. The star (?) point belongs to the bottom
half subvolume associated with the rotation 1. Rotation 1 does
not illuminate this point at this view neither the second rotation
at the opposite view.

step can accurately locate the opposite projection from the
neighbouring rotation when it is needed.

Remark 2.2: The number of the patient table movement
step size is required to be accurate at certain tolerance so that
the assumed geometry in the backprojection is consistent with
the merged data of consecutive rotations.

Remark 2.3: The row weight before normalization should
be supported beyond the physical row range. We gives an
example weight as below (II.2). Let ṽ = v−vcenter, q = |ṽ|

ṽmax
,

Fig. 3: An example of parallel projection map of one SAS view
at a plane passing z-axis, the plot plane is perpendicular to the
projection view. The green solid curve enclosed regions are
illuminated regions. The voxels at z-axis are fully illuminated
while there is a gap between two rotations for off-center
regions.

and the constants Q, p and c satisfy 0 < Q < 1, p > 1, c > 10.

w(v) =


1 q ≤ Q,
cos2

(
π
2 ·

q−Q
p−Q

)
Q < q ≤ 1

cos2
(
π
2 ·

1−Q
p−Q

)
ec(1−q) q > 1

. (II.2)

III. EXPERIMENTS AND RESULTS

Since the interpolation is used to estimate the gap between
two rotations in the proposed method we have verified the
accuracy by simulated data. Experimental data are obtained
with the geometry of the Minfound Scinticare 64 row scanner,
which has 64 row detectors each having height 0.625mm
along z-axis, thus the z-coverage at z-axis is 40mm, and 840
channels at x-axis direction with arc angle 54.4o. The scanner
has maximum FOV 500mm, cone angle about ±2o. 1440
projections per rotation is used.

Simulated FORBILD, [12], head phantom was projected
and then reconstructed with FOV 350 mm. This phantom has
complicated high contrast structure, it is a challenge object
thus it is good for reconstruction performance evaluation.
The reconstruction backprojection weight parameters are set
as: Q = 0.5, p = 1.1, and c = 25. The total number of
slices of the reconstructed images is 128 slices with separation
0.625mm. The end slice of the first rotation, i.e. 64th slice,
is presented in Figure 4 with window WL 50HU and WW
200HU. This most end slice has high resolution, and it does
not have any distortion, black shading, or other strong artifacts
caused by data missing or extrapolation related inaccuracy.

IV. CONCLUSION

We proposed a new algorithm for sequential circular axial
CT reconstruction. The proposed algorithm does not discard
any projection data or introduce any overlapping between
consecutive rotations. Thus, it is dose efficient and it can
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Fig. 4: The 64th slice of the reconstructed 128 slices simulated
FORBILD Head phantom. It is the end slice of the first
rotation. The slice separation is 0.625mm and displayed with
window WL 50HU and WW 200HU.

reconstruct larger volume than existing algorithms. In this
algorithm the projection data of consecutive rotations are joint-
ed as a whole to complement each other. The sampling gap
between to rotations are filled in with interpolation by using
the data across two rotations. The algorithm has been validated
with a simulated data. This data set is quite challenge. With
the large cone angle geometry and the high contrast object
the reconstructed images do not show strong artifacts at
joint slices. This suggest that the proposed algorithm has
potential to be used in clinical practice. Further verification
and evaluation will be performed.
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Respiratory gating method for low-dose small-animal 

CT studies: preliminary results 

N. Ballesteros, M. Desco, M. Abella

Abstract– The quality of chest CT images in small-animal 

studies is often limited by respiratory movement, which causes 

a loss of resolution in the reconstructed images. Respiratory 

gating techniques allow to reduce this effect by selecting CT 

data at specific moments of the respiratory cycle. In 

retrospective gating, this sorting is done based on the 

processing of the acquired projections, with no need of 

external hardware. Nevertheless, the algorithms reported in 

the literature provide solutions that require high exposure 

doses for the animal. We present a new retrospective 

respiratory gating algorithm for low-dose small-animal CT. 

Preliminary evaluation in rodents under free breathing 

showed a good sorting even with a radiation dose halving the 

minimum reported in the literature, leading to gated CT 

reconstructions with enhanced resolution.   

Index Terms —X ray, small-animal CT, respiratory gating. 

I. INTRODUCTION 

Computed tomography (CT) systems for small animals 

have become an important imaging tool in preclinical and 

basic research due to the increasing use of animal models 

for the study of different human diseases. In particular, 

chest CT scans are used to monitor a variety of lung 

abnormalities and diseases, including emphysema [1], 

asthma [2] or acute respiratory distress syndrome [3]. 

However, the movement of the chest of the animal during 

in-vivo studies can reach 5 mm, which results in a reduced 

spatial resolution in the reconstructed image.  

Several methods have been proposed to constrain 

breathing motion, such as tapes around the chest to restrict 

thorax movements or intubation with mechanical 

ventilation to ensure a stable breathing pattern. However, 

these strategies may cause physical damage to the animal or 

compromise its normal breathing, possibly resulting in a 

confounding factor in preclinical research with respiratory 

disease models. Gating strategies aim to synchronize the 

CT image acquisition with the respiratory cycle to 

reconstruct only images taken within a certain breathing 

phase. These techniques can be performed under free 

breathing and enable the structural and functional 

characterization of the lungs in a non-invasive way.   
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Gating methods have been categorized into prospective 

and retrospective techniques. In prospective gating, only 

data corresponding to a phase of interest are acquired by 

synchronizing the CT acquisition with the breathing of the 

animal in real time, thus involving long scan times and 

laborious setups [4-6]. Retrospective gating simplifies the 

acquisition process by acquiring data continuously 

throughout the respiratory cycle and then assigning the 

projections to different phases of the respiration. This 

sorting can be done based on a respiratory signal monitored 

during the acquisition or obtained from the processing of 

projection images themselves. Retrospective approaches 

found in the literature require oversampling for the sorting 

process of the projections, thereby increasing the exposure 

time for the animal and the dose [7-12]. 

We present a new retrospective respiratory gating 

algorithm for small-animal cone-beam CT scanners suitable 

for low-dose radiation studies. 

II. METHODS 

A. Algorithm proposed 

Fig. 1 shows the workflow of the proposed algorithm 

implemented with MATLAB (The MathWorks Inc., Natick, 

MA, USA).  

 
Fig. 1. Algorithm workflow. 
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The input of the algorithm is a complete raw dataset with 

a total number of projections given by: 

𝑁𝑝𝑟𝑜𝑗 = 𝑃 ∙ 𝐹         (1) 

where P is the number of projection angles and F is the 

number of projections acquired per projection angle in the 

case of step-and-shoot mode. In the case of a continuous 

rotation of the gantry during the acquisition, F would be 1. 

The first step is the normalization of the acquired CT 

projections in order to minimize the angle-dependent 

attenuation effect, as previously described in the literature 

[13]. To this end, each projection is divided by a mean 

image generated from a subset of consecutive projections 

along different projection angles. The size of this subset, 

Nnorm, is selected considering two facts: (1) it has to be large 

enough so as there is an equivalent contribution of 

projections for all respiratory phases and (2) it has to be 

small enough so that the projections belong to a reduced 

span of angles.  

The attenuation differences remaining after the 

normalization step in a region of interest (ROI) covering the 

lungs are related with the volume of air contained in the 

lungs and the position of the diaphragm along the different 

respiratory phases. Projections taken in the inspiration 

phase show higher intensity within the ROI, while during 

expiration have lower pixel values, as shown in Fig. 2. The 

sum of the pixels in this ROI for each projection is used as 

a surrogate of the respiratory signal, referred to as gating 

signal. Thus, minimum values of the gating signal 

correspond to the expiration phase, which is the longer 

phase in the respiratory cycle of rodents. 

 
Fig. 2. Normalized projections taken during inspiration (left) and 
expiration phases (right). 

We select the minimum points of each respiratory cycle 

in the gating signal and calculate the mean, µmin and the 

standard deviation, σmin. The gating interval for the 

expiratory breathing phase is defined as µmin ±σmin. This 

interval can be calculated using the complete data set or a 

subset of projections, to allow generating the gating signal 

simultaneously with the acquisition. In the latter case, a 

good sorting requires at least four complete respiratory 

cycles within the interval in order to have enough samples 

and avoid bias due to unsteady breathing patterns.   

B. Evaluation 

We evaluated our proposal in two scenarios, with high 

and low radiation doses respectively. Data were acquired 

with the scanner ARGUS CT (SEDECAL) in step-and-

shoot scanning mode over an angular range of 360 degrees 

with an angular step of 1 degree. Voltage and current were 

65 kVp and 200 µA, with an exposure time per projection 

of 39 ms. Projection size was 768×486 pixels with a pixel 

size of 0.2 mm. The number of images per projection angle 

(F in Eq. 1) was 32 and 4 for the high-dose and low-dose 

scenario respectively. 

We reconstructed the complete dataset and the gated data 

using an analytical reconstruction method based on the 

FDK algorithm [14, 15], and the PICCS-based method 

proposed in [16] using the FDK reconstruction of the non-

gated data as a prior. In all cases, the reconstruction matrix 

was 768×768×486 pixels with an isotropic voxel size of 

0.115 mm.  

The value of Nnorm (size of the projection subset for the 

normalization step) was 32 for both cases. 

III. RESULTS 

Fig. 3 shows reconstructions of the non-gated and gated 

data of the high-dose study. We can see enhanced details in 

the vasculature and a blurring reduction in the regions 

adjacent to the heart and diaphragm.  

 
Fig. 3. Axial and coronal views of the reconstructed images for the high 
radiation dose study. White dashed line in the coronal view indicates 

where the profiles were taken. 

The resolution improvement between gated and non-

gated data translated into a higher slope between the lung 

parenchyma and adjacent tissues along the profiles outlined 

in Fig. 4. 

 
Fig. 4. Profile across the diaphragm for the high radiation study (white 

dashed line in coronal view, Fig. 3). 
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The reduction of the blurring in the diaphragm is still 

noticeable in the FDK reconstruction for the low-dose case 

(Fig. 5), but the low number of projections results in severe 

streak artifacts. The PICCS-based reconstruction method 

compensates this lack of data reducing the artifacts present 

in the FDK reconstruction. 

 
Fig. 5. Axial and coronal views of the reconstructed images for the study 

with low radiation dose. White dashed line in the coronal view indicates 
where the profiles were taken. 

Fig. 6 shows the profile taken in the coronal view for the 

complete data and the gated data reconstructed with the 

PICCS-based method in the case of low radiation dose. 

Gated data show a better definition of the diaphragm and 

lung vessels. 

 
Fig. 6. Profile across the diaphragm for the low radiation study (white 
dashed line in coronal view, Fig. 5). 

IV. DISCUSSION 

Gating techniques are required for preventing movement 

blurring in the reconstruction of chest micro-CT in vivo 

studies. Retrospective gating methods generally need high 

sampling involving high exposure doses for the animal. 

In this work, we proposed a respiratory gating method for 

small animals CT systems suitable for low radiation doses. 

The gating signal is obtained directly from the acquired data, 

avoiding the need of any additional hardware.  

Although the proposed method has only been tested with 

the volume corresponding to the expiration phase, the 

generation of volumes corresponding to other phases of the 

respiratory cycle is straightforward.    

The evaluation of the method in rodent studies under free 

breathing proved its capacity to compensate the respiratory 

blurring, improving resolution even in situations with a 

radiation dose halving the minimum reported in the literature 

[8, 10]. For low-dose studies, the reduced number of noisy 

projections for each respiratory phase leads to severe streak 

artifacts in the FDK-reconstructed images. In these scenarios, 

the use of advanced iterative reconstruction methods is 

necessary to reduce the noise and artifacts in the 

reconstructed images. 
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Fully Automatic Intrinsic Respiratory and Cardiac

Gating of Cone-Beam CT Scans of the Thorax

Region
Andreas Hahn, and Marc Kachelrieß

Abstract—In image-guided radiation therapy (IGRT) a cone-
beam CT (CBCT) is often used as an on-board imaging device.
Due to the limited acquisition time of about 60 s, breathholding
techniques are not feasible and motion artifacts from respiratory
and cardiac motion occur. All algorithms that aim for motion
compensation require accurate information about the respiratory
and cardiac phase. When there is no external respiratory/cardiac
signal available or the signal ist corrupted, it has to be retrieved
intrinsically. In this work we present a new method to retrieve a
respiratory and a cardiac surrogate signal intrinsically in a fully
automatic way. The method is rawdata–based and tested on seven
CBCT scans of the thorax region. It was able to determine the
correct number of respirations for all patients and the correct
number of heart beats for six patients. For one patient it missed
one heart beat.

I. INTRODUCTION

In image-guided radiation therapy a cone-beam CT (CBCT)

is often used as an on-board imaging (OBI) device. Due to the

limited acquisition times of about 30 s breathholding is not

feasible and respiratory and cardiac motion result in blurred

images. Algorithms that compensate for this motion need

accurate information of the respiratory/cardiac phase. When

no external information of the respiratory/cardiac phase, e.g.

recorded by a respiratory belt or an ECG, is available, the

information has to be retrieved intrinsically. There are a lot of

existing methods dedicated to retrieving a respiratory surrogate

signal intrinsically in a fully automatic fashion [1]–[5] or with

the help of some kind of user input [6]–[9]. For the cardiac

signal there is a fully automatic method [10] that is, however,

limited to spiral scans. There is a fully automatic method

for respiratory and cardiac gating of small animals [11], that

requires multiple rotations for the automization process. It is

not applicable for our case since there is only one rotation.

A new method [12] showed promising results to extract a

cardiac and respiratory surrogate signal for a simulation and a

patient. The idea behind this method is that the best place

to extract the motion surrogate in the raw data is at the

diaphragm or ventricular wall for respiratory or cardiac gating,

respectively. A point at the diaphragm and a point at the

ventricular wall is selected automatically and tracked in the
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rawdata. A point at the ventricular wall might however not

provide a good cardiac surrogate signal for all source angles.

If its trace in the rawdata is at the ventricular wall for an

angle α (Fig. 1a), it is not necessarily at the ventricular wall

for an angle α+π (Fig. 1b). This is partly compensated by the

size of the ROI around the grid point trace. The smaller the

circumference of the heart in the axial plane of the selected

grid point, the smaller this geometric effect gets.

In this work we present a new method that takes the adressed

geometrical problem into account. We will call our new

method IGC, since for cardiac gating a circle is used instead

of the point, and [12] IGP, since a point is used.

II. MATERIALS AND METHODS

The goal of IGC is a fully automatic rawdata–based extrac-

tion of a respiratory and a cardiac surrogate signal. It can be

divided into three parts which are explained in the following

sections: Data preprocession, surrogate signal acquisition and

identification of optimal grid point. Data preprocession and the

identification of the optimal grid point are identical to IGP but

are explained for convenience.

A. Data Preprocessing

Since the method aims to identify the regions in the rawdata

that show respiratory/cardiac motion, everything that is not

subjected to motion is subtracted from the original rawdata

q in the following way. Since a standard FDK reconstruction

gives a blurred volume, one might be tempted to think that its

forward projection gives blurred rawdata that do not show any

motion any more. This is however not the case, since filtered

backprojection X
−1 and forward projection X are inverse

opertions. Even though the reconstructed volume is blurred,

motion information is encoded in the volume in the form of

noise. This information can be reduced by applying a Median

filter M before forward projection. These new rawdata qstat

show a blurred average motion state and are nearly identical to

the original rawdata in regions without motion. By subtracting

them from the original rawdata, only regions that are subjected

to motion remain, i.e. large dark or bright areas around the

diaphragm depending on the respiratory state and small dark

or bright areas at the ventricular wall depending on the heart

phase. All further steps are carried out on these dynamic

rawdata qdyn.

qdyn = q − qstat = q − XMX
−1

q (1)
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B. Signal Acquisition

Grid points are distributed regularly in the volume. The goal

is to identify a grid point that is at a place that is best suited to

obtain a surrogate signal. In [12], all grid points are forward

projected and tracked in the rawdata (see Fig. 1). In a ROI

around the trace of the grid point, the average gray value is

calculated for every projection and serves as a scalar surrogate

signal s(n), where n ∈ [0, N), with N being the number of

projections:

s(n) =
∑

(u,v)∈ROI

pdyn(u, v)/
∑

(u,v)∈ROI

1, (2)

where u and v are the detector pixel indices. A bandpass

filter in the range of 10-30 rpm and 50-120 bpm is applied

depending if one wants to get the respiratory or cardiac

surrogate, respectively. Peaks are determined automatically

and the signal is converted to a saw-tooth phase signal.

While this works well for the respiratory signal, it can result

in problems with the cardiac signal. If a grid point at the

ventricular wall is identified and it is also located at the

ventricular wall in projection n1 at an angle α1 (Fig. 1a),

it can be in the middle of the heart in projection n2, with

α2 = α1 + π (Fig. 1b). In order to avoid this issue, not the

grid point itself is tracked in the rawdata. Instead, each point

represents the center of a circle with a fixed radius r and the

tangential rays are tracked in the rawdata (Fig. 1c + 1d). To

find the best radius, we interate over radii between 3 cm 5 cm

in steps of 2 mm.

C. Identifying the Optimal Grid Point

Among all the grid points distributed over the volume,

the best point to obtain a respiratory or cardiac surrogate

has to be chosen. This is done by calculating the standard

deviation of the distance between the peaks. If the grid point

is at a reasonable spot, e.g. the center of the heart or the

diaphragm, the peaks are very regular (heart beats) or fairly

regular (respiration). If it is at a spot that is not subjected to

motion, the position of the peaks will be very random. This

is why the grid point with the most regular peaks/with the

smallest standard deviation in the peak distance is chosen for

the final motion surrogate.

D. Patient Data

In order to evaluate the proposed algorithm, it was tested

on 7 patient scans of the thorax region. The patients were

scanned using a Varian True Beam scanner at 11 fps with 660

projections/60 s acquisition time. The patients had between 11-

26 rpm and 65-86 bpm. As a ground truth for the respiratory

phase, the signal from the Varian real-time position manage-

ment (RPM) system was available for 2 patients. For the other

patients, the points of maximum inhale were determined man-

ually from the projections. For respiratory gating 10×10×10

grid points are distributed regularly over the volume. The

ROI size is set to [300 px, 300 px]=[116.4 mm, 116.4 mm].

Since no ECG was available for all patients, the number

of heart beats was determined by carefully inspecting the

(a) (b)

(c) (d)

Fig. 1: The images on the top show the source at angle α ((a)

and (c)) and at angle α + π ((b) and (d)). The yellow cross

indicates a grid point. The images on the bottom show the

corresponding projection with the position of the grid point in

the rawdata. For IGP, this point is at the ventricular wall at α

but in the middle of the heart at α+π. In our new approach the

grid point represents the center of a circle and tangential rays

are considered instead of the ray intersecting the grid point.

This way the ventricular wall is tracked at α (c) and α + π

(d).

projections/sinograms. For the cardiac surrogate 50×50×50

grid points are distributed in the volume. The ROI size is set

to [200 px, 100 px]=[77.6 mm, 38.8 mm].

The number of grid points and ROI sizes are empiric values.

The result, however, did not depend much on these parameters.

III. RESULTS

A. Respiratory Gating

Since the proposed method is only suited to obtain the

respiratory phase but not the amplitude, the positions of the

detected peaks have to be compared. A constant offset between

the intrinsically determined peaks and the ground truth is not

important in this case, since this effect can be removed by

just relabeling the phases. Instead, the standard deviation of the

difference between the peak positions of intrinsic surrogate and

the ground truth has to be considered. Let pintr(n) and pGT(n)
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Fig. 2: A scalar signal s(n) is calculated for a grid point

(first row). After a bandpass-filter (second row) the peaks

are determined automatically and a saw-tooth phase signal is

calculated (third row).

be the position of the n-th peak of the intrinsically determined

signal and the ground truth, respectively. The measure σintr for

the accuracy of the result is than determined by

σintr =

√√√√ 1

Nmax − 1

Nmax∑
n=1

(∆p(n)−∆p)2, (3)

with

∆p(n) = pintr(n)− pGT(n) (4)

being the difference of the position of the maxima of the

intrinsic surrogate and the ground truth, ∆p being the mean

of ∆p(n) and Nmax being the number of maxima of the

respiratory signal. This evaluation only works if the intrinsic

gating determines the correct number of maxima.

The results are shown in table I. Since the improvement from

IGC compared to IGP only concerns cardiac gating, respiratory

gating was done just as a proof of concept. The focus of this

work is on cardiac gating, which is why the respiratory gating

was not compared to any other method.

IGC was able to determine the correct number of respirations

per minute (rpm) for all patients. The highest value for σintr

is 405 ms, which corresponds to the time between 4.455

projections.

B. Cardiac Gating

The results for the intrinsic cardiac gating are shown in

table II. The beats per minute (bpm) detected by IGP/IGC

is indicated by NP/NC respectively while the ground truth is

indicated by NGT. The differences to the ground truth are given

by ∆NP = NP − NGT and ∆NC = NC − NGT. The proposed

TABLE I: Results respiratory gating

Patient NGT NIG σintr in ms

1 20 20 157
2 20 20 405
3 11 11 231
4 23 23 321
5 26 26 123
6 26 26 255
7 23 23 318

method worked well for all cases, while the IGP worked well

for 3 patients (∆NP ≤ 1), showed minor deviations for 2

patients (∆NP = 3) and was completely wrong for 2 patients

(∆NP ≥ 20).

TABLE II: Results cardiac gating

Patient NGT NIGP NIGC ∆NP ∆NC

1 80 81 80 1 0
2 65 85 65 20 0
3 70 70 70 0 0
4 78 81 78 3 0
5 78 101 78 23 0
6 86 89 85 3 -1
7 74 74 74 0 0

IV. CONCLUSION AND DISCUSSION

We proposed a method, IGC, that is able to obtain a

surrogate respiratory or cardiac motion signal in CBCT scans

of the thorax region. It is able to do so in a fully automatic

way and works rawdata–based. It is based on IGP but is

able to deliver more reliable results for cardiac gating for

patients with reduced visibility of the heart in the rawdata.

IGC and IGP were compared on 7 patients. For cardiac gating,

IGC outperformed IGP and was able to retrieve the correct

bpm for every patient with a maximum error of 1 heart beat.

IGP worked well for 3 patients, showed mediocre results for

2 patients and failed completely for 2 patients. Respiratory

gating is identical between IGC and IGP and was done as a

proof of concept. The correct number of rpm was determined

for every patient and the error in the position of the maximum,

i.e. maximum inhale, was below or equal to 405 ms, which

corresponds to 4.455 projections.
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Volumetric Blood Flow Estimation for 4D Digital
Subtraction Angiography
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Abstract—4D Digital Subtraction Angiography (4D DSA)
provides a powerful new diagnosis tool in neuroangiography.
Complex vascular structures can be visualized at different
time instances from arbitrary angles. However, the resulting
reconstructions might be compromised by artifacts and time-
resolution is only approximate due to insufficient projection
data. Computational fluid dynamics (CFD) is a promising option
to resolve arising ambiguities by the enforcement of physical
constraints. Yet, a proper patient-specific initialization of the
simulation remains a complex open research topic. In this paper,
we investigate the capabilities of volumetric optical flow to
estimate flow patterns in 4D DSA. The proposed Farnebäck
algorithmic is evaluated on a 4D reconstruction of a numerical
vessel phantom in order to assess its usefulness for future
incorporation of prior flow information for 4D reconstruction.

Index Terms—angiography, 4D DSA, iterative reconstruction,
flow estimation, volumetric optical flow

I. INTRODUCTION

Cerebrovascular diseases like aneurysms and stenosises are
among the major reasons for death in western industrialized
countries. For their diagnosis and treatment, C-arm-based
digital subtraction angiography (DSA) systems are used as a
gold standard for the visualization of vascular structures, as
they provide not only highly time-resolved fluoroscopy from
flexible angles (2D DSA), but also static 3D reconstructions
with high spatial resolution, generated from gantry rotations
(3D DSA).

Recent efforts [1], [2] to combine both temporal and spa-
tial information by a fusion of single 2D DSA projections
with a static volume (4D DSA) have been proven to be of
additional diagnostic use by visualizing the contrast agent
flow at arbitrary time instances of the acquisition protocol
and from arbitrary view angles [2]–[5]. This is especially
beneficial for the assessment of complex vascular structures
like arteriovenous malformations: an appropriate choice of the
visualized time instance can avoid vascular occlusions and
allow a clear view onto the respective regions interest [3].

However, 4D DSA was also found to be prone to artifacts
in such applications. Foreshortened vessels, orthogonal to the
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Nürnberg, Germany

2Department of Neuroradiology, University Hospital, Friedrich-Alexander-
Universität Erlangen-Nürnberg, Germany
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detector plane, and vascular overlaps may cause unrealistic dis-
tributions of contrast agent in the reconstructed volumes. The
reason for this are ambiguities inherent to the reconstruction
of a volume from a single view. Fig. 1 illustrates an example.

Fig. 1: Example of three frames of a 4D DSA reconstruction
showing unrealistic contrast agent inflow. Arrows indicate
artifacts caused by occluding bone structures.

Various approaches proposed to use information from neigh-
boring views instead of solely one per time-instance. Clinical
prototypes use angular searches like the ones presented in [2],
[6] to find projections that are less affected by overlaps.
[7] suggests a SART-like approach that iteratively refines
neighboring volumes after correlating them by spatial and
temporal smoothing, [8] a tomosynthesis-based approach that
disregards rays that intersect multiple vessels.

The question of how the arising ambiguities should be a ad-
dressed remains an ongoing topic in research. Another solution
to this open question could be the enforcement of physical
constraints. The conservation of mass and momentum, for
instance, could prevent aforementioned inconsistencies, by
enforcing a steady and smooth advance of the injection bolus.
Unavoidable ambiguities could be resolved by a reproduction
of a natural flow pattern between the volumes of successive
time instances.

Ideally, such an analysis could be provided by a com-
putational fluid dynamics (CFD) simulation. Nevertheless,
this requires the estimation of proper boundary and initial
conditions for the simulation. Important parameters for CFD
simulations like inflow velocity, heart rate and phase, directly
can be estimated from a 4D DSA reconstruction [9]. This
admits the assumption, that also the extraction of coarse flow
pattern in some parts of 4D DSA could be possible by simple
approaches. If we can embed CFD into an iterative algorithm,
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also an imperfect simulation could help to refine the existing
4D reconstruction.

One efficient method to extract flow information without ex-
pensive CFD simulation is the optical flow. In this preliminary
work, we are interested in its capabilities to extract flow pat-
terns. Therefore, we investigate its use on complete volumetric
information as well as on intermediate reconstructions.

II. METHODS

A. DSA Acquisition Protocol

In this paper, we assume a reconstruction from a 4D
acquisition protocol with a duration of 12 s for the mask and
contrast-enhanced fill scan and an angular range of 260◦.
304 image pairs of projections are captured by the two runs,
properly registered and log-subtracted. A static volume can
be obtained by a standard filtered backprojection algorithm
and successive vessel segmentation. We assume that both the
projections and the static volume are already available at the
beginning of our 4D reconstruction pipeline.

B. Iterative 4D Reconstruction

Our 4D reconstruction algorithm follows the proposal of
[7]. The approach uses an iteration technique based on the
well-known simultaneous algebraic reconstruction technique
(SART) [10] to refine an already existing 4D volume series.
For this purpose, the time-resolved volumes are forward
projected onto the acquired project data at the corresponding
time instances at the beginning of one iteration. This allows
the generation of an error image. A modified backprojection
step distributes the obtained correction values equally over
the complete path length within vessels. Temporal and spatial
Gaussian filtering is used as a regularization step after each
iteration, in order to favor smooth solutions. The process can
be repeated until convergence is observed.

Iterative reconstruction is well-suited for our proposition
to integrate a CFD-based regularizer into the reconstruction
process as it allows the flexible refinement of the solution by
different regularizers. For the evaluations in this paper, we
forgo the use of initial estimate and start with an all-zero
volume.

C. Optical Flow Estimation

We suggest an optical flow estimation to determine initial
velocity fields for CFD simulations based on the volumetric
result of 4D reconstruction. In contrast to [11] who used a
finite element approach to quantify flow rate in vessels, we
do not have the goal to measure exact physical quantities.
The focus is to determine coarse directions of the flows over
the whole time series based on two successive volume frames
without the need of any manual or automatic preprocessing
like the generation of a voxelized or meshed vessel segmen-
tation. Furthermore, the algorithm should generate a smooth
dense optical flow field that resembles well the characteristics
of the data as a fluid compound. Sharp edges or flow vectors
normal to vessel boundaries could cause instabilities on the
initialization or the regularization of a CFD simulation.

Ready-to-use approaches for volumetric flow or deformation
estimation did not meet the aforementioned criteria. The
Farnebäck optical flow algorithm [12], [13] showed promising
flow patterns upon visual inspection of two-dimensional slices
of the used data. Since an extension to the third dimension
is possible and was already successful used in the field
of 3D echocardiography for rigid registration [14], but not
publicly available, we opted for an own implementation of
this algorithm.

In contrast to many other optical flow estimators, that are
based on the tracking of edges, the chosen algorithm is based
on a polynomial expansion. This might be an advantage for
the smooth characteristics of the captured contrast agent.
Furthermore, the method is numerically very stable as the
estimation is performed redundantly in a local neighborhood.

III. EVALUATION

A ground truth for clinical 4D DSA data does inherently not
exist. In the following, we wish to validate our optical flow
algorithm on a numerical phantom that resembles a simple
vascular geometry. Fig. 2 depicts three regions of interest of
this phantom that will be distinguished in analysis.

Fig. 2: Numerical phantom with three regions of interest used
for evaluation

Similar to [7], a fluid simulation with a simulated heart
rate of 60 beats per minute provides known velocity fields,
needed for a subsequent particle-based advection and diffusion
of virtual contrast agent. At the beginning of a simulated DSA
acquisition, the virtual contrast agent is injected at constant
rate into region I. Our simulation comprises only the inflow
phase of a DSA acquisition until the bolus front starts to leave
region III. For that time interval, we use projective geometry
to determine ideal, noise-free projections, corresponding to the
trajectory of a real 4D DSA protocol.

It should be noted that the availability of this ground truth
data enables two possible evaluation scenarios for optical
flow calculation. First, the displacements can be determined
directly on successive volume frames of the simulated contrast
agent transport. This is suited to show limits and general
properties of the optical flow algorithm as calculation from
a reconstruction can only imply an information loss. Second,
the geometry of the phantom and the simulated projections can
serve as an input for the presented iterative 4D reconstruction
to generate the volume for flow estimation as the actual case of
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(a) Ground truth velocity field (b) Optical flow calculated on simulation (c) Optical flow calculated on reconstruction

Fig. 3: Exemplary visualizations of the calculated optical flow for one time instance

application for our algorithm. Both variants will be evaluated
by measuring the mean angular error in comparison with
the velocity field provided by the CFD simulation. Since the
optical flow can only be obtained in some locations. We define
a threshold for the evaluations and consider only velocity
estimates with higher magnitude.

IV. RESULTS

Figs. 4a and 4 show the mean angular error in dependence
of the time index and a chosen threshold (0.1 or 0.5) for region
I and II.

Two tendencies can be observed in both figures: First, the
mean angular error is lower if only vectors with a magnitude
greater 0.5 are considered. Second, the performance of the
optical flow calculated on the 4D reconstruction is only
slightly lower compared to the situation that the simulation
is directly used as an input (e.g. 9.5◦ vs 8.0◦ for magnitude
> 0.5 in region I or 32.6◦ vs 27.9◦ in region II).

The local performance is as follows: we obtain low error
rates in the wide vessel of region I until time index 75.
This coincides with time interval that the first bolus front
passes through the wide vessel segment in region I. After that
intensities merely stay the same and no optical flow can be
estimated. For region II, confident flow directions can only be
determined up on the entrance of the bolus in the modeled
aneurysm. Then, turbulent flow prevents precise estimations.
For region III with a bifurcation into two smaller vessels,
no reliable figure of the mean angular error could be given
as the numbers were strongly fluctuating. An explanation
can be given by Fig. 5c: many flow vectors are estimated
with opposite direction. Visual inspection of the affected area
suggests that the flow in these smaller vessels was to fast to
be captured by a frame-to-frame optical flow estimation.

For all time-instances, the obtained flow field was very
smooth without any coarse outliers (see Fig. ?? for an ex-
ample. This would be a necessary condition for applying this

20 40 60 80 100
0

20

40

60

80

Time Index

A
ng

ul
ar

E
rr

or
of

O
pt

ic
al

Fl
ow

in
D

eg
re

es On simulation, magnitude > 0.1
On simulation, magnitude > 0.5
On reconstruction, magnitude > 0.1
On reconstruction, magnitude > 0.5

(4a) Average angular error in degrees over time in region I

20 40 60 80 100
0

20

40

60

80

Time Index

A
ng

ul
ar

E
rr

or
of

O
pt

ic
al

Fl
ow

in
D

eg
re

es On simulation, magnitude > 0.1
On simulation, magnitude > 0.5
On reconstruction, magnitude > 0.1
On reconstruction, magnitude > 0.5

(4b) Average angular error in degrees over time in region II

The fifth international conference on image formation in X-ray computed tomography 183



0 50 100 150
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

(a) Region I
0 50 100 150

0

0.5

1

1.5

2

·10−2

mean = 40.0

(b) Region II

0 50 100 150
0

1

2

3

·10−2

mean = 81.0

(c) Region III

Fig. 5: Normalized histograms of the distribution of the angular error of a typical representative time instance per region of
interest (optical flow estimated on simulation, threshold 0.1)

method on real data affected by noise. Also in the rather
problematic region II where only imprecise estimation could
be performed, the averaging approach of the Farnebäck optical
flow algorithm created a solution that was consistent without
edges or abrupt changes over time and neighboring regions.
The precision of the estimate could be further improved by
a subsequent CFD simulation that could profit from regions
where the optical flow performs well. It remains unclear in
what degree reconstruction artifacts proceeding from vascular
overlaps affect the optical flow estimation. In the presented
experiment, artifacts from a short overlap phase could be
completely avoided by the iterative reconstruction algorithm.

V. CONCLUSION

In this paper, we proposed the use of Farnebäck optical flow
for the purpose of determining proper initial or regularization
conditions for CFD simulation. The algorithm was evaluated
on a numerical vessel phantom and reproduced well the orien-
tation of the underlying ground truth vectors. Similar results
could be achieved if the input data for flow estimation was
generated by an iterative 4D DSA reconstruction. This feeds
our prospects to determine coarse flow patterns also on clinical
data that is affected by noise and possible reconstruction
artifacts. It remains future work to investigate whether this
approach is suited for integration of CFD into a 4D DSA
framework.

The source code of the implemented optical flow algorithm
has been made available as a ready-to-use Python pack-
age on Github (https://github.com/theHamsta/
farneback3d, Nvidia CUDA required).
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C. Strother, and A. Doerfler, “4D DSA for dynamic visualization of
cerebral vasculature: A single-center experience in 26 cases.” AJNR.
American journal of neuroradiology, vol. 38 6, pp. 1169–1176, 2017.

[5] C. Sandoval-Garcia, P. Yang, T. Schubert, S. Schafer, S. Hetzel,
A. Ahmed, and C. Strother, “Comparison of the diagnostic utility of
4D-DSA with conventional 2D- and 3D-DSA in the diagnosis of
cerebrovascular abnormalities,” vol. 38, 03 2017.

[6] B. Davis, E. Oberstar, K. Royalty, S. Schafer, C. Strother, and C. Mis-
tretta, “Volumetric limiting spatial resolution analysis of four dimen-
sional digital subtraction angiography (4D-DSA),” 03 2015.

[7] J. Endres, C. Rohkohl, S. Schafer, K. Royalty, A. Maier, M. Kowarschik,
and J. Hornegger, “4D DSA Iterative Reconstruction,” in Proceedings
of the Fully3D, 2015, pp. 276–279.

[8] M. Buehler, J. M. Slagowski, C. A. Mistretta, C. M. Strother,
and M. A. Speidel, “4D DSA reconstruction using tomosynthesis
projections,” pp. 10 132 – 10 132 – 12, 2017. [Online]. Available:
http://dx.doi.org/10.1117/12.2255197

[9] M. Boegel, S. Gehrisch, T. Redel, C. Rohkohl, P. Hoelter, A. Doer-
fler, A. Maier, and M. Kowarschik, “Patient-individualized boundary
conditions for cfd simulations using time-resolved 3d angiography,”
International Journal of Computer Assisted Radiology and Surgery,
vol. 11, no. 6, pp. 1061–1069, Jun 2016.

[10] A. H. Andersen and A. C. Kak, “Simultaneous algebraic reconstruction
technique (sart): A superior implementation of the art algorithm,”
Ultrasonic Imaging, vol. 6, no. 1, pp. 81–94, 1984, pMID: 6548059.
[Online]. Available: https://doi.org/10.1177/016173468400600107

[11] P. Maday, M. Kowarschik, S. Demirci, and N. Navab, “Towards blood
flow quantification using dense flow volumes,” in MICCAI CVII-STENT
proceedings, 2014.
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Abstract— Myocardial Computed Tomography 

Perfusion (CTP) imaging provides hemodynamic 

information related to underlying Coronary Artery 

Disease and may facilitate its diagnosis when combined 

with anatomical information from Cardiac CT 

Angiography. Since the quantitative accuracy of 

myocardial CTP is often affected by motion artifacts 

introduced during data acquisition, we proposed a 

motion correction algorithm for the entire heart [1], 

which was augmented with an additional low-frequency 

correction algorithm [2] to remove residual artifacts. We 

collaborated with Weill Cornell Medical College to 

identify a subset of DECIDE-Gold exams [3], where 

cardiac motion limits the diagnostic capability. We 

applied the proposed algorithms to the identified subset 

of patient scans and demonstrated the image quality 

improvement qualitatively. During initial evaluation, we 

identified cases with suboptimal contrast-to-noise ratio 

limited our ability to correct for motion artifacts and 

proposed enhancements to the current motion correction 

algorithms.  Furthermore, we proposed an entropy-

based metric to quantify motion artifact reduction in 

clinical images provided using Dual-Energy CT 

Perfusion imaging.  

 

Keyword: Computed Tomography, Motion Artifacts, Dual-

Energy CT, CT Perfusion 

I. INTRODUCTION 

ECENT multi-center studies have demonstrated the 

efficacy of combining anatomical and 

physiological information to diagnose Coronary Artery 

Disease using invasive techniques such as Invasive 

Coronary Angiography (ICA), which provides 

anatomical visualization and quantification of a 

suspected coronary stenosis, and Fractional Flow 

Reserve (FFR), which computes the ratio of the arterial 

pressure distal and proximal to a lesion to assess its 

physiological significance[4]. Since ICA and FFR are 

invasive techniques, there is increased risk to the 

patient, with FFR not used routinely in clinical practice. 

A similar study using non-invasive techniques such as 

coronary Computed Tomography Angiography 

(CCTA) and Computed Tomography Perfusion (CTP) 

   Zhye Yin, Jed Pack and Peter M Edic are with GE Global 

Research. Kimberly Elmore and James K. Min are with Weill 

Cornell Medical College.  

has been recently proposed [3]. 1 

   While early studies of conventional single-energy 

CTP have been promising, novel Dual-Energy CT 

Perfusion (DECTP) imaging provides additional 

information. DECTP enables estimation of the iodine 

concentration within the myocardium, providing a 

surrogate for blood volume. As with CCTA, cardiac 

motion during the acquisition of projection data for 

cardiac imaging impacts the performance of DECTP. 

Existing cardiac motion correction software such as 

SnapShot FreezeTM (GE Healthcare, Waukesha, WI - 

SSF) has focused on correcting for motion of coronary 

arteries with demonstrated improvement in image 

quality and interpretability [5,6]. We adapted the SSF 

algorithm to correct for motion in the whole heart, 

including myocardium and valves [1] and added low-

frequency artifact correction to resolve subtle residual 

shading, which may confound the identification of a 

perfusion deficit [2].  

      With help of Weill Cornell Medical College 

(WCMC), we identified a subset of exams from the 

DECIDE-Gold (Dual-Energy CT for Ischemia 

Determination Compared to "Gold Standard" Non-

Invasive and Invasive Techniques) clinical study [3] 

where cardiac motion during data acquisition may 

impact diagnostic capability and applied the proposed 

algorithm. We demonstrated the qualitative 

improvement in image quality in those identified cases. 

Among those cases, we found that insufficient contrast 

due to inadequate acquisition can affect the 

performance of the proposed algorithm. Additional 

improvements were proposed and implemented. 

Finally, we explored entropy-based quantitative metric 

to evaluate image quality improvement in motion 

corrected images.  

II. METHOD 

A. Data acquisition and process 

   As part of the DECIDE-Gold clinical study [7], 

patients suspected of coronary artery disease were 

Performance Evaluation of Motion Artifact Correction for 

Myocardial Dual-Energy CT Perfusion Imaging    
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R 

The fifth international conference on image formation in X-ray computed tomography 185

https://clinicaltrials.gov/ct2/show/NCT02178904?term=DECIDE-Gold&rank=1
https://clinicaltrials.gov/ct2/show/NCT02178904?term=DECIDE-Gold&rank=1
https://clinicaltrials.gov/ct2/show/NCT02178904?term=DECIDE-Gold&rank=1


scanned using a dual-energy CT scanner (Discovery 

CT750 HD, GE Healthcare, Waukesha, WI). CT 

projection data were acquired when the patient was 

nominally at rest and at pharmacologically-induced 

stress, i.e., after administration of a vasodilator such as 

adenosine, if so indicated.  Dual-energy CT (DECT) 

data processing enabled quantification of the iodine 

density distribution in the patient’s myocardium; we 

aim to use the iodine density map as a surrogate for 

blood volume in the myocardium utilizing a single 

acquisition – denoted as static myocardial perfusion 

imaging.  Furthermore, material decomposition using 

DECT provided multi-material beam hardening 

correction, mitigating shading artifacts in the 

myocardium between highly-attenuating structures, 

such as between the contrast-enhanced descending 

aorta and left ventricle.  The energy-independent basis 

material density distributions were used to compute 

monochromatic volumetric CT images, typically 

represented at 70 keV, although 60-keV images were 

used to improve contrast-to-noise ratio between the 

contrast-enhanced blood pool within the ventricle and 

adjoining myocardium, when necessary (details are 

provided in section B). Algorithms were developed to 

allow feathering of data at slab boundaries within the 

heart, since the CT scanner nominally provided 40 mm 

of axial coverage per gantry revolution.  To mitigate 

residual shading artifacts due to motion of the heart 

during data acquisition, protocols similar to those used 

for coronary artery motion correction (SnapShot 

Freeze,  GE Healthcare, Waukesha, WI) were 

employed; whole-heart motion estimation techniques 

identified locations of significant motion (motion 

control points) during data acquisition, and determined 

corresponding motion vectors.  We then corrected for 

motion in regions of interest (ROIs) surrounding the 

motion control points within the myocardium using the 

monochromatic images and the motion vectors [8]. To 

quantify the benefit of the motion estimation/correction 

techniques, we estimated the image entropy within 

ROIs about the motion control points, and compared 

values computed from original images to those in 

motion-corrected images (detailed provide in section 

C). 

B. Improvement in motion correction 

   The motion correction algorithm was applied to the 

cases that we received. Motion artifacts were reduced 

significantly for a subset of the cases. However, we also 

noticed some challenging cases, where the motion 

artifacts remain uncorrected and improvements were 

subtle; we further investigated these cases. The contrast 

on these challenging cases appeared to be suboptimal, 

especially the contrast-to-noise ratio (CNR) between 

cardiac chambers and neighboring myocardium. Those 

cases were often acquired with inadequate acquisition 

protocols and/or imperfect contrast agent delivery. For 

dual-energy CT imaging, we can generate images at 

any given monochromatic energy using the basis 

material density estimates. Typically, lower-energy 

monochromatic images inherently show higher 

contrast; therefore, we decided to use 60-keV images 

for the estimation of the motion vectors, instead of the 

typical direct estimation of motion vectors from 70-

keV images. As shown in Figure 1, a 60-keV images 

have more noise, but has significantly higher contrast 

between cardiac chambers and proximal myocardium 

compared to 70-keV images. The motion vectors 

estimated from the 60-keV images were then used to 

correct the motion artifacts for the basis material 

density images as well as the 70-keV images.  

C. Quantification of motion artifact reduction  

   We have previously reported quantitative results of 

our motion-correction techniques applied to both 

simulation and phantom data [8]. However, since we 

now want to assess the benefit of the motion correction 

techniques – both qualitatively and quantitatively – 

applied to clinical images acquired during the 

DECIDE-Gold clinical study, ground-truth motion-free 

images are not available as in the previous studies.  As 

such, we postulated techniques to estimate the 

reduction of motion artifact. 

   Due to motion of the heart during data acquisition, 

shading artifacts in reconstructed CT images result, as 

well as blurring or doubling of chamber wall 

 
Figure 1 Monochromatic 60-keV image (left) and 

monochromatic 70-keV image (right). Contrast between 

ventricular chambers and surrounding myocardium is 

enhanced in lower-energy monochromatic images.  

Images are displayed at [window width, window level] = 

[800 1200].   
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boundaries.  When considering the impact on image 

quality, these effects will cause a broadening of the 

histogram of CT numbers (as represented by 

Hounsfield Units – HU) within ROIs about the motion 

control points.  Subsequently, after successful 

application of motion estimation/correction, image 

quality improves, resulting in a reduction of shading 

artifacts and better delineation of chamber boundaries.  

Both effects should narrow the histogram of 

reconstructed CT numbers.  When considering these 

observations – broadening and narrowing of CT 

number histograms for motion-corrupted and motion-

corrected images, respectively – entropy is a reasonable 

choice for comparatively characterizing the CT number 

distribution in ROIs about the motion control points.  

As such, we computed the histogram of CT numbers 

within the ROIs before and after motion correction, and 

used a standard entropy functional, which computes the 

sum of the probability-weighted logarithm of the 

probability density distribution. One confounding 

factor will be image noise that contributes a 

“background” entropy that reduces the entropy contrast 

between motion-corrupted and motion-corrected 

images. 

III. RESULTS 

   Using the subset of exams from the DECIDE-Gold 

study, we demonstrated reduction in motion artifacts, 

as shown in Figure 2. Three axial locations are used to 

assess improvement: (1) basal: an axial slice through 

the myocardium at the location of the mitral valve, (2) 

mid: an axial slice through the mid left ventricle, and 

(3) apical: a slice through the apex of the heart. 

Untreated images are shown on the left in Figure 2 and 

motion-corrected images are shown on the right for the 

representative patient exams. Arrows indicate regions 

where motion artifact is reduced, providing clearer 

delineation of the myocardial/chamber boundary. 

   We also identified clinical exams with suboptimal 

CNR, resulting in marginal improvement in image 

quality using the proposed algorithm. For those cases, 

we used monochromatic 60-keV images to extract 

motion vectors instead of monochromatic 70-keV 

Figure 3 Motion-corrected monochromatic 70-keV 

images (A) using motion vectors estimated from 

monochromatic 70-keV images and (B) using motion 

vectors estimated from 60-keV images. Green arrows 

indicate locations of motion artifact reduction. Images 

are displayed at [window width, window level] = [800 

1200].   

Figure 2 Axial CT images of basal (through the location 

of the mitral valve), mid (through the mid left ventricular 

myocardium) and apical (through the apex of the heart) 

regions of heart from a subset of exams from the 

DECIDE-Gold study. Left images and right images were 

generated before and after applying motion-correction 

(MC) algorithms, respectively. Arrows indicate regions 

in the myocardium impacted by motion artifacts and 

improved by correction.  Images are displayed at 

[window width, window level] = [300 1000]. 

Exam 1(Apical LV)

Before MC After MC

Exam 2 (Mid LV)

Before MC After MC
Exam 3 (Mid LV)

Before MC After MC

Exam 4 (Mid LV)

Before MC After MC

Exam 5 (Basal LV)

Before MC After MC

Exam 6 (Basal LV)

Before MC After MC
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images, which are typically used.  Motion correction in 

the myocardium region improved with motion vectors 

generated from the 60-keV images, as shown in Figure 

3. The boundaries of the myocardium are clearer and 

doubling of chamber walls is reduced, shown at 

locations indicated by green arrows in Figure 3. 

    To quantitatively assess image quality improvement 

resulting from motion correction, we explored the 

entropy-based image quality metric. Figure 4 shows 

simple noise-free images mimicking the CT number 

contrast (400 HU) between a heart chamber and the 

surrounding myocardium: (left) original, resolution-

blurred chamber; (center) motion-blurred chamber – 

sum of original image and a diagonally-shifted version; 

and (right) differential image. The location of a motion 

control point (location of maximum differential 

magnitude) for this image would be at the position of 

the red dot in Figure 4. The entropy computed from the 

normalized histogram of CT numbers, i.e., the 

probability density function of CT numbers, within an 

ROI centered on the motion control point for the 

original and motion-blurred images was 6.48 and 7.28, 

respectively.  When uncorrelated white noise, with 

statistics comparable to noise observed in cardiac CT 

images, is added to the images, the computed entropy 

values are 7.49 and 7.60, respectively.  As such, we are 

currently investigating bandpass filtering techniques to 

reduce the influence of noise in the entropy estimates 

while still capturing object blur, with the goal of 

increasing the entropy contrast.  

IV. CONCLUSIONS 

   We identified a subset of exams from the DECIDE-

Gold study where motion artifact and suboptimal CNR 

reduced image quality, impacting diagnostic capability, 

and applied the proposed motion-correction techniques 

to these exams. We demonstrated that the enhanced 

motion-correction methods reduce artifacts that may 

confound the clinical usefulness of CT perfusion 

information for assessing territorial perfusion deficits 

resulting from coronary artery disease. We postulated 

an entropy-based metric to quantitatively assess the 

improvement in image quality resulting from 

application of the proposed approaches, with an 

ultimate goal of assessing the impact of this 

improvement on diagnostic performance.  
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Papoulis-Gerchberg Algorithms for Limited Angle
Tomography Using Data Consistency Conditions

Yixing Huang, Oliver Taubmann, Xiaolin Huang, Guenter Lauritsch and Andreas Maier

Abstract—The Papoulis-Gerchberg (P-G) algorithm is widely
used for extrapolation of band-limited signals. It is applicable to
limited angle tomography as well since typical imaged objects in
computed tomography have a limited spatial extent, which means
that the Fourier transforms of the objects can be considered
band-limited signals. In computed tomography, some other band-
limitation properties have been discovered as well, which are
referred to as data consistency conditions. For example, the
Fourier transform of a parallel-beam sinogram has an empty
double-wedge region. The Chebyshev-Fourier transform of a
parallel-beam sinogram only has nonzero values inside a wedge
region and these values form a checkerboard pattern, which is
Helgason-Ludwig consistency condition. In this paper, we propose
two P-G algorithms to restore missing data in limited angle to-
mography using the above two consistency conditions. Numerical
experiments on the Shepp-Logan phantom demonstrate that they
can reduce streaks better than the conventional P-G algorithm.

I. INTRODUCTION

In computed tomography (CT), image reconstruction from
data acquired in an insufficient angular range is called limited
angle tomography [1]–[3]. It arises when the gantry rotation
of a CT system is restricted by other system parts or external
obstacles. Because of missing data, artifacts, typically in the
form of streaks, will occur in the reconstructed images.

Iterative algorithms with total variation are popular in lim-
ited angle tomography [4]–[7]. They incorporate sparsity at
the gradient domain of medical images into the reconstruction
and hence reduce streak artifacts. However, they are com-
putationally expensive. Recently, deep learning has obtained
impressive achivement for streak reduction in limited angle
tomography [8]–[10], but it depends heavily on the availability
and quality of training data.

Extrapolation/interpolation of the missing data is a common
way to deal with data insufficiency. The Papoulis-Gerchberg
(P-G) algorithm [11], [12] is well known for extrapolating
band-limited signals. In limited angle tomography, according
to the central slice theorem, some frequency components of
an imaged object are missing. Also, the imaged object has a
limited spatial extent, which means that the Fourier transform

Y. Huang is with Pattern Recognition Lab, Friedrich-Alexander-University
Erlangen-Nuremberg, Erlangen, Germany (e-mail: yixing.yh.huang@fau.de).

O. Taubmann, and A. Maier are with Pattern Recognition Lab, Friedrich-
Alexander-University Erlangen-Nuremberg, Erlangen, Germany, and also with
Erlangen Graduate School in Advanced Optical Technologies (SAOT), Erlan-
gen, Germany.

X. Huang was with Pattern Recognition Lab, Friedrich-Alexander-
University Erlangen-Nuremberg, Erlangen, Germany and now is with Institute
of Image Processing and Pattern Recognition, Shanghai Jiao Tong University,
Shanghai, China.

G. Lauritsch and O. Taubmann are with Siemens Healthcare GmbH,
Forchheim, Germany.

of the object can be considered a band-limited signal. There-
fore, to extrapolate the missing frequency components from
the measured ones, the P-G algorithm can be applied [13]–
[15]. However, it requires strong a priori knowledge in that
the object support should be known.

In computed tomography, many data consistency conditions
have been discovered. For example, the Fourier transform of
a parallel-beam sinogram has an empty double-wedge region
[16]. The Helgason-Ludwig consistency condition [17], [18]
states that Chebyshev-Fourier transform of a parallel-beam
sinogram only has nonzero values inside a wedge region
and these values form a checkerboard pattern. These con-
sistency conditions are also band-limitation properties of CT
data. Many experiments have demonstrated that consistency
conditions are beneficial in restoring missing data [19]–[22].
Therefore, in this paper, we propose two P-G algorithms to
restore missing data in limited angle tomography using the
above two consistency conditions.

II. METHODS

A. General P-G Algorithm

Given a measured segment g0(t) from a band-limited signal
g(t),

g0(t) =

{
g(t) |t| ≤ t0,
0 |t| > t0,

a characteristic function of the measurement interval [−t0, t0],

Mg(t) =

{
1 |t| ≤ t0,
0 |t| > t0,

and a perfect low-pass filter L(w),

L(w) =

{
1 |w| < wc,
0 |w| > wc,

where wc is the band limit of g(t), g(t) can be estimated by
the following algorithm [11], [12],

gl(t) = g0(t) + (1−Mg(t)) · F−11

(
L(w) · F1

(
gl−1(t)

))
,

where Fd and F−1d are the d-dimensional Fourier transform
and inverse Fourier transform operators, respectively, gl(t) is
an estimation of g(t) at the l-th iteration, and g0(t) = g0(t).

B. Conventional P-G Algorithm Using Object Support

We denote an imaged object by f(x). Typically the object
has a compact support in the spatial domain, denoted by S.
A characteristic function for the support S is defined as,

LS(x) =

{
1 x ∈ S,
0 otherwise.
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The Fourier transform of the object f(x) is denoted by
F (w, θ) in polar coordinates, F (w, θ) = F2f(x). According
to the symmetry property of the Fourier transform, we have
F2F (w, θ) = 2πf(x). Therefore, F (w, θ) is a band-limited
function as, after applying a Fourier transform to it, its
components are nonzero only in S.

In computed tomography, the parallel-beam sinogram of the
object f(x) is denoted by,

p(s, θ) =

∫
x·θ=s

f(x)dx,

where θ = (cos θ, sin θ), θ ∈ [0, 2π) is the direction orthog-
onal to the X-rays, and s ∈ (−∞,∞) is the detector index.
The central slice theorem expresses that,

F1p(s, θ) = F (w, θ).

When the sinogram is measured for the whole angular range
[0, π), the object f can be reconstructed using the standard fil-
tered back-projection (FBP) reconstruction algorithms. How-
ever, in limited angle tomography, the sinogram is measured
only in a limited angular range, denoted by [0, θmax) where
θmax is the maximum scanned angle, θmax < π. In this case,
a double wedge region is missing in F , i. e.,

F limited(w, θ)|θmax≤θ<π,−∞<w<∞ = 0,

where F limited is the measured frequency components of f
in limited angle tomography. A characteristic function for the
measured region is defined as,

MF (w, θ) =

{
1 θ ∈ [0, θmax),
0 otherwise.

Restoring the complete F (w, θ) from F limit(w, θ) can thus
be considered as an extrapolation problem of a band-limited
function. Therefore, the P-G algorithm can be applied,

F l(w, θ) = F limited(w, θ) + (1−MF (w, θ))·
F−12 (LS(x) · F2F

l−1(w, θ)),
(1)

where F l(w, θ) is an estimation of F (w, θ) at the l-th iteration
and F 0(w, θ) = F limited. Note that F2 and F−12 can change
position here due to the symmetry property. This conventional
P-G algorithm is denoted by P-GOS.

C. P-G Algorithm Using Fourier Property Of Sinograms

The 2-D Fourier transform of a complete parallel-beam
sinogram is as follows,

P (w, k) = F2p(s, θ) =
1

2π

∫ 2π

0

∫ ∞
−∞

p(s, θ)e−i(ws+kθ)dsdθ.

A consistency condition in the sinogram’s Fourier space is
represented as follows [16],

P (w, k) ≈ 0 when
∣∣∣∣ kw
∣∣∣∣ > rp,

where rp is distance of the farthest point on the object to the
isocenter. It means that a double-wedge region of P (w, k) is

zero. Hence, p(s, θ) is a band-limited function. A characteristic
function for the double-wedge region is defined as,

LP (w, k) =

{
0
∣∣ k
w

∣∣ > rp,
1 otherwise.

In limited angle tomography, we denote the measured sino-
gram by plimited(s, θ), θ ∈ [0, θmax). According to p(s, θ) =
p(−s, θ + π), the limited angle sinogram is extended to a
2π angular range, denoted by p′limited(s, θ). A characteristic
function for the available part of the sinogram is defined as,

Mp(s, θ) =

{
1 θ ∈ [0, θmax) ∪ θ ∈ [π, π + θmax),
0 otherwise.

To extrapolate/interpolate the missing sinogram, the P-G al-
gorithm can be applied,

pl(s, θ) = p′limited(s, θ) + (1−Mp(s, θ))·
F−12

(
LP (w, k) · F2p

l−1(s, θ)
)
,

(2)

where pl(s, θ) is an estimation of p(s, θ) at the l-th iteration
and p0(s, θ) = p′limited. The proposed P-G algorithm using
the double-wedge property of sinograms’ frequency domain
is denoted by P-GDW. It was proposed for defect detector
gap compensation of emission CT in [23] and sparse-view
CT reconstruction in [19].

D. P-G Algorithm Using HLCC

We define the n-th order moment curve of a parallel-beam
sinogram p(s, θ) as,

an(θ) =

∫ ∞
−∞

p(s, θ)Tn(s)ds,

where Tn(s) = sn and n is the order of the monomial. The
Fourier transform of the moment curve is,

bn(m) =
1

2π

∫ 2π

0

an(θ)e
−imθdθ.

HLCC [17], [18] tells that,

bn(m) = 0, |m| > n or m+ n is odd. (3)

Therefore, the moment curves are band-limited functions. A
characteristic function for HLCC is defined as,

LHLCC(n,m) =

{
1 if |m| ≤ n and m+ n is even,
0 otherwise.

When Tn(s) is replaced by orthogonal polynomials, e.g.,
Chebyshev polynomials or Gegenbauer polynomials, p(s, θ)
can be conveniently restored from an(θ) while LHLCC(n,m)
remains the same. In this paper, we use the Chebyshev
polynomial of the second kind,

Un(s) =
sin ((n+ 1) arccos(s))√

1− s2
.

Un(s) is a family of orthogonal polynomials at domain [-1,
1] with the scalar weight W (s) = (1− s2)1/2, i.e.,∫ 1

−1
W (s) · Un(s) · Un′(s)ds =

{
0, n 6= n′

π/2, n = n′.
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Note that here we normalize the detector index s to a range
of [-1, 1]. Thus, an approximate sinogram can be restored by
the inverse Chebyshev transform from the moment curves,

pnr
(s, θ) =

2

π

nr∑
n=0

an(θ) (W (s) · Un(s)) ,

where nr is the number of orders used.
In limited angle tomography, the moment curves an(θ) are

available only at the angular range of [0, θmax) and [π, π +
θmax). The available moment curve is denoted by an,limited(θ).
An characteristic function for the available parts is defined as,

Man(θ) =

{
1 θ ∈ [0, θmax) or θ ∈ [π, π + θmax),
0 otherwise.

To get pnr
(s, θ), we need to extrapolate/interpolate the missing

parts of an(θ), n = 0, 1, 2, . . . , nr. Hence, the P-G algorithm
can be applied,

aln(θ) = an,limited(θ) + (1−Man(θ)) ·
F−11

(
LHLCC(n,m) · F1a

l−1
n (θ)

)
,

(4)

where aln(θ) is an estimation of anθ at the l-th iteration. The
proposed P-G algorithm using HLCC is denoted by P-GHLCC.

Papoulis and Gerchberg have shown the convergence of
P-G algorithms in the noise-free case [11], [12]. When the
frequency band is known accurately, the missing signal can
be extrapolated exactly with infinite iterations. However, in
the presence of noise or discretization error, the missing signal
typically cannot be recovered exactly. In [21], we find that the
restoration of high order moment curves is severely ill-posed.
The observation that the Fourier coefficients of the moment
curves are sparse can be used to overcome the ill-posedness.
Therefore, we define a soft-thresholding operator Sτ ,

Sτ (v) =

 v − τ v > τ,
0 −τ ≤ v ≤ τ,
v + τ v < −τ,

where v is the value to be soft-thresholded and τ is a threshold.
Eq. (4) is then modified as follows,

aln(θ) = an,limited(θ) + (1−Man(θ))·
F−11

(
Sτ
(
LHLCC(n,m) · F1a

l−1
n (θ)

))
.

(5)

Here Sτ is applied to the imaginary and real Fourier coeffi-
cients element-wise. The proposed P-G algorithm using HLCC
and soft-thresholding is denoted by P-GHLCC,ST.

E. Simulation Experiments

To evaluate the performance of the proposed algorithms, ex-
periments on the standard high-contrast Shepp-Logan phantom
(Fig. 1) are conducted. The major and minor semi-axes of the
outer ellipse of the phantom are 94.2 mm and 70.6 mm, respec-
tively. The attenuation coefficients are converted to Hounsfield
scale between [-1000, 3000] HU. A limited angle sinogram is
computed analytically in a parallel-beam trajectory. The total
scanned angular range is 160◦ and the angular step is 0.5◦.
The number of the equal-space detector pixels is 1537 and
the detector element size is 0.2 mm. No noise is simulated but
discretization error exists. The images are reconstructed using

Fig. 1. The Shepp-Logan phantom, window: [-1000, 3400] HU.

FBP with the Ram-Lak filter. The size of the reconstructed
images is 512× 512 with an isotropic pixel size of 0.4 mm.

For P-GOS, we assume that the support of the ground
truth Shepp-Logan phantom is exactly known. For P-GDW,
we choose rp = 94mm, which is the top point of the
phantom and can be accurately obtained from the limited angle
reconstruction result using FBP. For P-GHLCC and P-GHLCC,ST,
the number of used orders nr is set to 2414. Empirically, the
threshold τ is set to τ = 0.5 · (1− n/2500) for n-th moment
curve. For all three algorithms, 1000 iterations are performed.

III. RESULTS AND DISCUSSION

The images reconstructed from different algorithms and
their absolute difference w. r. t. the image reconstructed from
the full data are displayed in Fig. 2. The image reconstructed
from the limited angle sinogram using FBP, denoted by
f limited, is shown in Fig. 2(a). It suffers from streak artifacts.
Especially, the outer boundary is severely distorted on the left
and right sides. The image reconstructed from P-GOS, denoted
by fOS, is shown in Fig. 2(b). The streaks outside the boundary
are totally removed, since strong prior knowledge of the
ground truth object support is applied. However, streaks inside
the support remain. The image reconstructed from P-GDW,
denoted by fDW, is shown in Fig. 2(c). Most streaks outside
the boundary are reduced, although the boundary is still a little
distorted. Its absolute difference image diffDW displayed in
Fig. 2(h) demonstrates that the streaks inside the boundary are
also reduced. Figs. 2(d) and (e) are images reconstructed from
P-GHLCC and P-GHLCC,ST, denoted by fHLCC and fHLCC,ST
respectively. Most streaks remain in fHLCC (Fig. 2(d)) since
only low order moment curves are restored. On the contrary,
most streaks at the boundary in fHLCC,ST (Fig. 2(e)) are
reduced and thus the boundary is reconstructed very well.
Streaks inside the boundary of fHLCC,ST are also reduced,
although still some small streaks remain. The root-mean-
square errors (RMSEs) of images reconstructed from different
algorithm indicate that P-GHLCC,ST has the best performance
with the lowest RMSE of 75 HU.

IV. CONCLUSION

In this paper, we propose two new P-G algorithms based
on consistency conditions, P-GDW and P-GHLCC/P-GHLCC,ST.
P-GDW uses the band-limitation property of sinograms, i. e.,
that the 2-D Fourier transform of a sinogram has a double-
wedge zero region. P-GHLCC,ST uses the band-limitation prop-
erty of moment curves according to HLCC. The conventional
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(a) f limited (b) fOS (c) fDW (d) fHLCC (e) fHLCC,ST

(f) difflimited (g) diffOS (h) diffDW (i) diffHLCC (j) diffHLCC,ST

Fig. 2. Reconstructions of the Shepp-Logan phantom using different algorithms and their absolute difference w. r. t. the full data reconstruction. The root-mean
square errors for f limited, fOS, fDW, fHLCC, and fHLCC,ST are 302 HU, 172 HU, 150 HU, 214 HU, and 75 HU, respectively. Window: [-1000, 3400] HU and
[-1000, 1000] HU for the top and bottom images, respectively.

P-G algorithm P-GOS requires strong a priori knowledge,
the exact object support. In contrast, P-GDW only needs
the distance of the farthest point, which can be accurately
estimated from a limited angle reconstruction. It reduces small
streaks inside the boundary better than P-GOS. However, it is
unable to reconstruct the boundary well. P-GHLCC only is not
sufficient to reduce streaks due to the ill-posedness of high
order moment curve extrapolation/interpolation. P-GHLCC,ST
takes the advantage of the sparsity of the Fourier coefficients
of the moment curves. It performs the best on streak reduction
among the proposed algorithms.

Disclaimer: The concepts and information presented in this
paper are based on research and are not commercially avail-
able.
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Empirical Scatter Correction using the Epipolar
Consistency Condition

Mathis Hoffmann, Tobias Würfl, Nicole Maaß, Frank Dennerlein, Anré Aichert and Andreas K. Maier

Abstract—Scatter affects every computed tomography (CT)
image. Calibration-free software scatter reduction methods
have not been used extensively in practice. Recently, consistency
conditions have been applied successfully to other artifact
reduction problems in CT imaging. We propose a scatter
reduction method, that uses an epipolar consistency condition
(ECC) to estimate parameters of an additive scatter model.
We evaluate our approach by comparing it with an image-
based empirical scatter correction method (ESC) that uses the
same scatter model. We show that it performs equally well on
simulated data. Further, ECC outperforms ESC regarding the
computational load for the determination of the parameter
models, because ECC is formulated in projection domain
such that no image reconstruction is necessary. While some
restrictions might apply for the stability of ECC on measured
data, no prior information needs to be formulated regarding
the reconstructed image, like it is required with ESC.

I. INTRODUCTION

Scatter is caused by two different physical effects [1]. On
the one hand, photons are scattered (change their direction)
at particles that are much smaller than the wavelength of
the radiation. This is known as Rayleigh scattering. On the
other hand, the Compton effect describes incoherent scat-
tering, where a scattered photon looses energy, increasing
its wavelength. These effects contradict the assumption of
reconstruction algorithms that the measured radiation solely
consists of primary radiation. Therefore, the image quality
is reduced. To weaken the effect, hardware- and software-
based scatter reduction methods are applied [2].

Reference-less software methods aim to estimate the
scatter radiation using a suitable scatter model and a cost
function to estimate its parameters. Monte Carlo simulations
are the well known gold standard to estimate the scatter com-
ponent precisely. However, the simulation is computationally
demanding. The situation can be improved by performing a
very coarse Monte Carlo simulation and using the result to
fit a scatter model [3]. Alternatively, a scatter model can be
fitted by optimization of a cost function in image domain,
for example by the minimization of the total variation (TV).
Meyer et. al [4] show that this is possible without successive
reconstruction steps by exploiting the linearity of the Radon
transform.

M. Hoffmann, T. Würfl and A. K. Maier are with the Pattern Recognition
Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen,
Germany.
N. Maaß and F. Dennerlein are with Siemens Healthcare GmbH, Erlangen,
Germany.

Recently, a new consistency condition based on redundant
plane integrals was presented [5], [6] and has been suc-
cessfully applied for geometry calibration [6], [7], motion
compensation [8] and beam-hardening reduction [9].

We derive an algorithm using the epipolar consistency
condition to estimate the parameters of a scatter model.
The model we use was introduced by Ohnesorge et. al [10]
and modified by Meyer et. al [4] to take the form of a
linear combination. We exploit the results of Würfl et. al [9]
to derive a closed-form solution that can be computed
efficiently.

II. METHODOLOGY

In section II-A, we detail the model that we use to estimate
the scatter component. In section II-B, we derive a closed-
form solution to the estimation problem that uses the ECC
as a cost function. In section II-C, we point at some insights
that we gained from the model.

A. Model

Throughout this paper, we assume that scatter can be
reduced using the additive model in line integral domain,
that has been used by Meyer et. al [4]. The scatter-reduced
raw-data p is given by

p = q −
N∑

n=1

wnsn, (1)

where q denotes the measured raw data. We need to estimate
the raw-data scatter components sn along with the weights
wn.

As the source for scatter resides in intesity domain, we
need to estimate the scatter intensity Is to obtain the scatter
components sn. The scatter intensity consists of an intensity
model If that is convolved with a model for the scatter point
spread function. The intensity model is given by

If = αpIp, (2)

where Ip = e−p and α is a scale parameter that depends on
the scatter cross section. From If , the scatter component in
intensity domain can be calculated as

Is = If ∗
[
exp

(
x+ β

γ

)
+ exp

(
x− β
γ

)]
, (3)

where β and γ determine the shape of the scatter point
spread function and x denotes the spatial location on the
detector.
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(a) ECC [Ip] (b) TV [Ip] (c) TV without mask [Ip]

(d) ECC [Iq] (e) TV [Iq] (f) Iq - Uncorrected

Fig. 1: Results for the inverse crime scenario using the the proposed ECC-based method and the TV-based approach. The
notation [Ip] denotes that the ideal projection data has been used to generate the scatter components (see Eq. (2)), whereas
[Iq] denotes that the projection with simulated scatter has been used instead.

To enable a linear estimation using the ECC, we obtain
the scatter component in line integral domain by

s = − ln (Is + Ip) + ln (Ip)

= − ln

(
Is
Ip

+ 1

)
.

(4)

Eq. (1) already indicates that we use N of those scatter
components to find the scatter-free image p. We denote a
specific scatter component that is obtained from parameters
(αn, βn, γn) as sn. Note that this model assumes that the
ideal, scatter-free data Ip is known to create the scatter
components. This is generally not the case. A common
solution is to apply any algorithm relying on this model
in a fixed-point iteration scheme. Throughout the following,
we only consider a single iteration of this algorithm.

B. Estimation
Given two X-ray projections, any plane which contains

both source positions intersects the detectors in so-called
corresponding epipolar lines. Epipolar consistency states that
the derivative orthogonal to their common plane is identical
in either image:

∂

∂t
ρp0 (l0) =

∂

∂t
ρp1 (l1) . (5)

Here, (ρp0
, ρp1

) denotes the Radon transform of a pair of
projection images (p0, p1), (l0, l1) denote intersection lines
of an epipolar plane with the corresponding detector planes
and ∂

∂t denotes the derivative of the Radon transformed
projections perpendicular to the lines.

We combine the additive scatter model (Eq. (1)) with
Eq. (5) to receive

∂

∂t
ρ(

q0−
∑N

n=1
wnsn,0

) (l0) = ∂

∂t
ρ(

q1−
∑N

n=1
wnsn,1

) (l1) ,
(6)

where (sn,0, sn,1) are the n’th scatter components of the
projection image pair (q0, q1). Because the Radon transform
and the derivative operator are linear, we reuse the idea of
epipolar consistency guided beam hardening reduction [9]
and rewrite Eq. (6) to

q′0 (l0)−
N∑

n=1

wns
′
n,0 (l0) = q′1 (l1)−

N∑
n=1

wns
′
n,1 (l1) , (7)

where we substituted q′i = ∂
∂tρqi

and s′n,i = ∂
∂tρsn,i

,
i ∈ [0, 1]. Unfortunately, the scatter components sn are not
linear in the parameters (see Eqs. (2), (3) and (4)). Therefore,
we follow the idea from empirical scatter correction [4],
generate N different estimates of the scatter components and
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Fig. 2: Normalized absolute intensity difference of line
profiles to the ground truth.

assume that they behave as a basis for the space of scatter
components. In section II-C, we point out, that this approach
has theoretical drawbacks. However, our experiments (sec-
tion III) reveal that it performs well in practice.

In order to estimate the coefficients wn, we optimize
for consistency, such that the scatter components remain
constant:

min

[(
N∑

n=1

wns
′
n,0 (l0)− s′n,1 (l1)

)
− q′0 (l0)− q′1 (l1)

]2
.

(8)
So far, we stated the problem for (l0, l1), which cor-

responds to one epipolar plane and one pair of projection
images. We want to solve this problem for K planes lkp,i
across P pairs of projection images. Therefore, we have
M = PK measurements, producing an overdetermined
system of linear equations:

ŵ = argmin
w
‖Aw − b‖22 (9)
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Fig. 3: Region (green) that has been used to estimate SSIM
and PSNR (see Fig. 4) and line (red) along which the profiles
have been calculated.
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Fig. 4: Performance of our (ECC) and the TV-based method
in terms of PSNR and SSIM. 0% improvement means that
there is no improvement over the volume with simulated
scatter. The measures have been computed in 2D within the
region depicted in Fig. 3.

where

A =



a1,1,1 . . . a1,1,N
...

. . .
...

a1,K,1 . . . a1,K,N

a2,1,1 . . . a2,1,N
...

. . .
...

aP,K,1 . . . aP,K,N


with

ap,k,n = s′n,p,0
(
lkp,0
)
− s′n,p,1

(
lkp,1
)

and

b = [b1,1, . . . , b1,K , b2,1, . . . , bP,K ]
>

with

bp,k = q′p,0
(
lkp,0
)
− q′p,1

(
lkp,1
)
.

Note that the columns of A are linearly independent.
Therefore, the solution to Eq. (9) is given by

ŵ = (A>A)−1A>b = A+b. (10)
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C. Discussion

Typically, such linear combinations of basis images are
applied in the domain where the artifact arises. However, this
model using scatter basis functions in line integral domain is
not equal to a linear combination of scatter basis functions
in intensity domain (see Eq. (1)). To investigate this, we
transform the linear combination

∑
n wnsn to intensity

domain:∑
n

wn ln (Is,n) =
∑
n

ln
(
Iwn
s,n

)
= ln

(∏
n

Iwn
s,n

)
. (11)

This result shows that the linear combination in raw data
domain does not correspond to a linear combination in
intensity domain.

III. EXPERIMENTS

We present two simulation experiments using the Forbild
head phantom. We show the performance of the proposed
algorithm in two inverse crime scenarios and compare the
results to the method proposed by Meyer et. al that mini-
mizes the total variation in volume domain, instead of the
epipolar consistency in projection domain.

A. Setup

For the experiments, we define a feasible param-
eter range β ∈

[
βl = 1e−2, βu = 1.5e−2

]
, γ ∈[

γl = e−3, γu = 1e−2
]
. The parameter α remains fixed at

α = 4e−10. We use N = 4 scatter basis images such that
(βn, γn) ∈ (βl, βu)× (γl, γu). The simulated scatter image
is generated with βsim = 1.2e−2, γsim = 8e−3. For the first
simulation experiment, we generate the scatter components
using the ideal projection intensity Ip (see Eq. (2)). The
results of this experiment are annotated with [Ip]. For
the second simulation experiment, we use the projection
intensity with simulated scatter Iq for the scatter components
and annotate the results with [Iq].

B. Results

The results of our experiments are summarized in Fig. 1.
We find, that both methods yield visually comparable results
when Ip is used to generate the scatter components (Figs. 1a
and 1b). However, both methods produce worse results,
when Iq is used instead (Figs. 1c and 1d).

Fig. 2 depicts, how a line profile through the scatter-
reduced volumes differs from the line profile through the
ground-truth volume. For the case where the scatter com-
ponents are based on Ip, the results for both methods only
differ slightly. Notably, there is an advantage for the ECC-
based parameter estimation in the frontal sinus area within
the phantom. This is due to a mandatory masking of soft-
and hard-tissue regions in the TV-based approach (see also
Fig. 1c) that eliminates contributions from regions with
low attenuation to the loss. For the case where the scatter
components are based on Iq , worse results can be seen in
both methods.

Finally, we compare the structure similarity (SSIM) and
peak signal noise ratio (PSNR) of the scatter-reduced slices.
The results are shown in Fig. 4. Regarding these measures,
the ECC-based parameter estimation is superior to the TV-
based approach in all cases.

IV. CONCLUSION

We have presented a novel reference-free scatter reduc-
tion algorithm and showed that it improves over a similar
algorithm in terms of achievable image quality and compu-
tational efficiency. Overall, the PSNR is about 35% better,
whereas the SSIM is also slightly better, compared to the
reference algorithm. The estimation of the weights with our
method happens to be 52 times faster using an unoptimized
numerical Python implementation.

A key advantage of using a consistency condition is, that
it does not impose any assumption about the object. We
reuse the scatter reduction model from Meyer et. al to obtain
a computationally efficient formulation of the optimization
problem on intermediate functions in line integral domain
with a closed-form solution. However, we show that this
mathematical model has disadvantageous physical proper-
ties. Still we found the algorithm works well in simulation
experiments, even if we restrict ourselves to a single iteration
of the algorithm. In future work we want to evaluate the
algorithm extensively on measured data. Additionally we
want to explore different scatter reduction models better
modeling the physical properties while preserving compu-
tational efficiency.

Acknowledgment
A. Aichert is supported by the German Research Founda-

tion; DFG MA 4898/3-1.
Disclaimer
The concepts and information presented in this paper are

based on research and are not commercially available.

REFERENCES

[1] P. M. Joseph and R. D. Spital, “The effects of scatter in x-ray
computed tomography,” Med. Phys., vol. 9, no. 4, pp. 464–472, 1982.
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Stereo Rectification for X-ray
Data Consistency Conditions

André Aichert, Jérôme Lesaint, Tobias Würfl, Rolf Clackdoyle, Laurent Desbat and Andreas K. Maier

Abstract—Data consistency conditions (DCC) allow for the
compensation of measurement errors and geometric inaccuracies
of X-ray computed tomography (CT). Epipolar Consistency (EC),
in particular, states that any two X-ray projections contain
redundant information on epipolar lines. Recently, a fan-beam
DCC was applied to cone-beam projections by re-projection
and weighted integration in a virtual detector. It is related
to EC, since the redundant fans lie in a common epipolar
plane. This paper observes that the re-projection to a common
virtual detector is merely an instance of stereo rectfication known
from computer vision and shows how rectifying homographies
can be used to generally express these DCCs. We derive an
algorithm which allows for the evaluation directly in the original
detector planes, without the need for memory- and time-intensive
warping of all image pairs. Since the presented algorithm does
not require a derivative, it may prove beneficial in applications,
which aim at the estimation of absolute intensities, rather than
geometry or motion. We have validated the equations in this
paper numerically with phantom data.

I. INTRODUCTION

Epipolar Consistency (EC) is a type of data consistency
condition in X-ray computed tomography, which exploits
redundancies along epipolar lines in two X-ray projection
images [1]. They have been used for the correction of various
artifacts in computed tomography. EC states that the orthog-
onal derivative of integrals over two corresponding epipo-
lar lines are identical. An alternative formulation has been
presented, which uses the ramp-filter instead of a derivative
[3]. Recently, a similar set of conditions has been applied
to calibration correction in rotational CT [4]. The authors
show that by means of a reprojection to a virtual detector
plane, pair-wise fan-beam consistency conditions (FBCC) can
be applied [5]. The main difference between these conditions
is (1) integration along epipolar lines followed the derivative or
ramp filter orthogonal to epipolar lines versus (2) an integral
along epipolar lines weighted by the distance of each pixel
to the baseline. The derivative emphasizes high-frequency
information, which improves alignment of edges in motion
correction application. However, artifact correction methods
which correct for intensity changes (e.g. beam-hardening,
scatter or extinction) may benefit from the absolute intensity
information still available through the latter FBCC. A major

André Aichert, Tobias Würfl and Andreas K. Maier are with the Pattern
Recognition Lab, Friedrich-Alexander Universität Erlangen-Nürnberg, Ger-
many.

Jérôme Lesaint, Rolf Clackdoyle and Laurent Desbat are with the TIMC-
IMAG laboratory, CNRS UMR 5525 and Université Grenoble Alpes, Greno-
ble, France

Figure 1. The stereo baseline connecting c0 and c1 (orange) and its relation
to the virtual detector plane. The direction of the line d̊ points from c0 to
c1 . The Plücker line moment m̊ is the normal of the plane containing the
origin and both source positions (i.e. the plane of rotation in case of circular
trajectories). We choose the orthogonal vector d̊× m̊ to be the normal to the
virtual detector plane (blue).

drawback of the algorithm is that re-projection to a common
virtual detector is different for any two projections. Conse-
quently, n projection images would produce n · (n− 1) pairs
of rectified 2D images.

This paper observes that re-projection of two central projec-
tions to a common plane is an instance of the stereo rectifica-
tion problem in computer vision [2]. Stereo rectification is the
process by which two rectifying homographies are applied to
a pair of images to produce identical corresponding epipolar
lines which are parallel to the horizontal image axis. It is the
well-understood first step for the computation of a depth-map
from two visible light images.

By application of standard computer vision techniques,
Section II extends the FBCC algorithm by Lesaint et al.
[4] to general projection matrices and thus non-circular tra-
jectories. In Section III we show how to evaluate the pre-
sented DCCs without explicit projection of all pairs of im-
ages, thus rendering practical application feasible. We val-
idated this work on real data of a pumpkin phantom and
provide the full source code of our GPU implementation
https://github.com/aaichert/EpipolarConsistency.

II. RECTIFICATION BY PROJECTION ONTO A PLANE

A. Rectification

Consider two X-ray source-detector geometries defined by
the projection matrices P0, P1 ∈ R3×4. This section discusses
how to find two rectifying homographies H0, H1 ∈ R3×3,
which transform projection images such that the respective
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Figure 2. Rectified projection data is subject to increasingly strong distortion as the primary angle difference between the two projections increases. Example
of a typical circular CT trajectory of a Siemens Artis Zeego: (1) little distortion up to ≈ 45°, (2) considerable distortion at ≈ 90°, (3) method is beginning
to break down after ≈ 135°, and (4) rectification not sensible for opposing views.

image planes of H0P0 and H1P1 are parallel to the baseline,
while corresponding epipolar lines are equal and parallel to
the u-axis. We will do this by re-projecting the image data
to a common virtual detector plane. The source positions in
homogeneous coordinates c0

∼= (C0
0 , C

1
0 , C

2
0 , 1)> ∈ null(P0)

and c1, accordingly, define the stereo baseline, where ∼=
denotes equality up to scale, define the stereo baseline. Its
direction d̊ ∈ S2 is the unit vector

d̊ ∼=

(
C0

2−C
0
0

C1
1−C

1
0

C2
1−C

2
0

)
, (1)

where ∼= denotes equality up to positive scalar multiplication.
Its moment shall be the unit vector m̊ ∈ S2

m̊ ∼=

(
C0

2

C1
1

C2
1

)
×

(
C0

0

C1
0

C2
0

)
, (2)

which is the normal to the plane which contains both the
baseline and the origin.

B. Rectification by Re-Projection

Our goal is to project both images to a virtual detector
with an image u-axis pointing in the direction of the stereo
baseline. Assuming that the iso-center is approximately in the
coordinate origin, a good choice of virtual detector plane is

e ∼=
(

d̊×m̊
0

)
∈ P3. (3)

Since the u-axis must point in direction of the baseline, we
establish a 2D coordinate frame for points in the plane e with
3D coordinate axis directions d̊ and m̊ according to

S =

(
d̊> 0
m̊> 0
0 m

)
∈ R3×4. (4)

with arbitrary pixel size m in mm. Given an original image
with projection matrix P and source position c ∈ null(P),
let Te

c ∈ R4×4 denote the central projection through c to 3D
points on the virtual detector plane e (compare Section II-C)
and S defined its 2D coordinate system. Then, the homography

H= STe
cP

+ ∈ R3×3, (5)

directly relates pixels from the original image with pixels in
the virtual detector plane e. This situation is visualized in
Figure 1.

C. Central Projection onto a Plane

Central projection from a point c ∈ P3 to a plane e ∈ P3

can be written in a single matrix Te
c ∈ R4×4 . It projects

a point x ∈ P3 to a point Te
cx ∈ P3 by intersection of the

plane e with the line r through the points c and x . Using
the Plücker matrix [2] of the line cx> − xc> we express the
intersection as

Te
cx = cx>e− xc>e. (6)

By factoring out x we obtain the projection

Te
c = I4c

>e− ce>, (7)

We can rectify two projections with the homographies

H0 = STe
c0
P+

0

and H1 = STe
c1
P+

1 . (8)

III. THE RADON TRANSFORM OF PERSPECTIVELY
DISTORTED FUNCTIONS

A. Line Integrals in Perspectivley Transformed Images

This section computes an integral along a line l′ over an im-
age which has been projectively transformed by a homography
H. We will express the integration over a line l = H>l′ (see
in Eq. 12) in the original image, weighted by the Jacobian. Let
l be the line with angle to the u-axis α and signed distance
to the origin τ

l∼=
(
l0
l1
l2

)
=

(
sin(α)
−cos(α)
−τ

)
. (9)

We append a zero to the 2D vectors of its normal n =
(l0, l1 , 0)> and direction

d =
(
d0
d1
0

)
=
(

l1
−l0
0

)
, (10)

with unit length ‖n‖ = ‖d‖ = 1. The closest point to the
origin is given by the homogeneous coordinates

o ∼=
(
o0
o1
1

)
=
(−l2l0
−l2l1

1

)
. (11)

Lines transform covariantly, therefore, the transformed line is
given by

H−>l ∼= l′ =

(
l′0
l′1
l′2

)
=

(
sin(α′)

−cos(α′)

−τ ′

)
, (12)
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with direction
d′ =

(
l′1
−l′0
0

)
. (13)

The Radon transform is the integral over a line in an image

Rf(α, τ) = Rf(l) =

∫
f(o0 + d0 · t, o1 + d1 · t) dt

def
=

∫
fl(t) dt, (14)

where fl(t) is the image defined over the 1D sub-space
parametrized by the line-coordinate t. Since a projective
transformation H on the image is collinearity preserving, a
mapping ϕ(t) : t 7→ t′ must exist which fulfills

RHf(α′, τ ′) = RHf(l′) =

∫
fl
(
ϕ−1(t′)

)
dt′, (15)

where Hf denotes the transformed image and t′ is the line
coordinate along the transformed line l′. Equation 15 shows
that only information on the original line fl is required for this
computation ofRHf(l′). A change of variables with t′ = ϕ(t)
yields

RHf(l′) =

∫
fl (t)

∂

∂t
ϕ(t) dt. (16)

B. Projection to Line Coordinates

The goal of this section is to find a closed form for ϕ(t)
in Equation 15, by considering only the line coordinate t on
the line l and t′ on the line l′. Because the Jacobian of a
rigid transformation is one, we can consider w.l.o.g. the case
of lu = (0, 1, 0)>, which is related to the line l with the rigid
transformation

Hlu =
(
l1 −l0 0
l0 l1 l2
0 0 1

)
with

(
0
1
0

)
= H−>lu l. (17)

Here, Hlu takes image points x = (u, v, 1)> on the line l
in the domain of the image f(u, v) to line coordinates in the
domain of fl(t)

x = o + dt = H−1
lu

(
t
0
1

)
with x>l = 0. (18)

Analogously, we can transform line coordinates on l′ with
Hl′u according to(

t′

0
1

)
= Hl′ux

′ iff. x′>l′ = 0. (19)

However, if H is a rectifying homography according to
Equation 8 and if l is an epipolar line, then d′ = (1, 0, 0)>

by definition and Hl′u is only a translation.

C. Line-Induced Perspectivity

Using Equations 18 and 19 we have

x′ ∼= Hx

⇐⇒ H−1
l′u

(
t′

0
1

)
∼= HH−1

lu

(
t
0
1

)
⇐⇒

(
t′

0
1

)
∼= Hl′uHH−1

lu︸ ︷︷ ︸
J

(
t
0
1

)
. (20)

Since both sides of the equation contain a zero-element, only
the four corner elements of the the matrix J are relevant.
Note that H−1

lu and Hl′u can be elegantly written by column,
respectively, row vectors

H−1
lu =

(
| | |
d n o
| | |

)
, (21)

and
Hl′u =

(
− d′> −
− l′> −
0 0 1

)
. (22)

The entries of l can be computed via Equation 20, while
we are only interested in the case where H is a rectifying
homography and l is an epipolar line, we have more compactly,
d′ = (1, 0, 0)> and

J00 = d′>Hd = h00l1 − h10l0, (23)

J02 = d′>Ho = h02 − h00l0l2, (24)
J20 = (0, 0, 1) ·Hd = h20l1 − h21l0, (25)
J22 = (0, 0, 1) ·Ho = h22 − h20l0l2 − h21l1l2. (26)

Assuming that the horizon is not contained in the support of
f , de-homogenization of the mapping from P1 coordinates on
the line l to P1 coordinates on the line l′ is written

t′ = ϕ(t) =
J00 · t+ J02

J20 · t+ J22
, (27)

and
∂

∂t
ϕ(t) =

J00J22 − J02J10

J2
20t

2 + 2 · J20J22 · t+ J2
22

. (28)

The Radon transform for a line l′ can thus be computed using
regular ray-casting in f by weighting each sample x = o+t·d
with ∂

∂tϕ(t) . For some regular sampling distance ∆t in the
original image (typically about 0.66 px), we have

RHf(l′) ≈ ∆t
∑
i

f(o + t · d) · (J00J22 − J02J20)

J2
20t

2 + 2 · J20J22 · t+ J2
22

∣∣∣∣
t=i·∆t

,

(29)
with the original line

l ∼= H>l′ = H>
(

sin(α′)

−cos(α′)

−τ ′

)
. (30)

IV. DISCUSSION

We have presented a general and fast algorithm for evalu-
ation of fan-beam DCCs on a virtual detector plane based on
Lesaint et al. [4], which also handles non-circular trajectories.
We have shown that reprojection to a common virtual detector
is an instance of stereo rectification. However, rectifying
each pair of projections, requires n · (n − 1) rectified 2D
images. In Figure 2 we show that rectification increasingly
distorts the images, as the angle between the primary rays
increases. For proper sampling rectified images would have to
be considerably larger than the original projections, rendering
the original algorithm impractical. We show how to compute
line integrals over projectively transformed images on the fly,
i.e. directly from the original projection image data, which is
considerably faster and requires no additional memory. This
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Algorithm 1 Radon transform of a projectively distorted
image Hf for a line l′ = H−>l from original image f .
• input – Line l′ = (sin(α′), −cos(α′), −τ)>

– Homography H ∈ R3×3 (as in Equation 8).

1) Compute l according to Equation 30, its closest point o
(Equation 11), and direction d (Equation 10).

2) Normalize ‖n‖ = ‖d‖ = 1 and dehomogenize o2 = 1.
3) Compute J00 to J22 according to Equations 23-26.
4) Compute values tmin and tmax, such that xmin = o +

tmin · d and xmax = o + tmax · d are the intersections
of the line with the image border with tmin < tmax.

5) Initialize summation variable s.
6) for ( t = tmin; t ≤ tmax; t← t+ ∆t )

a) Compute pixel location x← o + t · d
b) Compute j ← ∂

∂tϕ(t) according to Equation 28.
c) Compute distance w of 3D location of x (on the

virtual detector) to the source position [4], [5].
d) Increment s← s+ f(x) · j · w ·∆t.

7) return Variable s, which is the Radon transform of
projectively distorted image Hf for a line l′.

paper gives a general implementation for this situation. For
validation, we present in Figure 4, top, the redundant signals
extracted from two X-ray shots of a pumpkin, along with
the warped images in Figure 3. The fan-beam consistency
condition can be computed explicitly as a sum over these
rectified images weighted by the distance of each point to
the stereo baseline. Integration in the original images, while
taking into account the Jacobian according to Algorithm 1 is
identical. The method breaks down for large primary angle
difference, once the epipoles lie within the images, compare
Figure 2, right. To demonstrate the fundamentally different
nature of this consistency condition by comparison with
epipolar consistency for the same epipolar planes in Figure
4, bottom. Since EC is based on a derivative orthogonal to the
lines, we observe a roughly zero-mean curve and more detail
for smaller structures. Generally speaking, rectification-based
methods will be slower than their deriative-based counterparts
for motion- and calibration-correction, because the Radon
intermediate functions cannot be pre-computed. Future work
will investigate, if avoidance of the derivative has potential
benefits in applications, where absolute intensity values need
to be estimated, such as beam-hardening, scatter correction or
metal-artifact correction. Future work will investigate how the
presented epipolar DCCs are affected by truncation and we
will compare other DCCs.
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Figure 3. Rectified projection images of a pumpkin phantom in case of a
primary angle difference of 120°. The green cube is intended to visualize the
distortion introduced by rectification.
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Figure 4. Top: Fan-beam consistency condition (FBCC) [5] as implemented
in the original images. The computation of the rectified images in Figure
3 is avoided, but the curves are identical to a weighted summation over
the intensity in these images. Bottom: Comparison to epipolar consistency
conditions (ECC) for the same images (i.e. orthogonal derivative instead of
rectification and weighting) is shown for corresponding epipolar plane angles.
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Fast Epipolar Consistency without the Need for
Pseudo Matrix Inverses

Alexander Preuhs, Michael Manhart and Andreas Maier

Abstract—Interventional C-arm systems allow flexible 2-D
imaging of a 3-D scene while being capable of cone beam
computed tomography. Due to the flexible structure of the
C-arm, the rotation speed is limited, increasing the acquisition
time compared to conventional computed tomography. Therefore,
patient motion frequently occurs during data acquisition inducing
inconsistencies in the projection raw data. A framework using
Grangeat’s theorem and epipolar consistency was successfully
applied for compensating rigid motion. This algorithm was
efficiently parallelized, however, before each iteration, the pseudo-
inverse of each projection matrix must be calculated. We present
a geometric modification of the presented algorithm which can be
used without a pseudo-inverse. As such, the complete algorithm
can be implemented for low-level hardware without the need
of a linear algebra package that supports the calculation of
matrix inverse. Both algorithms are applied for head motion
compensation and the runtime of both is compared.

I. INTRODUCTION

A fundamental assumption in computed tomography (CT)
is that the scanned object remains static during the acquisi-
tion process. If this assumption cannot be fulfilled, images
produced with conventional reconstruction algorithms will
suffer from artifacts. Current C-arm CT acquisitions last
about 20 seconds. During the acquisition time, involuntary
patient motion is often inevitable without patient fixation.
However, if the motion can be assumed to be rigid and smooth,
a motion compensated reconstruction can be computed by
finding the correct geometric correspondence between the
motion affected projections and the calibration data. Four
categories of compensating motion artifacts have emerged
in literature and they can be grouped into approaches using
external markers [1], image metrics on the reconstruction
volume [2], 3-D/2-D registration of the projection data to
digitally rendered radiographs from the reconstruction volume
[3], [4] and projection data consistency based metrics [5]–[8].

In this work, we focus on a consistency method based on the
3-D radon transform. The method exploits epipolar geometry
to find lines on two detectors corresponding to an epipolar
plane. Grangeat’s theorem can be used to find a mapping
between each epipolar line pair and the 3-D radon value
corresponding to the epipolar plane [9]. This algorithm is
denoted as epipolar consistency and was presented by Aichert
et al. [5]. As the algorithm directly works on the projection
domain without the need of a reconstruction, the computational
cost is low. It basically consists of comparing corresponding

A. Preuhs and A. Maier are with the Pattern Recognition Lab, Friedrich-
Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.

M. Manhart is with Siemens Healthcare GmbH, Forchheim, Germany.
Email: alexander.preuhs@fau.de

line configurations. This can be accelerated by parallelizing
the algorithm using graphics processing units (GPU) [10].

To apply the algorithm for rigid motion compensation, the
consistency between all possible line pairs is evaluated in
an iterative optimization process in order to find the set of
parameters describing the motion within the scan [11], [12]. In
[10] before each iteration the pseudo-inverse of the projection
matrices must be calculated on the CPU. We propose a
geometric modification that allows to calculate corresponding
epipolar lines without the need of a pseudo-inverse.

II. METHODS

A. Grangeat’s Theorem

In cone-beam CT an X-ray source radially emits photons,
that — after attenuation — are measured at a detector. The
attenuation process for a ray can be described by an integral.
However, due to the radial structure of the rays, integrating
along a detector line does not result in a plane integral of the
underlying object f , instead it differs by a radial weighting.

Grangeat’s theorem describes the connection between this
weighted integral and a plane integral — i.e. the 3-D radon
value Rf(n, d) describing the integral along a plane with
normal n ∈ S2 at distance d. Using a derivative operation
the radial weighting can be canceled out. Grangeat defined
an intermediate function Sλ(n) that is calculated from the
projection data which can be related to the derivative of the
3-D radon transform

Sλ(n) =

∫
S2

δ′(x>n)gλ(x)dx =
∂

∂d
Rf(n, d)|d=c>

λ n , (1)

where gλ(x) describes a single value on the detector with λ
describing the projection index, cλ the source position and x
a vector from the source to a detector pixel. The geometry for
two projections λ = a and λ = b is visualized in Fig. 1. Here
δ′(·) describes the derivative of the Dirac delta distribution. A
detailed evaluation of Eq. (1) can be found in [9], and some
simplifications are discussed in [5].

B. Epipolar Consistency

It directly follows from Eq. (1) that two projections a, b
must satisfy

Sa(n) = Sb(n) ∀n ∈ S2 : c>b n = c>a n . (2)

If the geometry information is wrong, e.g. due to rigid object
motion, then Eq. (2) will not hold. Thus, we can use it as a
measure of inconsistency. Below we summarize the framework
proposed by Aichert et al. [5], [10], which is used to evaluate
the consistency of two views.
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Fig. 1. Schematic drawing of a scene including two projections. The vector
n describes the normal of a radon plane. Several realizations of the vectors
x are drawn that are perpendicular to n. The pixel intensity measured at the
detector along ray x is described by ga(x) or gb(x), respectively.

The intermediate function Sλ(n) can be precomputed for
each projection. Then, the global indexing by the plane nor-
mal n can be replaced by a local projection-pair-dependent
indexing using a line lκλ defined on the detector described by
gλ. By epipolar geometry two epipolar lines lκa and lκb are
found that belong to the same epipolar plane Eκ — i.e. the
radon plane. The algorithm starts with a configuration of two
projections described by their projection matrix Pa and Pb,
respectively. Using these two projection matrices a mapping
matrix is derived that maps an angle κ to an epipolar plane
Eκ. Using the pseudo-inverse the respective epipolar lines lκa
and lκb are computed. The respective values are then used to
look up the values at the precomputed intermediate function
Sa and Sb. This allows the indexing of Eq. (1) using an angle
κ and two projection matrices

Sa(κ,Pa,Pb) = Sa(n) ∀n ∈ S2 : c>b n = c>a n . (3)

To evaluate the consistency of a whole scan, many different
views must be compared to each other, while in each two-
view comparison a multitude of line pairs are evaluated. As
the operations are independent from each other, this can be
evaluated in parallel allowing the efficient parallelization of
the algorithm using GPUs.

C. Projective Geometry

Projective geometry can be seen as an extension to the
common Euclidean geometry. In the context of image recon-
structions, projective geometry is mostly used to describe the
projection of a world point to a detector. Therefore, a projec-
tion matrix is created that performs a projective transformation
on a world point. In this context, the world point must be
converted to homogeneous coordinates first.

Homogeneous coordinates are the representation of n-
dimensional points in the projective space and are written
as (n + 1)-component vectors. In P3 a point is described by
(x, y, z, w)>, and we can obtain the euclidean representation
by dividing with the last component (x/w, y/w, z/w)>. Sim-
ilarly, a plane is described by (a, b, c, d)>. The vector can be
understood as the parameters of a Hessian normal form, where
the first three components describe the normal of the plane,

and d is the scaled distance to the origin. If a2 + b2 + c2 = 1
then d is exactly the signed distance to the origin. The concept
that a four-component vector can either be interpreted as a
point or a plane is called duality, where we refer to the point
interpretation as primal form and the plane interpretation as
dual form.

A special case is the representation of a line in P3. There
is no direct description but we can construct the line as the
connection of two points or the intersection of two planes. An
intuitive derivation can be found in [13], we only state the
relevant result of this derivation. The creation of a line as the
incident of two planes a,b ∈ P3 is obtained by

meet(a,b) = L =


p
q
r
s
t
u

 =


azbw − awbz
aybw − awby
aybz − azby
axbw − awbx
axbz − azbx
axby − aybx

 , (4)

where the six components of L are often referred to as Plücker
coordinates. We can build an anti-symmetric matrix LK from
the Plücker coordinates that represents a line as the intersection
of two planes — i.e. the dual representation of a line. A point
x common to a plane p and the line L can be found by right-
multiplication of p to LK

x = meet(L,p) = LK p =


0 −p −q r
p 0 s −t
q −s 0 u
−r t −u 0

 p . (5)

Note that there is also a primal representation of L which will
not be discussed in this paper.

An extension in the projective geometry is the concept of
geometric primitives at infinity. They are regular objects and
thus can be handled as any other objects. A point at infinity is
defined by a homogeneous coordinate w = 0. In P3 the plane
at infinity is defined by π∞ = (0, 0, 0, 1)>. All previously
introduced equations are also valid for objects at infinity. We
could for example use Eq. (5) to find the incident of a line
L with π∞, which will be a point at infinity, where the first
three component of that point are the direction of the line.

An advantage of using projective geometry is the represen-
tation of transformations based on matrix multiplication. A
point x′ which is the transformation of the point x under T
is simply found by

x′ = Tx . (6)

The transformation rule for planes can be derived from the
property that the distance from a point x incident to a plane
p is zero. The distance between the transformed point x′ and
the plane p′ will remain zero if they have been transformed
under the same transformation T. It therefore holds that

p′>x′ = p> x = 0 . (7)

Solving Eq. (6) for x and plugging that in Eq. (7) gives

p′>x′ = p>T−1 x′ =
(
(T−1)> p

)>
x′ , (8)
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it directly follows that

p′ = (T−1)> p (9)

which describes the transformation of planes. The point x
incident to a plane p and a line L can be found by right-
multiplying the plane to the dual representation of L (cf.
Eq. (5)). Further, a transformed point x′ will be incident to
the plane p′ and line L′ if both are transformed under a
transformation T, thus,

LK p = x, L′K p′ = x′ . (10)

When we solve Eq. (6) and (9) for x and p, respectively, we
can plug the result in the left part of Eq. (10) which results in

LKT> p′ = T−1 x′ ⇔ TLKT> p′ = x′ . (11)

Comparing the result with the right side of Eq. (10) it imme-
diately emerges that the line L′ which is the transformation
of L under T can be calculated by

L′K = TLK T> . (12)

D. Optimized Algorithm

The main purpose of the algorithm presented in Section
II-B is to find the mapping between two lines lκa and lκb
that can be used to look up the corresponding precomputed
values Sa and Sb, respectively. This is achieved by first
finding epipolar planes Eκ which are then mapped to the
corresponding epipolar lines. The algorithm presented in [5]
makes use of the pseudo-inverse to compute that mapping.
However, the calculation of a pseudo-inverse is not supported
on many GPUs, and must therefore be done on the CPU be-
forehand, whereas the rest of the framework is parallelizable.
In addition a linear algebra library must be included to support
the calculation of pseudo matrix inverses.

We propose a geometric modification that creates the map-
ping without the need of a pseudo-inverse. As shown in
Section II-C, the transformation rule depends on the object that
is to be transformed. It can be seen from Eq. (12) that lines are
transformed using the transformation matrix and its transpose.
Thus, transforming the plane to a line while preserving the
relevant information will make the pseudo-inverse dispensable.

We can achieve this using the concept of infinity. The
projective three-space is covered by the infinity plane π∞ =
(0, 0, 0, 1). Any plane intersects the infinity plane in a line
incident to π∞ and the plane itself, i.e. a line at infinity. The
orientation of the plane is persevered by the direction of the
line. In a last step, we can simply use Eq. (12) to project the
line at infinity, resulting in the desired epipolar lines.

Therefore, we start with the epipolar plane Eκ. Using Eq.
(4) we can compute the line at infinity Lκ as the intersection
of the epipolar plane with π∞

Lκ = meet(Eκ,π∞) . (13)

Using the representation of the line at infinity now allows us to
use the transformation rule as described by Eq. (12) to obtain
the epipolar line lκλ

[lκλ]× = Pλ L
κ
K Pλ

T . (14)

The parameters of lκλ are available from the 3 × 3 skew
matrix S = [lκλ]× as lκλ = (S12, S20, S01)>. As a result Eq.
(13) and (14) replace the mapping from epipolar planes to
lines presented in [5] and, therefore, makes the computation
of pseudo-inverses unnecessary. The additional cost is the
implementation of Eq. (4) on the GPU, however, this can be
reused to simplify the calculation of source positions. As the
three rows of the projection matrix can be interpreted as planes
all passing the source, the incident of two of these planes will
create a line. Using matrix multiplication (cf. Eq. 5) the source
position is then found by the incident of that line with the third
plane.

E. Optimization

If rigid motion occurs during the scan, the calibrated trajec-
tory does not represent the true geometry of the acquired data.
In order to restore the true geometry, a rigid transformation
Tλ for each projection matrix Pλ must be found. The true
geometry is expected to have minimal inconsistency. We
therefore define the inconsistency between two projections a
and b in dependence of the respective rigid transformations
Ta and Tb by

d(PaTa,PbTb) =
1

Nκ

K∑
k=0

[Sa(k∆κ,PaTa,PbTb)− Sb(k∆κ,PbTb,PaTa)]
2
,

(15)

where Nκ is the number of epipolar planes that hit both
detectors and K is the total number of sampled epipolar
planes. The angular step-size is denoted by ∆κ. To be more
robust for outliers we use the robust Cauchy norm and define
the inconsistency of two views by

ea,b =
d(κ,PaTa,PbTb)

1 + 1
c d(κ,PaTa,PbTb)

. (16)

The parameter c controls the penalty and should be selected
according to the intensity of the projection images. We denote
the vector of rigid transformations T = [T1, ...TN ], with N
being the number of projections of the trajectory. The corrected
geometry is denoted by T̂ and found by solving

T̂ = arg min
T

N∑
a,b=1

ea,b . (17)

Since motion is expected to be smooth we model each rigid
motion parameter in T by an Akima spline [14]. This also
allows the reduction of the search space, as we must not find a
transformation for each λ, but only for the nodes of the spline.
The optimum is then found using the open source non-linear
optimizer JPOP1 in CONRAD [15].

III. EXPERIMENTS

To evaluate the proposed method, we have acquired a 200◦

short scan (496 projections) of a head phantom using a robotic

1https://www5.cs.fau.de/research/software/java-parallel-optimization-package/
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Fig. 2. Simulated, estimated and residual motion tz for each projection.

C-arm system (Artis zeego, Siemens Healthcare GmbH, Ger-
many). Thereafter, we simulate rigid motion, which is directly
incorporated in the projection matrices. This is done using a
rigid motion creator2.

Epipolar consistency is known to produce mostly horizontal
epipolar lines in a majority of the projection pairs within a
short scan. Only view pairs that are almost opposed to each
other present diverging epipolar lines. Motion that is parallel to
the epipolar lines is not detectable by the presented consistency
measure. Thus, we only concentrate on motion orthogonal to
the epipolar lines in all pairs, which is typically denoted as
out-plane motion. Defining the rotation axis of the short scan
as the z-axis, we only simulate translations in z-direction.
The simulated motion pattern consisting of 17 spline nodes
is shown in Fig. 2.

IV. RESULTS

The reconstructions of the acquired head phantom is shown
in Fig. 3 for the motion corrupted case (right), the motion
compensated case (mid) and the ground truth (left). The
corresponding motion is depicted in Fig. 2. Both algorithms
produce the same results, only the runtime is expected to
change. By skipping the sequential calculation of pseudo-
inverses the runtime could be reduced by 1.29% using a
standard computer with an Intel Core i7-4910MQ and a
NVIDIA Quadro K2100M. The overall runtime for the motion
parameter estimation was 841.7 seconds using the proposed
modifications and 852.8 seconds if the inverse is pre-calculated
before each optimization step.

V. CONCLUSION AND DISCUSSION

We presented a modification to the algorithm presented
in [10] which avoids the calculation of inverse projection
matrices. This is achieved by transforming the respective
epipolar planes to lines at infinity. Lines are transformed —
in contrast to planes — using only the transformation matrix
and its transposed. Thus, only the projection matrix and its
transposed must be available.

The runtime could be improved by 1.29% using a Java
environment. Using more high-level programming languages,
e.g. python, the runtime advantage could eventually increase,

2https://github.com/alPreuhs/MotionCreator

Fig. 3. Central slices of the reconstructed volume HU [-100, 100]. Left:
ground truth, mid: with simulated motion after compensation, right: with
simulated motion.

as more computations can be performed on a dedicated GPU.
Furthermore, when implementing the algorithm in low-level
programming languages, e.g. C++/CUDA, no linear algebra
libraries need to be included.

Disclaimer: The concepts and information presented in this
paper are based on research and are not commercially avail-
able.
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A sinogram extrapolation method for CT field of 
view extension 

Qiulin Tang, Masakazu Matsuura and Zhou Yu 

 Abstract– Truncation is a common issue 
encountered in computed tomography. It 
degrades the reconstructed image with severe 
artifacts. These artifacts can lead to misdiagnosis. 
Artifacts include biased HU values which will 
cause inaccurate treatment planning in 
radiotherapy, as well as inaccurate attention 
correction in PET reconstruction. In this work, 
we propose a sinogram based extrapolation 
method to complete the missing data in truncation 
cases. The proposed method not only eliminates 
truncation artifacts, but also extends the 
reconstruction field of view to a larger area, 
providing important information for radiation 
therapy planning and PET attenuation 
correction. The proposed method has two steps: 
first, the support of the sinogram is estimated; 
second, fill the sinogram from last measured pixel 
to the sinogram boundary using a hybrid 
polynomial fitting algorithm. The proposed 
method has been evaluated by physical phantoms 
and clinical data.           

I. INTRODUCTION 
   The reconstruction field of view (RFOV) of 
general CT is usually smaller than the full size of the 
bore. For example a typical scanner has an RFOV of 
500mm in diameter, where every pixel has 360 
degrees worth of samples. However, the scanner bore 
size can be as high as 700-800 mm.  Here an object 
would fall outside RFOV when the patient size is 
large, the patient is positioned off-center, or there is 
medical equipment inside the bore, etc. When an 
object falls outside the RFOV it does not have 
enough samples to be correctly reconstructed. 
Moreover, it causes discontinuity in the sinogram 
and thus results in truncation artifacts (e.g. bright 
shading) inside RFOV. Consequently, it may lead to 
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false diagnosis in routine CT examinations; 
inaccurate treatment planning for image guided 
radiotherapy; and inaccurate attenuation correction 
for PET imaging. 

Several algorithms have been developed to 
compensate for truncation artifacts [1-6]. One 
approach uses data consistency to reduce the 
truncation artifacts and is only used for 2-
dimentional parallel-beam or fan-beam scans [1-2]. 
Hsieh, et al developed a water cylinder fitting 
method to fill the region outside of RFOV. In Hsieh’s 
method, the truncated sinogram is extrapolated 
assuming that the truncated region is part of a 
cylinder filled with water.  For each view and each 
detector row, the attenuation of the water cylinder 𝐹𝐹𝑤𝑤 
is determined by water attenuation 𝜇𝜇𝑤𝑤and radius of 
fitted cylinder 𝑅𝑅 [5]: 

𝐹𝐹𝑤𝑤 = 2𝜇𝜇𝑤𝑤√𝑅𝑅2 − 𝑥𝑥2                           (1) 

where R is the radius of the water cylinder and x is 
the distance to origin of the cylinder. Figure 1 
illustrates this method, where the green curve is the 
extrapolated sinogram using equation (1) and the 
black curve is the actual measurement. The 
parameter R ensures a smooth transition between the 
measurement and the extrapolated signal. This 
method is widely used due to its simplicity. The 
water cylinder assumption works reasonably well 
since soft tissue can be well approximated by water. 
However, the method relies on only a few edge 
detected pixels for the fitting, the fitting might 
become less accurate when noise is high. Moreover, 
in severe truncation cases, the water cylinder 
assumption is no longer accurate. The truncated 
object is no longer round, and it might contain 
materials other than soft tissue (e.g. bone, etc.). 
Figure 2 shows an example of water cylinder 
extrapolation on severely truncated data. The 
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extrapolated sinogram is very irregular, and therefore 
cannot provide an accurate reconstruction outside the 
FOV. To address these limitations, Bruder et al 
developed an image and projection domain based 
method to extend the reconstruction FOV [7]. 
However, Bruder’s method requires images to be 
reconstructed twice plus an extra forward projection; 
therefore it is computationally expensive. 
     In this work, we propose a sinogram domain only 
extrapolation method to extend the reconstruction 
field of view outside the fully sampled region. The 
proposed method can address the limitation of 
Hsieh’s method without extra reconstructions. The 
proposed method is composed of two steps. First, it 
estimates a smooth boundary of scanned objects in a 
sinogram.  Second, we use a polynomial model to 
complete the missing data between the boundary and 
real detector edge pixels, which allows us to handle 
more complicated truncation objects. Figure 2 shows 
the estimated sinogram using our proposed method. 
Both a physical phantom and clinical data were used 
to evaluate the proposed method. 

II. ALGORITHMS  
The proposed method has two main steps. 
 

Step 1: Estimate sinogram support 
For each row and each view, the sinogram is a 

truncated 1D signal, as shown in Figure 1. The first 
step is to estimate the support of the 1D signal, that 
is, where the signal approaches zero (see Fig. 1). This 
estimation can be done in two steps. First, we 
extrapolate the existing signal using water cylinder 
fitting described in [5].  This gives us the first pass 
estimate of the signal support for each row and view.  

 
Fig. 1 Illustration of extrapolation width by water cylinder 
fitting.  
 

   The combination of extrapolation widths for all of 
the rows and projection views makes up a 2D 
function, referred to as extrapolation width map 
𝑚𝑚(𝑖𝑖, 𝑗𝑗) and shown in Figure 2, where i, and j are row 
view indices. The extrapolation width map can have 
a jagged profile in both the row and view directions 
due to noise (see Fig. 3). Therefore, the extrapolation 
width map 𝑚𝑚 cannot be used directly.  
 

 
 
Fig. 2. Extrapolation width along rows in one projection view. 
It is jagged and has protrusion.  
 

  
 
Fig. 3. Illustration of 2D extrapolation width map.  
 

Secondly, a weighted Gaussian filter is applied on 
the extrapolation width map to obtain a smooth and 
more reliable map 𝑚𝑚′ as follows: 

𝑚𝑚′ = (𝑤𝑤𝑤𝑤∗𝑓𝑓)
(𝑤𝑤∗𝑓𝑓) ,                            (2) 

where 𝑓𝑓  is a 2D Gaussian filter, ∗  is 2D 
dimensional convolution and 𝑤𝑤 is a function of 𝑚𝑚: 

 𝑤𝑤(𝑖𝑖, 𝑗𝑗) = exp (−𝑚𝑚(𝑖𝑖, 𝑗𝑗)2/𝜎𝜎2),                    (3) 

where 𝜎𝜎 is an empirical constant. The design of such 
a weighting function 𝑤𝑤  is based on empirical 
observations that water cylinder based estimation is 
more accurate when truncation is small. Therefore, 
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smaller extrapolation widths are considered more 
reliable, and are given more weight in determining a 
moving average (i.e., smaller extrapolation widths 
have more contribution to filter).  
 The profiles along rows and views of the optimized 
and smoothed extrapolation width map are shown in 
Fig. 4.  
 

 
  Fig. 4. The profile along rows and views of extrapolation 
width map before and after smoothing and optimization. 
 
Step 2. Extrapolation by polynomial fitting 
      As discussed above, the water-cylinder 
approximation is based on the hypothesis that 
truncation regions are predominantly made up of 
materials consisting of water or exhibiting X-ray 
attenuation similar to water and having a shape that 
is approximately cylindrical.  This hypothesis begins 
to fail when the truncation region includes bone or 
other materials that differ from water, are not 
cylindrical in shape or are inhomogeneous.    
Therefore, a different extrapolation function is 
desired especially when bone is in the truncated 
regions, which is common in cases of severe 
truncation.  The bone will contribute a local peak on 
projection along channels, and the function 𝐹𝐹𝑤𝑤 does 
not fit the profile well.  In this work, a second order 
polynomial 𝐹𝐹𝑝𝑝 is added to the fitting function to fit 
the bone and thus improve the fitting. This 
combination of fitting functions is called a hybrid 
polynomial fitting:  

𝐹𝐹 = 𝑎𝑎𝐹𝐹𝑤𝑤 + 𝑏𝑏𝐹𝐹𝑝𝑝,                           (3) 

where 𝑎𝑎, 𝑏𝑏 are coefficients and 𝐹𝐹𝑝𝑝 is given by 

𝐹𝐹𝑝𝑝 = 𝑐𝑐0 + 𝑐𝑐1𝑐𝑐ℎ + 𝑐𝑐2𝑐𝑐ℎ2,                   (4) 

𝑐𝑐0 , 𝑐𝑐1 , and 𝑐𝑐2  are coefficients which can be 
optimized as well as 𝑎𝑎  and  𝑏𝑏  during fitting. The 
fitting is shown in Fig. 5.  

 
 
Fig. 5 Illustration of hybrid local multi-material fitting. 

III. EXPERIMENT AND RESULTS 
 In this study, physical phantom and clinical data 

were acquired by a single source, 320-row CT 
scanner (Aquilion ONETM, Toshiba, Otawara, Japan) 
with gantry rotation speeds of 350 ms/rotation. The 
performance of the proposed method was compared 
with the zero extrapolation method which pads zeros 
to all truncated projection.   

Figures 6-7 show results with the physical 
phantom. 

Figure 6 shows the axial view and coronary view 
of reconstruction with the zeros extrapolation 
method and the proposed method. It shows that the 
proposed method reduces the truncation artifacts 
significantly and recovers most of the truncated 
region.  

  

 
 

 
 
 
 

Channel 
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Fig. 6. Reconstructed images: top row is from axial view and 
bottom is from coronary view. From left to right columns 
are from zero extrapolation method and the proposed 
method, respectively. Window width and level are 400 and 
50 HU, respectively.  
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Figure 7 shows HU of three selected regions of 

interest. It shows that the zero extrapolation method 
has a huge bias in and near the truncation region 
(ROI1 and ROI2), while the proposed method 
produces more accurate and consistent HU values in 
the whole phantom.  

Figures 8 shows results with clinical data. It can be 
observed that the proposed method recovers the 
truncation region with more accurate HU values 
especially when truncation is severe.   
 
 

         

 
 
 
 
 

IV. CONCLUSIONS 
     We have developed a new projection based data 
extrapolation method to reduce truncation artifacts. 
The proposed method includes a novel projection 
based edge detection scheme and a hybrid local 
polynomial fitting to fill the missing data. This 
proposed method has been tested with physical 

phantom and clinical data. Results shows that the 
proposed method can reduce truncation artifacts 
significantly and achieve overall consistent HU 
value even in severely truncated regions.    
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Abstract— In this paper, we investigate the use of CT as a 
reliable predictor of changes in temperature. This becomes 
clinically relevant when considering thermal ablation, a 
treatment which uses directed heating to induce cell death and 
has applications in a multitude of pathologies, including treating 
hepatocellular carcinoma.  Utilizing the fundamental decrease in 
mass density associated with increased temperature, we 
hypothesize that we can use CT to reliably correlate changes in 
the temperature of water with changes in mass density.   

We demonstrate that changes in the density of water can be 
reliably correlated to changes in temperature. Furthermore, the 
difference in attenuation coefficient between body temperature 
and the temperature at which cell death occurs is 11.52 HU, 
which is a difference that can be clinically differentiated by 
diagnostic radiologists. While this data is preliminary, it implies 
that there is a fundamental density change that occurs in tissue 
during heating which can be measured using CT thermometry. 
 
Index Terms—Computed tomography, Thermal Ablation, CT 
Thermometry  

I. INTRODUCTION 
Percutaneous thermal ablations have become increasingly 

popular interventions to treat a wide range of pathologies, 
including liver, renal, lung, and soft tissue/bone disease [1]. 
There are multiple heat-based modalities in use, including 
microwave ablation (MW), radiofrequency ablation (RFA), 
laser ablation, and high frequency ultrasound (HIFU). These 
methods take advantage of coagulative necrosis, which occurs 
at approximately 55°C. Imaging guidance is critical in the 
delivery of thermal ablation treatments. Among the many 
imaging modalities, X-ray computed tomography (CT) is 
often preferred. 

Current assessment of the ablation zone is based on 
manufacturer guidelines and differs depending on modality, 
manufacturer, specific probe being used, number of probes, 
and duration of burn. In the majority of cases, manufacturers 
predict ablation zones from ex vivo studies, which do not 
consider vascular perfusion or tissue type. Individual patient 
variables, such as the tissue type being ablated, tumor 
composition, and variances in clinician’s technique, are not 
accounted for.  

The inability to determine the true margin of the ablation 
zone is a major limitation of thermal ablation. For example, 
while MW ablation is up to 98% effective in the treatment of  
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hepatocellular carcinoma (HCC) in tumors smaller than 2 cm, 
it is less effective in the treatment of larger tumors [2]. 
Incomplete ablation has been shown to precipitate local 
recurrence of cancer, resulting in the need for multiple 
procedures and increasing both the morbidity and mortality of 
the disease [2, 3]. Reliable evaluation of intraparenchymal 
temperature changes is critically needed to refine thermal 
ablation and decrease post-procedural morbidity.  

Researchers have investigated multiple approaches to 
better identify ablative zones, however none have provided a 
lasting solution. While heat-mapping has been explored in 
MRI [4] and quantitative ultrasound (US) [5], there are 
significant limitations associated with each modality which 
have prevented widespread clinical implementation. CT would 
be the preferred method for peri-procedural heat-mapping in 
thermal ablation as it is the modality already utilized for 
percutaneous probe placement. CT monitoring of temperature 
changes is viable because the linear attenuation coefficient of 
X-rays depends on mass density, which changes with 
temperature. For example, consider water: as it approaches 
boiling, it becomes less dense relative to colder water, and 
thus has a lower attenuation [6, 7]. This is in concert with the 
clinical CT findings seen in scans taken following thermal 
ablation, which show predictable differences in parenchymal 
attenuation [8].  

Despite its potential to monitor temperature changes and 
thereby successful thermal ablation, CT thermometry is 
currently not a developed imaging tool. Our long-term goal is 
to remedy this important clinical deficiency. As part of this 
effort, in this work, we report on a study that tests the 
hypothesis that a reliable, clinically significant decrease in 
attenuation can be seen in water heated from body temperature 
(36°C) to the temperature at which cell death occurs (above 
55°C).  We hypothesize that the density changes that occur in 
water with increasing temperature will create reliable 
attenuation changes seen on CT.  

II. EXPERIMENTAL SETUP 
Four bottles of water were stacked in a 2 x 2 arrangement 

as shown in Figure 1a. The water inside the bottles was 
initially heated to 75°C and then passively cooled to 30°C. 
This temperature range was chosen as it spans from the 
temperature of the human body, 36°C, to the excess 
temperature of 55°C, above which coagulative necrosis 
occurs. The temperature in each bottle was measured using 
independent probes that each had a degree of accuracy of +/- 
0.5°C, as seen in Figure 1b. 

Early investigation of CT thermometry as a tool 
to monitor the ablation zone during thermal 

ablation therapy 
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To assess the changes in the attenuation value of water over 

time as it cooled, the arrangement of bottles was placed within 
the bore of a diagnostic CT scanner. CT scans were taken after 
every 2°C temperature decrease until our full temperature 
range was obtained. The settings for the CT scans were 120 
kV and a routine abdominal protocol.  

DICOM files corresponding to 5 mm thick reconstructed 
slices with smooth ramp filter kernel typically used for soft 
tissue were processed using MatLab (MathWorks). A 
representative central slice passing through the four bottles 
was chosen. Within this slice, we selected an 81 x 81 region of 
interest within each bottle for analysis. This is demonstrated in 
Figure 2.   
 

 
 

Fig. 2. CT slice selected through the four bottles with an 81 x 81 
region of interest marked as a black square in each bottle. These 
regions of interest were used to assess the mean attenuation 
coefficient as a function of temperature. 

III. EXPERIMENTAL RESULTS 
Figure 3 shows the evolution of the CT slice through the 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
four bottles over time as observed in Hounsfield units (HU). 
Figure 4 shows the result of our analysis of the observed 
attenuation values as a function of temperature.  

As can be seen in Figure 4, at 73°C (the temperature 
measured during the initial CT scan), the attenuation of water 
was -24.6 ± 0.4 HU. As the water cooled to 33°C (the 
temperature measured during the last scan), the attenuation 
increased to -5.0 ± 0.6 HU. The measurements were consistent 
across all 4 bottles. A linear model was fitted to all 
measurements; the R2 value for this fit was 0.98, implying 
strong linear dependence. Using the model, we assess an  
11.52 HU change is measurable between 36°C and 60°C. 
More precisely, using the Student distribution with 88 degrees 
of freedom, we obtain the following 95% confidence interval 
for the change in HU: 11.21-11.84.  

IV. CONCLUSION 
In this study, we showed that there is a measurable decrease 

in CT attenuation between body temperature and 60°C, the 
temperature at which cell death is guaranteed. Moreover, the 
observed 11.52 HU change in attenuation can be clinically 
differentiated by radiologists as demonstrated in Figure 3, 
indicating that parenchymal changes due to heating could be 
measured using CT.  

Our current analysis has not assessed the radiation 
exposure required to successfully assess CT attenuation 
changes with temperature. Future work is needed to determine 
the minimum amount of radiation exposure required to detect 
changes of 10-12 HU for lesion sizes as small as 10 mm. 
Although radiation exposure is always a clinical concern, we 
note that the potential stochastic risks are outweighed in the 
targeted patient population, which primarily consists of 
patients receiving thermal ablation treatment for malignancies 
without other curative or palliative treatment options.   

Future investigations into CT thermometry will also be 
aimed at exploring the effects that heating has on density 
changes in animal and human tissue. In particular, we plan to 

Fig. 1. (a) Arrangement of bottles with heated water. (b) Positioning of independent thermometers used to monitor temperature changes within each 
bottle. To monitor changes in the attenuation coefficient as a function of temperature, the bottles were placed within the bore of the CT scanner. 

(a) (b) 
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further explore the utility that CT has in evaluating 
temperature changes in ex vivo animal models, in in vivo 
animal models, and ultimately prospectively comparing 
proven ablation zones with intra-procedural findings in human 
subjects.   

Reliable evaluation of the ablation zone using CT 
thermometry will allow for more accurate cancer therapy and 
decrease the increased morbidity and mortality associated with 
cancer recurrence and the need for multiple therapies.  

 

 
 

Fig. 4. Mean attenuation values as a function of temperature as 
measured within each bottle. Linear fitting was applied to all 
measurements as reported within the figure.  
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Fig. 3.  CT reconstruction of the four bottles as a function of time. The time increases (and thus the temperature decreases) from row to row starting 
from the top row, and from left to right within each row. Grayscale window: [-35, 15] HU.  
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Volume-of-interest CT imaging with dynamic
beam filtering using multiple aperture devices

Wenying Wang, Grace J. Gang, Andrew Mao, Alejandro Sisniega, Jeffrey H. Siewerdsen, and J. Webster Stayman

Abstract—Interior tomography is promising approach for
retaining high quality CT images within a volume-of-interest
(VOI) while reducing the total patient dose. A static collimating
filter can only image a centered symmetric VOI, which requires
careful patient positioning and may be suboptimal for many
clinical applications. Multiple aperture devices (MADs) are an
emerging technology based on sequential binary filters that can
provide a wide range of fluence patterns that may be adjusted
dynamically with relatively small motions. In this work, we
introduce a general approach for VOI imaging using MAD-
based fluence field modulation (FFM). Physical experiments
using a CT test bench are conducted illustrating off-center
x-ray beam control for imaging the spine in an abdominal
phantom. Image quality and dose metrics are computed for
both standard full-field CT and VOI CT. We find that the
image quality within the VOI can be preserved for VOI CT
with a significant drop in integral dose as compared with a
standard full-field protocol.

I. INTRODUCTION
X-ray CT is widely used for diagnosis, disease monitor-

ing, and in interventional procedures. However, increased
usage has raised concern about excessive radiation exposure.
In many CT applications, only a limited volume is required
for assessment. For example, target positions are generally
known in single-organ studies (e.g. cardiac imaging) and
in interventional procedures focused on particular sites (e.g.
spine imaging). Despite the need for only local structural
information, CT scans routinely cover the entire lateral
extent of the patient. Volume-of-interest (VOI) scanning
gives the opportunity to spare dose to surrounding tissues,
while providing the information required inside the VOI [1].

Implementing VOI imaging can be challenging for arbi-
trary VOIs. Many VOI studies have used static collimation to
restrict the X-ray beam width [2], or static zonal filtering to
decrease the fluence intensity outside the VOI [3]. However,
these methods can only collect centered, cylindrical VOIs
(using standard source-detector trajectories) limiting practi-
cal application. Several attempts have been made to increase
versatility in VOI imaging. Kolditz et al. took advantage of
mobility of C-arm CT system and realized non-centered VOI
imaging [4]; and dynamic collimation has been applied to
achieve adaptable fluence patterns with off-centered VOIs.
[5]

In previous work, we introduced a novel filtering scheme
using fine-scale binary filters called multiple aperture de-
vices (MADs) [6]. In this scheme, two MADs are used in
series. Translations of the dual-MAD filtering system as

Department of Biomedical Engineering, Johns Hopkins University.
email: web.stayman@jhu.edu.

a whole shifts the peak of the incident beam and small
relative displacements between two components changes
the width of transverse fluence profile. This new filtering
system provides the capability for sophisticated fluence-
field modulation (FFM) based on the specific imaging task.
In this work, we present a dual-MAD trajectory design
for an arbitrary VOI imaging task. VOI CT acquisition is
conducted on a CT bench and truncated projection data are
reconstructed using an extrapolation-based method. Image
quality and dose are assessed for both standard full-field CT
and MAD-based VOI CT. Dose is estimated using Monte
Carlo simulation, bare-beam fluence measurements, and an
estimated phantom density map.

II. MATERIALS AND METHODS

A. Filter Trajectory Design for arbitrary VOI
MADs-based FFM provides much flexibility for general

VOI imaging. We will describe the desired VOI using a 3D
binary mask, mVOI, where voxels within the VOI have value
1, and outside the VOI are 0. Furthermore, let mVOI ∈ RN be
a column vector with N denoting the total number of voxels
in a full-field image volume. At each projection angle θ, a
detector pixel mask associated with the VOI projection area
is

g(θ) = Θ{A(θ)mVOI > 0} (1)
where A(θ) ∈ RP×N is the system matrix at projection
angle θ (with P being the total number of pixels on detector.)
The logical operator, Θ{·}, returns 1 if the argument is true
and 0 if false. Thus, g(θ) ∈ RP is the binary mask describing
the data required to reconstruct the VOI. (We note that such
data is not generally mathematically complete [7].)

Current MAD-based FFM has focused only on modulation
of the X-ray beam in the transverse direction (along the
detector). We denote g(θ) reshaped to a 2D mask corre-
sponding to the face of the detector as Gθ(u, v) ∈ RU×V
(where u and v are detector coordinates in the transverse and
transaxial directions, respectively; U /V denote the number
of detector column/rows on the detector panel; and P =
U × V ). Thus all column indices required for obtaining a
desired VOI (illustrated in Fig. 1) may be written as

{uVOI}(θ) = {u|
∑
vGθ(u, v) > 0}. (2)

To find the optimal actuation of MAD filters for VOI
imaging, we consider two requirements: 1) Maximize the
fraction of fluence transmitting through VOI region. And, 2)
constrain the minimum filter transmissivity passing through
the VOI region to be no less than some threshold fmin. (E.g.,
There is some minimal level of fluence required to obtain
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Fig. 1: MAD-based VOI scan diagram and notation:
{uVOI}(θ) is defined as a set of detector indices based on
projection of the VOI at each projection angle θ; the incident
fluence to {uVOI}(θ) is constrained to be above fmin.

useful images in the VOI.) Mathematically, we may then
write full FFM objective function as

(t̂0, t̂1)(θ) = arg max
(t0,t1)∈Tθ

∑
u∈{uVOI}(θ) f(u; t0, t1)∑

u f(u; t0, t1)
, (3)

Tθ = {(t0, t1)| min
u∈{uVOI}(θ)

f(u; t0, t1) > fmin}. (4)

where f(u; t0, t1) denotes all fluence field patterns (a func-
tion of u) achievable from the dual-MAD system which is
controlled through two actuation parameters: t0, the transla-
tion of MAD0, and t1 the translation of MAD1 relative to
MAD0. That is, the parameter pair (t0, t1) defines the flu-
ence profile f(u; t0, t1) which is determined experimentally
through a pre-calibration using an exhaustive sweep through
varying (t0, t1).

The above optimization is complicated by the periodic
nature of f(u; t0, t1). That is, the MAD filters themselves
are quasi-periodic which means that fluence patterns will
repeat for motions on the order of one MAD period. To avoid
difficulties in optimization and to enforce actuations with rel-
atively small displacements between two acquisition frames,
we make the following modifications. Given a circular orbit,
the projection of VOI center may be approximated by a
sinusoidal curve. Thus, we perform an initial optimization
using (3) and (4) and then perform a sinusoidal fitting t̃0(θ)
to t̂0(θ). Subsequently, we perform a second optimization,
constraining the final displacements t̂fit

0 to be close to the
sinusoidal approximation, with

(t̂fit
0 , t̂

fit
1 )(θ) = arg max

(t0,t1)∈T fit
θ

∑
u∈{uVOI}(θ) f(u; t0, t1)∑

u f(u; t0, t1)
, (5)

T fit
θ = {(t0, t1) ∈ Tθ : |t̂fit

0 (θ)− t̃0(θ)| < ∆t}. (6)
In our test-bench experiments, we select fmin = 0.2 and

∆t = 0.1 mm (this is small relative to the MAD period of
0.9 mm).

B. Truncated CT reconstruction

Projection data acquired using MAD filters require careful
calibration for a number of physical effects. This includes
sensitivity to focal spot changes and spectral effects. A
modified forward model is employed to account for these
effects. Specifically,

ȳ(θ) = gI0gDgM (θ)e−α(θ)l (7)
where gI0 is the emitted X-ray fluence strength distribution,
gD is the detector sensitivity map, and gM (θ) is the designed
MAD modulation profile (including calibrations for focal
spot positioning). To compensate for spectral effects, we
estimate a first-order spectral correction term α(θ) from
variable thickness slabs, which may be applied as a data
correction (much like ray-based beam hardening correc-
tions). Inverting the above forward model [8], we compute
a sinogram l(u(θ), v, θ) from noisy measurements y.

Since VOI data is highly truncated, direct FDK recon-
structions suffer severe artifacts within the ROI. Here we
extrapolate the sinogram along the transverse direction using
a quadratic model [9] to alleviate the influence of truncation
within the VOI. Specifically, for each line integral profile
on the vth row at one projection angle θ, extrapolations are
performed on each truncated side independently,

lext(u) = α(u− u0(θ))2 + β(u− u0(θ)) + γ (8)
where u0 is the index of the nearest truncation point.
Assuming continuity at the truncation point (u = u0) and
l = 0 at the detector boundary u = ub, and we derive

β(v, θ) =
∂l(u, v, θ)

∂u
|u=u0(θ), (9)

γ(v, θ) = l(u0(θ), v, θ), (10)

α(v, θ) = −β(v, θ)(ub − u0(θ)) + γ(v, θ)

(ub − u0(θ))2
. (11)

With noisy line integral profiles, β(v, θ) and γ(v, θ) are
estimated with a local linear regression. Extrapolated line
integrals are enforced to be non-negative, and are used as
a direct input into a standard FDK algorithm to reconstruct
the VOI.

C. Experiment Setup

To investigate the MAD-based VOI imaging feasibility,
experiments were conducted on a cone-beam CT test bench
with dual MAD filters (Fig. 2a). A circular region around
the spine in a QRM abdomen phantom (Fig. 2b) is chosen as
the VOI. Note that MAD-based fluence field patterns allow
for control of beam width, permitting noncircular VOI.

In addition to MAD-VOI scans, reference “high”-dose
and low-dose scans without the MAD filters are acquired
for comparison. In each scan, 720 frames are acquired in
a single rotation with constant angular steps. Experiments
were performed at 100 kVp, 35 mA. For the high-dose and
low-dose scans, pulse widths of 18.2 ms and 3.2 ms were
used, respectively. This corresponded to an incident fluence,
I0, of 8.1 × 105 photons per pixel and 1.58 × 105 photons
per pixel for the high- and low-dose scans, respectively
(estimated based on bare-beam variance measurements).
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Fig. 2: a) Test bench experiment setup. b) Abdomen QRM phantom. c) Photograph of manufactured dual MADs. [10]

MAD-VOI acquisition used the same tube settings as the
high-dose scan. After appropriate gain-correction and con-
stant scatter correction (with single scatter-to-primary-ratio
tuned to remove the cupping artifact), Feldkamp (FDK)
reconstruction was performed with a Hamming window, 0.4
Nyquist frequency cutoff, and a 120×120×10 volume with
cubic 0.5 mm voxels.

For MAD-VOI and low-dose experiments, we used
Monte-Carlo simulation to estimate the dose distribution.
[11] The input fluence fields were acquired using bare-beam
measurements scaled by the estimated I0 values. Contrast-to-
noise ratios and dose are reported for all three experiments.

III. RESULTS

A. Filter Trajectory Design

The estimated filter trajectory based on the proposed
optimization for the spine VOI is shown in Fig. 3a. The blue
dashed line shows the MAD0 translations at each projection
angle, and the red curve shows the MAD1 translation relative
to the MAD0 position. This designed trajectory results in the
bare-beam dynamic fluence-field modulation shown in Fig.
3b.

As the long axis of QRM phantom is 300 mm, the
full projection data will occupy over 90% of the detector

transversely. In contrast, the diameter of the VOI is only
60 mm, ∼1/5 of the long axis size. The designed modulation
profile only illuminates ∼1/4 of the detector with filter
transmissivity larger than 20% suggesting a good match with
the design objective.

The VOI in this study is cylindrical and off-center. Thus,
the x-ray beam center is shifted sinusoidally along with
the axial center of the VOI. The width of beam is nearly
constant over projection angle. Relative translation between
the two MADs is required even for constant width designs
due to obliquity effects that narrow beam profiles with an
off-centered MAD0.

B. Image quality analysis and dose calculation
MAD-VOI was processed according to the modified for-

ward model (7) with extrapolation to approximate a complete
sinogram (Fig. 4a). FDK reconstruction of the VOI for full-
field high-dose, full-field low-dose, and MAD-VOI scans are
shown in Figures 4b, 4c, 4d, respectively. The noise distri-
bution was estimated by computing the standard deviation
over 10 (axial) slices and are shown in Figures 4e, 4f, 4g.
We observe that the MAD-VOI reconstruction has lower
noise than full-field low-dose result, and the CT number bias
appears smaller. The MAD-VOI reconstruction has some
mild structured noise and ring artifacts. We conjecture that

Fig. 3: a) Estimated actuation trajectories for MAD-VOI acquisition. b) Measured bare-beam fluence for the off-center
VOI.

The fifth international conference on image formation in X-ray computed tomography 215



Fig. 4: a) Central slice extrapolated sinogram. The truncated data is marked in red, while the extrapolation region is marked
in blue. Upper row: FDK reconstructions of the VOI in the: b) Full-field high-dose scan; c) Full-field low-dose scan; and
d) MAD-VOI scan. Bottom row: e)-g): Reconstruction noise based on the standard deviation over 10 slices.

Fig. 5: Absorbed dose distribution in the a) full-field low-
dose scan and the b) MAD-VOI scan. For optimal display
effect, the colormap is shown in log-scale.

these residual imperfections are due to errors in the MAD
gain correction process.

The QRM phantom provides uniform regions in “spinal
bone” and “soft tissue” interior to the spine. We computed
the contrast-to-noise ratio (CNR) between these two tissues
divided by noise in the background.

CNR =
µbone − µsoft-tissue

σbackground
(12)

The results of the Monte Carlo simulation of dose dis-
tribution maps in MAD-VOI and full-field low-dose scans
are shown in Fig. 5. In the MAD-VOI scan, the dose is
accumulated more highly in the VOI rather than the more
even distribution along peripheral tissues in the full-field
scan.

CNR, integral dose and dose accumulated exterior to the
VOI estimates for all methods are summarized in Table I.
Note that the integral dose in MAD-VOI scan is reduced
by 40% while the CNR is not decreasing (as compared
with the low-dose scan). Also note that while the (reference)
high-dose scan and the MAD-VOI scan used the same x-ray
technique, the dual-MAD filter transmissivity peaks around
40% and one should not expect to achieve the same CNR.
The comparison between the full-field low-dose and MAD-

VOI scans suggests that MAD-VOI has the potential to retain
high quality VOI images while reducing integral dose.

TABLE I: CNR and Integral Absorbed Dose

Experiment CNR
Dose (mGy)

Outside VOI In VOI Total
High-dose full-field 7.27 29.3 2.87 32.1
Low-dose full-field 2.73 5.71 0.556 6.27

FFM-VOI 2.90 2.72 0.784 3.51

IV. DISCUSSION

In this work, we apply novel MAD-based FFM to VOI
CT imaging. These dynamic filters can tailor the beam width
and center for non-centered and irregular-shaped VOIs (to
be explored additionally in ongoing studies). A preliminary
bench-top study on a QRM phantom shows that MAD-
VOI imaging retains good image quality while significantly
decreasing the integral dose as compared with full-field
exposures.

These preliminary studies focused on relatively simple
extrapolation-based FDK for truncated data. Future work
will employ more sophisticated (e.g., Hilbert-transform
methods [7] [12] and model-based reconstruction [13]).
Similarly, ongoing studies are considering combination of
fluence-field modulation and tube-current modulation for
additional control of dose and image quality. Other future
work includes the development of new MAD filters for more
varied fluence patterns including bimodal beam patterns
and profiles that are peaked but non-zero outside a region
of interest. Such patterns may facilitate more sophisticated
scans including two disconnected VOIs (e.g. lungs, kidneys)
and untruncated scans with two dose/image quality levels
inside/outside a specified VOI [14].
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Extrapolation of Truncated C-arm CT Data using
Grangeat-based Consistency Measures

Daniel Punzet, Robert Frysch and Georg Rose

Abstract—A common key problem of cone-beam computed
tomography (CBCT) is the reconstruction of tomographic images
from incomplete projection data. The issue of acquired data sets
containing only a part of the patient’s projection is referred to
as truncation. Truncation occurs when the irradiated scan field
of view (SFOV) is constrained to not contain the whole patient
but only a limited volume-of-interest (VOI). VOI imaging is a
technique mainly used as a means of patient dose reduction,
typically in an interventional scenario. The truncated data gives
rise to image artifacts in the reconstructed images, though,
decreasing the effectively usable VOI and degrading image
quality in general. A typical strategy to counter these is the
extrapolation of the measured region by some smooth function
or by incorporating other a-priori information. In this work we
propose an extrapolation algorithm based on optimization of
data consistency conditions (DCCs) which can be obtained from
Grangeat’s fundamental relation. Our aim is to demonstrate the
suitability of Grangeat-based consistency measures for truncation
problems. To support the optimization we further incorporate
available a-priori information into the choice of an appropriate
extrapolation model. Our preliminary results show that an
improvement in reconstructed image quality is achieved even
for less-than-optimal extrapolations.

I. INTRODUCTION

With the rising acceptance of C-arm-based cone-beam CT
(CBCT) systems, a key problem of CBCT remains to be
the reconstruction of tomographic images from incomplete
projection data. The issue of acquired data sets containing only
a part of the patient’s projection is referred to as truncation.
Truncation occurs when the scan field of view (SFOV) is
constrained to not contain the whole patient, but only a
limited volume-of-interest (VOI). This technique is called VOI
imaging and is commonly used as a means of patient dose
reduction. VOI imaging is typically applied for intraoperative
3D imaging during locally constrained interventions. Besides
in VOI imaging, truncation can generally occur due to the
limited detector size of C-arm based CT systems. The trunca-
tion of the projection data leads to ring-like cupping artifacts
and degraded contrast in the reconstructed images, though,
reducing the effectively usable VOI and image quality in
general.

A typical strategy to counter these artifacts is the ex-
trapolation of the truncated projection data. For truncation
problems in conventional (2D) CT many different strategies
have been proposed, ranging from simple data mirroring [1]

D. Punzet, R. Frysch and G. Rose are with the Institute for Medical
Engineering, Otto-von-Guericke University, Magdeburg, Germany and also
with the Forschungscampus STIMULATE, Otto-von-Guericke University,
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and water cylinder extrapolation [2] to the use of the Helgason-
Ludwig consistency conditions (HLCC) [3]. For cone-beam
CT, there also exists a data consistency condition (DCC) based
on the fundamental relation of Grangeat. So far, this DCC
has mainly been used for motion compensation [4], beam-
hardening correction [5] and detector calibration [6].

In this work we investigate the suitability of the Grangeat
data consistency measure for use in truncation problems. First
we introduce a consistency measure based on the Grangeat
DCC and investigate the general effect of truncation on this
measure. Furthermore we propose an algorithm that utilizes
a-priori information about the intervention to extrapolate the
truncated data with a simple extrapolation model which is then
optimized regarding the Grangeat-based consistency measure.
Finally, some resulting reconstructions are presented in order
to evaluate the achievable image quality enhancement.

II. METHODS

A. Grangeat-based consistency measures

The 3D Radon transform is an extension of the 2D Radon
transform which instead of rays integrates over planes. Given
the volume f(r) (r ∈ R3) to be imaged, the 3D Radon
transform is defined as

R3(n̂, ξ) :=

∫∫∫
R3

f(r)δ(r · n̂− ξ) dr := Γ(n̂, ξ) . (1)

Here, (n̂, ξ) parametrizes a plane by its normal unit vector n̂
and its distance ξ to the origin of the patient’s world coordinate
system. δ denotes the Dirac delta function.

What is measured in a CBCT acquisition is called the X-
Ray transform. It is defined by

X (Ci, m̂) :=

∞∫
0

f(Ci + m̂λ) dλ := gi(m̂) . (2)

With Ci being the i’th position on the x-ray source trajectory
lying in the plane given by (n̂, ξ), which in the following will
be assumed a circular trajectory. And m̂ ∈ S2 pointing in the
direction of a ray starting from Ci.

Grangeat’s fundamental relation formulates a connection
between the 3D Radon transform over planes and the X-Ray
transform along rays via the intermediate function [7] [8]:

Si(n̂) := −
∫
S2

dm̂δ′(m̂ · n̂)gi(m̂) =
∂

∂ξ
Γ(n̂, ξ)|ξ=Ci·n̂ .

(3)
In the context of projective geometry, this has also been
derived under the name of epipolar consistency (ECC) in [9].
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f(r)
Γ(n̂, ξ)

gi(m̂)

Ci

VOI

gj(m̂)

CjBij

Fig. 1: Fan of Radon planes around the base line Bij and
corresponding cone-beam projections of 2 source positions Ci

and Cj in a VOI imaging scenario with transversal truncation.
In the case of transversal truncation, the support of f(r) (dark
gray) is still completely included in the Radon plane (gray),
but not in the limited field of view of the line integrals of the
cone-beam projections (blue). Therefore the line integrals on
the intersection of the detector and the radon plane (orange)
differ between the 2 projections.

Grangeat’s relation shows that the intermediate function de-
pends only on the Radon plane (n̂, ξ) and that it can also be
identified as a line integral on the cone-beam projections from
a corresponding source position Ci. Since we assumed circular
source trajectories, there always exists another source position
Cj in the same plane, which therefore, following Grangeat’s
relation, results in the same intermediate function

Si(n̂) = Sj(n̂) . (4)

This redundancy, however, only holds as long as no transver-
sal truncation occurs, since in the presence of transversal
truncation the support of f(r) is still included completely
in the integral over the Radon plane, but not in the cone-
beam projections (see Figure 1). For planes that are very far
from the central plane (indicated as dashed in Fig. 1), also
axial truncation becomes relevant, especially for increasingly
orthogonal pairs of projections. With increasing truncation
the mismatch Si(n̂) 6= Sj(n̂) also increases. Therefore, the
difference |Si(n̂) − Sj(n̂)| or similar measures can be used
as a consistency measure between a pair of projections. For
the extrapolation algorithm proposed in the next section, we
decided to use the cross-correlation of Si(n̂) and Sj(n̂) as we
experienced this measure to be more robust.

B. Extrapolation of truncated projection data

The extrapolation procedure we propose takes the set of
truncated projections and tries to extrapolate them in the
projection domain with projections of an appropriate extrap-
olation model (for the choice of the extrapolation model see
section II-C). The parameter vector Ξ of the extrapolation
model is chosen by optimization with respect to the average
consistency measure between N pair-wise compared projec-
tions:

max
Ξ

1

N

N∑
i=1

N∑
j 6=i

ρij j = 2, 3, . . . , N

s.t. Ξ ∈ Ω .

(5)

Where ρij denotes the zero-normalized cross-correlation
(ZNCC) defined as

ρij :=
1

K − 1

K∑
k=1

(
Ski − Si
σSk

i

)(
Skj − Sj
σSk

j

)
(6)

and Ω being the space of all valid solutions, which is
constrained to include only models which roughly approximate
the human body parts they are supposed to model, e.g. a head.

Since the computation of the consistency measure is rather
expensive, the choice of the optimization algorithm is crucial.
We used an implementation of the differential evolution (DE)
algorithm [10] as we experienced it to be capable of effectively
searching the big space of possible solutions in this case,
giving reliable results. DE is a stochastic global optimization
based on evolutionary algorithms. However, more investigation
in the behavior of the optimization for the given problem is
needed and there is likely another algorithm to be found which
is suited better for the task at hand.

C. Incorporating a-priori information

In order for the optimization to succeed in finding the global
maximum, it relies on a good initial guess. To achieve this,
we focussed on the internal reconstruction problem, where the
VOI is completely embedded in the patient. This truncation
scenario is common for procedures like stent placement and
heart-catheter interventions. Typically, for this kind of inter-
vention the location and surroundings of the VOI are roughly
known.

We can now make use of this a-priori information to choose
a simple but appropriate extrapolation model based on the
location of the intervention, e.g. an ellipsoid to model the head
for stroke interventions, or a cylinder to model the thorax for
heart-catheter interventions.

For a simple, homogeneous ellipsoid extrapolation model
the optimization vector Ξ consists of 7 parameters:

Ξ := [x0, y0, z0, a, b, c, φ] . (7)

With x0, y0, z0 specifying the position of the ellipsoid center,
a, b, c the semiaxes and φ the rotation.

In order to reduce the space of possible solutions for the op-
timization, the absorption coefficient is not being optimized by
the algorithm. Instead, we introduce a smoothness-constraint
between the truncated projections and the extrapolation which
has to be satisfied. For this, the absorption coefficient of the
ellipsoid is chosen so that the average discontinuity in gray
values between truncated projections and extrapolation from
all evaluated projectional angles is minimal.

III. RESULTS

A. Examination of the consistency measure

The relationship between increasing transversal truncation
and the consistency measure is shown in Figure 3. For this,
we considered 2 different software phantoms. The modified
Shepp-Logan phantom and a thorax phantom which is part
of the TIGRE toolbox [11]. Orthogonal projections of these
phantoms are shown in Fig. 2. The curves in Fig. 3 are plotted
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(a) Shepp-Logan 0◦ (b) Shepp-Logan 90◦

(c) Thorax 0◦ (d) Thorax 90◦

Fig. 2: Orthogonal projections of the phantoms used with
constant axial truncation. Dimensions: 616 x 262 px. Gray
value windowing: [0% 100%]

for the different projections which have been considered for
the computation of the consistency measure.

The first observation that can be made is that the consistency
measure decreases with increasing transversal truncation no
matter which projections are considered for the consistency
computation. This indicates that the Grangeat-based consis-
tency measure is generally susceptible for truncation. How-
ever, the consistency measure derived from orthogonal projec-
tions shows the steepest decline in consistency for moderate
truncation (note that the phantom has not really been truncated
until roughly 150 px truncation for the thorax and about 80 px
for the Shepp-Logan phantom because less truncation basically
just removes the black surroundings of the phantom and not
much of the phantom itself). Whereas the effect of truncation
on the consistency calculated from projections from similar
angles (0◦ and 10◦) is largely negligible. This is not surprising
since neighboring projections are redundant to a high degree
as their SFOVs cover largely the same area of the phantom,
whereas orthogonal projections generally contain the highest
amount of additional information to be considered by the DCC
since they share a smaller common SFOV (compare Fig. 1).

Observe also, that the consistency measure has several local
maxima for strong truncation of the Shepp-Logan phantom.
This can be explained by the symmetrical properties of the
Shepp-Logan phantom as DCCs are generally known to not
be suited well for highly symmetrical objects.

B. Performance of the extrapolation procedure

Figure 4 shows some results obtained with the proposed ex-
trapolation procedure for the, regarding the consistency curves,
demanding Shepp-Logan phantom (128 x 128 x 128 voxels).
The results shown were obtained over 5 DE-iterations with an
initial population of 70 parents. For the extrapolation model we
assumed a homogenous ellipsoid as described in section II-C
to approximate the overall shape of the Shepp-Logan phatom.
The consistency was computed by pair-wise comparing projec-
tions from 0◦, 45◦, 90◦ and 135◦. The resulting extrapolated
projections were reconstructed iteratively via an Algebraic
Reconstruction Technique (ART) since it is supposedly less
susceptible to truncation than FDK.
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Fig. 3: Examination of the consistency measure for increasing
transversal truncation. The truncation is given in total amount
of pixels of transversal truncation. Additionally, the phantoms
possessed a constant axial truncation to model a more realistic
scenario.
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(d) Cross-section profile of Fig. 4b

Fig. 4: Reconstructions from truncated projections with and
without extrapolation including corresponding cross-section
profile plots (yellow line in the reconstruction). The ground
truth is shown in red for comparison. The central slice of the
reconstruction is shown. Gray value windowing: [0% 100%]

Observe how the optimized ellipsoid does not exactly match
the boundaries of the phantom which is barely visible in
the background and therefore also appears a bit too bright.
However, the improvement to image quality inside the VOI is
clearly visible. Especially the bright ring-artifact surrounding
the VOI is mostly reduced. This allows to identify the limit
of the left ellipsoid inlet of the phantom near the border of
the VOI in Fig. 4b which is not identifiable in Fig. 4a. Also
the contrast of the different inlets of the phantom is increased
(compare the profiles in Fig. 4c and 4d). Since the optimized
ellipsoid is also visible in the reconstruction, the region outside
of the VOI has to be considered with care to not mistaken the
ellipsoid for the imaged phantom.

Figures 5 and 6 show the performance of the extrapolation
with and without noise added to the truncated projection data.
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(a) Projection 0◦ (clean) (b) Projection 90◦ (clean)

(c) Projection 0◦ (noisy) (d) Projection 90◦ (noisy)

Fig. 5: Exemplary extrapolated projections of clean and noisy
projection data from orthogonal source positions. Gray value
windowing: [0% 100%]

(a) No extrapolation (clean) (b) Extrapolation (clean)

(c) No Extrapolation (noisy) (d) Extrapolation (noisy)

Fig. 6: Reconstructions from truncated and extrapolated
projections with and without added noise. The associated
clean/noisy projection data is shown in Figure 5. Gray value
windowing: [0% 100%]

The noise is clearly visible in the projections in Figure 5c
and 5d. Note that the extrapolations shown resulted from
two independent optimization runs. Both extrapolations match
well, which indicates the algorithm’s robustness against noise.
However, looking at Figures 5 and 6 the algorithm’s tendency
to favour ellipsoids with a low eccentricity becomes apparent.

IV. DISCUSSION AND CONCLUSION

In this paper a novel extrapolation method for truncation
problems based on Grangeat-based DCCs is introduced. The
behavior of the resulting consistency measure has been inves-
tigated and shown to be susceptible for transversal truncation
even in the presence of constant axial truncation and also
for phantoms with high symmetric properties like the Shepp-
Logan phantom. The reconstructions indicate a slight increase
in image contrast and a good cancellation of the ring-artifact

typical for truncation. The quality of the approximation of the
real phantom boundary by the extrapolation model still needs
to be improved, though. This is likely due to the secondary
maxima shown in Fig. 3.

Further enhancements can be made to the choice and
weighting of projections for the computation of the consis-
tency measure and to the optimization itself. Furthermore,
more sophisticated extrapolation models based on empirical
studies of body-part measurements are thinkable to overcome
the limitations of purely homogenous extrapolation models.
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Analysis of Tomographic Influences on the Surface
Definition in Industrial X-Ray Computed

Tomography
Dierck Matern and Frank Herold

Abstract—In X-ray computed tomography (CT), the surface is
defined by different grey values in the tomographic reconstruc-
tion [1]. This surface therefore is influenced by any disturbances
that may alter the voxel data. However, many applications,
especially metrology [2], rely heavily on the surface definition.
Distances are measured between the edges or coordinates defined
by the surface. If the voxel information changes, this surface may
alter, too, leading to false proportions of the object. In this work,
an analysis method for the edges is proposed as a qualification
method.

I. INTRODUCTION

Lately, dimensional metrology has been applied to industrial
CT [3]. This is the study of the sizes of tested objects. For
example, in quality assurance in manufacturing of objects, one
may be interested if a drilled hole has the correct size, or if
different elements have the correct distance to each other [4].
CT has become popular for this task, because it is a non-
destructive method which can describe inner structures as well
as the exterior [5].

However, this technology has its limits because of its
physical nature. One shortcoming for this application can be
geometrical misalignments of the CT system [6], [7]. An
example of the projection geometry can be seen in Figure 1;
a misalignment is some unknown difference from this perfect
geometry. Other errors result from the cone-beam geometry
often used for this task [8], influences of the alignment of
the test object [9], or the drift of the X-ray focal spot [10].
Further, industrial X-ray sources usually do not provide a
monochromatic spectrum [11], and the different wavelengths
are absorbed and scattered differently [1], [12], [13]. This is
a non-geometrical error, but it influences the grey values of
the tomogram, meaning that it has influence on the surface
definition, and therefore on the dimensional measurement.

Several correction methods try to reduce these effects. For
example, in [9] and [13], the scattering kernel is estimated. In
[14], the influence of beam hardening effects on the dimen-
sional measurement are analysed, with inconclusive results.
The assumptions of beam hardening corrections are usually
applicable if there is only one material in the object, so this
is not a conclusive method, though.

Furthermore, reconstruction methods are necessary to ac-
quire the tomogram [15], [16]. This may also influence the
measurement, since it processes the raw data, which can be
lossy.

YXLON International GmbH, e-mail: {matern,herold}@hbg.yxlon.com

Fig. 1. Typical cone beam geometry. An object is rotated between the source
and the detector. Misalignments in this geometry can result in errors in the
dimensional measurements.

In Figure 2, results of the measurement of the sphere
distance in simulated data are shown. The determination of the
sphere distance error is a typical challenge in the dimensional
metrology [17]. The task is to measure distances of spherical
markers in a known geometry, see Figure 2, on the left
side. The errors with a simulated CT are shown on the
right hand side. Even though no scattering was included in
this simulation, the errors are biased and larger than zero.
Furthermore, the orientation of the gauge, which changes the
beam hardening, has little influence on these results [18].
Hence, the reconstruction algorithm, or the digital sampling
of the detector, seems to have influence on the dimensional
measurement. But their influence on the voxels is relatively
hard to measure, because of the lacking of a ground truth.

Recently, the surface has become of interest in the study
of the dimensional measurement in CT. In [19], the surface
is analysed in a perpendicular direction. However, this can
be used when the surface is smooth, as this methods analyse
relatively large chunks of the surface. In [20], the analysis is
performed on image quality parameters of the edges, that is,
the step from the material into the air. There, the error function
is fitted to the surface; this function is related to the Gaussian
distribution [21]. While this seems legit to smooth edges, it
holds certain disadvantages, especially if the edge is not very
smooth, and closer to an ideal step function.

One part of this work is introducing a generalization to
the normal function, the generalized Gaussian, to the problem
to describe the surface. Furthermore, a calculation of the
difference to this assumption is performed, which is the main
quality measure of this work. Hence, the measure predicts how
certain the edge can be found.
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Fig. 2. Sphere distance: typical benchmark for the dimensional measurement in industrial CT. A gauge with known (that is, calibrated) dimensions is scanned.
In this case, spherical markers of high absorbing material (ruby) are used (left). In the tomogram, the surface is extracted, and the distance between the centres
of the spheres are measured, and compared to the known values. On the right hand side, the error to the known values in an ideal geometry, with different
alignments of the gauge, are shown. Even though there are no misalignments in this simulation, the sphere distance errors are biased.

Fig. 3. Tested gauge in front of the used X-ray source. The gauge consists of
several ruby spheres. The X-ray source is a microfocus tube with transmission
target.

II. MATERIALS AND METHODS

The test object analysed in this study is a probe consisting
of several ruby spheres, see Figure 3. We scan this object in
different magnifications with the same X-ray parameters. The
part of the object we want to analyse are two spheres at the top-
most edge of the gauge. In other scans, obstructing materials
are included, either in the inside of the reconstructed volume,
or outside of it. Then, tomographic slices are extracted, and
the edge responses are analysed.

This is similar to the edge response function (ERF) as
discussed in the ASTM E1695 standard [22]. However, in this
standard, the ERF is used on the whole slice only, not in a
specific direction, and is not applicable in arbitrary CT scans.
The influence of the obstructing object can be very specific to
the direction.

A. Generalized Gaussian for Edge Response

The generalized normal distribution or generalized Gaussian
distribution is discussed lately as a generalization of the
well known normal distribution [21]. Because its statistical
properties are not discussed in this paper, the function is called
here a generalized Gaussian, so it is not used as a distribution.
In detail, let σ, p > 0, µ ∈ R. Then the generalized Gaussian
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the generalized Gaussian. The steeper the grey value step, the “pointier” the
curve becomes. This happens when the parameter p shrinks.

g is defined as

A(p, σ) =

(
σ2Γ(1/p)

Γ(3/p)

)1/2

,

g(x;µ, σ, p) =
p

2Γ(1 + 1/p)A(p, σ)
exp

(
−
∣∣∣∣ x− µA(p, σ)

∣∣∣∣p)
(1)

for all x ∈ R [23]. Note that for p = 2, this is the standard
normal distribution, hence the form of the edge is the same as
using the error function as in [20].

This can be used to define a quality measure for the edges.
Say a line profile, that is, a slice through the image of finite
length in an arbitrary direction, is set over an edge of a mono
material, from the inside to the outside. Then the negative
gradient of this line profile forms a curve similar to a bell, so
a generalized Gaussian is a suitable description. The steeper
the transition from the material to the outer regions of the
materials in grey values, the “pointier” is this gradient, so
p becomes smaller. In the extreme, the ideal transition, this
becomes a Dirac impulse.

Furthermore, surface definitions rely on the turning point
of the curve [24], that is, the maximum of the gradient. Since
this is inflicted by the symmetry of the flanks of this edge,
a comparison to a symmetrical function provides a robust
measure for the reliability.

In detail, this comparison is as follows. First, the line profile
is extracted from a tomographic slice, at the very surface of
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the sphere. This is long enough to include both material and
air, and orthogonally to the surface, approximately ten pixels
long. Then, the derivative is calculated, and a curve is fitted
to this result. The fit then is evaluated to provide a measure
of ambiguity.

Let the ith curve be defined as li with li(−1) is the limit in
the material, and li(1) the limit on the outside. Then the bell
shaped curve at t ∈ Ω = [−1, 1] is −δli(t). In praxis, this can
be calculated using a fitted polynomial [22]. Further, let ν be
a normalization of this curve with

s(f) =

∫
Ω

f(x)−min
Ω

(f)dx,

ν(f, x) =
f(x)−min

Ω
(f)

s(f)
. (2)

Then fitting a generalized Gaussian is a minimization problem

θ̂i ← min
θ

∫
Ω

|ν(−δli, x)− ν(g( · ;µ, σ, p), x)− a|dx, (3)

where θ = {µ, σ, p, a}, the offset a is a slack variable. Note
that this optimization is performed for lines individually, hence
a set for each analysed direction is computed.

Furthermore, we are interested in the suitability of the curve
model, and therefore reliability of the surface definition. For
this, the Kullback-Leibler divergence is used [25]. This is
defined as

KL(a||b) = −
∑
x∈Ω

a(x) · log

(
a(x)

b(x)

)
. (4)

This measure is used to define the difference between the
measured edge response and the best fitted generalized Gaus-
sian, that is KL(−δl̃i||g̃( · , µ̂, σ̂, p̂)), where the curves are
normalized to form a probability distribution on Ω, denoted
by the tilde.

III. EXPERIMENTS

The following analysis is performed with several CT scans
of the gauge as seen in Figure 3. The scans are in two different
magnifications, 13.3333 and 4.7059, and the distance between
focus and detector is 800mm. The X-ray source is set to
100kV and 30µA. In our experience, those are fairly common
parameters for industrial CT with the utilized microfocus tube,
see Figure 3.

Several scans for each case are used, with and without
obstructing objects, which obfuscate the gauge in several
angles. Furthermore, the spheres obfuscate each other.

After the reconstruction, a slice is extracted, see Figure 5 for
an example. At the edges, in 720 equally spaced directions,
orthogonally to the edge, lines are extracted, the curves are
fitted, and the Kullback-Leibler divergence is computed.

Examples for the curve fit, at two different angles, can be
seen in Figure 6. Those are extracted from the right slice
in Figure 5, upper left sphere. Even though it is the same
tomogram and even the same sphere, the results differ.

In Figure 7, an overview of the Kullback-Leibler divergence
for the whole edge can be seen. In the case without the
obstructing object, the effect is rather low, but still measurable.

Fig. 5. Slices through the reconstruction of the gauge where the edge is
evaluated, without (left) and with (right) obstructing object, located at the
right side in this view. Magnification is 13.3333.
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Fig. 6. Sample of a fitting edge (left) and an edge where the curve fitting
results in a large difference (right). In the latter case, the Kullback-Leibler
divergence is higher by several magnitudes. Curves from the same slice as in
Figure 5, right side; θ = 0 is oriented to the right, the angle is in positive
direction.

That is, the effects of the neighbour sphere can be seen from
-10 degrees (350 degrees) to 40 degrees and from 170 degrees
to 220 degrees. Referring to the slice, as this represents the
upper sphere, this is where the tangents from the lower sphere
touch the upper one. The disturbances are still present at lower
magnification, see Figure 8.

In the cases where the object is obstructed, the signal
around the sphere is noisier. While the effects of the neighbour
sphere are still present, the object has much higher influence,
that is around 90 degrees and 270 degrees, respectively. This
behaviour is consistent throughout all of the measurements
performed in this study, also at different magnifications.
Hence, this measure is sensitive to disturbances, and therefore
is well suited to evaluate the ambiguity of the surfaces.
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Fig. 7. Kullback-Leibler divergence over the full circle at magnification
13.3333. Without (left) and with (right) obstructing objects in the scan.
The influences of the spheres onto each other are measurable, but low. The
obstructing object has clear effects on the divergence.

224 The fifth international conference on image formation in X-ray computed tomography



 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0  50  100  150  200  250  300  350

Ku
llb

ac
k-

Le
ib

le
r 

di
ve

rg
en

ce

Angle (degrees)

Angle-wise divergences

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0  50  100  150  200  250  300  350

Ku
llb

ac
k-

Le
ib

le
r 

di
ve

rg
en

ce

Angle (degrees)

Angle-wise divergences

Fig. 8. Evaluation at magnification 4.7059. The influence of the obstructing
object is much lower in this case (right), but still measurable. Left: measure-
ment without obstructing object.

IV. SUMMARY AND OUTLOOK

In this paper, we discussed a measure to evaluate edges
in reconstructions in industrial CT. A model for edges has
shown to be accurate for “good” edges. The experiments
show that the Kullback-Leibler divergence is an adequate
method to evaluate effects on the edge. Because this measure
evaluates the difference to the assumption on which the surface
estimation depends on, it is also a measure for the ambiguity
in this procedure.

There are two major directions in which this information
can be used. One is the evaluation of different models for
edges to find the most accurate one. As the divergence is
a measure of entropy [23], this follows the principle of
maximum entropy [26].

The other route is to use this measure to predict the
uncertainty of the real measurement [17], [27]. So far, the con-
nection between the ambiguity as measured with the Kullback-
Leibler divergence and this standardized information is not
well understood, that is, we cannot predict confidence intervals
from this measure.

In total, this measure provides a decent understanding of
the surface, and therefore is useful for a general overview
of the reliability of the length measurements. Hence, it is a
solid basis for both, the evaluation of edge definitions, and the
prediction of uncertainties. However, the surface of the gauge
is analysed in a similar way as the MTF. In the future, we
will study how the different measures for image quality rely
to each other to improve the understanding of the uncertainty.
The connection is especially interesting, because in this study,
the starting point is a (simulated) probing test as defined in
[17]. Hence, this might be a connection of those very different
quality measures.
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Dual-energy CT with Nanotube X-ray Source Array
for Security Scanning

Buxin Chen, Dan Xia, Zheng Zhang, Emil Y. Sidky, and Xiaochuan Pan

Abstract—Dual-energy CT can reduce the false alarm rate
of CT-based explosive detection systems, based on its ability
to recover spectral response of different material types and
thus differentiate explosives such as ANFO from water. On the
other hand, CT systems based upon nanotube X-ray tubes have
been considered for check-point bag screening. As the array of
focal spots in nanotube X-ray rube is individually controllable,
nanotube-based X-ray tube can be used for dual-energy CT
imaging, with focal spots in one tube alternately emitting low- and
high-kVp spectra. In this work, we investigate a dual-energy CT
setup based on 3 arc-shaped nanotube X-ray source arrays with
alternating low- and high-kVp focal spots. A simulation study has
been carried out with a digital dual-energy phantom. The results
suggest that the proposed dual-energy setup combined with the
optimization-based reconstruction method can accurately recover
the spectral responses of different material types and adequately
differentiate them from each other.

I. INTRODUCTION

Dual-energy CT may reduce the false alarm rate of CT-
based explosive detection systems [1], [2]. In single-energy
CT, explosives, such as ANFO (Ammonium Nitrate and Fuel
Oil), can have similar physical density with water, and thus
it can be challenging to adequatly differentiate ANFO from
water. In dual-energy CT, the effective atomic number of
the material can be estimated through the decomposition
model and used to better discriminate ANFO from water [1].
As a result, reduced false alarm rate can lead to increased
throughput of the checked luggage screening. On the other
hand, CT systems based upon nanotube multi-beam X-ray
tubes have been considered as a potential scan technique
for possible check-point bag screening [3] and small animal
imaging [4]. Such systems are usually stationary, without the
need to rotate X-ray tube. Also, the nanotube-based X-ray tube
contains array of focal spots, or X-ray firing positions, which
are individually controllable. As a result, the focal spots in one
nanotube X-ray source array can be programmed to generate
alternating low- and high-kVp spectra, achieving dual-energy
scanning. In this work, we investigate a dual-energy CT setup
based on the nanotube X-ray source array with alternating low-
and high-kVp-generating focal spots. A simulation study with
a digital dual-energy phantom is carried out, and the evaluation
focuses on the differentiation between two materials and the
recoveries of spectral responses of these two materials. Such
a study can reveal the potential of material differentiation and

B. Chen, D. Xia, Z. Zhang, and E. Y. Sidky are with the Department of
Radiology, The University of Chicago, Chicago, IL 60637, USA

X. Pan is with the Departments of Radiology & Radiation and Cellular
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possibly explosive detection by use of the proposed dual-
energy CT setup and the optimization-based reconstruction
method.

II. MATERIALS AND METHODS

A. Data Generation

In this preliminary investigation, a 2D CT geometry is
simulated, as shown in Fig. 1. The setup consists of three
arc-shaped X-ray nanotube source arrays. Each arc covers 90
degrees, with 30 degrees of separation between any two. On
each array, there are 300 X-ray focal spots, 150 of which are
set at low voltage, i.e., 80 kVp in this work and the other 150
are set at high voltage of 140 kVp. The low and high kVp focal
spots are aligned in an alternating fashion, separated by 3.14
mm, on the panel. The curved detector has 896 detector bins
and is subject to a fan angle of 49 degrees. In this simulation,
the detector rotates as the firing position of the X-ray focal
spot moves along the array, while a stationary detector panel
corresponding to each nanotube source array is also feasible
in reality. The detector is always at 1100 mm away from its
corresponding X-ray focal spot, while the center of the rotation
axis is at 600 mm away from the source array. As a result, a
complete scan results in low- and high-kVp data sets, each of
which has 450× 896 data points.

Fig. 1: Scan configuration consisting of 3 nanotube X-ray
source array. Alternating dots of blue and red color on the
panel indicate X-ray source firing positions of low and high
kVp spectra.
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The low and high X-ray spectra of 80 and 140 kVp are gen-
erated by use of the TASMICS worksheet (v1.0) [5], assuming
a tungsten anode and a 5-mm Al filter. A digital GAMMEX
DE-472 phantom [6] is used for data simulation. The digital
phantom is sampled on a 512×512 image array with 0.68-mm
square pixels. Each pixel is labeled with a material type from
the spec sheet of the phantom. The polychromatic forward
model, equation (5) in Ref. [7], is used to generate data,
where the decomposition error could be present, based on
the scanning geometry described above. Poisson noise is also
added to the data, assuming a fluence of 2× 106 photons for
each ray in the air scan.

B. Optimization-Based Reconstruction

1) Discrete-to-discrete data model: In this work, a two-
basis decomposition model with water and bone is used.
Therefore, we can express the discrete-to-discrete data model
as

g
[s]
j (b1,b2)

= − ln
∑
m

q
[s]
jm exp

(
−
∑
i

a
[s]
ji (µ1mb1i + µ2mb2i)

)
,

(1)

where j ∈ {0, · · · , J [s] − 1} is a ray index for either low
(s = 1) or high (s = 2) kVp scan, g[s]j (b1,b2) denotes the
model data for the jth ray in scan s, q[s]jm the ray-dependent,
normalized X-ray spectrum, satisfying

∑
m q

[s]
jm = 1, at

energy m for the jth ray in scan s, and a
[s]
ji the intersection

length of the jth ray in scan s with the ith voxel. Vectors
b1 and b2 denote basis images of size I , µ1m and µ2m the
decomposition coefficients. Clearly, the data model is a non-
linear function of basis images b1 and b2. The data model in
equation (1) can be re-written as
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µ̄
[s]
jk =

∑
m q

[s]
jmµkm is an energy-independent term and

∆µ
[s]
jkm = µkm − µ̄[s]

jk remains energy dependent [8], [9].
2) Non-convex optimization program: A constrained opti-

mization program is formulated as

(b∗1,b
∗
2) = arg min

b1,b2

(||b1||TV + ||b2||TV)

s. t. D (ḡ(b1,b2), gM−∆g(b1,b2)) ≤ ε,
b1 � 0 & b2 � 0,

(5)

where || · ||TV denotes the image total-variation (TV),
ḡ(b1,b2) and ∆g(b1,b2) are aggregate vectors formed by
concatenating ḡ

[s]
j (b1,b2) and ∆g

[s]
j (b1,b2), as defined in

equations (3) and (4), respectively, and gM is the aggregate
vector for measured data. The `2 norm is used for the data
fidelity function as

D(ḡ(b1,b2),gM−∆g(b1,b2))

= ||ḡ(b1,b2)− gM + ∆g(b1,b2)||2,
(6)

and ε > 0 is the data constraint parameter that specifies the
degree of data inconsistency.

3) Reconstruction algorithm: The ASD-NC-POCS algo-
rithm [7] is used to numerically solve the non-convex op-
timization program in equation (5). A NC-POCS step is
designed to lower the data fidelity function, in which a POCS
step based on the linear term in the data model in equation (3)
is followed by a non-linear term correction by estimating the
non-linear term using equation (4) with the current iteration
of basis images and subtracting the estimated non-linear term
from the measured data. We then combine the NC-POCS step
with the adaptive steepest descent (ASD) step for lowering the
TV objective function.

4) Reconstruction parameter: Most of the reconstruction
parameters are the same as those used in the data generation,
including spectra, image pixels, and system matrices. The data
fidelity parameter ε is selected as the one yielding the lowest
value for the surrogate metric for the spectral recovery task,
as defined in equation (9) below.

In addition, the practical convergence conditions, which are
necessary conditions for the local optimality of the non-convex
optimization program, are defined as∣∣∣D (ḡ(b

(n)
1 ,b

(n)
2 ), gM−∆g(b

(n)
1 ,b

(n)
2 )
)
− ε
∣∣∣ /ε ≤ 10−3,∣∣∣Obj(n+1) −Obj(n)
∣∣∣∣∣∣Obj(n+1) + Obj(n)
∣∣∣ ≤ 10−3,

(7)
where Obj(n) = ||b(n)

1 ||TV + ||b(n)
2 ||TV is the objective

function at iteration n.

C. Evaluation

The advantage of using dual-energy CT for explosive de-
tection is its ability to differentiate explosive materials, such
as ANFO (Ammonium Nitrate and fuel oil), from water,
which has similar density with ANFO and thus display the
similar gray value in a single energy CT scan [1]. Such
differentiating power from dual energy is based on the de-
composition of material interactions into Compton scattering
and photoelectric effect and consequently the estimation of the
effective atomic number of the material. Such decomposition
is equivalent to the recovery of the spectral response of the
material. As a result, in the absence of explosive ANFO in
our digital phantom in this work, we evaluate the proposed
dual-energy CT setup using nanotube X-ray source array and
the reconstruction method for explosive detection by focusing
on two inserts in the DE-472 phantom, 15-mg/ml iodine and
100-mg/ml calcium, that are difficult to be separated in the
single-energy CT. Visual inspection is first made to assess if
monochromatic images at different energy levels can better
differentiate the two inserts. Then, quantitative analysis is
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carried out to evaluate how accurate the spectral response of
the two inserts are from the reconstructed basis images, as
compared to the ground truth information. For each insert, an
average relative error is calculated as

relErrr =
1

Nm

∑
m

1
Nr

∑
i∈Ir (µ1mb1i + µ2mb2i)− fmr

fmr
,

(8)
where Ir is the set containing all the pixel indices for ROI
(insert) r, Nr the number of pixels in ROI r, fmr the ground-
truth linear attenuation value at energy m for ROI r, and Nm

the number of energy levels to be averaged. In this work,
Nm = 7 with energy levels at 40, 60, 80, 100, 120, 140,
and 160 keV. A surrogate metric to characterize the spectral
recovery of the two inserts under consideration is thus defined
as

relErr =
1

2
(relErr4 + relErr16), (9)

where r = 4 denotes the 15-mg/ml iodine insert and r = 16
the 100-mg/ml calcium one.

III. RESULTS

We first show in Fig. 2 the water- and bone-basis images
and monochromatic images at 80 and 140 keV reconstructed
using the ASD-NC-POCS algorithm from the data collected
with the nanotube X-ray source arrays as shown above. In
the first row, Figs. 2a and 2b are the reconstructed water- and
bone-basis images, respectively, with a displaying window of
[0,1.5]. Good separation of basis materials can be observed. In
the second row, Figs. 2c and 2d are the monochromatic images
at 80 and 140 keV, respectively, with a displaying window of [-
300, 300]HU. The two inserts under consideration in this work
are pointed out by arrows in the figure, with ↓ indicating the
15-mg/ml iodine insert and ↑ the 100-mg/ml calcium one. It
is difficult to differentiate the two inserts pointed by arrows
in the 80-keV image in Fig. 2c, since their gray values in the
image are very similar (as a matter of fact, their ground-truth
HU values at 80 keV are 275.6 and 274.4 for 15-mg/ml iodine
and 100-mg/ml calcium, respectively). Incorporating the dual-
energy information and forming the monochromatic image at
the 140 keV energy level, the contrast between these two
inserts is increased (76.0 and 208.3 ground-truth HU values,
respectively), as visually shown in Fig. 2d. Additionally, we
show the ground-truth monochromatic images at 80 and 140
keV in the third row of Fig. 2. Similar observation regarding
the two inserts at focus can be made from the ground-truth
monochromatic images.

Next, the reconstructed basis images are used to form
monochromatic images at 7 energy levels: 40, 60, 80, 100,
120, 140, and 160 keV. The linear attenuation coefficient
values, estimated as the mean pixel value within the ROI of
the insert at each energy level, are compared to the ground-
truth values calculated from the manufacturer’s spec sheet
and the NIST XCOM data [10]. The results are shown in
Fig. 3. The solid lines in the two plots denote the ground-
truth values, where the circles (•) represent the linear attenu-
ation coefficient calculated from the monochromatic images
at the 7 energy levels. In both plots Figs. 3a and 3b, the

(a) reconstructed water basis (b) reconstructed bone basis

(c) reconstructed 80-keV (d) reconstructed 140-keV

(e) ground-truth 80-keV (f) ground-truth 140-keV

Fig. 2: First row: reconstructed (a) water- and (b) bone-basis
images with the ASD-NC-POCS algorithm from the data
collected with the nanotube X-ray source array. Second row:
reconstructed monochromatic images at (c) 80 and (d) 140
keV. Down and up arrows (↓ & ↑) point to two inserts of
different materials (15-mg/ml iodine and 100-mg/ml calcium,
respectively) that are difficult to separate in a single-energy
CT, such as in the 80-keV monochromatic image, but are
better differentiated in dual-energy CT with the help of 140-
keV monochromatic image. Such two inserts at focus are
to mimic the behavior of water and explosive ANFO in the
scan of single- and dual-energy CT. Third row: ground-truth
monochromatic images at (e) 80 and (f) 140 keV.

estimated values seem to overlap on the ground-truth curves,
indicating accurate recoveries of the spectral responses of
the corresponding materials. The relative errors averaged over
the 7 energy levels for the two inserts, as calculated using
equation (8), are relErr4 = 1.38% and relErr16 = 0.17%
for the 15-mg/ml iodine and 100-mg/ml calcium, respectively.
The resulting surrogate metric as defined in equation (9) is
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then relErr = 0.77%.

101 102

Energy, keV
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, c
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1

iodine_15mgml

(a) 15-mg/ml iodine insert

101 102 103

Energy, keV
10 1

100

, c
m

1

calcium_100mgml

(b) 100-mg/ml calcium insert

Fig. 3: Ground-truth (solid-line) and estimated (•) linear atten-
uation coefficients at different energy levels for (a) 15-mg/ml
iodine and (b) 100-mg/ml calcium inserts. The estimated
values overlap on the ground-truth curve, indicating accurate
recoveries of the spectral responses of the corresponding
materials.

IV. CONCLUSION AND DISCUSSION

In this work, we have proposed a dual-energy CT setup
for explosive detection based on nanotube X-ray source array
with alternating low and high X-ray firing positions. The scan
configuration is enabled by the optimization-based reconstruc-
tion method. A simulation study with a digital version of the
standard clinical dual-energy phantom, GAMMEX DE-472,
was carried out, where decomposition error and Poisson noise
were considered in the data. Two specific inserts of different
materials, 15-mg/ml iodine and 100-mg/ml calcium, were at
focus in the investigation to mimic the responses of water
and ANFO in explosive detection. Visual inspection shows
that dual-energy setup proposed in this work can better differ-
entiate the two materials types, that are otherwise of similar
gray value in a single-energy CT image. Further, quantitative
analysis revealed accurate recoveries of the spectral responses
of the two materials by use of the proposed dual-energy CT
with nanotube X-ray source arrays and the ASD-NC-PCOS
algorithm. The relative error of the estimated linear attenuation
coefficients averaged over 7 energy levels and over 2 material
types is 0.77%.

While the setup investigated in this work assumes arc-
shaped nanotube X-ray source arrays with rotating detector
panels, it is straightforward to apply the optimization-based
reconstruction method to other designs of hardware and ge-
ometry configurations, such as straight nanotube X-ray source
array and stationary detector panels at opposing position. Fur-
ther investigation of such configuration is underway and will
be reported at the conference. While a dual-energy phantom
was used in this work for the differentiation between an
iodine insert and a calcium one, the underlying advantage and
power for recovering spectral responses of different material
types from the dual-energy CT scanning is expected to remain
unchanged for a more direct task involving water and explosive
materials such as ANFO. Further investigation will focus on
phantoms with water and explosive ANFO materials, when
the method incorporates interaction type based decomposition
model using Compton scattering and photoelectric effect,

in order to calculate the Z-image, or the effective atomic
number [1]. These results will be reported at the conference.
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Edge information diffusion based reconstruction
(EIDR) for cone beam computed laminography

Yunsong Zhao, Jinqiu Xu, Hongwei Li∗, and Peng Zhang

Abstract—Computed laminography (CL) reconstruction is a
challenging task because incomplete projection data is acquired
from the CL scanning. Conventional computed tomography
reconstruction would blur the vertical edges (singularity in the z-
direction) in the reconstructed images, while the horizontal edges
(singularity within slices) can be quite accurately reconstructed.
Based on this observation, an edge information diffusion method
is developed, which fixes the horizontal edges and propagates
their values within slices. Experiments on simulatation data are
performed to verify the effectiveness of the proposed method.

Index Terms—computed laminography, image reconstruction,
edge information diffusion.

I. INTRODUCTION

Micro-CT systems usually need full angular scanning and
small source-to-detector distance (for sufficient magnification
ratio). This scanning mode could not be applied for inspecting
flat objects with large length-thickness ratio, simply because
of geometrical limitations. Another reason is that the X-rays
would be much more attenuated or even completely absorbed
when penetrating the long edges of the flat objects, which
could lead to poor reconstructions.

Computed laminography (CL), or laminographic scanning
[1], [2], as illustrated in Figure 1, provides a solution for the
above mentioned difficulties. An advantage of this scanning
geometry is that the X-ray source can be very close to the
scanned object to achieve a high magnification ratio and hence
high-resolution reconstructions, even for large objects. Note
that there exists other laminographic scanning geometries,
please refer to [2].

CL scan can be achieved by adapting Computed Tomog-
raphy (CT) device by tilting its rotation axis. It also can be
thought of as a special circular cone beam CT scan with the
detector placed far away from the mid-plane [2]. So, CL scan
produces incomplete data, and direct reconstruction will intro-
duce heavy cone angle artifacts [3], [4]. To reconstruct high
quality images from incomplete projection data, strong prior
information needs to be incorporated into the reconstruction
algorithm. Total Variation regularization (TV) is one of the
most popular algorithms, which could produce high quality
images with very limited sparse-view data [5], [6]. DART
[7] is another regularization method dedicated to limited-angle
reconstruction, which incorporates the sparsity assumption that
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Mathematical Sciences, Capital Normal University, Beijing, 100048, China,
and are also with Beijing Advanced Innovation Center for Imaging Technol-
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the scanned object consists of only a few components, each
corresponding to a constant gray value in the reconstructed
images. This idea is further utilized by TVR-DART [8], which
estimates the gray values automatically.

Ihe cone angle artifacts appear mainly as z-direction inter-
slice aliasing. However, the in-slice edges would be recon-
structed rather accurately, as we have projection data corre-
sponding to the X-ray paths that are tangent to the in-slice
edges [9].

Based on this observation, we will propose an edge infor-
mation diffusion based reconstruction (EIDR) method for flat
objects imaging from cone beam CL scanning. The basic idea
is that since the in-slice edges can be reconstructed correctly,
and their gray values are trustable, then we can fix them and
propagate their values to other areas upon the assumption
that the true images are piecewise linear. This edge diffusion
process is then utilized as a regularizer and combined with the
SART [10] method which lead to an iterative reconstruction
algorithm.

II. THE IDEA OF EDGE INFORMATION DIFFUSION

As mentioned previously, the CL scan is actually a circular
cone beam CT scan with a very large cone angle and a
displaced detector. It is well known that the data of circular
cone beam CT scan is incomplete, and the non-central slices
of the reconstructed images suffer from the so-called cone
angle artifacts [3], [4]. The larger is the cone angle, the more
serious are the artifacts. However, the in-slice edges are much

Fig. 1: Illustration of a CL scanning geometry.
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less affected by the cone angle artifacts, since we have X-ray
paths that are tangent to these edges.

So in the reconstructed images by conventional algorithms
like SART, the in-slice derivatives are actually rather accurate
and trustable, such that the true image even could by recovered
by just interpolating the values from the in-slice left and
right edges. This is the key observation which motivates the
proposed method. our method is an iterative one that consists
of two main procedures. Let u(n) denotes the solution after
the nth iteration. The first procedure of our method updates
the image u(n) to obtain u(n+1/2) by the SART reconstruction
algorithm from the projection data, then the second procedure
corrects u(n+1/2) and obtain u(n+1) by propagating the in-
slice edge information.

One difficulty of implementing the propagation procedure it
that the in-slice image edges could not be identified accurately,
i.e. the magnitude of the in-slice derivatives is not an trustable
index for edge points. So a diffusion procedure will be intro-
duced below to propagate the edge information in a trustable
way. We propose the following minimization problem

min
u

Φ (u) ,

Φ (u) = Φ (u;φ) :=
1

2

∫
K (x, y, z)

(
u2
x + u2

y

)
dxdydz

+
µ

2

∫
λ (x, y, z) (u (x, y, z)− φ (x, y, z))

2
dxdydz, (1)

where φ (x, y, z) refers to the current solution, i.e. u(n+1/2).
The function λ (x, y, z) is an edge indicator, whose value
should be large for edge points while small for non-edge
points. One could define λ (x, y, z) to be a function of the
gradient of φ (x, y, z), such as λ = ec|∇φ|

2

with scalar
parameter c > 0. It should be pointed out that the first term of
Φ (u) involves only in-slice derivatives, i.e. ux and uy , while
the inter-slice derivative uz is missing. The proposed method
can be summarized as the following Algorithm 1.

Algorithm 1 the pseudocode of the proposed method.

Start from some initial image u(0) and the projection data p
n := 0
while (stop criterion is not met) do
begin

Update the images with the acquired projections

u(n+1/2) = SART
(
u(n), p

)
Update the image by solving the optimization problem

u(n+1) = arg min Φ(u;u(n+1/2))

n := n+ 1
end

Considering how to solve the optimization problem (1).
As only derivatives with respect to the variable x and y
are involved, the optimization problem is actually separable
regarding to the variable z. So the original problem could
be decoupled into a series of similar optimization problems

defined for each fixed z, which could be formulated as

Φz (u) =
1

2

∫
K (x, y)

(
u2
x + u2

y

)
dxdy

+
µ

2

∫
λ (x, y) (u (x, y)− φ (x, y))

2
dxdy. (2)

The Euler-Lagrange equation of the above functional reads

µλ (x, y) (u (x, y)− φ (x, y))− ∂

∂x
(K (x, y)ux)

− ∂

∂y
(K (x, y)uy) = 0. (3)

We adopt the well-known time-marching technique to solve
the above problem:

ut (t;x, y) = −µλ (x, y) (u (t;x, y)− φ (x, y))
+ ∂

∂x (K (x, y)ux) + ∂
∂y (K (x, y)uy)

u (0;x, y) = φ (x, y)
u (t;x, y) |∂Ω = 0

(4)
where ∂Ω denotes the boundary of the image. Then the
Peaceman-Rachford scheme (PR) [11] is adopted, which is one
of alternating direction implicit schems (ADI), or alternating
direction multiplier methods (ADMM) [12], [13] in terms of
the original energy functional.

III. NUMERICAL EXPERIMENTS

Two phantoms, a disk phantom and a simulated piece of
PCB, have been constructed for the simulations, as shown
in Figure 2. The resolution of the two phantoms are both
1024×1024×300. The disk phantom includes 9 disks stacked
on each other and the thickness of each disk and the gaps
between them are both 16 voxels. The PCB phantom includes
10 routing layers, each of which is of 10 voxels in thickness.
The gap between the routing layers is also 10 voxels. Both
noise-free and noisy projection data are simulated. The noisy
data are obtained by adding Poisson noise to the noise-
free data with mean value 106 for each detector cell. The
SART method, DART method, and the proposed method are
implemented to compare with each other.

(a) The disk phantom. (b) The PCB phantom.

Fig. 2: Simulated disk phantom and PCB phantom.

A. Results with the disk phantom

The results for the disk phantom are shown in Figure 3,
where the left column and the right column show the results

The fifth international conference on image formation in X-ray computed tomography 231



of the three methods for noise-free data and noisy data,
respectively. Figure 3(a) and (b) demonstrate the results of the
SART method after 20 iterations. Figure 3(c) and (d) show
the results of the DART method after 100 iterations. For the
proposed method, we also computed 100 iterations, and the
results are shown in Figure 3(e) and (f). In each subfigure,
three plane sections of the volume image, including the cross
section, the coronal section, and the sagittal section of the top
disk are shown for each method. The display window is set
to [0, 1.1].

For the results of the SART method, all the disks are
mixed up and hardly distinguishable from each other. For
the results of the DART method, some pseudo-structures are
reconstructed, as shown in Figure 3(c) and (d). It seems that
these structural artifacts can be attributed to its classifica-
tion errors. DART method considers mainly the gray value
information of the images, which encodes little structural
information. When the reconstructed images by the SART
method exhibit large distortions due to cone angle artifacts,
the classification procedure of the DART method would result
in large errors. When looking at the results of the proposed
method shown in Figure 3(e) and (f), we can see that the disks
are reconstructed correctly, and the inter-slice aliasing has been
removed effectively. From Figure 3(f), one can also draw the
conclusion that the proposed method is robust against noise.

(a) (b)

Fig. 4: The profiles of of the center rows of the sagittal sections
of the reconstructed images shown in Figure 3. (a) is the
profiles for noise-free data and (b) is the profiles for noisy
data.

To examine the results in a quantitive way, we have plotted
the profiles of the center rows of the sagittal sections of the
reconstructed images by the three methods, which are shown
in Figure 4. We can see that the reconstructed gray values with
the proposed method are much more accurate than with the
other two methods.

1) Results with the PCB phantom: Figure 5 shows the
reconstruction results of the PCB phantom with the three
methods, where the left column shows the results for noise-
free data, while the right column shows the results for noisy
data.

The strategies for the reconstructions of the disk phantom
are again employed here for the reconstructions of the PCB
phantom, except that the set of gray values for the DART
method contains more elements here. The display window for
the images is still [0, 1.1].

[H]

(a) (b)

(c) (d)

(e) (f)

Fig. 3: The reconstruction results of the disk phatom with the
SART method (a) and (b), the DART method (c) and (d), and
the proposed method (e) and (f) from noise-free data (a), (c),
and (e) and noisy data (b), (d), and (f). The display window
is set to [0, 1.1].

In all the three cross sections shown in Figure 5, the routings
of the PCB can be seen. But the borders parallel to the PCB are
blurred with the SART method. In the images reconstructed
by the DART method, there are obvious classification errors,
and wrong superfluous borders appear here and there. When
inspecting the results with the proposed method, however, one
can see that all the routings have been reconstructed correctly.

Figure 6 shows the profiles of the center rows of the sagittal
sections of the images shown in Figure 5, which clearly shows
that the proposed method constructs much more accurate gray
values than the other two methods.

IV. CONCLUSION AND DISCUSSION

In this paper, a reconstruction method for CL system for
inspecting flat objects is proposed, which can effectively
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(a) (b)

(c) (d)

(e) (f)

Fig. 5: The reconstruction results of the PCB phantom with
the SART method ((a) and (b)), the DART method ((c) and
(d)), and the proposed method ((e) and (f)) from noise-free
data ((a), (c), and (e)) and noisy data ((b), (d), and (f)). The
display window is set to [0, 1.1].

alleviate the inter-slice aliasing caused by the incompleteness
of the scanned data. Experiments on simulated data suggest
that the proposed method is effective, and outperforms the
state-of-art methods.

The in-slice diffusion requires that the cross section of the
image is parallel to the flat face. However, this is not exactly
true in general situations. To overcome this limitation, a pre-
reconstruction can be performed to obtain a initial image, from
which we can estimate the geometric features of the objects.
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Anisotropic Resolution Enhancement for
Computed Tomography of Planar Objects

Steffen Kieß, Sven Simon

Abstract—In computed tomography scans of large planar
objects, the achievable resolution is limited by the requirement
to rotate the object by 180° or 360°. Alternative methods like
computed laminography allow a higher resolution by not rotating
the object, but have difficulty resolving detail in the direction
perpendicular to the plane because they lack the information
from the projections where the rays go through the plane.

The method presented in this paper improves the resolution
of a CT scan by integrating the images taken for a normal CT,
with a relatively low resolution, with high-resolution 2D images
taken while the object is very close to the focal spot, similar to
images taken for laminography. By combining these images using
an iterative reconstruction, a volume can be produced which has
a very high resolution in the plane but can also resolve structures
perpendicular to the plane.

Index Terms—computed tomography, reconstruction, high-
resolution, data fusion, laminography

I. Introduction

IN many applications of computed tomography (CT), the
objects of interest are planar objects, i.e. objects where

the thickness is significantly smaller than the width and the
height. Examples for such objects are printed circuit boards
(PCBs), chip packages and carbon fiber reinforced plastics.
When performing a CT scan, the resolution depends on the
distance between the X-ray focal spot and the object. The
resolution can be improved by moving the object closer to
the source, however CT reconstruction requires that the entire
object is visible on the detector for all images. For planar
objects this means that the minimum distance between the
focal spot and the object – and therefore the resolution – is
determined by the width of the object [1]. (E.g. in Figure 1a
the object cannot be moved closer to the focal spot because
then the object wouldn’t fit on the detector anymore.)

For high-resolution 2D images, the object can be rotated so
that it is parallel to the detector and moved significantly closer
to the source (see Figure 2b, Figure 1c). In this case, only a
part of the object will be visible, but by moving the object the
entire object or those parts where a high resolution is desired
can be scanned (see Figure 1d).

The resulting data set, consisting of both the low-resolution
data and of the high-resolution data, can be used as input for an
iterative reconstruction algorithm [2]. Iterative reconstruction,
unlike the more commonly used filtered backprojection, can
be used for data with irregular geometry, in this case the low-
resolution images from the CT scan and the high-resolution
2D images.

S. Kieß and S. Simon are with the Institute for Parallel and Distributed
Systems, University of Stuttgart, Stuttgart, Germany

An alternative to CT which allows moving the object closer
to the focal spot is computed laminography [3]. However,
computed laminography has the limitation that it lacks the
information of the rays going through the plane and therefore
does not fulfill the Tuy condition [4]. The method presented
here allows combining the additional data obtained by placing
the object close to the focal spot with the data for a full CT.

II. Acquisition Process
A. CT Scan

The acquisition process for the proposed method consists
of two steps: First, a normal CT is performed (see Figure 2a).
The result of this step is a set of images where the entire object
is visible on the detector in all images (see e.g. Figure 1a and
Figure 1b).

B. High-resolution images
In the second step, high-resolution images are taken. For

this step the object is moved very close to the focal spot (see
Figure 2b). Because only a small part of the object will be
visible on the detector (see e.g. Figure 1c), the object will be
moved until images of either the entire object or of the region
of interest where a high resolution is desired have been taken
(Figure 1d). In order to reduce the effects the borders of the
high-resolution images have during the reconstruction and to
provide an increased resolution in the direction perpendicular
to the plane, the images are taken overlapping, so that every
part of the object is visible in roughly 10×10 high-resolution
images.

III. Reconstruction Algorithm
The reconstruction is done using an reconstruction iterative

algorithm. Unlike the filtered backprojection algorithm, which
assumes a regular geometry like cone-beam geometry [5],
iterative reconstruction algorithms attempt to provide a general
solution of the equation

Af = p (1)

where p is the observed data (i.e. the set of images taken
during the scan), f is the volume data and A is the projection
matrix which is mapping the volume data f to the projections
p. The information about the projection geometry is included
in the projection matrix A, so that for reconstructing a data set
with an irregular geometry using an iterative algorithm only
the projection matrix has to be changed.

The reconstruction method used for this paper is the
maximum-likelihood expectation-maximization (MLEM) [6].
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(a) Object at 0°. (b) Object at 90°. (c) High-resolution image. (d) High-resolution image.

Fig. 1: (a) and (b): Images for normal CT, (c) and (d): high-resolution 2D images.

(a) (b)

Fig. 2: (a) Standard CT, (b) high-resolution 2D images.

An advantage of MLEM over algebraic reconstruction tech-
niques is that it takes the stochastic nature of the X-ray photons
into account. The MLEM starts with an initial assumption f0
for the volume, often simply an volume where all voxels are set
to 1. Then in every iteration the volume is updated according
to the following equation:

fn+1 := fn ·
AT p

Afn

AT 1
(2)

where AT is the backprojection matrix (the transposed of the
projection matrix), 1 is a projection data set where all the
pixels of all images are 1 and the multiplications and divisions
are done per voxel or pixel. The calculation of Ax and ATx are
normally done by calculating the projection and backprojection
directly, as representing the matrices for A and AT , even in
sparse form, would require a huge amount of memory.

For the reconstruction of the high-resolution data set, both
the CT data set (acquired in Section II-A), called pCT , and the
high-resolution 2D data set (acquired in Section II-B), called
phigh, are used. The update equation for the MLEM is then

fn+1 := fn ·
AT

CT
pCT

ACT fn
+AT

high
phigh

Ahighfn

AT
CT 1 +AT

high1
(3)

where ACT and AT
CT are the forward and backward projection

matrices for the normal CT data set and Ahigh and AT
high are

the forward and backward projection matrices for the high-
resolution 2D data set.

IV. Resolution Analysis
In order to get information about the achieved improvement

in quality, a simulated scan of a test target was performed.
This input data for the simulation was a PCB with a size of
1 cm by 1 cm. The PCB contains a layer with test structures
for determining the MTF. A slice of the input data for the
simulation can be seen in Figure 3. Using this input data, a

Fig. 3: Slice of input data for simulation.

projection was performed to produce a normal, low-resolution
CT data set and a set of high-resolution 2D images. The
setup for the high-resolution images had a magnification factor
which was 5 times as high as the magnification factor of the
low-resolution images. Then both a normal CT reconstruction
(using only the low-resolution data set, see Figure 4) and
a high-resolution reconstruction (using both data sets, see
Figure 5) was performed.

In order to evaluate the improvement of resolution achiev-
able with this method, the resolution of the reconstructed
slices was determined using two methods shown in [7]. First,
the modulation transfer function (MTF) was determined by
looking at the sharpness of the transition between white and
black in the middle box at the bottom of the images. Second,
the contrast (i.e. the ratio between the dark areas minus
the undisturbed background to the bright areas minus the
undisturbed background) of all the line pairs was evaluated.
The normalized MTF values and the line pair contrast values
can be seen in Figure 6.

When a feature at a certain spacial frequency is considered
visible if the MTF or the line pair contrast is at least 10 %,
it is possible to determine the maximum spatial frequency
where this condition is fulfilled. Figure 7a shows the spatial
frequency where the MTF / the line pairs contrast is at
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Fig. 4: Slice of reconstructed data without resolution enhance-
ment.

Fig. 5: Slice of reconstructed data with resolution enhance-
ment, magnification for high resolution images is 5x the
magnification of normal CT.
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Fig. 6: MTF / line pair contrast depending on spatial frequency.
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Fig. 7: Spatial resolution (where MTF / contrast of line pairs is
at least 10%) depending on increase in magnification for high-
resolution images, (a) absolute resolution, (b) relative improve-
ment over reconstruction without resolution enhancement.

Fig. 8: Photo of object used for experimental verification.

least 10 % for different ratios between the magnification
factor of the high-resolution images and the low-resolution
images. Figure 7b shows the same information relative to the
values for the data set without resolution enhancement, i.e. the
improvement achieved by using the high-resolution images.
It can be seen that the high-resolution images offer almost
a linear improvement of the achieved resolution when the
resolution of the high-resolution images is growing, however
this does not take into account experimental problems like
inaccuracies in the geometry of real-life CT scanners.

V. Experimental Results
To verify the proposed method experimentally, a scan of

the test object seen in Figure 8 was performed according to
the method in Section II. The resulting data set, consisting of
a CT data set pCT and a high-resolution 2D data set phigh,
contains the raw images seen in Figure 1.

After the acquisition of the data, a reconstruction of the CT
data (pCT ) using filtered backprojection was performed:

vCT := AT
CTFpCT (4)

where F is the filter used for the filtered backprojection. A
slice through a part of the data can be seen in Figure 9a. Due
to the low resolution of the CT data the details of the vias and
transmission lines are blurred.

In a second step, a high-resolution reconstruction using the
method presented in Section III was performed. Due to me-
chanical inaccuracies of the CT scanner, there is a difference
between the target position of the manipulator and the actual
position of the manipulator, which means that the precise
geometry of the high-resolution projections is unknown. Be-
cause incorrect geometry information causes strongly visible
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(a) (b)

Fig. 9: (a) Slice of filtered backprojection of CT data, (b) slice of reconstruction using CT data and high-resolution 2D images.

artifacts, the geometry data had to be corrected. For this, a
projection of the filtered backprojection pCT was performed:

rhigh := AhighpCT (5)

rhigh contains a set of images similar to the original high-
resolution images phigh, but with a lower resolution and with
exactly the expected geometry. By determining the rotation
and translation between the images in rhigh and phigh with
an algorithm similar to [8], the actual geometry of the each
of the images in phigh can be determined. This geometry can
then be used for reconstruction using MLEM.

A slice through a part of the data reconstructed this way
can be seen in Figure 9b. It can be seen that integrating the
high-resolution images provides a significantly higher level of
detail for features like the vias and transmission lines in the
slice.

VI. Conclusion
A method for improving the resolution of a 3D volume

data set by integrating high-resolution 2D images taken with a
reduced focal-object distance has been presented. Quantitative
analysis of the MTF using a simulated test structures shows
that the resolution of the data set grows almost linearly with
the magnification of the high-resolution images. When the
magnification for the high-resolution images is increased by
a factor of 5, the resolution of the reconstructed volume is
improved by a factor of 4.6 measured using the MTF method
and by a factor of 4.2 measured using the line-pair method.

The method has also been applied to PCBs. For this PCB,
both a normal reconstruction using only the CT raw images
and a high-resolution reconstruction using both the CT raw
images and additional high-resolution 2D images have been
performed. The high-resolution shows a significantly better
level of detail than the CT method.

References
[1] T. M. Buzug, Computed tomography: From photon statistics to modern

cone-beam CT, en. Springer, 2008, isbn: 9783540394075.
[2] S. Kieß, J. Guhathakurta, J. Hillebrand, J. Denecke, I. Effenberger, and

S. Simon, “Computed tomography resolution enhancement by integrat-
ing high-resolution 2d x-ray images into the ct reconstruction,” in Int.
Symposium on Digital Industrial Radiology and Computed Tomography
2015, 9 Seiten. [Online]. Available: http://www.ndt.net/search/docs.
php3?showForm=OFF&id=18046.

[3] F. Xu, L. Helfen, T. Baumbach, and H. Suhonen, “Comparison of image
quality in computed laminography and tomography,” Opt. Express, vol.
20, no. 2, pp. 794–806, Jan. 2012. doi: 10.1364/OE.20.000794.

[4] H. K. Tuy, “An inversion formula for cone-beam reconstruction,” SIAM
Journal on Applied Mathematics, vol. 43, no. 3, pp. 546–552, 1983.
doi: 10.1137/0143035. eprint: https://doi.org/10.1137/0143035.

[5] L. A. Feldkamp, L. C. Davis, and J. W. Kress, “Practical cone-beam
algorithm,” J. Opt. Soc. Am. A, vol. 1, no. 6, pp. 612–619, Jun. 1984.
doi: 10.1364/JOSAA.1.000612.

[6] L. Shepp and Y. Vardi, “Maximum likelihood reconstruction for emis-
sion tomography,” Medical Imaging, IEEE Transactions on, vol. 1, no.
2, pp. 113–122, Oct. 1982, issn: 0278-0062. doi: 10.1109/TMI.1982.
4307558.

[7] A. Staude and J. Goebbels, “Determining the spatial resolution in
computed tomography – comparison of mtf and line-pair structures,”
in Int. Symposium on Digital Industrial Radiology and Computed
Tomography, vol. Qualification, 2011. [Online]. Available: http://www.
ndt.net/search/docs.php3?showForm=OFF&id=11138.

[8] C. Wilson and J. Theriot, “A correlation-based approach to calculate
rotation and translation of moving cells,” Image Processing, IEEE
Transactions on, vol. 15, no. 7, pp. 1939–1951, Jul. 2006, issn: 1057-
7149. doi: 10.1109/TIP.2006.873434.

The fifth international conference on image formation in X-ray computed tomography 237

http://www.ndt.net/search/docs.php3?showForm=OFF&id=18046
http://www.ndt.net/search/docs.php3?showForm=OFF&id=18046
http://dx.doi.org/10.1364/OE.20.000794
http://dx.doi.org/10.1137/0143035
https://doi.org/10.1137/0143035
http://dx.doi.org/10.1364/JOSAA.1.000612
http://dx.doi.org/10.1109/TMI.1982.4307558
http://dx.doi.org/10.1109/TMI.1982.4307558
http://www.ndt.net/search/docs.php3?showForm=OFF&id=11138
http://www.ndt.net/search/docs.php3?showForm=OFF&id=11138
http://dx.doi.org/10.1109/TIP.2006.873434


A second derivative based regularization model for
limited-angle computed tomography

Jinqiu Xu, Shiwo Deng, Huitao Zhang, Yining Zhu∗, and Peng Zhang

Abstract—In limited-angle Computed Tomography (CT), the
reconstructed image often suffers from severe distortions. In
order to deal with this problem, we analyze the features of
images reconstructed from limited-angle data and propose a prior
knowledge on the second derivative of image. Based on the prior
knowledge, we establish an optimization model and the corre-
sponding algorithm for limited-angle CT. Numerical experiments
are performed, and the results validate the effectiveness of the
proposed method to remove image distortions.

Index Terms—Computed Tomography, limited-angle, prior
knowledge, second derivative

I. INTRODUCTION

Computed Tomography (CT) is a nondestructive technique
for obtaining interior structure information of an object. It has
a wide range of applications in industry, medicine, etc. In the
applications, the incomplete data problems occur frequently.
We consider the limited-angle CT problem in this paper.
The typical examples are the 3D imaging for the large flat
objects with high aspect ratio (area-to-thickness) and the
reconstruction of clinical image with C-arm equipments, for
which limited-angle projection data can be acquired. In this
situation, the reconstructed images often suffer from obvious
CT value distortions.

In order to reduce the CT value distortions for the limited-
angle CT, some kinds of prior information are added to image
reconstruction process as additional constraints or regulariza-
tion terms. The prior information refers to knowledge about
the system or the inspected object [1], which includes the
object’s boundary, shape, gray level, etc. In certain medi-
cal and industrial applications, the image is approximately
piecewise constant. Many reconstruction methods based on
theory of compressed sensing (CS) [2] utilized the sparsity
of gradient image as prior information. Among them, a well-
known regularization term is the total variation (TV) norm [3].
Many methods utilized the TV norm as regularization term [4]-
[9]. Recent years, the minimization of l0 norm of the image
gradient was applied to limited angle reconstruction [10]. It
was demonstrated that the l0 norm works better at preserving
edges than TV. These methods mentioned above can suppress
artifacts in reconstructed images at a certain degree. However,
in practical applications, the reconstructed image are always
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affected by hardening artifacts or metal artifacts, so, the image
does not usually satisfy gradient sparsity.

In order to deal with this problem, we consider use the
the l0 norm of image second derivative as the regularization
term. Additionally, we found that when applying conventional
algorithms like the Algebraic reconstruction techniques (ART)
[11] or Simultaneous Algebraic Reconstruction Technique
(SART) [12] on limited-angle data, edges of the reconstructed
image should be rather accurately recovered along certain
directions, while blurred along the other perpendicular direc-
tions. Therefore, we intend to utilize the value of the edge
along certain direction to extend the value of internal region.
The proposed method utilizes the l0 norm of image second
derivative along certain direction as a regularization term.
Numerical experiments verify our method efficiently avoids
distortions and provides high-quality reconstructed results,
while existing methods suffer from obvious distortions.

II. METHOD

A. The Limited-angle Problem

In this paper, as preliminary study, we focus on two-
dimensional (2D) imaging. The scanning configuration for the
limited-angle fan-beam CT is illustrated in Fig. 1. In the Oxy

Fig. 1. Scanning angular range configuration.

coordinates system, S is the x-ray focal spot, D is the center
of the detector and u is the location of the detector units.
Let R denotes the distance between S and O, ~x = (x, y),
~τ (β) = (cos (β) , sin (β)), β ∈ (θ, π − θ), 0 < θ < π

2 ,
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~v (u) denotes the vector from S to detector unit u and f (~x)
represents the the linear attenuation distribution of the object
to be scanned. Then fan-beam projection data for f (~x) can
be expressed as

p (u, β) =

∫ 1

0

f (R~τ (β) + t~v (u)) dt (1)

Then solving f (~x) from a set of p in (1)
(
0 < θ < π

2

)
is the

limited-angle reconstruction problem. In practical applications,
the limited-angle problem can be expressed as following linear
system:

A~f = ~p (2)

A is the system matrix which represents the forward pro-
jection, ~p denotes the projection data vector and ~f =
{fn|n = 1, 2, ...,K ×K} is the vector of the reconstructed
image, where K is the number of rows or columns. Since
the projection data is incomplete which means (2) is undeter-
mined, we could not obtain ~f accurately or with high-quality
by using conventional algorithm.

B. Motivation

In this subsection, we will use a simple phantom to analyze
the feature of reconstructed image. The simple phantom and
the reconstructed result by using SART are shown in Fig.
2(a) and (b), and Fig. 2(c) shows the differences relative to
the phantom image. One can see that the edges tangent to
the X-Rays should be easy to reconstruct (which are called
visable edges), while edges not tangent to any X-Ray would
be difficult to reconstruct, which has been proved in [13].
Therefore the gradient or second derivative of the visible
edges are reliable. In this paper, we assume the second
derivative image is approximately sparse, one can fix the
visible edges and diffuse their values to other areas. Whereas
the diffusion might introduce striping artifacts, we introduce
edge-preserving smoothing operator to suppress such possible
artifacts and improve the reconstructed image further.

(a) (b) (c)

Fig. 2. Reconstructed results of the phantom with θ = π/4. (a) is the phantom
image and (b) is corresponding reconstructed image. The gray scale window
is set to [0, 1]. (c) is the difference relative to the phantom image. The gray
scale window is set to [-0.5, 0.5].

C. Model

Based on the principles that be discussed above, the pro-
posed model for the limited-angle CT is described in (3).

~f∗ = argmin
~f

(
‖A~f − ~p‖22 + λ‖Dxx

~f‖0 + βS
(
~f
))

(3)

where ‖·‖2 and ‖·‖0 are the l2 norm and l0 norm, respectively.
‖A~f − ~p‖22 is the data fidelity term, the regularization term
‖Dxx

~f‖0 is used for propagating the edge values to non-edge
points, where Dxx

~f is the second derivative operator. The
regularization term S

(
~f
)

aims at edge-preserve smoothing.

S
(
~f
)

can be l1 norm of gradient, l0 norm of gradient, l0
norm of second derivative and median filter along the vertical
y-direction. It can also be the l0 norm of the image gradient.
The parameters λ and β are used for balancing the effect of
the two regularization terms. The second term satisfies (4),

‖Dxx
~f‖0

∆
=
K−1∑
i=2

sgn (|fi−1,j − 2fi,j + fi+1,j |) (4)

where sgn denotes the sign function, i, j denote
the row and column indices separately and
fi,j = fn (n = (i− 1)×K + j).

D. Algorithm

The optimization model (3) contains one data fidelity term
and two regularization terms. Inspired by alternating direction
method of multipliers (ADMM) [14], we split the model
into three sub-problems according to the three terms of (3)
separately. Let the initial image reconstructed by SART with
10 iterations denotes the initial image. Suppose that we have
known ~f (k) after k iterations for (3), ~f (k+1) is obtained by
solving the following three sub-problems:

Subproblem 1:

~f (k+1/3) = argmin
~f

(
‖~f (k) − ~f‖22 + ‖A~f − ~p‖22

)
(5)

Subproblem 2:

~f (k+2/3) = argmin
~f

(
‖~f (k+1/3) − ~f‖22 + λ‖Dxx

~f‖0
)

(6)

Subproblem 3:

~f (k+1) = argmin
~f

(
‖~f (k+2/3) − ~f‖22 + βS

(
~f
))

(7)

For Subproblem 1, in this paper, the classical iterative
algorithm: SART is used to solve it and the iteration number is
one. For subproblem 2, it involves a discrete counting metric,
thus we adopt the alternation optimization strategy [15]. One
auxiliary variable ~g is introduced corresponding to Dxx

~f , then
subproblem-2 is transformed into optimization problem (8).

argmin
~f,~g

(
‖~f (k+1/3) − ~f‖22 + λ‖~g‖0 + λ

′
‖Dxx

~f − ~g‖22
)
(8)

where λ
′

is a weighting parameter. For (8), ~g and ~f are solved
in the manner of alternate iteration, so the following two steps
need to be solved:

Step 1: computing ~g

argmin
~g

(
λ‖~g‖0 + λ

′
‖Dxx

~f − ~g‖22
)

(9)
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The solution can be achieved by using hard thresholding
shrinkage operator.

Step 2: computing ~f

argmin
~f

(
‖~f (k+1/3) − ~f‖22 + λ

′
‖Dxx

~f − ~g‖22
)

(10)

The solution will be achieved by using the gradient descent
method.

For subproblem 3, if S
(
~f
)

is the l1 norm of gradient
along vertical direction, then the algorithm in [3] can be used.
If S

(
~f
)

is the l0 norm of second derivative along vertical
direction, then its solution algorithm is similar to subproblem
2. If S

(
~f
)

is ‖Dy
~f‖0, it can actually be decoupled into a

series of one dimensional problems, then be solved according
to the algorithm proposed in [15]. If S

(
~f
)

is the l0 norm of
image gradient, the equation of solution has been provided in
[15].

III. EXPERIMENTS

A.

In order to verify the effectiveness to remove distortions,
robustness with respect to noise of the proposed method, this
section performs experiments on two phantoms which are
utilized for testing medical and industrial applications, respec-
tively. Phantom 1 is Forbild head phantom and phantom 2 is
synthesized by combining ellipses, disks, squares and polygon
regions as shown in Fig. 3. TV based method, l0 of gradient
based method were adopted for comparison. The iterations
are stopped after 1000 iterations. The scanning parameters are
listed in Table I and the reconstruction parameters are listed
in Table II. In this subsection, S

(
~f
)

is chosen as l0 norm of
gradient along the vertical y-direction.

Fig. 3. Phantom 2 that is used for simulation experiments.

TABLE I
SCANNING PARAMETERS FOR PHANTOM 1 AND 2.

Parameter Value
Scanning type Fan-beam Scan
SO 300 mm
SD 600 mm
θ π/4
Number of Projections 179
Detector unit width 0.127 mm
Number of detector units 1024
Image Pixel Size 0.1061× 0.1061 mm2

TABLE II
RECONSTRUCTION PARAMETERS FOR PHANTOM 1 AND 2.

Phantom TV based
method

l0 of gradient
based method

The proposed
method

Noise-free Phantom 1 N = 40
α = 0.004

λl0 = 0.001
λ = 0.0001
β = 0.00001

Phantom 2 N = 20
α = 0.01

λl0 = 0.002
λ = 0.001
β = 0.0002

Noisy Phantom 1 N = 40
α = 0.008

λl0 = 0.004
λ = 0.002
β = 0.0003

Phantom 2 N = 20
α = 0.02

λl0 = 0.005
λ = 0.004
β = 0.0003

Figure 4 and Fig. 5 show the reconstructed results for
phantom 1 and phantom 2 using noise-free projections . The
blocks in the middle of the reconstructed image are the zoom-
in views of the corresponding regions. We can see that TV
based method and l0 of gradient based method introduce
various artifacts and the reconstructed images are severely
distorted. On the other hand, the proposed method produces
near perfect reconstruction.

Fig. 4. Reconstructed results of phantom 1 using noise-free projections with
θ = π/4. The gray scale window is set to [0,1].

Fig. 5. Reconstructed results of phantom 2 using noise-free projections with
θ = π/4. The gray scale window is set to [0,1].

The next experiment is to test how the methods perform
against noise. The noisy projections are simulated by adding
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Poisson noise to the ideal raw data with 106 initial photons
for each x-ray path. The reconstructed results are shown in
Fig.6 and Fig.7. Compared to the noise-free case, the noise
could reduce the quality of images reconstructed by TV based
method and l0 of gradient based method, and more artifacts
might be introduced. The proposed method seems completely
not aware of the noise, and the reconstructed result is almost
the same as the noise-free case.

Fig. 6. Reconstructed results of phantom 1 using noisy projections with
θ = π/4. The gray scale window is set to [0,1].

Fig. 7. Reconstructed results of phantom 2 using noisy projections with
θ = π/4. The gray scale window is set to [0,1].

To assess the reconstruction performances in quantitative
way, Table III and IV list the value of Peak Signal to Noise
Ratio (PSNR) and Structural Similarity Index (SSIM) of all
reconstructed results in Figs.4-7. We can find out that the
PSNR and SSIM of the proposed method are consistently
higher than those of TV based method and l0 of gradient
based method. Above quantitative and qualitative investigation
of results demonstrate the proposed method outperforms other
two methods.

TABLE III
PSNR AND SSIM OF THE RECONSTRUCTED RESULTS FOR PHANTOM 1.

Measure TV based
method

l0 of gradient
based method

The proposed
method

Noise-free PSNR 22.6909 24.4284 35.8581
SSIM 0.9761 0.9841 0.9994

Noisy PSNR 21.9560 23.5912 32.1339
SSIM 0.9715 0.9807 0.9991

TABLE IV
PSNR AND SSIM OF THE RECONSTRUCTED RESULTS FOR PHANTOM 2.

Measure TV based
method

l0 of gradient
based method

The proposed
method

Noise-free PSNR 17.0032 17.8559 34.7696
SSIM 0.9265 0.9326 0.9994

Noisy PSNR 16.0327 16.1885 31.5604
SSIM 0.9176 0.9241 0.9992

B.

As mentioned in the section I, in practical application,
there always exists hardening artifacts or metal artifacts in
the reconstructed image. This subsection studies the robustness
with respect to the metal artifacts. S

(
~f
)

is chosen as l0 norm
of image gradient.

We used the phantom shown in Fig. 8, which is designed
according to a real reconstructed image of a monkey, in
addition, we add a small circular disk filled with titanium.
The phantom image is consist of water (1.0g/cm3), bone
(1.7g/cm3) and titanium (4.54g/cm3). We simulated the X-
ray spectra of GE Maxiray 125 X-ray tube with tube voltages
120 kV. The mass attenuation coefficients used for simulating
polychromatic projections are retrieved from the National
Institute of Standard Technology (NIST) tables of X-ray mass
attenuation coefficient [16]. In the simulation of polychromatic
projections, the sampling subintervals are 1 keV for both
X-ray spectra and the mass attenuation coefficient of the
three materials. The number of projections is 279, θ = π/9,
the reconstruction size is 512 × 512 and the pixel size is
0.0804× 0.0804mm2. The other scanning parameters are the
same as those in Table I.

Fig. 8. Phantom 3 that is used for numerical experiments. The gray scale
window is set to [0,1].

Figure 9 shows a comparison of the results reconstructed
with the TV based method, l0 of gradient based method and the
proposed method. The iterations for these methods are stopped
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after 1000 iterations. The reconstruction parameters are listed
in Table V. The middle blocks in Fig.9 are the zoom-in views
of the corresponding regions. We can see that the TV based
method suffers from the strongest artifacts. The results of the
l0 of gradient based method shows slight metal artifacts in
ROI-1, and there exists blurring in ROI-2. While in the images
reconstructed with the proposed method, there are no evident
artifacts. Therefore, the proposed method is superior to the
classic reconstruction method for removing metal artifacts.

TABLE V
RECONSTRUCTION PARAMETERS FOR PHANTOM 3.

TV based
method

l0 of gradient
based method

The proposed
method

N = 40
α = 0.03

λl0 = 0.02
λ = 0.08
β = 0.005

Fig. 9. Reconstructed image of phantom 3. For the reconstructed image by
using the TV based method, l0 of gradient based method and the proposed
method, θ = π/9. The gray scale window is set to [0,1].

IV. CONCLUSION

In this paper, we establish an optimization model based on
second derivative regularization to deal with the distortions
introduced by the limited-angle tomography. Numerical ex-
periments are carried out to test the proposed method. The
results illustrate the proposed method evidently suppresses dis-
tortions, removes metal artifacts and recovers image structures
well.
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Image reconstruction method for the exterior
problem with 1D edge-preserved diffusion and

smoothing
Jinqiu Xu, Zhiqiang Wang, Yunsong Zhao∗, and Peng Zhang

Abstract—The exterior problem is a special computed tomog-
raphy (CT) problem for industrial nondestructive inspections.
Because scanning data are incomplete, direct application of
traditional reconstruction algorithms will blur the images along
some directions. Based on the finding that the image blurring
is along the polar angle direction, in this paper, we propose an
optimization model for the exterior problem, which regularizes
the image in polar coordinates instead of the image in Cartesian
coordinates. In addition to the data fidelity term, two 1D
regularization terms along the polar radius direction and polar
angle direction are added respectively to the objective function to
perform edge-preserving diffusion and edge-preserving smooth-
ing. The blurred edges are restored gradually by edge-preserving
diffusion and edge-preserving smoothing. Numerical experiments
verify the validity of the proposed model and the corresponding
reconstruction algorithm.

Index Terms—computed tomography, exterior problem, polar
coordinates

I. INTRODUCTION

The exterior problem of computed tomography (CT) is a
special imaging problem, in which only the exterior region of
the object is scanned by x-ray beam. The exterior problem
obtains important applications in industrial area [1]-[3], such
as the inspection of pipelines.

Because the obtained projections are incomplete [3], the
exterior problem is a highly ill-posed inverse problem. The
reconstructed image suffers from severe distortions by utiliz-
ing conventional reconstruction algorithm such as Algebraic
Reconstruction Techniques (ART) or simultaneous algebraic
reconstruction technique (SART) [4]-[5]. In order to avoid
the distortion, one kind of method is to use the properties
of the image or projection data to attempt to recover the
missing projection data. Lewitt, Louis and Natterer proposed
algorithms to complete the missing projections for the exterior
problem, and reconstructed images with standard inversion
from the completed projections [6]-[8]. Generally, these al-
gorithms provide better images than the conventional recon-
struction algorithms, but still fail to meet the requirements of
the industrial applications.

The other kind of method incorporating features of the ob-
ject or reconstructed image into image reconstruction becomes
popular for the ill-posed inverse problem. Quinto proposed
an exterior reconstruction algorithm (ERA) which employs a

Jinqiu Xu, Zhiqiang Wang, Yunsong Zhao, and Peng Zhang are with the
school of Mathematical Sciences, Capital Normal University, Beijing, 100048,
China, and are also with Beijing Advanced Innovation Center for Imaging
Technology, Beijing, China. E-mail: zhao yunsong@cnu.edu.cn

singular value decomposition and the prior information of the
scanned object into image reconstruction in [3]. In certain in-
dustrial applications, the image gradients are generally sparse.
A typical reconstruction algorithm utilized sparsity of image
gradients by minimizing the total variation (TV), i.e., the l1
norm of the image gradient [9]-[10]. Then many algorithms
applied the regularization method into CT exterior problem
[11]-[13]. Theoretical studies have provided us much deeper
understandings on the ill-posed inverse problem, in [14],
Quinto et al showed that, for limited-angle problem, features
tangent to the x-rays are easy to reconstruct, while features
not tangent to any x-ray should be difficult to reconstruct. The
edge-recovery ability of conventional iterative methods, such
as ART and SART, is angle-dependent. Thus Jin et al proposed
the anisotropic total variation (ATV) reconstruction approach
in [15] and then Chen et al refined the approach in [16]. Please
note that the exterior problem is a special limited-angle prob-
lem, with varying scanning angular ranges for different points
in the image. Then Guo et al proposed a weighted directional
total variation (WDTV) based regularization model to deal
with exterior problem and achieve significant improvement on
the image quality [17].

Besides the TV regularization approach, the l0 norm of
image gradient has also been applied to limited-angle recon-
struction [18].It was demonstrated that the l0 norm has a better
performance on edge preserving than the l1 norm [18]. In this
paper, we propose to use the l0 norm of the image gradient as
the regularization term. One difficulty of applying the l0 norm
of the image gradient is that the l0 norm counts the number
of pixels with non-zeros gradients, and has no anisotropic
concept. To overcome this obstacle, we propose to regularize
polar images (i.e., images with pixels on polar grids) instead of
Cartesian images (i.e., images with pixels on Cartesian grids),
and regularize the images with two 1D l0 norm along the
two directions, the polar radius direction and the polar angle
direction separately, instead of a 2D l0 norm. With these two
essential points, an imaging model with two regularization
terms is proposed. The regularization along the polar radius
direction performs an edge-preserving diffusion, while the
regularization along the polar angle direction performs an
edge-preserving smoothing. Numerical experiments show that
our model and algorithm have a better performance on the
reconstruction of the edges along the polar radius direction
over the existing state-of-the-art algorithms.
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II. METHODS

A. The Exterior Problem

For simplicity, we consider the exterior problem with a 2D
fan-beam scanning configuration. There should be no problem
to extend our model and algorithm to 3D cone-beam case.

The scanning configuration for the exterior problem is
illustrated in Fig. 1. The object is placed at the origin of the
coordinate system Oxy and S is the x-ray focal spot. We can
get only the exterior projections, whose corresponding x-ray
paths intersect with the scanned object only at the exterior
region. Image reconstruction from such exterior projections
is the so-called exterior problem. It is obvious that the ex-
terior problem is an incomplete data reconstruction problem.
Different from limited-angle problem, the projection angular
ranges for different points in the exterior problem are generally
different.

Fig. 1. A 2D fan-beam scanning configuration of the exterior problem. The
gray circular ring is the area covered by the fan beam.

B. Optimization Model

It is proved by Quinto that, when applying conventional
reconstruction algorithms on incomplete projection data, edges
tangent to the x-ray paths could be recovered easily, while
edges tangent to the missing x-ray paths would be blurred
[14]. So, for the exterior problem, the edges that are tangent
to the polar angle direction could be recovered easily, while
the edges that are tangent to the polar radius direction would
be recovered hard. Based on this finding, Guo et al propose
a weighted directional total variation (WDTV) minimization
model to deal with exterior problem [15]. The proposed
model has a better performance on artifact reduction and
edge preserving than existing state-of-the-art models. But high
spatial resolution details are distorted.

As the l0 norm of image gradient has a better performance
than TV on edge preserving [18], So, to reconstruct spatial
resolution details, we consider replacing TV with the l0 norm
of image gradient. Additionally, for the exterior problem,
scanning angular ranges vary by the points in the image. Thus
we reconstruct polar images (i.e., images with pixels on polar
grids) instead of Cartesian images (i.e., images with pixels on
Cartesian grids) based on the finding that for polar images, the
blurs are mainly along the polar angle direction. Fig. 2 gives
an example to illustrate this fact. Fig. 2 (a) is the pantom image
with 512× 512 pixels. Fig. 2 (b) and Fig. 2 (c) are Cartesian

image and polar image reconstructed from exterior projections
with traditional method, respectively. We can see clearly that
the blurs are mainly along the polar angle direction, i.e., the
vertical direction in the polar image.

(a) (b) (c)
Fig. 2. (a) is the phantom image. (b) and (c) are Cartesian image and polar
image reconstructed from exterior projections with SART, respectively.

Now we introduce our model in detail. Note that, as shown
in Fig. 3, the x-ray path along the straight line in subfigure (a)
corresponds to the x-ray path along the corresponding curve in
subfigure (b). So, a projection of the image is the line integral
of the first kind along a curve which is a straight line in the
Cartesian coordinate system.

(a) (b)
Fig. 3. The x-ray paths in Cartesian coordinate system and polar coordinate
system. The x-ray path along the straight line in Cartesian image (a)
corresponds to the path along the corresponding curve in polar image (b).

Suppose that ~f = {fn|n = 1, 2, ..., N} is the discrete image
with pixels on polar grids, and let the curved intersection
length of the x-ray path indexed with i and the j-th pixel
be aij , we have the corresponding projection

pi = ~Ai
~f (1)

where ~Ai = (ai1, ai2, . . . , aiN )T is a row vector. Then
reconstructing image from projections is to solve the following
linear system

A~f = ~p (2)

where A = [ ~A1, ~A2, ..., ~AM ]T and ~p = [p1, p2, ..., pM ]T . The
proposed optimization model is shown in (3).
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~f∗ = argmin
~f

(
‖A~f − ~p‖22 + λ‖Dh

~f‖0 + µ‖Dv
~f‖0
)

(3)

where ‖·‖2 and ‖·‖0 are the l2 norm and l0 norm of a vector or
an image, the first term of the objective function in (3) is the
data fidelity term, the second and the third are regularizaton
terms, λ and µ balance the contribution of the three terms to
the objective function. Dh

~f and Dv
~f are differences along

the horizontal and vertical direction of an image, which are
defined as

‖Dh
~f‖0 =

√
N∑

s=2

sign (|fs,t − fs−1,t|) (4)

‖Dv
~f‖0 =

√
N∑

t=2

sign (|fs,t − fs,t−1|) (5)

Note that we have used double subscript here, where s, t
are the row and column indices in the polar coordinate system,
respectively.The role of the second term is to restore the edges
tagent to polar radius direction, while the role of the third
term is to smooth out the possible artifacts introducted by the
second term, which will be verified in the section of numerical
experiments. So, in numerical experiments, λ should be bigger
than µ.

C. The Solving Algorithm

The optimization problem (3) is non-convex. In our prac-
tice, the alternating direction method of multipliers (ADMM)
framework [19] is employed to develop its solution algorithm,
which appears to be convergent and obtains good results.

Let ~f (0) be the initial image and suppose that we have got
the reconstruction result ~f (k) after k iterations, the updating
scheme for ~f (k+1) can be split into three subproblems:

Subproblem 1:

~f (k+1/3) = argmin
~f

(
‖~f (k) − ~f‖22 + ‖A~f − ~p‖22

)
(6)

Subproblem 2:

~f (k+2/3) = argmin
~f

(
‖~f (k+1/3) − ~f‖22 + λ‖Dh

~f‖0
)

(7)

Subproblem 3:

~f (k+1) = argmin
~f

(
‖~f (k+2/3) − ~f‖22 + µ‖Dv

~f‖0
)

(8)

The subproblem 1 can be solved by applying the SART
method with ~f (k) as the initial guess. In our tests, one
iteration of SART method works well. The subproblem 2 and
subproblem 3 can actually be decoupled into a series of one
dimensional problems, which are then solved by utilizing the
algorithm proposed in [20], with a little extra work to tailor its
two-dimensional code for solving one-dimensional problems.

Generally speaking, the images obtained with the above
algorithm can be used directly for image analysis, such as

automatic defect inspection. But as the pixels of the images
are distributed on polar grids, it is not intuitive for human
observation. So, in our experiment, we transform the pixels
back on Cartesian grids with linear interpolation.

III. NUMERICAL EXPERIMENTS

This section validates the proposed imaging model and the
corresponding reconstruction algorithm for the exterior prob-
lem. The evaluation includes the spatial, contrast resolution
and sensitivity to noise.

We will first use the simple phantom shown in Fig. 2
to illustrate the roles of the second and third regularization
terms in the optimaization model (3). The scanning parameters
are listed in Table I. When we remove the third term, the
reconstructed polar image and the corresponding Cartesian
iamge are shown in Fig. 4 (a) and (b), respectively. The
reconstruction parameter λ is set to be 0.005. The results
indicate that the second term would help to recover most of
the features of the true image while it causes some stripping
artifacts. Then we add the third term, the reconstructed image
is shown in Fig. 4 (c) and (d). The reconstruction parameters
λ and µ are set to be 0.005 and 0.0001, respectively. One
can see that the third term can effectively remove the artifacts
introduced by the second term.

(a) (b)

(c) (d)
Fig. 4. (a) and (b) are Cartesian image and polar image reconstructed by using
optimization model (3) without the third regularization term, respectively. (c)
and (d) are the reconstructed Cartesian image and polar image with the third
regularization term, respectively. The gray scale window is [0,1].

Then we will use the phantom shown in Fig. 5 to validate
the proposed algorithm further. This phantom is designed
according to the one used in [17]. It is a cross section of
a pipeline with 512× 512 pixels. Two kinds of structures are
placed on different positions of the pipelines. The first kind of
structure containing seven low contrast circles (marked with
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ROI-B1 to ROI-B7), with gray value 0.8, 0.85, 0.9, 0.95, 0.97,
0.98 and 0.99 respectively, is used to verify the performance
on contrast resolution. The second kind of structure containing
five sets of line pairs (marked with ROI-A1 to ROI-A5) with
different resolutions and a cross (marked with ROI-A6) is used
to verify the performance on spatial resolution.

For comparison, two state-of-the-art algorithms for the
exterior problem, i.e., SART + l0 [18] and WDTV [15] are
also implemented. The Peak Signal to Noise Ratio (PSNR) and
Root Mean Square Error (RMSE) are calculated to evaluate
the algorithms quantitatively.

Fig. 5. The phantom used for simulation experiments. The gray scale window
is [0,1].

Table I shows the scanning parameters for this phantom.
With these parameters, the projection angular range for the
inner shell point and the outer shell point are 69.41 and 96.87
degree, respectively. The noisy projections are simulated by
adding Poisson noise, with initial photon number 106 for each
x-ray path, to the noise-free projections. The used projection
data are along projection rays that do not intersect the blue
circle in Fig. 5.

All the initial images for SART+l0, WDTV, and the pro-
posed algorithm are the reconstruction result by using SART
with 10 iterations. Table II shows the reconstruction param-
eters for the three algorithms. The parameters λ and µ for
the proposed algorithm are the ones defined in (3). The
iterations are stopped when the PSNR and the RMSE of the
reconstructed images become stable.

TABLE I
SCANNING PARAMETERS.

Parameters Value
Scanning type Fan-beam Scan
Detector unit width 0.127 mm
Number of effective detector units 350
X-ray source to the rotation center distance 1950 mm
X-ray source to detector distance 2098 mm
Scanning Angular Range 360 degree
Scanning Angular Interval 0.5 degree
Reconstruction size 512× 512 pixels
Image Pixel Size 0.1669× 0.1669 mm2

Figure 6 shows the reconstruction results of the three
algorithms. The four blocks in the middle of the reconstructed
images are the zoom-in views of the corresponding ROIs.
We can see that the SART+l0 failed to reconstruct ROI-
A3 and ROI-A4, as the edges along the radical direction is

TABLE II
RECONSTRUCTION PARAMETERS.

SART+l0 WDTV The proposed algorithm

Parameters λl0 = 0.00001

ω1 = 1
ω2 = 0.07
β = 0.2
NTV = 30

λ = 0.00008
µ = 0.00002

too long, too much information is lost in the projections.
WDTV reconstructs the low resolution line pairs (ROI-A3)
successfully, but fail to reconstruct high resolution line pairs
(ROI-A4). While the proposed algorithm reconstructs all the
line pairs correctly, as the l0 norm has a stronger edge-
preserving ability.

Fig. 6. Reconstruction results of simulated phantom. The gray scale window
is [0,1].

Figure 7 shows the ROIs with low contrast. The SART+l0
algorithm and the proposed algorithm fail to reconstruct the
ROI with the lowest contrast. We analyze the reason is that
the l0 norm regularization is too strong.

Fig. 7. Reconstruction results from noisy data. The first row is the true images,
and the second to the forth row are the results of SART+l0, WDTV and the
proposed algorithm, respectively. The results from left to right correspond to
the circle with gray value of 0.95, 0.97, 0.98 and 0.99, respectively. The gray
scale window is set to [0.95,1].
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To assess the performance of the algorithms in a quantitative
way, Table III lists the value of PSNR and RMSE of all the
reconstruction results. The index values coincide well with the
results shown in Fig. 6.

TABLE III
PSNR AND RMSE OF THE RECONSTRUCTION RESULTS.

SART+l0 WDTV The proposed algorithm
PSNR 36.2716 39.0841 39.1328
RMSE 0.0207 0.0176 0.0108

IV. CONCLUSION

In this paper, an optimization model is proposed to remove
the blur and artifacts introduced by the incomplete data of the
exterior problem. Based on the observation that the blur of
the image reconstructed from the exterior CT data is along
the polar angle direction, we reconstruct images with pixels
on polar grids, and regularize the images with 1D gradient
l0 norm along the polar angle direction and the polar radius
direction, separately. Then the ADMM framework is employed
to compute the solution of the optimization model. The
experiments on simulated data suggest that the proposed model
and algorithm outperform the state-of-the-art algorithms, e.g.
SART+l0 and WDTV, on the reconstruction of details with
high spatial resolution and high contrast. So, the proposed
model and algorithm are fit for the detection of pipelines. But
we have also find that the proposed model and algorithm fail
to reconstruct details with very low contrast, which might be
caused by the strong regularization of the l0 norm. Further
improvement of this algorithm is ongoing.
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Iodine Quantification in Limited Angle Tomography
Koen Michielsen, Alejandro Rodrı́guez-Ruiz, Ingrid Reiser, James Nagy, and Ioannis Sechopoulos

Abstract—Contrast-enhanced mammography has shown
promise as a cost-effective alternative to MRI for imaging
breast cancer in dense breasts. However, one limitation is the
poor quantitation of iodine contrast since the true 3D lesion
shape cannot be inferred from the 2D projection. Use of limited
angle tomography can potentially overcome this limitation. In
this work, we present a two pass reconstruction algorithm
with material decomposition designed to obtain quantitative
iodine measurements in breast tomosynthesis by segmenting the
iodine map generated by the first pass reconstruction using a
convolutional neural network, and using this segmentation to
restrict the allowed iodine distribution in the second pass of the
reconstruction.

To evaluate the performance of the algorithms, a set of digital
breast phantoms with lesions with varying iodine concentration
was used. The acquisition of breast tomosynthesis images of
these phantoms was simulated and the proposed reconstruction
and segmentation algorithms were applied. The resulting iodine
concentration estimates increased from 12% to 76% of the
true iodine concentration, and the coefficient of variation of the
estimates was reduced from 45% to 21%, demonstrating that
it is feasible to obtain more quantitative results from contrast
enhanced tomosynthesis.

I. INTRODUCTION

Digital breast tomosynthesis (DBT) is a pseudo 3D imaging
technique that keeps the high in-plane spatial resolution of
digital mammography while adding limited vertical resolution.
However, DBT images are still only morphological, relying
on differences in attenuation and distortions in the shape of
tissues for tumors to be detected, and having limited utility
post-diagnosis. Obtaining functional information of the breast
would allow for not only an increase in the detection and
diagnostic performance of DBT, but more importantly could
have a significant impact for post-diagnosis clinical tasks.

Functional imaging is currently dominated by magnetic
resonance imaging (MRI), an accurate but expensive modality,
both in terms of equipment and installation costs, and es-
pecially in terms of running cost. In comparison, functional
imaging with mammography or DBT would be considerably
faster, easier, more accessible, and overall cheaper. However,
contrast-enhanced (CE) mammography and DBT lack quan-
titative capability, making it challenging to accurately and
repeatedly measure the functional response of the investigated
breast tissue. This is especially important for longitudinal
evaluation, such as during therapy response monitoring, where

K. Michielsen and A. Rodrı́guez-Ruiz are with the Department of Radiology
and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The
Netherlands; I. Reiser is with the Department of Radiology, The University
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United States; and I. Sechopoulos is with the Department of Radiology
and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The
Netherlands and the Dutch Expert Center for Screening (LRCB), Nijmegen,
The Netherlands.

Figure 1. To demonstrate the absence of quantitative reconstructed attenua-
tion values in limited angle tomography, we simulated a phantom with lesions
of different sizes and a phantom with lesions at different locations withing
the imaged area, shown left. In the reconstruction on the right, it is clear that
the reconstructed attenuation depends on both the size of the lesion and the
location of the lesion within the reconstructed volume.

it is important to compare changes in tumor perfusion metrics
across months.

The limitations that need to be overcome for CE-DBT to
become a quantitative modality are demonstrated in figure 1,
where it is clear that targets with equal iodine content but
different sizes and locations within the reconstruction field
of view are reconstructed with varying apparent amounts of
iodine content.

In this work we propose an approach combining a maxi-
mum likelihood based polychromatic reconstruction algorithm
including material decomposition with a deep learning based
segmentation method to allow accurate recovery of iodine
concentration from limited angle tomography data and demon-
strate its effectiveness in simulated data.

II. MATERIALS & METHODS

The approach for our method is to perform a two-pass
reconstruction with material decomposition. The iodine com-
ponent of the first pass reconstruction is automatically seg-
mented with a deep learning convolutional neural network
and the resulting segmentation is then used as a mask in the
second pass. We assume that the segmentation problem can be
solved in practice due to the expected sparsity of the iodine
component. The reconstruction and segmentation methods are
described in sections II-B and II-C respectively. Sections II-A
and II-D describe the simulation and analysis of a set of
phantoms used to evaluate the algorithm.

A. Phantom Simulation

To evaluate the reconstruction algorithm, we simulated a
total of 1100 breast phantom images. To limit the compu-
tational cost, the phantoms consisted of 2D coronal slices
extracted from 3D phantoms generated with an algorithm
described by Lau et al. [1]. An example is shown in figure 2.
These phantoms were indexed with labels for four different
materials: skin, adipose tissue, glandular tissue, and Cooper’s
ligaments. The elemental compositions of these materials,
obtained from the work of Hammerstein et al.[2] are listed
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Table I
ELEMENTAL MATERIAL COMPOSITIONS.

Adipose Glandular ε% contrast
Skin tissue tissue enhanced lesion

ρ( g
cm3 ) 1.09 0.93 1.04 1.04

H 0.098 0.112 0.102 0.102 × (1− ε)
C 0.178 0.619 0.184 0.184 × (1− ε)
N 0.05 0.017 0.032 0.032 × (1− ε)
O 0.667 0.251 0.677 0.677 × (1− ε)
P 0.001 75 0.000 25 0.001 25 0.001 25 × (1− ε)
S 0.001 75 0.000 25 0.001 25 0.001 25 × (1− ε)
K 0.001 75 0.000 25 0.001 25 0.001 25 × (1− ε)
Ca 0.001 75 0.000 25 0.001 25 0.001 25 × (1− ε)
I ε

Figure 2. 2D coronal breast phantom containing skin (darkest gray), adipose
tissue (dark gray), glandular tissue (light gray), Cooper’s ligaments (black),
and an iodine enhanced lesion (white).

in table I, which were used to calculate the energy dependent
attenuation coefficients, µ(e), using the software from Boone
and Chavez [3]. The composition of Cooper’s ligaments was
assumed to be identical to that of glandular tissue. The
resulting phantoms represented compressed breast thicknesses
from 3.0 cm to 5.6 cm and widths from 5.8 cm to 18.0 cm
with an isotropic voxel size of 0.1 mm×0.1 mm.

A randomly generated ellipsoid target consisting of iodi-
nated contrast enhanced glandular tissue was randomly placed
within each phantom. The major axis of the lesion varied
between 4 mm and 8 mm, the minor axis varied between 2 mm
and the size of the major axis, and rotation was allowed in any
direction. The iodine content of the simulated lesion varied
between 0.1% and 0.5% fraction by weight, which was added
to the glandular material by rescaling the other elemental
fractions, as shown in the last column of table I.

Projection data was generated for all phantoms by simu-
lating a limited angle fan-beam geometry with the center of
rotation placed at the bottom center of the phantom. The x-
ray source was placed 650 mm above the center of rotation,
and the source-detector distance was 700 mm. A total of
25 equally spaced projections between −24◦ and 24◦ were
calculated, with the detector moving together with the source.
The forward model in equation (2) was used with a 39 kV
tungsten spectrum filtered by 0.5 mm of aluminum.A perfect
photon counting detector was simulated with two energy bins,
one from 19.5 keV to 33 keV and one from 33.5 keV to
39 keV, and consisting of 2048 elements of 0.1 mm width. No
quantum noise was added to the simulated projection data.

Table II
LIST OF SYMBOLS.

yi Measurement for projection line i
ŷi Forward model for projection line i
bie Spectrum for projection line i
µ
(e)
a Linear attenuation of material a at energy e
lij Intersection between projection line i and voxel j
waj Fraction of material a in voxel j
L(~w) Log-likelihood cost function

B. Reconstruction Algorithm

The reconstruction algorithm we apply is a modification of
a previously published method by Bustamante et al. [4]. It is
a maximum likelihood method with material decomposition
(named ML-MADE), which features a polychromatic forward
model and allows decomposition in selected base materials.
The log-likelihood cost function in equation (1) is used with
the forward model in equation (2), resulting in the update step
in equation (3) after some approximations in the denominator
which assume that the reconstruction is started with a good
initialization. All symbols are listed in table II. In practice
the update steps for each material a and each energy bin e
are calculated and applied sequentially, with the loop over the
materials within the loop over the energy bins.

L(~w) =
∑
i

yi ln ŷi − ŷi (1)

ŷi(~w) =
∑
e

bie exp

−∑
a

µ(e)
a

∑
j

lijwaj

 (2)

∆w
(n)
aj =

∑
i lij (ŷi − yi)

ψ
(a)
i

ŷi∑
i lij

ψ
(a)
i

ŷi

∑
b ψ

(b)
i

∑
k lik

(3)

ψ
(a)
i =

∑
e

bieµ
(e)
a exp

−∑
b

µ
(e)
b

∑
j

lijwbj

 (4)

In cases where we know that the materials a selected for
the decomposition match the materials present in the object
to be reconstructed, we can add the additional constraint that∑
a waj = 1 in all voxels by applying the prior cost function

with weight β in equation (5).

P (~w) = −β
2

∑
j

(
1−

∑
a

waj

)2

(5)

The object contour is also used as an additional constraint,
as per our previous work [5]. In this instance, the mask αaj
is material specific, combining the overall object contour with
the material specific segmentation for the iodine component.
The new update equation including these constraints is shown
in equation (6).

∆w
(n)
aj =

αaj
∑
i lij (ŷi − yi)

ψ
(a)
i

ŷi
+ αajβ(1−

∑
b wbj)∑

i lij
ψ

(a)
i

ŷi

∑
b ψ

(b)
i

∑
k αaklik + αajβ(

∑
b wbj)

(6)
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Figure 3. Material decomposition of the phantom shown in figure 2.
Glandular tissue (top row), adipose tissue (middle row), and iodine (bottom
row). The ground truth is shown in the left column while the results of the
first pass reconstruction are shown in the right column.

Each of the two passes of the reconstruction used an
initialization of 100 iterations with two base materials (adipose
and glandular tissue), followed by 10 iterations using three
base materials, adding iodine to the two materials used in the
initialization. Each iteration used 5 subsets for each of the two
energy bins, resulting in a total of 1100 image updates, and
the prior weight β was set to 105.

The exact phantom contour was used as binary reconstruc-
tion mask ~α for all materials in the first pass reconstruction,
and for the adipose and glandular components in the sec-
ond pass reconstruction. The segmentation resulting from the
method described in section II-C was used as mask for the
iodine component image in the second pass reconstruction.
An example of the three components of the first pass recon-
struction of the phantom in figure 2 is shown in figure 3.

C. Neural Network Based Segmentation

The segmentation model was applied locally to each simu-
lated iodine target independently within the complete phantom
image. Regions of interest (ROIs) of 256×256 pixels were
automatically extracted around each iodine target (both in
the first pass reconstruction of the iodine map and in the
original ground truth simulated image). In total, 1100 iodine
targets were available, and they were split into training (880),
validation (110), and evaluation (110) datasets of the model.
The model was a deep learning convolutional neural network
(CNN) with modified u-net architecture [6], detailed in fig-
ure 4. It was trained using the simulated iodine-only phantom
ROIs as ground truth binary masks, and using pixel-wise
binary cross entropy as loss function. The trained network was
applied to the 110 images in the evaluation dataset, and the
resulting segmentation probability map was used as a non-
binary mask for the iodine component in the second pass
reconstruction.

D. Data Analysis

The accuracy of the segmentation model was evaluated
using the Dice similarity coefficient (DSC) in equation 7.

Figure 4. The model based on u-net architecture [6] used to segment
the iodine targets on the reconstructed images. Each convolution 3×3 was
followed by a batch normalization layer and a leaky rectified linear unit
activation layer. The last convolution 1×1 was followed by a sigmoid
activation layer.

DSC =
2
∣∣∣MaskModel ∩MaskTruth

∣∣∣∣∣∣MaskModel
∣∣∣+
∣∣∣MaskTruth

∣∣∣ (7)

To be able to distinguish between the effects of the seg-
mentation and the reconstruction algorithms, the second pass
reconstructions were performed without masking the iodine
component, with the CNN-based segmentation, and with the
true target segmentation.

The reconstructed iodine fraction for each of the 110
evaluation cases was determined by measuring the median
pixel value in the target area in the iodine map. The linear
regression line was calculated for the results of the different
reconstruction masks.

The proportion between the reconstructed iodine fraction
and the true iodine content was calculated for all cases to
determine the coefficient of variation of this proportion.

III. RESULTS

The median DSC of the segmented masks was 0.95 with
interquartile range 0.90 – 0.97. The average absolute difference
in predicted iodine fraction between using true and predicted
masks was 10%, which was reduced to 4% when considering
only cases with DSC larger than 0.90 (75% of cases).

The estimated iodine fractions are plotted as a function of
the true iodine fraction in figure 5. The proportion between
the measured and true iodine content is shown in figure 6. The
slope and confidence interval of the linear regression lines is
listed in table III together with the mean and standard deviation
of the proportion.

IV. DISCUSSION & CONCLUSION

The results show that our method results in more quanti-
tative reconstructions, increasing the average recovered pro-
portion from 12% to 70% of the true iodine content, while
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Table III
ESTIMATED IODINE FRACTIONS.

Linear regression Reconstructed proportion
Slope 95% CI Mean St.Dev. (%)

No mask 0.113 0.086 – 0.140 0.115 0.0513 (45%)
CNN mask 0.765 0.714 – 0.816 0.701 0.144 (21%)
True mask 0.772 0.743 – 0.801 0.764 0.0784 (10%)

Figure 5. Reconstructed iodine fraction as a function of the true iodine
fraction for reconstructions without mask, with a CNN-based segmentation,
and with the true mask.

Figure 6. Proportion between the reconstructed iodine fraction and the
true iodine fraction for reconstructions without mask, with a CNN-based
segmentation, and with the true mask. The boxplot lines are at the 25th, 50th,
and 75th percentiles, and the whiskers are at the 5th and 95th percentiles.

reducing the variation from 45% to 21%. Comparing the
results using the CNN-based segmentation and with those
using the true shape shows that the segmentation quality is
sufficient in most cases, resulting in iodine fractions very close
to true segmentation. The cases where the segmentation was
not very good (roughly 10% of the cases) caused the increase
in the coefficient of variation when using the segmented
iodine map instead of the true map. The remaining systematic
underestimation can thus be attributed to the reconstruction
algorithm, which seems to assign attenuation belonging to the
iodine component to the other two components, possibly due
to convergence to a local maximum.

These results give an indication that our approach to obtain
quantitative information from breast tomosynthesis is feasible.
They also indicate the gains to be made by improving the
reconstruction or segmentation steps of our algorithm. Improv-
ing the reconstruction should focus on making sure that the
algorithm assigns attenuation to the correct base material when
working with a limited angle dataset.

Improving the segmentation method, on the other hand, will
ensure that our method works consistently in all cases and thus
results in a reduced variation, although given the feasibility of
the method demonstrated here, it is now more important to
improve the segmentation using more realistic targets in 3D
phantoms and real lesions in patient images, rather than trying
to obtain a perfectly segmented ellipse in 2D. Of course, it
remains to be seen how the segmentation will perform with
patient cases, including cases with multiple iodine enhanced
lesions and contrast agent circulating in the arteries.

To conclude, we demonstrated that it is possible to get more
quantitative data from contrast enhanced breast tomosynthesis
by segmenting lesions in a first pass reconstruction, and then
limiting the iodine component to the segmented region in the
second pass reconstruction.
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FreeCT ICD: Free, Open-Source MBIR
Reconstruction Software for Diagnostic CT

John M. Hoffman, Scott S. Hsieh, Frédéric Noo, and Michael F. McNitt-Gray

Abstract—As interest in CT has increased, most recently with

the spike in interest around quantitative imaging, more research

groups are requiring offline reconstruction software. Recently,

FreeCT wFBP, weighted filtered backprojection reconstruction

software, was released targeting clinical third-generation CT

scanners, which has historically not been well addressed in

the free, open-source software for CT. While FreeCT wFBP

represents an important initial step in the development of

software intended for the reconstruction of clinical data sets,

most modern scanners are leveraging model-based iterative

reconstruction (MBIR) algorithms, which show immense promise

for dose reduction. In this work we introduce FreeCT ICD,

the free, open-source, MBIR complement to FreeCT wFBP.

FreeCT ICD is intended for use with third-generation, helical

CT geometries and is capable of reconstructing clinical data sets.

It handles clinical scanner features such as flying focal spots,

and quarter detector offsets, and can be initialized with a wFBP

reconstruction to accelerate convergence. More information and

documentation can be found at http://cvib.ucla.edu/freect/ and

https://github.com/FreeCT/FreeCT ICD.

Index Terms—Reconstruction, model-based, iterative, soft-

ware, open-source

I. INTRODUCTION

CT has established itself as one of the foremost modern
imaging modalities in use today. Research interest in CT now
spans a wide variety of topics, from hardware innovation (e.g.,
dual energy CT, photon counting detector, scatter grids, etc.)
to quantitative imaging to accelerate and improve diagnosis
and detection of disease in patients. While the range of topics
is highly diverse and each topic presents its own set of
requirements and challenges, reconstruction of raw projection
data plays a critical role in every area.

The reconstruction needs of every research group are varied,
requiring approaches to cater to factors such as specific system
geometry, reconstruction algorithm, and artifact correction.
However it is often the case that many of these aspects
can be utilized across systems, modifying only the specific
system parameters such as distances and detector spacings, or
tuning the reconstruction parameters such as kernel or iterative
parameters. As a result, open-source reconstruction packages
have emerged to support this need. Examples of such packages
include such as CONRAD [1], RTK [2], and the Michigan
Image Reconstruction Toolbox [3]. While these packages are
thorough, well-maintained, and would meet a vast majority
of reconstruction needs for most groups, they have, to date,
focused primarily on flat-panel cone-beam CT scanners, or

J. Hoffman, S. Hsieh, and M. McNitt-Gray are with the Department of
Radiology, UCLA, Los Angeles, CA. F. Noo is with UCAIR, Department of
Radiology, University of Utah, Salt Lake City, UT.

more general reconstruction approaches rather than clinical
diagnostic systems.

With the rise of quantitative imaging and machine learning,
specific interest is increasing in reconstructing clinical diag-
nostic CT data, which, to date, has not been well-addressed
by free and open-source CT reconstruction software. Without
freely-available, open-source solutions, each group is required
to either utilize a clinical scanner for their reconstructions,
or is required to implement their own reconstruction software
from scratch. For researchers specializing in CT reconstruc-
tion, the latter option is not so daunting, however groups
looking to leverage CT reconstruction as a means to an end
likely do not have the time or expertise. Further complicating
work in the world of diagnostic CT are minimally-described,
manufacturer-specific techniques designed to improve image
quality, such as flying focal spots, and quarter detector offsets.
While conceptually many of these are straightforward and have
been documented in the literature (e.g., [4]), building an actual
implementation can require substantial trial and error before
clinical levels of image quality are achieved.

In 2016, we released FreeCT wFBP providing one option
for researchers looking to reconstruct diagnostic third gen-
eration CT data [5]. FreeCT wFBP implemenents weighted
filtered backprojection as described in [6] and supports the
reconstruction of third-generation clinical diagnostic projec-
tion data, including scans acquired with arbitrary pitch values,
and flying focal spots. With modern iterative reconstruction
algorithms gaining popularity however, groups may not wish
to utilize older filtered backprojection methods to conduct
quantitative imaging tests. Additionally, as more clinical sites
begin to use iterative methods, analyses conducted on filtered
backprojection reconstructions are often critiqued for not using
the most current approaches.

In this work we introduce FreeCT ICD: fully 3D, model-
based iterative reconstruction software for helical, diagnostic
third-generation CT. This software builds on [5] in that it
provides a model-based iterative reconstruction software pack-
age that addresses the same clinical system geometries and
challenges (e.g., flying focal spots) as [5] and is released under
the GNU General Public License (GPL) v2.0 in the hopes that
it will be useful and educational to the broader CT research
community. The purpose of this abstract is to introduce the
software and provide sample results; a full discussion of the
algorithm details will be provided in future work.
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Listing 1. Excerpts of a configuration file used to reconstruct a phantom
held in a head holder using FreeCT ICD. YAML provides a simple, easily
readable yet easily parsable format for configuration files.

# Paths

sinogram_path: ./n_ffs_1.ptr

output_dir: ./

output_file: n_ffs_headholder.img

...

# Iterative recon parameters

wfbp_initialize: 1

penalty: quadratic

lambda: 0.1

delta: 0.005

...

# Scanner Geometry

# Parameters here are FIXED and should

# not change

acquisition_fov: 50.0

n_channels: 736

num_views_per_turn_without_ffs: 1152

focal_spot_radius: 59.5

source_detector_distance: 108.56

...

II. OVERVIEW

A. Algorithm

Key approach details for Free ICD are the following: a
stored system matrix is employed with rotating reconstruc-
tion grid, which allows reasonable system matrix sizes for
use with most computing systems and fast column retrieval
from the system matrix. Iterative coordinate descent (ICD) is
used to optimize a penalized least-squares objective function
with either a quadratic or edge-preserving penalty function.
While several works have previously explored the methods for
storing the system matrix for clinical CT ( [7], [8]), and the
approach implemented in FreeCT ICD uses the rotating slices
approach described by Xu et al. in [7], FreeCT ICD replaces
other forward projection approaches with a modified Joseph’s
method. This approach allows us to leverage the rotating slices
for matrix size reduction, minimize discretization errors well
known to result from Siddon’s method ( [9]–[11]), and achieve
smaller matrix sizes than the blob-based approach employed
by [7].

While the full details of this scheme will be described in
future work, briefly, the approach is a 3D extension of the
2D bilinear interpolation scheme described by [12], however
with an added further reduction of the final interpolation
step to a scheme based on the principle of Joseph’s method.
This accelerates the computation and reduces the matrix size
relative to [12].

B. Software

FreeCT ICD software is implemented using C++ and is
intended primarily for use on Linux systems, however all
code and dependencies should be easily portable to Mac and

Windows-based systems. Reconstructions are configured using
text configuration files written in YAML (https://yaml.org),
which is a simple, human-readable “data-serialization” lan-
guage, similar to markdown languages. A subset of one
configuration file is given in listing 1.

FreeCT ICD only requires two non-standard external li-
braries: yaml-cpp (https://github.com/jbeder/yaml-cpp) for the
parsing of the configuration files, and the Boost libraries
(http://www.boost.org/) for some vector functionality and ma-
trix storage. Both libraries are cross platform and available for
all major computer operating systems. Finally, FreeCT ICD
utilizes the standard OpenMP libraries (when available) to
accelerate iterations. This is a standard parallelization library.
This low-dependency design of FreeCT ICD makes it easy to
compile and run on nearly all modern systems.

Some key features of the software are: (1) the inclusion
of a penalty term in the objective function as a regular-
izer, (2) the ability to initialize the MBIR algorithm with a
weighted filtered backprojection (wFBP) reconstruction, and
(3) support for flying focal spots. Two choices of penalty
term are available in the released implementation, a quadratic
penalty and an edge-preserving penalty. Because modifying
the penalty term is often of interest to researchers, it has been
implemented in a highly modular manner to make it easy
to configure new penalties for experimentation. Initialization
of the reconstruction volume from a wFBP reconstruction is
provided by FreeCT wFBP ( [5]) and reduces the number of
require iterations for convergence substantially. Because ICD
is challenging to parallelize, this is an important addition to
achieve reconstruction times usable for research.

While the fundamental ICD optimization is not paral-
lelized in FreeCT ICD, some level of parallelization has been
achieved for the propagation of pixel updates back into the
sinogram domain, which helps accelerate overall program
execution.

Finally, FreeCT ICD supports flying focal spots (FFS),
a technique used to improve sampling near isocenter and
increase axial and longitudinal resolution in the final recon-
structed image [4]. While simulated data rarely employs FFS,
major manufacturers often employ them in clinical data, and
thus any reconstruction package targeting clinical raw data
must offer support for FFS. While other works have discussed
pathways to adding FFS as a feature (e.g., [8]), FreeCT ICD at
present has support for in-plane FFS (sometimes referred to as
“phi” flying focal spot), with implementations of longitudinal
(aka “Z”) FFS and other configurations (Z+phi and diagonal
FFS) planned in the near future.

FreeCT ICD is being released under the GNU General
Public License v2.0 in an effort to encourage further re-
search and education using diagnostic CT. Licensing the
software under the GNU GPL v2.0 means that users are
free to copy, distribute, and modify the software provided
that changes are identified and dated in the source code
and any modifications are made freely available under the
same license. The full text of the license can be found at
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html.
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TABLE I
MATRIX SIZES, AND CORRESPONDING RECONSTRUCTION AND

ACQUISITION PARAMETERS FOR PRESENTED SAMPLE RECONSTRUCTIONS.

Scan ACR Phantom Pediatric Chest

Acquisition Parameters

Collimation 16 x 1.2mm 16 x 1.2mm
Pitch 1.0 1.0
Flying focal spot Off Off
Rotation time [s] 0.33 0.33

Reconstruction Parameters

wFBP initialization yes yes
Voxel grid Dimensions 512 x 512 x 132 512 x 512 x 163
Voxel size [mm] 0.58 x 0.58 x 1.5 0.98 x 0.98 x1.5
FOV radius [mm] 300 500
Edge-preserving parameter 0.005 0.005
Penalty term parameter 0.1 0.1
Iterations 50 50

Matrix size [GB] 8.5 14.6

III. SOFTWARE DEMONSTRATION AND RESULTS

To demonstrate reconstruction quality and other properties
of the software package, several sample reconstructions of data
acquired on a clinical CT scanner were performed including
a reconstruction of the ACR CT Accreditation phantom [13],
and a pediatric chest study. Both studies were acquired using a
Siemens Definition AS 64 (Siemens Healthineers, Forchheim,
Germany).

A. Matrix Sizes

Matrix sizes are impacted by the reconstruction volume and
projection data dimensions. Matrix sizes for the reconstructed
volume are summarized in Tab. I along with reconstruction
and acquisition parameters affecting matrix sizes.

B. Reconstructions

Reconstruction of the ACR phantom using the edge preserv-
ing parameter are shown in Fig. 1. The phantom was scanned
in a head holder to allow for a smaller reconstructed field
of view without incurring truncation artifacts. Three 1.5mm
slices were averaged together to obtain a simulated 4.5 mm
slice, which is closer to what would be submitted for ACR
accreditation.

The slices shown in Fig. 1 meet or exceed the ACR CT
accreditation requirements specified in [13], which test HU
accuracy, contrast-to-noise ratio (CNR), and uniformity. In
particular, CNR was approximately 3.8 which dramatically
exceeds the required >1.0 needed for ACR accreditation.
Additionally, although not shown here, spatial resolution was
dramatically improved relative to other reconstruction methods
(e.g., wFBP with sharp kernel) however noise levels were
similar to those of wFBP with a smooth reconstruction kernel
(similar to Siemens B10 or B20). This comparable noise level
is highlighted in the pediatric reconstructions shown below
(Fig. 2).

The pediatric reconstructions were performed using three
different approaches for comparison: a wFBP reconstruction

with a smooth reconstruction kernel, a FreeCT ICD recon-
struction with a quadratic penalty, and a FreeCT ICD recon-
struction with an edge-preserving penalty. A comparison of
these three reconstructions can be found in Fig. 2.

IV. DISCUSSION AND CONCLUSIONS

Model-based iterative reconstruction (MBIR) has the po-
tential to dramatically reduce radiation doses when applied
to diagnostic CT, however the forward projection matrix for
clinical systems is often substantially larger than can be stored
in typical system memories. Using a previously published
rotating slice approach [7], however, we have implemented
a MBIR with a stored system matrix that allows for the re-
construction of third-generation, clinical, diagnostic CT scans.

The software is being freely distributed
under the GNU GPL v2.0 and is available at
https://github.com/FreeCT/FreeCT ICD. FreeCT ICD
provides a more modern, complementary reconstruction
approach to our previously released FreeCT wFBP making
the FreeCT software project more valuable for research that
requires the reconstruction of clinical raw projection data.
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Fig. 1. Reconstruction of ACR CT accreditation phantom (Gammex Model 464, Gammex, Middleton, WI). Central slice of each module is shown. Window
level for each slice is adjusted to ACR recommended values. Slightly smaller appearance of phantom in second image (the “low-contrast” module) is due to
a ring lower density material that falls outside of the recommended window.

Fig. 2. Coronal reformats of a reconstruction of pediatric chest study. The left column is reconstructed with FreeCT wFBP using a smooth reconstruction
kernel. The middle and right columns are reconstructed using FreeCT ICD with a quadratic and edge-preserving penalty, respectively. The top row shows
the reconstructions with a soft-tissue window, and the bottom row shows the reconstructions with a lung window. The edge-preserving reconstruction clearly
demonstrates the improved spatial resolution relative to the wFBP reconstruction while at the same time demonstrating almost the same noise level in the
liver, highlighting the potential for noise reduction with MBIR.
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Improving GPU Scaling for X-Ray CT
Harini Muthukrishnan, Thomas F. Wenisch, Jeffrey A. Fessler

Abstract—Model-based iterative reconstruction (MBIR) for X-
Ray CT is computationally expensive, yet highly parallelizable,
making it amenable to multi-GPU implementation. However,
reconstruction time does not improve linearly with the number
of GPUs, mainly due to high inter-GPU copying delays at the end
of computation phases. Overlapping copies with computation—
by copying incrementally as data are produced—can mitigate
copy overhead and improve performance scalability. This paper
demonstrates how to perform asynchronous copies using GPU
threads initiated via dynamic kernel launch. Our technique
enables 90% of copy time to overlap with compute, achieving
a speedup of 1.24× (nearing the theoretical bound of 1.31×
with instantaneous copies) over conventional cudaMemcpy at
the end of compute phases on four Tesla K40m GPUs. Relative
to a baseline implementation on a single GPU, our accelerated
approach achieves a speedup of 3.46× on four GPUs. We project
even higher impact from our technique with more GPUs.

I. INTRODUCTION

Model-based iterative reconstruction (MBIR) for X-Ray CT
offers improved image quality at lower radiation doses than
Filtered Back Projection (FBP) [1], but at higher compu-
tational costs. Although researchers have explored various
acceleration techniques, such as using SIMD instructions on
CPUs [2, 3] and cloud computing [4, 5], the compute times
remain undesirably high for MBIR to be ubiquitous clinically.

Further MBIR acceleration requires increasing both compu-
tational resources and memory bandwidth, making a case for
employing multiple GPUs [6, 7]. But GPU scaling does not al-
ways result in linear speedup. Fig. 1 shows projected speedups
as we parallelize a state-of-the-art MBIR algorithm [8] over
more GPUs. Using more GPUs initially provides near-linear
speedup up to about eight GPUs, as the computational phases
of MBIR can be readily partitioned across the GPUs. However,
beyond eight GPUS, speedup saturates and then begins to
decrease. This reversal arises due to the time spent copying
data among GPUs between computational phases. Sinogram
and image data must be exchanged all-to-all among the GPUs
between phases, yet current systems offer no mechanism
to broadcast data, requiring pairwise copies. As a result,
even though computation time shrinks, copy time grows and
ultimately dominates as the number of GPUs increases.

High copy time can be mitigated by overlapping copying
with computation—by “streaming” data from producer GPUs
as soon they become ready. By initiating some copies while
computation is ongoing, the next computational phase must
wait only for straggling data produced at the end of a phase.

While overlapping communication with compute between
CPU and GPU has been studied for FBP[9], hiding copies
underneath compute in multi-GPU systems entails several
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Fig. 1: Ideal and Projected speedups achievable with GPU scaling
with conventional multi-GPU implementation.

challenges: (1) State-of-the-art CPU–GPU systems provide an
astonishing diversity of mechanisms to move data from one
GPU’s memory space to another. Data may be moved by
CPU loads/stores through a variety of addressing mechanisms,
by GPU loads/stores, by DMA engines integrated on the
GPU, and potentially even by other devices on the PCIe bus.
These alternatives trade off bandwidth, initiation latency, and
disruption to other GPU threads in non-trivial ways; the best
approach for our purpose is not obvious. (2) Every CT phase
must indicate when enough data has been generated for a
copy to start. It is neither clear how to trigger copies, nor at
what granularity they should be performed. (3) The CUDA
programming model allows enormous freedom in ordering
the execution of individual threads. No existing programming
interface allows GPU programs to efficiently track production
of output data, initiate copies, and await copy completion.

This work focuses on accelerating a penalized weighted
least-squares with ordered subsets (PWLS-OS) reconstruction
algorithm [8] on a multi-GPU system by hiding copies under
computation phases that generate data. We discuss performing
copies using GPU threads initiated though dynamic kernel
launch as the mechanism best suited for our purpose. We
identify the best granularity at which to perform such copies
and describe techniques to track data production and copy
completion. We also consider how the subdivision of MBIR
phases into individual GPU kernels affects the order data is
generated and how to orchestrate these to maximize gains from
our technique.

Using four Tesla K40m GPUs, we show that a 20-iteration
helical CT reconstruction of a 512×512×512 image from
7256 views of size 888×64 takes 11.25 minutes using our copy
mechanism. We also demonstrate, using a simple mathematical
model, how our technique makes MBIR CT more amenable
to further GPU scaling.
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Fig. 2: (a) Conventional: computation and copies in series. (b)
Our goal: incremental copying overlapping computation

II. METHODS

A. Background

We reconstruct the image x̂ by iteratively minimizing the
PWLS cost function [5]:

x̂ = argmin
x≥0

Ψ(x), Ψ(x) =
1
2
‖Ax−y‖2

W +R(x), (1)

where A is the system matrix, y is the sinogram measurements,
W is the statistical weighting and R is the regularizer.

Each iteration updates the current image estimate (x(n))
using the following gradient of Ψ:

∇Ψ(x(n)) = AT W(Ax(n)−y)+∇R(x(n)). (2)

Each iteration comprises four phases as shown in Figure 4.
Each phase can be formulated to admit considerable paral-
lelism over image voxels or detector values in the sinogram,
making it well-suited to using the enormous compute capabil-
ities of modern GPUs [10].

GPUs have multiple Streaming Multiprocessors that con-
currently execute many threads [11]. These hardware ele-
ments execute a GPU kernel (programmed in CUDA) orga-
nized as blocks, warps and threads [12]. Kernel ordering is
programmer-controlled, but ordering of blocks and warps is
left to the hardware scheduler.

In our GPU implementation of PWLS-OS, we parallelize
forward projection by partitioning views across multiple
GPUs, employing one GPU thread to compute the value of one
detector residual. Every GPU broadcasts its generated residual
values to every other GPU, since back projection uses all of
them. We then parallelize computation of the other phases
by partitioning the y plane across multiple GPUs. Each thread
performs the back projection, regularization and update of one
image voxel. The GPUs then copy the corresponding partial
image to other GPUs before the next iteration commences.

B. Overlapping copy with compute

As shown in Figure 1, although PWLS-OS is highly
amenable to parallelization, GPU scaling does not yield linear
speedup due to time taken to perform all-to-all copies of
the detector residual at the end of forward projection and
of the image voxels at the end of the update phase. The
total amount of data copied increases linearly with number
of GPUs; although each GPU produces fewer values, they

Fig. 3: GPU SM resource utilization and copy initiation. The
launch of the initiated copy kernels depends entirely on the
hardware scheduler.

must copy to more destinations. Since using more GPUs also
reduces compute time per GPU, scaling beyond 12 GPUs
results in copy time that exceeds compute time.

The available copy bandwidth is bound by the interconnect
(PCIe3.0 and PCIe4.0 pose theoretical limits of 16GB/s and
32GB/s, respectively, though substantially lower sustained
throughput is achievable in practice) and cannot be increased
without hardware enhancements. However, a careful study
of the hardware utilization pattern during the reconstruction
process indicates that the interconnect remains idle during
the computation phases and is utilized to its practical limit
only during the ensuing copy phase, when no compute takes
place. Hence, one way to decrease the reconstruction time is to
initiate copies of data generated early in the computation phase
while the rest is still being computed, overlapping computation
and copying, as depicted in Figure 2.

To overlap compute and copy, the copy mechanism must
impose minimal overhead and interference on the computation.
Our concurrent work [13] identifies GPU thread-based copy
using dynamic kernel launch as the mechanism best suited for
our purpose. In this technique, the GPU threads that perform
computation also trigger copies after generating a data chunk
(e.g., a set of sinogram bins) of the desired granularity. The
copies are issued via dynamic kernel launch, wherein a copy
kernel is launched from within the main CT computation
kernels—a capability introduced in CUDA 5.0 [14]. The copy
kernel is scheduled by the GPU hardware scheduler and copies
the data chunk to the other GPUs as shown in Figure 3. As
computation proceeds, copy kernels are triggered, scheduled
by hardware, and executed.

Although our technique incurs minimal copy initiation over-
head, the copy kernels nevertheless use GPU resources that
might otherwise have been used by CT computation kernels,
and hence indirectly delay computation. Hence, invoking the
copy kernel at an appropriate frequency while ensuring that
the maximum amount of copy time is hidden behind compute
becomes crucial. We address this challenge by carefully tuning
the granularity at which copies are initiated. Since this gran-
ularity depends only on the CT geometry and not on patient
features, it can be determined in advance via a parameter-
sweep over a sample image.

Choosing the right granularity to track data production is
also important, as tracking at too low granularity (such as
thread granularity) would increase the overhead of tracking,
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Fig. 4: Phases of X-Ray CT MBIR. After forward projection, the GPUs exchange their generated sinogram data, followed by three
computational phases and an image update. The GPUs then exchange image data and the algorithm repeats until convergence.

slowing computation, while tracking at too high granularity
might not ensure enough compute-copy overlap. We perform
the tracking at the granularity of GPU thread blocks. Once
consecutive thread blocks produce a chunk of data of the
desired granularity, a dynamic copy kernel initiates the copies.

Our final design decision entails selecting the best im-
plementation to track data generation. Proper design of this
mechanism is crucial because the CUDA programming model
offers enormous freedom to the scheduler with respect to
block ordering, so blocks may complete in any order. We
employ an atomic counter-based approach, wherein each data
chunk is assigned a corresponding atomic counter, initialized
to the number of blocks that contribute data to the chunk.
The first thread of each block waits until all its sibling
threads complete, then decrements the counter using an atomic
decrement instruction. When the counter reaches zero, it
indicates that the corresponding group of consecutive blocks
is complete. The thread then initiates a dynamic copy kernel
for the corresponding data chunk. Although the counter-based
approach uses atomic accesses that are inherently slower than
normal reads and writes, it performed better than alternatives
(e.g., dedicated threads that poll for chunk completion).

C. Sequencing data generation

To ensure that the reconstruction method can effectively use
the copy strategy discussed above, it is important to structure
the kernels to perform all the computation corresponding
to a particular data element in quick succession, producing
data elements incrementally rather than performing multiple
updates to all data elements during kernel execution. The goal
is to ensure that data chunks are available as early as possible
to maximize copy-compute overlap. While the original forward
projection code computed the detector residuals in succession,
the back projection code updated the relevant voxels using one
view before updating the voxels using the next view, i.e., an
outer loop over views. This led to voxels being ready for copy
only during the processing of the last view, leaving very little
room for compute-copy overlap. We restructured the code to
generate the voxels in succession by having each voxel loop
over the relevant views that contribute to it, thus ensuring voxel
values are produced incrementally.

III. EXPERIMENTAL RESULTS

We report on our multi-GPU PWLS-OS implementation.
We validate the GPU implementation against a CPU baseline,
which it matches to within 0.0289HU (Hounsfield units). Our
test system comprises four Tesla K40m GPUs, each having
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Fig. 5: Measured speedups achieved through GPU scaling

2880 CUDA cores, 11.9GB global memory and 4KB shared
memory per block. Each GPU is capable of performing a peer
access to the other GPUs. They reside on a PCIe3.0 bus that
also interfaces them with the host.

We simulated 9-turn helical CT data with pitch 63/64 and
7256 views of size 64 rows by 888 channels, and reconstructed
a 512×512×512 voxel image volume over a 512 mm transax-
ial field of view (FOV) with 0.625 mm slice thickness using
the separable footprint projector [15] and [8] with 24 subsets.

In our design, the GPU threads initiated through dynamic
kernel launch perform copies, as explained in Section II-B.
The copies are performed for 8kB data chunks for detec-
tor residuals and 16kB for image voxels. We compare our
approach against the baseline wherein data is copied after
compute phases using cudaMemcpy Peer-to-Peer [16].

Figure 5 shows speedup achieved with respect to a single
GPU for three cases: (1) Baseline, (2) Our design, and (3)
Instantaneous copies (copies are performed in zero time). The
blue (Instantaneous) bars indicate the theoretical limit on the
performance gains achievable via compute-copy overlap. With
only two GPUs, copy overhead is negligible and there is little
performance difference between the baseline and the ideal.
However, the potential and realized gains grow rapidly with
further scaling. Our approach realizes 94% of the theoretical
opportunity for four GPUs, achieving a speedup of 1.24× over
the baseline and 3.46× over a single GPU.

Our design falls short of the opportunity available with
instantaneous copies for two reasons: (1) The dynamic copy
kernels require some GPU execution bandwidth, slightly de-
laying execution of CT kernel threads. (2) A 100% copy-
compute overlap is not possible because the data generated
by the final blocks is copied after computation is complete.
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IV. SCALABILITY ANALYSIS

Our approach holds the potential to unlock even higher
performance scalability on future, larger multi-GPU systems.
To analyze this potential, we develop a simple analytic model
that predicts the impact of our approach with more GPUs
and faster GPU interconnects. We base our scalability model
on the following observations: (1) As previously explained,
the four phases of X-ray CT are amenable to GPU scaling.
For simplicity, we assume that the compute time of individual
algorithmic phases scales linearly with the number of GPUs,
although practical implementations typically fall a bit short of
ideal linear scaling. (2) An all-to-all broadcast must occur at
the end of the forward projection and update phases. Thus,
as the number of GPUs increases, the total data to be copied,
and hence the time required for copy, increases, since the data
must be copied to additional GPUs.

A. Scalability Model

At the end of forward projection, the GPUs must exchange
the portions of the sinogram each generated. The total bytes
copied is the product of the sinogram size (Sizesino), and the
number of destination GPUs (ngpu − 1). The total time for
the copy depends upon the interconnect technology, which we
model simply as a ‘copy time per byte (tperbyte)’ bandwidth,
as expressed in the following equation:

Copytime1 = (ngpu−1) ∗ Sizesino ∗ tperbyte.

After the update phase, the GPUs must exchange the image
portions each generated. Hence the total bytes copied is the
product of the total image size (Sizeimage) and the number of
destination GPUs (ngpu−1):

Copytime2 = (ngpu−1) ∗ Sizeimage ∗ tperbyte.

B. Discussion

Using this simple model, we estimate the impact of our
design on CT reconstruction performance. Figure 6 shows the
projected speedup of our design and that of the baseline for
different GPU counts against a single GPU implementation
for two different assumptions on interconnect bandwidth (uni-
directional transfer bandwidths of 16GB/sec for PCIe 3.0 and
an estimated 64GB/s for PCIe 5.0).

For both assumptions on interconnect bandwidth, our ap-
proach enables performance scalability to a much larger
number of GPUs than the baseline. For PCIe 3.0, baseline

performance saturates at about 6× speedup (over a single
GPU) with ten GPUs. Above six GPUs, growth in copy
time exceeds reductions in computation time. In contrast,
our approach enables near-ideal scaling up to twelve GPUs.
Beyond this point, copy time grows to the point where it
exceeds compute time and can no longer be hidden.

Higher interconnect bandwidth under PCIe 5.0 reduces
copy time, enabling greater performance scalability for both
the baseline and our method. However, our technique still
drastically increases the scalability potential. Our technique
enables near-ideal scaling up to 24 GPUs, while the baseline
saturates at about 12× speedup with 20 GPUs. Newer GPUs
will further decrease compute time by the time PCIe 5.0
becomes available, making our solution even more relevant.

V. SUMMARY AND CONCLUSION

In this paper, we proposed compute-copy overlap using
warp based copies to overcome the communication bottle-
neck of GPU scaling of CT MBIR. We demonstrated that
our technique offers a 3.46× speedup over a single GPU
implementation on a 4 GPU system, and makes CT MBIR
more amenable to further GPU scaling.
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Emission EM Look-Alike Algorithms for X-Ray CT and 

Other Applications 

Larry Zeng  

Abstract ― In emission tomography, the EM (expectation 
maximization) is easy to use with only one parameter to adjust ― 
the number of iterations. On the other hand, the EM algorithms 
for transmission tomography are not so user-friendly and have 
many problems. This paper develops a family of emission-EM-
look-alike algorithms. One of them can be applied to 
transmission tomography such as the x-ray CT (computed 
tomography). 

I. INTRODUCTION 

HE EM (expectation maximization) methodology is a 
general approach to compute maximum likelihood 

estimates by using iterative techniques [1].  There are many 
EM algorithms. The most famous EM algorithm in medical 
imaging community is the one for emission tomography [2-5]. 
The emission EM algorithm uses a multiplicative form to 
update the image; it has a built-in property to enforce the 
image non-negativity and Poisson noise nature in the data. It 
is efficient to implement and stable. It has no adjustable 
parameters other than the number of iteration. It is safe to state 
that it is the most favorite iterative algorithm in nuclear 
medicine. 
 An EM algorithm for transmission tomography was 
developed in [5] by Lange and Carson. Unlike its emission 
tomography counterpart, this EM algorithm for transmission 
tomography has many drawbacks. It is complicated to 
compute and slow in convergence [6]. There are other 
versions of the transmission EM algorithms, but there are no 
fundamental improvements [7-10]. 
 This paper develops a family of emission-EM-look-alike 
algorithms. They are iterative algorithms in the form of 
multiplicative image update, which intrinsically enforces the 
image non-negativity. Each member of the family has its 
unique noise model as explained in detail in the next section. 

II. METHODS 
2.1 The emission EM  algorithm 

The starting point of our development is the emission EM 
algorithm  
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where  is the ith image pixel at the kth iteration,  is the jth 
line-integral (ray-sum) measurement value, and  is the 
contribution of the ith image pixel to the jth measurement. The 
summation over the index n is the projector and the 
summation over the index j is the backprojector. Expression 
(1) is in the form of multiplicative image update, and it can be 
re-written in the form of additive image update 
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The last line of (2) is in the form of the iterative Landweber 
algorithm, which is a gradient decent algorithm. In (2), 




j
ji

k
ik

i a

x )(
)(              (3) 

is the relaxation parameter, which is also known as the step 
size, and  
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is the weighting factor for the jth projection ray. For the 
Poisson noise model, the noise variance is the mean value of 
the ray sum.  
 We can make two observations from (3) and (4).  First, the 
EM algorithm’s step size  is scaled by the image pixel 

value  at the kth iteration. The step is larger for objects 
with larger image values. Therefore, the bright lesions 
converge faster than the dark lesions. 
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 Second, the weighting factor  is the reciprocal of the 
estimated mean value of the jth ray by the reconstruction at 

)(k
jw

T 
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the kth iteration. The mean value is the same as the variance 
for Poisson noise. 
2.2 Modification of the emission EM  algorithm 

We propose to introduce a new scaling factor  in the 
backprojector for each projection ray j. Thus the original 
emission EM algorithm (1) becomes 
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As a consequence, the additive version (2) becomes 
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with a new step size and a new weighting factor: 
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 Eq. (5) represents a family of emission-EM-look-alike 
algorithms depending on the definition of the new scaling 
factor , as explained in the following special cases (or 
examples). 
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2.3 Special case 1: No weighting 
Let’s consider a hypothetical imaging system, in which 

the noise in the sinagram is identically distributed with the 
same variance. No noise weighting should be used for the 
image reconstruction algorithm. Thus we require the 
weighting factor (8) to be  
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In (11), j
j

ji pa is the backprojection of the measured 

sonogram and  
j n

k
njnji xaa )( is the backprojection of the 

forward projection of the current estimate of the image. 
2.4 2.4 Special case 2: Modified Emission 

Let’s consider another hypothetical imaging system, in 
which the noise in the sinogram is not quite Poisson 
distributed, but the variance is given as 


jpvar  ,              (12) 

where jp is the mean value of the sinogram and  is a 
constant. When  = 1, this case is the classic situation of 
emission tomography using a Poisson noise model. 

jp

 Using the EM strategy of estimating jp  by 
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weighting factor (8) for our modified emission case is given as 
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(15) 
As expected, when  = 1, (15) is the famous emission EM 
algorithm. 

2.5 2.5 Special case 3: Transmission 
In transmission tomography, the sinogram variance is 

proportional to the exponential function of the sinogram’s 
mean value, that is, 

)exp( jpvar   .          (16) 
The weighting factor can be chosen as the reciprocal of the 
variance. Using the EM strategy of estimating jp  by 


n

k
njn xa )( , the weighting factor (8) for the transmission 

tomography case is given as 
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Eq. (19) is the main result of this paper. It is an emission EM 
look-alike algorithm for the transmission tomography. It is in 
the form of multiplicative image update, has an intrinsic non-
negativity constraint, and weights the sinogram with (17). 
Most importantly, (19) is user friendly and easy to implement. 
2.6 Special case 4: Modified Transmission 

Again, this is another hypothetical imaging system, in 
which the noise in the sinogram has a variance given by 

)exp( jpvar  ,             (20) 

where jp is the mean value of the sinogram and  is a 
constant. When  = 1, this case is the classic situation of 
transmission tomography using a Poisson noise model for its 
pre-log data. 

jp

According to the noise model (20), the weighting factor can 
be chosen as 
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When  = 1, this degenerates to the usual transmission 
tomography case (19). When  = 0, this is the no-weighting 
case as (11). 

From the examples above, a large family of emission EM 
look-alike image reconstruction algorithms can be developed 
as long a noise variance function is provided. 
2.7 Convergence 

It is natural to ask whether the proposed family of 
algorithms converge or not. The additive form (6) of this 
family of algorithm is a Landweber algorithm, which is a 
gradient descent algorithm. The convergence of the 
Landweber algorithm is guaranteed if the step size is small 
enough. The upper bound of the step size is 2/max, where max 
is the maximum eigenvalue of the combined 
projection/backprojection matrix. However, it is not an easy 
task to evaluate max. An empirically stable Landweber 
algorithm uses a relaxation parameter as )/(1 
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If we replace the weighting factor wj by 
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(8), then the relaxation parameter in (23) becomes 
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where  is given in (7). The approximation in (24) may 

become exact only for certain values . The approximate 
relationship (24) is not a mathematical proof that the emission 
EM look-alike family has the similar convergence property as 
the Landweber algorithm. We do not yet have a rigorous 
convergence analysis for this family. This paper uses some 
computer simulations to demonstrate some cases indicating 
the similar convergence properties between the emission EM 
look-alike family and the iterative Landweber algorithm. 
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2.8 2.7 Setup of Computer Simulations 
The computer simulations in this paper use a two-

dimensional (2D) uniform elliptical phantom containing 2 
small hot lesions and 2 cold lesions. A parallel-beam imaging 
geometry is assumed. The image array was 180 x 180, the 
number of views was 180 over 180°, and the number of 
detection channels was 180. To avoid inverse-problem crime, 
the projector used to generate projection sinograms is different 
from the projector used for image reconstruction. In sinogram 
date generation, the image was first up-sampled 10 times and 
the detector was also up-sampled 10 times. The noiseless 
sonogram data was then down-sampled 10 times and noise 
was introduced. Negative sinogram values were set to zero. 

Results from 3 noise types are presented in the next 
section: the emission Poisson noise, the uniformly distributed 
Gaussian noise, and the transmission Gaussian noise with 
variance proportional to the exponential function of the 
sinogram value. 

III. RESULTS 

3.1 Emission Poisson Noise Case 
The purpose of this case is to establish the convergence 

relationship between the well-known emission EM algorithm 
and the Landweber algorithm, which will be used as a 
benchmark for the other two noise models. The comparison 
results are shown in Fig. 1, where the line-profiles are 
obtained from noiseless data reconstructions along row #72 to 
compare resolution recovery. The Landweber algorithm uses 
100 iterations. The EM algorithm uses 30 iterations to match 
the hot lesion convergence and 80 iterations to match the cold 
lesion convergence.  
3.2 Stationary Noise Case 

262 The fifth international conference on image formation in X-ray computed tomography



 

g used in the case. The purpose 
of  

 Transmission Noise Case 
is the main result of this paper, 

as

There is no noise weightin
 this case is to show that the noise weighting does not affect

the convergence property much. The results are shown in Fig. 
2. 
3.3

The transmission noise case 
 displayed in Fig. 3. The proposed transmission algorithm 

converges almost at the same rate as the emission EM 
algorithm. 
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Figure 1. Images reco  nstructed from sinogram with emission noise model.
Left image: 30 iterations of EM. Middle image: 80 iterations of EM. Right 
image: 100 iterations of Landweber. 
 

   

  
igure 2. Images reco n noise F ns ructed from sinogram with stationary Gaussiat

model. Left image: 30 iterations of EM look-alike. Middle image: 80 iterations 
of EM look-alike. Right image: 100 iterations of Landweber. 
 

   

  
Figure 3. Images reco  model. 
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Abstract—Multi-energy CT obtains X-ray attenuation 

measurements at two or more energy spectra, allowing 
quantification of materials with different compositions. The 
material decomposition process is intrinsically susceptible to 
noise amplification due to its ill-conditioned nature. Hence, basis 
material-specific images can be contaminated by the presence of 
strong noise, which compromises the conspicuity of small objects 
and may cause loss of information regarding structural details 
and key pathology. In this work, we describe an image domain 
Material Decomposition framework using Spectral Prior Image 
Constrained Compressed Sensing (MD-SPICCS). The proposed 
framework exploits the structural redundancy between the 
individual basis material-specific images and the spectral energy-
bin or energy-threshold-specific CT images to retain structural 
details in denoised basis material-specific images. Our initial 
phantom results demonstrate that MD-SPICCS can reduce 
iodine quantification root-mean-square error (RMSE) from 3.9 
mg/mL to 1.0 mg/mL, while preserving structural details and 
spatial resolution in the basis material-specific images. 

I. INTRODUCTION 
pectral CT complements conventional CT by obtaining X-
ray attenuation measurements at two or more energy 

spectra, which allows identification and quantification of 
materials with different compositions [1]. This process, 
typically known as material decomposition, is the basis for 
many spectral CT applications, such as calcium removal, 
virtual non-contrast imaging, kidney stone characterization, 
and differentiation between gout and pseudo-gout [2-4].  

Various approaches to material decomposition have been 
developed since this concept was first described [5]. 
Decomposition can be performed by exploiting the knowledge 
of the fundamental physical interactions for X-ray attenuation, 
such as the Compton and photoelectric effects [6]. 
Alternatively, the spectral CT measurements can be 
decomposed into a series of basis material-specific images [7], 
such as calcium, iodine and water images. Based on the 
mechanism used to obtain the spectral CT information, the 
material decomposition can be performed in either the 
projection domain or image domain [7, 8]. In this work, we 
focus on basis material decomposition in the image domain.  

The conventional strategy for generating basis material-
specific images is based on matrix inversion or least-square 
fitting between the underlying basis material-specific images 
and the measured spectral CT images (energy-bin or energy-

S. Tao, K. Rajendran, C. H. McCollough, and S. Leng are with the 
Department of Radiology, Mayo Clinic, Rochester, MN 55902 USA. Please 
direct all correspondence to S. Leng (Leng.Shuai@mayo.edu). 

threshold CT images). However, due to its ill-conditioned 
nature, the material decomposition problem is intrinsically 
susceptible to noise amplification. The noise in basis material-
specific images can compromise the conspicuity of small 
objects and hinder the delineation of anatomical regions of 
interest and associated pathology.  

In this work, we describe an image-domain Material 
Decomposition framework using Spectral Prior Image 
Constrained Compressed Sensing, abbreviated as MD-
SPICCS. Inspired by Prior Image Constrained Compressed 
Sensing (PICCS) technique used in a variety of CT imaging 
settings, such as in dynamic CT [9, 10] and for dose reduction 
[11], the proposed framework exploits the structural 
redundancy between the individual basis material-specific 
images and the measured spectral (energy-bin or energy-
threshold) CT images to reduce the noise present in the basis 
material-specific images while preserving structural details 
and spatial resolution. The presence of this structural 
redundancy can be appreciated by the fact that the individual 
basis material-specific images can be expressed as a linear 
combination of the measured spectral CT images, and that the 
spectral CT images at different energy spectra also exhibit 
strong structural similarity [12]. The proposed framework 
directly addresses material decomposition by formulating this 
process as a regularized optimization problem. It is applied in 
the image domain and does not require access to projection 
data, and therefore can be applied when well-registered multi-
energy projection data are not readily available, such as in a 
conventional dual-source, dual-energy CT.  

II. METHOD 

A. Forward Model 
For image-based material decomposition, the spectral 

(energy-bin or energy-threshold) CT images reconstructed 
from data acquired using different energy spectra are 
decomposed into a series of basis material-specific images. 
Denoting 𝑤𝑤𝑖𝑖(𝑛𝑛) as the mass density of the i-th basis material 
(1 ≤ 𝑖𝑖 ≤ 𝑀𝑀) for the n-th pixel (1 ≤ 𝑛𝑛 ≤ 𝑁𝑁), the effective 
linear attenuation measurements from a spectral CT 
acquisition can be expressed as follows: 

 

( ) ( ) ( )
1

, ,
M

eff i
i

n e e i w nµµ
ρ=

= ∑  (1) 

 
where 𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒(𝑛𝑛, 𝑒𝑒) denotes the effective linear attenuation 
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coefficient for the e-th energy spectra (1 ≤ 𝑒𝑒 ≤ 𝐸𝐸) and the n-
th pixel; 𝜇𝜇/𝜌𝜌(𝑒𝑒, 𝑖𝑖) is the mass attenuation coefficients of the i-
th material, and N, M, and E denote the number of pixels, 
basis materials, and energy spectra for a spectral CT 
acquisition. Let 𝐌𝐌0 be an E by M matrix with 𝐌𝐌0[𝑒𝑒, 𝑖𝑖] =
𝜇𝜇/𝜌𝜌(𝑒𝑒, 𝑖𝑖). Equation 1 can be reformatted into a linear 
algebraic form as: 
 

( )0 N= ⊗ =f M I w Mw  (2) 
 
where 𝐰𝐰 = [𝐰𝐰1

𝑇𝑇 ,𝐰𝐰2
𝑇𝑇 , … ,𝐰𝐰𝑀𝑀

𝑇𝑇 ]𝑇𝑇 denotes the basis material-
specific image concatenated into a single vector, 𝐟𝐟 =
[𝐟𝐟1𝑇𝑇 , 𝐟𝐟2𝑇𝑇 , … , 𝐟𝐟𝐸𝐸𝑇𝑇]𝑇𝑇 is the vectorized spectral CT images of 
different energy spectra. 𝐌𝐌 = 𝐌𝐌0⨂𝐈𝐈𝑁𝑁 denotes the system 
matrix that maps basis material-specific images to measured 
spectral CT images; 𝐈𝐈𝑁𝑁 is an N×N identity matrix, and ⨂ 
denotes the Kronecker product.  
 The standard image-domain basis-material decomposition 
calculates the basis material-specific image through a least-
square fitting process, i.e.: 
 

2
0 2

arg min= −
w

w f Mw  (3) 

 
which has a non-iterative solution that can be formulated into 
matrix inversion and is given by: 
 

( ) 1

0
T T−

=w M M M f  (4) 

 

B. MD-SPICCS 
The original PICCS was developed as an image 

reconstruction framework from projection data. It formulates 
the image reconstruction process as an optimization procedure 
and incorporates a prior image into the total variation (TV)-
based compressed sensing objective function [10]. The 
regularization functional of the PICCS framework is listed as 
follows: 

 
( ) ( )PICCS priorTV TV

1f c c= + − −x x x x  (5) 

 
where x is an image to be reconstructed, xprior is its prior 
image, and ‖∙‖𝑇𝑇𝑇𝑇 is a sparsifying transform based on TV. 
Among many applications, PICCS has been shown to be able 
to reconstruct dynamic CT data series from undersampled 
projection data [9, 10]. The concept of PICCS has also been 
extended to the case of spectral CT imaging using the photon-
counting detectors (PCD) used in this work. This previous 
work has successfully demonstrated the use of spectral prior 
information in the reconstruction of narrow energy bin PCD-
CT images from projection data [12]. In this case, the full 
spectrum, high SNR CT image reconstructed with all the 
available photons was used as prior image (xprior). Despite the 
contrast difference between the narrow energy-bin CT image 
(x) and the prior image (xprior), their structural similarity 
allows successful reconstruction of narrow-bin energy-specific 

images with high spectral fidelity at reduced noise levels. 
Inspired by the original PICCS, we propose an image-

domain material decomposition framework that exploits the 
structural redundancy between the individual basis material-
specific images and a spectral CT prior image. Note that, 
different from the original PICCS algorithm, which involves 
the reconstruction of anatomical CT image from raw 
projection data, the proposed image-domain material 
decomposition is focused on the generation of basis material-
specific images using spectral CT images measured with 
different energy spectra. In the proposed framework, the basis 
material-specific images are obtained by minimizing the 
following objective function: 

 

( ) 2
0 MD-SPICCS 2

1
arg min

. .

M
i

i
i

i i

f

s t

λ
=

 
= + − 

 
=

∑w
w w f Mw

w P w

 (6) 

 
with 
 

( ) ( ) ( )MD-SPICCS priorTV TV
1i

i i i if c c= + − − Γw w w f  (7) 

 
where Pi denotes a binary diagonal matrix selecting the i-th 
basis material-specific image (𝐰𝐰𝑖𝑖) from w, i.e., 𝐰𝐰 = 𝐏𝐏𝑖𝑖  𝐰𝐰; 
𝑓𝑓MDSPICCS𝑖𝑖 (𝐰𝐰𝑖𝑖) denotes the regularization term directly applied 
to the i-th basis material-specific image (𝐰𝐰𝑖𝑖); 𝜆𝜆 ≥ 0 is a 
parameter that controls the relative preference for the 
regularization term and the data fidelity term, ‖𝐟𝐟 − 𝐌𝐌𝐰𝐰 ‖22. 

The regularization term 𝑓𝑓𝑀𝑀𝑀𝑀−𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 (𝐰𝐰𝑖𝑖) consists of two 
components. The ‖𝐰𝐰𝑖𝑖‖𝑇𝑇𝑇𝑇 term directly minimizes the TV of 
each material-specific image, while the �𝐰𝐰𝑖𝑖 − Γ𝑖𝑖�𝐟𝐟𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝� �

𝑇𝑇𝑇𝑇
 

term applies a sparsifying transform to the difference between 
the basis material-specific image and its corresponding basis 
material prior image (Γ𝑖𝑖�𝐟𝐟𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝�) that is obtained from 
applying a transformation Γ𝑖𝑖(⋅) to a spectral CT prior image 
(𝐟𝐟𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝). The algorithmic parameter, 𝑐𝑐 (0 ≤ 𝑐𝑐 ≤ 1) controls the 
relative weight between the two components in the 
regularization. By including �𝐰𝐰𝑖𝑖 − Γ𝑖𝑖�𝐟𝐟𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝� �

𝑇𝑇𝑇𝑇
 as a 

regularization term, it is assumed that the individual basis 
material-specific image 𝐰𝐰𝑖𝑖 and the basis material prior image 
Γ𝑖𝑖�𝐟𝐟𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝� share structural redundancy, so that after removing 
the contribution of each basis material (𝐰𝐰𝑖𝑖), the residual image 
is still sparse after TV transform.  

Ideally, the measured spectral CT prior image 𝐟𝐟𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 should 
be a high SNR image. On a PCD system, the CT image 
reconstructed using all the available photons of different 
energy spectra typically has the highest SNR, which can be 
used for 𝐟𝐟prior. On a conventional energy-integrating-detector 
(EID) based system, such as the dual-source, dual-energy CT 
system, the individual image associated with each source, or 
the “mixed” image which is a weighted combination of the 
two source images, can be used as the spectral CT prior image 
(𝐟𝐟prior). The Γ𝑖𝑖�𝐟𝐟prior� is chosen as a linear transformation and 
is a function of material type:  
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( )
( )

prior
prior

prior,
i

iµ
ρ

Γ =
f

f  (8) 

 
where 𝜇𝜇/𝜌𝜌(prior, 𝑖𝑖) is a scaling factor that converts the 
spectral CT prior image (i.e., 𝐟𝐟𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝, in CT number or linear 
attenuation coefficients) to a basis material prior image (i.e., 
Γ𝑖𝑖�𝐟𝐟𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝�, in mass fraction) that is on the same scale of the 
basis material-specific image for the i-th basis material type 
(𝐰𝐰𝑖𝑖). The physical meaning of 𝜇𝜇/𝜌𝜌(prior, 𝑖𝑖) is similar to the 
empirical mass attenuation coefficient (𝜇𝜇/𝜌𝜌(𝑒𝑒, 𝑖𝑖)) in Eq. 1, 
and can be obtained from the same calibration scan using data 
from the corresponding energy spectrum.  

C. Experimental Methods 
To test the proposed MD-SPICCS framework, the head 

section of a multi-energy calibration phantom (Gammex Inc., 
Middleton, WI) was scanned on a research PCD CT system 
[13] using two energy thresholds. The phantom setup is shown 
in Fig. 1. The head section of the phantom measures 20.0 cm 
in diameter and 16.5 cm in depth, and is made from solid 
water material. The iodine inserts from the Gammex phantom 
with concentrations of 2, 5, 10, and 15 mg/mL were scanned, 
together with hydroxyapatite (HA) inserts with concentrations 
of 200 and 400 mg/mL. Gammex phantom inserts with an 
iodine core (5 mg/mL) of 5 and 10 mm diameters were also 
included to evaluate the sensitivity of algorithm within a small 
region.  

The PCD system was designed based on the same platform 
of the second generation dual source, dual energy CT system 
(Siemens Healthcare GmbH, Forchheim, Germany). This 
system consists of two X-ray tube-detector pairs, with one 
tube coupled to a conventional EID-based subsystem and the 
other to a PCD subsystem. The EID and PCD subsystems have 
a scan field-of-view (FOV) of 500 and 275 mm, respectively, 
and a longitudinal coverage of 38.4 mm (64×0.6 mm detector 
rows) and 16 mm (32×0.5 mm detector rows). Currently, two 
scan protocols are available for the PCD subsystem, which are 
designed for head and body scans, respectively. With the body 
protocol, an additional beam filter is used.  

The phantom scans were performed using the head protocol 
and sequential acquisition at 120 kV and 110 mAs. The two 
energy thresholds were set at 30 and 52 keV. The energy bin 

images (30-52 and 52-120 keV) and low-energy threshold 
images (30-120 keV) were reconstructed using a medium-
smooth quantitative kernel (D30) onto a 275 mm FOV and 
512×512 matrix size with image thickness of 3 mm. The mass 
attenuation coefficients for each basis material (i.e., 𝜇𝜇/𝜌𝜌(𝑒𝑒, 𝑖𝑖) 
in Eq. 1) were measured from a separate calibration scan using 
materials of known concentrations.  

D. Data Processing 
Material decomposition was performed assuming three 

basis materials (hydroxyapatite, iodine, water) with a volume 
conservation constraint using the energy bin images. The 
optimization problem shown in Equations 6 and 7 was solved 
iteratively using the alternating direction method of multipliers 
(ADMM) routine [14] with 500 iterations, which was found to 
be sufficient for the algorithm to converge. The high SNR 
low-energy threshold image (30-120 keV) reconstructed using 
all available photons  was used as the prior image (𝐟𝐟prior). The 
parameter c was set as 0.6, which yields reasonable denoising 
performance. As a comparison, the standard least-squares 
based material decomposition, and the TV-regularzied 
material decomposition (c = 1 in Eq. 7) were also performed. 
The same 𝜆𝜆 = 1 × 103  (empirically determined) was used for 
both cases.  

Noise reduction algorithms, especially TV-based algorithm 
can change image texture and create patchy looking images. 

 
Fig. 1.  (a) Multi-energy CT phantom on the head holder; (b) phantom inserts 
configuration. There are six iodine (I) inserts (four large inserts with 2, 5, 10, 
15 mg/mL iodine, and two smaller 5 mg/mL inserts with a diameter of 5/10 
mm) and two hydroxyapatite (HA) inserts (200, 400 mg/mL) contained within 
the phantom base made from solid water material; (c) an example of the 
spectral CT image acquired using a research whole-body PCD-CT system 
[14].  
 
  

 
Fig. 2.  Iodine (a-c), hydroxyapatite (HA, d-f), and water-specific images (g-i) 
calculated from the phantom data set using the standard, least-squares based 
material decomposition (MD-LS, a,d,g), the total variation (TV) regularized 
material decomposition (MD-TV, b,e,h), and the proposed MD-SPICCS 
framework with c = 0.6 (c,f,i). The magnified insets in a-c show the low-
contrast iodine inserts with a concentration of 2 mg/mL (red inset, upper insert) 
and 5 (red inset, lower insert) mg/mL from the iodine-specific image, as well as 
that of the small iodine inserts (5 mg/mL) with a diameter of 5 mm (green 
inset, upper insert) and 10 mm (green inset, lower insert).  
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To alleviate this effect, a linear blending technique to combine 
the basis material-specific images from MD-SPICCS and the 
standard decomposition was adopted to maintain the original 
image texture while reducing noise. The final ouput of MD-
SPICCS (woutput) is then experessed as:  

 
( )output MD-SPICCS LS1α α= + −w w w  (9) 

 
where 𝛼𝛼 is the blending factor and was chosen as 0.9, wMD-

SPICCS and wLS denote the basis material-specific images 
obtained by solving Eqs. 6 and 7, and by using the standard 
least-squares (LS) based approach in Eq. 4, respectively.  

III. RESULTS 
The basis material-specific (iodine, HA, water) images 

obtained using the standard least-squares based material 
decomposition (MD-LS), the TV regularized material 
decomposition (MD-TV), as well as the proposed MD-
SPICCS algorithm with c = 0.6 are shown in Fig. 2. Due to the 
intrinsic noise amplification effect of the material 
decomposition process, the results of MD-LS contain strong 
noises in the material specific images, which compromise the 
conspicuity of phantom inserts, especially for the low-
concentration iodine inserts, as well as the inserts with smaller 
diameters. The use of TV regularization can substantially 
reduce the noise in the individual material-specific images 
(a,d,g vs. b,e,h in Fig. 2). However, it also introduces 
undesirable image blurring while denoising. Figure 2 also 
shows the magnified insets of the low-contrast iodine inserts 
with a concentration of 2 mg/mL (red panel, upper insert) and 
5 mg/mL (red panel, lower insert) generated using different 
methods, as well as that of the small iodine inserts (5 mg/mL) 
with a diameter of 5 mm (green panel, upper insert) and 10 
mm (green panel, lower insert). Note the distorted and blurred 
boundaries around the low-concentration inserts, as well as the 
reduced iodine contrast for small iodine inserts using MD-TV 
(see arrows in magnified insets). The basis material-specific 
images generated using the proposed MD-SPICCS are also 
shown in Fig. 2. Compared to MD-TV, MD-SPICCS achieved 
similar denoising performance for all basis materials. Table 1 
summarizes the root-mean-square-error (RMSE) measured 
based on all iodine and HA inserts, which demonstrate that 
MD-SPICCS can achieve a similar level of overall 
quantitative accuracy and denoising performance as MD-TV 
while better preserving the structural integrity of the low-
concentration or small-diameter inserts, as exemplified by the 
sharper boundaries of iodine inserts (see arrows in magnified 
insets).  

IV. CONCLUSION 
In this work, a material decomposition framework using 

spectral prior image constraint compressed sensing was 
developed. The proposed framework exploits the structural 
redundancy between the individual basis material-specific 
images and the measured source spectral CT images, and can 
reduce iodine quantification RMSE (from 3.9 to 1.0 mg/mL) 

while preserving structural integrity and low-contrast details in 
the basis material-specific images.  
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TABLE I 
RMSE MEASUREMENTS 

 
MD-
LS MD-TV MD-SPICCS 

    
Iodine 

(mg/mL) 3.9 1.0 1.0 

HA 
(mg/mL) 80.8 20.0 20.5 

Note - 

Blurred boundary 
around the low-

concentration iodine 
inserts;  

reduced contrast for 
small iodine inserts 

Improved structural 
integrity of the low-

concentration or small-
diameter iodine inserts 
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Three material decomposition for spectral computed
tomography enabled by block-diagonal

step-preconditioning

Emil Y. Sidky1, Rina Foygel Barber2, Taly Gilat-Schmidt3, and Xiaochuan Pan1

Abstract—A potential application for spectral computed
tomography (CT) with multi-energy-window photon-counting
detectors is quantitative medical imaging with K-edge con-
trast agents [1]. Image reconstruction for spectral CT with
such contrast agents necessitates expression of the X-ray
linear attenuation map in at least three expansion functions,
for example, bone/water/K-edge-material or photo-electric-
process/Compton-process/K-edge-material. The use of three
expansion functions can result in slow convergence for
iterative image reconstruction (IIR) algorithms applied to
spectral CT. We propose a block-diagonal step-preconditioner
for use with a primal-dual iterative image reconstruction
framework that we have been developing for spectral CT.
We demonstrate the advantage of the new step-preconditioner
on a sensitive spectral CT simulation where the test object
has low concentration of Gadolinium (Gd) contrast agent
and the X-ray attenuation map is represented by three
materials - PMMA, a soft-tissue equivalent, Aluminum, a
bone equivalent, and Gd.

I. INTRODUCTION

We have been developing a general algorithm framework

for one-step spectral CT image reconstruction (OSSCIR)

that we have applied to experimental data acquired em-

ploying a spectral CT system with photon-counting de-

tectors [2]. The OSSCIR algorithm framework involves

direct one-step image reconstruction of basis material maps

from energy-windowed X-ray transmission data. The one-

step approach contrasts with standard two-step processing

where the photon transmission data is converted to material

sinograms followed by image reconstruction to material

maps [1]. The one-step approach enables unconventional

scan configurations where the transmission rays need not

be co-registered for all energy-windows [3], and the im-

age reconstruction process can be regularized by applying

constraints directly to the material maps. Implementing

OSSCIR consists of: (1) specifying the material maps with

an optimization problem that includes a nonconvex data

1The University of Chicago, Department of Radiology MC-2026, 5841
S. Maryland Avenue, Chicago IL, 60637.

2The University of Chicago, Department of Statistics, 5734 S. Uni-
versity Avenue, Chicago IL, 60637.

3Marquette University, Department of Biomedical Engineering, PO
Box 1881, Milwaukee WI, 53201.

discrepancy term with convex constraints, and (2) solution

of the nonconvex optimization problem by the mirrored

convex/concave (MOCCA) algorithm [4,5].

MOCCA is the heart of the OSSCIR framework. It is

an extension of the Chambolle-Pock primal-dual (CPPD)

algorithm for large-scale convex optimization [6,7]. The

MOCCA extension applies to certain forms of large-scale

nonconvex optimization composed of a smooth nonconvex

objective function and convex nonsmooth functions, such as

convex constraints. The design of MOCCA is based on the

idea that for some classes of nonconvex smooth objective

functions the difficulty for algorithm design results from

local saddle points and not local minima. Local saddle

points have directions of negative curvature that can result

in spurious update steps. Accordingly, a MOCCA iteration

consists of constructing a local convex quadratic approx-

imation to the objective function, removing directions of

negative curvature, and performing a CPPD step on this

approximation.

An important aspect of MOCCA is the diagonal step-

preconditioner (SPC) for CPPD proposed by Pock and

Chambolle [8]. Because the convex approximation to the

objective function is changing at every iteration, the CPPD

step length parameters need to be recomputed at every

iteration. The step lengths of diagonal-SPC CPPD Ref. [8]

can be computed at the cost of two additional matrix-vector

product operations, which is equivalent to an additional

forward- and back-projection per iteration for CT IIR.

In this contribution, we extend diagonal SPC to block-

diagonal SPC that effectively counteracts slow convergence

due to the near linear dependence from the basis material

attenuation curves. In our original work on spectral CT

IIR, we had already encountered slow convergence rates

with two-material expansion of the attenuation map, and

in that work we proposed μ-preconditioning (μ-PC), where

the materials expansion set is transformed to an orthogonal

set of functions in X-ray energy. The μ-PC transformation

was effective at improving convergence rates.

In attacking three-materials expansion sets, μ-PC also

improves convergence, but in this case the convergence

issue is more acute than the two-materials case. In our orig-

inal application of MOCCA to spectral CT in Ref. [5], we

successfully demonstrated one-step reconstruction for three
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materials, but the simulation modeled five ideal photon-

counting spectral response windows with sharp boundaries

and no window overlap. The three-material simulation we

consider here involves only four windows with realistic

spectral responses that have significant overlap with each

other. Accordingly, the worse conditioning of the realistic

setup can impact convergence. We propose a block-diagonal

SPC that has slightly more computational overhead per it-

eration but dramatically improves convergence of MOCCA

in the spectral CT setting with three basis materials and

realistic spectral responses.

We briefly summarize OSSCIR and MOCCA with μ-

preconditioning; and introduce the new block-diagonal pre-

conditioner in Sec. II. The improvement in convergence

gained by the new preconditioner is demonstrated in Sec.

III on a challenging, idealized spectral CT simulation.

II. METHODS

As in Ref. [5], the spectral CT data model is written

Iw,� =

∫
Sw,�(E) exp

[
−
∫
�
μ(E,�r(t))dt

]
dE, (1)

where Iw,� is the transmitted X-ray photon fluence along ray

� in energy window w; t is a parameter indicating location

along �); Sw,�(E) is the spectral response; and μ(E,�r(t)) is

the energy and spatially dependent linear X-ray attenuation

coefficient.

We employ a standard material-expansion decomposition

to model the attenuation map

μ(E,�r(t)) =
∑
m

(
μm(E)

ρm

)
ρmfm(�r[t]), (2)

where ρm is the density of material m; μm(E)/ρm is the

mass attenuation coefficient of material m; and fm(�r) is

the spatial map for material m.

To obtain the final discrete data model, we combine

Eq. (1) with Eq. (2); normalize the spectral response;

and discretize all integrations. The detected counts model

becomes

ĉw,�(f) = Nw,�

∑
i

sw,�,i exp

⎛
⎝−∑

m,k

μm,iX�,kfk,m

⎞
⎠ ,

where Nw,� is the total number of incident photons along

ray � in energy window w; sw,�,i is the normalized spectral

response, i.e.
∑

i sw,�,i = 1; i indexes the energy Ei; X�,k

represents X-ray projection along the ray �); and fk,m is the

pixelized material map with k and m indexing pixel and

expansion-material, respectively. The spectral responses are

assumed known, and the goal is to reconstruct the material

maps f from measured counts data c.

Transmission Poisson likelihood maximization: Max-

imizing the transmission Poisson likelihood is equivalent

to minimizing the Kullback-Leibler distance between the

counts data, c, and counts model, ĉ(f),

DTPL(c, ĉ(f)) =
∑
w,�

[
ĉw,�(f)− cw,� − cw,� log

ĉw,�(f)

cw,�

]
,

(3)

where cw,� are the measured counts in energy window w
along ray �. This objective function is nonconvex as can be

verified by computing the Hessian (the multivariable second

derivative) of DTPL(c, ĉ(f)) with respect to f . The non-

linearity of ĉ(f) as a function of f gives rise to directions

of negative curvature in DTPL(c, ĉ(f)).
The MOCCA algorithm is designed to minimize the non-

convex DTPL(c, ĉ(f)) objective function and the pseudo-

code for doing so is given in Eqs. (47)-(52) in Ref.

[5]. The algorithm results from making a local convex

quadratic approximation to Eq. (3). In the neighborhood

of an expansion point f0, we approximate DTPL(c, ĉ(f))
with

DTPL(c, ĉ(f)) ≈ Q(K(f0)f),

where the precise form of the quadratic function Q is

specified in Ref. [5]. The matrix K(f) comes from the

gradient of DTPL(c, ĉ(f)), expressed here in component

form:

∂DTPL(c, ĉ(f))

∂fk,m
=

∑
w,�

(cw,� − ĉw,�(f))Kw�,km(f).

The rows of K(f) index the data space consisting of energy

windows, w, and rays, �, and the columns index the image

space consisting of materials, m, and pixels, k.

Step lengths of MOCCA and μ-PC: The MOCCA

algorithm is primal-dual as it is based on the diagonal-SPC

CPPD. Following Refs. [5,8], the step lengths for the dual

and primal updates are

Σw� =
1/λ∑

m,k |Kw�,mk(f0)| , Tmk =
λ∑

w,� |Kw�,mk(f0)| ,

respectively, and λ is a step size ratio parameter that must

be tuned. In our previous work (Ref. [5]), we found that

faster convergence can be obtained by applying mu-PC to

the materials basis, which transforms it to an orthogonal

basis; in this new formulation of the optimization problem,

the step lengths are computed the same way as before

by substituting the new matrix K(f0) calculated in this

transformed basis.

A m-block diagonal SPC for MOCCA applied to
spectral CT: The condition on Σ and T that leads to

convergence for SPC CPPD is that the matrix

B =

(
T−1 −K�

−K Σ−1

)

is positive semi-definite, i.e. v�Bv ≥ 0 for any vector v. In

designing step-matrices Σ and T for MOCCA, we respect
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the constraint imposed by positive definiteness of B with

K(f0) changing at each iteration.

We propose a m-block diagonal SPC for Σ and T that

is motivated by preserving invariance to rotations of the

materials expansion set; in other words, the output of the

algorithm would be identical regardless of any rotation

applied to the selected basis of materials, which is a natural

property that is not satisfied by the μ-PC method. In

the process of developing μ-PC we had noticed sensitive

convergence behavior simply by performing such rotations.

This sensitivity was traced to the diagonal PC strategy for

σ and τ . The proposed step matrices are

(
Σ
−1

)
w�,w′�′ =

1

λ

∑
k

√∑
m

K2

w�,mk(f0) Iw�,w′�′

for the dual step and

(
T−1

)
mk,m′k′ = λ

∑
w,�

Kw�,mk(f0)Kw�,m′k(f0)√∑
m′′ K2

w�,m′′k(f0)
Ik,k′ ,

for the primal step. As before, the Σ−1 matrix is diago-

nal, and inverting to find Σ only involves computing the

reciprocal of the diagonal elements. The new definition of

T−1, however, is diagonal only in k, k′ and each diagonal

element indexed by k consists of an m×m block. Inversion

to find Σ thus involves inversion of an m×m matrix where

each entry is a Nk-length vector, where Nk is the total

number of pixels in a single material map. The inversion

of such an m ×m matrix is feasible, because the number

of expansion materials is low. In this work in fact we

use Nm = 3. The matrix inversion must be computed at

every iteration because K(f0) is a function of the expansion

center, which changes at every iteration for our application

of MOCCA. The overhead in inverting the 3x3 blocks is

negligible in comparison with the computationally intensive

X-ray forward- and back-projections.

III. RESULTS
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0.04

0.08

0.12

0.16

s
w
,�
=
1
,i

w=1

w=2

w=3

w=4

Fig. 1. Realistic X-ray normalized spectral response curves for 4-
window spectral CT with a photon-counting detector. Shown is the
response curves for the first detector pixel; other pixels have slight
variations from these curves.

Spectral CT counts data are generated based on a simu-

lation of our bench-top X-ray system including a photon-

counting detector with 192 pixels. Mean transmitted photon

counts acquired in four energy windows are computed

based on spectra generated from calibration of our system.

The precise spectra vary as a function of detector pixel,

and example spectra are shown in Fig. 1. For the spectral

CT data, 200 projections are generated from a phantom

simulation of one of our physical test objects: a 6.35cm-

diameter Poly(methyl methacrylate) (PMMA) cylinder with

four inserted rods including, PMMA Air (empty), Teflon,

and low-density polyethylene (LDPE) inserts. In the empty

insert, Gd contrast agent is included at a density fraction

of 0.003 (Note this is only possible in simulation). An

Aluminum/PMMA/Gd materials expansion set is used form

image reconstruction, and the corresponding material maps

of the phantom are shown in Fig. 2.

Aluminum PMMA Gadolinium

Fig. 2. Rods phantom decomposed into Aluminum, PMMA, and Gd
maps. The structure of the phantom is most easily visible in the PMMA
map, where the PMMA background cylinder is clearly visible. The rods,
clockwise from the upper left are: Gd at a density fraction of 0.003,
Teflon, PMMA, and LDPE. The Gd ”rod” is only visible in the Gd
map. The display windows are [-0.1,0.2], [0.5,1.5], and [-0.003,0.006]
for Aluminum, PMMA, and Gd maps, respectively.

The test data are the noiseless mean counts, and the

goal of this “inverse crime” set up is to characterize

MOCCA convergence for μ-PC and m-block diagonal SPC

by observing the accurate recovery of the test object. The

difficulty of the problem lies in the fact that we employ

realistic spectra that include non-flux-dependent physical

factors that blur the sharp energy-window borders. The

blurred spectra have realistic overlap with each other as

opposed to ideal spectral responses with no overlap.

In Fig. 3, we display the DTPL data discrepancy as a

function of iteration number for both PC strategies. 1 In

each case the λ parameter is tuned for most rapid conver-

gence in this quantity. Both versions of MOCCA are run for

2,000 iterations and in this example it is clear that m-block

diagonal SPC outperforms μ-PC. Not shown is the result

for MOCCA with diagonal SPC, which exhibits divergent

behavior for all tested λ values. Divergent behavior can

1In performing these calculations, we found it useful to employ a soft-
exponential (sexp) function parameterized with a cut-off c: sexp(c;x) =
exp(x) for x ≤ c, and sexp(c;x) = exp(c)+ (x− c) exp(c) for x > c.
Positive values of x in the spectral CT model are unphysical because they
correspond to an increase in X-ray intensity along the transmission ray.
Yet large positive values of x may occur at early iterations, potentially
causing an overflow. We use c = 10 in the present results.
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Fig. 3. The log-log plot shows convergence of DTPL(c, ĉ(f
(n))), where

f (n) is the material map estimates at iteration n. The curves show results
for MOCCA with μ-PC and with m-block diagonal SPC.

occur with MOCCA, when only a single “inner loop”

is performed [4,5]. Due to efficiency constraints, we aim

to operate MOCCA with parameter and preconditioning

choices that allow its operation without nested inner and

outer loops.

m-block diag. SPC μ-PC

Fig. 4. Gd material maps at various iteration numbers for MOCCA with
the new m-block diagonal SPC and with μ-PC. From top to bottom the
iteration numbers are: 100, 200, 1000, and 2000. The display window
is [-0.003,0.006] for all panels.

Of particular interest for convergence studies, in this

case, is the Gd material map. It has such low density

that lack of convergence is obvious in visualizing the

corresponding images. In Fig. 4, we display a series

of intermediate estimates of the Gd map for both pre-

conditioning methods. Of particular interest is the fact

that at 100 iterations the proposed m-block method has

little contamination from the PMMA and aluminum maps,

while μ-PC shows significant bleed-through from the other

expansion materials at 100 and 200 iterations. From the

images series it is also clear that the m-block method

achieves accurate Gd recovery much earlier than μ-PC. We

also note that the artifact patterns are rather complex at

intermediate iterations; this results from the variations of

spectral response across detector pixels.

IV. SUMMARY

We propose a new m-block diagonal step-preconditioner

for use with MOCCA applied to spectral CT. In these

preliminary convergence studies we have primarily been

concerned with K-edge imaging with the use of a three-

material expansion set: a soft-tissue equivalent, a bone

equivalent, and Gd contrast agent. In this setting, the new

preconditioner enables MOCCA to be applied effectively

for one-step reconstruction of three three material maps

from four-window photon-counting data with realistic spec-

tral responses. At the conference, we will also present

experimental results on our K-edge imaging phantom using

MOCCA with m-block diagonal step-preconditioning.
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Abstract—Photon counting detectors are an emerging 

technology for next-generation CT architectures but suffer from a 

variety of limitations that limit their performance. One of the most 

significant obstacles today is the phenomenon of charge sharing. 

Charge sharing can be adequately corrected using charge 

summing circuitry, but existing approaches to charge summing 

are complex to implement, and several prototype detectors being 

investigated for diagnostic CT have not implemented charge 

summing. The purpose of this work is to evaluate a variation of 

charge summing, digital charge summing, that operates only after 

digitization. Because it uses only digital logic, it may be simpler 

and more practical to implement. We evaluate digital charge 

summing in simulations to show that a substantial performance 

improvement may be possible in basis material imaging. 

 
Index Terms—photon counting detectors, charge sharing 

 

I. INTRODUCTION 

HOTON counting technology has seen increasing interest 

within the CT community (1). Unlike traditional, energy-

integrating detectors, single x-ray photon counting detectors are 

able to discriminate individual photons as they arrive on the 

detector and, in many cases, to determine their approximate 

energy. Photon counting detectors have been on the rise for 

many years, but only recently has the count rate of these 

detectors been sufficient for possible clinical use (2). The flux 

in diagnostic CT can reach approximately 1000 million photons 

(counts) per second per square millimeter (Mcps/mm2). 

However, the flux that actually reaches the detector in most 

applications is typically much smaller due to the attenuation of 

the patient. Also, it is known that the characteristic (or 

maximum) count rate of the detector needs to be several times 

greater than the actual flux for the detector to achieve good 

performance (3), although different forms of detection logic 

could theoretically alleviate this performance penalty (4). When 

the flux approaches or exceeds the characteristic count rate, loss 

of counts and pileup ensues, distorting the spectrum and 

causing, for example, multiple low energy photons arriving in 

close spatiotemporal proximity to be perceived instead as a 

single high energy photon. 

 To alleviate this non-ideality, recent photon counting 

detector prototypes have taken the approach of building 

detectors with a small pixel pitch. In one prototype, the detector 

pixel size for the photon counting detector is approximately 

0.05 mm2, compared to 1 mm2 for a traditional energy-

Scott S. Hsieh is with the University of California, Los Angeles.  

integrating detector pixel (5). One effect of this small pixel size 

is the potential for dramatically increased spatial resolution (6). 

Other approaches have been proposed for reducing the count 

rate requirements (2, 7, 8), but a strength of a small pixel size is 

that it is a hardware solution that is simple and provides 

resilience to high count rates. The negative impact of the small 

pixel size, however, is charge sharing. In charge sharing, a 

single high-energy photon will produce charge that spills over 

and is detected in multiple pixels. Charge sharing has a dramatic 

effect on spectral performance. 

 One potent solution for charge sharing is charge summing 

technology, found in some detector prototypes such as 

Medipix3 (9-12). In the long term, this form of charge summing 

could greatly improve the spectroscopic performance of photon 

counting detectors. However, the technical challenges of 

incorporating this type of inter-pixel communication are 

significant because it requires addition of limited charge in the 

analog domain. The purpose of this work is to examine an 

alternative, with inter-pixel communication in the digital 

domain, or “digital charge summing.” 

 

II. METHODS 

Traditional charge summing circuitry sums up the charge in 

adjacent pixels (e.g., a 2x2 block of pixels) and uses logic to 

determine which block of pixels is an appropriate maximum 

that should be sent to the comparator for digitization. In digital 

charge summing, logic is applied only after digitization via the 

comparator. 

Charge sharing creates several types of pathological 

detection pathways. Ideally, for a two-bin detector, every low 

energy photon is recorded in the low bin, and every high energy 

photon is recorded in the high bin. Because of charge sharing, 

low energy photons may spread their energy between multiple 

pixels and hence be undetected. High energy photons may 

spread their energy and hence be detected as a single low energy 

photon. Alternatively, a high energy photon may spread its 

energy between multiple pixels and be detected as two low-

energy photons. Digital charge summing is only able to remedy 

this final pathway, whereas analog charge summing can 

improve characteristics of all three of these pathways. Figure 1 

depicts digital charge summing, showing a case where it 

provides an improvement and a case where it does not provide 

 

Digital charge summing for photon counting 

detectors 

Scott S. Hsieh 
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an improvement compared to the uncorrected case. 

A. Simulations 

All experiments presented in this work are done in simulation 

and were performed in the low flux (no pileup) regime. The 

simulations are performed using Monte Carlo transport of 

photons with a CdTe substrate. The detector substrate is 

modeled as being a 1.6 mm slab. The pixel size is 0.25 mm by 

0.25 mm. Photons taken from a 120 kVp spectrum (13) are first 

filtered by the object thickness and then impinge on the 

substrate. The transport of the photons is handled using 

GEANT4. Photons interacting with CdTe undergo a variety of 

possible interaction mechanisms, including Compton scattering 

or photoelectric effect. Excess energy deposited into the CdTe 

is converted instantaneously into a cloud of charges that is 

distributed as a Gaussian with a characteristic standard 

deviation of 40 microns. These charges are assumed to migrate 

vertically and any charge within the 0.25 mm by 0.25 mm 

boundary of a pixel is assumed to be collected within the pixel. 

The charges within each pixel were then converted into events 

at low or high energies. The threshold for low energy was at 25 

keV, and the threshold for high energy was at 65 keV, following 

settings used in one prototype detector (14).  

We sampled the spectrum from 30 to 120 keV in 5 keV 

increments and simulated 20,000 impinging photons at each 

energy level. This allowed us to precalculate a table of possible 

outcomes for an arriving photon. The table output was the 

presence of a low or high energy event in a 5x5 window of 

pixels centered on the pixel being irradiated. This implicitly 

captures the spatial correlations present with charge sharing. 

The performance of digital charge summing depends on the 

input parameters, so we make a few comments on our choices. 

Modeling perfect collection within pixel boundaries is not 

completely accurate. In practice, this depends on the pulse 

shaping time and the magnitude of ballistic deficit, with 

incomplete collection likely to occur at the boundaries between 

pixels. The size of the charge cloud depends on the electrical 

field and other such factors and could equally well be modeled 

as a sphere rather than a Gaussian. The detector pixel pitch is a 

particularly important parameter, and some other designs call 

for larger pixels so that charge sharing effects are reduced. 

However, use of charge summing will reduce the effective 

characteristic count rate, so in these designs we expect that a 

smaller pixel size that is equal to or less than 0.25 mm would 

 
Figure 1. Two 80 keV photons are detected on a photon counting detector, and their charges are shared. (Top left) Charge deposited in 

each pixel of a 4x4 detector subsection is shown. (Bottom left) In an uncorrected case, each charge is compared to a bank of comparators 

(low bin at 25 keV, high bin at 65 keV) and converted into a deposition in the (L)ow bin or the (H)igh bin. (Bottom center) In digital 

charge summing, simultaneous events in adjacent pixels is interpreted via digital logic into a single event in one of the pixels at a higher 

bin. (Top right) However, in analog charge summing, 2x2 blocks of pixels are dynamically summed together prior to digitization via the 

comparator. (Bottom right) After digitization, analog charge summing correctly recovers both high energy events. 
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be used. 

 

B. Experiments 

A numerical phantom was created consisting of 20 cm of 

water. The phantom was imaged only in projection mode. Two 

large squares of contrast were included of both water (0.5 cm) 

and iodine material (0.02 g/cm2) to serve as low contrast targets. 

In addition to this, a row of small targets of variable water and 

iodine contrast were included to help assess detectability. 

Photons were filtered by the object and then arrived on the 

detector, at which point they were converted into events using 

the precomputed model. 

III. RESULTS 

Figure 2 shows simulated images after passage through the 

phantom. An ROI was drawn in the iodine target and its CNR 

was compared to a background ROI. Table 1 shows the CNR 

estimated from this experiment. 

   
 

   
 

   
 

   
 
Figure 2. Simulated images with the two bin photon counting detector, using different forms of charge summing correction. The 

object includes a low contrast targets of water and of iodine, shown with red arrows in the top right picture. Each row represents a 

different detector design, and the column represents a different way to reconstruct the same data (i.e., a different combination of the 

low and high energy bins). From top to bottom, the rows are: uncorrected (no charge summing), analog charge summing, digital 

charge summing, and completely ideal detector. The left column corresponds to the linear combination which cancels water (i.e., 

iodine quantification task or basis material imaging) so that the water target disappears.  The right column corresponds to the 

combination that maximizes iodine CNR.  
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The strongest benefits occur for the water canceled or 

iodine quantification task. An improvement of CNR of 42% is 

seen compared to no correction, which corresponds to a 2x 

dose efficiency improvement. Compared to digital charge 

summing, analog charge summing provides another 41% 

improvement, which again doubles dose efficiency.  

 
Table 1. Contrast-noise ratio of the large iodine target in Figure 2 

compared to the background for different detector designs, for the 

two different tasks. 

 Water 

Cancel 

Iodine 

CNR 

Uncorrected 0.60 2.6 

Analog charge summing 1.2 2.9 

Digital charge summing 0.85 2.5 

Ideal detector 1.45 3.1 

 

IV. DISCUSSION 

Charge sharing is a significant problem for current photon 

counting detectors. Although existing “analog” charge 

summing techniques provide the best improvement, a digital 

charge summing technique may offer implementation 

advantages. A preliminary investigation showed that the 

improvement for iodine basis material imaging was significant, 

with a doubling in dose efficiency compared to no correction. 

This is approximately half the benefit of analog charge 

summing. Benefits in other forms of CNR are small. 

Existing work has shown little to no benefit of photon 

counting detectors for dual energy imaging, at least when 

compared to conventional approaches that maximize spectral 

separation such dual source approach with filtration (15). 

Digital charge summing provides a possible and potentially 

practical pathway for photon counting to overtake conventional 

dual energy. Further studies are necessary to validate the initial 

improvements seen here, to confirm that they generalize to 

different object sizes, different number of detector bins and 

different models of charge spread. 

 

The author would like to acknowledge Martin Sjolin for his 

invaluable contribution to this work.  
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Application of the X-ray Transmittance
Modeling-based Three-step Algorithm to

Experimental Data from a Prototype PCD-CT System
Okkyun Lee*, Christoph Polster, Steffen Kappler, Kishore Rajendran,

Cynthia H. McCollough, Shuai Leng, and Katsuyuki Taguchi

Abstract—Recently, we have developed an x-ray transmittance
modeling-based three-step algorithm for photon counting detec-
tor (PCD)-based computed tomography (CT). Starting with count
data and integrating a PCD spectral distortion model, the three-
step algorithm compensates for the spectral distortion of the
PCD, achieves almost unbiased and minimum variance estimator,
and is computationally efficient due to the linearized estimation
steps using the x-ray transmittance model. In this paper, we
apply the three-step algorithm to an actual PCD-CT system
and evaluate the method by experiments using water-equivalent
phantom with iodine and bone inserts. We compare the results
to those of the conventional image-based material decomposition
method, and FBP applied to the threshold data of the system.

I. INTRODUCTION

Photon counting detector (PCD)-based computed tomog-
raphy (CT) exploits the spectral information from each

PCD pixel for more accurate material decomposition including
K-edge imaging and has a great potential in many clinical
applications [1]. However, one of the challenges is the spectral
distortion in the PCD due to physical effects such as charge
sharing and K-escape fluorescence. Conventional approaches
to compensate for the spectral distortion include 1) model-
based method using maximum likelihood (ML) estimator [2]
and 2) calibration-based one such as the A-table method [3].
While the ML estimator guarantees an asymptotic optimality
in estimating basis line-integrals (or thicknesses of materials),
a substantial computational burden is a concern in practice.
On the other hand, the calibration-based methods efficiently
estimate basis line-integrals; however, it heavily relies on
the calibration process and how to handle various calibration
materials in practice can be a challenge.

Recently, we proposed a three-step algorithm as a fast
alternative to the ML estimator in the model-based approach
and demonstrated that the bias and noise are comparable to
those of the ML and that it is more stable than the ML when
photon counts are low [4, 5]. The main idea is the use of
a novel x-ray transmittance model: The x-ray transmittance,
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exp
(
−
∫
µa(E, r)dr

)
, not µa but the exponential function

itself, can be approximated by a linear combination of energy-
dependent basis functions where the number of bases is limited
by the number of energy bins in the PCD. Using the x-
ray transmittance model, the original nonlinear counts model
can be linearized with unknown coefficients of the bases and
then the three-step algorithm can be derived as follows: 1)
Estimating the unknown bases coefficients from the linearized
counts model and then calculating the x-ray transmittance,
2) estimating the basis line-integral using the least squares
fitting after applying the − ln operation to the estimated x-ray
transmittance, and 3) correcting for a bias using pre-calculated
look-up tables.

In the previous work [4, 5], the three-step algorithm has been
assessed by using numerical simulations; in the current work,
we apply it to an actual PCD-CT system. The output data from
the actual PCD-CT system is calibrated using water-equivalent
phantoms to address some of the pre-processing performed on
the data such as pixel uniformity correction, and the calibrated
data is then fed into the three-step algorithm. We model the
spectral distortion in the PCD with a parallel cascaded systems
analysis which was validated with Monte Carlo simulation [6]
and use it in the three-step algorithm to compensate it. We
also use detector pixel-specific incident spectrum to address
different thicknesses of bow-tie filter that each incident x-ray
experiences. The details of the proposed method are described
in Section II. Experimental conditions, conventional image-
based material decomposition (IMD), and how to evaluate
the methods are described in Section III. Validation of the
proposed method with test phantoms are shown in Section IV
with comparisons to the IMD and filtered back-projection
(FBP) applied to the threshold data. Conclusions are provided
in Section V.

II. PROPOSED METHOD

A. Measurement Model

The linear attenuation coefficients µa(r, E) at position r
and energy E can be modeled by a linear combination of
two energy-dependent functions (e.g., photoelectric effect and
Compton scattering) in the absence of K-edge materials. If we
select linear attenuation coefficients of soft and hard tissues
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such as water (µW (E)) and bone (µB(E)) for those functions,
then the j1-th line-integral of µa(r, E) can be formulated by∫

Ωj
µa(r, E)dr = v(W,j)µW (E) + v(B,j)µB(E) = µ(E)vj , (1)

where Ωj is the path for the j-th line-integral, and v(W,j)

and v(B,j) are the thicknesses of water and bone, respec-
tively, along the path; thus, µ(E) = [µW (E), µB(E)] and
vj = [v(W,j), v(B,j)]

T . Using (1), the expected photon counts
ȳ(b,c)(vj) measured at the b-th energy bin and the detector
pixel c for the j-th line-integral can be formulated by2

ȳ(b,c)(vj) =
∫∞
0

Sb(E)Sc(E) exp (−µ(E)vj) dE, (2)

for b = 1, 2, · · · , Nb and c = 1, 2, · · · , Nc, where Nb and Nc

are the number of bins and pixels, respectively. Sb(E) is the
energy-bin dependent function to model the spectral distortion
in PCD [6] and Sc(E) is the incident x-ray spectrum after
passing a bow-tie filter with a certain thickness of the filter
in the direction toward the detector pixel c. The normalized
noisy counts for the j-th line-integral can then be described
as follows:

yN
c (vj) =

ȳc(vj)
ȳc(0)

+ n(c,j), (3)

where ȳc(vj) = [ȳ(1,c)(vj), ȳ(2,c)(vj), · · · , ȳ(Nb,c)(vj)]
T ∈

RNb×1, and n(c,j) ∈ RNb×1 is a noise vector. Note that we
normalized the counts by ȳc(0) (i.e., counts without object)
so that a possible mismatch of the total number of incident
photons in the model can be canceled out.

B. Three-step Algorithm

The three-step algorithm can be derived by modeling the x-
ray transmittance: exp (−µ(E)vj) can be approximated by
a linear combination of a few of energy-dependent basis
functions {Dk(E)}Nk

k=1 and it can be formulated by

Xj(E) = exp (−µ(E)vj) ≈
Nk∑
k=1

θ(j,k)Dk(E), for Nk ≤ Nb, (4)

where {Dk(E)}Nk

k=1 can be either low-order polynomials or
pre-calculated from a low-rank approximation [4, 5]. If we
substitute (4) into (2), then the normalized counts model in (3)
can be linearized with the unknown coefficients θ as follows:

yN
c (vj) ≈ Bcθj + n(c,j), (5)

where θj = [θ(j,1), θ(j,2), · · · , θ(j,Nk)]
T ∈ RNk×1, and Bc ∈

RNb×Nk is a sensing matrix whose b-th row and k-th column
component is given by

[Bc](b,k) =
∫∞
0

Sc(E)Sb(E)Dk(E)dE / ȳ(b,c)(0). (6)

Using the linearized model (5), we can describe the three-step
algorithm as follows:

· 1st step:

θ̂j = argmin
θ

∥∥yN
c (vj)−Bcθ

∥∥2 + λ ∥Kθ∥2 , (7)

1We used a single index j for simplicity. In practice, it can be represented
by a combination of indices of such as detector pixel and projection view.

2We neglected the pulse pileup effect in this model since it may be severe
only near the boundary of the object [1].

where K ∈ RNk×Nk is a regularization matrix.
· 2nd step:

v̂j = argmin
v

∥∥∥∥∥ln
(

Nk∑
k=1

θ̂(j,k)Dk(E)

)
+ µ(E)v

∥∥∥∥∥
2

. (8)

· 3rd step:

v̂i
j = v̂i−1

j −BCT i
(
v̂i−1
j

)
, for i = 1, · · · , Niter, (9)

where v̂0
j = v̂j and {BCT i(·)}Niter

i=1 is the pre-calculated bias
look-up tables. For more details of theoretical analysis and
practical implementation, see [4, 5].

III. EXPERIMENTAL SETUP

In this section, we describe scan conditions, calibration
settings for the three-step method and the image-based
material decomposition (IMD) method to which the three-step
method is compared, and evaluations with test phantoms.

• Scan conditions: We used a prototype, whole-body
PCD-CT system (SOMATOM CounT; Siemens Healthineer;
Forchheim, Germany) for the experiments. The number of
detector pixels was 480 for ∼28.78◦ and the number of
projection views was 2,304 over 2π with 1 sec of rotation
time. We set the energy thresholds at 20, 38, 52, 80 [keV] and
performed scans with 140 kVp and 100mA.

• Calibration phantoms (three-step method): Cylindrical
water-equivalent phantoms (QRM, Moehrendorf, Germany)
with diameters of 10 cm and 20 cm with two air holes.

Each phantom was scanned twice with different offsets
from the iso-center, 2.5 cm and 5 cm, to obtain a sufficient
amount of attenuations for each detector pixel. These
phantoms were used to calibrate the output data from the
actual PCD-CT system. It was also used to estimate the noise
in the forward model (3), under the assumption that the noise
follows a zero-mean Gaussian distribution, and synthesize
noisy data sets for generating bias correction tables in the
third-step of the algorithm.

• Calibration phantoms (IMD): Cylindrical water-equivalent
phantom with a diameter of 20 cm (2.5 cm offset from the iso-
center) with iodine/bone insertions.

We used water as one of the calibration material and
a linear combination of water and bone as the second
material. The linear combination was calculated from the
result of the three-step algorithm applied to the data for this
calibration phantom, and the area for the calibration of the
second material was defined as the center of the phantom
where the bone was filled with unknown density. During the
calibration process (i.e., estimating weighting coefficients;
see [7] for details), two energy bin data were used to fit the
two calibration materials, and the other two were used to
minimize the noise [7].

• Test phantoms: Cylindrical water-equivalent phantoms
with a diameter of 20 cm (without center offset) with and
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without iodine/bone insertions.

• CounT data processing: Seven polychromatic CT images
in total were reconstructed from energy bin and threshold
data using FBP, which we call “poly CT images.” The
basis images of water and bone were estimated using IMD
and the four poly CT images from four energy bins as the
input. Monoenergetic CT images at desirable energies were
synthesized by a linear combination of the two basis images,
which we call “mono CT images.”

• Proposed method: Basis sinograms of water and bone
were estimated using the three-step method and the four
(calibrated) energy bin data as the input. The corresponding
basis images were reconstructed using FBP, and mono CT
images were generated by a linear combination of the two
basis images.

• Data analysis: Bias and standard deviation (STD) of the
following data were measured: basis images, poly CT images,
and mono CT images obtained by CounT, IMD, and the
proposed method.

IV. RESULTS

Figures 1 and 2 present water and bone basis images of the
test phantoms each obtained by both the IMD and the three-
step method. The holes of the phantom had the air for Fig. 1
and iodine/bone inserts for Fig. 2. The three-step method had
a smaller bias than the IMD did with both of the phantoms;
and the three-step method had smaller noise than the IMD
did when the phantom had the water-equivalent material only
(Fig. 1), while the IMD had less noise than the three-step
method with iodine and bone inserts (Fig. 2). Note that the
test phantom with inserts is strikingly similar to the calibration
phantom for the IMD (the only difference was the 2.5 cm
of offset from the iso-center); thus, it might overestimate the
performance for the IMD.

Fig. 1: Water and bone basis images of the test phantom with the
air holes, reconstructed using the IMD and the three-step method.
The mean and standard deviation (STD) values are calculated at the
region of interest (ROI) indicated in the far left image.

Fig. 2: Water and bone basis images of the test phantom with
iodine/bone inserts, reconstructed using the IMD and the three-step
method.

Figures 3 and 4 illustrate reconstructed poly CT image
(>20 keV) and mono CT images (at 71 keV) from the IMD
and the three-step method for the test phantom without and
with inserts, respectively. Bias and STD measured in the ROI
(see Fig. 2) of the CT images show that all the methods were
almost unbiased and that the STDs of the mono CT images
from the three-step method were close to those of the poly CT
images (>20 keV) which have the largest SNR. STD of the
mono CT images from the IMD for both test phantoms were
smaller than other methods due to 1) the noise minimization
process during the calibration of the IMD and 2) possibly the
similar conditions between the test phantoms and calibration
phantoms used in the IMD. Both the poly CT image and the
mono CT image (IMD) showed decreased pixel values near the
boundary of the phantoms (without/with inserts; thin arrows)
and a slight beam hardening artifact between the two inserts
(thick arrows). In contrast, the mono CT image from the three-
step algorithm showed nearly no bias throughout the image.

Fig. 3: Reconstructed poly CT image (>20 keV) and mono CT
images (at 71 keV) from the IMD and the three-step method for
the test phantom without inserts. Decreased pixel values near the
boundary of the phantom is indicated by thin arrows. Bias and STD
of the poly and mono CT images were measured in the ROI (see
Fig. 2).
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Fig. 4: Reconstructed poly CT image (>20 keV) and mono CT
images (at 71 keV) from the IMD and the three-step method for the
test phantom with inserts. Decreased pixel values near the boundary
of the phantom and possible beam hardening artifact between two
inserts are indicated by thin and thick arrows, respectively.

V. CONCLUSIONS

We applied the previously developed three-step algorithm
to the actual PCD-CT system. Water calibration phantoms
were used to calibrate the output of the system to feed it into
the three-step algorithm and to estimate the noise variance
in the measurements for generating bias correction tables.
The reconstructed images of the test phantoms using the
proposed method were almost unbiased, had similar noise to
the poly CT images, and had fewer artifacts than those of
the image-based material decomposition and poly CT images.
The proposed method was also computationally efficient: It
took only ∼12 sec using Intel Xeon CPU (dual) 2.00GHz for
estimating sinograms (2,304× 480) of water and bone.
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Abstract—Photon-counting CT (PCCT) is a promising 
imaging technique because of its ability to differentiate and 
identify different materials with high energy resolution 
using narrow energy bins. However, the narrow energy bin 
images will be affected by serious noise because of limited 
amount of photons in the corresponding energy bins 
compared to the full spectrum. To reconstruct high quality 
photon-counting CT images, we present a total image 
constrained diffusion tensor (TICDT) for statistical 
iterative reconstruction (SIR) based on a penalized 
weighted least-squares (PWLS) principle, which is referred 
to as ‘PWLS-TICDT’. Specifically, the TICDT exploits the 
correlation in energy domain to improve the PCCT 
reconstruction performance. An alternating optimization 
algorithm is adopted to solve the associated objective 
function. Qualitative and quantitative studies were 
conducted to evaluate PWLS-TICDT method using the 
XCAT phantom. Results from numerical simulation study 
show that the presented PWLS-TICDT method achieves 
noticeable gains over the competing methods in terms of 
noise suppression and structural information preservation. 
Moreover, the narrow energy bin images reconstructed by 
PWLS-TICDT method can produce more accurate basis 
material decomposition. 
 

Index Terms—Photon-counting CT, image 
reconstruction, PWLS, diffusion tensor 

I. INTRODUCTION 
HOTON-COUNTING CT is a promising imaging 
technique because of its ability to differentiate and 

identify different materials. The photon-counting 
detector (PCD) is used in this technique to increase the 
energy resolution and material specificity. The PCD can 
count individual x-ray photons and sort out them into 
different energy bins based on their energies and preset 
energy thresholds, which separates a whole 
polychromatic x-ray spectrum into several energy bins 
[1, 2]. Multiple projection datasets with different 

spectral information can be acquired from a single scan, 
which results in improved energy resolution and 
efficient material decomposition. However, given the 
amount of total photons, the amount of photons in 
narrow energy bin will be smaller, and the noise in each 
energy bin image will be dramatically increased [3-5]. 
The image quality of material decomposition will be 
degraded, which would compromise the identification of 
small material component differences.  

In this work, the noise properties of projection data is 
incorporated into statistical iterative reconstruction 
(SIR) for spectral CT with narrow energy bins. The SIR 
algorithms usually consist of two terms. The first term 
describes the statistics of projection data and the second 
term characterizes a prior information to regularize the 
result. Sparsity regularizations have been widely applied 
to CT reconstruction and demonstrated superior 
performance compared with classical analytic 
reconstruction algorithms [6, 7]. These sparsity-
regularized methods can be directly applied to spectral 
CT in each energy bin individually. Xu et al. presented 
an interior tomography method with TV minimization to 
reconstruct each energy bin images individually [8]. 
Zeng et al. proposed a structure tensor TV based SIR 
method for spectral CT reconstruction that using the 
high-order derivatives information to eliminate the 
staircase effect [9]. Zhao et al. developed a tight frame 
based reconstruction method for spectral breast CT 
using fewer projection views, which can produce 
accurate material composition quantification of breast 
tissue [10]. The limitation of these methods is that the 
abundant redundancy between different energy bin 
images is not incorporated into reconstruction. 

To exploit the structure correlations in energy domain, 
we present a total image constrained diffusion tensor 
(TICDT) for spectral CT reconstruction. Specifically, 
we first reconstruct a high-quality total image from 
integrated projection data, and construct a new diffusion 
tensor with this total image and energy bin image that 
characterizes structure correlation in energy domain. 
Then, the TICDT is incorporated into SIR, and the 
energy bin image can be enhanced using the redundant 
information in the total image while preserving the 
primary features in narrow energy bin image. 
Furthermore, an alternating optimization algorithm is 
adopted to solve the associated objective function. The 
TICDT method has two major advantages. First, it 
maintains structure features of the total image even when 
the noise level of energy bin image is extremely high. 

Shanzhou Niu, Xiaokun Huang, Jianhua Ma, and Jing Wang 

Photon-counting CT Reconstruction using Total 
Image Constrained Diffusion Tensor 
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Second, it can detect matching directions of diffusion 
tensor between different images, achieving substantial 
noise reduction with preserved edge and structure 
information. 

II. METHODS AND MATERIALS 

A. PWLS image reconstruction 

Consider a sequence of log-transformed projection data 
miy  corresponding to 1,2, ,m M,M,  energy bins and 

1,2, ,i N, N,  projection views, where M  is the number of 
energy bins, 1N  is the total number of rays at each 
projection view, 2N  is the total number of projection 
views, and 1 2N N N . When the energy bin width is 
narrow enough, the measurement in any energy bin can 
be approximated as a mono-energetic projection. For 
each energy bin m , the variance of the noise in 
projection data miy  can be determined by the following 
exponential formula [11, 12] 

2 exp /mi mi miy I ,                     (1) 
where miI  is the incident photon number at energy bin 
m  and projection ray i , miy  and 2

mi  is the mean and 
variance of projection at energy bin m  and detector 
channel i .  

Based on the properties of the noise at energy bin m , 
the PWLS image reconstruction with penalty term ( )mR  
can be formulated as 

1

0
min ( ) ( )

m

T
m m m m my A y A R ,       (2) 

where my  is the vector of sinogram data (projection after 

logarithm transform) at energy bin m , m  is the 

corresponding vector of attenuation map to be 
reconstructed, and A  denotes the projection or system 
matrix which is determined by a fast ray-tracing method. 
The symbol T  represents matrix transpose operator.  
is a diagonal matrix with the thi  element of 2

mi , which 

can be obtained from the measurement miy  according to 

Eq. (1). The penalty or smoothing parameter 0  
controls the tradeoff between the data fidelity and 
penalty terms.  

B. Tensor based anisotropic diffusion 

Using diffusion tensor, Weickert [13] rewrote the 
anisotropic diffusion process as follows 

div ( ( ))tu u uD J ,                      (3) 
where ( ( ))uD J  denotes a diffusion tensor on the basis 
of the structure tensor ( )uJ . The structure tensor is 
defined as a positive semidefinite symmetric matrix 

2

2( )
x x y

T

x y y

K u K u u
u K u u

K u u K u
J ,

(4) 
where for stable evolution, a Gaussian kernel K  is 
convolved with the image u , i.e., u K u .  

With the eigenvectors of structure tensor in Eq. (4), 
the diffusion tensor can be given as 

1 11 12
1 2 1 2

2 12 22

0
( ( ))

0
T D D

u v v v v
D D

D J ,          (5)       

1,2ij n ni njn
D v v .                               (6) 

The diffusion tensor D  possesses two new eigenvalues 
1,2 , which determined the strength of smoothing with 

preferred direction 1,2v . In this study, the eigenvalues 
1,2  relating to normal and tangential directions are 

given by 
2 2

1 2exp / , 1u ,                      (7) 

where 0  is a threshold that determines the strength 
of smoothing in normal direction, and the smoothing in 
tangential direction is performed by setting 2 1 .

C. Total image constrained diffusion tensor 

The proposed TICDT consists of two steps: 1) to 
reconstruct a total image from the integrated projection 
data; and 2) to incorporate the high-quality total image 
into image reconstruction using diffusion tensor. 

The structure information from total image  
(reconstructed from the integrated projection using TV 
minimization) is embedded into energy bin image m  by 
means of diffusion tensor. The target image m  can be 
enhanced with the supplementary information from total 
image , while preserving the important features in 
target image. Let mD  and D  be the diffusion tensor for 
images m  and  respectively using Eq. (5). Using the 
intensity and geometrical information of both images, 
we can construct a total image constrained diffusion 
tensor (TICDT) 

(1 )m ms sD D D ,                             (8) 
where [0,1]s  is a spatially variant that determines the 
relative contribution between these two diffusion tensors. 
In this study, we follow the strategy as suggested by [14]:

1 1sin abs arccos ( ) ( )
2ms v v ,             (9) 

where 1 1( ) ( )mv v  is the component-wise inner 
production of the normalized eigenvectors from images 

m  and . 

D. PWLS-TICDT reconstruction 

For the PWLS reconstruction in Eq. (2), it can be 
iteratively minimized by the following two steps: 

1/2 11k k T k
m m m mA A y

L
,                 (10) 
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21 1/2

2
arg min ( ) ( )

2m

k k
m m m m m

L
R ,        (11) 

where L  is a Lipschitz constant, which is set to be the 
maximum eigenvalue of the matrix 1TA A , k  is the 
index of iteration steps.  

The intention of these two steps is summarized as 
follows. First, a gradient descent algorithm is applied to 
the data fidelity term to obtain an intermediate solution 

1/2k
m  as described in Eq. (10). This intermediate solution 

may contain artifact and noise, since no penalty is 
performed. Second, an iterative gradient descent 
algorithm is used to solve Eq. (11): 

1

0 1/2

( )l l
m m m

l k
m m

.                       (12) 

Using the TICDT based anisotropic diffusion, the first-
order derivative of the function ( )m  can be formulated 
as follows: 

1/2( ) divk
m m m m mL D .               (13) 

E. Numerical simulation 

In this study, a 120 kV x-ray spectrum was generated 
using the TASMICS method [15]. This spectrum was 
divided into nine energy bins: [0, 30] keV, [30, 40] keV, 
[40, 50] keV, [50, 60] keV, [70, 80] keV, [90, 100] keV, 
and [100, 120] keV. The incident x-ray intensity was 
distributed to each energy bin according to the weights 
calculated from the simulated spectrum. The normalized 
x-ray spectrum and nine energy bins are shown in Fig. 1. 
The anthropomorphic XCAT phantom [16] was used to 
simulate a PCD-based spectral CT imaging. This 
phantom (Fig. 2(a)) is of 256 256   array size, and the 
pixel size is 2 mm. Using our previously developed 
simulation method [17], multi-energy projection data 
can be obtained by assuming 51.0 10   photons emitted 
from the x-ray source of a fan-beam CT scanner. The 
distance from the source to detector is 949 mm and the 
distance from the rotation center to detector is 408 mmm. 
The number of channels per projection view is 888 with 
984 projection views evenly spanned on a circular orbit 
for a 2  rotation. The size of each detector channel is 
1.0 mm. 

 
Figure 1. Numerical simulation: (a) 120 kV x-ray spectrum with nine 
energy bins; (b) XCAT phantom. 

F. Comparison method 

To validate and evaluation the performance of PWLS-
TICDT method, the diffusion tensor based PWLS 
(PWLS-DT) method and the PWLS-PINL method 

describe in [18] were adopted for comparison. The high-
quality total image  is also used as the prior image 
for PWLS-PINL method. 

III. RESULTS 

A. Convergence analysis 

Figure 2 illustrates the convergence of the proposed 
PWLS-TICDT method with a representative energy bin 
(65 keV). Fig. 9(a) and 9(b) show the relative error (RE) 
and root mean square error (RMSE) curves versus 
number of iterations, respectively. We can observe that 
PWLS-TICDT method can converge to a steady solution 
after enough iterations in terms of RE and RMSE 
measures. 

Figure 2. Convergence curves for the PWLS-TICDT reconstruction: 
(a) RE curve versus the number of iterations; (b) RMSE curve versus 
the number of iterations. 

B. Visual Evaluation 

Figure 3 shows images of the XCAT phantom, with 
columns 1–3 showing 25, 65, and 110 keV energy bin 
images, respectively. Not only the severe noise are 
suppressed in PWLS-TICDT results, but the edges are 
well preserved for bone and structures inside of the lung. 
The PWLS-TICDT method achieves the best 
performance in terms of noise reduction and structure 
detail preservation. 

 
Figure 3. Results of XCAT phantom correspond to three representative 
energy bins. From the left to right columns the display winds are [0, 
0.26], [0, 0.08], and [0, 0.055] mm-1. 
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C. Structural Similarity Study 

To further show the difference of the above 
reconstructed image, zoomed ROI (indicated by the red 
and blue squares in Fig. 1(b)) are displayed in Figs. 4. 
To quantitatively evaluate the performance of these 
reconstruction method, the corresponding SSIM values 
on this ROO at each energy bin are depicted in Fig. 5. 
The average SSIM value of the images reconstructed by 
the PWLS-PINL method, PWLS-DT method, and 
PWLS-TICDT method are 0.9468, 0.9409, and 0.9839, 
respectively. The results demonstrate that PWLS-
TICDT method achieves noticeable gains over the 
PWLS-PNNL and PWLS-DT methods in terms of noise 
reduction and structure detail preservation. 

 
Figure 4. Zoomed-in views of the ROI (indicated by the red square in 
Fig. 1(b)) in results of XCAT phantom. 

 
Fig. 5. Curves of the SSIM values versus different energy bins on the 
ROI shown in Fig. 4. 

D. Material Decomposition 

To evaluate the performance of the propose PWLS-
TICDT method for material decomposition, the 
reconstructed images were decomposed into three basis 

materials, i.e., adipose tissue, striated muscle, and 
cortical bone. The decomposed images from phantom, 
FBP, PWLS-PINL, PWLS-DT, and PWLS-TICDT 
images are presented in Fig. 6. To quantitatively 
evaluation the decomposed images, the SSIM values of 
each material image are shown in Fig. 7. The PWLS-
TICDT method has the greatest SSIM value in all the 
basis materials, and the SSIM values decrease gradually 
form PWLS-PINL/PWLS-DT method to FBP algorithm. 
This indicates that the high quality of PWLS-TICDT 
reconstruction produces more accurate material 
decomposition results. 

 
Figure 6. The basis material decomposition images from the XCAT 
phantom. All images are displayed in the same window: [0, 1]. 

 
Figure 7. SSIM values of the material images decomposed using FBP, 
PWLS-PINL, PWLS-DT, and PWLS-TICDT results in Fig. 6. 

IV. CONCLUSION 
In this work, we presented an iterative PWLS-TICDT 
method to enhance image quality of PCCT using narrow 
energy bins. Based on PWLS principle, the presented 
PWLS-TICDT can explicitly exploit the redundant 
information in the energy domain. This redundant 
information is embedded into reconstruction by rotating 
and scaling the combined diffusion tensor of high-
quality total image and noisy target image. The PWLS-
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TICDT method can detect the matching normal and 
tangential directions of diffusion tensor fields in total 
image and target image that results in substantial noise 
reduction in narrow energy bin images without 
sacrificing edges detail and spatial resolution, as 
demonstrated in results section. 
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Parallel-beam ROI reconstruction with differentiated
backprojection and angularly subsampled

complementary sinograms
Aymeric Reshef, Tina Nikoukhah, Cyril Riddell, Yves Trousset, Saı̈d Ladjal, and Isabelle Bloch

Abstract—Recently, we introduced a parallel-beam two-pass
analytical reconstruction that allows truncation to be accounted
for in the image domain rather than the projection domain. In
particular, we showed that backprojection of a vastly angularly
undersampled sinogram of un-truncated data could be used
to extrapolate the backprojection of a finely sampled, fully
truncated sinogram of the same object to perform more accurate
region-of-interest (ROI) imaging. The same extrapolation idea
can be performed using differentiated backprojection (DBP). The
goal of this study is to give a general DBP-based formula when
reconstructing a finite set of projections in parallel geometry. We
discuss the discretization of this formula, in particular when the
image grid size is large with respect to the number of projections,
and we show how it can be applied to our extrapolation problem.

I. INTRODUCTION

We address the classic case of interior tomography, when
truncation due to the limited size of the detector defines a
centered region-of-interest (ROI) of an object for which no
complete projection is available. Without additional a priori
knowledge, exact reconstruction of this ROI is not possible
from the truncated data. Even though the amount of required
a priori data may be considered tiny [1], it is still usually
unavailable. A second approach is to complement the truncated
data with a second acquisition. In the context of very high-
resolution imaging, only the ROI is scanned at very high
resolution, because the cost of scanning the entire object
is prohibitive either in terms of scanning time, dose, or
both. A second acquisition encompassing the full object at
standard resolution removes the truncation artifacts through
extrapolation of the truncated high-resolution data with the
lower-resolution complete data. In the context of C-arm CBCT,
we proposed a dual-rotation scheme, where a complementary
acquisition of un-truncated data at same resolution but angu-
larly vastly undersampled removes truncation artifacts using a
standard least-square iterative reconstruction [2]. The iterative
approach makes full use of the two sets of data without any
explicit data extrapolation. For an analytical alternative, the
extrapolation must be explicit and we showed that it is most
conveniently achieved in the image space after backprojection

A. Reshef (corresponding author: aymeric.reshef@ge.com) is with GE
Healthcare, Buc, France, and LTCI, Télécom ParisTech, Université Paris-
Saclay, Paris, France. T. Nikoukhah, C. Riddell and Y. Trousset are with
GE Healthcare, Buc, France. S. Ladjal and I. Bloch are with LTCI, Télécom
ParisTech, Université Paris-Saclay, France. This work was supported by the
CIFRE grant No. 873/2014 from the French Association Nationale de la
Recherche et de la Technologie (ANRT).

(a) Reference image (b) With 45 un-truncated projections

Fig. 1: Dual-rotation reconstruction with a two-pass Hilbert-
transformed DBP (DBP-HT-2) [3]. Window width: 50 HU.

of both data sets [3] (Fig. 1). Here, we look at the specific case
of extrapolating the differentiated backprojection (DBP) within
the context of a general DBP-based reconstruction formula for
parallel-beam geometry.

The general DBP formula is presented in Section II, along
with the DBP-based extrapolation for ROI imaging. The
specific case of using standard DBP images is studied in
Section III. Simulations on forward projections of a clinical
head CT slice are described in Section IV. The results are
shown in Section V.

II. GENERAL DBP RECONSTRUCTION FORMULA

A. Notations
We parametrize the orientation of a parallel beam by its

direction θ = (cos θ, sin θ)T , where θ ∈ [0, π]. The de-
tector is orthogonal to the beam and oriented along θ⊥ =
(− sin θ, cos θ)T . Any point x is thus related to its detector
coordinate uθ(x) by equation uθ(x) = x · θ⊥. The Hilbert
transform of a 1D signal is denoted H, and we denote Hα,
the 2D filter that applies H over all the lines colinear to
α⊥. We denote pθ, the projection available at angle θ, and
p′θ the differentiation of pθ along θ⊥. We denote Bθ the
backprojection operator from angle θ, defined as: Bθ [q] (x) =
q(uθ(x)) for any projection q. For a set of angular positions
Θ, we define p′Θ as the collection {p′θ}θ∈Θ. We further write
σαΘ⊗p′Θ = {sgn(α ·θ) ·p′θ}θ∈Θ, and BΘ [p′Θ] =

∫
Θ
Bθ [p′θ] dθ.

We consider a finite set of projections over interval [0, π].
The interval is split into N angular sectors of aperture ∆θ =
π
N . We denote Θ =

{
θn =

(
n− 1

2

)
∆θ, n = 1, · · · , N

}
the

set of acquired angular positions.
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B. Splitted DBP formula

Given a partition {Θk}k=1,··· ,K of Θ, one can reconstruct
image f through:

f =
1

2π

K∑
k=1

HαkBΘk

[
σαkΘk
⊗ p′Θk

]
=

1

2π

N∑
n=1

BθnH [pθn ] ,

(1)

where αk ∈ [0, π] is such that αk · θ = cos(θ − αk) 6= 0 for
all θ ∈ Θk. The most right handside is the standard filtered
backprojection (FBP) and the result holds because one can
replace Hilbert transform H prior to backprojection by Hαk
after backprojection (see Appendix). If all partition sets Θk

are singletons (K = N ), we have one filtering direction per
projection, typically θ⊥k , as in standard FBP. On the other
hand, if K = 1, the only admissible filtering direction is
given by α1 = π

2 , resulting in a filtering step along the x-axis,
as in the single-pass Hilbert-transformed DBP (DBP-HT-1)
algorithm [4].

For K = 2, we divide Θ into frontal views and lateral
views. Frontal views correspond to ΘFRT = Θ ∩

[
π
4 ,

3π
4

]
.

We select αFRT = π
2 , yielding a horizontal filtering along

the y-axis. Lateral views correspond to ΘLAT = Θ \ ΘFRT.
We select αLAT = 0, yielding a vertical filtering along the y-
axis. We call this reconstruction method the two-pass Hilbert-
transformed DBP (DBP-HT-2). This common formula proves
that DBT-HT-2, DBP-HT-1, and FBP, applied to a finite set of
projections, yield the same reconstruction.

C. DBP extrapolation for ROI imaging

When considering two acquisitions from the same detector
with different angular sampling but equal detector resolution,
the complete data cannot be used to directly extrapolate the
truncated ones because such data are not available for all
angles. Alternatively, the DBP of each sinogram correspond
to two images: one that is uniformly sampled but at a low
rate, and one that is finely sampled but not uniformly over the
image space due to truncation of the projections. In Fig. 2,
we illustrate the merge of both DBP images. The central
field of view (FOV) corresponds to the ROI (area inside the
orange circle); it is made of the finely sampled DBP where
the sampling is also uniform. Outside the ROI, the coarsely
sampled DBP is used instead because it is uniformly sampled.
At the edges of the ROI, a smooth transition is ensured using
the radial weighting function:

η(r) =
1

2

(
1− cos

(
π · r − rΩ

∆r

))
, (2)

where rΩ denotes the radius of the ROI, and ∆r is the
transition zone radial width. The DBP extrapolation actually
consists of K extrapolations, one per partition subset. Fig. 2a
illustrates such extrapolation for the frontal views of DBP-HT-
2. Hilbert-filtering for all rows crossing the ROI will not be
truncated in this case, since these rows have a finite support.
In contrast, when using K = 1 and DBP-HT-1 (Fig. 2b), all
Hilbert lines are truncated.

(a) DBP-HT-2, Θ2 =
[
π
4
, 3π

4

]

(b) DBP-HT-1, Θ1 = [0, π]

Fig. 2: Dual-rotation DBP extrapolation for ROI imaging.
(a) The Hilbert transform can be computed for all horizontal
lines crossing the circular ROI (orange circle). (b) The Hilbert
transform is truncated for all horizontal lines crossing the ROI.

(a) N = 22, M = 32 (b) N = 22, M = 1024

Fig. 3: Angular sampling, resolution and image support.

III. ROI IMAGING WITH DBP-HT-1

A. Discretization

Reconstruction from a finite set of projections means esti-
mating the image from a finite set of angular samples in the
Fourier space according to the central-slice theorem. Because
the images have a finite support, the finite Fourier sampling
leads to sampling artifacts, which depends on the defined
sampling of the images themselves, typically two-dimensional
grids of size M ×M . This point is illustrated in Fig. 3 where
the image is reconstructed from a set of N = 22 projections
using Eq. (1) with K = N over two different grids (M = 32
and M = 1024).

When comparing both images, we note the classical streak
artifacts on the right high-resolution image that are not visible
on the left. A second consideration needs to be mentioned:
the sampling artifacts cover the whole grid beyond the object
and are actually truncated by the finite size of the image grid.
In reality, the issue is the same on both images, but with a
different intensity.
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B. Undersampling

The general formula in Eq. (1) does not lead to equivalent
results for any image f because the computation of the Hilbert
transform is sensitive to truncation. When using K > 1,
it is always possible to define filtering directions α⊥k such
that the Hilbert transform Hαk is applied to non-truncated
signals if the original projections are not truncated. For the
case K = 1, this is not true anymore, but if one assumes
that the result of the Hilbert transform has a finite support,
then the truncated Hilbert transform can be applied [4]. Since,
as already mentioned, the reconstruction of an image from
a finite set of projections has an infinite support, DBP-HT-1
cannot be computed. In practice, there exists a large enough
number of projections such that the sampling artifacts can be
neglected and the support considered finite. In the case of
significant under-sampling (N � M ), the sampling artifacts
are significant over the whole reconstruction grid and beyond.
However, one solution lies in Fig. 3 itself: there exists a coarser
reconstruction grid of sampling M ′ ≈ N , or equivalently,
there exists a low-pass version of the DBP that can be used
to reconstruct a low-pass version of f .

IV. SIMULATIONS

A diagnostic CT slice of a brain (Fig. 1a) was forward-
projected to simulate 720 noise-free parallel-beam projections
of 576 bins, sampling uniformly [0, π]. Truncated data pT

consist of the 720 projections with a centered digital truncation
corresponding to a centered, circular 2D region-of-interest Ω
of diameter 256 pixels. Full-FOV projections pF,s consist of
NF samples of the 720 original projections, again uniformly
distributed over [0, π]. We write NF = 720/s, where s is
the down-sampling factor; we used s = 2q with q integer
varying from 0 (s = 1) to 7 (s = 128). The images are
sampled on a 512×512 square grid. In order to use DBP-HT-
1, the DBP of each sinogram is computed, that of pF,s being
further filtered by 2D Gaussian filtering parameterized by its
standard deviation σ, that is varied from 0 (no smoothing) to
40 pixels by steps of 5 pixels. The DBP are merged using the
weighting function of Eq. (2) with ∆r = 15 pixels. All Hilbert
transforms are computed as proposed in [5]. The image quality
was assessed by the mean relative error (MRE) between each
reconstructed image fσ,s with respect to the reference image
fref = f0,1, computed over Ω, as:

MREσ,s =
1

Card(Ω)

∑
x∈Ω

|fσ,s(x)− fref(x)|
|fref(x)|

. (3)

V. RESULTS

The mean relative errors are shown in Fig. 4. For each
value of s, the optimal smoothing parameter σ∗ achieving the
minimum MRE is indicated with a green dot. These values are
also recalled in Table I. Although for NF ≥ 90 (s ≤ 16) the
minimum MRE values seem to follow a smooth curve on the
plane (σ, s), they are significantly higher and towards much
higher σ values when NF drops to as few as 22 (s ≥ 32).
This shows that filtering is not sufficient when s is too high.
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Fig. 4: MRE inside the ROI as a function of angular sampling
and of the Gaussian smoothing filter.

s NF σ∗ MREσ∗,s (%)

1 720 0 0.00
2 360 0 8 · 10−3

4 180 1 0.04
8 90 3 0.10
16 45 6 0.30
32 22 31 1.10
64 11 27 1.11

128 5 30 3.72

Table I: Optimal smoothing parameter σ and corresponding
MRE for each angular subsampling ratio s.

Reconstructed images with the optimal values σ∗ according
to the MRE criterion are shown in Fig. 5, that compares recon-
struction f0,s, that is, without Gaussian smoothing, to fσ∗,s.
For all values of s > 2, the absence of Gaussian smoothing
resulted in reconstructed ROI suffering from horizontal streaks
due to the invalid inversion of the Hilbert transform, even with
90 full-FOV projections. For s < 32, the optimal smoothing
strongly reduced the impact of horizontal streaks in the ROI,
resulting in values of the MRE of 0.30% for s = 16 (Fig. 5e)
and 0.10% for s = 8 (Fig. 5f). For s = 32 (Fig. 5d), the
strong Gaussian smoothing is shown to reduce the effect of
the horizontal streaks, but the reconstructed image suffers from
residual low-frequency non-uniformities. For higher values of
s this issue worsened (images not shown).

VI. DISCUSSION

In this study, we introduced a general formula for DBP-
based reconstruction in parallel-beam geometry and applied
it to solve the interior problem with a few extra full-FOV
projections. This led us to investigate the case of reconstruct-
ing vastly angularly subsampled acquisitions with DBP-HT-1.
Our study shows that because the key requirement of a finite
support is not met, this algorithm cannot be used “as is”. An
alternative two-pass method (DBP-HT-2) does not suffer from
this issue. However, we showed that subsampling could be
mitigated by Gaussian smoothing of the areas outside the ROI.
This is important because DBP-HT-1 is the only algorithm
covered by our formula that allows for DBP extrapolation
when reconstructing a single line, whereas DBP-HT-2 is
applicable to reconstructing the full ROI only.

The fifth international conference on image formation in X-ray computed tomography 287



(a) σ = 0, s = 32 (NF = 22) (b) σ = 0, s = 16 (NF = 45) (c) σ = 0, s = 8 (NF = 90)

(d) σ = 31, s = 32 (NF = 22) (e) σ = 6, s = 16 (NF = 45) (f) σ = 3, s = 8 (NF = 90)

Fig. 5: Dual-rotation reconstruction with DBP extrapolation, K = 1, no smoothing (top) and optimal smoothing (bottom) of
the full-FOV projections. Window width: 50 HU.

APPENDIX
PROOF OF EQ. (1)

Let θ ∈ [0, π] and bθ = Bθ [p′θ]. Let x ∈ R2, and α ∈ [0, π]
such that θ ·α 6= 0. We write:

bθ(x) = p′θ(x · θ⊥) = p′θ
(
A(x ·α⊥) +B

)
, (4)

where A = θ · α 6= 0 and B = (−x · α)θ · α⊥. The Fourier
transform of AA,B [p′θ] : u 7→ p′θ(Au + B) is related to the
Fourier transform of p′θ through:

F [AA,B [p′θ]] (ρ) =
1

|A|
F [p′θ]

( ρ
A

)
e2iπ ρAB . (5)

Hence, applying Hα to bθ is equivalent to multiplying the
right-hand side of Eq. (5) by −i sgn(ρ) = −i sgn(A) sgn

(
ρ
A

)
,

prior to taking the inverse Fourier transform:

Hα [bθ] (x) =

1

A

+∞∫
−∞

−i sgn
( ρ
A

)
F [p′θ]

( ρ
A

)
e2iπ ρA (Ax·α⊥+B)dρ.

(6)

Taking the change of variables ρ′ = ρ
A yields:

Hα [bθ] (x) =

sgn(A)

+∞∫
−∞

−i sgn (ρ′)F [p′θ] (ρ′) e2iπρ′(Ax·α⊥+B)dρ′.
(7)

The right-hand side of Eq. (7) is equal to sgn(A)BθH [p′θ]. In
other words:

HαBθ [sgn(θ ·α) · p′θ] = BθH [p′θ] . (8)

If Θk = {θk,1, · · · , θk,Card(Θk)} is a partition subset of Θ,
where θk,1 < · · · < θk,Card(Θk), we can choose a common
admissible angle α such that α · θ 6= 0 and Eq. (8) holds for
all θ ∈ Θk. We denote αk this common value, so that:

HαkBΘk

[
σαkΘk
⊗ p′Θk

]
=
∑
θ∈Θk

BθH [p′θ] . (9)

Summing the contributions of all the partition subsets yields:
K∑
k=1

HαkBΘk

[
σαkΘk
⊗ p′Θk

]
=
∑
θ∈Θ

BθH [p′θ] , (10)

which concludes the proof.
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Image Reconstruction with Two Native Focal Spots
for z-Flying Focal Spot Tomography

Hongbin Guo

Abstract—z-flying focal spot technique is well-accepted for
modern CT industry, which can increase the image slice sensitive
profile (SSP) and reduce helical windmill artifacts. However it
works only for limited FOV. This paper propose a new algorithm
to get over this limitation by using the native two focal spots
to perform the image reconstruction instead of combining the
two sets of data. Thus the used geometry is valid everywhere
in contrast to limit FOV. The algorithm has been validated with
offset zFFS scans, for which the object is far from the iso center.

Index Terms—z-Flying Focal Spot, Computer Tomography,
Image reconstruction.

I. INTRODUCTION

In X-ray computed tomography (CT) imaging systems, the
x-ray tube generates high speed electrons from the filament
negative cathode. These electrons fly toward the positive target
anode, in which the energy of the electrons are converted to
X-rays. In conventional CT scanners, the X-ray emits from
one focal spot on the anode plate. For multi-row scanners, to
increase the resolution and reduce or remove under-sampling
related image artifacts the so-called “Flying focal spot(FFS)”,
i.e. the focal spot is periodically moved among certain given
positions, can be employed. The in-plane focal spot motion,
βFFS [1], can increase resolution of transverse planes while
the motion in z-direction, zFFS, can increase axial resolution,
[2], [3], [4]. This study focuses on the zFFS.

In regular single focal spot cone beam (CB) system, the
sampling interval in z-direction is the same as detector height
of each row. The practical detector height is restrained by
production technology and cost. This physical limit may cause
windmill of the helical scans when we scan high contrast
region, [5]. zFFS strategy can increase the sampling rate in
z-direction, thus it not only can boost the z-resolution but also
reduce helical windmill artifacts, [2], [3].

The zFFS strategy has been proposed for about one decade,
the CT scanner venders have produced products to implement
the focal spot wobbling idea. To the best of our knowledge, the
current image reconstruction methods for zFFS scanning treat
the detector readings from the alternating two focal spots as
interleave sampling, i.e. group the two sets of data to one set
by interleaving the rows of each consecutive (odd and even)
reading pair to build one sinogram with double number of
rows. Then the combined data is used for image reconstruction
by regular single focal spot geometry, either use native fan
geometry or rebin the data to parallel geometry, [2], [3], [6].
This type of reconstruction method has two limitations:

The author is affiliated with FMI Medical Systems, Inc. Solon, OH 44139,
USA. Communication email address: Hongbin.Guo@fmimaging.com

1) Small FOV: rebuilding the data sets by interleaving
assumes that the rays from two focal spot are stacked
alternatively in z-direction, which is true for limited
FOV. Apparently this assumption does not hold for the
voxels close to focal spots. In fact, the assumption only
hold for FOV at bout 200 mm for most commercial
scanners. This limitation can be seen clearly from Figure
2.

2) Inaccuracy: Not only for voxels out of the limited FOV
the interleaved data may cause mistakes, for voxels
within the limited FOV the interleave strategy also may
introduce inaccuracy since the “perfect” equal spaced z-
interleave for the combined data only happens at z-axis,
the far the voxel from the z-axis the worse the violation
of the equal space assumption.

In this study, we propose to use the native two focal spots to
perform the image reconstruction without combine the two sets
of data but keep the original focal spot geometry. By doing so
we use the exact native geometry of each rays, thus the object
to be reconstructed can include voxels beyond the limited FOV
and the reconstructed images will be more accurate. The rest
of the paper is organization as follows. In Section II we detail
our algorithm step by step. The proposed algorithm is validated
by physical head phantom scanning data with offset in Section
III. Conclusions are presented in Section IV.

II. METHODS

A. Geometry description

This subsection will describe the zFFS geometry. X-ray tube
is illustrated in Figure 1, where the high energy electrons are
emitted from the cathode and ”bent” by an electric field toward
the focal spot. In normal single focal spot case, the electronics
hit the target at f0 while zFFS has two focal spots f1 and f2
on the anode. In zFFS data collection procedure, the electrons
bomb f1 and f2 alternatively while the tube rotate about the
iso of the scanner. The f1 and f2 are away from the virtual
focal spot f0 by ±∆R in y-direction and ±∆Z in z-direction.
If f0 has coordinate (−R, 0) in YZ plane then f1 and f2 are
located at

f1 : (−R1,∆Z),

f2 : (−R2,−∆Z),

here

R1 = R+ ∆R,

R2 = R−∆R.
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Figure 2 plots all rays from focal spots f1 and f2 to one
detector pilar, i.e. one channel and all rows. When plotting
the figure the geometry of the Minfound Scinticare 64 row
scanner is used, which has 64 row detectors each having height
Tdet = 0.625mm along z-axis, thus the z-coverage at z-axis
is 40mm, and cone angle about ±2o. The focal to detector
distance, SF2D, and the iso to detector distance, SI2D, are
950.42mm and 392.42mm respectively.

Let βi be the tube position angle and γj the fan angle of
rays from f0 to detectors. The βi are usually equal spaced so
do the γj since the detector arc has f0 as its circular center.
However, for zFFS the fan angle distributions for focal spot
f1, γ(1)j , and focal spot f2, γ(2)j , are not equal spaced since
neither f1 nor f2 is the circular center of the detector arc.

From Figure 2, it is clear that

1) The interleave property of the two set 64 rays is only
true for the points beyond the red curve, at which the
two set rays cross each other. This is the reason that
current zFFS reconstruction limits its FOV.

2) The interleaved rays are not equal spaced at z-direction.
They are close to equal spaced around z-axis and crossed
at the red curve and the detector plane.

3) When the image points close to the focal spots the
interleave property is severely violated.

To create nearly equal spaced rays along z-axis we need to
control the focal spot positions by grid potential such that

∆Z =
Tdet

4
· SF2D

SI2D
.

Since the anode surface has the tilde angle φ, usually 7− 9o,
then

∆R = ∆Z · arctan(φ).

Fig. 1: X-ray tube and z-flying focal spot. For normal scan,
electrons fly from the cathode towards the anode focal spot and
X-rays are generated at the focal spot f0. In z-flying focal spot
scan electrons are controlled to hit two targets f1 and f2 at
anode alternatively.

B. Rebinning Algorithm

The native focal spot based CB reconstruction is presented
with an analytical type reconstruction algorithm, specifically
FDK (Feldkamp - Davis - Kress) type algorithms. To simplify
the problem we focus on circular cone beam (CCB) case
only. In our algorithm we first perform fan beam to parallel
beam rebinning for each focal spot separately. However, the
azimuthal rebinning formula,

θ = β + γ

for ideal focal spot f0 does not hold for zFFS since the focal
spots in zFFS scanning are not the center of the detector arc.
Thus to perform rebinning we need to map the rays from
deflected source, SA in Figure 3 for example, to rays emitted
from ideal source circle with associated source position angles
and fan angles. Figure 3 illustrates the relationship of this
mapping for focal spot f1. The angles are related with the
following formula

β = β0 + ε, and γ = γ0 − ε, for focal spotf1,
β = β0 − ε, and γ = γ0 + ε, for focal spotf2.

Here β0 and γ0 are angles associated with ideal focal spot S0.
The adjustment angle ε is determined by using the “law of
sines”,

ε = π − γ − arcsin

(
R1 · sin(γ)

R

)
, for focal spotf1,

ε = γ − arcsin

(
R2 · sin(γ)

R

)
, for focal spotf2.

The radial rebinning is the same as normal focal spot data
rebinning. Just need to pay more attention to the accurate
fan angle, γ

(1)
j and γ

(2)
j , calculation before using t1 =

R1 sin(γ
(1)
j ) and t2 = R2 sin(γ

(2)
j ) since the fan angles are

not equal spaced.
Finally, the target parallel angels and channels of rebinning

two data sets should be the same (t, θ) so that the interpolation
over the complete parallel data can be performed easily and
accurately in backprojection step.

C. The reconstruction Algorithm

We present our the complete FDK type zFFS reconstruction
algorithm for CCB data in Algorithm 1, the backprojection
section, which is the core content of the proposed algorithm,
is listed independently in Algorithm 2. The data sorting step
1c in Algorithm 2, i.e. row order associated with the two
focal, may vary for voxels from different region. For voxels
far from the sources at the given projection angle we will
have the interleave order as used in conventional zFFS data
merge strategy, however this is not the case for voxels close
to sources, see Figure 2.

III. EXPERIMENTS AND RESULTS

The zFFS effects on SSP enhancement and helical windmill
artifacts reduction for limited FOV have already be validated
in literatures,[3], [4], we will focus on the feasibility of zFFS
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Fig. 2: The Rays emit from two focal spots and arrive to the same detector row pilar. The true geometry of the Minfound
Scinticare 64 row scanner is used to plot these rays. The rays from focal spots f1 and f2 are interleaved for limited region:
the portion beyond the red curve.

Fig. 3: The angle relationship for z-flying focal spot f1 and
the corresponding “ideal” focal spot f0. β0 and γ0 are angles
associated with ideal focal spot S0, and β and γ are angles
associated with focal spot S, i.e. f1.

Algorithm 1 Reconstruction for zFFS CCB data by weighted
rebinning FDK Algorithm.

1: Rebinning the zFFS CCB projection data p1(γ1, v1, β1)
and p2(γ2, v2, β2) from fan geometry to cone parallel
geometry with the same target channel/angle (t, θ) for
each row v to produce p1(t, v1, θ) and p2(t, v2, θ).

2: Filtering the rebinned projection by kernel h(t) .
3: Applying cosine weight to obtain q1(t, v1, θ) and
q2(t, v2, θ).

4: Performing weighted backprojection, Algorithm 2, to re-
construct the image volume.

reconstruction for large FOV or objects away from iso center
by using the proposed zFFS reconstruction algorithm. Exper-
imental data is obtained with the geometry of the Minfound
Scinticare 64 row scanner, which has 64 row detectors each
having height 0.625mm along z-axis, thus the z-coverage at
z-axis is 40mm, and 840 channels at x-axis direction with arc
angle 54.4o. The scanner has maximum FOV 500mm, cone
angle about ±2o. Experimental scans are set with protocol:
SAS, 120 kVp, 200mA and 1440 projections per rotation at
a speed 1 second per rotation. 720 projections for two zFFS
focal spots respectively.

Head phantom was scanned by CCB protocol with 100 mm
shift from iso-center and the zFFS CCB data is reconstructed
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4

Algorithm 2 Weighted backprojection for zFFS CCB data.
q1(t, v1, θ) and q2(t, v2, θ) are the parallel filtered projec-
tion data for two focal spots. Pseud-code of the weighted
backprojection for every voxel x is listed below:

• For views θk ∈ [0, π), k = 1, 2, · · · ,K
1) For half turns m = 0, 1

a) For the given voxel x determine the channel
position tx

b) Apply interpolation for rows of the two paral-
lel data sets, close to the pixel x, to generate
q1(tx, v1, θk) and q2(tx, v2, θk).

c) Build a single z-pilar vector by sorting the two
parallel ray sets according to their z-coordinates
of the intersection points with vertical line
x =x(1), y= x(2).

d) Perform z-interpolation at z = x(3) to obtain
q(tx, z, θk)

e) Compute weight accordingly.
2) Normalize weights over half turns.
3) f(x) = f(x) +

∑1
m=0 w(m, k, x) ∗ q(tx, z, θk),

where w(0, k, x) + w(1, k, x) = 1.
• End For views

with FOV 350mm with 100mm reconstruction center shift cor-
respondingly. The total number of slices of the reconstructed
images is 128 slices with separation 0.3125mm. The sinogram
and reconstructed image are not processed with complete
calibration/correction, e.g. no bone beam hardening correction.
The focus of the experiment is the feasibility of the Algorithm
1 for large FOV reconstruction. The slice 104 is presented in
Figure 4 with window WL 40HU and WW 300HU. Since
we lower the patient table 100mm down before scanning the
phantom, the bottom part is close to the sources when the
tube spin to the range around 6 o’clock. In other words, the
bottom part is out of the FOV “limitation” for the conventional
zFFS reconstruction algorithm. The image is reconstructed by
Algorithm 1 does not show strong artifacts at its bottom region
where the pixels are close to the source.

IV. CONCLUSION

We proposed a new reconstruction algorithm for zFFS CCB
scans. The proposed algorithm use the native two focal spots
to perform the image reconstruction instead of combining
the two sets of data. By doing so we use the exact native
geometry of each rays, thus the object to be reconstructed
can include voxels beyond the limited FOV. The algorithm
has been validated with offset zFFS scan of a physical head
phantom. The image reconstructed by Algorithm 1 does not
show artifacts due to data misplacement for large FOV. This
suggest that the proposed algorithm has overcome the FOV
limitation for zFFS scans.
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Analytical Statistical Reconstruction Algorithm with
the Direct Use of Projections Performed in Spiral

Cone-beam Scanners
Robert Cierniak

Abstract—This paper is concerned with the originally formu-
lated 3D statistical model-based iterative reconstruction algo-
rithm for spiral cone-beam x-ray tomography. The conception
proposed here is based on a formulation of the reconstruction
problem as a shift invariant system. This algorithm significantly
improves the quality of the subsequently reconstructed images, so
allowing a decrease in the x-ray dose absorbed by a patient. The
analytical roots of the algorithm proposed here permit a decrease
in the complexity of the reconstruction problem in comparison
with other model- based iterative approaches. In this paper, we
proved that this statistical approach, originally formulated for
parallel beam geometry, can be adapted for helical cone-beam
geometry of scanner, with the direct use of projections. Com-
puter simulations have shown that the reconstruction algorithm
presented here outperforms conventional analytical methods with
regard to the image quality obtained.

I. INTRODUCTION

Nowadays, the most significant problem in medical com-
puter tomography is the development of image reconstruction
algorithms from projections which would enable the reduc-
tion of the impact of measurement noise on the quality of
tomography images. This kind of approach is intended to
improve image quality and, in consequence, reduce the dose
of X-ray radiation while at the same time preserving an
appropriate level of quality in the tomography images. The
concept has found its application in the form of statistical
reconstruction algorithms. One of the most interesting from
the scietific and practical point of view, an approach, called
MBIR (Model-Based Iterative Reconstruction), is presented
in publications like [1], where a probabilistic model of the
measurement signals is described analytically. The objective in
those solutions was devised according to an algebraic scheme
of the signal processing for formulating the reconstruction
problem [2]. An algebraic scheme has been selected in this
case for one very obvious reason - the measurement noise
can be modelled relatively easily, because each measurement
is considered separately. Such a scheme adds significant
calculative complexity to the problem. The time for image
reconstruction becomes difficut from the practical point of
view. For instance, if the image resolution is assumed to be I×I
pixels, the complexity of the algebraic problem is of the level
of I×I×number of measurements×number of cross−
sections (in 3D tomography); a multiple of I to the power of
four in total.

Corresponding author: Robert Cierniak, Institute of Computational Intel-
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The difficulties mentioned above connected with the use
of an algebraic methodology can be decreased by using
an analytical strategy of reconstructed image processing. In
previous papers we have shown how to formulate the analytical
reconstruction problem consistent with the ML methodology
for parallel scanner geometry [4]. This strategy has been used
for fan-beams [3], and finally for the spiral cone-beam scanner
[5]. However, an approach to the reformulation of the recon-
struction problem from parallel to real scanner geometries,
called rebinning, was applied there. Much more popular 3D
reconstruction methods, which are implemented in practice,
are FDK (Feldkamp)-type algorithms that use projections
obtained from spiral cone-beam scanners directly (see e.g.
[6]). In this paper, we present a mathematical derivation of
a method for the direct (i.e. without rebinning) adaptation
of spiral cone-beam projections to the statistical analytical
reconstruction algorithm originally formulated by us.

II. ADAPTATION OF THE 2D ANALYTICAL APPROXIMATE
RECONSTRUCTION PROBLEM TO SPIRAL CONE-BEAM

PROJECTIONS

A foundation for our conception of the model-based in-
terative statistical algorithm is the 2D analytical approximate
reconstruction problem which was originally formulated for a
parallel scanner geometry [3] of scanner, as follows:

µmin = arg min
µ

n0

2

I∑
i=1

J∑
j=1

· (1)

·

∑
ī

∑
j̄

µ
(
xī, yj̄

)
· h∆i,∆j − µ̃ (xi, yj)

2
 ,

where coefficients h∆i,∆j are precaculated in the numerical
way according to the following relation:

h∆i,∆j = ∆α

Ψ−1∑
ψ=0

int (∆i cosψ∆α + ∆j sinψ∆α) , (2)

and µ̃ (i, j) is an image obtained by way of a back-projection
operation; int (∆s) is an interpolation function used in the
back-projection operation; every projection is carried out after
a rotation by ∆α.

Above presented shift-invariant system is much better con-
ditioned than quadratic form used in algebraic aproaches [7],
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and can be a starting point for the design of a 3D iterative re-
construction algorithm for spiral cone-beam scanner geometry.
One of the principal reconstruction methods devised for the
cone-beam spiral scanner is the generalized FDK algorithm.
In the traditional FDK approach, the cone-beam projections
are filtered and then back-projected in three dimensions. This
methodology is adapted to our original iterative model-based
reconstruction concept.

Taking into consideration the definition of the two-
dimensional inverse Fourier transform, and the frequential
form of the relation between the original image of a cross-
section of an examined object represented by function µ (x, y)
and the image obtained after the back-projection operation
µ̃ (x, y), we obtain:

µ̃ (x, y) =

∞∫
−∞

∞∫
−∞

1

|f |
M (f1, f2) ej2π(f1x+f2y)df1df2, (3)

which, after converting to polar coordinates and using the
projection slice theorem (taking into account a full revolution
of the projection system), takes the form:

µ̃ (x, y) =
1

2

π∫
−π

∞∫
−∞

P̄ (f, αp) ej2πf(x cosαp+y sinαp)dfdαp.

(4)
Then, after transferring the projections into the spatial domain,
and arranging the right hand side of the formula and changing
the order of integration, we getwe have the formula:

µ̃ (x, y) =
1

2

∞∫
−∞

∞∫
−∞

π∫
−π

p̄p (s, αp) ej2πf(x cosαp+y sinαp−s)dαpdsdf,

(5)
where p̄p (s, αp) are projections obtained in a hypothetical
parallel scanner (after interpolation).

Next, after converting the attenuation function into polar
coordinates, we obtain:

µ̃ (r cosφ, r sinφ) = (6)

1

2

∞∫
−∞

∞∫
−∞

π∫
−π

p̄p (s, αp) ej2πf [r cos(αp−φ)−s]dαpdsdf.

In our considerations, we should also take into account the
application of the interpolation function used during the back-
projection operation, which should be placed appropriately
(a frequency representation of this function) in the formula
above, as follows:

µ̆ (x, y) =
1

2

∞∫
−∞

∞∫
−∞

π∫
−π

(7)

INT (f) pp (s, αp) ej2πf [r cos(αp−φ)−s]dαpdsdf.

After suitable transformation we obtain a relationship for the
fan-beam image reconstruction method:

µ̆ (x, y) =
Rf

2

2π∫
0

βm∫
−βm

pf
(
β, αf

)
(8)

cosβ

u̇2

∞∫
−∞

INT (f) ej2πfu̇ sin(β̇−β)dfdβdαf ,

where pf
(
β, αf

)
are projections obtained in a hypothetical

fan-beam scanner, and

u̇ =
(
x cosαf + y sinαf

)2
+
(
Rf + x sinαf − y cosαf

)2
.

(9)
There is a several serious drawbacks associated with the use
of the fan-beam reconstruction method formulated like this. It
stems from the dependence of equation (9) on the parameter
u̇, which poses certain practical problems when carrying out
the calculations during the reconstruction process. Instead of
a simple formula for the convolution kernel, it now becomes
necessary to determine a different form of the kernel for every
point of the object’s cross-section. This is because u̇ represents
the distance of the point (r, φ) from the radiation source.
Therefore, by changing the angle αf , we also change u̇. The
appropriate adjustment is based on a term in equation (9),
which is reproduced here in a suitably amended form:

int (s) =

∞∫
−∞

INT (f) ej2πfu̇ sin(β̇−β)df. (10)

In this equation, the integration is carried out with respect to
the frequency f . The next step will be to make a substitution
for f , using the following expression:

ff =
f · u̇ · sinβ

Rf · β
. (11)

If at the same time we change the limits of integration, the
convolving function will be modified to:

intf (β) =
Rf · β
u̇ · sinβ

∞∫
−∞

INT

(
ff · f0

ff0

)
ej2πf

fRfβdff ,

(12)
where

ff0 =
f0 · u̇ · sinβ

Rf · β
. (13)

Unfortunately, even here we encounter problems caused by the
dependence of the cut-off frequency ff0 on the parameter u̇.
On the other hand, if we were to establish a constant value
for ff0 it would mean that the reconstruction process for the
point (r, φ) would have a different resolution (determined by
the value of the cut-off frequency f0) for every angle αf .
However, if we put aside the assumption of uniform resolution
for the resulting reconstructed image, then, by manipulating
the values u̇ and f0, the varying value of ff0 can be fixed as:
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ff0 = ff0 =
1

Rf ·∆β
. (14)

Let us assume that we apply a linear interpolation function
in formula (8). The frequency form of the linear interpolation
function is given by this formula:

INTL (f) =
sin2 (πf∆s)

(πf∆s)
2 . (15)

Taking into account in the formula (12) the proposed interpo-
lation function given by (15), we obtain the following relation:

intfL (β) =
Rf · β
u̇ · sinβ

{
1

∆′
s

(
1− Rf |β|

∆′
s

)
for |β| ≤ ∆′s

0 for |β| ≥ ∆′s
,

(16)
where ∆′s = f0/f

f
0 , and next, bearing in mind relations (14),

it leads immediately to:

intfL (β) =
β

u̇ · sinβ

{
∆s

∆β

(
1− ∆s|β|

∆β

)
for |β| ≤ ∆β

∆s

0 for |β| ≥ ∆β

∆s

.

(17)
Finally, if we assume that ∆s = 1, it gives

intfL (β) =
β

u̇ · sinβ
intL (β) , (18)

where

intL (β) =

{
1

∆β

(
1− |β|∆β

)
for |β| ≤ ∆β

0 for |β| ≥ ∆β

. (19)

In consequence, returning to the formula (9), we obtain

µ̆ (x, y) =
1

2

2π∫
0

βm∫
−βm

(20)

pf
(
β, αf

) Rf cosβ

2u̇

∆β

sin ∆β
intL (∆β) dβdαf .

Fortunately, we can linearize relation (21) by considering
expressions inside the integration, namely ∆β

sin ∆β .
In the case of linear interpolation we use only line of

integrals from the neighborhood of a given pixel (x, y),
then ∆β ≤ ∆β , and sin ∆β u ∆β. Additionally, it is
possible to omit the term Rf cos β

2u̇ taking into account the
fact that each projection value pf

(
β, αf

)
has its equivalent

pf
(
−β, αf + π + 2β

)
, as shown in Figure 1.

Because of this we can notice that the sum of this pair of
projections is proportional to u̇1+u̇2

4u̇1
+ u̇1+u̇2

4u̇2
= (u̇1+u̇2)2

4u̇1u̇2
. This

means that for u̇1 u u̇2 this factor is equal to 1, and finally,
we can write

µ̆ (x, y) u
1

2

2π∫
0

βm∫
−βm

pf
(
β, αf

)
intL (∆β) dβdαf , (21)

which is consistent with a form of the formula of the back-
projection operation for parallel beams.

Fig. 1. Selecting complementary projection values

Moreover, if we assume that rays, i.e. integral lines defining
pf
(
β, αf

)
, from the hypothetical fan-beam geometry pass

through almost the same tissues as rays from cone-beam
geometry (ph

(
β, αh, zk

)
), the projection values associated

with these rays will be related to the corresponding path
lengths through the tissues. Because of this, we can derive
the correction factor by using the following relation:

pf
(
β, αf

)
= ph

(
β, αh, zk

)
CORR = ph

(
β, αh, zk

) Rfd√
R2
fd + z2

k

,

(22)
where Rfd is the source-to-detector distance; zk is the trans-
verse position on the screen where a given ray is detected.

The geometry of this method of determining the correction
factor is shown in Figure 2.

Fig. 2. The geometry of the cosine correction factor

Finally, formula (21) can be used directly to obtain a refer-
ence image for the analytical statistical iterative reconstruction
algorithm presented by the formula (2), which was originally
formulated for parallel beam scanner geometry, as follows
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µ̆ (x, y) u
1

2

2π∫
0

βm∫
−βm

CORR·ph
(
β, αh, zk

)
intL (∆β) dβdαf .

(23)

III. EXPERIMENTAL RESULTS

In our computer simulations, we have used projections
obtained from a helical scanner Somatom Definition AS+
(Siemens Healthcare), with the following parematers: refer-
ence tube potentia 120kVp and quality reference effective
200mAs, Rfd = 1085.6mm (SDD - Source-to-Detector
Distance); Rf = 595mm (SOD - Source-to-AOR Distance);
number of views per rotation Ψ = 1152; number of pixels in
detector panel 736; detector dimensions 1.09mm × 1.28mm.
During the experiments, the size of the processed image was
fixed at 512 × 512 pixels. The matrix of the coefficients
h∆i,∆j were precomputed before the reconstruction process
was started, and these coefficients were fixed for the subse-
quent processing. The image obtained after back-projection
operation was then subjected to a process of reconstruction
(optimization) using an iterative procedure. The starting point
of this procedure was choosen as a result of using a reconstruc-
tion FBP algorithm. It is worth noting that our reconstruction
procedure was performed without any regularization regarding
the objective function described by (2).

View of the reconstructed images after 30000 iterations are
presented (Table 3(a). For comparison, the image reconstructed
by a standard FBP reconstruction method (Table 3(b)) is also
presented.

IV. CONCLUSION

We have shown in this paper fully feasible statistical recon-
struction algorithm for helical cone-beam scanner. It is proved
that this statistical approach, originally formulated for parallel
beam geometry, can be adapted for heica cone-beam geometry,
without any filtration and any rebinning. Simulations have
been conducted, which prove that our reconstruction method
can be very fast (first of all thanks to the use of FFT algo-
rithms) and gives satisfactory results with suppressed noise,
without introducing any additional regularization term, using
only an early stopping regularization strategy.

V. ACKNOWLEDGMENTS

This work was partly supported by The National Centre
for Research and Development in Poland (Research Project
POIR.01.01.01-00-0463/17).

REFERENCES

[1] Bouman, C., Sauer, K., A unified approach to statistical tomography using
coordinate descent optimization, IEEE Tran. Image Processing, vol. 5, pp.
480–492, 1996.

[2] Thibault, J. -B., Sauer, K., Bouman, C., Hsieh, J., A three-dimensional
statistical approach to improved image quality for multislice helical CT,
Medical Physics, vol. 34, No. 11, pp. 4526–4544, 2007.

[3] Cierniak, R., An analytical iterative statistical algorithm for image recon-
struction from projections, Applied Mathematics and Computer Science,
vol. 24, pp. 7–17, 2014.

(a)

(b)

Fig. 3. View of the images reconstructed image using the standard FBP
(a); reconstructed image using the method described in this paper after 30000
iterations (b) (C = 45, W = 600)

[4] Cierniak, R., New neural network algorithm for image reconstruction from
fan-beam projections, Neurocomputing, vol. 72, pp. 3238–3244, 2009.

[5] Cierniak, R., A three-dimensional neural network based approach to
the image reconstruction from projections problem, in: Rutkowski, L.,
Tadeusiewicz, R., Zadeh, L.A., urada, J. (eds.) LNCS, vol. 6113, pp.
505–514. Springer, Heidelberg, 2010.

[6] Cierniak, R., Knas, M., An analytical statistical approach to the 3D
reconstruction problem, in Proc. of the 12th International Meeting on
Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear
Medicine, pp. 521–524, July 2013.

[7] Cierniak, R., Lorent, A., Comparison of algebraic and analytical ap-
proaches to the formulation of the statistical model-based reconstruction
problem for x-ray computed tomography, Computerized Medical Imaging
and Graphics, vol. 52, pp. 19–27, 2016.

296 The fifth international conference on image formation in X-ray computed tomography



 
Abstract—The established superiority of iterative 

reconstruction techniques in preclinical and clinical x-ray CT 
is heavily under-utilized in routine imaging applications. The 
primary reason for this disparity is the substantial increase in 
data processing time inherent with iterative reconstruction 
methods. This problem is further exacerbated in multi-channel 
CT reconstruction problems (e.g. cardiac CT, spectral CT) 
where the gap between the amount and fidelity of the data 
acquired and the amount of data to be reconstructed is often 
exaggerated. To routinely reap benefits such as reduced 
radiation dose and relaxed sampling constraints in these 
advanced applications, efficient, scalable, and high-fidelity CT 
reconstruction tools are required. We report on matched, 
distance-driven projection and backprojection operators 
optimized for memory-efficient, parallel execution on multiple 
Nvidia GPUs. The 3D operators support several customizable 
features, including projection filtration, affine registration, 
arbitrary source trajectories for both flat-panel and 
cylindrical x-ray detectors, volumetric masking, and 
projection weighting. These operators are part of a new CT 
reconstruction toolkit which includes a MATLAB mex 
interface for rapid prototyping, GPU-based implementations 
of several popular regularization algorithms (bilateral 
filtration, sparse dictionary coding, patch-based SVT), and 
dozens of support functions for pipelining CT data processing 
operations. We are currently finalizing this toolkit for open-
source distribution, with plans to add a python interface for 
interoperability with popular machine learning packages. 

I. INTRODUCTION 

-ray CT is a vital tool for numerous imaging 
applications in the areas of medical diagnosis, non-

destructive testing, and basic science research. Generally, 
these applications rely on analytical reconstruction 
techniques which provide sufficient reconstruction quality 
when x-ray exposure and geometric constraints are 
satisfied. Within the scope of clinical imaging, however, 
there is strong motivation to reduce the radiation dose 
associated with imaging due to the potential dangers 
associated with radiation exposure. These concerns are 
amplified when considering advanced CT imaging 
applications such as dual energy CT and cine cardiac CT. 
Similar concerns exist for in vivo, preclinical imaging 
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applications, particularly in longitudinal studies involving 
radio-sensitive organs and/or radiation therapy, where 
imaging dose may be considered a confounding variable. 
 To compensate for the loss of image quality commonly 
associated with low-dose CT scanning protocols, significant 
commercial and academic effort has been devoted to 
regularization strategies, including post-process denoising 
and iterative reconstruction. Historically, these 
regularization strategies have seen limited routine use 
because of their associated computational cost. More 
recently, however, the rise of low-cost, GPU-based 
scientific computing and of open-source code distribution 
has led to the availability of several high-quality CT 
reconstruction packages [1, 2]. Continued development of 
these packages and of GPU computing resources will 
undoubtedly increase the utilization of iterative CT 
reconstruction techniques as tools for dose reduction, scan 
time reduction, handling irregular scanning geometries, etc. 
 In this work, we introduce our own CT reconstruction 
tools. Unlike existing reconstruction packages, our tools 
have been developed to solve multi-channel CT 
reconstruction problems such as multi-energy photon-
counting CT [3], spectrally-resolved cardiac CT [4], and 4D 
myocardial perfusion [5] in small animal models. Unique 
challenges associated with these problems and with in vivo 
data acquired in preclinical model systems have motivated 
significant effort to reconstruction and regularization 
operators robust to high levels of projection undersampling, 
irregular angular sampling, and noise. Specifically, to 
handle ill-conditioned CT reconstruction problems we have 
adopted matched, distance-driven projection and 
backprojection operators [6] and the biconjugate gradient 
stabilized convex solver [7], which both exhibit a high 
degree of stability in solving regularized, iterative 
reconstruction problems. To combat the computation time 
associated with these operations, we have ported them and 
supporting regularizers to run on Nvidia GPUs using the 
CUDA API. In the remainder of this abstract, we detail how 
we combine these operators within the split Bregman 
framework to solve a wide variety of multi-channel CT 
reconstruction problems. 

II. METHODS 

A. CT Reconstruction Framework 

We pose the problem of multi-channel reconstruction as 
follows: 

Darin P. Clark and Cristian T. Badea 

GPU-Based Tools for Multi-Channel X-ray CT 
Reconstruction 

X 
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 X X … X , (1) 

 X argmin
X

∑ ‖RX ‖ λ‖X‖ , (2) 

 ‖RX ‖ RX RX . (3) 

X is a matrix of column-vectorized, reconstructed volumes 
for each of N  channels, indexed by  (eq. 1). Each channel 
of X is reconstructed subject to a channel-specific, weighted 
least-squares data fidelity term and one (or more) multi-
channel regularizers (eq. 2, “Reg”). The data fidelity term 
compares the projection of each channel, RX , (R , 
backprojection) with the vectorized projection data, . The 
array of least-squares weights, , weights the contribution 
of projections to the reconstruction of each channel (eq. 3). 
These channel-specific weights can by multiplied by 
additional line-integral specific weights to incorporate 
statistical weighting [8] and/or additional subset-specific 
weights to accelerate the convergence of reconstruction 
with ordered subsets [9]. 
 Returning to eq. 2, data fidelity is enforced subject to one 
or more multi-channel regularizers (“Reg”). Enforcing 
regularity between channels links the otherwise channel-
specific reconstruction sub-problems. Within the split 
Bregman framework (fig. 1, [10, 11]), multi-channel CT 
reconstruction problems of this form (eq. 2) can be solved 
efficiently when the following regularization subproblem 
can be solved efficiently: 

 D argmin
D

‖X V D‖ γ‖D‖ , (4) 

where the “F” subscript denotes the Frobenius norm 
(vectorized L2 norm). Additional derivation details using 
similar notation can be found in our previous work [12]. 
Convenient analytical solutions to eq. 4 (and closely related 
equations) exist when enforcing sparsity in a wavelet 
transform domain (“Reg”: L1 norm) or low column rank 
(“Reg”: nuclear norm) [11]. Regularizers such as bilateral 
filtration can also be shown to reduce the cost associated 
with eq. 4 (“Reg”: bilateral total variation, [13, 14]). 
Practically, even regularizers such as sparse dictionary 
coding [3, 15] and rank-sparse kernel regression [3], which 
solve less well-defined regularization sub-problems, can 
yield robust reconstruction algorithms. 
 Fig. 1 summarizes the split Bregman method with the 
add-residual-back strategy, including our own extensions to 
facilitate multi-channel CT reconstruction. Prior to iterative 
reconstruction, initialization is performed (steps 1-2). 
During step 1, an initial estimate is produced for the 
reconstruction of each channel by solving independent, 
weighted least-squares reconstruction problems. Producing 
these initial estimates with the same weights, , and with 
the same convex solver used during the iterative portion of 
the algorithm (step 5) speeds the algorithm’s convergence. 
Furthermore, this initialization procedure enables robust 
estimation of an appropriate regularization parameter for 
each channel,  (step 2). Specifically,  is computed from 
the data and scalar multipliers, , which take on predictable 
values ( ∈ 0.001 0.01 ). For spectral CT 

reconstruction,  can be further scaled to account for 
differential noise levels between spectral channels [3]. 

Following initialization, iterative reconstruction (steps 3-
5) proceeds with consecutive regularization (step 3), 
residual update (step 4), and data fidelity update (step 5) 
steps. Step 3 applies regularization to X V, yielding a 
regularized version of X, D (consistent with eq. 4; V is 
initialized with zeros). Regularization (Reg )) is performed 
subject to one or more hyperparameters (e.g. h) which 
control regularization strength, neighborhood size, sparsity 
level, etc. as appropriate for the employed regularization. 
Typically, the regularization parameters λ and γ are not 
explicitly defined (eqs. 2, 4), but rather the regularization 
strength is scaled based on empirical measurements taken 
from data (e.g. using the median absolute deviation to 
estimate the noise level, [3]). Combining this with our 
strategy for scaling the  regularization parameters (step 2) 
greatly facilitates parameter selection for multi-channel CT 
reconstruction problems. Following regularization, step 4 
updates the regularization residuals, V, which were removed 
from X V by the previous regularization step. 

Step 5 updates the reconstruction of each channel, X , 
subject to the data fidelity and a convex proxy for the 
regularization. Typically, we rely on the biconjugate 
gradient stabilized method (BiCGSTAB, [7]) or its L 
variant [16] to update X, as these methods demonstrate very 
reliable convergence across a range of regularization 
methods, projection weighting schemes, and parameter 
values within this framework. Notably, since step 5 updates 
each channel independently, it is possible to expedite multi-
channel reconstruction by updating multiple channels in 
parallel. Depending on the regularization used, the proposed 
framework can converge in as little as two to three 
iterations of steps 3-5. 

 
Fig. 1. Generalized, multi-channel CT reconstruction framework. Indexing 
channels by t, the method solves for a series of reconstructed volumes, X , 
subject to one (or more) multi-channel regularizers (“Reg”). During 
initialization, an initial estimate is produced for each channel by solving 
independent, weighted least-squares reconstruction problems (weights ; 
step 1). The regularization parameter for each channel, , is scaled based 
on the data and a vector of scalar multipliers, , which can account for 
differential noise levels between input channels (step 2). Iterative 
reconstruction (steps 3-5) then proceeds with consecutive regularization 
(step 3), residual update (step 4), and data fidelity update (step 5) steps. 
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B. Reconstruction Operators 

At the core of our implementation of the split Bregman 
method and our multi-channel CT reconstruction toolkit are 
matched, distance-driven projection and backprojection 
operators optimized for memory-efficient, parallel 
execution on one or more Nvidia GPUs. Specifically, our 
operators combine the flexibility of a linear projection 
matrix defined in homogenous coordinates [17], with the 
numerical accuracy and stability provided by Long et al.’s 
distance-driven, separable footprint operators (flat-panel 
detector, SF-TT; cylindrical detector, SF-TR) [6], and the 
computational speed provided by the latest Nvidia GPU 
hardware and the CUDA API. Both the projection and 
backprojection operators are voxel-centric, enhancing 
numerical stability, since the same weights are used for both 
operations, and facilitating localized reconstruction 
operations through volumetric masking. Combined with the 
use of the BiCGSTAB solver for algebraic reconstruction, 
these operators exhibit a high degree of numerical stability 
in solving difficult CT reconstruction problems. Given the 
computational expense associated with these methods, 
multi-GPU parallelization and ordered subsets are 
supported to enhance computational speed. 

In the current version of the toolkit, analytical and 
iterative reconstructions are performed from MATLAB 
scripts which call projection, backprojection, and 
regularization operators. These GPU-based operators, which 
are implemented using the C programming language and 
the CUDA runtime API, interface with MATLAB through 
MATLAB’s MEX interface. The modularity of these 
operators facilitates understanding of sample reconstruction 
code included in the toolkit, while also enabling rapid 
prototyping of new reconstruction algorithms. To minimize 
computational overhead associated with separate calls for 
each operation, geometric parameters and memory on the 
host system and GPU device(s) are allocated prior to 
reconstruction and are shared between the projection and 
backprojection operators. As described in detail in fig. 2, 
the memory buffers allocated on the GPU are smaller than 
the total problem size, allowing large reconstruction 
problems to be solved with a limited amount of available 
memory on each GPU. To combat the loss of computational 
efficiency associated with the use of memory buffers, each 
GPU executes code on two (or more) GPU streams. These 
streams overlap memory transfer and compute operations to 
hide most of the latency associated with memory transfer 
operations. 

C. Regularization Operators 

Currently, our reconstruction toolkit includes several 
GPU-based, multi-channel regularization operators which 
can be called from MATLAB for post-reconstruction 
denoising or for direct incorporation into the split Bregman 
framework (fig. 1, step 3). Most commonly, we perform 
piece-wise constant regularization with bilateral filtration 
(BF, [18]). Our implementation of BF intrinsically scales its 
regularization strength based on the noise level measured in 
the data and can be called to jointly filter an arbitrary 

number of spectral and/or temporal channels. Spectral 
regularization operations compute a single 3D smoothing 
(range) kernel from multiple spectral channels to robustly 
preserve edge features while removing noise in low contrast 
CT data. Temporal regularization operations expand the 
filtration neighborhood across several consecutive time 
points to enforce spatio-temporal gradient sparsity [12]. 
Most recently, we have presented a regularization strategy 
called rank-sparse kernel regression, which maximizes BF 
performance while greatly simplifying parameter selection 
for both temporal and spectral regularization problems [3]. 

In addition to BF, we have implemented sparse 
dictionary coding [19]. Our GPU-based implementation 
uses a learned dictionary to sparsely code vectorized, multi-
channel volume patches of variable size, performing image 
denoising subject to coefficient sparsity and error 
constraints. We have also implemented 3D patch-based 
singular value thresholding (pSVT, [20]), which enforces 
localized low rank constraints to enforce redundancy 
between reconstruction channels. Our implementation of 
pSVT supports non-convex thresholding parameters to 
more explicitly enforce low rank. Notably, while we have 
employed these regularization operators almost exclusively 
for CT reconstruction, we have had success in applying 
them to imaging data acquired with other modalities such as 
MRI. 

 
Fig. 2. Multi-GPU implementation of distance-driven backprojection (RT). 
(0) Prior to computation, an initialization procedure statically allocates 
pinned memory on the host ( : reconstructed volume; : projection data) 
and fixed-sized memory buffers on each GPU ( , ). Multi-GPU 
computing is coordinated by CPU threads (T#) on the host computer which 
are paired with GPU streams (S#) spread across each of N GPU devices. 
GPU streams run concurrently to backproject different sub-volumes of the 
output reconstruction. (1) Following initialization, backprojection is 
performed by copying the source projection data into the statically 
allocated, pinned memory, . (2) The inner loop of each GPU stream 
loops through the projection data, asynchronously transferring pinned 
projection data into a private memory buffer on the stream’s associated 
GPU. (3) The outer loop of each GPU stream loops through fixed size 
chunks of the stream’s associated sub-volume, backprojecting voxels at the 
intersection of the buffered volume data and the buffered projection data. 
(4) When all of the projection data has been backprojected into the current 
volume chunk, the volume chunk is asynchronously transferred to the 
statically allocated, reconstructed volume on the host, . (5) Events 
recorded by the CUDA API coordinate the transfer of completed volume 
chunks from the pinned memory volume, , to the final reconstructed 
volume, , prior to the overall completion of the backprojection operation. 
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III. RESULTS 

To illustrate the performance of our multi-channel 
reconstruction toolkit, we applied the split Bregman 
framework to iteratively reconstruct a dual-energy micro-
CT data set. The data was acquired in vivo, in a C57BL/6 
mouse which was injected with liposomal iodine [21] prior 
to imaging (following protocols approved by the Duke 
University Animal Care and Use Committee). The dual 
energy data was acquired with our dual-source micro-CT 
scanner [3], which now uses two Dexela 1512 flat-panel, 
CMOS x-ray detectors (CsI scintillator; 75 μm pixels; 
PerkinElmer, Inc.). The projection data was acquired with 
G297 tungsten x-ray sources (Varian Medical Systems) at 
40 kVp (50 mA, 25 ms) and 50 kVp (80 mA, 12.5 ms, 0.15 
mm Cu). 720 projections (1136x760 pixels; ~1.2x 
magnification) were acquired per kVp over 360° and used 
to reconstruct 5123 volumes with 88-μm, isotropic voxels. 
Reconstruction was performed on an Ubuntu Linux 
workstation with two Intel Xeon E5-2650 v4 processors, 
256 GB of system RAM, and four Nvidia Titan Xp GPUs. 
Regularization (fig. 1, step 3) was performed with a dual-
energy, convolutional neural network constructed and 
trained with the Keras python library and similar in 
structure to the RED-CNN [22]. Data fidelity updates (fig. 
1, steps 1, 5) were performed with the BiCGSTAB(L) 
algorithm (L=2) with three iterations over three subsets per 
update and energy. 

Fig. 3 summarizes the reconstruction results, including 
comparable analytical, weighted algebraic, and iterative 
reconstruction results, as well as material decomposition 
results. Reconstruction required approximately 1GB of 
GPU RAM on each GPU used for computation and 
approximately 25GB of system RAM. The initialization and 
data fidelity update steps each took ~170, 268, and 449 
seconds per energy using 4, 2, and 1 GPU(s), respectively, 
illustrating some degree of overhead associated with the use 
of additional GPUs. CNN-based regularization took ~200 
seconds for both energies combined. In total, performing 
initialization (4 GPUs), two CNN-based regularization 
operations (1 GPU), and two data fidelity updates (4 GPUs) 
took ~25 minutes.  

IV. CONCLUSIONS AND ONGOING WORK 

Over the last 5+ years, we have developed highly 
specialized tools for multi-channel x-ray CT reconstruction. 
However, the impact of publications employing these tools 
has been somewhat limited by their complexity and the 
inherent difficulty in adequately describing them in written 
form. Following the trend in open-source code distribution 
to improve dissemination and reproducibility in science, we 
are preparing our first release of our multi-channel CT 
reconstruction toolkit, tentatively scheduled to coincide 
with the conference presentation of this work. In 
preparation for this release, we are preparing documentation 
and sample scripts to aid outside researchers in making use 
of our tools. It is our hope that these tools will enable new 
classes of multi-channel CT imaging such as clinical 

photon-counting CT, spectrally-resolved cardiac imaging, 
and 4D myocardial perfusion. 

In addition to preparing for the initial release of the 
toolkit, we are currently working to identify and alleviate 
bottlenecks which inhibit linear scaling of our 
reconstruction operator performance when multiple GPUs 
are used for computation. We are also working to bridge the 
gap between the MATLAB interface we have developed for 
our GPU-based operators and the Python interface popular 
with many machine learning packages. We look forward to 
reporting on this issue and our preliminary experiments 
with CNN-based regularization in our conference 
presentation. 
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Fig. 3. Multi-channel reconstruction of in 
vivo, dual energy micro-CT data acquired 
in a mouse. (A) Matching 2D coronal 
slices through the right kidney following 
analytical reconstruction (FDK with 
Ram-Lak filter) of the 50 and 40 kVp 
data sets (rows). (B) Matching algebraic 
reconstruction results used for 
initialization of the split Bregman method 
(fig. 1, step 1). (C) Matching, final 
iterative reconstruction results following 
two regularization operations and two 
data fidelity updates (fig. 1, steps 3-5). 
(D) Iodine (I, red) and calcium (Ca, 
green) material decomposition results 
displayed as 100-slice maximum intensity 
projections (MIPs). Note that all results 
are shown over a limited field of view 
relative to the full reconstructed volumes. 
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Abstract—This study develops a full-dose CT (FdCT) patch 

database induced nonlocal means (NLM) paradigm (fdpiNLM) 
to capture the valuable structure information from the FdCT 
scans. The innovation lies in the construction of an offline 
FdCT patch database and the online patch-search scheme 
integrated with the NLM operation. Specifically, the offline 
database is composed of 3D patches extracted from existing 
full-dose lung scans, avoiding repeated scans of the same 
patient. The online patch-search selects FdCT patches with 
structures similar to the target patch and then the NLM is 
utilized to extract redundancy information from the selected 
patches for regularization of the LdCT target patch. In case of 
no similar reference patches are found in the database, patches 
from local search window of the LdCT image are instead used 
for NLM regularization, avoiding introducing false prior 
structures from the FdCT images. The effectiveness of the 
proposed algorithm is valuated and validated by clinical lung 
cancer studies.  
 

Index Terms—low-dose CT, image restoration, full-dose CT 
database, nonlocal means (NLM).  

I. INTRODUCTION 
he risk of X-ray radiation induced genetic, cancerous 
and other diseases has raised growing concerns to 

patients and operators[1]. Low-dose CT (LdCT) technique 
can reduce the radiation to the patient efficiently. However, 
the quality of the resulting image may be degraded with 
serious noise and streak artifacts [2]. To address this problem, 
various noise-reduction strategies were proposed, including 
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statistic-based iterative reconstruction (SIR) approaches [3], 
pre-processing methods [4] and post-processing algorithms 
[5].  

Recently, using the valuable prior structure features from 
full-dose CT (FdCT) scans for LdCT image 
restoration/reconstruction has become a noticeable research 
interests. Most of the full-dose scans assisted methods share 
the common ideas of first registering the previous FdCT scan 
of the same patient with the LdCT scan, and then extracting 
the intensity information of pixels in corresponding regions 
of FdCT scan as prior knowledge [6-10]. While these 
methods have been successful in many cases, such a previous 
FdCT scan of the same patient may not always be available. 
Moreover, as misalignments usually occur among the image 
series due to patients’ respiration, internal motion or 
pathological changes of the tissues/organs, even after 
registration of the image series, false prior structures may be 
introduced into the current LdCT image. More details of 
such cases would be demonstrated in the experiment studies. 

This study presented a strategy to utilize existing FdCT 
scans of different patients to restore the current LdCT image. 
The innovation is the construction of an offline patch 
database from FdCT scans and the use of online patch-search 
scheme integrated with the nonlocal means (NLM) [11] 
operation. Specifically, the offline patch database is 
composed of 3D patches extracted from full-dose CT scans 
of different patients. Given a 3D target patch to be restored in 
the LdCT images, the online patch-search first selects 
patches whose structure is similar to the target patch from the 
database as the reference patches, and then NLM is 
employed on the patches to regularize the target patch 
through a weighted average scheme. The proposed method 
does not need repeated scanning of the same patient and can 
avoid introducing false prior structures from FdCT images.  

The rest of this paper is organized as follows. In section II, 
the proposed FdCT patch database induced NLM strategy 
(fdpiNLM) is presented in details. Section III evaluates the 
proposed algorithm with clinical lung cancer studies. Finally, 
a conclusion is given in section IV.  

II. METHOD 

The flowchart of the proposed fdpiNLM strategy contains 
three major steps: offline patch database construction, online 
patch-search, and online NLM regularization. In the 
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Full-Dose Patch Database 
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following subsections, we describe each step in detail. 

A. Offline Patch Database Construction  
In the proposed scheme, a 3D patch, which is modeled as a 

voxel and its K×K×K cubic nearest neighbors, is used to 
reflect local spatial structure of a voxel. To construct the 
offline database, several full dose lung scans were first 
gathered from different patients. For each patient’ FdCT 
scans, 3D patches were extracted automatically with a 
sliding distance of one voxel on the 3D volume. Then all the 
3D patches from different patients were stacked into a 
reference database, denoted by Ω.  

B. Online Patch Search  
By representing a 3D patch as a column vector, the ith 

patch in the database Ω is denoted by 
Ref Ref Ref Ref

,1 ,2 ,[ , , , ]T
i i i i Mx x x=x  , where M=K3, K is the patch 

size, and i=1,2,···, |Ω|. The target patch to be restored in the 
LdCT image is modeled as a vector variable, and denoted by 

Ld Ld Ld Ld
1 2[ , , , ]T

Mx x x=x  . The nearest neighbor grouping 
method was employed to select patches from the database. 
Specifically, the Euclidean distance between xLd and a patch 

Ref
ix (i=1,2,···|Ω|) in the database is computed and then 

compared with a preset threshold T. Patches with distance 
less than the threshold are chosen as reference patch 
candidates for xLd.  

For the case that the number of selected candidates is 
larger than 10M (M=K3), experiment results indicated that 
selecting at least the 10M  most similar candidates as 
reference patches could provide relatively robust 
regularization of the LdCT target patch by NLM. If the 
number of selected candidates is less than 10M, it indicates 
that there are no enough similar patches in the offline 
database. In this case, instead of using FdCT reference 
patches, patches from the local search window of the LdCT 
image are used for regularization of the target patch by NLM.  

Suppose finally N (N=10M) reference patches are selected, 
we denote them by a two-dimensional matrix as 

Ref Ref Ref Ref
1 2( , , , ),N=X x x x  i=1, 2, ···, N.              (1) 

where each reference patch is a column vector of length M, 
Ref Ref Ref Ref

,1 ,2 ,[ , , , ]T
i i i i Mx x x=x  . 

C. Target Patch Regularization by NLM  
The NLM concept was first proposed by Buades et al. [11], 

which relies on the information redundancy within the 
patches. In this paper, we employ the NLM operation to 
extract prior information from the FdCT reference patches 
for the restoration of the LdCT target patch. 

With the NLM operation, the target patch xLd can be 
regularized as 

                            Ld Ref

1

ˆ
N

i i
i

w
=

= ∑x x                                       (2) 

where wi is the weight assigned to Ref
ix , which satisfies the 

conditions of 0 1iw≤ ≤  and 
1

1
N

i
i

w
=

=∑ . It can be computed 

as 

 

2Ld Ref

2
2

1 exp i
iw

Z h

 − = −
  
 

x x
  (3) 

where the term ( )2Ld Ref 2

2
1

exp
N

i
i

Z h
=

= − −∑ x x  is a 

normalizing factor, and the term 
2Ld Ref

2i−x x  is the 

Euclidean distance between Ldx  and Ref
ix , which has been 

calculated previously in Subsection II.B. In Eq.(3), h is a 
preset parameter that controls the overall smoothness of the 
NLM filtering. 

D. An Alternative If No Similar Patch Found in the 
Database  

To avoid introducing false prior structures from the FdCT 
images or losing true structures in the LdCT image, it is 
essential to detect whether there are similar patches in the 
offline database or not, for a target patch. In Subsection II.B, 
we have given the criterion for how to detect such a case. For 
target patch that no similar reference patches be found in the 
database, we instead use noisy patches from local search 
window of the LdCT image for the NLM regularization. The 
rest of the steps are essentially the same as those described in 
Subsection II.C. 

III. EXPERIMENT RESULTS 
Clinical CT-guided lung nodule needle biopsy studies 

were used to evaluate and validate the proposed algorithm. 
11 patients (denoted with patient #1 to patient #11) were 
recruited under informed consents after the approval by the 
Institutional Review Board. The full-dose and low-dose CT 
scans were performed with Siemens Sensation 16 CT 
scanner at X-ray tube voltage of 120 kVp and tube current of 
100 mAs and 20 mAs, respectively. Other scanning 
parameters were as follows: 0.5 s per gantry rotation, helical 
pitch of 1 mm, 16×0.75 mm collimation, 5 mm slice 
thickness, 2 mm reconstruction slice thickness, 1 mm 
reconstruction slice interval, without using automatic 
exposure control (AEC). The reconstructed image was of 
512×512 size. The averaged CT dose indexes (CTDIvol) 
recorded for the 120kVp/100mAs and 120kVp/20mAs scans 
were 10.31 mGy and 2.09 mGy, respectively.11 patients 
were classified into a training group (10 patients: patient #1 
to patient #10) and a test group (patient #11). Based on the 
patient scans, the clinical studies were performed to evaluate 
the performance of the proposed fdpiNLM algorithm.  

A. Construction of the Offline Database 
Total 432 slices of 120kvp/100mAs lung CT images 

constructed by FBP“B60f” from the patients #1 to #10 were 
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used to serve as reference scans. We first extracted 3×3×3 
patches from each patient’s scan series with a sliding 
distance of one voxel, then stacked them into one training 
patch set Ω. Considering the structure redundancy of patches 
in the entire set, we instead use a randomly selected small 
subset with 0.5% of Ω to form the offline training database 
(with 318672 3D patches), which can reduce the 
computational load in online patch search step. 

B. Visual Evaluation 
In this pilot clinical study, the 120 kVp/20 mAs low-dose 

scan from the patient in the validate group (patient #11) were 
chosen for the evaluations. One slice of the LdCT scan was 
shown in Fig.1(b). The corresponding slices of a 
120kVp/100mAs full-dose scan from the same patient were 
used as the gold standard. Fig.1(a) shows the corresponding 
slice of the FdCT scan. The FBP with Siemens kernel “B60f” 
was employed to reconstruct both the full-dose and low-dose 
scans. 

  

 
Fig.1. FBP“B60f” reconstruction from the 120kVp/100mAs  FdCT 
sinogram and the 120kVp/20mAs LdCT sinogram. (a) FdCT image. (b) 
LdCT image. (c) Registered FdCT image with the LdCT image, for the 
ndiNLM algorithm. The display window is [-1024, 176] HU. 

For comparison, the traditional NLM algorithm [11] and 
the previous normal-dose scan induced nonlocal means 
(ndiNLM) algorithm [8] were also evaluated. In the NLM 
algorithm, the parameters were set as: patch size of 5x5, 
search window size of 41x41, and the filtering parameter of 
6000. The ndiNLM algorithm employs the NLM operation to 
extract the intensity information of corresponding pixels of 
the registered previous full-dose scan. Here, we adopted the 
state-of-arts scale-invariant-feature transform flow 
(SIFT-flow) algorithm [12] for the registration of the FdCT 
scan with the corresponding slices of LdCT scan. The 
registration result was shown in Fig.1(c). The other 
parameters were set as: patch size of 5x5, search window size 
of 41x41, and the filtering parameter of 1000. In the  

  

  

  

  

 
Fig.2. Processing results of the selected lung region (outlined by blue dotted 
rectangles in Fig.1(b)) of the 120 kVp/20 mAs low-dose scan. (a) FdCT 
image. (b) Registered FdCT image with the LdCT image, for the ndiNLM 
algorithm. (c) LdCT image. (d) NLM processed result. (e) ndiNLM 
processed result with (b) as the previous FdCT image. (f) The proposed 
fpdiNLM processed result. (g)-(i) are the difference images between the 
LdCT image and images processed by the NLM, ndiNLM, and the proposed 
fpdiNLM algorithm, respectively. The display window of (a)-(f) is [-1024, 
-24] HU, and the display window of (g)-(i) is [-100, 200] HU. 

proposed fdpiNLM algorithm, the parameters were set as: 
patch size of 3x3x3, the threshold T of 5×103, and the 
filtering parameter of 1000.  

Figures 2 and 3 show the processing results and associated 
difference images of the selected lung region (outlined by 
blue dotted rectangles in Fig.1(b)) of one slice of the scan, 
with a lung display window of [-1024, -24] HU. It can be 
observed in Figs.2(d), (g) and the fourth column of Fig.3 that 
by using the NLM algorithm, the noise was suppressed, but 
streak artifacts and over-smoothing could be simultaneously 
observed in the lung regions. We can observe in Figs.2(e), (h) 
and the fifth column of Fig.3 that by using the ndiNLM 
method, the noise and streak artifacts were better suppressed, 
but serious inconsistence between the original LdCT image  

(a) FdCT (b) LdCT 

(c) Registered FdCT 

(a) FdCT (b) Registered FdCT 

(c) LdCT (d) NLM 

(e) ndiNLM (f) the proposed fdpiNLM 

(g): (c)-(d) (h): (c)-(e) 

(i): (c)-(f) 

ROI I ROI II 
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FdCT                       Registered FdCT                      LdCT                              NLM                               ndiNLM               the proposed fpdiNLM 

Fig.3. Zoomed-in views. From left to right: FdCT image, registered FdCT image with the LdCT image, LdCT image, NLM processed result, ndiNLM processed 
result, and the proposed fpdiNLM processed result, respectively. The display window is [-1024, -24] HU.

and the ndiNLM processed result could be observed (please see 
Fig.2(h) and regions indicated by green arrows and green 
circles in Fig.3). Figs.2(a)-(c) indicated that the inconsistence 
was induced by the misalignments between the FdCT image 
and the LdCT image, due to patients’ respiration and/or internal 
motion. We can observe in Figs.2(f), (i) and the sixth column of 
Fig.3 that the proposed fpdiNLM algorithm performs much 
better in both noise/streak artifacts suppression and 
details/textures preservation compared with NLM and ndiNLM, 
and produces a visual effect similar to the full-dose reference 
image, especially for the ROI of the lung nodule (indicated by 
the blue arrow in Fig.3). 

IV. CONCLUSION 
This study developed a full-dose patch database induced 

NLM paradigm to capture the valuble structure information 
from the FdCT scans, which can better preserve the detail 
textrues of the LdCT image. The proposed paradigm contains 
three major components, which are the offline FdCT patch 
database construction, online patch-search, and online NLM 
regularization. Through constructing the offline database with 
clean patches extracted from the existing FdCT scans, valuable 
prior knowledge of high quality could be obtained, avoiding 
repeated scans of the same patient. The online patch-search 
selected FdCT patches with structures similar to the target 
patch and then the NLM operation was utilized to extract 
redundancy information from the selected patches for 
regularization of the LdCT target patch. For target patch that no 
similar reference patches were found in the database, patches 
from local search window of the LdCT image were  instead 
used for NLM regularization, avoiding introducing false prior 
structures from the FdCT images. 

We have implemented the proposed fdpiNLM algorithm 
with the Matlab parallel pool of 20 local workers in a PC 
workstation with Intel Xeon CPU (20 core, 2.5G Hz) and 64G 

RAM memory. With the patch size of 3x3x3 and the training 
database of 318672 patches, the algorithm took approximately 
56 minutes to process a 512×512×30 CT volume. 
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Abstract—in computed tomography (CT), streaking 

artifacts resulting from x-ray photon starvation reduce 

diagnostic image quality. In order to obtain an acceptable 

diagnostic image, a higher tube current is often selected 

results in higher dose to patients and lower scanner 

throughput. In this paper, we propose an adaptive edge 

preserve filter in radon domain to reduce streaks resulting 

from lack of photons while preserve edges containing 

diagnostic information. We first model the noise 

characteristics of CT imaging in photon domain and radon 

domain. An adaptive bilateral edge preserve filter is then 

designed in radon domain. Its parameters such as the 

window size, filtering parameters in spatial and range 

domains are adaptively selected based the noise 

characteristics in photon domain. Clinical studies have been 

performed to demonstrate the effectiveness of the proposed 

filter in suppressing streak artifacts, preserving edges and 

maintaining spatial resolution.  

Keywords—edge preserve filtering; image processing; 
computed tomography; streak reduction. 

I.  INTRODUCTION 

CT image artifacts are annoying to radiologist because 
many artifacts can mimic diseases and cause 
misdiagnosis[1]. The CT image artifacts are mainly 
caused by the mismatch between projection measurements 
and reconstruction model. The mismatch and therefore the 
artifacts could be result from patient motion, imperfect 
system calibration, data under-sampling, metal object, and 
x-ray photon starvation. Many endeavors have been made 
by previous researchers to combat CT artifacts[2]–[6].  

In this paper, we are interested in the streak artifacts 
reduction caused by photon starvation which is very 
common when scanning shoulder, pelvis or big patients. 
One way to combat this problem is to increase the x-ray 
tube voltage that can increase the maximum x-ray photon 
energy and penetration. However, this can decrease the 
low contrast detectability and may not a valid option in 
clinical. Another approach is to increase the x-ray tube 
current to generate more photons. However, this approach 
will result in a higher patient dose and a decreased x-ray 
tube throughput. The image processing technique is a 
promising approach to suppress the streak artifacts 
effectively. For clinical application, a majority of 
measurements are beyond the range of x-ray photon 
starvation and the reconstruction from those 
measurements does not introduce streak artifacts. Hence, a 

filtering operation to the overall measurements will have a 
significant impact on the spatial resolution. To overcome 
this problem, an adaptive trimmed mean (ATM) filter was 
proposed by Hsieh [7]. The ATM parameters such as the 
filtering length and trimming percentage are adaptively 
selected based on the measured signal intensity. The lower 
the measured signal is, the larger the filtering window 
size. The filtering process is then performed in projection 
domain. Though the ATM achieves a good balance 
between streaks reduction and spatial resolution 
preservation, the ATM tends to blur edges and introduce 
artifacts to soft tissue around high intensity materials such 
as bone or contrast agent. To overcome the shortcomings 
of ATM, we proposed an adaptive edge preserve bilateral 
filter (ABF). The window size and filtering parameters are 
adaptively selected to adapt to the signal intensity.  

The rest of this paper is organized as follows: in 
Section II, we will build a model for the noise in radon 
domain and analyze the root cause of streak artifacts; in 
Section III, we propose a novel ABF approach to reduce 
the streak artifacts while preserve edges, specify the 
adaptive filtering parameters selection; in Section IV, 
phantom and clinical results are presented to demonstrate 
the effectiveness and robustness of our approach; in Sec 
V, we will conclude the paper.  

II. ANALYSIS OF STREAK ARTIFACTS 

A. Noise Model in Radon Domain 
 The noise in CT system is primary composed of 
electronic noise and Poisson noise [7]. The electronic 
noise comes from the data acquisition system (DAS) that 
converts the x-ray photons received by detector to digital 
signals that can be processed in the computer. The DAS is 
composed of detector, current to voltage convertor, pre-
amplifier, analog integrator and analog to digital 
convertor. For similarity, the electronic noise is 
considered as a constant noise floor independent of the 
input signal. The Poisson noise is the x-ray photon noise 
that is well known to follow a Poisson distribution in that 
the variance equals its mean. Considering a single detector 
channel and ignoring the variations in detector 
characteristics and data acquisition system, the variance in 
a single detector channel can be expressed as: = + ,                                      (1) 

where  represents the electronic noise floor of DAS,  

represents the x-ray photon quantum noise. There is a 
scale factor also called gain factor  relates the measured 
output current signal  in detector to the number of x-ray 
photons. By applying the properties of Poisson 
distribution, Eq. (1) can be rewritten as: = + .                                         (2) 
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A logarithm operation needs to be performed to convert 
the measured photon data to the projection data so that the 
line integral of each ray path can be obtained: = ( ) =  ( ).                                    (3)  

To a second-order approximation [8], the relationship 
between the noise in projection and the measured photon 
signal can be expressed as: [ ( )] + ( ) = + + + .  

(4) 

B. Streak Artifacts Analysis 
 The streak artifacts in the reconstructed images are 
caused by the inconsistency / fluctuations in the projection 
data. Due to the backprojection process, high fluctuations 
in the projection will be mapped onto a group of streaks in 
the final reconstructed images. Based on Eq. (4), it is 
obvious that the projection noise increases rapidly as the 
measured photon signal  decreases. Therefore, the 
detector channels that receive a small number of x-ray 
photons (photon starvation) will exhibit high fluctuations. 
These channels are the culprit of the streak artifacts in the 
final reconstructed images. In contrast, when the 
measured signal is large, the variance of the projection is 
very small. Therefore, these detector channels have very 
little channel to channel fluctuations and will not 
contribute to the streak artifacts. The objective of the 
streak artifacts correction is to reduce the fluctuations 
corresponding to the detector channels that are lack of x-
ray photons and to make the noise even across all detector 
channels.  

III. ADAPTIVE EDGE PRESERVE FILTER 

 Based on the previous discussion, the filtering 
operation for streaks reduction should meet the following 
criteria. First, the filtering process should not be 
performed to the detector channels corresponding to large 
measured signals since these channels do not contribute to 
the streak artifacts. Applying filtering operation to these 
channels can result in degraded spatial resolution. Second, 
the filtering operation should be applied to detector 
channels lack of photons. According to Eq. (4), the 
variance in projection increases quickly as the signal 
becomes small. Hence, the amount of the filtering applied 
to each channel should be inversely proportional to the 
signal intensity.  

 To satisfy these conditions, we proposed an adaptive 
edge preserve bilateral filter. The bilateral filter [9] is well 
known for its robust performance on filtering while 
preserve edges. Mathematically, the bilateral filter can be 
expressed as ( ) =  ( ) ( ( ) ( ))

,                (5) 

where  is a window centered in .  is the filtering 
parameters in spatial domain. The amount of smoothing 
increases as  increases.  is the filtering parameter in 
range domain. As  gradually increases, the bilateral 
filter approaches to the Gaussian filter and stronger edges 
will be blurred. The normalization term is defined as 

= ( ( ) ( ))
.                         (6) 

 The bilateral filter can be fully specified by the 
selection window ,  and . Based on Eq. (4), the 
dynamic range of the noise variance is very large, so we 
adaptively select all the three filtering parameters ,  
and . For this paper, we limited the filter to one 
dimension and applied only to the channels in the same 
view. It is easy to extend the filtering to two dimensional 
to apply to both detector channel and detector row, or both 
detector channel and views. The filtering length  is 
determined based on the measured signal  by the 
following equation: = ( )[ ( )]                                   (7) 

where the rectifier function ( ) = = max (0, ).                            (8) 

In Eq. (7), M represents the maximum filter length when 
the measured signal  approaches to zero.  is a threshold 
defines the cutoff point. When the measured signal  is 
greater than , no filtering will be performed.  and  are 
two hyper parameters control the rate of change of filter 
length.  is a estimation of electronic noise. When the 
measured signal  is smaller than , the change of filter 
length is not affected by  and  and the filter length is 
almost constant.  

 The  and  are determined by the following 
equations: =                                           (9) =                                         (10) 

Where  and  are the maximum  for spatial domain 
and range domain, respectively. The filtering parameters 
decrease as the filtering length decrease. The decreasing 
rates for  and  are controlled by  and , 
respectively. When  and  equal to zeros, the filtering 
parameters become constant and the filtering is only 
adaptive for window size. The institution to select the 
filtering parameters is the following. Smaller signal  
results in stronger streaks so that greater filtering 
parameters should be selected to suppress streaks while 
preserving strong edges. Greater signal  results in weaker 
or no streaks so that smaller filtering parameters need to 
be selected to suppress streaks while preserving fine 
edges. By combining Eq. (7) and Eqs. (9) & (10), the 
following equations are obtained = ( )( )                                  (11) = ( )( )                                 (12) 

Hence, the parameters , , ,  together affect the 
filtering parameters selection. 
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IV. EXPERIMENTS 

 To evaluate our proposed approach, a patient scan data 
was employed. In most CT applications, the streak 
artifacts are prominent when scanning shoulder area. 
However, the streakartifacts can exist in the low dose 
chest scan as well. In this experiment, the chest area was 
scanned by a Scinticare 16 slices CT scanner (Minfound 
Medical Systems Co., Ltd, Zhejiang, China) with 1 cm 
collimation, 120kV, 1 second rotational speed. A non-
contrast scan was first performed followed by a scan with 
contrast agent. Images were reconstructed with 512 by 
512 matrix size. Streak artifacts were observed in the 
reconstructed images from both datasets. The objective of 
this study is to evaluate the performance of the  

 

proposed ABF approach under different situations. We 
want to make sure the selected parameters works for both 
non-contrast scan and contrast scan with different level of 
streak artifacts. Suppressing the streak artifacts in a 
contrast scan is more challenging since the soft tissue 
regions are easily corrupted by the filtering operation. For 
the purpose of comparison, we implemented the ATM 
proposed in [7]. 

 The parameters selection was performed as follows. 
Since the clinical specialist cares more about the streaks in 
contrast agent dataset for this case. We applied ATM to 
the contrast agent scan with a set of different filtering 
parameters. The whole reconstructed image volumes were 
reviewed by clinical specialist to select the best 
parameters. Similar procedure was performed for ABF to 
select the optimal filtering parameters. In practice, once 
the optimal filtering parameters tuned, the same 
parameters are applied to all different scans. So the ATM 
and ABF were then applied to the non-contrast scan with 
the same selected parameters. Fig. 1 shows the results for 
contrast scan. It can be clearly observed that the streak 
artifacts are significant without filtering operation. While 
both ATM and ABF suppress the streak artifacts to 
clinical acceptable level, the ATM tends to introduce 
artifacts in the tissue regions as indicated by the red 
arrows. Within the red circle area, the ATM completely 
blurred out the tissues between bone and contrast agents. 
Fig. 2 shows the results from a different slice. As 
indicated by the red arrow, the ATM blurred out the 
interface between high attenuation material (bone and 
contrast agent) and the soft tissue. The ABF suppressed 
the artifacts in the soft tissue while preserving the edges. 
In Fig. 3, the ATM and ABF were applied to the non-
contrast agent scan with same parameters used in the 
contrast scan. The streaks in the non-contrast scan are 
much less than that of contrast scan as expected.  Similar 
conclusions can be made, as indicated by red arrows, that 
the ATM tends to blur out edges and introduces artifacts 
in the soft tissue regions. It should be noted that the ATM 
does not introduce artifacts in every slice. Because same 

Fig. 1. Images from contrast scan. From top to 
bottom, images correspond to reconstruction with no 
streak reduction filtering, ATM and ABF, 
respectively. Display window level = 40HU, display 
window width = 300 HU. 

Fig. 2. Same as Fig. 1 but different slices. 

 

Fig. 3. Same slice as Fig. 1 but without contrast. 
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filtering parameters were applied to the whole data set, we 
picked the slices with artifacts introduced to show.  

 To further investigate the streak artifacts elimination, 
the lung portion of CT images is displayed in Fig. 4 at the 
appropriate display window to show the lung nodules. It is 
clear that the proposed ABF method removes the streak 
artifacts in the right lobe of the lung without corrupting 
lung nodules.  

 

V. CONCLUSION 

 In this paper, we developed an adaptive edge preserve 
bilateral filter to suppress streak artifacts due to photon 
starvation while preserving edges and spatial resolution. 
The filtering parameters such as window size,  and  
are adaptively selected to adapt the signal intensity. 
Clinical studies have been performed to demonstrate the 
advantages and robustness of the proposed ABF method. 
Compare to the ATM approach, the proposed ABF 
method has a better edge preservation ability and less 
likely to introduce artifacts to soft tissues. The amount of 
streak reduction depends on the measured signal intensity 
due to the adaptive nature of the ABF method.  

 Due to the limited scope of this paper, we do not 
present phantom experiments in various conditions and do 
not perform detailed qualitative and quantitative analysis 
about the proposed adaptive formulas, the spatial 
resolution and noise characteristics of the proposed ABF. 
It is worth to point out that the bilateral filter used in this 
paper is just one option. Many other edge preserve filters 
such as non-local mean (NLM) [10] or even directional 
filters can be employed to replace the bilateral filter. The 
other format of adaptive formulas (Eqs. 7, 9&10) for 
filtering parameters selection is open to be investigated 
following the similar adaptive rules. For the purpose of 
simplicity, the filter used in this paper is one dimensional. 
It is easy to be extended to two dimensional (e.g. views 
direction) to consider more information to suppress the 
streak artifacts. We will present a more detailed analysis 
in a follow up journal paper.  
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Fig. 4. Lung portion images of the contrast scan. Top: 
images reconstructed without streak artifacts 
reduction; Bottom: images reconstructed with 
proposed ABF method. Display window = 200, 
display level = -700. 
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Abstract—Recent advancements in the field of computed 
tomography (CT) showed promising results for the application 
in musculoskeletal (MSK) imaging. Iterative reconstruction 
techniques and the resulting capability of dose reduction 
proofed to be eligible for osteoporosis diagnosis and (therapy) 
monitoring in clinical routine. Spectral CT allows for 
phantomless assessment of BMD and advanced tissue 
decomposition, predicting fracture risk in non-dedicated 
routine examinations or recognizing acute from old vertebral 
fractures. The potential introduction of sparse sampling 
acquisition schemes could even enhance the quality of the 
mentioned techniques for low dose MSK imaging. In this work, 
we present an overview of our recent CT developments for 
MSK imaging and provide an outlook over promising future 
technologies. 

Index Terms—CT imaging, spectral CT, sparse sampling, 
musculoskeletal imaging 

I. INTRODUCTION 

The field of musculoskeletal (MSK) imaging is well 
suited for modalities involving ionizing radiation because of 
the high x-ray absorption of bone. Bone tumors and fractures 
are usually imaged by conventional radiography, while 
osteoporosis diagnosis and therapy monitoring is mostly 
performed by dual energy x-ray absorptiometry (DXA). 
However, computed tomography (CT) provides more precise 
information and improved diagnostics—compared to planar 
methods like DXA—because of additional three-dimensional 
information of the bone microstructure.  

On the one hand, as a recently introduced technology, 
multi energy CT is now able to provide spectral based images 
in clinical studies. Material specific imaging leads to better 
quantification of calcium and thus better diagnostic 
performance [1]. These new detector technologies, based on 
dual-layer or photon-counting detectors, obtain energy 
dependent information directly in the sinogram space and can 
substantially influence and further improve iterative 
reconstruction algorithms, reducing artefacts.  

On the other hand, over the last decade radiation dose 
reduction in CT has been extensively investigated because of 

the adverse effects of ionizing radiation. With the help of 
advanced reconstruction algorithms such as model-based 
iterative reconstruction, trabecular bone microstructure can 
be reconstructed from ultra-low dose CT acquisitions.  

Sparse sampling, as an approach to preserve tube current 
but reduce the overall radiation exposure by obtaining fewer 
projections per rotation, was investigated for MSK imaging 
applications. With sparse sampling and iterative 
reconstruction, a significant radiation dose reduction can be 
achieved without compromising the diagnostic image quality 
[2] and with reduced influence of electronic detector noise 
[3]. 

In this work, we present an overview of our recent CT 
developments for MSK imaging and provide an outlook over 
promising future technologies. 

II. METHODS 

A. Spectral CT for phantomless BMD assessment 

Phantomless dual-layer spectral CT scans were 
performed for ex-vivo human vertebrae (n=13) and a 
phantom containing different known hydroxyapatite (HA) 
concentrations in a semi-anthropomorphic abdomen 
phantom, Fig. 1. Different degrees of obesity were simulated 
by adding extension rings of different size to the 
anthropomorphic phantom. Different tube current settings 
were also investigated (500, 250, 125 and 50 mAs) [4]. 

The calcium content of the vertebral samples was 
characterized and quantitated with reference values derived 
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Fig. 1. Virtual monoenergetic images of bone imaging can be used for bone 
mineral density measurements without additional calibration phantoms. Fig. 
1A shows the vertebral sample at virtual monochromatic energy at 50 keV. 
Fig. 1B shows the corresponding image at 200 keV. With conspicuous 
difference of the calcium attenuation, bone mineral density can be 
determined. (Window level 300 HU, width 1500 HU). 
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from spectral-based virtual monoenergetic images at 50 keV 
and 200 keV of the HA phantom. HA-specific BMD was 
derived. Values were compared to the conventional 
quantitative CT (qCT) measurements using the standard 
reference phantom (Mindways Osteoporosis Phantom, 
Austin, TX, USA). 

B. Spectral CT and material decomposition of bone 
marrow for fracture classification 

Sixty subjects with acute (n=41) and old (n=19) vertebral 
fractures were recruited and scanned in a dual-layer spectral 
CT. Virtual monoenergetic images at 50 keV (µ50) and 200 
keV (µ200) were used to quantitate the composition of calcium 
(f1), fat- (f2) and water-based (f3) materials inside bone 
marrow. The reconstruction algorithm assumes volume 
conservation of the three compositions. 

µ50 = f1 µ150 + f2 µ250 + f3 µ350 

µ200 = f1 µ1200 + f2 µ2200 + f3 µ3200 

f1 + f2 + f3 = 1 

Additional fat- and water-based spine images were used 
to distinguish between acute (water dominated) and chronic 
(fat dominated) spine fractures. The result was compared to 
the standard diagnostic procedure from magnetic resonance 
images. 

C. Sparse sampling with iterative reconstruction for 
osteoporosis diagnosis 

Twelve subjects with osteoporotic vertebral fractures and 
twelve age- and gender-matched controls were included in 
the study investigating the spine (average effective dose: 10 
mSv). Similarly, twenty osteoporotic patients and twenty 
control subjects were included for the evaluation at the 
femoral bone.  

Sparse sampling acquisition schemes were simulated on 
the raw projection data of a clinical CT by taking projections 
only at every 2nd, 4th and 10th position of the original angular 
position. Correspondingly, lower radiation doses were 
simulated by virtual lower tube current of 50%, 25%, and 
10% of the original current. 

Image reconstruction was performed with filtered 
backprojection (FBP) and maximum-likelihood based 
statistical iterative reconstruction (SIR) with ordered-subset 
paraboloidal surrogate and proper regularizations [5, 6]. 
BMD and trabecular bone parameters were extracted in T10 
to L5 of the spine images. DXA-equivalent BMD values and 
T-scores were assessed in the femoral head and neck. The 
results between the different dose levels, numbers of 
projections, and image reconstructions were compared. 

III. RESULTS 

A. Spectral CT for phantomless BMD assessment 

Above 125 mAs, phantomless BMD assessment based on 
spectral information had an error ranged between -1.3% to 
4.8%. In vertebral specimens, high correlations were found 
between values assessed with spectral CT and conventional 
qCT (r ranging between 0.96 and 0.99; p<0.001 for all) with 
different extension rings, Fig. 2A. And a high agreement was 

found in Bland Altman plots, Fig. 2B. Different degrees of 
obesity did not have a significant influence on measurements 
(p>0.05 for all). 

B. Spectral CT and material decomposition for fracture 
classification at the spine 

Fig. 3 shows a conventional CT image of an acute fracture 
and the spectral images. Images were surveyed and rated by 
radiologists. For the identification of acute fractures, 
conventional CT images showed a sensitivity of 63% and 
specificity of 84%, whereas with the material information 
derived from spectral CT the sensitivity (95%) and specificity 
(90%) were substantially higher. Accuracy for conventional 
images was 70% and increased to 93% with spectral CT. 
Readers considered MRI necessary for fracture age 
determination in 60% (based on conventional images) and 
28% (based on spectral CT images), respectively. Interreader 
agreement was high for the classification of acute fractures 
based on conventional CT images (intraclass correlation 
coefficient (ICC): 0.79, 95% confidence interval (CI): [0.68–
0.87]) and spectral CT images (ICC: 0.95, 95% CI: [0.92–
0.97]). 

 
Fig. 2. Comparison of phantomless bone mineral density estimation in 
spectral CT versus traditional quantitative  CT measurement. Fig. 2A shows 
the correlation plot for the measurement. Fig. 2B shows the corresponding 
Bland Altman plot. Both plots proved the possibility of calcium 
quantification in spectral CT.   
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C. Sparse sampling CT 

At the spine, images from sparse sampling simulations 
had a better visual impression than the corresponding images 
with virtual lower tube current (Fig. 4) [7]. Absolute values 
of all trabecular parameters derived from ultra-low dose data 
were significantly different from those derived from original 
dose images (p<0.05). BMD, bone fraction and trabecular 
thickness were still consistently lower in subjects with than 
in those without fractures in the ultra-low dose data (p<0.05). 
BMD measurements in sparse sampling data were not 
significantly different from those derived from original dose 
images. 

At the femur, virtual tube current lowering resulted in a 
statistically significant increase in DXA-equivalent T-scores 
for both FBP and SIR, whereas an opposite, but less markedly 
effect, was observed for sparse sampling. Images show 
increased noise for reduced radiation doses for virtual lower 
tube current compared to sparse sampling (Fig. 5). For both 
FBP and SIR, the application of sparse sampling with a 
reduction of up to 90% of projections did not lead to 
statistically significant proportions of misclassification when 
considering the World Health Organization (WHO) 
osteoporosis scheme, in contrast to findings with 
conventional dose reduction / virtually reduced tube currents. 

IV. DISCUSSION 

In this work, we presented an overview of our results / 
developments in CT for MSK imaging. Firstly, we evaluated 
the application of spectral CT in osteoporosis diagnostics and 
for the classification of fractures at the spine. Secondly, we 
evaluated the effect of radiation dose reduction for MSK 
imaging, where we investigated two different approaches for 
radiation dose reduction—lowering the x-ray current and 
sparse sampling acquisition schemes—in combination with 
iterative reconstruction. 

Spectral CT showed promising results for phantomless 
BMD assessment. With this technique, non-dedicated routine 
CT scans can retrospectively be used to determine the 
fracture risk. Compared to conventional CT, where a 
calibration phantom is needed during the scan, no additional 
examination is necessary if data without phantom is 
available. Moreover, advanced material decomposition 
allows the classification of fractures at the spine into acute 
and chronic fractures. Today, the standard modality for that 

classification task is MRI, while the detection of the fracture 
is performed with CT. Therefore, using spectral CT for the 
classification could spare the patient the discomfort of an 
additional examination. 

The evaluation of the different radiation dose reduction 
techniques indicate that sparse sampling allows a further dose 
reduction than lowering the tube current. Therefore, sparse 
sampling acquisition schemes may allow ultra-low dose 
examination without loss of diagnostic value in the clinical 
routine.  

V. CONCLUSION 

Advancements in CT can significantly improve 
diagnostics in the field of MSK imaging. We showed that 
with spectral CT and advanced material decomposition, 
improved assessment of bone mineral density is feasible and 
the identification of acute fractures can be enhanced. 
Moreover, the presented results indicate that the potential 
future introduction of sparse sampling acquisition schemes 
allows a significant radiation dose reduction without 
compromising the diagnostic value. 
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Fig. 3. Images of a patient’s spine with accute fracture in thoracic vertebra T9. Fig. 3A shows the fracture in conventional CT. Fig. 3B and 3C show the 
corresponding water- and fat-based images. Fig. 3D shows the magnetic resonance image (MR). In the case of acute vertebral fractures, fat-dominated marrow 
is replaced by the water-dominated marrow, which is not visible in conventional CT; these patients are likely subject to additional MR scans.    
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Fig. 4. Low dose and ultra-low dose spine images of a patient with a chronic fracture. Fig. 4A shows the original low dose iterative reconstructed CT scan. Fig. 
4B shows the corresponding 10% sparse sampling simulation scan and Fig. 4C the equivalent 10% tube current. Combined with iterative reconstruction, sparse 
sampling provides better results when further lowering the radiation exposure for musculoskeletal CT imaging. (Window level 300 HU, width 1500 HU.)      
 

 
Fig. 5. Low dose and ultra-low dose images of a patient’s right femur head. A, B and C (1st row) are reconstructed with iterative reconstruction (SIR) and D, 
E and F (2nd row) are reconstructed with filtered backprojection (FBP). A and D (left column) are the original low dose images. B and E (middle column) are 
the 10% sparse sample images, while C and F (right column) are the corresponding images with 10% tube current. SIR and sparse sampling have great potential 
to mitigate artefacts and to quantitate bone density in ultra-low dose musculoskeletal CT imaging. (Window level 300 HU, width 1500 HU.) 
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New GPU implementation of Separable Footprint
(SF) Projector and Backprojector : first results

Camille Chapdelaine, Nicolas Gac, Ali Mohammad-Djafari and Estelle Parra

Abstract—Model-based iterative reconstruction methods en-
able to improve the quality of reconstruction in 3D X-ray
Computed Tomography (CT). The main computational burden
of these methods lies in successive projection and backprojection
operations. Among existing pairs of projector and backprojector,
Separable Footprint (SF) pair combines computational efficiency
and accurate modelling of X-rays passing through the volume to
image. In order to accelerate these operators, implementations
on Graphical Processor Units (GPUs) for parallel-computing
have been proposed for SF pair. Due to a CPU-loop, these
implementations involve many memory transfers between CPU
and GPU which are known to be the main bottleneck for
GPU computing. In this paper, we investigate a new GPU
implementation of SF projector and backprojector in order to
minimize these memory transfers. Our proposed GPU SF projec-
tor and backprojector have no CPU-loop, and use two ray-driven
kernels for the projection and one voxel-driven kernel for the
backprojection. After having described their implementations,
we study these operators as single modules and validate it in a
MBIR method. Perspectives for this work are GPU optimizations
and comparisons with the other existing implementations of SF
pair.

Index Terms—Computed Tomography, Separable Footprint,
Graphical Processor Unit, iterative reconstruction methods

I. INTRODUCTION

Compared with conventional filtered backprojection (FBP)
methods, model-based iterative reconstruction (MBIR) meth-
ods have shown their advantages in terms of robustness and
reconstruction quality [1]. Their major drawback is that they
are highly computationally-costly due to successive projection
and backprojection operations. The projection operator models
the linear process of X-rays passing through the volume. The
backprojector is defined as the mathematical adjoint of the
projector.

Particularly in 3D applications, unmatched pairs of projector
and backprojector (P/BP pairs) [2] have been widely used in
order to alleviate the overall computational cost of iterative
reconstruction methods. Although it has been found sufficient
conditions for not having troubles when using an unmatched
P/BP pair [2], these conditions have been derived for very
simple iterative reconstruction methods which minimize the
Euclidean distance between theoretical and measured pro-
jections by a gradient descent. For regularized least-squares

C. Chapdelaine is with Laboratoire des Signaux et des Systèmes
(L2S) (CNRS–CentraleSupélec–Université Paris-Saclay) and SAFRAN SA,
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E. Parra is with SAFRAN SA, Safran Tech, Pôle Technologie du Signal et
de l’Information.

using more sophisticated optimization algorithms, it has been
highlighted in [3] that an unmatched P/BP pair can lead to
suboptimal solutions or to divergence of the reconstruction
algorithm. In order to avoid this mathematical approximation,
computationally-efficient matched pairs have been recently
proposed. The separable footprint (SF) pair [1] approximates
the footprint of a voxel on the detector as a separable function
which is trapezoidal in transaxial direction and rectangular
in axial direction. The distance-driven (DD) pair [4] does
the same kind of approximation, but models the footprint
as rectangular both in transaxial and axial directions, which
makes it less accurate than the SF pair [1].

To the best of our knowledge, two GPU implementations
of SF P/BP pair have been proposed in [5], [6], the one of [6]
having been shown faster than the one of [5]. Nevertheless,
both these implementations have a CPU-loop on projection
angles. This implies many memory transfers between CPU
and GPU which are known to be the main bottleneck for
accelerating computations on GPU. In order to minimize these
memory transfers, in this paper, we investigate a new GPU
implementation of SF P/BP pair and present first results. Our
GPU implementation of SF projector is ray-driven and runs
two independent kernels. Each of these kernels projects rays
if the source is closer to x- or y-axis respectively. Our GPU SF
backprojector is voxel-driven and runs only one kernel. These
implementations have no CPU-loop.

In the following, we first present our SF projector and
backprojector on GPU. Next, we analyze these operators as
single modules, and validate it in simulation in a full MBIR
method we detailed in [7]. Compared with an unmatched pair,
we show the reconstruction converges in less global iterations
with better convergence properties.

II. SF PAIR ON GPU

A. SF projection

We consider a volume f = {f(xe, ye, ze)} discretized in
cubic voxels of side δ. Centers of voxels have normalized
coordinates (xe, ye, ze). On the detector, each cell’s center has
(u, v)-coordinates (ueδu, veδv). The volume is put between
the detector and a source modeled as a point from which X-
rays are sent in a conic beam. To acquire several perspectives,
the source and the detector are rotated by an angle φ around z-
axis. The rotation center has normalized (x, y, z)-coordinates
(x0e , y0e , z0e). After X-rays have crossed the volume and
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reached the detector, the SF projection on a cell at angle φ
reads

g(ue, ve, φ) = lθc(ue, ve)
∑
xe,ye

lψv (φ;xe, ye)Ft(ue, φ;xe, ye)

×
∑
ze

Fa(ve, φ;xe, ye, ze)f(xe, ye, ze) (1)

where Ft(ue, φ;xe, ye) is the transaxial footprint and
Fa(ve, φ;xe, ye, ze) the axial footprint of voxel (xe, ye, ze) on
cell (ue, ve) with projection angle φ [1]. Amplitude functions
lθc(ue, ve) and lψv (φ;xe, ye) are given by the A2 method in
[1].

In order to avoid writing conflicts between threads, our GPU
implementation of SF projector is ray-driven, i.e. one thread
computes the SF projection of one ray defined by (ue, ve, φ).
We follow each ray according to its primary direction, which
is x-axis if the source is closer to x-axis, and y-axis otherwise
[6]. Next, along this primary direction, we compute the voxels
for which transaxial footprint and axial footprint are both non-
zero. To ensure local memory accesses, the volume to project
is copied on texture memory. Furthermore, variables related to
the geometry of the acquisition are copied in constant memory.

Considering a ray with primary direction x or y leads to
different calculations we need to do separately. That is why
our SF projector runs two kernels. First kernel proj x ker
projects rays with primary direction x, while second kernel
proj y ker handles rays with primary direction y. These two
kernels are independent since they compute disjoint sets of
projections. In this paper, they are executed successively on
one GPU but their parallel applications on two different GPUs
can be considered.

For a ray with primary direction x, the corresponding thread
performs a loop on xe, 1 ≤ xe ≤ Nx. For each xe, it computes
the intersecting location (xe, ye(xe)) with the ray, similarly to
Joseph’s method [8] :

ye(xe) =
1

δ

(
ys(φ) +

y(ue, φ)− ys(φ)
x(ue, φ)− xs(φ)

(xeδ − xs(φ))
)

(2)

where (xs(φ), ys(φ)) is the (x, y)-location of the source and
(x(ue, φ), y(ue, φ)) is the (x, y)-location of the center of cell
(ue, ve) at projection angle φ. Then, for current xe, the thread
looks the voxels of which projections onto the median plane
are between (xe, ye(xe)− 1) and (xe, ye(xe) + 1), i.e. pixels
(xe, ye) of which left side is before (ye(xe) + 1) and right
side after (ye(xe)− 1). Hence, the thread looks each ye, such
that

yemin ≤ ye ≤ yemax ,
{
yemin = bye(xe)− 1.5c
yemax = dye(xe) + 1.5e . (3)

This makes a loop on ye for each thread of kernel proj x ker
which is very small (typically size 4 or 5). For rays with
primary direction y, the calculations are the same by reverting
roles of x and y : the main loop is on ye and we have a second
loop on xe, xemin ≤ xe ≤ xemax . Here, we see the interest of
dealing with rays with different primary directions in different
kernels, in order to avoid divergence between threads.

In the double loop over (xe, ye) (with ye or xe varying in
a very little set depending on the executed kernel), for each
considered (xe, ye), we calculate the scaled transaxial footprint

F ′t (ue, φ;xe, ye) = lψv (φ;xe, ye)Ft(ue, φ;xe, ye) (4)

as described in [1]. Next, we find indices ze for which
Fa(ve, φ;xe, ye, ze) 6= 0. Thanks to the chosen rectangular
shape of the axial footprint, these indices are very simple to
compute :

zemin ≤ ze ≤ zemax (5)

where{
zemin = bz0e − 0.5 +

xφeδv
D (ve − vce − 0.5)c

zemax = dz0e + 0.5 +
xφeδv
D (ve − vce + 0.5)e

, (6)

where D is the source-to-detector distance, and

xφe =
R

δ
+ (xe − x0e) cosφ+ (ye − y0e) sinφ (7)

where R is the source-to-rotation center distance. Knowing
the bounds for ze, threads run a loop on ze to compute

F ′a(ve, φ;xe, ye) =

zemax∑
ze=zemin

Fa(ve, φ;xe, ye, ze)f(xe, ye, ze).

(8)
This loop is very small and is typically size 3. Iteratively,
through the double loop over xe and ye, threads calculate the
sum

g′(ue, ve, φ) =
∑
xe

yemax∑
ye=yemin

F ′t (ue, φ;xe, ye)F
′
a(ve, φ;xe, ye)

(9)
in kernel proj x ker, and

g′(ue, ve, φ) =
∑
ye

xemax∑
xe=xemin

F ′t (ue, φ;xe, ye)F
′
a(ve, φ;xe, ye)

(10)
in kernel proj y ker. Finally, the thread handling ray
(ue, ve, φ) computes the final value for the projection

g(ue, ve, φ) = lθc(ue, ve)g
′(ue, ve, φ), (11)

which is stored from GPU to CPU.

B. SF backprojection

Because SF projector and backprojector are matched, for a
voxel (xe, ye, ze), the SF backprojection is

b(xe, ye, ze) =
∑
φ

∑
ue

Ft(ue, φ;xe, ye)lψv (φ;xe, ye)

×
∑
ve

Fa(ve, φ;xe, ye, ze)lθc(ue, ve)g(ue, ve, φ). (12)

To prevent from writing conflicts between threads, we compute
volume b by running a kernel back ker which is voxel-
driven : one thread calculates the backprojection of one voxel
(xe, ye, ze). Kernel back ker has a main loop on projection
angles φ. For each projection angle, a thread finds cells
(ue, ve) overlapped by transaxial and axial footprints of voxel
(xe, ye, ze). ue-coordinates of these cells are given by ordering
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the projections of the four corners of pixel (xe, ye) in the
middle plane, τ0 ≤ τ1 ≤ τ2 ≤ τ3 [1] :

uemin ≤ ue ≤ uemax ,
{
uemin = buce − 0.5 + τ0

δuc
uemax = duce + 0.5 + τ3

δue
. (13)

The set of ve for which axial footprint Fa(ve, φ;xe, ye, ze) 6= 0
is

vemin ≤ ve ≤ vemax ,
{
vemin = bvce − 0.5 + χ0

δv c
vemax = dvce + 0.5 + χ1

δv e
(14)

where χ0 ≤ χ1 are the projections of voxels (xe, ye, ze−0.5)
and (xe, ye, ze + 0.5) respectively [1].

Next, double-loop on ue and ve is performed to compute the
backprojection of voxel (xe, ye, ze). The size of this double-
loop is approximately the same for each voxel [5]. Projections
g are copied on texture memory, so local memory accesses
are ensured. Because of the separation of the voxel’s footprint
between transaxial and axial directions, the double-loop can
be done on ue then ve or on ve then ue indifferently. Here,
we chose the loop on ue as main loop. For each ue between
uemin and uemax , we run a loop on ve, vemin ≤ ve ≤ vemax .
Like for ze-loop in SF projector, this loop is typically size 3
and calculates each axial footprint to return

ba(ue, φ;xe, ye, ze) =
vemax∑

ve=vemin

Fa(ve, φ;xe, ye, ze)lθc(ue, ve)g(ue, ve, φ). (15)

Hence, the double-loop performs the summation

bφ(φ;xe, ye, ze) =

uemax∑
ue=uemin

Ft(ue, φ;xe, ye)

× lψv (φ;xe, ye)ba(ue, φ;xe, ye, ze) (16)

Then, the backprojection can be updated

b(xe, ye, ze)+ = bφ(φ;xe, ye, ze) (17)

until all the projection angles have been considered.

III. FIRST RESULTS ON SIMULATED DATA

In this section, we present first results of our GPU imple-
mentation of SF pair on a volume with 2563 voxels. We use 64
projections of this volume uniformly distributed over [0, 2π].
Each projection has 2562 pixels. For our tests, we use only
one GPU, which is a NVIDIA’s GeForce GTX TITAN X. We
analyze our GPU SF P/BP as single modules and in a full
MBIR method.

A. GPU SF projector and backprojector as single modules

Like [6], we show in table I the normalized root mean square
error (NRMSE) with respect to our CPU version, which has
been implemented following [1]. The NRMSE is

NRMSE =

√√√√ 1

N

N∑
i=1

(
y
(GPU)
i − y(CPU)

i

y
(CPU)
i

)2

, (18)

where yi denotes projection or backprojection for ray or voxel
i respectively. We see NRMSE is very low for both projector

and backprojector, so our GPU implementation implies no
deviation with respect to our CPU version. Furthermore, the
coupling degree, introduced in [3], of our GPU SF pair is
1.0005, i.e. very close to 1, which means that our GPU SF
P/BP pair is very well matched [3].

In table I, we also measure the number of used registers
per thread. Because each of our kernels do many calculations,
this number is quite high. Because the number of registers per
block is limited, dimensioning thread blocks of the GPU must
be done very carefully. The size of each block is 16× 16× 1
for our SF projector, as for the backprojector. The size of the
grid is 16× 16× 64 for the projector and 16× 16× 256 for
the backprojector.

Lastly, we give in table I the computation times for our
GPU SF projector and backprojector. We may underline that
the presented version is the first one. Further optimizations,
such as using multiple GPUs or finding a way to merge
kernels proj x ker and proj y ker for the projection, are
still needed and are undergoing works.

Operator Computation time NRMSE (%) Registers/threadCPU GPU
Projector 143.9 s 8.3 s 1.2× 10−4 84

Backprojector 98.7 s 4.4 s 3.2× 10−5 63

TABLE I: Proposed GPU SF projector and backprojector as single modules

B. GPU SF pair in full MBIR algorithm

In order to fully validate our GPU implementation, we now
test our GPU SF projector and backprojector in a full MBIR
algorithm we presented in [7] with an unmatched pair. This
algorithm performs alternate reconstruction and segmentation
until convergence, and maximizes the joint posterior distribu-
tion of volume f and hyperparameters θ of the prior models
defined for the volume and the uncertainties on the projections.
These prior models are detailed in [7]. Hyperparameters θ are
estimated jointly with the volume. According to Bayes’s rule
and by removing constant terms from the log-joint posterior
distribution of f and θ, the stop criterion to maximize is

L(f ,θ) = ln(p(g|f ,θ)) + ln(p(f |θ)) + ln(p(θ)). (19)

We run the algorithm with our matched SF pair on GPU
and compare the obtained results with the unmatched pair
we used in [7]. This unmatched pair is described in [7],
[9]. In order to compare the two considered P/BP pairs, for
both experiments with matched and unmatched pair, we use
same dataset, initialization and parameters, given in [7]. The
algorithm has a maximum number of global iterations fixed
to 20 and can be stopped before if the criterion (19) does not
change by more than 10−6 % between two global iterations.

The results are shown in figure 1. We see the quality of
reconstruction is good for both P/BP pairs : this validates
our GPU implementation of SF P/BP pair. The obtained
reconstructions with matched and unmatched pairs look vi-
sually the same : the SSIM [10] computed by MATLAB
is approximately 1. Furthermore, the L2-relative error with
respect to the original phantom, in table II, is approximately
the same for both pairs. Nevertheless, as shown in table II,
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(a) (b)

(c) (d)

Fig. 1: Reconstruction of Shepp-Logan phantom (a) by the same MBIR
method [7], with unmatched P/BP pair (c) and proposed matched GPU SF
pair (d). Convergences are shown in (b).

the computation time is much longer when using matched SF
pair, since it requires more calculations.

To deepen the comparison, we also analyze the convergence
of the MBIR method. In table II and figure 1, we see the algo-
rithm with matched SF pair converges in 16 global iterations,
while with unmatched P/BP pair, it reaches the maximum
number of 20. Moreover, in figure 1, the convergence of the
algorithm is shown to be much smoother when using matched
SF pair. In table II, the comparison of the final value of
the stop criterion (19) shows that it is greater when using
matched SF pair : that means the reconstruction obtained with
an unmatched pair is suboptimal, as it has been already noticed
in [3].

To conclude this section, we may emphasize that our GPU
implementation of SF pair has been fully validated by its use
in a MBIR method we developed with another P/BP pair [7].
The comparison between these two pairs has shown that using
matched SF pair is more computationally intensive than using
an unmatched pair, but ensures better convergence properties.

Used P/BP
pair

Computation
Time

L2-relative
error

Number of
global iter-
ations

Final value
of the
criterion
(×108)

Unmatched 629.3 s 18.5 % 20 5.1136
GPU SF 6517.0 s 18.7 % 16 5.1183

TABLE II: Comparison of the results for a MBIR method [7] with unmatched
P/BP pair and proposed GPU SF pair

IV. CONCLUSION AND PERSPECTIVES

In this work, we have investigated a new GPU implemen-
tation of Separable Footprint (SF) projector and backprojector
(P/BP) which minimizes memory transfers between CPU and
GPU. We have presented a ray-driven GPU SF projector with

two independent kernels which handle rays depending on their
primary direction. Concerning SF backprojector, our GPU
implementation is voxel-driven and uses only one kernel which
takes advantage of the separability of the footprint in SF pair.
Both our GPU SF projector and backprojector have no CPU-
loop, so memory transfers are minimized.

As first results, we have fully validated the proposed GPU
implementation. By computing the coupling degree [3], we
have shown that our GPU SF implementation is well-matched.
Our proposed implementation of SF pair has been shown to
obtain very good results in a Model-Based Iterative Recon-
struction (MBIR) algorithm. Compared with an unmatched
P/BP pair, we have emphasized that the use of matched SF
pair provides better convergence properties and accelerates the
convergence in terms of global iterations.

Nevertheless, we have also seen the computational cost
when using a matched pair is much higher, and results in a
much longer computation time, as highlighted in table II. To
reduce this computation time, further GPU optimizations are
still necessary, such as, for instance, executing the two kernels
of our GPU SF projector on two different GPUs, which is
possible since these two kernels are independent. Moreover,
our experiments have been done on relatively small volumes.
Consequently, scaling our implementation for much larger
volumes, as the aforementioned optimizations, is a perspective
for this work. After having proceeded with these optimizations,
comparisons with previous GPU implementations of SF P/BP
pair [5], [6] will remain to be done.
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High-Fidelity Modeling of Detector Lag and
Gantry Motion in CT Reconstruction
Steven Tilley II, Alejandro Sisniega, Jeffrey H. Siewerdsen, J. Webster Stayman

Abstract—Detector lag and gantry motion during x-ray
exposure and integration both result in azimuthal blurring in
CT reconstructions. These effects can degrade image quality
both for high-resolution features as well as low-contrast details.
In this work we consider a forward model for model-based
iterative reconstruction (MBIR) that is sufficiently general to
accommodate both of these physical effects. We integrate this
forward model in a penalized, weighted, nonlinear least-square
style objective function for joint reconstruction and correction
of these blur effects. We show that modeling detector lag can
reduce/remove the characteristic lag artifacts in head imaging
in both a simulation study and physical experiments. Similarly,
we show that azimuthal blur ordinarily introduced by gantry
motion can be mitigated with proper reconstruction models.
In particular, we find the largest image quality improvement
at the periphery of the field-of-view where gantry motion
artifacts are most pronounced. These experiments illustrate
the generality of the underlying forward model, suggesting
the potential application in modeling a number of physical
effects that are traditionally ignored or mitigated through pre-
corrections to measurement data.

I. INTRODUCTION

The need for high-resolution, quantitatively accurate CT
reconstructions has increased with the rise of application-
specific systems. For example, Cone-Beam CT (CBCT)
mammography [1] and extremities systems [2] require high
resolution to detect microcalcifications and visualize fine
trabecular structure, respectively. Point-of-care CBCT head
imaging [3] similarly requires highly accurate reconstruction
of relative attenuation values to detect low contrast bleeds.
Such dedicated imaging systems often use flat-panel detec-
tors, which are selected for their high-resolution capability
and ease of integration into compact systems. However, a
number of physical effects including scintillator blur and
detector lag can degrade measurement data, challenging the
above applications. Similar examples of hardware limitations
challenging particular applications can be found in tradi-
tional Multi-Detector CT (MDCT). For example, cardiac and
emergency room scanning place high demands on lowering
the scan time. The high rotation rates in such applications
can result in significant blurring effects due to gantry motion
during the integration time of the detector.

Previous work has suggested that such hardware limita-
tions can be compensated through explicit modeling and
incorporation into a Model-Based Iterative Reconstruction

Department of Biomedical Engineering, Johns Hopkins University.
email: web.stayman@jhu.edu.

(MBIR) algorithm. In particular, we have found that scin-
tillator blur and focal-spot blur in flat-panel systems can be
modeled for potential resolution recovery [4]. The forward
model used in that work is very general and permits incor-
poration of a wide range of physical effects. In this work
we adopt the same mathematical form for the underlying
forward model and apply MBIR to detector lag and gantry
motion.

Detector lag results from the detector trapping and later
releasing charge, causing a fraction of the signal from
previously acquired projections to be added (temporally
blurred) into subsequent projections [5], [6]. Detector lag
effects are usually low contrast and extend across large
areas of the reconstruction, originating near high contrast
objects. A classic example of lag artifacts are the low
contrast trails arcing off the skull into the brain in flat-panel-
based head imaging. Traditionally, detector lag corrections
are applied through preprocessing the measurements prior to
reconstruction [7], [8]. To our knowledge, this work is the
first attempt to correct for lag within the forward model of
an MBIR approach.

Gantry motion blur shares some similarity with lag in
that there is an effective blurring over angle. However,
this blur occurs within a single measurement - effectively
integrating an arc of projection images based on how far
the source and detector have rotated during an integration
period. Such blur exhibits as an azimuthal smearing of the
CT volume and is most pronounced toward the edge of the
field of view. Gantry motion effects have been addressed in
hardware (e.g., collecting data with a step-and-shoot protocol
or more complicated methods [9]) and in software (e.g.,
incorporating a blur model into a linearized forward model
for MBIR [10]).

In this paper, we introduce specific models of detector
lag and gantry motion, and integrate those models into the
general form in [4]. Simulation studies are conducted for
both blur scenarios. Image reconstructions are performed
using both traditional (unmodeled blur) and the proposed
high-fidelity models, and the resulting images are compared.
Preliminary physical-experiment results using a head phan-
tom and a CBCT test bench are also shown to illustrate
application in a real system.
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TABLE I
BLUR KERNEL PARAMETERS

0 1 2 3

a — 0.998 0.0991 0.0152
b 0.965 0.0165 0.000572 4.51e-05

II. METHODS

Both detector lag and gantry motion blur scenarios can
use the same general forward model presented in [4]:

ȳ = B exp (−Aµ) (1a)

y ∼ N (ȳ,K) (1b)

where B, A, and K are matrices, µ is a vector of
attenuation values, and y is a vector of measurements. The
corresponding penalized likelihood objective function is

‖(y −B exp (−Aµ))‖2K−1 + βR(µ) (2)

where R is a penalty function and β is the penalty strength.
The µ that minimizes (2) is the reconstruction. A tradi-
tional forward model has A as the system matrix, B as
a diagonal matrix which scales measurements by a gain
factor (e.g., photon flux, etc.), and K as a diagonal ma-
trix of measurement variances. However, the reconstruction
method in [4] which minimizes the objective function (2)
makes few assumptions about these matrices, allowing the
forward model (1) to incorporate many physical properties.
This reconstruction method may utilize ordered subsets and
Nesterov momentum acceleration [11], [12].

A. Detector lag

Detector lag may be modeled as a convolution blur where
the blur kernel is a sum of exponentials [8]:

h[k] =

{
b0δ[k] +

∑3
i=1 bi exp (−kai) if 0 ≤ k < K

0 otherwise
.

(3)
The K parameter in (3) determines the length of the blur
kernel (i.e., the number of nonzero terms). This convolution
is incorporated into B in (1a). Specifically, each row of B
weights and combines a series of unblurred measurement
data to form a measurment with lag. Physical blur kernel
parameters for our test bench system were estimated from
the falling edge of a bare-beam scan [8]. The estimated
parameters used throughout this work are shown in Table I.
Because B is no longer block diagonal with regards to
projection number (i.e., B blurs among projections), we
cannot trivially apply ordered subsets to speed convergence
[13].

A simulation study was conducted with an ellipsoidal
“head” phantom of fat surrounded by bone. Data were
generated from a phantom with 0.25 mm× 0.25 mm vox-
els on a system with 580.0 mm Source-Isocenter Distance
(SID) and 800 mm Source-Detector Distance (SDD). Data
were projected onto a detector with 0.278 mm pixels with

0.00

0.07

m
m

−
1

Fig. 1. A portion of the digital phantom for motion blur studies. The left
most circle in this figure is at the center of the phantom. The circles are
separated by 20mm.

0.5× 105 photons pixel−1 over 360◦ in 1◦ increments. Pois-
son noise was added and data were binned by a factor of
two, resulting in 0.556 mm pixels with 106 photons pixel−1.
We then blurred the data by the calculated blur kernel with
a length of K = 359 and added readout noise (σro =
7.12 photons). Blurring the data after adding Poisson noise
correlates the noise as in real systems [6].

Data were reconstructed with 0.5 mm× 0.5 mm voxels, a
quadratic regularizer, and the separable footprints projector
[14]. Two reconstruction methods were used: identity blur
modeling (i.e., no blur modeling) and detector lag blur
modeling (with a kernel length of K = 101). In this work
we assume uncorrelated noise for simplicity, specifically

K = D{y}+ σ2
ro, (4)

where D{·} is a diagonal matrix with its argument on the
diagonal). We used 5000 iterations and Nesterov accelera-
tion. Reconstructions were noise matched by varying β and
taking the standard deviation of the attenuation values in the
center of the image.

Additionally, we scanned a physical head phantom on a
CBCT test bench with parameters similar to those in the sim-
ulation study, except projection data were acquired in half
angle increments. In order to focus on only detector lag in
this preliminary study, we corrected the data for beam hard-
ening due to water, scatter, and glare, as described in [15].
Data were reconstructed with 0.5 mm× 0.5 mm× 0.5 mm
voxels using the same blur models as the simulation study
(the blur model used a lag kernel length of K = 201).
Nesterov acceleration was used with 4000 iterations. We
used a quadratic regularizer, and the same regularization
strength for both reconstructions.

B. Gantry motion

Gantry motion blur is the result of a continuous integration
over angle, and may be modeled as

ȳi = B2

∫ θi+∆θ/2

ψ=θi−∆θ/2

exp(−Aψµ)dψ (5)

where ȳi is the mean measurement vector at projection i
and gantry angle θi, ∆θ is the angular distance over which
data is collected for projection i, and Aψ is the projection
matrix at angle ψ. A discrete approximation is achieved by
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Fig. 2. Simulation phantom reconstructions with the identity model (left)
and the detector lag model (right). The second row of images shows a
smaller portion of the phantom for better visualization.
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Fig. 3. Head phantom bench reconstructions with the identity model (left)
and the detector lag model (right). The second row shows a smaller portion
of the phantom to better visualize the detector lag effect.

oversampling in projection angle and summing the results
to obtain the measurement sampling:

ȳi = B2J
−1

J∑
j=0

exp (−Aψµ) (6)

ψ(j) = θi + ∆θ (j/J − 1/2) (7)

where J is the angular oversampling factor. B from (1)
contains B2 and the summation term in (6), and A contains
all the Aψ used in (6). For example, if the measurement
data contains 360 projections and J is 3, then A results in
1080 projections, and every three consecutive projections are
summed together as part of B.

A circular simulation phantom with a diameter of 25 cm
and multiple round ROIs at different distances from the cen-
ter of rotation was used to evaluate the proposed algorithm.
A subset of this phantom is shown in Fig. 1. A continuous
motion system was simulated with 500 mm SID, 1000 mm
SDD, and 1000 projections per rotation. This geometry was
chosen to approximate high-resolution MDCT systems. Data
were generated from a phantom with 0.1 mm× 0.1 mm vox-
els and a detector with 0.125 mm pixel pitch. We projected at
51 000 equally spaced angles over a 360◦ rotation. Poisson

noise was added prior to binning to 1000 projections and
spatially binning to 0.25 mm pixels. The photon flux after
binning was 105 photons pixel−1. Finally, readout noise was
added to the data (σro = 7.12 photons).

Data were reconstructed with 0.2 mm× 0.2 mm voxels.
We used two blur models: an identity blur model (no blur,
A produces 1000 projections), and a gantry motion blur
model with an angular oversampling factor of J = 5 (A
produces 5000 projections). We used an uncorrelated noise
model (4), the Huber penalty (δ = 10−3) [16], and the
separable footprints projector [14]. Nesterov acceleration
was used with 1000 iterations and 10 subsets. Bias/noise
measurements were calculated for each ROI. Bias was the
Root Mean Squared Error (RMSE) between a noiseless
reconstruction and truth at the ROI, and noise was the RMSE
between a noisy reconstruction and a noiseless reconstruc-
tion in a nearby region. Bias and noise were calculated for
multiple penalty strengths to obtain a bias/noise curve for
each method. Data were also reconstructed with a quadratic
penalty and J = 5 to compare this penalty to the Huber
penalty.

III. RESULTS

A. Detector lag

The detector lag digital phantom reconstructions are
shown in Fig. 2. The reconstructions are approxi-
mately noise matched — 7.96× 10−5 mm−1 (identity) and
7.91× 10−5 mm−1 (blur). When no blur model is used,
detector lag causes a bright trail atrifact arcing off the skull
and into the interior of the head. When blur modeling is used,
this effect is eliminated. When lag modeling was applied to
bench data, the bright trail off the skull was dramatically
reduced (Fig. 3). The fact that the trail was not completely
removed may be due to an insufficient number of iterations
(non-converged estimate) or an inaccurate estimate of the
lag blur kernel.

B. Gantry motion

Gantry motion results are summarized in Fig. 4. The
bias/noise tradeoff is shown for each ROI at varying dis-
tances from the center of rotation. The identity model suffers
from increased bias at large distances from the center of
rotation, while the blur model bias is relatively unchanged
(suggesting a recovery of spatial resolution). The identity
model appears to outperform the blur model at 20 mm to
60 mm from the center of rotation, although the difference
is small. These results are confirmed in the reconstructions
in Fig. 4. These reconstructions were approximately noise
matched at the ROI furthest from the center of rotation by
altering penalty strength (noise is 3.790× 10−4 mm for the
identity model and 3.407× 10−4 mm for the blur model).
The circles in the identity model reconstruction get blurrier
along the direction of rotation as distance from the center
increases. However, with the blur model the circles are
accurately reconstructed. Additionally, the blur model’s bias
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Fig. 4. Bias/noise curves (top) and reconstructions (bottom) for each ROI in Fig. 1. Each column corresponds to a distance from the center of rotation.
The top row reconstructions use the identity model and the bottom row reconstructions use the gantry motion blur model.
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Fig. 5. Quadratic penalty reconstructions of the 100mm ROI with blur
modeling.

improvement in the 20 mm to 60 mm range is difficult to
visualize.

Fig. 5 shows the 100 mm ROI reconstructed with the blur
model and the quadratic penalty at three different penalty
strengths. With this penalty the blur model is unable to
deblur the circle without a substantial increase in noise.

IV. DISCUSSION

We have shown that the general reconstruction method
presented previously [4] is capable of reducing effects due to
detector lag and gantry motion blur. The methods presented
here could trivially be extended to model detector lag with
other forms (i.e., not sum of exponentials) or more compli-
cated forms of gantry motion (e.g., when data acquisition
only occurs during a fraction of the rotation). Additionally,
these models may be combined with each other or other
forms of blur, such as focal spot blur and scintillator blur,
to further improve image quality.

A major limitation of modeling detector lag is the inability
to use ordered subsets to speed convergence. In practice, one
may initialize with a reconstruction without a lag model and
with ordered subsets to get a relatively accurate estimate,
and then reconstruct with the lag model for a handful of
iterations. Additionally, a more accurate initialization may
be obtained by lag correcting the projection data prior to

simple MBIR (i.e., without lag modeling), and then the final
reconstruction obtained with a few iterations with the full lag
model and the original, uncorrected measurement data.

While this work is still preliminary, we note that the
edge preserving Huber penalty plays an important role in
the gantry motion reconstructions. We believe the quadratic
penalty’s tendency to enforce smooth edges prevents the
fidelity term from deblurring the gantry motion effects. In
contrast, the Huber penalty doesn’t penalize sharp edges to
the same degree, and allows the fidelity term to deblur the
image. Ongoing work will further explore these issues by
analyzing different penalties (e.g., sweeping the δ parameter)
and using more complicated image quality targets.

High-fidelity system modeling with MBIR can improve
image quality by overcoming hardware limitations such
as detector lag and gantry motion. However, application
specific systems may have different limitations and con-
straints. The forward model and MBIR algorithm used in
this work are sufficiently general to accommodate many
physical effects, and may therefore be used to improve image
quality and quantitative accuracy in a wide range of clinical
scenarios.
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Iterative Image Reconstruction for CT by 

Emphasizing Local Image Quality 
Jianmei Cai, Jiayu Duan, Yongyi Shi and Xuanqin Mou 

Abstract—Iterative reconstruction with an appropriate 

regularization term can well handle noisy data reconstruction 

for low-dose X-ray CT scanning, which will effectively alleviate 

the X-ray radiation exposed to the patient. To acquire the best 

image quality from the reconstruction, the selection of the 

regularization parameter is crucial to balance the noise and 

resolution properties of the reconstructed image. There are two 

types of image quality assessment (IQA) metrics involved in the 

selection of the parameter, i.e., general IQA and task-specific 

IQA. The ultimate goal of CT reconstruction is to provide 

adequate pathological information for diagnosis, which can be 

measured by a task-specific IQA model. However, the 

pathological information is insufficient during the iterative 

reconstruction procedure, thus the task-specific discrimination 

metric is not capable to guide reconstruction optimization. In 

contrast, general IQA metric can be used for the guidance but 

it always results in inconsistent selection result with the task-

specific IQA. By recognizing that the task-specific IQA indeed 

focuses on local image quality property, in this study we 

proposed to explore how to improve the local image quality 

while maintaining the global quality in the iterative 

reconstruction. Inspired by an advanced IQA metrics PAMSE, 

which introduces a Gaussian smoothed filter to MSE, we 

propose a new constraint to the regularization term in 

dictionary learning based iterative reconstruction. Preliminary 

experiment results both on simulation data and real data 

demonstrated that the proposed method can elevate the local 

image quality on CT images when using general IQA in 

optimization of regularization parameter and put the selection 

being closer to the result of task-specific IQA guidance. 

Keywords—computed tomography; PAMSE; MSE; general 

IQA; task-specific IQA 

I.  INTRODUCTION 

Nowadays, X-ray computed tomography (CT) imaging 
has been widely used for diagnosis and intervention in 
hospitals and clinicals. As is well known to all, X-ray 
radiation can cause potential damage to human body which 
may induce genetic, cancerous and other diseases. Therefore, 
the ALARA principle (As Low as Reasonably Achievable) is 
put forward to avoid the excessive radiation, which dictates 
that restriction on radiation dose is extremely essential during 
any radiation procedure by all radiologists, whilst at the same 
time maintaining the diagnostic quality of medical images. 
As the radiation dose decreases, the medical image quality 
may degrade. Consequently, considering other conditions, 
image quality assessment (IQA) has got an enormous amount 
of attention from researchers.  

For our primary interest in this paper, i.e., medical X-ray 
CT imaging, IQA is related with every aspect through the 
whole medical care. As mentioned in [2], medical care is 
composed of four layers, namely, physical layer, algorithm 
layer, diagnosis layer and retrieval layer, in which different 
parameters settings will influence on image quality, for 
instance, scan protocols, methods to reconstruct, the extent of 
pathological information and postoperative recovery for 
patients. As for the engineering application of X-ray CT 
imaging, we pay more attention on algorithm layer and 
diagnosis layer. 

Iterative reconstruction has been validated to be efficient 
to reconstruct image with acceptable quality from noisy data 
in low-dose CT scanning. Image quality associated with 
iterative reconstruction will be tuned by the selection of 
involved regularization parameter, which is a crucial issue in 
this type of reconstruction algorithms. In this study, we focus 
on the IQA issues related in the regularization parameter 
selection in iterative CT reconstruction. More specifically, 
we investigate how an IQA task affects the selection of the 
regularization parameter and find a new way to tune the 
selection toward to producing high quality image for 
diagnosis. 

During the algorithm and diagnosis layers when a CT 
image goes through medical care process, there are two types 
of IQA metrics involved, i.e., general IQA and task-specific 
IQA. Traditionally, the former mainly focuses on the general 
image quality conducted by various algorithms and 
parameters based on the obtained raw dataset, which can be 
evaluated by a general IQA metric, such as SSIM[3], 
GMSD[4], etc. The latter concerns the capability of 
recognizing a specific pathological signal from its local 
background in the image, which is usually assessed by a task-
specific IQA metric. The most typical IQA model for this 
purpose is observer model. Up to now, these two classes of 
IQA models have been utilized to improve or optimize 
various algorithms in literature. Bai et al tried to select 
regularization parameter tuned by blind image quality 
assessment (BIQA) in iterative CT reconstruction[5]. 
Wunderlich and Noo tried to evaluate the effect of tube 
current modulation on lesion detectability in CT images[6]. 
In practice, the ultimate goal of CT reconstruction is to 
provide enough pathological information for diagnosis by 
clinicians[7], which hints that the task-specific shall be used 
to dominate the optimization. However, in the algorithm layer, 
the task-specific IQA model cannot be applied because the 
task-specific IQA is a problem of signal known exactly (SKE) 
and background known exactly/statistically (BKE/BKS), and 
obviously, the pathological signal and its background are 
unknown before the image is well reconstructed. In contrast, 
applying general IQA in optimizing image reconstruction 
cannot always produce the best image quality recognized by 
the task-specific IQA, which fact has been validated by our 
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previous work[2]. Hence, investigating a new iterative 
reconstruction algorithm that produces consistent image 
quality in terms of general IQA and task-specific IQA 
becomes an interesting research topic. 

Observer model was built based on some low-level image 
feature decompositions. With the decompositions, image 
signals are represented by removing mutual dependencies as 
much as possible and hence the signal and the background 
can be distinguished efficiently. Meanwhile, general IQA 
models also sense the low-level image features to evaluate 
how much extent these features are similar to the reference 
ones. Both the two types of the IQA models all adopt the low-
level features to perceive quality property of the image. This 
hints us to emphasize low-level features in image 
reconstruction process so that the two kinds of IQA would 
steer toward consistent outputs by the emphasized features. 

To this end, in this study we investigate to emphasize low-
level feature representation in a dictionary learning based 
iterative CT reconstruction algorithm to enhance the local 
image quality appearance while maintaining adequate global 
quality. More specifically, we amend the sparse 
representation term in the dictionary learning based algorithm 
by adding a low-level feature term. Inspired by our previous 
work [8], the proposed amended term has a simple form of 
valid distance metric and exhibits excellent IQA performance. 
With the amended term, we propose a new CT reconstruction 
algorithm, named FAIR. By experiments both on simulation 
data and real data, we found that the proposed FAIR can 
reconstruct images with more consistent global and local 
image qualities than traditional iterative algorithm. 

II. METHODOLOGY 

Primarily, the classical iterative reconstruction can be 
formulated as follows: 

 x̂ arg min{ (x) (x)}
x

  Φ Ψ  (1) 

where (x)Φ and (x)Ψ  represent the fidelity term and 

regularization term. And the scale   is the regularization 

parameter which adjusts the fidelity and penalty of 

reconstruction images. The inverse problem (x)Φ  can be 

demonstrated as 
2

2
xA - b , where M NA R  represents a 

bound and linear operator, and 
Mb R  is denoted as the 

measure data which is composed of noise 
N R  and the 

exact solution x NR . (x)Ψ  represents prior information of 

the reconstructed images, such as dictionary learning. In 
accordance with reference [1], the sparsity constraint as the 
regularization term can be written as  

 
2

2 0
(x) xs s s s

s s

   Ψ E Dα α  (2) 

where 
sE  is an operator to extract patches from the image. D  

is denoted as the overcomplete dictionary, and 
sα  is a sparse 

representation which has few nonzero entries with the 
0l -

norm. And then the goal of image reconstruction becomes to 
solve the following minimization problem: 

 
2 2

2 2 0x,
min x ( x )

s
s s s s

s s

    
α

A - b E Dα α  (3) 

In this study, we use this reconstruction framework in 
exploring how to emphasize local image quality measure. 
Obviously, the regularization term in (3) is constrained by 

2
being the 

2l -norm, i.e., a measure of MSE. Despite of 

excellent mathematical properties, such as simplicity, 
convexity and differentiability, MSE is not consistent with 
human perceptual vision[3,4,8]. Therefore, the optimal 
solution of (3) can merely improve the general CT image 
quality. In order to improve visibility of pathological signal 
in the image, we add a structural MSE (SMSE) measure to 
emphasize local image quality by introducing a linear 

structure extractor S  to construct an MSE-like 
2l -norm 

metric. Combing the linear structure extractor and 
regularization term, we can get a new constraint norm for 
regularization term as follows:  
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(4) 

where   is a constant. Let 
T M I S S . As analyzed in 

[8], for the validity of (4), M  should be positive semi-

definite (PSD). Then M  can be decomposed into TM P P . 
And (4) can be re-written as the following formula:  

  
2

02
(x) xs s s s

s s

   Ψ P E Dα α   (5) 

Generally, P  can be considered as an image smoothing 
operator. Moreover, it be inferred to be a Gaussian smoothed 
filter by using two structure extractors, namely the gradient 
operator and the Laplacian operator [8]. As a result, the 
minimization problem for (3) can be re-written as follows: 

 
22

2 02x,
min x ( x )

s
s s s s

s s

h     
α

A -b E Dα α   (6) 

where h  is Gaussian smoothed filter in default setting as 

reference [8]. For more detailed analysis, readers are 
suggested to consult reference [8]. Equation (6) shows a new 
CT reconstruction algorithm that is called as feature-aware 
iterative reconstruction, abbreviated as FAIR. In the 
following sections of this paper, we will experimentally 
examine the FAIR in terms of general IQA and task-specific 
IQA and check if the inconsistency between the two IQA 
evaluations can be improved. 

III. MATERIALS AND EXPERIMENTS 

A. Materials 

In this paper, we conduct two experiments to test the 
proposed FAIR. The associated experimental data sets are 
from simulation data and real CT scanning respectively. 

The simulation noisy data were generated from a 
simulation phantom of abdomen added by 5000 Poisson 
photons, which was produced by the DXCAT2 program, as 
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showed in Fig. 1(a). The simulation lesion was a uniform disk 
signal as indicated by the red rectangle, whose radius was 6 
pixels and contrast was 0.0719. The real data were obtained 
from the quarter dose of patient L067 of the training database 
provided by Low Dose Grand Challenge from Mayo Clinic, 
which was showed in Fig. 1(b). The sinogram views for all 
data were 672 1160 . We reconstructed noisy images by the 

proposed FAIR and traditional dictionary learning based 
iterative reconstruction (DL_IR). The regularization 

parameters were ranging form 1 ( 5) 1.2e    to 501 ( 5) 1.2e    

and 51 ( 4) 1.2 1.2e     to 5 451 ( 4) 1.2 1.2e     respectively. 

The dictionary was trained with 256 atoms whose size was 8. 
The coding loss was 3e-5.  

   
(a) (b) (c) 

Fig. 1. Experimental data. (a) Simulation phantom circled with simulation 

lesion. The display window is [0.007 0.02]. (b) Real data from Mayo Clinic. 

The display wimdow is [0.0168 0.0235]. (c) The dictionry. 

B. Description of evaluation metrics 

In order to evaluate the local and global image quality on 
CT reconstruction images, two kinds of IQA metrics were 
used. Considering the availability of ideal reference image, 
the general IQA metrics were different for simulation data 
and real data. In the case of phantom simulation experiment, 
a full reference IQA metric, GMSD[4], was used because the 
ground truth is available. While in real data experiment, a 
blind IQA (BIQA) metric [10] was used since corresponding 
clean reconstruction image without any noise contaminated 
is unavailable. A brief introduction to the used general IQA 
metrics will be described in late paragraph. The task-specific 
IQA metric was a channelized Hotelling observer model that 
was used for all experimental data. 

We briefly introduced the general IQA metrics, GMSD 
and BIQA. GMSD is short for gradient magnitude similarity 
deviation. It is a pooling strategy after obtaining the pixel-
wise gradient magnitude similarity (GMS) between reference 
image and distorted image [4]. As for simulation data, the 
abdomen phantom with simulation lesion was denoted as the 
reference image and the reconstructed images were denoted 
as the distorted images. The parameters were in default 
settings as reference [4]. And the value of GMSD score 
approaching 0 meant better image quality. The BIQA model 
utilized the joint statistics of gradient magnitude and the 
Laplacian of Gaussian operator to extract features and trained 
regression model learning with subjective human scores as 
stated in reference [10]. Due to lack of effective CT image 
databases, we used natural images from LIVE database [11] 
to train BIQA model in default settings as reference [10]. 
Differential mean opinion score (DMOS) was regarded as 
subjective scores, ranging from 0 to 100. Thus the BIQA 
score approaching 0 meant better image quality. 

As for task-specific IQA metric, the channelized 
Hotelling observer model was conducted to measure the 
performance of a specific signal from its background in visual 
perception [9]. It can be regarded as a two-classification 
problem. The discriminant function for this binary task was a 

scalar test statistic (x)  compared to a threshold value 
t  

for signal detection. In this paper, we set channels as Gabor 
channels as described in reference [6]. The matched filter and 
pre-whitening filter were trained from training database of 
Mayo clinic. According to the radius of lesion, the size of 
image patches was 32 and 48 for simulation data and real data, 
respectively. After training, we set 0 as the threshold value 

for all experiments. If the (x)  larger than 0, the image patch 

was absent with lesion. Otherwise, that was present with 
lesion. 

IV. RESULTS 

In this section, experimental results are presented to 
validate our proposed method. Firstly we demonstrate the 
results for simulation data in Fig. 2 and Fig. 3, which were 
reconstructed by FAIR and traditional DL_IR respectively. 
The curves in both Fig. 2(a) and Fig. 3(a) show the 
regularization parameters   versus GMSD scores (red line) 

and the scores of channelized Hotelling observer model (blue 
line) separately. In both Fig. 2 and Fig. 3, the images (b) and 
(c) are the optimal ones selected by general IQA and task-
specific IQA respectively. The lesion is pointed by a red 
arrow. By comparing Fig. 2(b) with Fig. 3(b), we can find 
that the optimal image reconstructed is smoother than that 
reconstructed by DL_IR. As for Fig. 2(c) and Fig. 3(c), Fig. 
3(c) contain more noise and block structure than Fig. 2(c) as 
well. As observed from the curves in Fig. 2(a) and Fig. 3(a), 
the selections of two optimal images reconstructed by FAIR 
are closer than those reconstructed by DL_IR. 

As for real data, the results are demonstrated in Fig. 4 and 
Fig. 5, which were reconstructed by FAIR and DL_IR 
respectively. The curves in both Fig. 4(a) and Fig. 5(a) are 
IQA scores versus the regularization parameters  . And in 

both Fig. 4 and Fig. 5, the images (b) and (c) are the optimal 
images selected by general IQA and task-specific IQA 
respectively. The lesion is pointed by a red arrow. The 
optimal image in Fig. 4(b) is smoother than that in Fig. 5(b), 
same as Fig. 4(c) and Fig. 5(c). In Fig. 4 and Fig. 5, similar 
as the results for simulation data, the two optimal images 
reconstructed by FAIR have more consistency than those 
reconstructed by DL_IR. 

V. DISCUSSIONS AND CONCLUSIONS 

In this paper, we propose a new CT reconstruction 
algorithm, named FAIR, by introducing a Gaussian smoothed 
filter to regularization term. According to experimental 
results, the two optimal images reconstructed by FAIR and 
selected by the two kinds of IQA metrics exhibit more 
consistent than that reconstructed by traditional iterative 
reconstruction on all experimental data. As a conclusion, the 
proposed FAIR can improve the local image quality while 
maintaining general image quality to some extent. However, 
the experimental dataset was too small for validation. It is 
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necessary to test on more real clinical data. And the 
reconstructed images should be evaluated by professional 
clinicals for subjective scores. This research is still a fairly 
challenging mission on CT field. 

 
(a) 

  
(b) (c) 

Fig. 2. Evaluation on simulation data reconstructed by proposed FAIR. (a) 

Curves of regularization parameters   vs GMSD scores (red) and the 

scores of channelized Hotelling observer model (blue) respectively. (b) The 
best reconstruction image on general IQA. (c) The best reconstruction 

image on task-specific IQA. The display window is [0.007 0.02]. 

 
(a) 

  
(b) (c) 

Fig. 3. Evaluation on simulation data reconstructed by DL_IR. (a) Curves 

of regularization parameters   vs GMSD scores (red) and the scores of 

channelized Hotelling observer model (blue) resperctively. (b) The best 

reconstruction image on general IQA. (c) The best reconstruction image on 

task-specific IQA. The display window is [0.007 0.02]. 

 
(a) 

  
(b) (c) 

Fig. 4. Evaluation on real data reconstructed by proposed FAIR. (a) Curves 

of regularization parameters   vs BIQA scores (red) and the scores of 

channelized Hotelling observer model (blue) respectively. (b) The best 

reconstruction image on general IQA. (c) The best reconstruction image on 

task-specific IQA. The display wimdow is [0.0168 0.0235]. 

 
(a) 

  
(b) (c) 

Fig. 5. Evaluation on real data reconstructed by DL_IR. (a) Curves of 

regularization parameters   vs BIQA scores (red) and he scores of 

channelized Hotelling observer model (blue). (b) The best reconstruction 
image on general IQA. (c) The best reconstruction image on task-specific 

IQA. The display wimdow is [0.0168 0.0235]. 
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 Analysis on Optimal Selection of Regularization 

Parameters Based on CT Image Statistics  
Jiayu Duan, Jianmei Cai and Xuanqin Mou 

 
Abstract—Regularization parameter selection is pivotal in 

optimizing reconstructed images which controls a balance 

between fidelity and penalty term. Images reconstructed with 

the optimal regularization parameter will keep the detail 

preserved and the noise restrained at the same time. Our 

previous works have used the second order derivates of image 

variance (Soda-curve) to select the optimal regularization 

parameter which exhibits well in multiple regularizers. 

However, we have not yet given a justification for this 

hypothesis. In this work, we proposed a generalized model 

between variance and regularization parameters based on 

medical CT image statistics to explain the effectiveness of Soda-

curve method. The reconstructed images with different   

were decomposed into structure and noise parts with the dual 

dictionary learning method. And variances of the decomposed 

results vs   were modeled by polynomial functions. 

Calculating the Soda-curve with modeled functions, we found 

that the presence of maximum in Soda-curve doesn’t rely on 

the parameters range in functions nor employed sparse 

operator in different cases which provides a solid basis to 

support the efficiency of Soda-curve method. 

Keywords—regularization parameter selection, image 

statistics, dual dictionaries, Soda-curve 

I.  INTRODUCTION  

Inverse problem exists in many imaging computation 
cases, especially in computed tomography reconstruction. 
Computed tomography needs to transform projections 
gathered by detectors into the attenuation coefficient of the 
reconstructed area. Besides, in accordance with the ALARA 
(as low as reasonably achievable) principle, low dose CT 
scan is applied to avoid excessive radiation by adjusting the 
operating current, the operating potential and exposure time 
of an X-ray tube, which leads to the noisy projections. In 
general, this kind of problem is ill-posed. When settling this 
kind of problem, Bayesian approaches, or maximum a 
posteriori (MAP) methods, are effective in providing 
solutions [1]. Usually, by constructing the Lagrangian 
function as Eq. (1) to minimum this MAP problem, an 
optimal solution can be found.  

 ˆ arg min{ ( ) ( )}
x

x x x                                   (1) 

In the Lagrangian function, the non-negative functional 
φ and ϕ are known as the fidelity term and regularization 
term. The selection of regularization term is always based on 
some kind of prior, such as total variance (TV) [2] and sparse 

representation based on an over-complete dictionary [3]. The 
regularization parameter β is used to balance the strength of 
the fidelity and penalty terms to make good tradeoff between 
resolution and noise suppression. In practice, a larger value 
of β will result in over smooth reconstructed image, while a 
smaller one will bring about noisy result. Hence the selection 
of the parameter β plays a crucial role in producing a high-
quality reconstruction. Currently, many fashions have been 
proposed to seek optimal parameters in regularization term. 
As for the discrepancy principle, it requires an estimate of 
the noise level, which is not always available in practice and 
the existence of a solution is not guaranteed for some non-
smooth functional [4]. And the GCV (Generalized Cross 
Validation) method estimates the mean square error (MSE), 
but the minimization of the objective functions is nontrivial 
because of their flat property over a broad scale. Moreover, 
the L-curve method is totally based on data, which is 
sensitive to curvature estimation and the correlation with β 
is implicit [5]. We have investigated this issue by introducing 
CT image statistics to estimate the correlation function 
between a proposed sparse feature and the parameter β and 
hence to find the resolution based the correlation. In [5], we 
analyzed the image by applying a sparse operator. As a 
hypothesis, the analyzed coefficient consists of signal and 
noise components, each of which subjects to a generalized 
Gaussian distribution. And we discovered that the second 
order derivation of the variance curve of the coefficient with 
regarding to β, in this study we call it as Soda-curve, can be 
used to locate the optimal selection of β by maximizing the 
Soda-curve. Meanwhile, we experimentally validated this 
method by using LOG (Laplacian of Gaussian) as the sparse 
operator. Then in [11], we used the pairwise products of 
neighboring LOG signals as the new sparse feature to obtain 
more accuracy selection. It was confirmed that the new 
feature is more efficient to remove structural redundancy 
than the LOG signal. In [6], we constructed a ‘Z-curve’ that 
is originated from L-curve by applying scale transformations 
to analyze the relationship between dictionary learning based 
sparse representation coefficients and β. Although the best 
parameter selection strategy is different from that in [5, 6], 
they also follow similar principle. In any case, above works 
based on the same hypothesis, i.e., the optimal β is associated 
with the maximum point of the Soda-curve. However, we 
have not yet given a justification for this hypothesis. In this 
work, we will conduct an analysis on CT image statistics and 
propose a general model to explain how the Soda-curve 
method works based on the generalized model.  

The rest of the paper is organized as follows: in Section 
2, we introduce the proposed methods. Section 3 gives the 
experiment setup and results, and analysis about the results. 
The conclusion and discussion can be found in Section 4. 
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II. METHODS 

Let ( ) N Nx    denote a serial of reconstructed images 

with a number of parameter  . The values of   are 

selected to ensure that the reconstructed images vary from 
noisy ones to over-smooth ones which guarantees the 

optimal image is exist in this range. i

1{ }m

ix 
 denotes the 

patches extracted from the image x . For every patch, there 

consists of two parts: structure and noise although the 
structure can be over-smooth when the   is too big. The 

patches can be generated by randomly sampling in the image 
[12] or extracting blocks with (non-) overlap interval [13]. 
Nowadays, with the emergence of dual dictionaries learning 
technics (DDL), it offers a chance to solve many matters 
such as super-resolution image reconstruction via DDL [8], 
removal the limited angle artifacts [9,10] etc. We apply the 
DDL method to separate structure and noise from the 
reconstructed images with the structure dictionary and noise 

dictionary. Therefore, the 
i ( )x   can be represented as 

follow: 

 i ( )= ( ) ( )i ix A B      

where A  and B are the structure dictionary and noise 
dictionary separately and    is the regularization parameter. 

 

(a)  structure dictionary with training image 

 

(b)  noise dictionary with training image 

Fig. 1. structure and noise dictionary with training images 

In addition, we consider the sparse coefficients 
distribution of samples patches extracted from the image as 
the image sparse coefficients distribution. In sparse coding, 
the OMP (Orthogonal Matching Pursuit) algorithm is 
employed to chase for the optimal representation of the input 
signal. Note that the OMP algorithm uses MSE as a principle 
to minimum the coding residue. Theoretically, there is the 
rule that OMP only selects the same atom once which means 
the structure atoms in the structure dictionary cannot be 
selected when the coding process begins to represent the 
noise part of the image [14]. Nevertheless, the OMP seeks 
the optimal combination in the atoms span which means the 
combination of this atoms can be regarded as a “new” atom. 
Besides, we experimentally find that all the sparse 
coefficients produced by different sparse operators from 

structure and noise dictionary are independent, which 
accords with the spirit of sparse representation. 

As a consequence, we mimic the “structure atom” in 
noise dictionary depicted as Eq. (3) 

 A CB   (3) 

Thus the 
i ( )x   can be described as follow: 

 
i ( )= ( ) ( )i ix A CB       (4) 

As can be seen, the patches can be represented by the 
same sparse operator or same atom after Eq. (4). And in [5], 
we model noise and structure sparse coefficients as two 
independent generalized Gaussian distribution. Hence, the 
image distribution can be formularized as Eq. (5). 

 ( ) { ( ), ( )}i i if        (5) 

Note that the sparse coefficients distributions in structure 
and noise parts are statistical independent, which means the 
variance of the image sparse coefficients can be seen as Eq. 
(6) 

 var( ( )) var( ( )) var( ( ))f         (6) 

By our experimental observations based on a large 
number of resultant images resolved by (1), no matter for CT 
images or other natural image processing cases, and for any 
one of the structure atoms, var(α(β)) and var(η(β)) can be 
generally fitted by a fourth-order polynomial. Fig 2 shows a 
sample. Considering the noise level will be nearly to zero 
when the regularization parameter is enough large, we 
introduce a step function to limit the domain of the noise 
component. Then the variances can be formularized as Eq. 
(7). 

 

4 3 2

1 2 3 4 5

4 3 2

1 2 3 4 5 0

var( ( ))= + + +

var( ( ))=( + + + ) ( )

p p p p p

p p p p p u

    

    

     

       



 
   (7) 

where , 1,2,3,4,5ip i  , , 1,2,3,4,5jp j  are the 

polynomial coefficients of structure and noise, respectively 

and 
0( )u    is the step function.  

The solution of Soda-curve can be generated with the 
general fitting polynomial as Eq. (8) 

2 2 2
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According to [5], we analyzed that the structure variance 
will gradually increase with decay of regularization 
parameter. Because of the non-sparsity of noise, the variance 
of the noise coefficients is always bigger than variance of the 
structure coefficients. With the regularization parameter 
gradually increasing, the reconstructed image will become 
more and more clear and we assumed that there exists a point  

0  where the reconstructed image preserves detail 

structures while the noise does not or just appear. We assume 
that the optimal regularization parameter shows up around 
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0 . In order to simulate this phenomenon, we add a step 

function in Eq. (8). Thus, the optimal point always locates 
around maximum point at Eq. (8). Eventually, the 
generalized model is proposed based on medical image 
statistics. 

In this work, we will use generalized model to explain 
how the Soda-curve method works based on the generalized 
model. In addition, visual and quantitative evaluation are 
validated to verity the ability of this method.   

III. EXPERIMENTS AND ANALYSIS  

In this section; we designed two type of validation 
experiments to demonstrate our hypothesis. First, we 
experimentally validated that the maximum of Eq. (8) just 

locates around the point 
0 . In the fitting process, we had 

value ranges about these variables. And we observed that the 
maximum point always near the optimal regularization 
parameters no matter what value we choose in the range. 
Here for present preference, we randomly selected several 
values in the range value and showed in Fig.3. As can be 

seen, maximum in all curves shows up around 
0  which 

indicates the optimal point always shows up around 
0 . The 

relation between 
0 and optimal point will be one of our 

further research directions. 

 

(a)structure 

 

(b)noise 

Fig. 2. variance tendency in structure and noise with regularization 

parameter increasing with a specified atom 

Second, we demonstrated that the optimal point doesn’t 
rely on the sparse operator. The data is the real data from 
mayo clinic which was utilized to numerically generate a 
672×1160 sinogram. All were added by 1E4 incident 
photons to synthesize low dose noisy data. And we used two 
different regularization methods: total variation (TV) and 
dictionary learning (DL) in the reconstruction algorithm. In 
TV regularization algorithm, we reconstructed 25 images 

with regularization parameter varying from 1(1.2) to 25(1.2) . 

And in DL, the regularization parameter was set from 
200.01 (1.2) to 40.01 (1.2)  generating 25 images and the 

coding length was set 8 and coding loss was set 5e-3. 

In dual dictionaries learning process, we trained structure 
dictionary in clean sheep reconstruction with 256 atoms and 
noise dictionary is trained by the residue images with 512 

atoms because the noise image is denser than clean image 
the dictionaries and training image are showed in Fig. 1. The 
whole workflow about the experiment can be described as 
Fig. 4. 

 

Fig. 3. Maximum point at vertical axis  

 

Fig. 4. the work flow of the validation  

 

(a)  different sparse operators fitting curves in TV as regularizer 

 

(b) different sparse operators fitting curves in DL as regularizer 

Fig. 5. Different fitting curves when using different sparse operators 
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(a1) (b1) (c1) 

 

(a2) (b2) (c2) 

 

 

(d) 

Fig. 6. First and second row are the human abdomen reconstructions in TV 

and DL regularization algorithms while reconstructions from the 1st to the 
3rd column correspond to different β. Curves of image variance vs 

regularization parameter β are illustrated in d. And the reconstructed 

window is set as [ 0, 0.035], b(1) and b(2) are optimal reconstructed images. 

Fig 5 showed the results about different sparse operators 
There is no obvious difference in Soda-curve when choose 
TV or DL regularizers. The reconstruction ranges from very 
noisy to oversmoothed which guaranteed excellent trade-off 
versions existence. Results are depicted in Fig.5. it can be 
seen that all the fitted curves with different atoms had almost 
same maximum value which means the selection of sparse 
operator doesn’t influence the result of the optimal point of 
Soda-curve. 

Table 1 
MSE AND SSIM VALUES OF SELECTED OPTIMAL RECONSTRUCTED 

IMAGE IN TV AND DL 

 

It is arbitrary to claim Soda-curve is superior than other 
selection method without comparison. Under this 
circumstance, we designed a comparison experiment 
between Soda-curve and L-curve. In Soda-curve selection 
for convenience, we used LoG as sparse operator and the 
data is also from mayo clinic same as second demonstration 
experiment. The result is showed in Fig. 6.  

L-curve illustrates the relationship between fidelity and 
penalty terms. In L-curve, more horizontal part corresponds 
to the solutions where the regularization parameter is too 
large and vertical parts corresponds to the solution where 
regularization parameter is too small. The optimal point 
locates in the maximum of the curvature. The L-curve of 
different reconstruction algorithm is depicted in Fig. 7. And 
the optimal reconstruction results selected by L-curve and 
Soda-curve is showed in Fig. 8. From the perceptual visual 
evaluation, Soda-curve shows potential to select the optimal 
reconstruction in better edges and low noise than L-curve. 
Apart from perceptual visual evaluation, we conducted 
quantitative evaluation by calculating MSE (mean square 
error) and SSIM (structural similarity index) values and 
compared our method with L-curve method. And the 
quantitative evaluation results are presented in Table. 1.  

From the quantitative results, the Soda-curve exhibits 
well in both preserving structure (higher SSIM value) and 
suppressing noise (lower MSE value) than L-curve which 
shows the ability to select the optimal regularization 
parameters. 

IV. DISCUSSION AND CONCLUSION 

In this study, in order to explain the mechanism of Soda-
curve. We investigated the statistical changes vs the 
regularization parameters and found out that all the 
tendencies are similar with different sparse operators. Based 
on experimental analysis, we modeled them as polynomial 
functions as the generalized model. it is valuable to mention 
that the generalized model we brought up in this paper 
demonstrates that the optimal regularization parameter point 
shows up without changes in sparse operators and range of 
value in the regularization parameters which explains the 
efficiency of the Soda-curve. What’s more, visual and 
quantitative results also illustrate the potential of the Soda-
curve.  

One of the barriers of the present work is that calculating 
the model with dual dictionaries can be time consuming 
which means the demand of creating a simplified manner is 
keen. In practice, adjacent LOG multiplication can be 
regarded as the line atom in structure, employing this king of 
operator can save a lot of time [11]. In other word, this study 
will provide a solid basis to support that the maximum point 
of the ‘Soda-curve’ of the adjacent LOG signals can be 
located as the optimal selection regularization parameter. 
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(a) TV as regularizer (b) DL as regularizer 

Fig. 7. is the L-curve about TV and DL reconstruction method with 
different regularization parameters. The Y axis is the logarithm of the 

penalty term and X axis is the logarithm of the fidelity term. The optimal 

regularization parameter is located by maximizing the curvature of L-curve. 

 

(a)L-curve and Soda-curve selection result comparison in TV 

 

(b)L-curve and Soda-curve selection result comparison in DL 

Fig. 8. is depicted the result about the optimal reconstruction results 

selected by L-curve and Soda-curve method. The top right corner is the 

magnified ROIs marked in the yellow rectangles which shows that the Soda-

curve exhibits well in noise suppression.  

One of the barriers of the present work is that calculating 
the model with dual dictionaries can be time consuming 
which means the demand of creating a simplified manner is 
keen. In practice, adjacent LOG multiplication can be 
regarded as the line atom in structure, employing this king of 
operator can save a lot of time [11]. In other word, this study 
will provide a solid basis to support that the maximum point 
of the ‘Soda-curve’ of the adjacent LOG signals can be 
located as the optimal selection regularization parameter. 

As can be seen, in this paper, we first used the dual 
dictionary to separate noise and structure components in 

series of regularization parameters. And based on former 
statistical hypothesis, we explained how the selection works 
in ‘Soda-curve’ which had nothing to do with the change in 
regularization parameter value and the selection in sparse 
operators. 
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Model based image reconstruction
with concomitant scale estimation

Jingyan Xu and Frédéric Noo

Abstract—Model base image reconstruction (MBIR) often
includes an edge-preserving regularizer to stabilize the ill-posed
inverse problem. Edge preservation can be achieved by adjusting
the penalty weights of the regularizer: the weights should be
small if they are near edges, the weights can be large if they are
in a homogeneous region. In this work, the adjustment of the
penalty weights is accomplished by concomitant scale estimation,
a reconstruction framework that simultaneously estimate the
image intensity and the scale parameters that are inversely
proportional to the penalty weights. If the original problem is
convex and the regularizer is a convex function, then the problem
of image reconstruction with concomitant scale estimation is
jointly convex (and nonsmooth) in image intensities and the
scale parameters. Such problems can be solved by a number
of primal-dual splitting algorithms from convex programming;
we use the alternating direction method of multipliers (ADMM)
in this work. We discuss the applicability and versatility of the
general framework using CT reconstruction examples.

I. INTRODUCTION

The objective function for MBIR is often written as

Φ(x) =
1

2
‖y −Ax‖2 + β

∑
i

h([Dx]i; δi) (1)

where y is the acquired projection data, and A is the forward
projection operator, D is the finite difference operator. For
simplicity, we assume [Dx]i = [xi − xi,h;xi − xi,v] is a 2-
vector consisting of horizontal (h) and vertical (v) differences
at pixel location i in a 2-D setting. The penalty function h,
which itself may have parameters {δi}, is assumed to be
convex, penalizing large intensity differences based on the
underlying assumption that CT images should be piecewise
constant. The hyper-parameter β > 0 balances between data
fidelity and the prior information. The parameter values, β,
{δi}, directly affect image quality. However, parameter tuning
is a thorny issue with arguably no satisfying solutions. Without
a better handle on a solution, their selections often resort to vi-
sual inspection, semi-exhaustive search or more sophisticated
optimization using image quality metrics.

To introduce the concept of concomitant scale estimation,
we first consider a special case of (1) where h is a quadratic
regularizer, i.e., h(s) ≡ q(s) = ‖s‖2/2. The hyper-parameter
β can be split into two parts, one overall constant β ≥ 0, the
other δi > 0 that is position-dependent.

Φ(x) =
1

2
‖y −Ax‖2 + β

∑
i

1

δi
q([Dx]i) (2)
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The objective function (2) abstracts some recent approaches
of using edge-preserving quadratic regularizers. The key is to
adjust δi, hence the overall penalty weight (β/δi) at each loca-
tion i, based on the image content. In a homogeneous region
where the image gradient is small, δi can be small as well
thus increase the overall weighting; near region boundaries
where the image gradient is large, δi should be large so that
overall less smoothing is applied. This idea is the principle of
all edge-preserving image filters and regularizers.

The quadratic function satisfies the following identity

q(s)/δ = q(s/δ)δ,

the right-hand-side (RHS) of which is the perspective trans-

form of q. We define Q(s, δ)
�
= q(s/δ)δ, then it is well known

from convex analysis that Q(s, δ) is jointly convex in s and
δ. Thus potentially the RHS of (2) can be jointly optimized in
image intensity x and the scale parameters {δi}. This is what
we refer to as concomitant scale estimation.

We used a quadratic regularizer as an example to explain
the concept. Indeed, many popular potential functions used in
MBIR for CT, such as the Huber and the Fair potential, can
be written as

H(s, δ)
�
= h(s; δ) = h(s/δ; 1)δ, (3)

so that H is jointly convex in s and δ. Plugging (3) into
(1) and jointly optimize image intensity x and the scale
parameters {δi} comprises the basic formulation of our generic
framework.

To our knowledge, the term concomitant scale estimation
was used in [1, Chapter 7.7] to describe the same concept
as we have just presented. It was also mentioned there that
the function H(s, δ) was jointly convex in s, δ if h(s; δ) is
convex. In terms of computation, an alternating minimization
algorithm was proposed to update image intensities (the loca-
tion variables in [1]) and the scale parameter δ. However, the
function H(s, δ), though convex, is not smooth at δ = 0. Thus,
an alternating minimization algorithm is not strictly applicable.

To deal with the singularity at δ = 0, we rewrite H(s, δ)
using its conjugate function. As H(s, δ) is a homogeneous
function, its conjugate function is the indicator function of
a convex set. This reformulation makes a number of primal-
dual splitting type algorithms applicable for the concomitant
estimation problem. As an example, we use the alternating
direction method of multipliers (ADMM) in this work.

The proposed framework requires some background from
convex analysis. These are discussed next for self-containment.
Readers should consult standard textbooks on convex analysis,
e.g., [2], [3], for more details.
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II. BACKGROUND ON CONVEX ANALYSIS

A. Conjugate functions of convex functions

The conjugate function (Fenchel-Legendre transform) of a
closed proper convex function f(x) : Ω ⊂ Rn → R ∪ {∞},
denoted by f ∗(p), is defined as

f∗(p) = sup
x∈Ω

ptx− f(x)

If f(x) is convex, we further have f(x) = f ∗∗(x).

B. Perspective transform of convex functions

The perspective transform H of a closed, proper, convex
function h(s) is defined as

H(s, δ) =

⎧⎨
⎩

δh(s/δ) δ > 0
h∞(s) δ = 0
+∞ elsewhere

where h∞ is the horizon function defined by
h∞(s):= limλ→∞(h(w + λs) − h(w))/λ. Perspective
transform is one of the known transforms that preserves
convexity. That is, H(s, δ) is jointly convex in s, δ. See e.g.,
[4, page 89]. When h has superlinear growth, e.g., when h is
a quadratic function, h∞(s) = ∞ unless s = 0. We present
a formal derivation of the conjugate function of H .

H∗(p, q) = sup
(s,δ)

(p, q)(s, δ)−H(s, δ),

= max

{
sup(s,δ>0){(p, q)(s, δ)− δh(s/δ)},
sups{(p, s)− h∞(s)},

= max

{
sup(s′,δ>0){(p · s′ + q)δ − δh(s′)},
sups{p · s− h∞(s)},

= max

{
supδ>0{δ(q + h∗(p))},
ιp∈dom(h∗) (∗)

= ιK ,where

K = {(p, q)|q + h∗(p) ≤ 0,p ∈ dom(h∗)} (4)

where h∗ is the convex conjugate of h. In (*), the horizon
function h∞ and the indicator function of the domain of h∗

are conjugate to each other, see, e.g., [5, Theorem 11.5]. Note
that H∗ is the indicator function of the convex set K specified
by (4). For convenience we often write simply K = {(p, q)|q+
h∗(p) ≤ 0} and omit the domain specification. An example
of the set K is illustrated in Fig. 1 for the Huber potential
h (6). In this case, its conjugate function h∗(p) = ‖p‖2/2,
for ‖p‖ ≤ 1. The convex set K is the flipped epigraph of h∗.
See [6], [7] for other examples of the set K and more details
about computing the projection onto it.

III. METHOD

The objective function for MBIR with concomitant scale
estimation is written as

min
x,δ

Φ(x, δ) = {1
2
‖y −Ax‖2

+ β1

∑
i

H([Dx]i, δi) + β2R(δ,x)} (5)

p

q

K

−h∗(p)

−1 1

−0.5

Fig. 1: The conjugate function H∗ of the perspective transform
H(s, δ) is the indicator function ιK of the convex set K. Computing
the proximal mapping of ιK is simply projection onto the convex set.

Compared with (1), we rewrite h(·; δi) as H(·, δi) [cf. (3)] to
emphasize that we optimize with respect to δ := {δi} as well.
We have also added an additional regularizer R(·, ·) to penalize
large values of δi. As discussed in [1], the main purpose of
introducing R is to ensure a well-defined (coercive) objective
function. Otherwise, for any fixed x, we can always increase
δ to decrease the objective. In addition to ensure coerciveness,
we may encourage a more structured image formation by
penalizing large values of δ. As later our examples show,
we also allow δ to be dependent on the unknown x. This
is expressed as the joint penalty R(δ,x) in (5). We assume
R(δ,x) is jointly convex in δ and x.

Due to the perspective transform, the objective function (5)
is convex but nonsmooth. Using the conjugacy relation (4), a
number of primal-dual splitting algorithms can be applied to
minimize Φ(x, δ). The key issue in computation becomes that
of calculating the proximal mapping of H(s, δ i) [8], which,
upon invoking the Moreau identity, can be obtained from the
proximal mapping of its conjugate function H ∗(p, q). As H∗

is the indicator function of the convex set K , its proximal
mapping is nothing but projection onto K , i.e., the epigraph
of h∗ [9], [10], which can be related to the proximal mapping
of h∗ in an implicit form. See Appendix A.

Some familiar potential functions can be written as perspec-
tive transforms. Below we list some of them. Some of these
examples also appear in the recent paper [8], which focuses
on the proximal mapping and the calculus of perspective
transform and its applications in machine learning.

A. Examples of potential functions

• The Huber function

h1(s; δ) =

{
‖s‖2

2δ , ‖s‖ ≤ δ
‖s‖ − δ

2 ‖s‖ > δ
(6)

It is easy to see that h1(s; δ) = δh1(s/δ; 1).
• The Berhu function

h2(s, δ) =

⎧⎨
⎩
‖s‖ ‖s‖ ≤ δ

‖s‖2

δ + δ = δ

[(
‖s‖
δ

)2

+ 1

]
‖s‖ > δ

334 The fifth international conference on image formation in X-ray computed tomography



• The Fair potential

h3(s; δ) = ‖s‖ − δ log

(
1 +
‖s‖
δ

)
= δh3(s/δ; 1) (7)

• The relative difference prior [11]1

h4(x1, x2) =
(x2 − x1)

2

x1 + x2 + γ|x2 − x1| , γ > 0 (8)

where x1 and x2 are neighboring voxel intensity values.
To relate (8) to perspective transform, we first consider
the following convex function

r(s) =
s2

1 + γ|s| (9)

which is a special case of q-GGMRF [12]. The perspec-
tive transform of (9) is

r(s/δ)δ =
s2

δ + γ|s| (10)

Now that r(s/δ)δ is jointly convex in s, δ, for δ ≥ 0, we
further obtain (8) from (10) by the linear transformation
of the variables (s, δ)→ (s−δ, s+δ). The non-negativity
of image intensity values ensure that (8) is convex in x1

and x2. A similar construction may be applied to other
potential functions, e.g., the Fair or the Huber potential.

B. Application of the ADMM algorithm

In the following, we use the (linearized) ADMM algorithm
combined with a generic R(δ,x) and give the algorithm steps.
We first introduce the following auxiliary variables for (5),

s = Dx, δ = η (11)

Minimizing (5) can be rewritten as a constrained problem

min
x,η,s,δ

1

2
‖y −Ax‖2 + β1

∑
i

H(si, δi) + β2R(η,x)

subject to (11)

The augmented Lagrangian of the constrained problem is

1

2
‖y −Ax‖2 + β1

∑
i

H(si, δi) + β2R(η,x)

+
μ

2
‖Dx− s+

λ1

μ
‖2 + μ

2
‖η − δ +

λ2

μ
‖2 (12)

where λ1, λ2 are the Lagrange multipliers, μ > 0. The update
equations of the linearized ADMM are given by

• Update {x,η}

{xk+1,ηk+1} = argmin
x,η
{1
2
‖y −Ax‖2 + β2R(η,x)

+
τ

2
‖x−

[
xk − μ

τ
Dt(Dxk − sk + λk

1/μ)
]
‖2

+
μ

2
‖η − δk + λk

2/μ‖2} (13)

Convergence requires that τ > μ‖DtD‖.
1The prior was used in a negated form in a maximum a posteriori

reconstruction problem, therefore in [11] it was a concave prior.

• Update {s, δ}

{sk+1, δk+1} = argmin
s,δ
{β1

∑
i

H(si, δi)

+
μ

2
‖Dxk+1−s+λk

1/μ‖2+
μ

2
‖ηk+1−δ+λk

2/μ‖2}
(14)

• Update Lagrange multipliers

λk+1
1 ← λk

1 + μ(Dxk+1 − sk+1)

λk+1
2 ← λk

2 + μ(ηk+1 − δk+1)

Now we discuss two examples in image denoising (A = Id),
corresponding to two choices of R(δ,x), to see the detailed
steps involved in the above update equations.

C. Example 1: R(δ,x) = 1{δ≤γx̄}
In this example, we require that the single value δ is at most

γ times the mean image intensity x̄, which is unknown. The
objective function is given by

Φ1(x, δ) =
1

2
‖y − x‖2 + 1{δ≤γx̄} + β1

∑
i

H([Dx]i, δ)

(15)

In (15), we have removed the weighting coefficient β 2 as it
becomes irrelevant for an indicator function. The constraints
in (11) translates to δ = η1, i.e.,

η = δi, i = 1, · · · , N
From (13), define

ηk.5 =
∑
i

(δki − λk
2,i/μ)/N (16a)

χk = xk − μ

τ
Dt(Dxk − sk + λk

1/μ) (16b)

xk.5 = (y + τχk)/(1 + τ ) (16c)

• Update {x, η}. The update equation (13) becomes

{xk+1, ηk+1} = argmin
x,η
{1{η≤γx̄}

+
τ + 1

2
‖x− xk.5‖2 + Nμ

2
‖η − ηk.5‖2}

where x̄ = (x1 + · · · + xN )/N . This subproblem can
be conceptualized as projection onto the half-space {η ≤
γx̄} with (unequal) weighting. The solution is given by

rk =
max{ηk.5 − γx̄k.5, 0}

1 + γ2/(Nw)

xk+1 = xk.5 + rkγ/(Nw)

ηk+1 = ηk.5 − rk, where w = (τ + 1)/(Nμ)

and x̄k.5 = (xk.5
1 + · · ·+ xk.5

N )/N .
• Update s, δ. Again we define short-hand notation

sk.5 = Dxk+1 + λk
1/μ

δk.5 = ηk+1 + λk
2/μ
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the update equation (14) can be decomposed component-
wise for each voxel i:

{sk+1
i , δk+1

i } = argmin
si,δi
{β1H(si, δi)

+
μ

2
‖si − sk.5i ‖2 +

μ

2
‖δi − δk.5i ‖2} (17)

We invoke Moreau’s identity that relates the proximal
mapping of H with the proximal mapping of its conjugate
function H∗. Let z = {s, δ}, we have

z = proxκH(z) + κproxκ−1H∗(z/κ) (18)

Let κ = β1/μ, then the problem is converted to cal-
culating the proximal mapping of H ∗ = ιK [cf. (4)],
which amounts to projection onto the convex set K , or
the epigraph of h∗.
Although we have not explored this, it may speed up
convergence when the two quadratic terms in (14) or (17)
have unequal weighting (different μs). In this case, we
would need a slight generalization of the Moreau identity
with weighting. This is derived in Appendix B.

D. Example 2: R(δ) =
∑

i ‖δi‖ =
∑

i

√
δ2i,h + δ2i,v

The objective function is given by

Φ2(x, δ) =
1

2
‖y − x‖2 + β2

∑
i

‖δi‖+ β1

∑
i

Ha([Dx]i, δi)

where Ha is the anisotropic version of the Huber potential, i.e.,
the scalar Huber potential function applied to each component
of the finite difference [Dx]i at voxel i.

• Update x,η. Using the definitions (16), the update equa-
tion (13) becomes

{xk+1,ηk+1} = argmin
x,η
{β2

∑
i

‖ηi‖

+
τ + 1

2
‖x− xk.5‖2 + μ

2
‖η − ηk.5‖2}

therefore, xk+1 = xk.5, and ηk+1 = proxβ2/μ‖·‖(η
k.5)

is the soft block-thresholding of ηk.5.
• Update s, δ. The update equations are almost identical

to (17), but for an anisotropic Huber function. In other
words, not only the update equation decomposes voxel-
wise, it also decomposes direction-wise for each element
of the 2-vectors si and δi.

E. Generalization to image reconstruction

The objective function can be written as

min
x,η,s,δ,ȳ

1

2
‖y − ȳ‖2 + β1

∑
i

H(si, δi) + β2R(η,x)

(19)

subject to

⎡
⎣ D 0

0 Id
A 0

⎤
⎦
[

x
η

]
=

⎡
⎣ s

δ
ȳ

⎤
⎦ (20)

If we define ξ = {x,η}, ζ = {ȳ, s, δ} we may further rewrite
the linear constraint (20) as Aξ = ζ. Applying the linearized
ADMM algorithm, we obtain the following update equations

• Update ξ = {x,η}

{xk+1,ηk+1} = argmin
x,η
{β2R(η,x)

+
τ

2
‖x− xk.5‖2 + μ

2
‖η − δk + λk

2/μ1‖2}

xk.5 = xk−μ

τ
[At(Axk−ȳk+

λk
3

μ
)+Dt(Dxk−sk+λk

1

μ
)]

For convergence we require τ > μ‖AtA+DtD‖.
• Update ζ = {ȳ, s, δ}

{ȳk+1, sk+1, δk+1} = argmin{1
2
‖y − ȳ‖2

+ β1

∑
i

H(si, δi) +
μ

2
‖Dxk+1 − s+ λk

1/μ1‖2

+
μ

2
‖ηk+1−δ+λk

2/μ1‖2+ μ

2
‖Axk+1− ȳ+λk

3/μ‖2}

This subproblem further splits between ȳ and s, δ: ȳk+1

can be obtained by completion of squares, and s, δ can
be obtained using projection onto epigraphs similar to the
denoising problem.

• Update Lagrange multipliers λ1, λ2, λ3

λk+1
1 ← λk

1 + μ(Dxk+1 − sk+1)

λk+1
2 ← λk

2 + μ(ηk+1 − δk+1)

λk+1
3 ← λk

3 + μ(Axk+1 − ȳk+1)

IV. EXTENSION TO JOINT MULTIPHASE IMAGE

RECONSTRUCTION

Our development was partially motivated by multiphase CT
reconstruction. During a multiphase CT exam, a sequence of
two, three, or even four scans are acquired at different time
points following contrast injection. These multiple indepen-
dent acquisitions share a huge amount of information, the
utilization of which presents opportunities to reduce radiation
dose while maintaining image quality.

An example of extending (5) to joint multiphase reconstruc-
tion can be the following:

minΦ(x1, · · · ,xP , Δ{i}) = {
∑
p

1

2
‖yp −Apxp‖2

+ β1

∑
i

J(Ti(x),Δi) + β2

∑
i

R(Δi)} (21)

where yp, Ap are the projection data and the forward pro-
jection matrix, xp is the reconstructed image, at each phase
p = 1, · · · , P . Ti is the (multiphase) image gradient tensor
at voxel i, Ti = {Dx1

i , · · · , DxP
i } and Δi  0 is a positive

semi-definite matrix playing a role similar to δ ≥ 0 for single
image reconstruction. The joint penalty term J is the matrix
analogue to the quadratic penalty q(s) = ‖s‖2/(2δ).

J(T,Δ) =
∑
i

Tr{T t
iΔ

−1
i Ti}

Note that the mapping (T,Δ) → T tΔ−1T is (operator)
convex [13] for Δ � 0. We may use a variety of matrix norms
for the penalty R(Δ), e.g., the trace norm or the Frobenius
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norm. For computation, we will need a matrix version of the
conjugacy relationship in (4).

The formulation (21) may also be applicable to single
image reconstruction. If we compose T i using the gradient
vectors within a small neighborhood of the voxel i, and letting
R(Δi) = TrΔi, the regularizer in (21) resembles the structure
tensor TV [14].

V. DISCUSSION

Our contribution in this work can be interpreted in different
ways. One is that the combination of H(s, δ) and R(δ,x),
upon minimizing with respect to δ, generates new regularizers
on image intensity values. On the other hand, it also provides
a systematic approach for exploring the large hyper-parameter
space for some well known regularizers, including the Huber
and the Fair potential. Moreover, the concept of concomitant
scale estimation can be applied to the data-fitting terms [8] that
are constructed as perspective transforms, thus allowing novel,
non-least-squares types of data-fitting terms to be handled.

In [1], R(δ,x) = δ was used as an example to penalize
large values of δ. If this choice is combined with the quadratic
regularizer, i.e., q(s, δ) = ‖s‖2/(2δ), then as

min
δi≥0

‖si‖2
2δi

+ β′
2δi = ‖si‖

√
β′
2/2 (22)

we simply recover the conventional TV. Indeed, (22) is known
as the half quadratic formulation (in the multiplicative form)
of TV. This example, and the example of structure tensor TV
we discussed in Sec IV, indicate that not all combinations
of H(s, δ) and R(δ,x) produces new regularizers. In this
sense, our development provides an alternative perspective and
a computational procedure that unifies the existing approaches.
However, new regularizers will arise if we incorporate nonlo-
cal or image intensity information in constructing R(δ,x), as
is done in the relative difference prior [11].

Our numerical examples mostly consider using the Huber
function as H(s, δ). Note that the computational procedure
is general, and can be adapted to other priors as well. The
only difference would be calculating the projection onto the
convex set K [cf. Fig. 1]. For the Huber or the quadratic
prior, the convenience is that the projection can be calculated
in analytical form [7], which may not exist for other functions,
such as the Fair potential.

VI. CONCLUSIONS

We investigated a general framework of concomitant scale
estimation, that is, a framework that estimates simultane-
ously image intensity values and the hyper-parameters in the
regularizer. We also proposed a primal-dual splitting type
computational procedure for concomitant scale estimation. We
used three examples to demonstrate the wide applicability and
the versatility of concomitant scale estimation.

We are at an early stage of this investigation. Many ques-
tions remain unanswered, for example, how to choose the
penalty for the hyper-parameters R(δ,x) given a set of de-
sirable imaging properties. But the general framework of con-
comitant scale estimation provides a systematic approach of
exploring the large hyper-parameter space, and holds promise
for new regularizer designs and image quality improvement.

APPENDIX A
EPIGRAPHICAL PROJECTION

It is possible to relate the projection onto the epigraph of
a generic function h to its proximal mapping, proxh. The
projection (prox operator) onto the epigraph is defined as the
mapping (x, y)→ (u, v) such that

(u, v) = arg min
x′,y′

1

2
‖x− x′‖2 + 1

2
(y − y′)2 + ι(x′,y′)∈epi(h)

(23)

When (x, y) ∈ epi(h), i.e., y ≥ h(x), we have (u, v) =
(x, y). Otherwise, y′ = h(x′), and we seek u = x′ such that

min
x′

1

2
‖x− x′‖2 + 1

2
(y − h(x′))2 + {ι(x′,y′)∈epi(h)} (24)

we can ignore the constraint on the epigraph in (24) as it is
satisfied. Taking derivative with respect to x ′ of the objective
function in (24), we have

x ∈ x′ + (h(x′)− y)∂h(x′) (25)

which is a characterization of the solution to (23) when
(x, y) �∈ epi(h) [3, Proposition 28.28]. Letting h(x ′) − y =
ρ > 0 (unknown for now), then

0 ∈ x′ − x+ ρ∂h(x′)→x′ = proxρh(x)

APPENDIX B
A GENERALIZATION OF MOREAU IDENTITY

We consider the weighted proximal mapping

proxWκF (z)
�
= argmin

x
κF (x) +

1

2
‖z − x‖2w

where F (x) is a closed, proper, convex function, ‖z‖2W =
ztWz denotes the weighted least squares, and the weighting
matrix W � 0 is positive definite. Let F ∗(p) = supx(p

tx−
F (x)) be the conjugate function of F (x). Assume the generic
saddle problem

min
x

max
p

Φ(x,p) = κptx− κF ∗(p) +
1

2
‖z − x‖2W

has at least one solution x∗,p∗, such that Φ(x∗,p) ≤
Φ(x∗,p∗) ≤ Φ(x,p∗), ∀x,p. The solution p∗ satisfies

p∗ = argmin
p

κ−1F ∗(p) +
1

2
‖p− κ−1Wz‖2W−1

and x∗ and p∗ are related by x∗ + κW−1p∗ = z which can
be rewritten as

z = proxWκF (z) + κW−1proxW
−1

κ−1F∗(κ−1Wz) (26)

Obviously, (26) coincides with (18) when W = Id.
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Impact of the Non-Negativity Constraint in
Model-Based Iterative Reconstruction from CT Data

Viktor Haase, Katharina Hahn, Harald Schöndube, Karl Stierstorfer, and Frédéric Noo

Abstract—Model-based iterative reconstruction is a promising
approach to achieve dose reduction without affecting image
quality in diagnostic X-ray computed tomography. In the problem
formulation, it is common to enforce non-negative values, which is
motivated by physics but narrows down the choice of optimization
algorithm. In this work, we report on experiments assessing the
impact of the non-negativity constraint on image quality and
reconstruction speed. The assessment is performed under eight
scenarios that challenge the usefulness of the constraint. These
include reconstructions from full and sparse view sampling, with
quadratic or edge-preserving regularization, for two different
objects. Our results show that improvements due to the non-
negativity constraint are strongly scenario-dependent, and likely
negligible for conventional full view CT imaging. This implies that
for specific reconstructions, the non-negativity constraint could
be disregarded to simplify the optimization problem.

I. INTRODUCTION

A lot of the research in clinical computed tomography (CT)
is driven by the aim to reduce radiation dose while maintaining
image quality. One promising way to achieve this goal is
model-based iterative reconstruction (MBIR). Its potential for
diagnostic CT imaging was shown in recent studies [1]–
[4]. A popular MBIR formulation is penalized least squares
reconstruction [5], which includes two key components: (i)
the data fidelity term, which is characterized by the choice
of a forward projection model and the option of a statistical
weighting of the projections; (ii) the penalty term, which
defines a regularization process with a potential function and
additional incorporation of a priori knowledge, such as the
non-negativity constraint.

To get the most out of the MBIR approach, it is valuable to
understand the impact of each component and its subparts. For
that reason, Thibault et al. have examined different potential
functions for the regularization when they first introduced
the concept of MBIR [5]. As another example, Hahn et
al. have compared linear interpolation models for iterative
CT reconstruction in various imaging scenarios [6]. In our
previous work, we focused on the effect of statistical weights,
which was analyzed using a lesion detection study with human
observers [7].

The purpose of this paper is to look at the impact of the non-
negativity constraint. Since the attenuation coefficient of X-
rays is known to be positive, this constraint appears very natu-
ral, and its use is reinforced by knowledge that reconstruction
without it leads to non-physical negative attenuation values,

V. Haase, K. Hahn, H. Schöndube, and K. Stierstorfer are with Siemens
Healthcare GmbH, Forchheim, Germany. V. Haase is also with the Pattern
Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlan-
gen, Germany. F. Noo is with the Department of Radiology and Imaging
Sciences, University of Utah, Salt Lake City, Utah, USA.

likely due to inaccuracy of the forward projection model and
noise in the projection data. Our primary question of interest
is about quantifying the impact of the constraint in regions of
the image that are within the object. To our knowledge, this
question has not been thoroughly addressed in the context of
MBIR from real CT data.

II. BACKGROUND

MBIR from CT data is formulated as optimization of a
convex objective function. The optimization requires a ded-
icated algorithm that is consistent with the characteristics of
this function. These two aspects are covered in the following
subsections.

A. Objective Function

Let ~x ∈ RN be a discrete vector for the 3-D reconstruction
volume and ~p ∈ RM a discrete vector for the measured
projection data. Our objective function F consists of three
parts: the data fidelity term f , the regularization term g with
its hyper parameter β ≥ 0, and the indicator function ιR+

:

F (~x) = f(~x) + β g(~x) + ιR+(~x). (1)

To ensure the data fidelity, we use the squared residual be-
tween the forward projected reconstruction and the projection
data:

f(~x) =
1

2
‖A~x− ~p‖22. (2)

The forward projection is modeled using Joseph’s method [8].
It is a ray driven approach that provides a good compromise
between accuracy and computational cost [6]. The forward
projection process is symbolized by matrix A. The matching
back projection operator is written as its transpose, AT .

To reduce the noise in the reconstruction, a regularization
term is used that is defined as

g(~x) =
N∑
i=1

N∑
j=1

wijψ(xi − xj), (3)

with wij = 1 for the neighbors of each voxel found in the three
Cartesian directions and wij = 0 otherwise. ψ is the potential
function that assigns a cost to the difference between each
voxel and one of its neighbors. We use two different potential
functions for two different reconstruction scenarios, namely a
quadratic and an edge-preserving potential function that can
both be fine-tuned with δ > 0:

(i) ψ(t, δ) =
t2

2δ
,

(ii) ψ(t, δ) =
√
t2 + δ2 − δ.

(4)
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Parameter δ controls the importance given to differences
between neighboring voxel values. Both choices for ψ are
convex and differentiable, which implies that they are easy
to handle for an optimization algorithm.

When we enforce non-negative voxels for our reconstruction
result, the indicator function ιR+

is part of the objective
function. This non-negativity constraint is defined as

ιR+
(~x) =

{
0 if xi ∈ R+

+∞ otherwise
. (5)

B. Optimization Algorithm

Because the indicator function is non-smooth, it has to be
processed via its proximal operator. This means the optimiza-
tion algorithm needs to be able to minimize a convex objective
function that consists of a smooth and a proximable part. The
fast iterative shrinkage-thresholding algorithm, also known as
FISTA, meets these demands [9]. It requires only one gradient
evaluation per iteration. The pseudocode of FISTA applied to
our reconstruction problem is shown in Algorithm 1. We chose
the version of FISTA with a fixed step size λ. The convergence
is guaranteed for λ < 1/L, where L is the Lipschitz constant
for the gradient of the smooth part, f + β g, of our objective
function. The non-negativity constraint is enforced in line 3 of
the algorithm. Because the proximal operator of an indicator
function of a given set is the orthogonal projection operator
onto the same set,

proxιR+ (~x) =

{
xi if xi ∈ R+

0 otherwise
. (6)

In the pseudocode we use the shorter symbol (·)+ instead of
proxιR+ (·).

Algorithm 1: FISTA with constant step size
Input: Parameters β ≥ 0, λ > 0 and initial image ~x0.

1 ~y1 = ~x0, t1 = 1

2 for k = 1, 2, . . . do

3 ~xk = (~yk − λ(AT (A~yk − ~p) + β(∇g)(~x)))+

4 tk+1 =
1 +

√
1 + 4t2k
2

5 ~yk+1 = ~xk + (
tk − 1

tk+1
)(~xk − ~xk−1)

If we do not apply the non-negativity constraint, ιR+
is

not used and our objective function is purely smooth. In this
case, the algorithm simplifies itself to Nesterov’s accelerated
gradient descent [10]. The only change in the presented
pseudocode is that the operation (·)+ disappears from line 3.
The convergence condition for the step size is the same as in
FISTA.

III. EXPERIMENTAL SETUP

To evaluate our reconstruction method, experiments were
carried out on a state-of-the-art clinical CT system. An

overview of the scanner geometry can be found in Table I. The
X-ray tube was operated at 80 kV and 500mAs. We have used
a circular trajectory scan with a flying-focal-spot (FFS) in the
x,y-plane that records 2304 projection images distributed over
360°. We refer to this setting as full view sampling. To create a
second scenario that is more challenging for the reconstruction
algorithm, we also consider using only every 4th projection
image taken from one of the two focus positions. This results
in 1/8th of the original projection data and represents a sparse
view sampling.

TABLE I
PARAMETERS OF SCANNER GEOMETRY

Source to detector distance 108.56 cm
Source trajectory radius 59.5 cm
Anode angle 7°
Number of detector channels 736
Angular detector width 0.067 864°
Number of detector rows 8
Detector row height at isocenter 0.06 cm
Number of projections 2304 (full view sampling)

288 (sparse view sampling)

The ACR CT accreditation phantom (model 464, Gammex-
RMI, Middleton, WI, USA) was scanned as a test object. It
has a cylindrical shape with a 20 cm-diameter and a length of
16 cm. The phantom is divided into four different modules
of which we have looked at two for our study. The first
one, called module A, has five cylinders representing the
attenuation behavior of bone, polyethylene, water, acrylic, and
air, respectively. Also two ramps are included that consists
of small bars which are visible in 0.5mm z-axis increments.
The module can be used to assess positioning and CT number
accuracy. The second one, called module D, contains eight
aluminum bar patterns with up to 12 lp/cm. The bar patterns
provide very high contrast relative to the background and are
used to assess the spatial resolution for high contrast objects.
During the scan, each module was centered on the rotation
axis, and the plane of the source trajectory passed through the
middle of the module.

All reconstructions were done on a grid of 512× 512× 16
voxels centered at the isocenter of the scanner. The voxel size
was 0.1 cm in x and y, and 0.06 cm in z. The radius for the
field of view (FOV) in the x, y-plane was set to 25 cm. 5000
iterations of the reconstruction algorithm were calculated and
after every 25th iteration the intermediate result was saved. As
initial reconstruction volume we used ~x0 = ~0. The chosen step
size λ was based on the Lipschitz constant of the data fidelity
term, L(f). This can be calculated as the largest eigenvalue of
ATA using the power method [11]. To account for g, we used
λ = 0.95/L(f) and the knowledge that L(g) � L(f). For
the full view sampling this means λ = 0.000065, and for the
sparse view sampling, it is λ = 0.00052. The hyper parameter
β is also linked to the size of the projection data. For the
full view sampling we used β = 0.1; for the sparse sampling,
which has 1/8th of the full projection data, we used β = 0.0125
so that the amount of applied regularization is comparable
for the different data sets. The value for the parameter of
the potential function was empirically chosen as δ = 0.0005
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for the quadratic regularization and δ = 0.001 for the edge-
preserving regularization

To summarize, we have four different projection data sets
that differ in the scanned object and the number of projections,
and for reconstruction we use two different regularizers. This
results in eight reconstruction scenarios for which we compare
the result with and without the non-negativity constraint.

To assess the image quality, difference images between
the result with and without non-negativity constraint were
calculated. Where needed, profile plots through the difference
image were created. Note that the result of the reconstruction
is a 3-D volume, of which we only analyze one of the central
slices for simplification. As figure of merit for convergence,
we used the root-mean-square error (RMSE). To ignore the
irrelevant structures outside of the phantom, a binary mask
was applied with a radius of 10.5 cm that only contains the
ACR module including its edges. The RMSE was calculated
within the binary mask for the central six z-slices of the
reconstruction. The final result after 5000 iterations was used
as ground truth.

IV. RESULTS

The results are separated into two parts. We first present the
outcome of the experiments for the projection data with full
view sampling, and then the results for the sparse view pro-
jection data. The results are focused on difference images and
convergence speed. Fig. 1 shows how some reconstructions
appear prior to computing differences.

(a) (b)

(c) (d)

Fig. 1. Ground truth for reconstruction with edge-preserving regularization
and non-negativity constraint after 5000 iterations. (Top row) full view
sampling, (bottom row) sparse view sampling. Module A (left) and module
D (right) are both displayed with a grayscale of [−200, 200] HU.

A. Full View Sampling of Projection Data

Fig. 2 shows the difference images between the reconstruc-
tion with non-negativity constraint and without. On the basis of
the displayed grayscale window of [−2, 2] HU, no significant
differences are observed inside the phantom, for both phantom
modules and both potential functions. The summary values
given in Table II confirm this visual impression.

(a) (b)

(c) (d)

Fig. 2. Difference images for reconstruction with and without non-negativity
constraint. These images are for full view sampling of module A (left) and
module D (right). The applied potential function is either edge-preserving
(top) or quadratic (bottom). Grayscale window: [−2, 2] HU.

Convergence according to the RMSE value is presented
in Fig. 3. The results for the different scanned modules are
similar. For the first 100 iterations, there is no difference in the
convergence behavior with and without non-negativity. In the
later iterations, differences in the RMSE can be observed when
using the quadratic potential, whereas the curves essentially
remain the same when using the edge-preserving potential.
For the quadratic potential, we thus see a gain in convergence
speed when enforcing non-negativity; this gain is observed for
a small improvement in an already small RMSE.

B. Sparse View Sampling of Projection Data

The difference images for the sparse view sampling are
shown in Fig. 4. For the edge-preserving regularization, in
Figs. 4(a) and (b), the difference inside the phantom is a
noisy pattern with little to no structural information. For the
quadratic regularization, in Figs. 4(c) and (d), the differences
inside the phantom show a noisy pattern with enhancement of
the edges with the sharp objects. Compared to the results with
full view sampling, a larger grayscale window was required for
display. This visual impression is confirmed by the summary
values in Table II. The profiles through the edge of the air
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Fig. 3. Convergence behavior for reconstruction with full view sampling of
module A (top) and module D (bottom). A solid (resp. dotted) line is used
for reconstruction with and without the non-negativity constraint (resp.). The
potential function is either edge-preserving (black) or quadratic (gray).

cylinder in module A are compared in Fig. 5, where we see
that the non-negativity constraint leads to a slightly sharper
profile, though the difference is tiny and likely not significant
for a human observer.

The convergence behavior is depicted in Fig. 6. It has the
same characteristics as seen in Fig. 3, showing that the non-
negativity constraint does not impact convergence speed for
the edge-preserving regularization, but does impact it, at a
similar rate, for the quadratic regularization.

TABLE II
MINIMUM, MAXIMUM, MEAN, AND STANDARD DEVIATION OF THE

DIFFERENCE IMAGES. ALL VALUES ARE IN HU AND MEASURED INSIDE
THE PHANTOM.

Min. Max. Mean SD

Full view sampling
Module A, edge-preserving reg. -1.50 1.85 -0.02 0.03
Module A, quadratic reg. -0.20 0.05 -0.05 0.03
Module D, edge-preserving reg. -1.61 1.36 -0.09 0.09
Module D, quadratic reg. -0.79 0.35 -0.12 0.10

Sparse view sampling
Module A, edge-preserving reg. -13.02 11.29 -0.08 1.09
Module A, quadratic reg. -29.17 26.45 -0.14 3.77
Module D, edge-preserving reg. -42.90 38.98 -0.16 3.56
Module D, quadratic reg. -47.39 54.89 -0.26 7.01

V. DISCUSSION AND CONCLUSIONS

In this work, we have reported results assessing the impact
of the non-negativity constraint on image appearance and

(a) (b)

(c) (d)

Fig. 4. Difference images for reconstruction with and without non-negativity
constraint. These images are for sparse view sampling of module A (left) and
module D (right). The applied potential function is either edge-preserving
(top) or quadratic (bottom). Grayscale window: [−20, 20] HU.
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Fig. 5. Profiles through the edge of the air cylinder in module A for
reconstruction with quadratic regularization and sparse view sampling. The
profiles show the voxel value for the edge crossing from water to air, in HU.

convergence speed under eight different scenarios based on
real CT data. These scenarios were selected to challenge the
potential usefulness of the non-negativity constraint.

Our observations in terms of image quality were as follows.
For experiments with full view sampling, we observed that the
use of the non-negativity constraint has only minimal impact
on the image appearance inside the object. This was the case
for both quadratic and edge-preserving regularization. The
differences were on the order of 1-2 HU, and thus would likely
have no effect on human observer performance.

For the more challenging problem of reconstruction from
sparse view sampling, we observed more important differ-
ences: (i) enhancement of sharp edges, indicating a slight
difference in resolution for sharp-contrast features, (ii) a noisy
pattern inside the object. The difference in resolution is not
likely to be significant for human observer performance but the
noisy pattern might; this aspect requires further investigation.

342 The fifth international conference on image formation in X-ray computed tomography



0   500 1000 1500 2000

Number of Iterations

10-2

10-1

100

101

102
R

M
S

E
 [

H
U

]

Edge-Preserving with ( )
+

Edge-Preserving w/o ( )
+

Quadratic with ( )
+

Quadratic w/o ( )
+

0   500 1000 1500 2000

Number of Iterations

10-2

10-1

100

101

102

R
M

S
E

 [
H

U
]

Edge-Preserving with ( )
+

Edge-Preserving w/o ( )
+

Quadratic with ( )
+

Quadratic w/o ( )
+

Fig. 6. Convergence behavior for reconstruction with sparse view sampling
of module A (top) and module D (bottom). A solid (resp. dotted) line is used
for reconstruction with and without the non-negativity constraint (resp.). The
potential function is either edge-preserving (black) or quadratic (gray).

Also of importance is the observation that the differences are
of a fairly smaller magnitude for reconstruction with edge-
preserving regularization.

In terms of convergence speed, we only identified benefits in
using the non-negativity constraint for reconstruction with the
quadratic penalty. In this case, the same benefit was observed
for both full and sparse view sampling. However, this benefit
plays a role only for improving the convergence when the
RMSE is already small (below 1HU).

Overall, we conclude that the non-negativity constraint
may not offer any benefit for conventional diagnostic CT
imaging, but could possibly slightly help for reconstruction
under challenging conditions like sparse view sampling. To
further verify this conclusion, a wider range of objective
functions and reconstruction algorithms should be examined.
Also, the outcome of our experiments could be affected by
the choice of the phantom. A more complex anthropomorphic
object with several air cavities (e.g., as encountered in lung
imaging of patients with COPD) should be the basis for further
investigations.

From an algorithm viewpoint, it is important to know that
there are situations where the non-negativity constraint has
little impact on image quality, because, for these situations, the
choice of the optimization algorithm would not be restricted
to those that can handle the non-smooth indicator function for
non-negative values. This can have an impact on reconstruction
speed.
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Abstract—Spectral computed tomography (CT) has a 

great superiority in lesion detection, tissue 
characterization and material decomposition. To further 
explore its potential in clinical applications, we propose an 
improved tensor dictionary learning method for 
sparse-view low-dose spectral CT reconstruction with a 
constraint of image gradient ℓ0-norm, which is named as 
ℓ0TDL. The ℓ0TDL method inherits the advantages of 
tensor dictionary learning (TDL) by employing the 
similarity of spectral CT images. On the other hand, by 
introducing an ℓ0-norm constraint in gradient image 
domain, the proposed method emphasizes the spatial 
sparsity to overcome the weakness of TDL on preserving 
edge information. The results show that the proposed 
ℓ0TDL method outperforms other competing methods. 
 

Index Terms— spectral computed tomography, image 
reconstruction, sparse-view, ℓ0-norm of image gradient, 
tensor dictionary.  
 

I. INTRODUCTION 
 he state-of-the-art spectral CT scanner employs 
photon-counting detectors (PCDs) to record the 

energy of each individually incoming x-ray photon [1]. 
Thus, we can obtain the material decomposition maps 
from multiple projection datasets in different energy 
bins after a series of post-processing steps. The spectral 
CT has obtained tremendous successes in low-dose CT, 
contrast media imaging and K-edge imaging [2]. 

The spectral CT image reconstruction has made a 
great progress in recent years. Xu et al. considered 
spectral projection data from each channel as an 
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independent traditional dataset and employed the total 
variation (TV) penalty to reconstruct interior spectral 
images [3]. Then, the dictionary learning technique was 
developed for conventional low-dose CT image 
reconstruction and spectral CT reconstruction [4]. To 
suppress the noise of global intensity and protect the 
image edge, a PRISM (prior rank, intensity, and sparsity 
model) was utilized for multi-energy CT reconstruction 
[5]. To exploit the correlations among all the dimensions 
simultaneously and edge-preserving/enhancement, 
Semerci et al. combined a tensor nuclear norm (TNN) 
with TV for multi-energy reconstruction [6]. Recently, a 
tensor dictionary learning (TDL) method was proposed 
by considering the similarity of spectral CT images of 
different energy channels [7]. Although the TDL 
algorithm has a relatively better performance in 
preserving fine structures, it is not good at preserving 
edge information. Besides, this method is not good at 
suppressing noise and reducing artifacts in the 
reconstructed images, either.   

To overcome the aforementioned limitations of the 
TDL method, we combine the image gradient ℓ0-norm 
minimization and the TDL technique to generate an 
ℓ0TDL algorithm. The proposed ℓ0TDL method has the 
following advantages: (a) introducing the image 
gradient ℓ0-norm to encourage TDL-based method to 
recover fine structures and edge information; and (b) 
improving sparse ability on image spatial domain to 
suppress noise and reduce image artifacts.  

II. MATHEMATIC MODEL 
1) ℓ0TDL mathematic model 
Because the image edges and fine structures are 
corrupted by severe noise in low-dose spectral CT, the 
TDL may fail to recover high-quality edge information 
from such an undersampling dataset. To achieve a better 
image with more accurate edge information and less 
noise, it is natural for us to combine the image gradient 
ℓ0–norm minimization and TDL technology. As a result, 
we formulate an image reconstruction framework: 
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where 1 2I I SΧ and 1 2J J SY are respectively the
3rd-order reconstructed image and projection data 
tensors, 1I  and 2I  are width and height of the 
reconstructed image, 1J  and 2J  present the numbers 
of detector and projection view, S is a number of 
energy channels, sx  and sy are respectively the 
vectorized sth  image and projection, A is the system 
matrix which depends on the system scanning 
structure and calculation method, rm  presents the 
mean vector of each channel, the operator rr is used to 
extract rth small tensor block ( N N S ) from Χ and

K
rα is the sparse representation coefficient of rth 

tensor block. k N N S KD D is the trained tensor 

dictionary and k N N S S
m mD D  represents the mean 

removal process [4]. The parameter r  is a factor to 
modulate representation precision and the sparsity 
level, and  is designed to balance the data fidelity 
term and the sparse representation regularization. The 
system matrix A from specified scanning 
configuration has a large impact on the parameter .

0sx represents the ℓ0-norm of image gradient and it 
can be denoted as 

0
# 0p p

s x s y sp
px x x  ,                     (2) 

where # is a counting operator and p (p=1, 2, …, 
I1 I2) index the location of (i1 ,i2)th element in the 
image. The p

x sx and p
y sx represent 1 2 1 2, 1,s si i i ix x

and 1 2 1 2, , 1s si i i ix x , respectively. 
2) Solution of  the  ℓ0TDL 
Because Eq. (1) contains three searched-for variables, 
we further divide it into three sub-problems: 
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Eqs. (3b) and (3c) can be easily solved by following 
the same steps in [7]. Eq. (3a) contains the ℓ0-norm of 
image gradient and tensor dictionary based sparse 
representation, which is a non-convex and 
non-deterministic polynomial hard (NP-hard) 
problem. To solve this optimization problem 
effectively, we employ an alternating direction 
minimization method (ADMM). First, we introduce 
an auxiliary variable. . Eq. (3a) can be re-expressed 
as a constrained optimization model: 
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where  is an auxiliary matrix in 1 2I I for the sth 
energy channel which is an element of tensor U  in 

1 2I I S . Thus, the scaled augmented Lagrangian 
function of problem (4) [8] can be written as 
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where
st  is an auxiliary variable in 1 2I I for the sth 

energy channel which is a cell of tensor T  in 1 2I I S . In 
fact, the ADMM method is utilized to iteratively and 
alternately solve Eq. (5) with respect to X, U  and T. 

 is the Lagrangian multiplier for all energy 
channels. The ADMM algorithm of Eq. (5) contains 
the following three steps: 
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1 1 1n n n nT T U X .                       (8) 
In this work, the solution of Eq. (6) is given by a 
separable surrogate method and its form can be 
expressed as: 

1 2

1 2 1 2

1 2 1 2

1 21 2

1 2 1 2

T

1
T T

T
4 4

T T

n
s s

i in n
i i s i i s

r rri i i i s

n n n n n n
r r m r r s s sr i ii i s

r rri i i i s

A A y

A A

Χ D m D α x u t

A A

x
Χ Χ 1 2

1 2i i s1 2i i

TTT
r rr rr r
T

T n
r r
T n
r r

1 2

1 2i i s1 2i i

TTT
r rr rr r
T

(9) 

Eq. (7) includes the ℓ0-norm minimization of image 
gradient, resulting in a non-convex and NP-hard 
problem. Fortunately, an approximate method was 
proposed in [9] to solve this problem. For the 
approximate method, another two auxiliary variables 

,p p
s sh v  corresponding to the gradients ,p p

x s y su u are 
introduced. Therefore, Eq. (7) can be converted into 
the following problem 
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where * / , , 0p p

s s s sh v p h v , 
1np

sx and 
np

st  are components of the pth pixel in (n+1) and n 
iterations, and  aims to balance the similarity 
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between ,s sh v  and ,p p
x s y su u . ,s sh v  can be 

expressed as: 
, p p

s s s sp
h vh v ,                         (11) 
 

where 
1          0

0         otherwise

p p
s sp p

s s

if h v
h v   .                   (12) 

Because Eq. (10) contains three variables, we 
also employ the ADMM scheme. Thus, the 
optimization problem of Eq. (12) can be divided into 
the following two steps: 
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Substituting Eq. (11) into (13), we have: 
2 2
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s sh v

u u
h v .(15) 

Because each pixel p
su  is considered independently in 

the iterative process of Eq. (15), we can separate each 
pixel so that it can be addressed independently.  
For Eq. (15), the energy function can easily reach its 
minimum with the optimization criteria as follow: 

*2 2
1 1 1          ,
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n np p
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Now, let’s consider Eq. (14). Because the function is 
quadratic, even a gradient descent method can make it 
shrink to a global minimum solution. Alternatively, 
we employ a fast analytic technique [10, 11] which 
integrates diagonalization derivative operators after 
Fast Fourier Transform (FFT). Therefore 
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where  and ** represent Fourier transform and 
conjugate Fourier transform, respectively. 

III. EXPERIMENTS 

A. Numerical simulations 

We employ a simulated mouse thorax phantom, and 
1.2% iodine contrast agent is injected to the blood 
circulation (Fig. 1) [12]. A 50KVp x-ray spectrum is 
utilized, and it is divided into 8 energy channels: [16, 
22) keV, [22, 25) keV, [25, 28) keV, [28, 31) keV, 
[31, 34) keV, [34, 37) keV, [37, 41) keV, and [41, 50) 
keV [13]. The geometrical protocol is as follows: the 
distances from x-ray source to the PCD and rotation 
center are 180mm and 132mm, respectively; the PCD 

consists of 512 units and each of which is 0.1mm; the 
size of reconstructed channel image is 256

. 
We collect 640 projections for each full scan, and the 
default photon number is 5000 for each x-ray beam. 
For all the simulations, Poisson noises are 
superimposed on the obtained projections.  

  
Fig 1. The mouse thorax phantom (left) and the gradient image (right). 

To demonstrate the advantages of our proposed 
algorithm in recovering high-quality images from 
sparse-view projections, reconstructed images from 
160 projections are shown in Figs. 2, along with the 
counterparts from other competing algorithms. To 
save space, we only show the reconstructed images 
for the first energy channel.  

 
Fig. 2. Reconstruction results of the modified mouse thorax phantom. 
The first two rows are the reconstructed and gradient images from 160 
projections and the last two rows are the magnified images of ROIs A 
and B. The display window of the reconstructed images is [0 3] cm-1 
and the gradient images are in [0 0.8] cm-1. 

In order to investigate the convergences of the 
proposed ℓ0TDL and other competing methods, the 
convergence curves in terms of averaged RMSEs vs. 
iteration number are given in Fig. 3. Compared with 
other competing algorithms, the ℓ0TDL method can 
converge to an optimized solution quickly with a 
smaller RMSE. From Fig. 3, for the ℓ0TDL method, 
one can see that the RMSE decreases rapidly at first 
and then it is subsequently stable after 40 iterations. 

B. Real data experiments 

To demonstrate the advantages of the proposed 
ℓ0TDL algorithm for low-dose spectral reconstruction 
in practical applications, an injected gold 
nanoparticles (GNP) mouse is scanned by a micro-CT 
system including one x-ray source and one photon 
counting detector[7]. The distance from the x-ray 
source to the PCD is set as 255 mm, the distance 
between the x-ray source and rotation axis is 158 mm, 
and 371 projections are uniformly acquired over a full 
scan. The energy spectrum of x-ray source is divided 
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into 13 channels via multiple scans. The PCD consists 
of 512 elements, each of which covers a length of 0.11 
mm. The detector offset for this datasets was 1.0 mm. 
Fig. 4 shows some representative channel images 
reconstructed by the FBP algorithm from full 
projections, where each channel image is a matrix of 
512×512 covering an area of 18.41×18.41mm2. To 
investigate the sparse view reconstruction for this real 
dataset, Fig. 5 shows the results from 120 views. From 
the two magnified ROIs A and B, we can observe the 
proposed method has the best ability to protect image 
edges. From the magnified ROI B, we can see the 
x-ray CT image artifacts can be further reduced by our 
method. The image gradient ℓ0–norm can penalize the 
sparsity in image gradient domain, which may result 
in reduced image artifacts.  

 
Fig. 3.The convergence curves in terms of average RMSE vs. iteration 

number.  

 
Fig.4. From the left to right columns, images are reconstructed for the 
1st, 4th, 9th and 13th channels and the display window is [0, 0.8] cm-1.  

 
Fig. 5. Reconstructed images from the 120 projections. The display 
window of reconstructed and gradient images is [0, 0.8] and [0, 0.4]. 

IV. CONCLUSIONS 
To penalize the image gradient to preserve image 

edge information from each channel and improve the 
anti-noising capability of the TDL method, we develop 
an ℓ0TDL algorithm for sparse-view spectral CT 
reconstruction. By incorporating the image gradient 
ℓ0–norm into the TDL based reconstruction framework, 
the image quality of channel reconstructions is 
dramatically improved, especially in the cases of 
sparse-view low-dose reconstruction. Both numerical 
simulations and realistic preclinical mouse study 
confirm that the proposed ℓ0TDL algorithm outperforms 
the TV, TV+LR, and TDL methods.  

In conclusion, we propose an ℓ0TDL algorithm 
based on a global tensor dictionary and image 
gradient ℓ0-norm for sparse-view low-dose spectral 
CT reconstruction. The developed ℓ0TDL method can 
not only well maintain fine structures and image 
edges, but also reduce image artifacts especially in the 
areas of bone. This will be extremely meaningful for 
sparse-view spectral CT reconstruction.  
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Abstract—We present an adaptive non-local means 

(ANLM) approach for image-domain material 
decomposition in low-dose dual-energy micro-CT. The 
key idea is to create a decomposition error distribution 
map and assign a smooth weight for a given pixel. This 
method is directly applied to the decomposed images for 
three basis materials: bone, soft tissue and gold in our 
application. We assume that bone and gold cannot co-exist 
in the same pixel and regroup these basis materials into 
two categories. For soft tissue, the proposed algorithm is 
implemented in a non-iterative version. For bone and gold, 
an iterative version is used and followed by a post-
iteration process. Our results show that the proposed 
adaptive NLM outperforms other two common state-of-
the-art denoising algorithms. 
 

Keywords— Image-domain material decomposition; 
Adaptive non-local mean; Edge detection. 
 

I. INTRODUCTION 

 ual-energy CT has been widely used in various 
clinical applications, especially in contrast agent 
quantification and visualization [1]. Compared 

with standard single-energy CT, the dual-energy CT has 
a pair of linear attenuation coefficients at certain 
energies, which can be applied to decompose basis 
material images. This study will focus on the 
decomposed basis materials in image-domain. The 
basic idea of image-domain material decomposition is 
that the linear attenuation coefficients at the same 
position derived from the reconstructed images at low- 
and high-energy scans can be expressed as a linear 
combination of the pixel values of two basis materials. 
The direct matrix inversion method is easy for 
implementation but with amplified noise, and it is 
necessary to incorporate denoising techniques. There 
are several methods available for this purpose. Clark et 
al. [2] applied joint a bilateral filtration to reconstructed 
images before decomposition. Niu et al. [3] designed an 
iterative algorithm to denoise in the process of 
decomposition. Zhao et al. [1] established a new 
framework which can be directly applied to the 
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decomposed images.  However, for the low dose dual-
energy material decomposition images, the 
aforementioned denoising methods still cannot provide 
satisfied results. To address this issue, we will develop 
a new adaptive non-local means (ANLM) method that 
can preserve details in material specific images and 
meanwhile suppress severe noises. The main idea is 
from a fact that the decomposed material images have 
additional edges compared to the reconstructed images. 
We demonstrate the advantages of the proposed 
approach in numerical simulations. The rest of this 
paper is organized as follow. The next section describes 
our methods. The third section presents the results. The 
last section discusses some related issues and concludes 
the paper. 

II. MATHEMATIC MODEL 

A. Dual-Energy Material Decomposition 

We employ a conventional direct matrix inversion 
method to obtain the material specific images from dual 
energy micro-CT images. Material specific images are 
quantitative maps of the fractions of each material. In 
each material specific image, its pixel values are 
solutions of the following equations:  

              

μ
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μ
2,H

μ
3,H

μ
1,L

μ
2,L

μ
3,L

1 1 1

𝑓
1

𝑓
2

𝑓
3

=

μ
H

μ
L

1

 ,               (1) 

where μ is the effective linear attenuation coefficients 
with the unit cm-1, the subscripts 1-3 represent the 
sequence number of three basis materials, the subscripts 
H and L represent the high and low scanning energies, 
respectively. and 𝑓 , 𝑓  and 𝑓  represent the 
corresponding unknown volumetric fractions. We 
assume that each pixel contains only basis materials and 
the sum of volumetric fraction is equal to 1. That is, we 
have 3 equations and 3 unknowns in Eq. (1). In fact, the 
direct matrix inversion method for material 
decomposition can magnify noise and degrade the 
accuracy. Here, we introduce a new method to reduce 
the noise and preserve basis material features.   
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B. Numerical Simulation Configuration 

A realistic mouse thorax phantom generated by the 
Moby software (Fig.1 (a)) is used for numerical 
simulations. The diameter of this phantom is 30.0 mm, 
and 16mg/ml gold-based contrast agent is 
superimposed to the blood circulation system 
(Fig.1(d)). The qualities of decomposed images are 
significantly affected by scanning energies. In our 
previous study, the optimal decomposition results were 
obtained when the scanning energies are 40kVp and 65 
kVp in dual-energy micro CT. In this study, an extrinsic 
Aluminum (Al) filtration is 1mm. A 2D fan-beam CT 
geometry is assumed with circular scan. The distance 
from source to rotation center is 351mm, the distance 
from source to detector is 541 mm, and 720 projections 
are uniformly acquired over a full scan range. The 
detector includes 1024 elements and each element is 
0.078 mm.  Poisson noise is superimposed into the 
projections. The total number of photons is 5×104 for 
each detector element and the ratio of the number of 
photons with high- and low- energy spectrum is 1.8. A 
conventional filtered back-projection algorithm is 
employed for image reconstruction.  

         
Fig.1. Moby mouse phantom for study. (a) is the 2D mouse thorax 
phantom.  (b), (c) and (d) are the reference images of bone, soft tissue 
and gold, respectively. 

C. Adaptive Non-Local Means 

In the conventional non-local means (NLM) filter 
[4], the filtered value at a pixel i is calculated as a 
weighted average of all the pixels across the whole 
image. Given a 2D noisy image x={x(i)| 𝑖 ∈ 𝐼  }, the 
NLM can be written as: 

                       X  (𝑖) = ∑ 𝜔(𝑖, 𝑗) ∗ 𝑥(𝑗)∈Ω ,            (2) 

where Ω  is referred to as a search window centered at 
the pixel 𝑖 and it usually is a square neighborhood with 
a fixed size.  The weight 𝜔(𝑖, 𝑗)  represents the 
similarity between the pixels 𝑖 and 𝑗, and it satisfies the 
constraint conditions 0≤ 𝜔(𝑖, 𝑗) ≤ 1 and ∑ 𝜔(𝑖, 𝑗) =
1. The weight is constructed as follow: 

             𝜔(𝑖, 𝑗) =
( )

𝑒𝑥𝑝 −
( )

,        (3) 

where N  is a square neighborhood of fixed size and 
centered at a pixel 𝑖  . It is usually referred to as the 
similarity window. The similarity of two pixels i and j 
measured by Gaussian weighted Euclidean distance of 
pixel gray values 𝑥(N ) and 𝑥 N    between the two 
neighborhoods N  and N  within the searching window 
Ω .  𝑍(𝑖) is the normalizing factor to make sure 
∑ 𝜔(𝑖, 𝑗) = 1. The parameter ℎ controls the degree of 
filtering by adjusting the weight decay of the 
exponential function. In general, ℎ directly affects the 
image quality in the non-local mean denoising. In our 
proposed adaptive NLM (ANLM) filter ℎ is calculated 
by  

        ℎ = ℎ ∗ (1 + 𝑟 ∗ 𝑀 ),                           (4) 

Here,  ℎ  is a smoothing parameter across the 
whole image. It is a small number to preserve as many 
detailed basis materials features as possible. 𝑀  
represents a decomposition error distribution map to 
indicate the error region where the filtering strength is 
enhanced. The method to construct decomposition error 
distribution map is shown in next section.  𝑟  is the 
weight of 𝑀  , and a proper value of  𝑟 can balance 
the whole image smoothing and basis material feature 
enhancement. The ANLM filter can be reduced to the 
conventional NLM filter when 𝑟 is equal to zero. In this 
study, we will apply the new ANLM filter directly to 
the original decomposed images. Based on the basis 
material structures, we label them as bone-like, soft-
tissue-like and gold-like images. We assume that the 
most non-zero pixels in bone-like image have a high 
likelihood to belong to bone. It is the same for soft-
tissue-like and gold-like images.  

D. Decomposition Error Distribution Map   

As the aforementioned, a decomposition error 
distribution map is used to adjust the smooth parameter 
for each pixel.  It is called error map for short below. 
We create the error map from an original basis material 
image. Each pixel in the error map represents the 
probability of decomposition error of the corresponding 
pixel in the material images. We will first explain the 
method to construct error map for a soft-tissue-like 
image, then move to more complicated bone-like and 
gold-like images.  

Soft tissue    

To construct a proper error map for a soft-tissue-like 
image (Fig.2 (a)), we calculate a binarized image (Fig.2 
(b))  

                       𝑥 (𝑖) =
0, 𝑥(𝑖) < 𝜆
1, 𝑥(𝑖) ≥ 𝜆

,                             (5) 

Here, we choose a threshold value 𝜆 = 0.1 to select the 
pixels where the fraction of soft tissue is above 0.1 and 
ignore the pixels whose values are below 0.1. 

   
Fig. 2.  Example if error map. (a) is soft-tissue-like image; (b) is 
binarized image; (c) is pixel density map; and (d) is decomposition 
error distribution map.  

In a binarized image, the distribution of ‘bright’ 
pixel is visually nonuniform. We assume that the 
regions with high concentrated level of ‘bright’ pixels 
have high likelihood to belong to the basis material and 
the regions with low concentrated level have high 
likelihood to be errors. The concentrated level is 
defined as pixel density (Fig.2 (c)). The pixel density 
P(i) at a given pixel i is computed as the ratio between 
the pixel number in a certain category to the total 
number in a small region centered at the pixel i:  

                                  P(i)= 
Δ

,                            (6) 
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where N is the total number of pixels in a given small 
area, Ai centered at i and ΔN is the number of pixels in 
Ai that the value of the pixel is one. The radius of Ai is 
2.  

To obtain a qualified classification result, a proper 
threshold is needed to identify pixels likely belong to 
the decomposition error. Namely, a pixel likely belongs 
to the decomposition error when its corresponding pixel 
density value is below the threshold. Here, the threshold 
is empirically set as 0.7. The distribution of non-zero 
pixels in the error map (Fig.2 (d)). represent the region 
where decomposition error located. The value of each 
pixel shows the strengths of error. Last, a small mean 
filter window is used to smooth background without 
reducing the spatial resolution. The parameters used in 
the ANLM are listed as follow: 1) the radius of search 
window is 5; 2) the radius of similarity window is 2; 3) 
ℎ =0.02; 4) 𝑟=1. 

Bone and Gold 

Similarly, pixel density (Xd) maps for bone-like and 
gold-like images are obtained and shown in Fig 3 (c) 
and      

                   
Fig.3. Bone-like (a) and gold-like images (b) and the corresponding 
pixel density maps (c and d) of mouse phantom.  

However, it is difficult to set a threshold to distinguish 
the basis material features and the decomposed noises 
based on the pixel density. Here, we incorporate the 
Canny edge detection to construct the error map. The 
Canny edge detection is one of the most strictly defined 
methods by searching for a local maximum in its 
neighborhood in the direction of gradient at each pixel 
in a Gaussian filter smoothed image. As demonstrated 
in Fig. 4, the edge of Moby phantom CT image is 
obtained by detecting the edge of a composite image 
that are generated by averaging the high- and low-
energy images with equal weighting.  

  
                   Fig.4 The composite image (a) and its edge (b). 

                               
Fig.5 Ilustration of additional edge. (a) and (d) are bone-like and gold-
like images, respectively; (b) and (e) are their edge images; and (c) 
and (f) are additional edge maps.  

     Since all the edge detection results are easily 
affected by image noise, the non-preprocessed 
decomposition images, such as bone-like image and 
gold-like images in Fig. 5, have additional edges 
compared to the composite image. We assume that 
these additional edges are caused by noise. Although 
noise is randomly distributed, the region of additional 

edges could be identified. The additional edges of bone 
in Fig 5(c) are obtained by subtracting the edge of the 
composite image Fig. 4 (b) from the edge of non-
preprocessed decomposed images Fig. 5 (b). The 
additional edges of gold Fig. 5 (f) are obtained using a 
similar method. The additional edge probability (Fig. 6 
(a) and Fig. 6 (d)) are derived from the additional edges 
by applying Eq. (6). The noise contaminated probability 
(Fig. 6 (b) and Fig. 6 (e)) are calculated by 
𝑋 = 𝑋 (1 − 𝑋 ),  where 𝑋  represents the noise 
contaminated probability; 𝑋  represents the additional 
edges probability; 𝑋  represents pixel density.  

     To preserve fine details in the post-processed image, 
in Fig. 6 (b) and (e), some regions with low pixels 
density (red arrow) are not treated as noise 
contaminated ones. Fig. 6 (c) and (f) show the error 
maps which will be used in our ANLM filtration.                

                                        
Fig. 6. Ilustration of additional edge probability. (a) and (d) are for 
bone and gold. (b) and (e) are noise maps; and (c) and (f) are error 
maps.  

In this section, the parameters used for ANLM 
filtration are listed as follow: 1) the radius of search 
window is 5; 2) the radius of similarity window is 2; 3) 
ℎ =0.01; 4) 𝑟=2. 

As to the post-iterations images, the isolated bright 
pixels are removed since pixels that belong to basis 
material are also spatially connected. A quantitative 
pharmacokinetics study [5] showed that after gold 
nanoparticle injection, the highest tissue gold 
concentration was in the kidney followed by tumor, 
liver and muscle. That is, gold cannot propagate to 
bone.  Therefore, we assume that bone and gold cannot 
co-exist in the same pixel. Here, we add an additional 
constraint:  

1) M  is a square neighborhood of fixed size and 
centered at a pixel 𝑖  . 𝐿 ( )  is the number of 
pixels in M   which are greater than a certain 
threshold r. The subscript B (G) represent bone 
or gold.  

2)   

              𝑃 =
𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑏𝑜𝑛𝑒             𝑖𝑓 𝐿 > 𝐿
𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑔𝑜𝑙𝑑             𝑖𝑓 𝐿 > 𝐿

,  (8) 

where 𝑃  is the pixel 𝑖. Here, the threshold r=0.25 and 
the radius of M  =11.  

E. Comparison 

For comparison, we denoise the same decomposed 
images using the conventional NLM and TV 
minimization methods. In the conventional NLM, the 
same parameters are used as ANLM In the TV 
minimization method, we select the optimal parameters. 
Further, the PSNRs (Peak signal-to-noise ratio) are used 
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to quantitatively evaluate the quality of denoised 
images. 

III. RESULTS 

 Fig.7 shows the denoised soft tissue images by 
different methods. The first image is reference. One can 
see that the ANLM outperforms other two methods. For 
the bone-like and gold-like images, to further suppress 
noise, the ANLM is implemented in an iterative fashion: 
the ANLM denoised material images are set as the input 
images of the next ANLM iteration. Here, the iteration 
number is 3.  

       
Fig.7 Denoised soft tissue images by different algorithms: NLM (b), 
TV (c) and ANLM (d) and (a) is reference.  

Fig.8 shows the effect of post-iteration process. The 
two rows represent the images before and after the 
process. The last two columns show the magnified 
details in the red square. For each basis material, the 
display windows are the same. Fig.9 shows the post-
processed bone and gold images by different methods. 
The iteration number of the NLM is also 3. Obviously, 
the ANLM significantly improves the decomposition 
accuracy of basis material images, especially in the red 
square region magnified in Fig.10.  The quantitative 
PSNR (Fig.11) results confirm that the proposed 
ANLM outperforms the competing methods. Among 
the basis materials results, the PSNR of NNLM are 
always higher than NLM and TV.         

                
Fig.8 The bone and gold images before/after post-iteration process 
and the corresponding magnified details.           

           
Fig.9 Post-processed bone and gold images by different algorithms: 
NLM, TV and ANLM.  

      
Fig.10.  Magnified bone and gold images in the red squares in Fig.9. 

           
Fig. 11. The PSNR results of basis materials from different denoising 
methods. 

IV. DISCUSSION AND CONCLUSION 

This study introduces an ANLM algorithm for noise 
reduction of image-domain dual-energy material 
decomposition. It can be applied directly to the original 
decomposed images. The proposed method is intended 
to preserve basis material-like features and remove 
noise-like features for low SNR images. In this filter, 
the smooth factors include two parts: the first one is a 
constant for the whole image and the second one is a 
decomposition error distribution map which allows us 
to greatly denoise the selected regions. The 
decomposition error distribution map is especially 
created for enhancing weak material-like pixels and 
greatly suppressed noise-like pixels at the same time. In 
addition, we divide three decomposed images into two 
categories. For soft tissue-like image, a non-iterative 
version is used and for the other two decomposed 
images, an iterative version is applied to further denoise 
since the noise levels of these two basis material images 
are higher and the decomposition error distribution 
maps are more complicated. The quantitative PSNR 
values confirm that the proposed ANLM outperforms 
other algorithms, and it can significantly improve the 
decomposition accuracies for bone, soft tissue and gold. 
In the future, we will continue to perform a 
comprehensive evaluation for the ANLM including in 
vivo small animal experiments and stability 
characterization with respect to different noise levels.    
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DIRA-3D - a Model-based Dual-Energy Iterative
Algorithm for Quantitative 3D Helical CT

Maria Magnusson, Magnus Björnfot, Åsa Carlsson Tedgren and Alexandr Malusek

Abstract—Quantitative dual-energy computed tomography
may improve the accuracy of treatment planning in radiation
therapy. Of special interest are algorithms that can estimate ma-
terial composition of the imaged object. One example of such an
algorithm is the 2D-based model-based iterative reconstruction
algorithm DIRA. The aim of this work is to extend this algorithm
to 3D so that it can be used with cone-beams and helical scanning.
The new algorithm was implemented using the PI-method, which
includes filtered backprojection. Its performance was tested
using a mathematical phantom consisting of six ellipsoids. The
algorithm substantially reduced the beam hardening and cone-
beam artifacts after four iterations. If desired, the dual energy X-
ray sources may be placed orthogonally and on different helices.
The results indicate that the concepts used in DIRA can be
extended to 3D geometries. More work is needed to fully test
this algorithm.

I. INTRODUCTION

Dual-energy computed tomography (DECT) may improve
the accuracy of radiation treatment planning [1]. The field
may especially benefit from algorithms providing quantitative
information about CT numbers or material composition of
the imaged object. The latter is provided by projection-based
basis material decomposition (PBBMD) and image-based ba-
sis material decomposition (IBBMD) methods [2]. PBBMD
methods, such as the well-known Alvarez-Macovski’s base
material decomposition (AMBMD) [3], require geometrically
consistent projections and only two base materials can be
assigned for the whole object. IBBMD methods can use
any number of tissue-specific material doublets or triplets,
nevertheless the methods suffer from beam hardening artefacts
produced by classical reconstruction methods like the filtered
backprojection (FBP). Better results are achieved by applying
AMBDM before IBBMD [4] or by combining IBBMD meth-
ods with model-based iterative reconstruction algorithms, for
example the Monoenergetic Plus algorithm [5] or DIRA [6]
developed by the authors. The original DIRA algorithm uses
two- and three-material decomposition to tissue-specific, user-
defined material doublets and triplets for the characterization
of the imaged object. FBP is used in the iterative loop for
image reconstruction. For the sake of simplicity, the algorithm
was implemented for 2D geometries only.

Clinical scanners shorten acquisition times by using helical
scanning and multi-row detectors. Reconstruction is performed

Maria Magnusson1,2,3 (e-mail: maria.magnusson@liu.se), Åsa Carlsson
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by FPB or iterative algorithms, where backprojection is part
of the inner loop algorithm [7]. Examples of FPB algorithms
for helical scanning are Siemens’ Weighted FPB (WFBP) [8]
and the PI-method [9], which are approximate only, and Kat-
sevich’s FBP [10], which is exact. Both the PI and Katsevich’s
methods discard projection data outside the Tam window,
which makes them less favorable in clinical environment
compared to the WFBP method.

The aim of this paper is to extend the 2D algorithm DIRA
to 3D Helical geometry.

II. THEORY

A. Material Decomposition

Two-material decomposition (2MD) assumes that a mixture
is composed of two materials. 2MD determines mass fractions,
w1 and w2, of the two base materials and the mass density, ρ,
of the mixture. Three-material decomposition (3MD) assumes
that a mixture consists of three base materials. 3MD deter-
mines mass fractions, w1, w2 and w3, and the mass density
of the mixture, which is calculated as ρ−1 =

∑3
k=1 wk/ρk,

where ρk and wk are the mass density and mass fraction,
respectively, of the kth material. In both methods, the mass
fractions are normalized so that

∑
k wk = 1. More information

on the resulting systems of linear equations is in [6].

B. Forward projection generation

The logarithm of attenuation, here referred to as the polyen-
ergetic projection P , is calculated as

P = ln
I0
I
, (1)

where I and I0 are the detector responses with and without,
respectively, the imaged object. The intensity I0, is calculated
for an ideal energy integrating detector as

I0 =

∫ Emax

0

EN(E)dE, (2)

where E is the photon energy and N(E) is the energy
spectrum of photons emitted from the x-ray tube. The intensity
I is calculated as

I =

∫ Emax

0

EN(E) exp

[
−
∫
L

µ(x, y, z, E)dl

]
dE, (3)

where µ(x, y, z, E) is the LAC of pixel (x, y, z) at energy E
and

∫
L
dl is a line integral through the object. This calculation

is time consuming since the line integrals must be calculated
for all energies in the energy spectrum. The calculation of
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projections change slightly when material decomposition is
introduced. The line integrals are calculated through volume
fractions of the different base materials. The intensity I is then

I =

∫ Emax

0

EN(E) exp

[
−
∑
k

µk(E)lk

]
dE, (4)

where µk is the LAC of the kth base material and lk is
computed as

lk = ρ−1
k

∫
L

ρ(x, y, z)wk(x, y, z)dl, (5)

where ρk is the tabulated density of the kth base material,
ρ(x, y, z) is the calculated density in voxel (x, y, z) and
wk(x, y, z) is the mass fraction of the kth material in voxel
(x, y, z). The density ρ and the mass fractions wk are obtained
from the two-material or three-material decomposition.

A monoenergetic projection PEi
, where Ei, i = 1, 2 is a

specific energy, is calculated as

PEi
=
∑
k

µk(Ei)lk. (6)

The line integral
∫
L
dl can be calculated using Josephs method

[11].

C. The PI-method, an FBP method for helical CT

1) Helical cone-beam geometry: Third generation CT-
scanners typically use cone-beam projections and helical tra-
jectory of the source, see Fig. 1, left. In this figure, κ is the
cone-angle, γ is the fan-angle and P represents the pitch of
the helix (the height of one complete helix turn, measured
parallel to the axis of the helix). The maximum value of the
cone-angle is called the cone-beam angle and is denoted κmax

and the maximum value of the fan-angle is called the fan-beam
angle and is denoted γmax. The s-axis starts at the point C,
the cross-section between the central ray and the z-axis, and
is aligned with the z-axis. The x-ray source is visualized as a
dot which rotates around the z-axis in a helical trajectory. The
detector is cylindrical and has its centre in the x-ray source.

yPP

C

x

 s

z

Fig. 1. Left: Helical CT geometry. Right: The PI-method geometry. The Tam
window is located between two turns of the helix. The PI-detector is shown
as the rectangular (t, s)-plane. Source: [9].

2) The algorithm of the PI-method: In the PI-method [9],
cone-beam projections are rebinned to semi-parallel projec-
tions, see figure 1, right. The mathematical relation between a
cone-beam projection, p(β, γ, s), and the corresponding semi-
parallel projection, pP (θ, t, s), is

pP (θ, t, s) = p(β, γ, s), (7)

where the relations between the parameters (θ, t, s) and
(β, γ, s) are

θ = β + γ

t = R sin γ (8)

In (8), R is the radius of the helix. Projections to the (x, y)
plane from the rays generating the semi-parallel projections
are parallel line segments, see figure 1. In the (v, z) plane
the rays generating the semi-parallel projections are fan-beam
shaped.

The PI-method assumes that a virtual detector is positioned
between the two turns of the helix (Tam window), see figure 1.
Then in the (t, s) plane the rays define a rectangular area called
the PI-detector. The s-axis has its origin at the center of the PI-
detector and is aligned with the z-axis. It has been shown that
the PI-detector gives complete and non-redundant projection
data, i.e. no redundant data are present during reconstruction
[9]. The PI-detector restricts the illumination interval of a
voxel (x, y, z) to exactly 180◦. A basic outline for the simplest
version of the PI-method is:

1) Obtain cone-beam projections from the CT-scanner.
2) Perform rebinning, i.e. calculate semi-parallel projec-

tions from the cone-beam projections using (7) and (8).
3) Throw away all projection data outside the Tam window.
4) Pre-weight with cosκ.
5) Perform rampfiltering along the rows of the virtual PI-

detector.
6) Perform three-dimensional backprojection along the

semi-parallel rays.
The PI-method is not an exact method and small artefacts can
be seen in the reconstructed images. In general, the larger the
cone-beam angle, the larger artefacts are observed [12].

D. DIRA-3D

DIRA-3D is an extension of the 2D algorithm DIRA
presented in [6]. The algorithm is illustrated in Fig. 2 and
performs the following steps:

1) Obtain measured semi-parallel polyenergetic projec-
tions, PM,Ui

, for two different tube voltages, Ui, i =
1, 2, giving PM,U1 and PM,U2 .

2) Reconstruct these projections so that the reconstructed
LAC at energy Ei is µi = ∆µi + µPi

, where µPi
is

the reconstructed LAC from mono-energetic calculated
parallel projections at energy Ei and ∆µi is the result of
reconstructing PM,Ui−PUi , where PUi are the calculated
semi-parallel projections. For the first iteration, PUi =
PEi

= 0 and thus µi is the reconstruction of the PM,Ui

only.
3) Perform automatic threshold segmentation on µ1 and µ2.
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4) Classify tissues using the material decomposition meth-
ods (section II-A).

5) Calculate polyenergetic projections PUi for semi-parallel
geometry, see equations (1), (2) and (4).

6) Calculate monoenergetic projections PEi
for parallel

geometry, see equation (6).
Points 2-6 are repeated a predefined number of times.

12. µ

22. µ

C4. µ

5. P

6. P E2

U2

5. P

6. P E1

U1

monoenergetic parallel
projection calculation
polyenergetic semi−par.
projection calculation

projection calculation
monoenergetic parallel

polyenergetic semi−par.
projection calculation

M,U21. P

M,U11. P 13. µ
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projections

23. µparallel
FBP

semi−par.
FBP

FBP
parallel

semi−par.
FBP

∆µ 1

∆µ

P1µ

2

µ P2

tissue
classifi−
cation

air/bone/
soft tissue
segmentation

classified
recon−

structed
volume

Fig. 2. A flowchart of the DIRA-3D algorithm.

To formulate DIRA in mathematical terms, set

µ =

(
µ1

µ2

)
, PM,U =

(
PM,U1

PM,U2

)
, (9)

for the reconstructed images and the measured projections,
respectively. Furthermore, denote the filtered backprojection
operators BPI and BII; the former represents the PI-method
working with semi-parallel projections, the latter represents
ordinary parallel FBP. Set

PU =

(
PU1

PU2

)
, PE =

(
PE1

PE2

)
, (10)

for the projection operator for polyenergetic projections and
monoenergetic projections, respectively. These projection op-
erators include the automatic tissue segmentation and classi-
fication. The linear attenuation coefficient µ(i+1) obtained at
the (i+ 1)th iteration is

µ(i+1) = BPI(PM,U)− BPIPU (µ(i)) + BIIPE(µ(i)). (11)

Ideally, the calculated polyenergetic projections PU (µ(i))
converge towards the measured projection PM,U. The (i+1)th
iteration then gives µ(i+1) ≈ BIIPE(µ(i)), which is the
filtered backprojection result of the monoenergetic projections.
The generation of monoenergetic projections followed by
backprojection in DIRA serves as a regularization [6].

III. METHODS

The new DIRA-3D algorithm was implemented according
to the description in sections II-D and III-B. It was tested in
the geometry described in section III-A.

A. Mathematical phantom and projection geometry

The phantom consisted of six ellipsoids, see figure 3. Two
ellipsoids consisting of protein and water had their centers
located at slice 24. Four ellipsoids consisting of adipose tissue,

200

600

800

400

0

rotation axis

slice 14
slice 10

Fig. 3. Left: Phantom slice at z = 10. Right: The scanning geometry of the
semi-parallel projection generation through the phantom showing projection
number 0, 200, 400, 600 and 800 and highlighting slice positions at z = 10
and z = 14.

lipid, protein and compact bone had their centers located
at slice 10. The scanning geometry for the semi-parallel
projection generation is shown in figure 3. The parameters
were: number of projection angles = 800 (0 − 799), number
of helix turns = 2, helical pitch = 32 voxels, cone beam
angle = ±3.138074◦, voxelsize: ∆x = ∆y = 2.76 mm,
detector size: Nt ×Ns = 192× 32 pixels, detector pixel size
of ∆t×∆s = ∆x/1.5×∆x/2, resolution of the voxel array
of 128× 128× 48 voxels.

B. Implementation details

The rebinning step in the PI-method was omitted for sim-
plicity. The “measured” semi-parallel projections were simu-
lated using the line integrals in (4) with lk =

∫
L
mk(x, y, z)dl,

where mk are the masks for the different ellipsoids of different
materials. Energy spectra for the x-ray tube voltages of 80 and
140 kV with Sn filtration were used.

At each iteration, reconstructed volumes µ1 and µ2 were
threshold segmentented into air, soft tissue and bone regions.
Air was then decomposed into a (lipid, water) doublet, soft
tissue was decomposed into a (lipid, protein, water) triplet and
bone was decomposed into a (compact bone, bone marrow)
doublet. As a consequence, the ellipsoid containing bone was
decomposed into the (compact bone, bone marrow) doublet
and the other ellipsoids were decomposed into the (lipid,
protein, water) triplet.

The calculated semi-parallel polyenergetic projections were
computed using equations (1), (2), (4) and the calculated
parallel monoenergetic projections were were computed using
(6). The generation of parallel projections with succeeding
reconstruction was done slice by slice. The number of parallel
detector elements was 128 and the number of projection angles
was 400, with the angular interval [0◦, 180◦).

C. Error calculation

The relative error of reconstructed LAC was estimated as
δ(µ̄) = (µ̄ − µt)/µt, where µt is the tabulated value and µ̄
is the average of the calculated LAC in a spherical region of
interest (ROI). The ROI was defined as a sphere with a radius
of one third of the evaluated ellipsoid radius (in the x, y plane)
and positioned in the center of the evaluated ellipsoid.

IV. RESULTS

Figure 4 shows color-maps of reconstructed LAC in slice
z = 14 for iterations 1, 2, 3 and 4 of DIRA-3D. The cone-
beam artifact was decreased with the increasing number of
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TABLE I
CALCULATED MASS FRACTIONS (IN %) OF LIPID, PROTEIN AND WATER IN

ROIS R1 AND R2 CORRESPONDING TO ADIPOSE TISSUE AND MUSCLE,
RESPECTIVELY, FOR THE FIRST (w1) AND TENTH (w10) ITERATION. THE

TRUE VALUES (wt) ARE ALSO LISTED.

lipid protein water
R w1 w10 wt w1 w10 wt w1 w10 wt

R1 93 70.0 70.1 2 2.9 2.9 5 27.1 27.0
R2 20 -12.3 -12.8 22 13.0 12.8 58 99.2 100.0

iterations. The convergence was very fast; visual differences
between iterations 4 and 25 (not shown) were small. Streaks
in the reconstructed images are most likely caused by partial
volume artefacts.
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Fig. 4. Suppression of cone-beam artifacts in the surrounding air. Colormaps
of reconstructed LAC (in m−1) for iterations 1 (a), 2 (b), 3 (c) and 4 (d) of
regular DIRA-3D reconstruction for the slice z = 14 and photon energy
E1 = 50 keV.

Figure 5 shows that the relative error of the LAC in the six
different ellipsoids converged to a value close to zero already
after 10 iterations (and even earlier for soft tissues).
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Fig. 5. The relative errors of the LAC in the six different ellipsoids as a
function of the number of iterations for E1 = 50 keV (a) and E2 = 88.5
keV (b). The functions are plotted using a solid line for visual guidance only

Table I shows that was a good agreement between mass
fractions of lipid, protein and water calculated in the ellipsoids
containing adipose tissue (region R1) and muscle (region
R2) and the corresponding true values when the algorithm
converged. In the ellipsoid containing compact bone, the
calculated mass fractions of the compact bone and bone
marrow were w1 = 0.43 and w1 = 0.57, respectively, for
the first iteration and w10 = 1.0 and w10 = 0.0 for the

tenth iteration. The relative error of the density decreased from
0.0259 at iteration 1 to approximately 0 at iteration 10.

V. DISCUSSION AND CONCLUSION

We have presented DIRA-3D, a model-based iterative re-
construction algorithm that estimates material composition
of the imaged object from DECT projections obtained in
helical geometries. Specifically, the algorithm determines mass
fractions of components of user defined material doublets and
triplets. The current implementation was based on FBP and
the PI-method, nevertheless the WFPB should also work.

The algorithm was evaluated using computer simulations
with a simple phantom consisting of ellipsoids of different
materials. In the studied geometry, the algorithm effectively
removed beam-hardening and cone-beam artifacts and quickly
converged. More work is needed to test the stability of the
algorithm in the presence of quantum noise. The technique
for handling the long object problem [13] was evaluated in a
simulation experiment with good results (not presented here).
Another successful experiment (not presented), was to place
the two X-ray sources orthogonally and on different helices.

The presented result indicate that the concepts used in
DIRA can be extended to cone-beams and helical scanning
trajectories.
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Physical Constraints for Beam Hardening
Reduction using Polynomial Models

Tobias Würfl, Nicole Maaß, Frank Dennerlein, Anré Aichert and Andreas K. Maier

Abstract—Reconstruction algorithms for X-ray computed
tomography typically assume a monochromatic X-ray beam
and an energy independent attenuation coefficient of the
materials along the ray. However, the attenuation coefficient of
every material depends on energy, which leads to beam hard-
ening artifacts in the reconstructed images. Recently reference-
free algorithms for mono-material beam hardening artifact
reduction based on the epipolar consistency condition have
been introduced. These and reference-based algorithms apply a
univariate polynomial model to the measured intensities prior
to reconstruction. However consistency conditions reflect all
sources of measurement errors. Other sources of inconsistency,
notably truncation, may impact the model fitting and lead to
low-quality reconstructions in spite of higher consistency. This
work aims at avoiding such problems by imposing physically
plausible constraints on the compensation functions. We in-
troduce two necessary constraints on compensation functions
namely monotonicity and convexity over the range of observa-
tions. Subsequently, we reformulate the optimization problem
of polynomial models to yield only solutions obeying these
constraints. Our formulation presents the advantage of being
able to fit exactly all those functions, therefore not discarding
plausible solutions. We show that this problem, despite being
non-convex in the general case, is convex for the special case
of polynomials of degree three. A measured data experiment
is presented to demonstrate the effectiveness of our method.

I. INTRODUCTION

The combination of the polychromatic spectrum of X-ray
tubes and the energy dependence of the linear attenuation
coefficient causes a common problem in X-ray computed
tomography known as beam hardening. This typically de-
grades image quality by introducing artifacts such as negative
regions, cupping and streaks in reconstructions [1].

Conventionally the effect of beam hardening is compen-
sated by a combination of software approaches which use
reference measurements and methods optimizing the effective
X-ray spectrum. An important distinction between software
approaches is whether they assume a mono-material or a
multi-material model. A computationally efficient mono-
material method was presented by Kachelrieß et al. [2].
The approach introduces a polynomial compensation model
and constructs a linear optimization problem to estimate its
parameters using a reference measurement.

However, beam hardening introduces inconsistency in raw
projection data which can be used to estimate parameters,
even without any reference. New consistency conditions have

T. Würfl and A. K. Maier are with the Pattern Recognition Lab, Friedrich-
Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
N. Maaß and F. Dennerlein are with Siemens Healthcare GmbH, Erlangen,
Germany.

{P : g(x,w) =
∑N
n=1 wnx

n , wn ∈ R}

{Pm : g(x,w) ∈ P ∧ g′(x) ≥ 0 ∀x ∈ [a, b] }

{g(x,w) ∈ Pm ∧ g′′(x,w) ≥ 0 ∀x ∈ [a, b] }

Proposed method

{g(x,w) ∈ P ∧ wn ≥ 0}

Figure 1: Venn diagramm of the different constraints.
[a, b] denotes the range of measured values of q.

been introduced for cone-beam data by Clackdoyle et al. [3],
Lesaint et al. [4] and Debbeler et al. [5]. Aichert et al.
provided an efficient flexible formulation of [5] in terms
of epipolar geometry known as the epipolar consistency
condition [6].

Recently, two reference-free beam hardening reduction
algorithms based on the epipolar consistency condition
and a univariate polynomal model have been presented by
Abdurahman et al. [7] and Würfl et al. [8]. The approach
by Würfl et al. uses the linearity of the Radon operator to
speed up the algorithm significantly by reformulating the
optimization problem on the Radon intermediate function.
Additionally, the authors propose to improve robustness to
other sources of inconsistency by requiring the coefficients
of the polynomials to be non-negative. This non-negativity
constraint on the coefficients is motivated by the observation
that it is a sufficient but not necessary condition for a
polynomial to be monotonously increasing.

We show that the requirement on the model functions
to be monotonously increasing can be restricted further by
considering the physics of X-ray attenuation by additionally
requiring the functions to be convex.

This is implicitly satisfied by requiring non-negativity of
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the coefficients. However non-negativity of the coefficients is
too restrictive in the sense that it prohibits many physically
plausible solutions by not being a necessary condition.
We illustrate this situation in Fig. 1. In this work, we
present a new parametrization of polynomial functions which
is necessary and sufficient for monotonously increasing
polynomials with a monotonously increasing derivative over
the range of interest. This is also depicted in Fig. 1 as the set
of our proposed formulation is equal to the set of our proposed
constraint. Despite the fact that the original optimization
problem is convex the domain of the new parametrization
is in general not convex which renders optimization non-
convex. However we are able to show convexity for the
special, practically relevant case of a polynomial of degree
three.

II. METHODOLOGY

In section II-A we present physical constraints on our
model function. We construct a parametrization of polynomi-
als obeying these constraints in section II-B. Subsequently
we discuss optimization of this new parametrization in
section II-C.

A. Physical constraints on beam hardening reduction models

The log attenuation along a line in X-ray imaging is given
as:

q(L) = − ln

∫
S(L,E)e−

∫ ∞
0
µ(E,s+λl)dλdE , (1)

where S(E) is the normalized spectrum over energy E on the
line of integration L parametrized as s+ λl. Here s denotes
the source position and l the direction, while µ(E, r) denotes
the spatial distribution at position r of the energy-dependent
attenuation values along a line L. It is common to assume
we can decompose the energy dependence from the spatial
dependence. This allows us to reformulate Eq. (1) to:

q(r) = − ln

∫
S(E)e−p(r)ψ(E)dE , (2)

where p(r) denotes the mono-chromatic line-integral at
position r at some effective energy, while ψ(E) denotes the
energy dependence. In order to obtain p from measurements
q, the task is now to find the inverse to this function, which
we will denote as f . This is depicted in Fig. 2.

Physically plausible model functions have to be
monotonous and convex giving rise to the requirement:

f ′(q) > 0 ∧ f ′′(q) > 0 ∀ q ∈ [0, qmax] . (3)

B. Parametrization

We introduce a new parametrization of our polynomial by
extending a recently presented monotonic parametrization
by Murray et al. [9]. The goal of their method is to fit a
polynomial:

g(x,w) = w0 + w1x+ · · ·+ wdx
d , (4)

Figure 2: Illustration of the beam hardening effect.

where d denotes the degree of the polynomial, subject to the
constraint of being monotonous over a range [a, b]. They use
the fact that a polynomial of degree d = 2k is positive on
[a, b] if and only if it can be written as

ĝ(x, ŵ1, ŵ2) = ĝ1(x, ŵ1)
2+(x−a)(b−x)ĝ2(x, ŵ2)

2 , (5)

where k is a positive integer denoting the degrees of ĝ1 and
ĝ2. If instead the degree is d = 2k + 1 we have

ĝ(x, ŵ1, ŵ2) = (x−a)ĝ1(x, ŵ1)
2+(b−x)ĝ2(x, ŵ2)

2 . (6)

Integration over this non-negative polynomial ĝ(x, ŵ1, ŵ2)
yields:

g(x, ŵ) = δ + α

∫ x

0

ĝ(u, ŵ1, ŵ2)du . (7)

Note that all monotonic polynomials can be constructed
in this manner. Their method interprets the parameters of
polynomials ĝ1(x, ŵ1) and ĝ2(x, ŵ2) together with δ as a
set of new parameters:

ŵ = (ŵ1, ŵ2) ,

making them a reparametrization of g(x,w). By writing
polynomial multiplication and addition as convolution and
addition of coefficient vectors, an intermediate polynomial
with coefficients w̃ representing a non-negative polynomial
of degree d− 1 from ŵ can be calculated. If we e.g. pick
an uneven degree:

w̃ = (−a, 1)T ∗ (ŵ1 ∗ ŵ1) + (b,−1)T ∗ (ŵ2 ∗ ŵ2) ,

where ∗ denotes convolution. An integral over w̃ can be
computed according to:

w =

(
δ, αw̃0, α

w̃1

2
, · · · , α w̃d−1

d

)T
, (8)
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where α controls if it is monotonously increasing or decreas-
ing, i.e. α = ±1.

We set α = 1 , since we only need increasing functions.
Additionally we require the second derivative to be non-
negative to satisfy Eq. (3). To this end we integrate a second
time:

f(x) =

∫ x

0

δ +

∫ u

0

ĝ(v, ŵ)dv du . (9)

We set the constant coefficient arising from the second
integration to zero because we expect zero attenuation for
zero traversed material. This new parametrization restricts
f(x) to be convex but does not enforce monotonicity. Because
the first integration yields a strictly positive polynomial over
the range of interest we only need to constrain the parameter
δ to be non-negative. This has a straightforward interpretation
since δ is simply the slope at x = 0. A negative slope here
cannot yield a sensible compensation polynomial. Because
we started from a necessary and sufficient condition of non-
negativity this new parametrization includes all polynomials
which meet our physical requirements of Eq. (3).

C. Optimization of the new parametrization

The new parametrization can be incorporated into any
scheme estimating a polynomial compensation model from
measurements using a general non-linear optimizer. The
parameters of the optimization are reparametrized and the
cost function is evaluated using the intermediate weights.

An important distinction of optimization problems is
whether they are convex and so any initial value will lead
to the same unique global minimum. When applying the
new parametrization this is in general not the case [9]. The
problem stems from the fact that the domain of all monotonic
polynomials f(x) is not convex. Therefore, even though the
unconstrained problem is convex, an optimizer can get stuck
in local minima which are on the boundaries of the restricted
domain.

In practice, a degree of d = 3 is often found to be sufficient
for measured data. If we restrict our attention to this special
case, we can investigate the function m3(δ, ŵ) which maps
the optimization parameters δ, ŵ1, ŵ2 to the parameters of
our polynomial model. In this case ŵ1 = ŵ1 and ŵ2 = ŵ2

and thus:

w = m3(δ, ŵ) =


0
δ

1
2

(
bŵ2

2 − aŵ2
1

)
1
6

(
ŵ2

1 − ŵ2
2

)
 . (10)

Since δ is constant, the shape of the domain depends only
on the intermediate weights ŵ1 and ŵ2. We visualize this
domain in Fig. 3. Examining the mapping in Eq. (10) we can
state that the square-function maps every value in the four
quadrants of ŵ to the same values in w. In addition, we can
determine that the boundaries of this domain are characterized
by lines produced when ŵ1 = 0 or ŵ2 = 0 respectively. The

lines are explicitly given as the left boundary:
(
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− 1

6
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ŵ2

2 and

2 1 0 1 2
ŵ1
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Figure 3: Visualization: m3(δ, ŵ) in relevant dimensions.
The green lines form the treshold of the convex domain.
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Figure 4: Results of the unconstrained ECC2 algorithm using
measured data of an aluminum part (cf. fig 5). The estimated
compensation function shows undesired curvature and as a
consequence, the reconstruction is flawed.

the lower boundary:
(
−a2
1
6

)
ŵ2

1 . Because the expression of

the boundaries are lines which can also be seen graphically
in Fig. 3 the domain of optimization is actually convex for
the special case of a polynomial of degree three. This implies
that the whole optimization problem is convex.

D. Application to the ECC2 algorithm

The optimization problem for the reference-free beam
hardening reduction algorithm of reference [8] is given as

min
(
‖Aw‖22

)
s.t. : wTb = β; w ≥ 0 ∀w ∈ w ,

(11)
Where A denotes a measurement matrix which is constructed
using the epipolar consistency condition and b is a Vander-
monde vector which fixes a point p to a value q to deal
with the scale problem, inherent to the homogeneous least
squares problem. We modify this algorithm using our new
formulation to

min (‖Amd(δ, ŵ) ‖22) s.t. : md(δ, ŵ)Tb = β , δ > 0 .
(12)

We can solve this problem using a standard solver for
constrained convex optimization problems.
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Figure 5: Comparison of the effect of scatter reduction on
our modification of the ECC2 algorithm. Because the ECC2

algorithm does not preserve scale, we normalized every image
to a mean of one (Grayscale window: C/W = 0.53/1.91).

III. EXPERIMENTS

We present an experiment demonstrating our new method
on a measured dataset of an aluminum object additionally
affected by scatter.

The dataset shows severe scatter artifacts in addition to
beam hardening. This is reflected in additional inconsistency.
In Fig. 4 we present the result of the ECC2 algorithm without
a constraint on the polynomial:

The image-quality is severely impaired. The reason can
be observed from the estimated polynomial which is neither
monotonous nor convex.

We next compare the application of our proposed method
to both the original data and scatter reduced data. The scatter
reduction was performed using a beam stop array method.
The results are presented in Fig. 5.

In Fig. 5 we demonstrate, that our proposed constraint
makes the algorithm robust to additional sources of incon-
sistency. In addition we can see that the beam hardening
related artifacts are removed in both cases, while the
additional removal of scatter provides increased image quality
independent of this.

IV. CONCLUSION AND OUTLOOK

We have shown a new parametrization of polynomial
models which restricts the space of functions to a physically
plausible subset. Specifically we improve previous approaches
by precisely specifying the necessary conditions on these
functions and providing a method restricting the results to all
those functions which obey them. This can directly be used
to improve a number of algorithms relying on such a model.

Especially reference-free algorithms profit from our new
formulation, as their functions of merit may actually reflect
any other imaging problem in addition to beam hardening. We
applied our method to the ECC2 algorithm of Würfl et al.[8]
and showed the effectiveness of our method in dealing with
severe scatter conditions. Our algorithm is more complicated
in terms of implementation and looses the advantage of
presenting a convex optimization problem, if polynomials
higher than degree three are considered. However we have
not found this to be a practical limitation.

We will extend the physical constraints to multi-material
methods in future research using similar techniques. This is
more complicated since there is no unique definition of a
convex functional of two coupled variables. We expect multi-
material methods to benefit even more from such techniques
because the problem has more degrees of freedom.

Additionally we are interested in applying our method to
simultaneous multi-dimensional optimization of reference-
free geometric and physical compensation methods promising
to provide improved results for all those methods.
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Reducing partial volume artifacts with spectral CT
Mats Persson and Norbert J. Pelc

Abstract—Partial volume artifacts arise in computed tomogra-
phy near sharp interfaces of highly attenuating material. These
artifacts appear as shading and streaking and can degrade
diagnostic performance. We propose a method of reducing these
artifacts using energy-resolving photon-counting detectors, based
on the observation that the partial volume artifacts have a unique
spectral characteristic that distinguishes them from tissues obey-
ing the low-dimensional approximation used in basis material
decomposition. We simulate imaging of a simple mathematical
phantom with an ideal photon-counting detector, and show that
the level of artifacts in the image can be reduced substantially.
While the artifact removal comes at the cost of increased noise,
the basis function noise increase can be lowered to 4-7% using
a frequency-splitting method. This method can be an important
step towards using photon-counting spectral CT for accurate
quantitative measurements in CT images.

I. INTRODUCTION

The partial volume effect occurs in all imaging systems,

including computed tomography (CT), when there are varia-

tions in the image on a length scale shorter than the resolution

of the system. When the X-ray attenuation in a voxel-sized

cell of the object contains a combination of two or more

materials, the reconstructed voxel value will be an average of

the true CT number over the voxel. Apart from this “linear”

partial volume effect, however, there is also another effect

called the nonlinear partial volume (NLPV) effect which can

give rise to image artifacts. [1], [2] This phenomenon arises

from the nonlinear form of X-ray attenuation (described by

the Beer-Lambert law) in conjunction with the finite system

resolution. As illustrated in Fig. 1, this effect means that the

number of transmitted photons is higher for a beam passing

an interface parallel to the beam direction (Fig. 1b) compared

to a beam traversing a homogeneous mixture of the same

materials (Fig. 1a). This leads to the X-ray attenuation being

underestimated and causes streaks in the reconstructed image,

called partial volume artifacts, that depend on the geometry of

such structures in the object.

Different methods have been proposed for reducing these

artifacts. [1], [3], [4] These methods build on making prior

assumptions about the shape of the attenuating objects or

the attenuation of the surrounding tissue. However, despite

these developments and despite the fact that smaller detector

pixels and thinner slices have decreased the severity of these

artifacts over the years, partial volume artifacts can still be a

problem e.g. when imaging dense bone structures in the skull.

We propose a new method of correcting for partial volume

artifacts using spectral CT, by exploiting the fact that the

M. Persson is with the departments of Bioengineering and Radi-
ology, Stanford University, Stanford 94305, California, USA. e-mail:
matspers@stanford.edu

N. J. Pelc is with the departments of Electrical Engineering, Bioengineering
and Radiology, Stanford University, Stanford 94305, California, USA

NLPV effect can be identified from its unique energy response,

which does not agree with that of any material occurring in

the human body. This fact has previously been exploited to

improve the resolution of images. [5] In this work we use this

insight to develop a new method for correcting partial volume

artifacts and demonstrate it in a simulation study with a simple

phantom.

II. METHODS

We developed our artifact correction method within the

framework of basis material decomposition, which is a method

for quantifying material composition in spectral CT. [6]–[8]

Basis material decomposition builds on the fact that the linear

attenuation for any material occurring in the human body

can be expressed as a linear combination of basis functions,

e.g. µ(E) = awfw(E) + abfb(E) where we have chosen

the linear attenuation coefficients of water fw(E) and bone

fb(E) as basis functions. Integrating the basis coefficients

(aw, ab) along the projection lines yields basis projections

(Aw, Ab) which can be estimated from the measured data in

each detector pixel. Since the spectral response of the NLPV

effect cannot be expressed in this way, we model it by adding

a third basis function:

fNLPV(E) = −ln

(
1

2
e−A0

b
fb(E)

+
1

2
e−A0

w
fw(E)

)
(1)

−
1

2
A0

wfw(E)−
1

2
A0

bfb(E)

The rationale behind this definition is that it al-

lows the transmission for a beam, half of which passes

through a thickness A0
w of water and half of which

passes through a thickness A0

b of bone, to be expressed

as exp
(
−

1

2
A0

wfw(E)− 1

2
A0

wfw(E)− 1 · fNLPV(E)
)
. In this

way, we have constructed a third basis function that measures

the strength of nonlinear partial volume effect, exactly for

the material combination for which it was constructed and

approximately for other material combinations.

The proposed artifact reduction technique builds on per-

forming a three-material decomposition using water, bone and

the NLPV effect as basis functions. With the NPLV basis

function constructed according to the above, the NLPV effect

will be captured by the NLPV basis, so that the water and bone

images will contain the average basis projections of these two

materials, respectively. The water and bone images will thus

be free from partial volume artifacts, at least if the measured

material combination is similar enough to the case that was

used to construct the basis function.

We simulated a 16 cm cylindrical water phantom with three

cylindrical inserts made of cortical bone, each 15 mm in

diameter. (Fig. 2.) The inserts are protruding halfway into the

slice, two from below and one from above. This phantom was
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Fig. 1. Illustration of the nonlinear partial volume effect. A single voxel
contains equal amounts of two materials (white and black) with attenuation
coefficients µ1(E) and µ2(E) respectively. In case (a) the materials are
mixed, and the effective attenuation coefficient is the linear average of µ1

and µ2. In case (b) the materials are separated by an interface parallel to the
beam, and the effective attenuation coefficient is a nonlinear average of µ1

and µ2. This gives a higher number of transmitted photons compared to case
(a). Here, t denotes the path length.

mathematically represented as an upper and a lower subslice,

and the fanbeam function of MATLAB (The MathWorks

Inc., Natick, MA, USA) was used to calculate sinograms of

the projected amounts of water and bone for each of these

subslices. The forward projection was made with 1000 view

angles covering 360◦, 500 mm source-to-isocenter distance

and an arc-shaped array of detector pixels corresponding to

0.5 mm pixel pitch in isocenter. To model spectrum filtering

by the bowtie and other filters in the X-ray tube housing,

the prepatient spectrum was attenuated by an amount of

teflon varying with the fan angle. The filter thickness was

fitted to a X-ray dose profile measured on a GE VCT with

medium field of view [9] with a half-value layer of 6.7 mm

Al in the central ray. By adding the transmitted counts in

the two subslices, we simulated the photon counts in each

pixel for an energy-resolving photon-counting detector, with

unity detection efficiency, perfect energy response and 1-keV

wide energy bins with thresholds from 0.5 to 119.5 keV.

We used a 12◦ tungsten anode X-ray spectrum from [10]

and linear attenuation coefficients from [11], implemented in

Spektr3. [12] We simulated Poisson noise with 4 · 105 pre-

patient photons per measurement (in total 4 · 108 photons

per detector pixel during the entire rotation), corresponding

to approximately 200 mAs.

We constructed an NLPV basis function according to (1)

with A0
w = A0

b = 15 mm i.e. a common path length of

15 mm water and soft tissue, corresponding to a projection

ray passing through one of the bone inserts at its thickest

part. Maximum-likelihood basis material decomposition [7]

was then used to generate three basis sinograms, for water,

bone and NLPV, from the measured data. For reference, we

also made a conventional two-basis decomposition into water

and bone images. The basis images were reconstructed with

ifanbeam in MATLAB using a pure ramp filter. In addition,

a “pure” photon-counting image was reconstucted from a

sinogram of log-normalized counts −ln(N/N0) where N is

the total number of counts summed over all energy bins and

N0 is the expected number of prepatient photons in the same

projection line.

Since we observed that replacing the two-basis decomposi-

tion by three-basis decomposition decreased the level of arti-

facts at the expense of increased noise, we used a frequency-

splitting method to merge the two-basis and three-basis im-

ages. Letting aα,2(x, y) for α = {b, w} denote the recon-

structed basis images resulting from the two-basis decomposi-

tion and letting aα,3(x, y) be the corresponding basis images

from the three-material decomposition, the difference images

∆aα(x, y) = aα,3(x, y) − aα,2(x, y) capture the NLPV arti-

facts. Since these artifacts have a predominantly low-frequency

character, low-pass filtering the correction images can reduce

noise without affecting the artifacts much. We therefore gen-

erated a corrected image as aα,2(x, y) +∆aα(x, y) ∗K(x, y)

where ∗ denotes convolution and K is a smoothing kernel,

in our case a Gaussian with standard deviation 2 pixels. For

each of the reconstructed basis image sets we also generated a

synthetic monoenergetic image from the water and bone basis

images as µ(Emono) = awfw(Emono) + abfb(Emono) with

Emono = 60 keV.

III. RESULTS

Figure 2 shows reconstructed images of the phantom. Fig.

2(a-b) show the ground truth images with the regions of in-

terest (ROIs) used for measuring noise standard deviation and

mean water and bone image value, and the line along which

the profiles in Fig. 3a are measured. Fig. 2(c) shows the pure

photon-counting image. Fig. 2(d-l) show the reconstructed wa-

ter and bone basis images and synthetic monoenergetic images

for two-basis decomposition, three-basis decomposition and

the merged image obtained by combining the two-basis and

three-basis images using frequency splitting. Figure 3(a) shows

a plot of the different reconstructed synthetic monoenergetic

images along the line shown in Fig. 2(b). Figure 3(b) shows the

average basis coefficient in the water and bone basis images,

measured in the background (“Bg”), ROI in the most artifact-

intense region between the inserts, and in an ROI positioned in

one of the inserts. Figure 3(c) shows standard deviation in the

water and bone basis images, measured in the square “Noise”

ROI located in a more peripheral part of the phantom, where

there are no visible artifacts.

IV. DISCUSSION

As seen in in Fig. 2(c,f), both the pure photon-counting

image and the synthetic monoenergetic image exhibit severe

partial volume artifacts, primarily along the projection lines

passing through two of the inserts. The appearance of the

artifacts is different depending on which direction the inserts

enter the slice from. Between the two inserts that protrude

from the same direction, the linear attenuation coefficient is

underestimated, giving a dark streak in the image. Between

the upper insert and one of the lower inserts, the dark streaks

are concentrated to both sides of the line through the center

of the two inserts, i.e. to rays passing a much larger distance

through one of the inserts than through the other. The artifacts

are even more visible in the basis images resulting from two-

basis decomposition (Fig. 2 (d-e)), with opposite polarity in

the water and bone images, i.e. they cancel out to some extent

when forming a synthetic monoenergetic image.
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Fig. 2. Reconstructed images of a 16 cm water phantom with three 15 mm diameter bone inserts partially protruding into the slice. The upper insert
protrudes from above and the bottom inserts from below. Left column: water basis images. Center column: Bone basis images. Right column: photon counting
and synthetic monoenergetic images. (a-b) Water and bone basis images, ground truth. The ROIs for measuring mean and standard deviation are shown in
(a) and the profile plotted in Fig. 3 is shown in (b). (c) Pure photon-counting image. (d-e) Water and bone basis images from two-basis decomposition.
(f) Synthetic 60 keV monoenergetic image resulting from two-basis decomposition. (g-h) Water and bone basis images from three-basis decomposition. (i)
synthetic monoenergetic image from three-basis decomposition. (j-k) Water and bone basis images created by merging images from two- and three-basis
decomposition. (l) Synthetic 60 keV monoenergetic image generated from the merged images in (j-k).
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Fig. 3. (a) Horizontal profiles through the synthetic monoenergetic images,
through the center of one of the bone inserts. (b) Mean basis coefficient
measured in the background (“Bg”) and in the “Insert” ROI. (c) Standard
deviation in the basis images, measured in the square ROI denoted “Noise”.

The water and bone images resulting from three-basis de-

composition (Fig. 2 g-i) exhibit a much lower level of artifacts.

The streaks between the upper and lower inserts are no longer

visible and the artifact between the lower inserts is reduced

in magnitude. The NLPV effect has thus been captured in

the third basis projection instead of contaminating the two

ordinary basis projections. Also note that the water and bone

coefficients measured in the insert ROI are close to the ground

truth value in 3-material and merged images (5-14% bias)

compared to the 2-basis images which have a bias of 109%

(water) and 50% (bone), respectively. Some residual artifacts

are visible for lines passing a very large path length (up to

30 mm) of an interface between soft tissue and bone. This is

sufficiently different from the case that the basis function was

constructed for (15 mm common path length of soft tissue

and bone) that the NLPV basis function does not capture the

NLPV effect entirely.

Fig. 2(g-i) also show that the noise level increases when

going from two-basis to three-basis decomposition, a common

phenomenon in signal processing when the number of esti-

mated parameters is increased. To mitigate this problem, we

used the frequency-splitting technique to generate a merged

image with low-frequency features from the three-basis de-

composition and high-frequency features from the two-basis

decomposition (Fig. 2(j-l)). As seen in the figure, these merged

images have a low level of artifacts comparable to the three-

basis decomposition but with a substantially reduced noise

level. As seen in Fig. 3, the noise standard deviation in

the merged water and bone images are only 4% and 7%

higher than the images from the two-basis decomposition,

respectively. This can be compared with the images from the

three-basis decomposition which have 130% and 210% higher

noise than the 2-basis image, for water and bone, respectively.

V. CONCLUSION

We have demonstrated that photon-counting energy-

resolving CT can be used to reduce partial volume artifacts

substantially, by performing basis material decomposition with

an additional basis function. While this artifact reduction is

accompanied by an noise increase in the basis image, this noise

increase can be lowered to 4-7% using a frequency splitting

method. In future work, we will investigate ways of further

reducing the remaining artifacts.
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Locally Linear Transform based Gradient L0-norm
Minimization for Spectral CT Reconstruction

Qian Wang†, Weiwen Wu‡†, Hengyong Yu∗†

Abstract—By extending the conventional single-energy com-
puted tomography (SECT) along the energy dimension, spectral
CT achieves superior energy resolution and material distin-
guishability. However, because the emitted photons with a fixed
total number for one X-ray beam are divided into several differ-
ent energy bins, the noise level is increased in the reconstructed
image in each channel, and it further leads to an inaccurate ma-
terial decomposition. To improve the reconstruction quality and
decomposition accuracy, in this work, we first construct a global
three-dimensional (3D) gradient sparsity of two-dimensional (2D)
spectral CT images by employing a locally linear transform.
Then, the sparse property is measured with an L0-norm and
incorporated into an optimization model. The corresponding
iterative algorithm is also deduced. Experiment results with
simulation data and real data demonstrate a superiority of the
proposed method.

Index Terms—Spectral CT, locally linear transform, three-
dimensional gradient, L0-norm minimization, material decom-
position.

I. INTRODUCTION

The matter attenuation properties of X-rays are energy- and
material-dependent [1]. This allows deriving material proper-
ties by using multiple different X-ray energies for imaging.
Spectral CT is proposed by extending the conventional single-
energy computed tomography (SECT) along the energy di-
mension, and it can be realized by employing photon-counting
detectors (PCDs) or other methods. The state-of-the-art PCD
can divide the X-ray photons into 8 different energy channels,
and then achieve multiple energy-dependent projection sets
[2]. Thus, compared with the SECT, spectral CT is superior in
energy resolution and material distinguishability. It has a great
potential in both medical and industrial applications, such as
bone mineral density and liver iron concentration measure-
ments, beam-hardening correction and contrast enhancement
of soft tissues, calculation of pseudo-monochromatic images,
and so forth [3].

Similar to the conventional image reconstruction problems,
the target problem of spectral CT is also ill-posed, i.e., the
solution process is very sensitive to noise. Because the emitted
photons with a fixed total number for one X-ray beam are
divided into various energy bins, the noise level will increase
in each channel. This degrades the reconstructed image quality
and further reduces the decomposition accuracy. Therefore,

* Corresponding Author (hengyong-yu@ieee.org).
†Department of Electrical and Computer Engineering, University of Mas-

sachusetts Lowell, Lowell, MA 01854, USA.
‡Key Lab of Optoelectronic Technology and Systems, Ministry of Educa-

tion, Chongqing University, Chongqing 400044, China.

one of the fundamental problems for spectral CT is how to
reconstruct high-quality images from noisy projections.

To overcome the ill-posedness in spectral CT reconstruction,
prior knowledge needs to be greatly concerned and effectively
employed. One popular prior knowledge is based on the fact
that the scanned specimens are usually piece-wise constant.
This property can be employed to establish a sparse gradient
constraint in the spatial domain. In [4], Xu et al. proposed a
total variation (TV) based spectral CT method by individually
considering the channel image reconstruction. Generally, if the
image is compressible, the prior information can be developed
in a transform domain in the framework of compressive
sensing, such as Fourier domain, wavelet domain and so on.
In [5], a tight-frame based iterative reconstruction (TFIR) ap-
proach was investigated for spectral breast CT. Another spatial
property is the structural sparsity, which concerns the feature
in high-dimensional space. One representative utilization is the
dictionary learning (DL) based sparse representation, which is
also applied to spectral CT [6]. These methods just consider
the prior knowledge in the spatial domain or its transform
domain, but overlook the correlation in the spectral dimension.
By incorporating the similarity among channel images, all
the aforementioned methods achieve further developments.
For example, the TV-based method is combined with low-
rank property [7], the DL-based method is extended to tensor
dictionary [8], and so on.

Different from directly employing the correlation among
channel images, we use a locally linear transform to establish
a gradient sparsity in the spectral dimension. Combining the
piece-wise constant prior knowledge in the spatial domain,
a three-dimensional (3D) gradient sparsity is formed. This
property is further measured by an L0-norm and incorporated
into an optimization model as a regularization term. We also
develop the corresponding iterative algorithm.

The remainder of this paper is organized as follows. In
section II, we present the mathematical model of spectral CT,
and review the image-guided filtering and two-dimensional
(2D) gradient L0-norm minimization. In section III, the global
3D gradient sparsity of spectral CT images is established
and measured by an L0-norm. Correspondingly, we propose
an optimization model and develop an iterative algorithm.
In section IV, we perform both numerical simulations and
real experiments to verify the effectiveness of the proposed
method. In last section, we discuss some related issues and
conclude this work.
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II. THEORY

A. Mathematical Model of Spectral CT

In realistic CT applications, the emitted X-ray photons are
not ideally monochromatic. They obey a spectral distribu-
tion, i.e., energy-dependent. However, the conventional CT
scanners employ energy-integrating detectors, which do not
have the capability to distinguish photon energies. Thus, the
corresponding post-log projection P0 is represented as

P0 = ln
[ ∫

E
S(E) dE∫

E
S(E) exp

(
− P(µ(E, x))

)
dE

]
, (1)

where µ(E, x) is the linear attenuation coefficient for energy
E at position x, P(·) represents the ray transform, S(E) is
the emission spectrum.

For a photon-counting detector based spectral CT scanner,
the transmitted photons can be discriminated and counted by
different energy bins. In this case, the whole X-ray spectrum
can be divided into several intervals with appropriate post-
processing steps which lead to multiple projections along
energy dimension. Assuming there are C energy channels
and the energy interval is noted as ωc (1 ≤ c ≤ C), the
corresponding channel projection reads,

Pc = ln
[ ∫

E
S(E)Wc(E) dE∫

E
S(E)Wc(E) exp

(
− P(µ(E, x))

)
dE

]
, (2)

where

Wc(E) =

{
1, E ∈ ωc,
0, otherwise,

is a window function of channel c. Obviously, (1) is a special
case of (2) when the energy bin number is 1 and the energy
window covers the whole spectrum.

By denoting the inverse operator of P(·) as P−1(·), we can
obtain the reconstructed channel image as follow,

fc(x) = P−1(Pc)

= P−1

{
ln
[ ∫

E S(E)Wc(E) dE∫
E S(E)Wc(E) exp

(
− P(µ(E, x))

)
dE

]}
. (3)

Denoting the size of fc(1 ≤ c ≤ C) as M×N and heaping up
all the channel images along the spectral dimension, we can
obtain a 2D spectral CT image F with size of M ×N × C.
Denote the cth channel image of spectral CT reconstruction
volume F as Fc, i.e., Fc = fc(1 ≤ c ≤ C). Then, by
performing the same operation on the channel projection data,
we can obtain the spectral projection volume P .

B. Image-guided Filtering

Image-guided filtering is a reference image based edge-
preserving smoothing technique [9]. As a neighborhood op-
eration, it establishes a locally linear relationship between the
reference image f and the filtering output g as follow,

g(x) = a(k)f(x) + b(k),∀x ∈ Ω2(k), (4)

where Ω2(k) represents an image patch centered at the po-
sition k, and

(
a(k), b(k)

)
are a pair of constant coefficients

depending on the patch Ω2(k).
(
a(k), b(k)

)
can be determined

by solving the following quadratic optimization model,

min(
a(k),b(k)

) ∑
x∈Ω2(k)

[(
a(k)f(x)+b(k)−g0(x)

)2
+εa2(k)

]
. (5)

Here g0 strands for the filtering input. Thus, the first quadratic
term measures the difference between the filtering input and
output, i.e., the data fidelity term. ε is a regularization param-
eter to penalize large a(k). Further, the closed form solution
of (5) can be written as,

a(k) =

1
#(Ω2)

∑
x∈Ω2(k) f(x)g0(x)− f̄(k)ḡ0(k)

σ2(k) + ε
, (6a)

b(k) = ḡ0(k)− a(k)f̄(k), (6b)

where #(·) stands for the counting operator to count the pixel
number in an image path. f̄(k) and ḡ0(k) are respectively the
mean of f and g0 in Ω2(k), and σ2(k) represents the variance
of f in Ω2(k).

Further, we can employ (4) to compute the filtering output g.
According to (5), it is obvious that g is similar to the filtering
input g0. Meanwhile, by utilizing (4), g contains the features
of the reference image f . This means any structure in f is
transferred into g in terms of locally linear transform.

Considering each pixel x is covered by several patches, we
adopt an averaging strategy. Thus, (4) is converted to

g(x) = ā(x)f(x) + b̄(x),∀x ∈ Ω2,

where
(
ā(x), b̄(x)

)
is a pair of averaged coefficients in all the

patches covering the pixel x.

C. 2D Gradient L0-norm Minimization

The gradient L0-norm regularization based image denoising
optimization model reads,

min
g

{ ∑
x∈Ω2

(
g(x)− g0(x)

)2
+ λΦ(g)

}
, (7)

where g0 represents the obtained noisy image, g is the
searched-for noise-free image, and Ω2 stands for the image
support.

Φ(g) = #
{

x ∈ Ω2

∣∣|∂xg(x)|+ |∂yg(x)| 6= 0
}

is the gradient L0-norm regularization term, which counts
the number of pixels satisfying |∂xg(·)| + |∂yg(·)| 6= 0.
λ > 0 is a regularization parameter to balance the fidelity
and regularization terms to obtain satisfactory results.

Comparing with the Tikhonov regularization (L2-norm of
image gradient) and TV regularization (L1-norm of image
gradient) based models, (7) has the strongest capability for
sparse representation. However, the counting function Φ(·)
leads to an NP-hard problem, and it greatly increases the
solution difficulty.

Recently, Xu et al. proposed an approximation method,
which can fast and stably solve the gradient L0-norm min-
imization problem [10]. To split the original optimization
model into sub-problems that are easy to be solved, two
auxiliary variables h(x) and v(x) are introduced to substitute
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∂xg(x) and ∂yg(x) respectively. Thus, (7) is converted to a
constrained optimization model as follow,

min
g

{ ∑
x∈Ω2

(
g(x)− g0(x)

)2
+ λΦ(h, v)

}
, (8)

s.t. h(x) = ∂xg(x), v(x) = ∂yg(x),∀x ∈ Ω2,

where

Φ(h, v) = #
{

x ∈ Ω2

∣∣|h(x)|+ |h(x)| 6= 0
}
.

Then, by relaxing the constraints, (8) can be further converted
into the following unconstrained version,

min
g,h,v

{ ∑
x∈Ω2

(
g(x)− g0(x)

)2
+ λΦ(h, v) (9)

+ β
∑

x∈Ω2

[(
∂xg(x)− h(x)

)2
+
(
∂yg(x)− v(x)

)2]}
,

where β > 0 is an automatically adapting parameter to control
the relaxation degree. (9) can be further split into two sub-
problems with respect to g and (h, v), i.e.,

min
g

∑
x∈Ω2

{(
g(x)− g0(x)

)2
+ β

[(
∂xg(x)− h(x)

)2
+
(
∂yg(x)− v(x)

)2]}
,

(10a)

min
h,v

{
λC(h, v) + β

∑
x∈Ω2

[(
∂xg(x)− h(x)

)2
+
(
∂yg(x)− v(x)

)2]}
. (10b)

The solution of (10a) has a closed-form and can be accelerated
by Fast Fourier Transform (FFT). Moreover, by employing
the characteristic of spatial decomposition, (10b) can also be
quickly solved.

III. METHOD

A. Locally Linear Transform based 3D Gradient Sparsity
Constraint

Comparing all the channel images, the correlation is con-
spicuous. For one fact, all the slices contain the same structures
and textures, i.e., structural similarity. For the other fact, the
gray value and contrast vary a lot, i.e., quantitative diversity.
Because the scanned specimen is often piecewise-constant, the
gradient image of each slice image Fc is sparse, which can
be viewed as a 2D sparsity in the spatial domain. However,
the sparsity along the spectral dimension is not obvious and
direct.

Inspired by the idea of image-guided filtering, we first
employ the locally linear transform to establish a gradient
sparsity along the spectral direction. Assuming the current
target channel is c, we fix Fc as the input image, and choose
Fi (1 ≤ i ≤ C) as a reference image. Then, by employing the
method in II-B, we obtain a filtering output F ci , which satisfies

F ci (x) = āci (x)Fi(x) + b̄ci (x),∀x ∈ Ω2. (11)

According to (5), F ci can be viewed as a copy of Fc. When
the reference image traverses all the energy channels, we can
heap up the corresponding filtering outputs along the spectral
direction to form a volume F c, of which the ith channel image
is F ci (1 ≤ i ≤ C). Thus, we further represent (11) in a volume
version as follow,

F c(x) = āc(x)F (x) + b̄c(x),∀x ∈ Ω3. (12)

The corresponding filtering input volume is represented as
V c, which is a duplicate extension of Fc along the spectral
dimension. It is emphasized while Fc represents a 2D channel
image, F c is the corresponding 3D extension along the spectral
dimension. The transform parameters āc(x) and b̄c(x) are
determined by using (6a) and (6b).

It is worth noting that the channel images of F c successfully
overcome the shortcoming of quantitative diversity, and well
maintain the structural similarity at the same time. Thus, its
3D gradient volume is globally sparse, i.e., 2D spatial sparsity
and 1D spectral sparsity.

B. Optimization Model and Iterative Algorithm

To describe the 3D gradient L0-norm, we first extend the
definition of counting function Φ(·) as follow,

Φ(F c) = #
{

x ∈ Ω3

∣∣|∂xF c(x)|+|∂yF c(x)|+|∂zF c(x)| 6= 0
}
,

where Ω3 is the spectral volume range.
Considering the gradient sparsity of F c (1 ≤ c ≤ C),

we employ it as a constraint and develop the corresponding
regularization term in light of L0-norm. Combining the data
fidelity term, we propose the following optimization model,

min
F,F c

{
‖P(F )− P‖2L2

+ λcΦ(F c)
}
, (13)

s.t. F c(x) = āc(x)F (x) + b̄c(x), 1 ≤ c ≤ C.

Here F is the spectral CT reconstruction volume by heaping
up all the channel images Fc (1 ≤ c ≤ C) along the spectral
dimension. F c is a duplication volume of the searched-for cth

channel image along the spectral dimension. āc(x) and b̄c(x)
are determined by the following quadratic optimization model,

min
ac(x),bc(x)

{ ∑
t∈Ω2(x)

[(
ac(x)F (t)+bc(x)−V c(t)

)2
+ε
(
ac(x)

)2]}
.

The solution process is the same as the method given in section
II-B. By relaxing the constraint in 13, it is converted to the
following unconstrained model,

min
F,F c

{
‖P(F )− P‖2L2

+ λcΦ(F c) (14)

+ τc
∑

x∈Ω3

[
F c(x)−

(
āc(x)F (x) + b̄c(x)

)]2}
, 1 ≤ c ≤ C,

where τc > 0 (1 ≤ c ≤ C) is a free parameter to control the
relaxation degree. For each target channel c (1 ≤ c ≤ C), we
split (14) into the following sub-problems,

min
F

{
‖P(F )− P‖2L2

+ τc
∑

x∈Ω3

[
F

c
(x)−

(
ā
c
(x)F (x) + b̄

c
(x)
)]2}

, (15a)

min
Fc

{
λcΦ(F

c
) + τc

∑
x∈Ω3

[
F

c
(x)−

(
ā
c
(x)F (x) + b̄

c
(x)
)]2}

. (15b)

(15a) is a quadratic optimization problem, which can be
iteratively solved by using POCS scheme. (15b) can be viewed
as a 3D generalization of model (7), and the solution can be
achieved by extending the 2D method in [10]. By averaging
F c along the spectral dimension, we can obtain the searched-
for channel images. Further, we can employ the decomposition
method [11] to get material percentage images.
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IV. RESULTS

A. Numerical Simulation

In the numerical simulations, a mouse thorax phantom with
1.2% iodine contrast agent injection is employed to simulate
spectral CT scan. The spectrum is under 50 KV and it is
split into 8 energy intervals. The emitted photons are fixed
to 105 and 5 × 103 to simulate the normal-dose and low-
dose cases, respectively. The scan geometrical protocol is as
follows: the source-to-object distance (SOD) is 132 mm; the
source-to-detector distance (SDD) is 180 mm; the detector
consists of 512 cells and each has a length of 0.1 mm. With
this configuration, projections are uniformly collected from
640 views with Poisson noise, and 512× 512 channel images
are reconstructed with a pixel size of 0.075× 0.075 mm2.

The conventional FBP, TV, TV with low rank (TVLR)
and 2D L0-norm (L0) based methods are employed as com-
parisons. The decomposed material images and synthesized
color images are illustrated in Figs. 1 and 2 respectively for
normal-dose and low-dose cases. Moreover, the peak signal-to-
noise ratio (PSNR), normal mean absolute deviation (NMAD)
and structural similarity (SSIM) are employed to assess the
decomposition quality and accuracy (seen tables I and II). Both
visual and quantitative results demonstrate the superiority of
the proposed method.

B. Real CT Data

In the real experiments, a mouse with gold nanoparticles
(GNP) injection was scanned on a MARS (medipix all res-
olution system) micro-CT with a Medipix MXR CdTe layer
detector. The spectrum channel number is 13 implemented by
multiple scans. The SDD is 255 mm and the SOD is 158 mm.
The preprocessed projections are obtained from 360 views by
a detector consisting of 512 cells and each has a length of
0.11 mm. 512× 512 channel images are reconstructed with a
pixel size of 0.036× 0.036 mm2.

We also compare the proposed method with the conven-
tional FBP, TV, TVLR and L0 based methods, The correspond-
ing decomposed material images and synthesized color images
are shown in Fig. 3. From the magnified region-of-interests,
it can be seen that the results with the proposed method can
dramatically suppress the noise and meanwhile well maintain
fine structures.

V. CONCLUSION

In this work, we first construct a gradient sparsity in spectral
dimension by employing the locally linear transform. Then,
we combine this property with the piece-wise constant prior
knowledge in the spatial domain, and establish a 3D sparse
gradient constraint of spectral channel reconstructions. By ex-
tending the 2D L0-norm based measurement to a 3D version,
we effectively incorporate the proposed constraint into an
optimization model. Meanwhile, we develop the corresponding
iterative solution strategy. Both numerical simulations and real
experiments confirm the outstanding performance of the pro-
posed method in noise suppression and structure maintenance.

Fig. 1. Decomposed material images and synthesized color images with
normal-dose projections. The display window for the first three rows are [0,
1], [0.1, 1], and [0, 0.013], respectively.

Fig. 2. Same as Fig. 1 but for low-dose projections.

TABLE I
QUANTITATIVE EVALUATION RESULTS OF THE MOUSE PHANTOM STUDIES

WITH NORMAL-DOSE PROJECTIONS.

PSNR NMAD SSIM

Bone

FBP 43.946 0.0986 0.9787
TV 45.754 0.0536 0.9970

TVLR 46.503 0.0498 0.9971
L0 48.005 0.0504 0.9927

Proposed 51.274 0.0320 0.9976

Soft Tissue

FBP 33.847 0.0336 0.8963
TV 36.813 0.0194 0.9694

TVLR 37.423 0.0184 0.9698
L0 37.391 0.0194 0.9554

Proposed 39.839 0.0157 0.9702

Iodine

FBP 40.708 0.0723 0.9927
TV 41.501 0.0390 0.9959

TVLR 43.993 0.0298 0.9976
L0 43.543 0.0313 0.9938

Proposed 45.641 0.0245 0.9991
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TABLE II
QUANTITATIVE EVALUATION RESULTS OF THE MOUSE PHANTOM STUDIES

WITH LOW-DOSE PROJECTIONS.

PSNR NMAD SSIM

Bone

FBP 33.800 0.3720 0.8223
TV 39.443 0.1530 0.9609

TVLR 37.566 0.1632 0.9809
L0 38.465 0.1226 0.9849

Proposed 39.903 0.0999 0.9928

Soft Tissue

FBP 20.346 0.2074 0.2991
TV 29.455 0.0510 0.8780

TVLR 29.274 0.0554 0.9007
L0 28.795 0.0419 0.9468

Proposed 30.020 0.0417 0.9540

Iodine

FBP 23.953 0.6896 0.8289
TV 33.997 0.1342 0.9830

TVLR 26.917 0.4494 0.9741
L0 29.076 0.2323 0.9578

Proposed 36.971 0.0924 0.9950

Fig. 3. Real experiments for material-based decomposition and the corre-
sponding color images. The display window for material images is consistently
[0, 1].

In the near future, we will combine noise model and high-
order decomposition model into the proposed optimization
framework.
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Synthetic Energy Combinations for Material Decomposition in Photon 
Counting CT 

Thomas O’Donnell, Ahmed Halaweish, Zahi Fayad, Venkatesh Mani 

  

Abstract— Current photon counting technologies facilitate the 
simultaneous acquisition of multiple energy image volumes 
through the specification of photon energy thresholds. 
Determination of the optimal choice of these energy thresholds can 
be challenging. For a photon counting CT machine capable of 70 
threshold values and four simultaneous acquisitions, the number of 
possible threshold combinations is Choose(70, 4) = 916895. In this 
paper we hypothesize: For the task of material decomposition, it is 
possible to “recycle” previously acquired (native) energy volumes to 
create a new synthetic threshold energy combination which has not 
actually been scanned. And that this synthetic scan is essentially 
equivalent to a native scan with the same thresholds. We test this 
hypothesis on four materials (Bismuth, Calcium, Iodine, and 
Gadolinium) using 8 native 4-threshold acquisitions.  We limit 
ourselves to threshold (as opposed to bin) images and examine the 
image-based decomposition of 2-material mixtures only. We find 
that under certain circumstances synthetic energy combinations do 
an excellent job of standing in for native combinations. 

 

Keywords—photon; counting; material; decomposition; optimal  

I.  INTRODUCTION  

     Current photon counting technologies facilitate the 

simultaneous acquisition of multiple energy image volumes 

[1]. These energy volumes may be created from the photons 

above some energy threshold (threshold images) or between 

two thresholds (bin images) [2, 3]. For the task of material 

decomposition, determination of the optimal choice of these 

energy thresholds can be challenging. To illustrate: for a 

photon counting CT machine capable of 70 threshold values 

(e.g., ranging from 20 to 90keV) and four simultaneous 

acquisitions, the number of possible threshold combinations is 

Choose(70, 4) = 916895. Clearly, many of these combinations 

can be easily ruled out (e.g., [21, 22, 23, 24] keV). That said, 

there are situations when it is helpful to evaluate several 

different threshold combinations. For example: when the exact 

chemical make-up of a material under study is not precisely 

known. Or, when the k-edges of the elements making up the 

material are known but optimizing for noise versus threshold 

becomes important.  

 

 

 

 
    T. O’Donnell and A. Halaweish are with Siemens Healthineers. 
    Z. Fayad and V. Mani are with Translational Molecular Imaging 
Inistitute, Icahn School of Medicine at Mount Sinai. 
      

 

 

 

Unfortunately, evaluating different combinations of thresholds 

can be time consuming as compared to conventional CT, not 

least because multiple image volumes are reconstructed as 

opposed to one. In this paper we ask the question: Is it 

possible to create a synthetic threshold combination from the 

components of native scanned volumes for the task of material 

decomposition? That is, if we scan thresholds [20, 40, 60, 80] 

keV and [20, 30, 70, 80] keV, do we need to actually scan [20 

40 70 80] keV to determine how well it will decompose the 

material under study?  

 

     In theory, a threshold volume is independent of the other 

threshold volumes simultaneously acquired. A 20keV image 

volume should be the same whether it comes from a native 

[20, 40, 60, 80] keV combination or a synthetic  [20, 45, 65, 

85] keV combination. And we found this to be true. Therefore 

the accuracy of synthetic threshold combinations in the 

material decomposition task should comparable to that of 

native scans.  

 

     Here, we compare the ranking, form most accurate to least 

accurate, of a set of native acquisitions with their synthetic 

counterparts. In general, we find the rankings to correlate well. 

However, depending on the combination of materials, the 

solution to the image-based decomposition equation may be 

less conditioned when the characteristics of a material mixture 

are dominated by one of the materials. In these cases, the 

correlation is less reliable. 

 

     Related to our work, several authors have made 

contributions to the topic of material decomposition for 

photon counting CT [4,5,6,7]. However, none looked at 

whether synthetic energy combinations may be substituted for 

actually acquired energy combinations. O’Donnell et al., [8] 

examined the topic of ordering the accuracy of synthetic 

energy combinations. However, it was as applied to material 

discrimination as opposed to material decomposition. 

 

In the following sections we describe materials and methods 

(Section II), results (Section III), followed by discussion 

(Section IV) and finally conclusions (Section V). 
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II. MATERIALS AND METHODS 

 

A. Image Acquisition 
We examined 4 materials: bismuth (Pepto-Bismol

®
), 

calcium (calcium carbonate in suspension 1250mg/5ml), iodine 
(Isovue 370

®
), and gadolinium (Gadavist

®
). Two ml vials 

containing each material alone and  equal parts (50/50) 
mixtures of all possible pairs were created. These were placed 
in a water bath and scanned on a prototype photon counting 
scanner (CounT

®
, Siemens Healthineers) at 140kV at 59mAs 

(“ClinicalDose”) and 448mAs (“MaxDose”). The following 
threshold combinations were acquired: 

[20, 28, 53, 85]keV 
[20, 28, 53, 90]keV 
[20, 28, 60, 90]keV 
[20, 28, 75, 85]keV 
[20, 35, 53, 85]keV 
[20, 35, 53, 90]keV 
[20, 35, 75, 85]keV 
[20, 35, 75, 90]keV 

 
Images were reconstructed with slice thickness 0.75mm, D30f 
kernel.  

     To create synthetic energy combinations, we grouped all 

energy images of a single threshold and averaged them (e.g., 

the eight 20keV images, the four 28keV images, etc.). 

Synthetic versions of the actually acquired energy 

combinations above were then formed by collecting these 

averaged images into a 4-dimensional vector.  

 Note that the average CT-numbers of ROIs drawn in 

the samples were used in calculations. Thus, noise correlation 

of actually acquired images (not present in synthetic 

examples) were avoided [8]. 
 

B. Decomposition 
     For the decomposition task we use the linear image space 

approach [9]. Determining the contributions of the 

archetypical  basis materials to a mixture takes the form of 

solving a system of linear equations:  

 

4

3

2

1

2

1

4241

3231

2221

1211

p
p
p
p

x
x

aa
aa
aa
aa

                        (1) 

 

where the 4x2 matrix (made up of elements a) collects each of 

the 2 pure basis materials’ archetypical normalized  CT values 

acquired at the 4 threshold values in columns. The x  vector 

(to be solved for) represents the contributions of the 2 

materials for a given mixture. The p vector represents the 

normalized CT values of the mixture under study at the 4 

different energies.    

 

III. RESULTS 

A. Stability of CT Numbers at the Same Energy Threshold 
To determine how stable the CT numbers are at a given 

energy threshold we computed the standard deviation of the 
HUs of a volume of interest, for each material, over all 
acquired images at that energy threshold. The results at 
“ClinicalDose” are in Table 1. Note that the threshold 60keV 
was acquired only once and therefore the standard deviation is 
0. This table illustrates the stability of CT values of a particular 
threshold over different energy combinations. The MaxDose 
table yields even better, results (not shown due to space 
restrictions). 

20keV 28keV 35keV 53keV 60keV 75keV 85keV 90keV 

Bi 2.43 1.21 1.85 1.27 0.00 2.45 2.69 2.69 

Ca 1.32 1.18 1.15 2.01 0.00 1.93 3.28 1.04 

I 1.04 0.42 0.79 0.75 0.00 1.07 1.86 4.26 

Gd 2.10 2.20 0.49 0.85 0.00 2.43 1.15 2.16 

BiI 1.69 2.49 1.21 0.99 0.00 4.78 4.90 3.86 

CaI 2.21 2.00 0.82 1.99 0.00 3.63 2.05 4.88 

GdI 0.93 0.24 0.55 0.96 0.00 1.38 2.26 3.97 

CaBi 2.65 3.06 1.51 4.42 0.00 2.83 1.42 0.58 

BiGd 1.97 1.91 2.77 3.48 0.00 1.31 7.11 3.20 

CaGd 1.42 1.25 0.85 1.71 0.00 1.11 0.92 4.37 

Table 1: Standard deviation of CT values of the same material at the same 
energy threshold over different acquisitions at “ClinicalDose.” 

B. Correlation of  Accuracy of Decomposition Between 
Native and Synthetic Energy Combinations 

     We wish to determine if the ranking of energy combinations 
from best to worst is the same for a set of native scans as with 
synthetic scans using the same thresholds. To illustrate, we 
look at the mixture of bismuth and gadolinium. 

     All of the mixtures are, in fact, composed of 50% one 
material, 50% the other. The material decomposition reflects 
this ground truth more accurately for some energy threshold 
combinations than others. In Table 2, the 1

st
  and 2

nd
  columns, 

and 4
th

  and 5
th

  columns represent the recovered percentages of 
bismuth and gadolinium at different energy combinations for 
native and synthetic combinations respectively at MaxDose. 
The 3

rd
  column is the difference between columns 1 and 2. For 

a perfect recovery, this difference would be zero (similarly for 
6

th
 column).  Thus, the 3

rd
  and 6

th
  columns reflect the 

accuracies of the decompositions. Plotting the 3
rd

  and 6
th
 

columns against each other (as in Figure 1) allows us to 
measure the correlation in ranking between native and 
synthetic scans. 
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Acquired (native) Synthetic 

Bi Gd diff Bi Gd diff 

[20-28-53-85]keV 52.2 47.8 -4.3 51.4 48.6 -2.8 

[20-28-53-90]keV 51.6 48.4 -3.3 51.9 48.1 -3.8 

[20-28-60-90]keV 52.3 47.7 -4.7 51.7 48.3 -3.3 

[20-28-75-85]keV 48.8 51.2 2.4 49.3 50.7 1.4 

[20-35-53-85]keV 52.9 47.1 -5.8 53.2 46.8 -6.4 

[20-35-53-90]keV 51.4 48.6 -2.8 51.2 48.8 -2.5 

[20-35-75-85]keV 49.4 50.6 1.2 49.6 50.4 0.8 

[20-35-75-90]keV 49.7 50.3 0.6 49.9 50.1 0.3 
Table 2: Comparison of native and synthetic energy threshold 

combinations for decomposing a 50/50 mixture of bismuth and gadolinium at 
MaxDose. Columns 3 and 6 describe the difference from a perfect recovery of 
the ground truth. Figure 1 plots column 3 versus column 6. 

 

 

Figure 1: The correlation between the acquired (native) energy combinations 
and their corresponding synthetic ones for a bismuth-gadolinium mixture at 
MaxDose. 

     Table 3 collects the r-values for all of the mixtures. 

 

 r-value 

 ClinicalDose MaxDose 

BiI 
0.82 0.98 

CaI 
0.93 0.86 

GdI 
0.92 0.25 

CaBi 
0.79 0.58 

BiGd 
0.74 0.95 

CaGd 
0.88 0.59 

Table 3: correlations for the different mixtures between native and synthetic 
scans at ClinicalDose and MaxDose.  

C. The Accuracy of Decomposition of the Native Scans 
From Table 3 we observe that the correlations between 
native and synthetic scans are poor for certain mixtures. 
This corresponds in part to the accuracy of the 
decompositions themselves. In Table 4 we show the 
average differences between the computed decomposition 
percentages of the two materials in the mixtures. Note that 
some (i.e, CaI, GdI, and CaBi) are far off. 

Clinical MaxDose 

BiI 17.6 19.8 

CaI 46.6 47.7 

GdI -56.5 -49.8 

CaBi -58.3 -54.2 

BiGd -6.6 -2.1 

CaGd 2.1 13.6 
Table 4: The average accuracy over threshold combinations for native scans. 
The percentage of the second material is subtracted from the first, thus the 
appearance of negative numbers. An ideal value would be 0. 

D. An Example of Image Decomposition 
 

Using the MaxDose pure instances (Bi, Ca, I, Gd) as the 

archetypical CT-values for the materials, we decomposed 

ClinicalDose instances of Bi, Gd, and BiGd. Additionally 

we show a decomposition of MaxDose BiGd. 

 

 
Figure 2: Top: Left to right, 20keV scans of Bi, Gd, and BiGd. Bottom: 

Material labelled reconstructions. Left to right [20, 35, 75, 85] keV Bi, Gd,  
BiGd (ClinicalDose), BiGd (MaxDose). Bismuth = red, gadolinium  = green,  

 

IV. DISCUSSION  

      

     Given that the variance of the CT numbers is so low, as 

shown in Table 1, it is surprising that the correlation between 

the native and “identical” synthetic scans can be so different in 

Table 3 for certain mixtures. To examine this, we first look at 

the accuracy of the decompositions of the mixtures themselves 

(Table 4). 

 

      To see why the accuracy of the decompositions varies so 

widely in Table 4, we plot the normalized centroids of the two 

The fifth international conference on image formation in X-ray computed tomography 371



component materials and their mixture for BiGd and CaBi  in 

Figure 3. By way of explaining the figure itself: these are 4-

dimensional plots, so a point (a centroid) is rendered as a 

series of connected line segments (see [8]  for a more lengthy 

explanation of 4D plotting). And, by “normalized,” we mean 

that the vector of HUs at [20, 35, 75, 90] keV are scaled to 

length one.  

 

     In the top panel of Figure 4, note that BiGd (yellow) lies 

midway between  Bi (red) and Gd (green). The accuracy of 

this decomposition is 49.9% Bi, 50.1% Gd at MaxDose. Our 

object of interest, the correlation between synthetic and native 

material decompositions, is r=0.95 (Table 3). In the bottom 

panel, the mixture CaBi (magenta) practically lies on top of 

calcium (blue). It is almost indistinguishable from calcium. 

The decomposition is computed to be 78% Ca, 22% Bi at 

MaxDose. In this case, the correlation between synthetic and 

native material decompositions is r=0.58 (Table 3). The 

performance in Table 4 is related to the performance in Table 

3 as explained below. 

 

 
Figure 3: Top: 4 dimensional plot of the normalized centroids of Bi (red), Gd 

(green) and their mixture, BiGd, (yellow) for [20, 35, 75, 90] keV MaxDose. 

Bottom: Same for calcium (blue), and CaBi (magenta).  
 

 

    We make the observation that the decomposition equation 

(1) is less conditioned when the material to be decomposed is 

closer to the basis materials. To illustrate, we propose the 

following experiment: We have two materials A and B. Their 

archetypical normalized CT values are [1 0], and [0 1]. We 

plot the normalized vectors corresponding to mixtures (100% 

A, 0%B) to (0% A, 100%B) by 10 percent increments (see 

Figure 4).  

 

    Note that the distance between the (50% A, 50% B)  and the 

(40% A, 60% B) is much larger than the distance between 

(90% A, 10% B). This indicates that noise in an ROI’s CT 

values close to (50% A, 50% B) would result in less of a 

decomposition error than the same noise close to (100% A, 

0% B). 

 

    Thus, we expect the correlation between native and 

synthetic ranking to be worse for CaI, GdI, and CaBi as 

compared to BiI, BiGd, and CaGd due to this effect. 

 

 
Figure 4: Ideal materials A and B and their mixtures at (100% A, 0% B) to 

(0%A, 100% B) by 10% increments. Note that (40% A, 60% B) is farther 
from (50% A, 50% B) than (90% A, 10% B) is from (0% A, 100% B). This 

reflects the reduced conditioning of equation (1) near the pure materials. 

V. CONCLUSIONS 

 

     We have demonstrated that it is possible to substitute 

synthetic energy threshold combinations for native ones in 

order to perform material decomposition. The quality of this 

assessment is influenced by the how close the normalized 

mixture is to the archetypical basis materials. Closer mixtures 

are more susceptible to noise and thus the correlation between 

the native and “identical” synthetic combinations may be 

compromised. 

 

    For the thresholds we employed: 20, 28, 35, 53, 60, 75, 85, 

90, there are an additional 31 combinations that may be 

created that were not natively acquired (e.g., [20 53 60 75] 

keV). The techniques described in this paper now allow these 

combinations to be accessed to determine if they merit further 

investigation.  
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Non-Convex Optimization-Based Reconstruction in
Multispectral CT

Xiaochuan Pan, Buxin Chen, Emil Y. Sidky, Zheng Zhang, and Dan Xia

Abstract—In multi-spectral CT (MCT), the appropriate con-
sideration of the spectral responses leads to a non-linear data
model, and image reconstruction by solving the non-linear data
model remains a topic of research interest. In the work, we
report an optimization-based approach to reconstructing images
in MCT through solving the non-linear data model. The approach
entails three leading steps: identifying the non-linear component
in the data model that results in the non-convexity of an
optimization program, convexifying the program and tailoring an
existing algorithm for convex programs to solve the convexified
program, and modifying the tailored algorithm to compensate
for the non-convexity of the original non-convex program. The
approach may allow for the investigation of different designs of
optimization programs and the associated iterative algorithms
for solving the non-linear data model in MCT to yield image
reconstructions of task-specific utility, and it can be exploited
for enabling MCT with scanning configurations tailored to
meet specific application constraints, including those special,
non-standard scanning configurations of practical implication
considered previously.

I. INTRODUCTION

In multi-spectral CT (MCT), the appropriate consideration
of the spectral responses leads to a non-linear data model.
While methods have been investigated and developed to com-
pensate for the non-linear spectral effect, image reconstruction
remains a topic of research interest. In the work, we discuss
an optimization-based approach to reconstructing images in
MCT through solving the non-linear data model. The approach
is a continuation of our recent works [1], [2] that reports a
one-step method for image reconstruction directly from MCT
data. In the approach, the image reconstruction in MCT is
formulated as an optimization program with a data divergence
formed by use of the non-linear data model. The specific
non-linear form of the data model can lead to non-convex
data divergence and consequently a non-convex optimization
program. In an attempt to solve the non-convex program
for image reconstruction in MCT, we first convexify the
non-convex optimization program and then tailor an existing
algorithm appropriate for solving the convexified program. The
tailored algorithm is modified further compensate for the non-
convexity of the original non-convex optimization program.

This summary is organized as follows. Following the in-
troduction in Sec. I, we discuss in Sec. II the non-linear
data model and its decomposition into linear and non-linear
components. Using the data model, we form in Sec. III

X. Pan is with the Departments of Radiology & Radiation and Cellular
Oncology, The University of Chicago, Chicago, IL 60637, USA

B. Chen, E. Y. Sidky, Z. Zhang, and D. Xia are with the Department of
Radiology, The University of Chicago, Chicago, IL 60637, USA

optimization programs, which are generally non-convex due
to the non-linear component in the data model and discuss the
convexification of the programs. In Sec. IV, we discuss how
existing algorithms for convex programs can be tailored to
solve the convexified programs and how the tailored algorithm
can be modified further to compensate for the non-convexity
of the original, non-convex optimization programs. Finally, the
potential applications of the approach are discussed in Sec. V.

II. NON-LINEAR DATA MODEL

In MCT, the monochromatic linear-attenuation coefficient
of interest is to be reconstructed from data collected. Let fmi

denote the linear-attenuation coefficient at energy m and voxel
i, which can be expressed as

fmi =
K∑
k

µkm bki (1)

where bki denotes basis image k at voxel i, and µkm the
expansion coefficient, which is selected often as the mass-
attenuation coefficient, at energy m for basis image k, k =
1, 2, ...,K, and K the number of basis images. For discussion
convenience, we can form data and image vectors below. Let
bk denote basis-image vector k of size I with entries given
by bki, where i = 1, 2, ..., I . Furthermore, we use b of size
K × I to depict an aggregate basis-image vector formed by
concatenating basis-image vectors bk, and simply refer to b as
the basis image. In MCT, we assume that knowledge of µkm is
available. Therefore, the reconstruction of fmi is tantamount
to that of basis images bki (i.e., b)

For an illumination along ray j with spectral s, model data
g
[s]
j can be written as

g
[s]
j (b) = − ln

∑
m

q
[s]
jm exp

(
−
∑
k

µkm

∑
i

a
[s]
ji bki

)
, (2)

where q[s]jm denotes the normalized spectrum s at energy m,
and a

[s]
ji the discrete X-ray transform of ray j through voxel

i. Clearly, the data model in Eq. (2) is non-linear in the sense
that basis images bki are related non-linearly to model data
g
[s]
j , and image reconstruction of bki is tantamount to solving

the non-linear data model in Eq. (2). Basis image b is included
in g[s]j (b) as a variable to indicate that the reconstruction task
is to determine b from knowledge of g[s]j estimated from data
measured.
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III. LINEAR AND NON-LINEAR COMPONENTS IN THE
DATA MODEL

The non-linear component in the data model results in
the non-convexity in the optimization program designed for
image reconstruction in MCT [1], [2]. We have developed
a decomposition of the data model into linear and non-
linear components and exploit it to convexify the non-convex
program [1], [2]. Clearly, the decomposition of the data model
plays a key role in image reconstruction in MCT, as it can lead
to considerably different reconstruction algorithms, as shown
below. We present below a data-model decomposition that
includes the previous result in Ref. [1], [2] as a special case.

We rewrite Eq. (2) as

g
[s]
j (b) = − ln

M∑
m

q
[s]
jm exp

(
−

K∑
k

µkmA
[s]
jk(b)

)
, (3)

where the discrete X-ray transform of basis image b is given
by

A
[s]
jk(b) =

I∑
i

a
[s]
ji bki. (4)

We perform a Taylor expansion of Eq. (3) with respect to
A

[s]
jk(b̃) for some obtainable basis image b̃ of interest as

g
[s]
j (b) = g

[s]
j (b̃) +

K∑
k

r
[s]
jk(b̃)

I∑
i

a
[s]
ji (bki − b̃ki)

+ ∆g
[s]
j (b−b̃), (5)

where

r
[s]
jk(b̃) =

∑M
m q

[s]
jm µkm exp

(
−
∑K

k µkmA
[s]
jk(b̃)

)
∑M

m q
[s]
jm exp

(
−
∑K

k µkmA
[s]
jk(b̃)

) (6)

and

∆g
[s]
j (b−b̃) = g

[s]
j (b)− g[s]j (b̃)

+
K∑
k

r
[s]
jk(b̃)

I∑
i

a
[s]
ji (bki − b̃ki). (7)

As discussed in Ref. [2], we can form, for spectrum s, vector
g[s](b) of size J [s], with elements g[s]j (b) and then model-data
vector g(b) of size J =

∑S
s J

[s] by concatenating g[s](b) for
a total of S spectra. Similarly, we can also create aggregate
vectors g(b̃) and ∆g(b−b̃) of size J =

∑S
s J

[s] with entries
g
[s]
j (b̃) and ∆g

[s]
j (b−b̃), respectively.

We can then re-express Eq. (5) as

g(b)− g(b̃)−∆g(b−b̃) = H(b̃)(b−b̃), (8)

where matrix H of size J × (I ×K) is given by

H(b̃) =


R[1]

1 (b̃)A[1] R[1]
2 (b̃)A[1] · · · R[1]

K (b̃)A[1]

R[2]
1 (b̃)A[2] R[2]

2 (b̃)A[2] · · · R[2]
K (b̃)A[2]

...
...

. . .
R[S]

1 (b̃)A[S] R[S]
2 (b̃)A[S] · · · R[S]

K (b̃)A[S]

 , (9)

R[s]
k (b̃) is a diagonal matrix of size J [s] × J [s] with diagonal

element r[s]jk(b̃) given in Eq. (6), and matrixA[s] of size J [s]×I
with element a[s]ij is defined in Eq. (4) above.

The data model in Eq. (8) is identical to that in Eq. (2)
but has a different form in which the linear and non-linear
components are explicitly decomposed. In image reconstruc-
tion, g(b) is replaced with measured data, and g(b̃) can be
calculated for given b̃ by use of Eq. (2). Furthermore, the
right-hand side of Eq. (8) is linear relative to b, and only
term ∆g(b−b̃) embodies the non-linearity of the data model.
Clearly, non-linear component ∆g(b−b̃) depends upon basis
image b̃, and linear component H(b̃)(b− b̃) can also be
impacted by b̃ through matrix H(b̃). Therefore, the selection
of b̃ can impact the decomposition and thus the reconstruction
to be discussed below.

When b̃ = 0 is selected, the decomposition in Eq. (8) and
matrix in Eq. (9) become identical to their counterparts in Ref.
[1], [2] even though the decomposition there was obtained
from a completely different physical and mathematical per-
spective. Other types of b̃ can also be explored. For example,
one could use some prior images of relevance as b̃. Or one
can even use b(n) obtained in the previous iteration as b̃ in an
iterative reconstruction. In the case, system matrix H(b̃) will
thus vary from the previous iteration to the next iteration.

IV. NON-CONVEX OPTIMIZATION PROGRAMS

It is unclear whether Eq. (2) can directly be inverted
adequately for achieving the reconstruction of basis image
b especially considering the large sizes of data and images
involved in practical MCT. Instead, an optimization program is
formulated for reconstruction of basis image b. Optimization
programs of various unconstraint or constraint forms can be
devised, and the specific non-linearity of the data model in
Eq. (2) generally leads to non-convex optimization programs.

Without loss of generality, we consider a non-convex con-
straint optimization program below and use it to illustrate the
approach to dealing with a non-convex program:

b∗ = argmin
b

D(g(b);gM) s. t. Ψ(b), (10)

where aggregate vector gM of size J =
∑S

s J
[s] with entry

g
[s]
Mj denoting data measured with ray j and spectrum s;
D(g(b);gM) the data divergence between model data g(b)
and measured data gM; and Ψ(b) a constraint set on basis
images to be reconstructed.

For measured data gM, data divergences of different forms
can be devised, while a design of data divergence is motivated
often by the specific statistic property of measured data. Data
divergences of form below have been considered for image
reconstruction:

Dl2(g(b),gM) = ||g(b)− gM||2 (11)
Dl1(g(b),gM) = ||g(b)− gM||1 (12)

D
KL

(g(b),gM) =
∑
i

[
g(b)− gM

+ gM ln(gM)− gM ln(g(b))
]
i

(13)

where Dl2 and Dl1 denote the l2-norm and l1-norm of the
differences between model data and measured data, whereas
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D
KL

the Kullback-Leibler (KL) divergence of model and
measured data. Clearly, each of the data divergences above
is non-convex due to the non-linearity of the data model in
Eq. (2). Therefore, when one of them is used in Eq. (10), the
optimization program is thus non-convex, even if the set of
image constraints, i.e., Ψ(b), is convex.

V. CONVEXIFICATION AND ALGORITHMS

It remains challenging to derive an algorithm that solves
mathematically the non-convex optimization programs dis-
cussed above. We discuss below a strategy for convexifying
a non-convex program, then develop an algorithm to solve
the program convexified, and finally modify the algorithm to
compensate for the non-convexity of the original non-convex
program. Without loss of generality, we consider the program
in Eq. (10) in which the data divergence is one of those in
Eqs. (11)-(13) and the image-constraint set is convex.

Using Eq. (8), we can obtain an optimization program that
is equivalent to that in Eq. (10):

b∗ = argmin
b

D(H(b̃)b; g′M−∆g(b−b̃)) s. t. Ψ(b), (14)

where

g′M = gM − g(b̃) +H(b̃)b̃, (15)

and can readily be obtained from gM and b̃ with Eqs. (2) and
(9). It can be observed that the non-convexity of the program
in Eq. (14) stems from term ∆g(b−b̃), and that if the term is
known, the program become convex, and existing algorithms
for convex programs can thus be applied to solving such a
convex program. Therefore, we convexify the program in Eq.
(14) by replacing ∆g(b−b̃) with constant term ∆g, and then
tailor an existing algorithm to solve the convexified program.
Without loss of generality, let the update procedure of the
algorithm selected to solve the convexified program be written
as

b(n+1) = O(b(n),g′M,∆g), (16)

where n indicates the iteration number, and function
O(b(n),g′M,∆g) can be calculated from knowledge of b(n),
g′M, and ∆g.

In an attempt to compensate for the non-convex effect
that stems from ∆g(b−b̃), we propose to replace ∆g with
∆g(b(n)− b̃) in Eq. (16), leading to an algorithm with an
update form

b(n+1) = O(b(n),g′M,∆g(b(n)−b̃)), (17)

where entry specified by j and s of vector ∆g(b(n)− b̃) is
computed by use of Eq. (7) with b(n) as

∆g
[s]
j (b(n)−b̃) = g

[s]
j (b(n))− g[s]j (b̃)

+
K∑
k

r
[s]
jk(b̃)[A

[s]
jk(b(n))−A[s]

jk(b̃)].(18)

Therefore, we obtain an algorithm, specified by Eqs. (17) and
(18), to solve the non-convex optimization program in Eq. (10)
for image reconstruction in MCT.

For a non-convex program with b̃ = 0 and Dl2(g(b),gM)
in Eq. (11), we have developed a non-convex (NC)
projection-onto-convex-sets (POCS) algorithm for lowering
Dl2(g(b),gM). Quantitative studies suggest that, in combi-
nation with a steepest descend (SD) algorithm for reducing
the image TV, the NC-POCS can solve the program nu-
merically accurately for imaging conditions considered [2].
It is worthy and straightforward to investigate a NC-POCS
algorithm applicable to the case of non-zero b̃. This can be
accomplished simply by replacing matrix U [s]

k in the previous
NC-POCS algorithm with R[s]

k (b̃) defined in Eq. (9) above.
However, when data divergence such as Dl1(g(b),gM) or
DKL(g(b),gM) is considered, and/or when the optimization
program in Eq. (10) is non-smooth, algorithms other than the
NC-POCS algorithm need to be developed. For example, for
the convexified program (even if it is non-smooth,) algorithms
such as the primal-dual algorithm can be exploited for develop-
ing NC-primal-dual algorithms. Specifically, for a non-convex
optimization program containing one of the data divergences
in Eqs. (11)-(13), an instance of the primal-dual algorithm can
readily be derived for its convexified program with constant
term ∆g. We can then replace ∆g with ∆g(b(n)− b̃) in
the specific algorithm instance to obtain a NC primal-dual
algorithm for solving the non-convex program.

It is necessary to devise convergence conditions for the
algorithm with an update procedure in Eq. (17). Clearly, its
convergence depends upon the explicit forms of data diver-
gence, image constraints, the update procedure, and various
parameters involved. Without loss of generality, we consider
a specific image constraint Ψ(b) on the image TV, i.e.,
||b||TV ≤ t, where t > 0 is a constraint parameter, and we
can design two necessary convergence conditions as

D̄(b(n)) =

∣∣D(g(b(n+1)),gM)−D(g(b(n),gM)
∣∣∣∣D(g(b(n+1)),gM) +D(g(b(n),gM)
∣∣ → 0

∆̄TV(b(n)) =
∣∣∣||b(n)||TV − t

∣∣∣/t→ 0.

(19)

Additional necessary conditions such as the Karush-Kuhn-
Tucker (KKT) conditions can be devised [3]. While the con-
vergent conditions in Eq. (19) and additional KKT conditions
represent necessary conditions for local or global minima,
it remains unclear whether the algorithm with an update
procedure in Eq. (17) can mathematically reach truly local
and global minima of the non-convex optimization program
in Eq. (10). In the work, we also seek to use the convergence
conditions to aid the selection of algorithm parameters, i.e.,
convergence paths, to avoid saddle points that can lead to
significantly divergent solutions. Furthermore, it is important
also to appreciate that the reconstruction quality of interest is
not a metric that would show whether the reconstruction is
a truly local or global minimum; instead, it is characterized
by, in addition to the practical convergence conditions, visual
inspection and task-specific metrics.

VI. DISCUSSION

In this summary, we report an approach to solving the non-
linear data model for achieving basis-image reconstruction in

The fifth international conference on image formation in X-ray computed tomography 375



MCT. The approach entails three leading steps: identifying
the non-linear component in the data model that results in
the non-convexity of an optimization program, convexifying
the program and tailoring an existing algorithm for convex
programs to solve the convexified program, and modifying
the tailored algorithm to compensate for the non-convexity
of the original non-convex program. We illustrate the three
steps in detail by using an optimization program in a gen-
eral constraint form containing data divergences and image
constraints that are used widely for image reconstruction. In
particular, one of our previous works on image reconstruction
in MCT is a special case of the approach investigated here. The
approach allows for the investigation of different designs of
optimization programs and the associated iterative algorithms
for solving the non-linear data model in MCT to yield image
reconstructions of task-specific utility [4]. More importantly,
the approach can be exploited for enabling MCT with scanning
configurations tailored to meet specific application constraints,
including those special, non-standard scanning configurations
of practical implication considered in our previous work [2].
We plan to report some of the application details of the
approach at the conference.
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Non-Convex Chambolle-Pock Algorithm for
Multispectral CT

Buxin Chen, Zheng Zhang, Dan Xia, Emil Y. Sidky, and Xiaochuan Pan

Abstract—Chambolle-Pock (CP) algorithm is a first-order
primal-dual algorithm for convex optimization problems. It has
been used in CT and PET image reconstruction based on linear
data model. Non-convex optimization programs, such as those
based on a non-linear data model in multispectral CT, can
not be solved by applying the CP algorithm. In this work, we
propose a non-convex CP (ncCP) algorithm, inspired by our
previous work on an algorithm for a non-convex optimization
program of a specific form in multispectral CT. The proposed
ncCP algorithm can deal with different optimization program
designs including non-smooth objectives and/or constraints and
also involves relatively fewer parameters for convergence. An
algorithm instance for an example of non-convex optimization
program used in multispectral CT reconstruction has been
derived, together with the convergence conditions. A numerical
study using computer simulation data with two spectra has
been carried out for verifying the numerical convergence of the
proposed ncCP algorithm.

I. INTRODUCTION

Chambolle-Pock (CP) algorithm is a first-order primal-dual
algorithm for convex optimization problems, including non-
smooth objectives, unconstrained and constrained formula-
tions [1], [2]. It has been used for CT image reconstruc-
tion [2]–[6] and PET image reconstruction [7] based on linear
data models, for its prototyping ability to bring different
convex optimization program designs to convergence and the
relatively fewer parameters involved in the algorithm. Non-
convex optimization programs can not be solved by simply
applying the CP algorithms. However, inspired by our previous
work on the ASD-NC-POCS algorithm [8] where the ASD-
POCS algorithm for a convex problem in a specific form
is combined with a non-linear correction step, in this work
we propose non-convex CP (ncCP) algorithms for non-convex
optimization programs based on the non-linear data model in
multispectral CT. The proposed ncCP algorithm can deal with
different optimization program designs including non-smooth
objectives and/or constraints, while an example of non-convex
optimization program is used in this work to demonstrate the
design and mechanics of the proposed algorithm. Computer
simulation data are used to verify the numerical convergence
of the ncCP algorithm derived.

B. Chen, Z. Zhang, D. Xia, and E. Y. Sidky are with the Department of
Radiology, The University of Chicago, Chicago, IL 60637, USA

X. Pan is with the Departments of Radiology & Radiation and Cellular
Oncology, The University of Chicago, Chicago, IL 60637, USA

II. MATERIALS AND METHODS

A. Discrete-to-discrete Data Model

Using a basis decomposition, the discrete-to-discrete data
model in multispectral CT can be expressed as [8],

g
[s]
j (b) = − ln

∑
m

q
[s]
jm exp

(
−
∑
k

µkm
∑
i

a
[s]
ji bki

)
, (1)

where q[s]jm denotes the normalized X-ray spectrum at energy
sampling m for ray j in spectral set s, µkm the mass
attenuation coefficient at energy m for basis material k, a[s]ji
the intersection length of ray j in spectral set s with voxel i,
and bki the basis image of material k at voxel i. The indices
m ∈ 1, · · · ,M , k ∈ 1, · · · ,K, i ∈ 0, · · · , I − 1 index energy,
basis material, and voxels. b denotes an aggregate basis-image
vector formed by concatenating individual basis-image vectors
bk, whose elements are bki, in the ascending order of k, and
g
[s]
j (b) the model data for ray j in spectral set s as a function

of the basis image b.
Considering all of the measurements within spectral set s,

we form vector g[s](b) of size J [s], with elements g[s]j (b),
and further obtain an aggregate model data vector g(b) by
concatenating g[s](b) in the ascending order of s. Similarly,
we use g[s]Mj to denote the measured data for ray j in spectral
set s, and form vectors g

[s]
M and an aggregate vector gM.

B. Non-convex Optimization Program

Based on the non-linear data model in equation (1), we form
the following non-convex optimization program by minimizing
the `2 distance between the model and measured data subject
to constraints on a monochromatic image, as

min
b

1

2
||g(b)− gM||22

s. t. ||(|∇(µ1(E0)b1 + µ2(E0)b2)|)||1 ≤ γ,
µ1(E0)b1 + µ2(E0)b2 � 0,

(2)

where, without loss of generality, a two-basis decomposition
model is used with b = (b>1 ,b

>
2 )> and E0 is the energy

level at which the monochromatic image is constrained with
total-variation (TV) and non-negativity; µ1(E0) and µ2(E0)
are mass attenuation coefficients of the two basis materials at
energy E0, which will be simply referred at as µ1 and µ2

hereafter. |∇u| is the gradient-magnitude image of u, where
∇ is a linear transform of finite differencing [2].
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C. Non-convex Chambolle-Pock (CP) Algorithm

As the optimization problem in equation (2) is non-convex,
the primal-dual CP algorithm can not be applied to solving
the problem. Instead, we derive the CP algorithm instance
for a convex problem which is based on the linear term in
the data model in equation (1), apply the non-linear term
correction to the data at the end of each iteration, and yield a
heuristic algorithm, referred to as non-convex CP algorithm,
or simply ncCP, which intends to numerically solve the non-
convex optimization program in equation (2).

1) CP algorithm based on the linear model: We first
derive the CP algorithm instance of a convex optimization
problem which is based on the linear term the data model in
equation (1). As we split the mass-attenuation coefficient µkm
into [8]–[10]

µkm = µ̄
[s]
jk + ∆µ

[s]
jkm, (3)

where

µ̄
[s]
jk =

∑
m

q
[s]
jmµkm, and ∆µ

[s]
jkm = µkm − µ̄[s]

jk , (4)

notice that µ̄[s]
jk is independent of energy as it is a spectrum-

weighted average of µkm over energy while ∆µ
[s]
jkm remains

energy dependent. Plugging equation (3) into equation (1)
splits the data model into two terms as well, as

g
[s]
j (b) = ḡ

[s]
j (b) + ∆g

[s]
j (b), (5)

where

ḡ
[s]
j (b) =

∑
k

µ̄
[s]
jk

∑
i

a
[s]
ji bki, (6)

and

∆g
[s]
j (b) = −ln

∑
m

q
[s]
jm exp

(
−
∑
k

∆µ
[s]
jkm

∑
i

a
[s]
ji bki

)
, (7)

are a linear function and a non-linear function of b, respec-
tively. In the same concatenating fashion as aforementioned,
two aggregate vectors ḡ(b) and ∆g(b) can be formed and are
connected as

g(b)−∆g(b) = ḡ(b) = Hb, (8)

where the linear system matrix H is defined as

H =


U [1]
1 A[1] U [1]

2 A[1] · · ·
U [2]
1 A[2] U [2]

2 A[2] · · ·
...

...
. . .

 , (9)

where matrix A[s], of size J [s] × I and with element a[s]ji ,
denotes the discrete X-ray transform for all measurements
made in spectral set s, and U [s]

k a diagonal matrix of size
J [s] with diagonal elements µ̄[s]

jk .
Note that, if the non-linear term ∆g(b) were known, we

can apply the non-linear correction by subtracting it from the
measured data and use a linear model for the reconstruction
with the corrected data. In reality, we can estimate the non-
linear term with the current iteration of basis image b(n)

and subtract ∆g(b(n)) from the measured data iteratively [8],
which is used as a non-linear correction step in addition to a
algorithm for the convex problem based on the linear model.
As a result, the rest is to derive a CP algorithm for the
following constrained convex optimization program,

min
b

1

2
||Hb− gM||22

s. t. ||(|∇(µ1b1 + µ2b2)|)||1 ≤ γ,
µ1b1 + µ2b2 � 0,

(10)

or, equivalently,

min
b

λ

2
||Hb− gM||22

+ δdiamond(αγ)(α|∇(µ1b1 + µ2b2)|)
+ δP (β(µ1b1 + µ2b2)),

(11)

where δS(x) is an indicator function defined to be zero if
x ∈ S or ∞ if x /∈ S [2], the set P is all vectors with non-
negative components, and λ, α, and β are tunable algorithm
parameters that do not change the solution to the optimization
problem, but can impact the path and convergence rate of the
algorithm. α and β are pre-defined in this work as

α =
||H||2

||(µ1∇, µ2∇)||2
, β =

||H||2
||(µ1I, µ2I)||2

. (12)

The optimization program in equation (11) can be fitted into
the primal minimization problem in the Chambolle-Pock (CP)
algorithm [1], [2] as

min
x
{F (Kx) +G(x)} (13)

where

F (Kx) = F (u,v,w) = F1(u) + F2(v) + F3(w),

F1(u) =
λ

2
||u− g||22,

F2(v) = δdiamond(αγ)(|v|),
F3(w) = δP (w),

G(x) = 0,

(14)

and

x = b,y = Kb =

u
v
w

 ,

u = Hb,
v = (αµ1∇, αµ2∇)b,

w = (βµ1I, βµ2I)b,

K =

 H
αµ1∇, αµ2∇
βµ1I, βµ2I

 .

(15)

As a result, through deriving the convex conjugates of F and G
and deriving the proximal mappings of F ∗ and G, we can de-
rive the CP algorithm instance for solving the convex optimiza-
tion program in equation (11). The pseudo-code is listed in
Algorithm 1 below. The operation ProjectOnto`1Ballγ0(x)
is simply in a form of `2 projection onto the `1-ball of size
γ0 [11]. The mathematical convergence conditions for the CP
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Algorithm 1 Pseudo-code of the CP algorithm instance based
on the linear model for solving equation (11)

1: α← ||H||2/||(µ1∇, µ2∇)||2;
β ← ||H||2/||(µ1I, µ2I)||2; Select λ

2: L← ||K(α, β)||2; σ ← 1/L; τ ← 1/L; θ ← 1; n← 0
3: Initialize b0,p0,q0 and r0 to zero
4: b̄0 ← b0

5: repeat

6: p(n+1) =
p(n) + σ(Hb̄(n) − gM)

1 + σ/λ

7: q′(n) = q(n) + σα∇(µ1b̄
(n)
1 + µ2b̄

(n)
2 )

8: q(n+1)=q′(n)−σ q′(n)

|q′(n)|
ProjectOnto`1Ballαγ(

|q′(n)|
σ

)

9: r(n+1) = neg(r(n) + σβ(µ1b̄
(n)
1 + µ2b̄

(n)
2 ))

10: b(n+1) = b(n) − τK>
p(n+1)

q(n+1)

r(n+1)


11: b̄(n+1) = b(n+1) + θ(b(n+1) − b(n))
12: until practical convergence conditions are satisfied

algorithm include the conditional primal-dual gap, defined as

cPD(b∗,p∗,q∗) =
λ

2
||Hb∗ − gM||22 +

1

2λ
||p∗||22

− g>p∗ + αγ||(|q∗|)||∞,
(16)

tending to zero and the following conditions are satisfied

||α(|(µ1∇, µ2∇)b∗)|)||1 ≤ αγ,
(βµ1I, βµ2I)b∗ � 0,

r∗ � 0,

K>
p∗

q∗

r∗

 = 0.

(17)

2) ncCP algorithm based on the non-linear model: Based
on the CP algorithm instance derived for the convex optimiza-
tion program with the linear data model, we add the non-
linear correction step at the end by subtracting the estimated
non-linear term ∆g(b(n+1)) from the measured data gM.
The resulting pseudo-code for the non-convex CP (ncCP)
algorithm for solving the non-convex optimization program
in equation (2) is listed in Algorithm 2 below.

Note that the difference between algorithms 1 and 2 are
in line 4, where gLN is initialized as gM, in line 6, where
gLN is used to updated the dual variable p, and in line 12,
where the non-linear correction step is added. For the ncCP
algorithm, where mathematical convergence is not guaranteed,
we monitor the same conditions as in equation (17) and the
conditional primal-dual gap, which now becomes

cPDnc(b
∗,p∗,q∗) =

λ

2
||g(b∗)− gM||22 +

1

2λ
||p∗||22

− g>p∗ + αγ||(|q∗|)||∞.
(18)

D. Study Design

We perform a computer simulation study to check the
numerical convergence of the ncCP algorithm. The simulated

Algorithm 2 Pseudo-code of the ncCP algorithm instance
based on the non-linear model for solving equation (2)

1: α← ||H||2/||(µ1∇, µ2∇)||2;
β ← ||H||2/||(µ1I, µ2I)||2; Select λ

2: L← ||K(α, β)||2; σ ← 1/L; τ ← 1/L; θ ← 1; n← 0
3: Initialize b0,p0,q0 and r0 to zero
4: b̄0 ← b0, gLN ← gM
5: repeat

6: p(n+1) =
p(n) + σ(Hb̄(n) − gLN)

1 + σ/λ

7: q′(n) = q(n) + σα∇(µ1b̄
(n)
1 + µ2b̄

(n)
2 )

8: q(n+1)=q′(n)−σ q′(n)

|q′(n)|
ProjectOnto`1Ballαγ(

|q′(n)|
σ

)

9: r(n+1) = neg(r(n) + σβ(µ1b̄
(n)
1 + µ2b̄

(n)
2 ))

10: b(n+1) = b(n) − τK>
p(n+1)

q(n+1)

r(n+1)


11: b̄(n+1) = b(n+1) + θ(b(n+1) − b(n))
12: gLN = gM −∆g(b(n+1))
13: until practical convergence conditions are satisfied

data are collected from a fan-beam configuration with circular
trajectory, with physical dimensions similar to those in a
standard cone-beam CT geometry. The source-to-detector and
source-to-center-of-rotation distances are 1500 mm and 1000
mm, respectively. The linear detector is 400 mm in length
and consists of 256 1.56-mm bins, forming a field-of-view
(FOV) of 265 mm in diameter. Two (S = 2) typical X-ray
spectra of 80 and 140 kVp are generated using the TASMICS
worksheet (v1.0) [12], assuming a tungsten anode and a 5-
mm Al filter [8], and used for generating at 160 views evenly
distributed over 2π for each of the 80-kVp and 140-kVp
spectral data set. We consider a decomposition model with
two (K = 2) basis materials, water and bone. The two digital
truth basis images are on an 128×128 image array with 1.95-
mm square pixels, as shown in Fig. 1.

Using equation (1) or (5), we generated data gM, which
contains the non-linear spectral response, and applied the ncCP
algorithm in Algorithm 2 to recover the basis images from gM.
Meanwhile, for a comparison, we also generated consistent
data, denoted by ḡM, using the linear model in equation (6),
and applied the CP algorithm in Algorithm 1 to recover the
basis image from ḡM.

For both algorithms, same parameters, such as spectra, pixel
size, and system matrices, used in the data generation were
used in the reconstruction as well. In the simulations study,
the TV constraint parameter for both algorithms was selected
to be the TV value of the truth monochromatic image as γ =
||(|∇(µ1b

truth
1 + µ2b

truth
2 )|)||1. Parameter λ was selected to

be 100, after testing with different choices of 1, 10, 100 and
1000 and choosing the fastest convergence rate. Further, due
to practical considerations such as limited computer precision,
the practical convergence conditions for both algorithms are
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(a) truth water (b) truth bone

Fig. 1: Digital truth basis images used to generate the data.

defined as

cPD(b(n),p(n),q(n)) ≤ 10−8,

TV(b(n)) = |||(|(µ1∇, µ2∇)b(n))|)||1/γ − 1| ≤ 10−8,

monoNegMag(b(n)) = ||b(µ1I, µ2I)b(n)c−||2 ≤ 10−8,

KTy(p(n),q(n), r(n)) = ||K>
p(n)

q(n)

r(n)

 ||2 ≤ 10−8,

(19)

where the definitions of the cPD gap for Algorithms 1 and 2
are in equations (16) and (18), respectively, and operator bxc−
truncates the positive elements of x to zero. Note that one
of the conditions in equation (17), r∗ � 0, is automatically
enforced by the neg() operation in line 9 of both Algorithms 1
and 2. In addition, we calculate the normalized image RMSE
with respect to the truth basis images as

∆̄b(b(n)) = ||b(n) − btrue||2/||btrue||2. (20)

III. RESULTS

We investigate the ncCP algorithm by plotting in Fig. 2
the convergence metrics. It can be observed that the practical
convergence conditions in equation (15) are met for both ncCP
and CP algorithms with the non-linear data gM and linear
data ḡM, respectively. In addition, we also show in Fig. 2
the normalized image RMSE, which have reached smaller
than 10−12 for both algorithms. It shows that, under the data
condition studied in this work, the ncCP algorithm is able
to recover the basis images. Because the reconstructed basis
images are numerically identical to the truth basis ones, they
are not shown here. Such observations suggest the numerical
convergence of the ncCP algorithm instance in Algorithm 2
for the non-convex optimization program in equation (2), as
well as the CP algorithm instance in Algorithm 1 for the
convex optimization program in equation (10). Furthermore,
it is shown that with the same parameter λ the convergence
rates of the ncCP algorithm and its associated CP algorithm
are almost the same for the convergence metrics considered in
the study.

IV. CONCLUSION

In this work, we have proposed a non-convex optimization
program for the reconstruction of multispectral CT data and
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Fig. 2: Practical convergence metrics as defined in equa-
tion (19) (row 1 & 2) and the image RMSE (row 3), as
functions of iteration n.

derived a non-convex Chambolle-Pock (ncCP) algorithm for
numerically solving the designed non-convex optimization
program. The ncCP algorithm is based on the generic CP
algorithm instance for a similar convex optimization program,
in combination with a non-linear correction step for the mea-
sure data. We have also derived the convergence conditions,
which can be used to check numerical convergence of the
ncCP algorithm and to guide the selection of parameters
to avoid potential saddle points of non-convex optimization
programs. Using computer simulation data with two spectra,
we have carried out a numerical study to verify the numerical
convergence of the derived ncCP algorithm, by observing that
the practical convergence conditions are all met and that the
reconstructed basis images are numerically identical to the
truth basis images.

Future work will focus on the application of the derived
ncCP algorithm to real multispectral CT data with noise,
decomposition error, and/or scattering. Also, it is of our
interest to investigate and expand the ncCP algorithm instance
for other optimization program designs, such as using KL
divergence as the objective function, by incorporating the non-
linear correction step with the CP algorithm derived for the
convex optimization program based on the linear data model.
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Abstract—Coronary artery calcium scoring is a controversial 

technique that can assess an individual’s risk of cardiovascular 

disease, but which requires a CT scan that delivers a nontrivial 

amount of radiation. The goal of this work is to explore an 

alternative pathway to measuring coronary calcium using a 

combination of dual energy and tomosynthesis. We find that a 

tomosynthesis-based system is less sensitive but is simpler and can 

function at reduced dose, indicating its potential use for 

population-based screening of cardiovascular risk. 

Index Terms—calcium scoring, tomosynthesis, dual energy 

I. INTRODUCTION 

ARDIOVASCULAR disease is the leading cause of death

in the United States, and has been so for more than 90 

years. Several risk factors can be used to predict cardiovascular 

disease, including, but not limited to: elevated blood pressure, 

smoking, diabetes, elevated cholesterol, male sex, and old age. 

From traditional risk factors it is possible to build a risk score 

(1), and this risk score can be used as a basis for prescribing 

treatment. For example, some guidelines call for the 

prescription of cholesterol-lowering statin therapy to be 

initiated or titrated on the patient’s cholesterol levels and their 

risk score (2). Studies that have examined the efficacy of these 

statins have found that they deliver similar magnitude of 

response amongst those patients with intermediate and low 

levels of background LDL cholesterol (3), suggesting that 

patients that would ordinarily not receive statin therapy because 

of low cholesterol levels may still benefit from them.  

 Current risk scores are capable of predicting heart disease 

with moderate effectiveness, but there remains room for 

significant improvement. Accuracy of prediction is often 

assessed with the Area under the Receiver Operating Curve 

(AUC) metric. In this metric, random chance is associated with 

AUC = 0.5, and perfect prediction is AUC = 1. For the 

Women’s Health Study cohort, it has been observed that current 

risk scores are able to predict cardiovascular disease with AUC 

= .78. More accurate risk scores that improve the AUC metric 

could lead to better prescription of medications, and would also 

allow the patient to choose from a wide variety of lifestyle 

choices that would reduce his or her risk to cardiovascular 

disease.  

 Amongst emerging risk factors, the most powerful predictor 

for cardiovascular disease is coronary artery calcium scoring 

S. Hsieh and M. Budoff are with the University of California, Los Angeles. 

(CACS) (5). Calcium scoring measures calcium deposits that 

arise from the atherosclerotic disease progression. A weakness 

of calcium scoring is that it requires a CT scan, exposing the 

patient to a nontrivial amount of radiation of about 1 mSv, equal 

to approximately 3 months of background radiation. In 

addition, incidental findings and high cost have kept calcium 

scoring from widespread utilization (6, 7). 

 For these reasons, alternative methods to obtain information 

similar to calcium scoring have been highly desired. The 

measurement of carotid media-intima thickness using 

ultrasound is another attempt to quantify atherosclerosis but 

fails to reach the level of risk score improvement as CACS (5). 

Projection-based x-ray techniques, including dual-energy 

fluoroscopy, have been proposed to assess calcium scoring (8). 

However, their efficacy in patients has not been evaluated. In 

this project, we use dual-energy tomosynthesis to improve 

performance. The goal of this work is to assess the feasibility 

of this approach.  

II. METHODS

Conventional tomosynthesis would be difficult to implement 

for scanning the coronary arteries. The coronary arteries are 

subject to significant motion from both the beating heart and the 

breathing lung. Although it would be possible to stitch together 

data from multiple adjacent heartbeats, registration may be 

imperfect in the context of an improperly held breath. 

Misregistration on the order of 1 millimeter may make it 

difficult to perform the necessary dual energy subtraction. 

Moreover, calcifications in the coronary arteries are typically 

of modest contrast and size. The central feasibility question was 

whether or not a fast tomosynthesis-based approach would have 

sufficient contrast to detect clinically significant calcium 

deposits. 

A. System design 

The real-time tomosynthesis system design has been 

described elsewhere (9). This design uses a single frame to read 

out multiple x-ray images; hence, it is a Single-Frame X-ray 

Tomosynthesis (SFXT) design. In this application, two 

acquisitions are necessary at two different energies. However, 

within each acquisition we use only 4 different projections to 

provide the necessary temporal resolution.  

Figure 1 shows an example of SFXT when applied to a 

different task, the detection of a lung tumor. The raw detector 

Coronary artery calcium scoring using dual 

energy tomosynthesis 
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data in this case has sufficient contrast so that the tumor can be 

discerned in each source image, although the image quality is 

higher when the data is combined in the reconstruction process. 

The primary differences between the lung tumor tracking 

application and the calcium scoring application, from a system 

design perspective, is that the calcium scoring application 

requires a larger field of view and hence fewer projections can 

be used. We use four projections rather than 8 as shown in 

Figure 1. Furthermore, dual energy acquisition is necessary to 

detect calcium deposits, so two separate acquisitions must be 

recorded at different tube voltages.  

The temporal resolution of such a system would be very high. 

The four stationary x-ray sources are energized at the same time 

to pass radiation through the field of view. The sources are 

toggled between two energies and a switching filter is used in 

tandem to improve dual energy contrast. For a detector 

operating at 45 fps, and assuming instant switching time, the 

acquisition time can be as short as 44 ms. A more conservative 

estimate, assuming a 30 fps detector that requires two frames at 

each energy level and one frame of switching time, is an 

acquisition time of 133 ms. 

The field of view can be estimated as follows. Typical large-

area fluoroscopic x-ray detectors today have an area of 43x43 

cm. Assuming a magnification of 1.5, and using the fact that 

four quadrants halves the linear dimension of the field of view, 

we calculate that the FOV would be 14 cm. 

 

B. Source data 

Five clinical cases were examined from the Multi-Ethnic 

Study of Atherosclerosis (MESA). The MESA trial enrolled 

more than 6,800 men and women and included a calcium 

scoring CT scan for each individual. 

Each scan was decomposed into water and calcium on a 

voxel-by-voxel basis. We assumed that each voxel less than 100 

HU was composed entirely of water of the appropriate density, 

and voxels greater than 100 HU were composed of water at a 

density of 1.1 g/cc, with the remaining attenuation being 

provided by calcium.  

The resolution of the simulated tomosynthesis scans was 

severely limited by the underlying MESA data, which was 

stored with a characteristic slice thickness of 3 mm.  

The coronary arteries were sometimes located near the end 

of a dataset. The data was padded using zero-order hold 

(constant extrapolation) when necessary. 

C. Simulations 

Previous experimental data on dual-energy fluoroscopy 

suggested that low dose reconstruction may be possible (8). 

Hence, in the first set of experiments we sought to verify this in 

the MESA dataset. Best-case reconstructions were performed 

by forward projection without noise addition. We examined 

five cases from across a range of calcification levels. 

Reconstruction was performed by shift-and-add. To enhance 

the detection of small calcifications with background, we used 

a difference of Gaussians (DoG) filter. In the noise-free images, 

we simply projected the calcium images as we assumed that the 

water content would be subtracted out. 

Finally, to assess the impact of quantum noise, noise was 

injected assuming the low energy image was acquired at 60 kVp 

and the high energy image was acquired at 140 kVp, including 

0.5 mm Sn. The spectrum was discretized and each energy was 

projected separately. The high and low energy images were 

weighted and subtracted to isolate calcium contrast. The mAs 

for the images was adjusted to visualize the effect on 

detectability. 

 
Figure 1. System design for SFXT. For clarity of presentation, this simulation shows a higher-contrast lung tumor rather than a more 

subtle calcification. (a) Multiple sources illuminate a small field of view. (b) The detector sees the multiple projections arriving at 

different sectors. (c) Shift-and-add reconstruction yields a higher fidelity image of the lung tumor compared to a single projection. 

sources &

collimator
patient

flat-panel

detector

field of view

a. SFXT system design b. raw detector data c. reconstruction
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III. RESULTS 

Figure 2 shows the detectability of coronary calcium for 

five distinct cases. The majority of these cases fall below the 

clinically actionable level of a coronary artery calcium score 

threshold of 300 (2), although sensitivity to lower scores may 

still be desired for other reasons. The ability to detect fairly 

subtle calcifications between 100 to 300 is limited. However, 

the intrinsic resolution of the data is poor, and higher 

resolution may aid detection. Cases with calcium above 300 

can generally be seen. Because of the four projections used, 

calcifications that are out-of-focus are seen in a square pattern. 

 Figure 3 shows the impact of quantum noise on a separate 

case. In general, it seems that adequate noise statistics can be 

obtained with dose roughly comparable to a chest x-ray. To a 

large extent, detectability is limited by background anatomy 

rather than quantum statistics. 

 

IV. DISCUSSION 

Cardiovascular disease is a leading cause of mortality and 

morbidity worldwide, and improved risk stratification using 

calcium scoring has the potential to improve patient outcomes. 

To date, calcium scoring has only been performed using CT. 

We have presented preliminary data showing that it may be 

possible to detect calcium using a combination of 

tomosynthesis and dual energy.  

In the absence of overlap with bony structures, dual energy 

fluoroscopy would be sufficient to detect calcium and there 

would be no reason to resort to CT (8). In practice, overlap with 

the ribs is difficult to avoid in the thorax. Using four views in 

tomosynthesis, as is done here, provides some capability to 

detect calcium against background structure. However, it is 

clear that the results of dual energy SFXT are not as good as 

CT. In particular, it should be noted that dual energy 

tomosynthesis performs better at detecting single, large 

     
Figure 3. Effect of quantum noise on detectability. (Left) Noiseless case. (Middle) Noise assuming 60 kVp @ 6 mAs, and 140 

kVp + Sn @ 1 mAs. This dose is roughly equivalent to a standard chest x-ray. (Right) Noise assuming 60 kVp @ 3 mAs, 140 

kVp + Sn @ 0.5 mAs, or half dose. 

 

     
 

Figure 2. Five examples of coronary calcification with different severities. Each column corresponds to a distinct cases 

with CT on top and dual-energy SFXT on bottom. The left cases have more calcium than the right cases. From left to 

right, the calcium scores corresponds to calcium scores of 925, 734, 366, 124, and 10. The ACC/AHA guidelines 

describe abnormal CAC levels to be in excess of 300 points (2), at which point statin therapy could be initiated for 

intermediate-risk patients. [WL, WW] = [0, 600] HU for CT images.  
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calcifications than several independent calcium deposits. This 

results are intuitive if one assumes that there is an intrinsic 

threshold of detectability. A large deposit above the threshold 

of detectability may be lost if it is distributed into several small 

deposits, underneath the threshold of detectability. Assuming 

dose levels comparable with a chest x-ray, this detectability 

threshold is primarily limited by background structure and not 

from quantum statistics. 

While our results do not show perfect agreement with CT, it 

should be noted that in most cases it was possible differentiate 

individuals with significant calcium from those that had 

minimal calcium. It has been noted that for low-risk women, 

advanced coronary calcium scores (above 300) were associated 

with a 22x increase in cardiovascular risk compared to those 

without calcium (10). A simple, low-dose, high-throughput 

device that can screen a large group of individuals may help to 

identify those that would benefit from more intensive 

interventions. This tomosynthesis-type device may fit these 

requirements. 

This preliminary study has several limitations. Only a small 

number of datasets were examined. A future study will use 

higher-resolution data, examine a set of more than 30 cases, 

incorporate more sophisticated modeling of x-ray physics using 

Monte Carlo simulations, and use a blinded reader to better 

evaluate the effectiveness of SFXT for determining 

cardiovascular risk. 

REFERNCES  

1. Wilson PW, D'Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel 

WB. Prediction of coronary heart disease using risk factor categories. 

Circulation. 1998 May 12; 97(18): 1837-1847. 

2. Stone NJ, Robinson JG, Lichtenstein AH, Bairey Merz CN, Blum CB, 

Eckel RH, Goldberg AC, Gordon D, Levy D, Lloyd-Jones DM, McBride P, 
Schwartz JS, Shero ST, Smith SC,Jr, Watson K, Wilson PW, Eddleman KM, 

Jarrett NM, LaBresh K, Nevo L, Wnek J, Anderson JL, Halperin JL, Albert 

NM, Bozkurt B, Brindis RG, Curtis LH, DeMets D, Hochman JS, Kovacs RJ, 
Ohman EM, Pressler SJ, Sellke FW, Shen WK, Smith SC,Jr, Tomaselli GF, 

American College of Cardiology/American Heart Association Task Force on 

Practice Guidelines. 2013 ACC/AHA guideline on the treatment of blood 
cholesterol to reduce atherosclerotic cardiovascular risk in adults: A report of 

the american college of cardiology/american heart association task force on 

practice guidelines. Circulation. 2014 Jun 24; 129(25 Suppl 2): S1-45. 

3. Yusuf S, Bosch J, Dagenais G, Zhu J, Xavier D, Liu L, Pais P, López-

Jaramillo P, Leiter LA, Dans A. Cholesterol lowering in intermediate-risk 
persons without cardiovascular disease. N Engl J Med. 2016; 374(21): 2021-

2031. 

4. Cook NR. Use and misuse of the receiver operating characteristic curve in 

risk prediction. Circulation. 2007 Feb 20; 115(7): 928-935. 

5. Yeboah J, McClelland RL, Polonsky TS, Burke GL, Sibley CT, O’leary D, 

Carr JJ, Goff DC, Greenland P, Herrington DM. Comparison of novel risk 

markers for improvement in cardiovascular risk assessment in intermediate-
risk individuals. JAMA. 2012; 308(8): 788-795. 

6. Blaha MJ, Silverman MG, Budoff MJ. Is there a role for coronary artery 
calcium scoring for management of asymptomatic patients at risk for coronary 

artery disease?: Clinical risk scores are not sufficient to define primary 

prevention treatment strategies among asymptomatic patients. Circ 
Cardiovasc Imaging. 2014 Mar; 7(2): 398-408; discussion 408. 

7. Andersson C, Vasan RS. Is there a role for coronary artery calcium scoring 

for management of asymptomatic patients at risk for coronary artery disease?: 
Clinical risk scores are sufficient to define primary prevention treatment 

strategies among asymptomatic patients. Circ Cardiovasc Imaging. 2014 Mar; 

7(2): 390-7; discussion 397. PMCID: PMC4154564. 

8. Xu T, Ducote JL, Wong JT, Molloi S. Feasibility of real time dual‐energy 
imaging based on a flat panel detector for coronary artery calcium 

quantification. Med Phys. 2006; 33(6): 1612-1622. 

9. Hsieh SS, Ng LW. Real‐time tomosynthesis for radiation therapy guidance. 
Med Phys. 2017. 

10. Lakoski SG, Greenland P, Wong ND, Schreiner PJ, Herrington DM, 
Kronmal RA, Liu K, Blumenthal RS. Coronary artery calcium scores and risk 

for cardiovascular events in women classified as “low risk” based on 

framingham risk score: The multi-ethnic study of atherosclerosis (MESA). 
Arch Intern Med. 2007; 167(22): 2437-2442. 

  

The fifth international conference on image formation in X-ray computed tomography 385



Precision Learning: Reconstruction Filter Kernel
Discretization

C. Syben, B. Stimpel, K. Breininger, T. Würfl, R. Fahrig, A. Dörfler and A. Maier

Abstract—In this paper, we present substantial evidence that a
deep neural network will intrinsically learn the appropriate way
to discretize the ideal continuous reconstruction filter. Currently,
the Ram-Lak filter or heuristic filters which impose different
noise assumptions are used for filtered back-projection. All of
these, however, inhibit a fully data-driven reconstruction neural
network learning approach. In addition, the heuristic filters are
not chosen in an optimal sense. To tackle this issue, we propose a
formulation to directly learn the reconstruction filter. The filter
is initialized with a Ramp filter as a strong pre-training and
learned in frequency domain. We compare the learned filter
with the Ram-Lak and the Ramp filter on a numerical phantom
as well as on a real CT dataset. The results show that the
network properly discretizes the continuous Ramp filter and
converges towards the Ram-Lak solution. In our view these
observations are interesting to gain a better understanding of
deep learning techniques and traditional analytic techniques such
as Wiener filtering and discretization theory. Furthermore, this
will allow fully trainable data-driven reconstruction deep learning
approaches.

Index Terms—Computed Tomography, Deep Learning, Fil-
tered Back-Projection, Filter Discretization, Filter Learning

I. INTRODUCTION

Recently deep learning has shown promising results in
the field of Computed Tomography (CT) reconstruction. In
his perspective article, Wang [1] states that a reconstruction
pipeline implemented as a deep neural network allows to
access the capability of learning-based reconstruction. Wang
identifies the data-driven knowledge-enhancing abilities as the
strength of deep learning-based reconstruction. Würfl et al.
[2] have proposed an implementation of the filtered back-
projection algorithm (FBP) as a neural network. Similar to
iterative reconstruction algorithms, their proposed implemen-
tation avoids explicitly storing the system matrix, which would
render the algorithm infeasible. The approach utilized the
data-driven capability by learning the compensation weights
in case of limited-angle tomography. Hammernik et al. [3]
proposed a two-level deep learning architecture to compensate
for additional streak artifacts in the limited-angle tomography
case. They showed that their approach allows for a joint
optimization without any heuristic parameter tuning. In both
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innovation project. EIT Health is supported by EIT, a body of the European
Union.
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Fig. 1: Line profile through a 2D circle phantom. Ground truth
(left) and FBP result based on Ramp filter (right).

approaches the necessary filtering to perform a FBP is done
with a fixed layer using an analytical discretization.

The ideal filter for FBP can be derived using analytic recon-
struction theory. Assuming an infinite number of projections
and infinitely small detector pixels, it takes the form of the
absolute value function in Fourier domain, commonly referred
to as Ramp filter. In practice, however, Radon inversion has
to be performed using a finite number of projections. This
introduces discretization errors which need to be handled by
replacing the Ramp filter with an appropriate discrete version.
The occurring artifacts are commonly called cupping and
dc shift artifacts [4], and an example of both is shown in
Figure 1. The analytically derived discrete version of the
Ramp filter is the well known Ram-Lak filter introduced
by Ramachandran and Lakshminarayan [5]. Both, the ideal
Ramp as well as the Ram-Lak filter are sensitive to noise.
Thus, many different filters have been proposed which impose
different noise assumptions. The most well known example is
the Shepp-Logan filter [6], which incorporates a smoothing
filter. However, while the choice of filter clearly matters,
none of these heuristic filters are chosen in an optimal sense.
CT vendors typically have specialized departments that aim
at designing optimal filters for their users. The actual filter
configurations are often deemed as company secrets. This
shows the demand for specialized filters and raises the question
whether data-driven methods can be used to deduce optimal
filters.

Pelt et al. [7] proposed a method to learn such a data-
dependent filter for the FPB algorithm. Their approach learns
a filter approximation to increase reconstruction accuracy in
specific cases. They optimize the filter with respect to the
minimal error between the input data and the projection of the
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FBP reconstructed input. Pelt et al. use an efficient formulation
and exponential binning to handle the size of the system
matrix. In order to do this, handling the discretization of
the Ramp filter with respect to the details around the zero
frequency as well as the boundaries is necessary.

We propose a formulation to learn a discrete optimal
reconstruction filter directly in a deep learning context. We
provide substantial evidence that a deep neural network will
intrinsically learn the appropriate way to discretize the contin-
uous filter. Furthermore, our proposed formulation leads to a
straightforward implementation of the optimization using deep
learning frameworks that automatically compute the gradient
of the cost function using back-propagation.

II. METHOD & MATERIALS

First, we describe the filtered back-projection in continuous
and discrete form for the parallel-beam geometry and intro-
duce the theoretical filter kernel. Afterwards, the optimization
problem and the related gradient to learn the filter kernel are
derived. In the last Sections we describe our experiments and
discuss them.

A. Filtered Back-Projection

The filtered back-projection (FBP) algorithm is an efficient
solution to the reconstruction problem. First the projection data
p(s, θ) are filtered by a convolution with the filter kernel

q(s, θ) = h(s) ∗ p(s, θ) , (1)
h(s) =

∫
|ω|e2πωsdω , (2)

subsequently, the filtered projection data q(s, θ) are back-
projected to obtain the reconstruction result f(x, y) with

f(x, y) =

∫ π

0

q(s, θ)|s=x·cos θ+y·sin θdθ . (3)

In practice, we need a discrete description of the FBP pre-
sented in Eq. (1-3). The discrete reconstruction problem can
be expressed by

Ax = p , (4)

where A ∈ RN×M ·P is the system matrix, x ∈ RN is the
volume and p ∈ RM ·P are the projections. Since the discrete
representation of the Radon transform A is a tall matrix, it
has no inverse. This means every reconstruction formula is,
therefore, a unique pseudo inverse of A,

x = A>︸︷︷︸
Back-projection (Eq. 3)

(AA>)−1︸ ︷︷ ︸
Filter (Eq.1)

p . (5)

B. Learning the Filter Kernel

From the convolution theorem it is clear that a convolution
in spatial domain is equal to a multiplication in the frequency
space. Therefore, we can reformulate the filter (AA>)−1 in
form of a diagonal matrix in Fourier domain

x = A>FHKFp , (6)

where F ∈ RN×N and FH ∈ RN×N represents the Fourier
and inverse Fourier transform, respectively. K ∈ RN×N is a

diagonal matrix representing the filter in frequency domain. To
learn the filter matrix K, which is a discrete approximation of
the Ramp filter, we use Eq. 6 to formulate a objective function
f(K) as a least-square minimization problem:

f(K) =
1

2
‖A>FHKFp− x‖22 . (7)

The gradient to our objective function f(K) in Eq. 7 with
respect to K is

∂f(K)

∂K
= FA (ATFHKFp− x)︸ ︷︷ ︸

Error︸ ︷︷ ︸
Back-propagation

(Fp︸︷︷︸
l−1

)> . (8)

Note that this analytical gradient also has an interpretation in
a neural network learning context. To describe Eq. 8 using the
terms of back-propagation: Eq. 6 can be regarded as a network
with input p and layers F , K, FH and AT with the identity
as activation function between layers. K is the only layer
containing trainable weights. Then, x̂ = ATFHKFp is the
forward pass through the network following the considerations
by Würfl et al. [2]. The gradient of the error function (Eq. 7)
with respect to K is computed by multiplying two factors: 1)
the partial derivative of the error function with respect to the
output of the layer and 2) the transpose of the output of the
previous layer (l− 1). The output of l− 1 is readily described
by Fp. Using the recursive formulation of back-propagation,
we yield FA(x̂− x), with (x̂−x) being the derivative of the
error function. We consider these observations as interesting,
as this gradient would be computed automatically in a deep
learning framework such as TensorFlow.

C. Experiments

We implemented the cost function and the analytically
derived gradient in CONRAD [8] and used stochastic gradient
descent to learn the filter. Unmatched projectors were used for
the reconstruction (pixel driven) and the forward projections
(ray driven). 0 The filter matrix K is initialized with a
slightly modified frequency domain representation of the ideal
Ramp filter. By doubling the width of the zero-valued part
of the ramp we emphasize the cupping artifacts. This serves
exclusively to show the learning capability. For the training we
use 10 numerical disc phantoms with increasing radii rendered
on a 512×512 pixel grid. The learned filter is evaluated on a
512×512 slice of a real CT dataset showing the head of a pig
acquired at Stanford University. For evaluation we compare
the filtered back-projection using the modified Ramp Filter,
the Ram-Lak and the learned filter, in the following referred
to as Ramp-reco, Ram-Lak-reco and Learned-reco, respec-
tively. The quantitative evaluation is done on the absolute
difference between the ground truth (GT) and the respective
reconstruction result. These difference images are evaluated
using the mean, minimum and maximum difference as well as
the standard deviation (std. dev.). Note that we use the original
reconstruction as the ground truth for the pig experiment.
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(a) GT: Phantom.

(b) Line profile through GT.

(c) Ramp-reco.

(d) Line profile through Ramp-reco.

(e) Ram-Lak-reco.

(f) Line profile through Ram-Lak-reco.

(g) Learned-reco.

(h) Line profile through Learned-reco.

Fig. 2: Reconstructions and respective line profile plots of numeric circle phantom using different filters. All images have the
window/level set to: [1.03/0.50].

Fig. 3: Difference of the Ram-Lak-reco (left) and Learned-
reco (right) to the GT. To enhance the difference between both
images, the window/level was set to [0.02/0.04].

III. RESULTS

A. Qualitative Results

Fig. 2 shows the results of the FBP on a numerical disc
phantom (see ground truth in Fig. 2a), which was used for
the training. Additionally, the results of Ramp-reco (see Fig.
2c), the Ram-Lak-reco (see Fig. 2e) and the Learned-reco (see
Fig. 2g) and their respective line profiles are presented. The
Ramp-reco leads to cupping artifacts in the homogeneous area
of the disc that can be observed in Fig. 2c as well as in the
respective line profile (see Fig. 2d). In Fig. 2f the Ram-Lak-
reco is shown. The line profile in Fig. 2f illustrates that the
homogeneous area of the disc is reconstructed properly. As
displayed in Fig. 2g and 2h, the Learned-reco reconstructs
the homogeneous area properly as well. Comparing the line
profiles of the Ram-Lak-reco with the line profile from the
Learned-reco, the Ram-Lak-reco shows nearly a straight line
while the line profile of the Learned-reco still shows small
deviations from the ideal line. Fig. 3a denotes the absolute
difference between Ram-Lak-reco and the GT, while Fig. 3b
denotes the absolute difference between the Learned-reco and

(a) Ram-Lak-reco. (b) Learned-reco.

Fig. 4: Reconstruction of a pig dataset filtered with Ram-
Lak (left) and the learned filter kernel (right) and related line
profiles along the yellow line below. For both images the
window/level has set to: [2620/60] HU.

the GT. Both absolute difference images show errors in the
homogeneous area as well as at the edge of the disc phantom.
Fig. 4 presents the Ram-Lak-reco and the Learned-reco of
the pig dataset with their respective line profiles. Both line
profiles, aligned over the same homogeneous area of the pig,
show a similar behavior and no cupping.

B. Quantitative Results
In Tab. I the measurements of the absolute difference

between the GT and the respective reconstructions are shown.
The absolute mean error of the Ramp-reco is at 23.5%, while
the absolute mean error of the Learned-reco is at 2.3%. The
lowest absolute mean error can be observed by the Ram-
Lak-reco. The standard deviation as well as the maximum
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TABLE I: Measurements of the absolute difference between
GT and respective circle reconstruction (in percent).

mean std. dev. min max
Ramp-reco 0.235 0.07 0.001 0.596
Ram-Lak-reco 0.01 0.031 0 0.41
Learned-reco 0.023 0.03 6.76E-09 0.409

TABLE II: Measurements of the absolute difference between
GT and respective pig reconstruction in Hounsfield units (HU).

mean std. dev. min max
Ram-Lak-reco 66.99 61.401 6.10E-5 1634.82
Learned-reco 83.53 68.06 8.39E-5 1685.70

value of the Ramp-reco are higher compared to the other
two reconstructions. The Ram-Lak-reco and the Learned-reco
show a similar standard deviation of the absolute difference
as well as the absolute maximum error. In Tab. II the absolute
error measurements between the GT and the respective recon-
structions are presented. Both the Ram-Lak-reco as well as the
Learned-reco exhibit a similar absolute mean error. Also the
standard deviation of the absolute error as well as the absolute
maximum error are closely together.

IV. DISCUSSION

The evaluation of the numerical disc phantom shows that
homogeneous areas can be reconstructed properly without cup-
ping artifacts when using the learned filter. However, the line
profile reveals that the result is not as good as with the Ram-
Lak filter. A possible explanation for this difference is our way
of implementing the optimization directly and configuring the
stochastic gradient parameters heuristically. Also note that our
current training is performed with only 20 epochs and our data
set consists only of 10 cylinders of different diameter. This
is only a coarse approximation of the ideal training set. We
assume that using a basis that spans the entire domain of x
will do much better for this job. This will be subject of future
experiments. Still, we consider 10 training samples as a good
start for estimating such a complex relation that generalizes
to other much more complex objects such as the pig data
set. The minor difference between the Learned-reco and the
Ram-Lak-reco in the real CT data experiment prove that the
learned filter is not object dependent and not over-fitted to our
training data. Utilizing discs with varying radii introduces two
properties to the training process. First, narrow discs model the
Dirac-impulse. Secondly, discs with larger radii exhibit large
homogeneous regions. Occurring cupping and dc-shift artifacts
in the homogeneous area will lead to strong gradients, which
appear due to the wrong discretization. As a consequence,
the weights converge towards the Ram-Lak solution, which
is nothing else than learning the proper discretization of the
continuous Ramp. Using the ideal Ramp less cupping is
observed. This renders the dc-shift as the dominant artifact to
compensate for. We expect that augmentation approaches of
this method will lead to filters that are invariant / less prone
to noise characteristics imposed by CT physics intrinsically.
Thus, we believe that noise augmentation will lead to filters
similar to the Shepp-Logan filter. Augmentation in this context

will have a very similar result as a Wiener filter that is
optimal given certain noise properties. Different approaches
to learn the reconstruction filter were published in the past.
Floyd [9] successfully learned the discrete version of the ramp
filter for SPECT image reconstruction. However, compared
to our presented method, their approach learns the filter in
spatial domain using a neural network with fully connected
layers. As a consequence of the system design, Floyd reported
practical issues implementing the huge amount of trainable
weights at the time of the publication. Furthermore, no detailed
analysis of the discretization properties of the learned filter
was performed. Even though similar approaches to learn the
reconstruction filter were published, e.g. [7], [9], none of
them explicitly uses domain knowledge to design the network
topology. In contrast, our derivation of the network topology
is based on the continuous analytical problem description.
Furthermore, the transition to the discrete filter is intrinsically
solved due to the discrete nature of the neural networks. In
our view these observations are interesting to gain a better
understanding of deep learning techniques and traditional
analytic techniques such as Wiener filtering and discretization
theory. To the best of our knowledge, we did not observe such
links between analytical signal processing theory and deep
learning so far.

V. CONCLUSION

We presented an approach to learn the discrete optimal
reconstruction filter directly from the continuous Ramp filter.
We have shown that the learning approach will automatically
compensate for the errors inflicted by the discretization in
an L2-sense optimal way with respect to our given training
data. This is achieved by formulating a cost function to
learn the filter in the frequency domain. This enables us to
initialize the filter with the ideal Ramp, which can be seen as
a very strong pre-training. Furthermore, the formulation can
be straightforward transfered to a neural network architecture.
Combining the proposed solution with the deep neural network
suggested by Würfl et al. enables us to provide a fully trainable
data-driven reconstruction deep learning approach. In future
work, we want to apply noise models to the training data to
learn an optimal discrete filter which is less sensitive to noise.
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Deep Learning Interior Tomography for
Region-of-Interest Reconstruction

Yoseob Han, Jawook Gu and Jong Chul Ye

Abstract—Interior tomography for the region-of-interest imag-
ing has advantages of using a small detector and reducing X-ray
radiation dose. However, standard analytic reconstruction suffers
from severe cupping artifacts due to existence of null space in the
truncated Radon transform. Existing penalized reconstruction
methods may adress this problem but they require extensive
computations due to the iterative reconstruction. Inspired by the
recent deep learning approaches to low-dose and sparse view
CT, here we propose a deep learning architecture that removes
null space signals from the FBP reconstruction. Experimental
results have shown that the proposed method provides near-
perfect reconstruction with about 7-10 dB improvement in PSNR
over existing methods in spite of significantly reduced run-time
complexity.

I. INTRODUCTION

X-ray Computed Tomography (CT) is one of the most pow-
erful clinical imaging tools, delivering high-quality images in a
fast and cost effective manner. However, the X-ray is harmful
to the human body, so many studies has been conducted to
develop methods that reduce the X-ray dose. Specifically, X-
ray doses can be reduced by reducing the number of photons,
projection views or the size of the field-of-view of X-rays.
Among these, the CT technique for reducing the field-of-view
of X-ray is called interior tomography. Interior tomography
is useful when the region-of-interest (ROI) within a patient’s
body is small (such as heart), because interior tomography
aims to obtain an ROI image by irradiating only the ROI with
X-rays. Interior tomography not only can dramatically reduce
the X-ray dose, but also has cost benefits by using a small-
sized detector. However, the use of an analytic CT reconstruc-
tion algorithm generally produces images with severe artifacts
due to the transverse directional projection truncation.

Sinogram extrapolation is a simple approximation method to
reducte the artifacts. However, sinogram extrapolation method
still generates sbiased CT number in the reconstructed image.
Recently, Katsevich et al. [1] proved the general uniqueness
results for the interior problem and provided stability esti-
mates. Using the total variation (TV) penalty, the authos in
[2] showed that a unique reconstruction is possible if the
images are piecewise smooth. In a series of papers [3], [4],
our group has shown that a generalized L-spline along a
collection of chord lines passing through the ROI can be
uniquely recovered [3]; and we further substantiated that the
high frequency signal can be recovered analytically thanks to

Y. Han, J. Gu, and J. Ye are with the Department of Bio and Brain
Engineering, Korea Advanced Institute of Science and Technology (KAIST),
Daejeon 34141, Republic of Korea (e-mail: {hanyoseob, jwisdom9299,
jong.ye}@kaist.ac.kr).

the Bedrosian identify, whereas the computationally expensive
iterative reconstruction need only be performed to reconstruct
the low frequency part of the signal after downsampling [4].
While this approach significantly reduces the computational
complexity of the interior reconstruction, the computational
complexity of existing iterative reconstruction algorithms pro-
hibits their routine clinical use.

In recent years, deep learning algorithms using convolu-
tional neural network (CNN) have been successfully used for
low-dose CT [5], [6], sparse view CT [7], [8], etc. However,
the more we have observed impressive empirical results in
CT problems, the more unanswered questions we encounter.
In particular, one of the most critical questions for biomedical
applications is whether a deep learning-based CT does create
any artificial structures that may mislead radiologists in their
clinical decision. Fortunately, in a recent theory deep convo-
lutional framelets [9], we showed that the success of deep
learning is not from a magical power of a black-box, but rather
comes from the power of a novel signal representation using
non-local basis combined with data-driven local basis. Thus,
the deep network is indeed a natural extension of classical
signal representation theory such as wavelets, frames, etc; so
rather than creating new informations, it attempts to extract
the most information out of the input data using the optimal
signal representation.

Inspired these findings, here we propose a deep learning
framework for interior tomography problem. Specifically, we
demonstrate that the interior tomography problem can be for-
mulated as a reconstruction problem in an end-to-end manner
under the constraints that remove the null space signal com-
ponents of the truncated Radon transform. Numerical results
confirmed the proposed deep learning architecture outperforms
the existing interior tomography methods in image quality and
reconstruction time.

II. THEORY

A. Problem Formulation
Here, we consider 2-D interior tomography problem and

follow the notation in [3]. The variable θ denotes a vector
on the unit sphere S ∈ R2. The collection of vectors that are
orthogonal to θ is denoted as

θ⊥ = {y ∈ R2 : y · θ = 0}.

We refer to real-valued functions in the spatial domain as
images and denote them as f(x) for x ∈ R2. We denote the
Radon transform of an image f as

Rf(θ, s) :=
∫
θ⊥
f(sθ + y)dy (1)
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where s ∈ R and θ ∈ S. The local Radon transform for the
truncated field-of-view is the restriction of Rf to the region
{(θ, s) : |s| < µ}, which is denoted as TµRf . Then, the
interior reconstruction is to find the unknown f(x) within the
ROI from TµRf .

Fig. 1: The coordinate system for interior tomography.

B. Null Space of Truncated Radon Transform

The main technical difficulty of the interior reconstruction
is the existence of the null space [3], [10]. To analyze the null
space, we follow the mathematicla analysis in [3]. Specifically,
the analytic inversion of TµRf can be equivalently represented
using the differentiated backprojection followed by the trun-
cated Hilbert transform along the chord lines, se we analyze
the interior reconstruction problem to take advantages of this.
More specifically, if the unit vector e ∈ R2 along the chord
line is a set as a coordinate axis, then we can find the unit
vector e⊥ ∈ R2 such that V = [e, e⊥] consists of the basis
for the local coordinate system and (u, v) ∈ R2 denotes its
coordinate value (see Fig. 1). We further define 1-D index set
parameterized by the v:

Iµ(v) := {u′ ∈ R |
√
(u′)2 + v2 ≤ µ}

Then, the null space of the TµRf is given by [3], [4],

Nµ :=

{
g | g(u, v) = −

∫
u′ /∈Iµ(v)

du′

π(u− u′)
ψ(u′, v)

}
for some functions ψ(u, v). A typical example of the null
space image g is illustrated in Fig. 2. This is often called
as the cupping artifact. The cupping artifacts reduce contrast
and interfere with clinical diagnosis.

Note that the null space signal g ∈ Nµ is differentiable
in any order due to the removal of the origin in the inte-
grand. Accordingly, an interior reconstruction algorithm needs
an appropriate regularization term that suppresses g ∈ Nµ
by exploiting this. Specifically, one could find an analysis
transform L such that its null space NL is composed of
entire function, and use it for an analysis-based regularization
term. For example, the regularization using TV [2] and L-
spline model [3], [4] correspond to this. The main result on

Fig. 2: Decomposition of the analytic reconstruction into null
space component and the true image.

the perfect reconstruction in [3] is then stated as follows. If
the null space component g ∈ Nµ is equivalent to a signal
h ∈ NL within the ROI, then g is identically zero due to
the characterization of Hilbert transform pairs as boundary
values of analytic functions on the upper half of the complex
plane [3]; so TV or L-spline regularization provides the unique
solution.

C. CNN-based Null Space Removal

Instead of designing a linear operator L such that the
common null space of Nµ and NL to be zero, we can design
a frame W and its dual W̃ such that W̃>W = I and
W̃>SλW(f∗ + g) = f∗ for all g ∈ Nµ and the ground-truth
image f∗. This frame-based regularization is also an active
field of research for image denoising, inpainting, etc [11].

One of the most important contributions of the deep con-
volutional framelet theory [9] is sthat W and W̃> correspond
to the encoder and decoder structure of a CNN, respectively,
and the shirinkage operator Sλ emerges by controlling the
number of filter channels and nonlinearities. Accordingly, a
convolutional neural network represented by Q = W̃>SλW
can be designed such that

Q(f∗ + g) = f∗, ∀g ∈ Nµ (2)

Then, our interior tomography algorithm is formulated to
find the solution f for the following problem:

y = TµRf, Qf = f∗ (3)

where f∗ denotes the ground-truth data available for training
data, and Q denotes the CNN satisfying (2). Now, by defining
M as a right-inverse of TµR, i.e. (TµR)My = y,∀y, we have

My = f∗ + g

for some g ∈ Nµ, since the right-inverse is not unique
due to the existence of the null space. See Fig. 2 for the
decomposition of My. Thus, My is a feasible solution for
(3), since

QMy = Q(f∗ + g) = f∗ (4)

and the data fidelity constraint is automatically satisfied due
to the definition of the right-inverse. Therefore, the neural
network training problem to satisfy (4) can be equivalently
represented by
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Fig. 3: The proposed deep learning architecture for inteior
tomography.

min
Q

N∑
i=1

‖f∗i −QMyi‖2 (5)

where {(f∗i , yi)}Ni=1 denotes the training data set composed
of ground-truth image an its truncated projection. A typical
example of the right-inverse for the truncated Radon transform
is the inverse Radon transform, which can be implemented by
the filtered backprojection (FBP) algorithm. Thus,Myi in (5)
can be implemented using the FBP.

After the neural network Q is learned, the inference can
be done simply by processing FBP reconstruction image from
a truncated radon data yt using the neural network Q, i.e.
f̂ = QMyt. The details of the network Q and the training
procedure will be discussed in the following section.

III. METHOD

A. Data Set

Ten subject data sets from AAPM Low-Dose CT Grand
Challenge were used in this paper. Out of ten sets, eight sets
were used for network training. The other two sets were used
for validation and test, respectively. The provided data sets
were originally acquired in helical CT, and were rebinned
from the helical CT to 360◦ angular scan fan-beam CT. The
512× 512 size artifact free CT images are reconstructed from
the rebinned fan-beam CT data using FBP algorithm. From the
CT image, sinogram is numerically obtained using a forward
projection operator. The number of detector in numerical
experiment is 736. Only 350 detectors in the middle of 736
detectors are used to simulate the truncated projection data.
Using this, we reconstruct 256× 256 ROI images.

B. Network Architecture

The proposed network is shown in Fig. 3. The first layer is
the FBP layer that reconstructs the cupping-artifact corrupted
images from the truncated projection data, which is followed
by a modified architecture of U-Net [12]. A yellow arrow in
Fig. 3 is the basic operator and consists of 3× 3 convolutions
followed by a rectified linear unit and batch normalization. The
yellow arrows between the seperate blocks at every stage are
omitted. A red arrow is a 2× 2 average pooling operator and
is located between the stages. The average pooling operator
doubles the number of channels and reduces the size of the
layers by four. Conversely, a blue arrow is 2 × 2 average
unpooling operator, reducing the number of channels by half

and increasing the size of the layer by four. A violet arrow
is the skip and concatenation operator. A green arrow is
teh simple 1 × 1 convolution operator generating the final
reconstruction image.

C. Network Training

The proposed network was implement MatConvNet toolbox
in MATLAB R2015a environment. Processing units used in
this research are Intel Core i7-7700 central processing unit
and GTX 1080-Ti graphics processing unit. Stochastic gradient
reduction was used to train the network. As shown in Fig. 3,
the inputs of the network are the truncated projection data, i.e.
yi. The target data fi corresponds to the 256×256 size center
ROI image cropped from the ground-truth data. The number
of epochs was 300. The initial learning rate was 10−3, which
gradually dropped to 10−5. The regularization parameter was
10−4. Training time lasted about 24 hours.

IV. RESULTS

We compared the proposed method with existing iterative
methods such as the TV penalizaed reconstruction [2] and the
L-spline based multi-scale regularization method by Lee et al.
[4]. Fig. 4 shows the ground-truth images and reconstruction
results by FBP, TV, Lee method [4] and the proposed method.
The graphs in the bottom for in Fig. 4 are the crosss-section
view along the white lines on the each images. Fig. 5 shows
the magnitude of difference images between the ground-
truth image and reconstruction results of each method. The
reconstructed images and the cut-view graphs in Fig.4 show
that the proposed method results have more fine detalis than
the other methods. The error images in Fig. 5 confirm that
the high frequency components such as edges and textures are
better restored in the proposed method than other method.

We also calculated the average values of the peak signal-
to-noise ratio (PSNR) and the normalized mean square error
(NMSE) in Table I. The proposed method achieved the highest
value in PSNR and the lowest value in NMSE with about 7-
10 dB improvement. The computational times for TV, Lee
method [4] and the proposed method were 1.8272s, 0.3438s,
and 0.0532s, respectively, for each slice reconstruction. The
processing speed of the proposed method is about 34 times
fater than the TV method and 6 times faster than Lee method
[4].

TABLE I: Quantitative comparison of various methods.
FBP TV Lee method [4] Proposed

PSNR [dB] 9.4099 30.2004 27.0344 37.4600
NMSE 8.2941e-1 6.9137e-3 1.4332e-2 1.2994e-3

V. CONCLUSION

In this paper, we proposed a deep learning network for
interior tomography problem. The reconstruction problem was
formulated as a constraint optimization problem under data
fidelity and null space constraints. Based on the theory of
deep convolutional framelet, the null space constraint was
implemented using the convolutional neural network with
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Fig. 4: Reconstruction images by the cone-beam simulation.
The last row shows the cut-view plots of the white lines on
the images. The number written in the images is the PSNR
value in dB.

encoder and decoder architecture. Numerical results showed
that the proposed method has the highest value in PSNR and
the lowest value in NMSE and the fastest computational time.
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Towards automatic Abdominal Multi-Organ
Segmentation in Dual Energy CT using cascaded

3D Fully Convolutional Network
Shuqing Chen, Holger Roth, Sabrina Dorn, Matthias May, Alexander Cavallaro, Michael Lell, Marc Kachelrieß,

Hirohisa Oda, Kensaku Mori and Andreas Maier

Abstract—Automatic multi-organ segmentation of the dual
energy computed tomography (DECT) data can be beneficial for
biomedical research and clinical applications. Recent advances in
deep learning showed the feasibility to use 3-D fully convolutional
networks (FCN) for voxel-wise dense predictions in single energy
computed tomography (SECT). In this paper, we proposed a 3D
FCN based method for automatic multi-organ segmentation in
DECT. The work was based on a cascaded FCN for the major
organs trained on a large set of SECT data. We preprocessed
the DECT data by using linear weighting and fine-tuned the
FCN for the DECT data. The method was evaluated using 42
torso DECT data acquired with a clinical dual-source CT system.
Four abdominal organs (liver, spleen, left and right kidneys) were
evaluated with cross-validation strategy. Effect of the weight on
the accuracy was researched. In all the tests, we achieved an
average Dice coefficient of 93% for the liver, 92% for the spleen,
91% for the right kidney and 89% for the left kidney, respectively.
The results show that our method is feasible and promising.

I. INTRODUCTION

The Hounsfield unit (HU) scale value depends on the inher-
ent tissue properties, the x-ray spectrum for scanning and the
administered contrast media [1]. In a SECT image, materials
having different elemental compositions can be represented by
identical HU values [2]. Therefore, SECT has challenges such
as limited material-specific information and beam hardening as
well as tissue characterization [1]. DECT has been investigated
to solve the challenges of SECT. In DECT, two energy-specific
image data sets are acquired at two different X-ray spectra,
which are produced by different energies, simultaneously.
The multi-organ segmentation in DECT can be beneficial for
biomedical research and clinical applications, such as material
decomposition [3], organ-specific context-sensitive enhanced
reconstruction and display [4], [5], and computation of bone
mineral density [6]. We are aiming at exploiting the prior
anatomical information that is gained through the multi-organ
segmentation to provide an improved context-sensitive DECT
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imaging [4], [5]. The novel technique offers the possibility
to present evermore complex information to the radiologists
simultaneously and bears the potential to improve the clinical
routine in CT diagnosis.

Automatic multi-organ segmentation on DECT images is a
challenging task due to the inter-subject variance of human
abdomen, the complex 3-D intra-subject variance among or-
gans, soft anatomy deformation, as well as different HU values
for the same organ by different spectra. Recent researches
show the power of deep learning in medical image segmen-
tation [7]. To solve the DECT segmentation problem, we use
the successful experience from multi-organ segmentation in
volumetric SECT images using deep learning [8], [9]. The
proposed method is based on a cascaded 3D FCN, a two-stage,
coarse-to-fine approach [8]. The first stage is used to predict
the region of the interest (ROI) of the target organs, while the
second stage is learned to predict the final segmentation. No
organ-specific or energy-specific prior knowledge is required
in the proposed method. The cross-validation results showed
that the proposed method is promising to solve multi-organ
segmentation problem for DECT. To the best of our knowl-
edge, this is the first study about multi-organ segmentation in
DECT images based on 3D FCNs.

II. MATERIALS AND METHODS
A. Network Architecture for DECT Prediction

As described by Krauss et al. [10], a mixed image display
is employed in clinical practice for the diagnose using DECT.
The mixed image is calculated by linear weighting of the
images values of the two spectra:

Imix = α · Ilow + (1− α) · Ihigh (1)

where α is the weight of the dual energy composition, Imix
denotes the mixed image. Ilow and Ihigh are the images at low
and high kV, respectively.

We preprocessed the DECT images following Eq. 1 straight-
forwardly. Figure 1 illustrates the network architecture of the
proposed method for the DECT multi-organ segmentation. To
prepare network training, labeled segmentation is generated
manually by experts for each training data. In the training
phase, first of all, mixed image is calculated by combining
the images at the low energy level and the high energy level
using Eq. 1. Then, a binary mask is generated by thresholding
the skin contour of the mixed image. Subsequently, the mixed
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Fig. 1: Cascaded network architecture for DECT multi-organ segmentation

image, the binary mask and the labeled image are given into
the network as multi-channel inputs. The network consists
of two stages. The first stage is applied to generate the
region of the interest (ROI) in order to reduce the search
space for the second stage. The prediction result of the first
stage is taken as the mask for the second stage. Each stage
is based on a standard 3D U-Net [11], which is a fully
convolutional network including an analysis and a synthesis
path. We used the open-source implementation of two stages
cascaded network [8] developed by Roth et al. based on the
3D U-Net [11] and the Caffe deep learning library [12]. The
cascaded network was trained by Roth et al. [8] on a large set
of SECT images including some of the major organ labels.
Our model was trained by fine-tuning the pre-trained network
with the mixed DECT images using the pre-trained weights
as initialization. The difference between the network output
and the ground truth labels are compared using softmax with
weight voxel-wise cross-entropy loss [8], [11].

B. Experimental Setup

The proposed method was evaluated with 42 clinical torso
DECT images scanned by the department of radiology, uni-
versity hospital Erlangen. All of the images were taken from
male and female adult patients who had different clinically
oriented indication justified by the radiologist. Ultravist 370
was given as contrast agent with body weight adapted volumes.
The images were acquired at different X-ray tube voltage
setting of 70 kV (560 mAs) and Sn 150 kV (140 mAs, with
Sn filter) using a Siemens SOMATOM Force CT system with
Stellar, an energy integrating detector. The traning volumes
contains 992-1290 slices with slice size 512x512 pixels. The
voxel dimensions are [0.6895-0.959, 0.6895-0.959, 0.6] mm.
Four abdominal organs were tested, including liver, spleen,
right and left kidneys. Ground truth was generated by experts
manually.

To avoid the bias of the data selection and to keep the dataset
distribution similar, a malnifold learning-based technique [13]
was applied to split the data into training dataset, validation
dataset, and test dataset. First, the images were resized to
the same image spacing (e.g.[3mm 3mm 5mm]). Then, the
distribution of the images was calculated and plotted by using
locally linear embedding (LLE) [14]. Subsequently, the images

Liver Spleen r.Kidney l.Kidney

DECT

Avg. 0.92 0.84 0.88 0.87
SD 0.02 0.08 0.03 0.03

Min. 0.84 0.62 0.80 0.78
Max. 0.94 0.95 0.94 0.93

TABLE I: Dice coefficients of cross-validation with
αtraining=0.6 and αtest =0.6. SD is abbreviated for standard
deviation.

were clustered into 3 classes using k-means. Finally, training
data, validation data, and test data were selected randomly
from these classes with the ratio 5:1:1, i.e. in each test we
used 2 images from each class (6 in total) for validation, 2
images from each class for test (6 in total), and the remaining
30 images for training.

III. RESULTS

A. Performance Estimation with Cross-Validation

NVIDIA GeForce GTX 1080 Ti with 11 GB memory was
used for all of the experiments. The similarity between the
segmentation result and the ground truth was measured with
Dice metric by using the tool provided by VISCERAL [15].
First, the performance of the proposed method was estimated
by 8-folds cross-validation, using 0.6 as αtraining as well as αtest.
Fig. 2 shows one segmentation results in 3-D. TableI sum-
marizes the Dice coefficients of the segmentation results and
compares DECT results with the SECT results. The proposed
method under the above weight condition yielded an average
Dice coefficient of 92% for the liver, 84% for the spleen, 88%
for the right kidney and 87% for the left kidney, respectively.
Fig. 3 plots the distributions of the Dice coefficients for
different test scenarios and showed the high robustness of the
proposed method. Though the Dice coefficients under above
mentioned weight condition are less than SECT results in [9],
we performed a second test which is focused on the weight
alpha both for training and for test phase.

B. Study on the Weight α

We are aiming at exploiting the spectral information in the
DECT data. Since the α mixing results basically in pseudo
monochromatic images comparable to single energy scans,
the influence of the weight α on the accuracy was further
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Fig. 2: 3D rendering of one DECT segmentation with yellow
for liver, blue for spleen, green for right kidney and red for
left kidney

Fig. 3: Dice coefficients of the target organs with αtraining = 0.6
and αtest = 0.6 for 8 different testing folds

researched. 0, 0.3, 0.6, 0.9 and 1 were chosen as αtraining and
αtest in this study. Table II lists the average Dice coefficient.
For all of the cases, the liver had the highest accuracy (92%-
93%). The segmentation of the right kidney was usually more
accurate than the left kidney. The best Dice values per organ
per training set are highlighted in Table II. The test with
αtraining=0.9 and αtest=0.9 obtained the highest accuracy for
liver and right kidney. The test with weight combination 0.9-
1 showed the best segmentation for spleen, the combination
with 0.9-0.3 had the finest result for left kidney. High αtest
generated better segmentation for liver and spleen. For most
organs, the best Dice values of DECT are higher than the
SECT results given in [9].

IV. DISCUSSION AND CONCLUSION

We proposed a deep learning based method for automatic
abdominal multi-organ segmentation in DECT. The evaluation
results show the feasibility of the proposed method. Compared
to the results of the SECT images reported by Roth et al. [9],
our method is promising and robust (see Table II). For most
organs, the segmentation of our method is more accurate than
the SECT [9] when an optimal fusion weight is selected. The
results illustrate that the image fusion affects the segmentation
of DECT. In the cross validation, the third testing fold had a
large deviation. The reason could be that our image data were

αtraining-αtest Liver Spleen r.Kidney l.Kidney
0-0 0.908 0.878 0.840 0.852
0-0.3 0.915 0.876 0.860 0.841
0-0.6 0.919 0.875 0.865 0.839
0-0.9 0.922 0.876 0.864 0.837
0-1 0.923 0.876 0.861 0.835
0.3-0 0.876 0.885 0.845 0.835
0.3-0.3 0.924 0.899 0.900 0.891
0.3-0.6 0.925 0.902 0.891 0.881
0.3-0.9 0.926 0.901 0.877 0.859
0.3-1 0.921 0.900 0.877 0.854
0.6-0 0.865 0.857 0.786 0.796
0.6-0.3 0.909 0.897 0.844 0.885
0.6-0.6 0.922 0.904 0.895 0.887
0.6-0.9 0.912 0.906 0.895 0.873
0.6-1 0.919 0.908 0.843 0.866
0.9-0 0.881 0.848 0.745 0.764
0.9-0.3 0.930 0.901 0.898 0.892
0.9-0.6 0.932 0.908 0.904 0.873
0.9-0.9 0.933 0.915 0.906 0.862
0.9-1 0.930 0.917 0.905 0.872
1-0 0.907 0.822 0.784 0.812
1-0.3 0.912 0.886 0.869 0.889
1-0.6 0.915 0.895 0.879 0.886
1-0.9 0.917 0.901 0.879 0.891
1-1 0.918 0.902 0.877 0.891
SECT [9] 0.95 0.90 0.90 0.88

TABLE II: Dice coefficients of different alpha for testing fold
1. Bold denotes the best organ results of DECT. Italic underline
denotes the best results in the group with the same training
weight. Notice that the DECT and SECT approaches used
different data set.

taken from patients with different disease (liver tumor, spleen
tumor, etc.). The disease type is not considered by the data
selection. Training and test with inconsistent symptoms could
have an impact on the accuracy.

The study on the weight can be divided into three groups
with different αtraining. α=0.9 is close to the low energy
images which have on average the best soft-tissue contrast,
αtraining=0.9 worked thus better in general. The intra-group
comparison showed that the cases with identical training and
test conditions had a higher probability to get the best seg-
mentation result. This is expected because the mixed images
generated by the matched training and test conditions may
have the highest similarity. Furthermore, the comparison of the
case 0.3-0.9 (low-contrast model for high-contrast image) with
the case 0.9-0.3 (high-contrast model for low-contrast image)
showed that using a model trained on high-contrast images for
segmenting low-contrast test images works better. In addition,
liver is well segmented in middle to high α ranges. Spleen
is segmented best at α=0.6. Kidneys work best in matched
training and test conditions. This suggests that there is an
optimal α for each organ for image segmentation.

The weight α for the mixed image calculation is currently a
user-defined parameter in the preprocessing in our approach.
The fact suggests that the alpha shall be regarded as organ
specific parameter in the network and optimized in the
training phase. It can be used to augment the data for the
training in future. Also, the network could be modified with
two image inputs. Furthermore, more organs and more scans
from different patients could be used.
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[11] Özgün Çiçek, Ahmed Abdulkadir, Soeren S. Lienkamp, Thomas Brox,
and Olaf Ronneberger, “3D U-Net: Learning dense volumetric seg-
mentation from sparse annotation,” in Medical Image Computing and
Computer Assisted Intervention (MICCAI), 2016.

[12] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan
Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell, “Caffe:
Convolutional architecture for fast feature embedding,” arXiv preprint
arXiv:1408.5093, 2014.

[13] Shuqing Chen, Sabrina Dorn, Michael Lell, Marc Kachelrieß, and
Andreas Maier, “Manifold learning-based data sampling for model
training,” in Informatik-Aktuell, Bildverarbeitung für die Medizin:
Algorithmen-Systeme-Anwendungen, Ed., Germany, 2018, pp. 269–274.

[14] Sam T. Roweis and Lawrence K. Saul, “Nonlinear dimensionality
reduction by locally linear embedding,” Science, vol. 290, no. 5500,
pp. 2323–2326, 2000.

[15] Abdel Aziz Taha and Allan Hanbury, “Metrics for evaluating 3D medical
image segmentation: analysis, selection, and tool,” BMC Medical
Imaging, vol. 15, pp. 29, August 2015.

398 The fifth international conference on image formation in X-ray computed tomography



Noise Subtraction for Low-Dose CT Images Using
a Deep Convolutional Neural Network

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough,

Abstract—Minimizing the patient’s exposure to ionizing radi-

ation mandates that CT images be acquired using as few X-ray

photons as reasonably possible, which increases the prominence

of noise in the reconstructed image. This problem can be

mitigated by applying denoising techniques to reduce image

noise, while preserving the underlying anatomical information.

We introduce a noise-subtraction algorithm which employs a deep

convolutional neural network (CNN) that is trained to identify

noise in low-dose CT images. The noise identified by the CNN is

then subtracted to produce an output image with reduced noise.

The CNN architecture is inspired by state-of-the-art networks

for image classification, and employs sequential identical blocks

of aggregated residual transformations to facilitate the training

of many layers. The training step is performed by finding the

network parameters which minimize the mean squared error

difference between full dose and simulated quarter dose images,

which are cropped from patient scans in the “2016 NIH-AAPM-
Mayo Clinic Low Dose CT Grand Challenge” dataset. The trained

CNN is able to significantly reduce the noise in the low-dose CT

images, while also preserving sharp edges and fine anatomical

details.

I. INTRODUCTION

Computed tomography (CT) is a widely used imaging
modality in the modern clinical setting. To acquire a CT image,
the patient must be subjected to ionizing radiation in the form
of X-ray photons. In order to keep patient risk from exposure
to an absolute minimum, there is clinical pressure to acquire
CT images using the smallest possible X-ray flux that doesn’t
compromise the diagnostic task. The reduced flux in low-dose
CT (LDCT) scans increases the variance of the measured data,
which results in increased noise in the reconstructed images.
This CT image noise may impact diagnostic accuracy in a few
key ways:

1) The noise may hide an anatomical detail or pathology.
2) The noise may simulate a false anatomical detail or

pathology.
3) The noise may contribute to reader fatigue.

Denoising algorithms are employed to address the above points
by reducing the image noise in LDCT images while preserving
the relevant diagnostic information.

There exists a wide variety of approaches for denoising for
LDCT scans. Projection-based methods [1] [2] [3] can access
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the full information of the acquired sinogram, which comes
at the cost of folding the scanner-dependent and sometimes
proprietary reconstruction method into the result. Image-based
methods [4] [5] [6], on the other hand, are generally more
portable, which comes at the cost of not having access to any
information which lost in the reconstruction process.

In general, the quality of a particular noise reduction algo-
rithm depends on how well it addresses each of the potential
problems outlined above, with natural trade-offs existing when
addressing these problems. To address problem 3, the noise
textures should be “smoothed over” to make the anatomical
features more obvious, a procedure which can make problem 1
and problem 2 worse. To address problem 1, fine structures
in the noise should be amplified, which can exacerbate prob-
lems 2 and 3, and so on.

A current trend in LDCT noise reduction is to use deep
learning techniques to train mathematical models for image-
based denoising tasks. In particular, the application of convo-
lutional neural networks (CNNs) trained on synthetic LDCT
data has shown promising results [7]. In this work, we employ
an image-based denoising algorithm that is based on a deep
residual CNN that is trained to reduce LDCT image noise
using image-based noise subtraction. The CNN architecture is
fully convolutional and utilizes repeated blocks of aggregated
residual convolutions inspired by state-of-the-art networks
for image classification suck as ResNet [8] [9]. Training is
performed using images clipped from both the full-dose (FD)
and simulated quarter-dose (QDsim) scans in the “2016 NIH-
AAPM-Mayo Clinic Low Dose CT Grand Challenge” dataset.
The resulting algorithm significantly reduces the LDCT noise,
while also preserving fine structures and small contrast varia-
tions arising from the patient anatomy.

II. METHODS

A. Denoising With A Convolutional Neural Network

The neural network used in this work is structured like a
denoising autoencoder. An autoencoder is an approach to un-
supervised learning where the network is trained to identically
match its output to its input. The autoencoder network consists
of two parts: an encoder E : X ! Y that maps vectors from
the input space X to feature vectors in some intermediate
feature space Y , and a decoder D : Y ! X that maps vectors
from Y back into X . The autoencoder F : X ! X is then
defined as the composition:

F (x) = D(E(x)), 8x 2 X. (1)
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Since the input and output of the autoencoder both belong to
the same domain, a standard comparative loss metric, such
as the mean squared error (MSE), can be used to train the
autoencoder to reconstruct its input.

In our approach, we use an artificial neural network as an
autoencoder that maps input images to similarly-shaped output
images. Since the availability of both full-dose and simulated
low-dose images allows for an ideal comparison of the same
anatomical structures in each patient case, we use supervised
learning when training the network. The use of supervised
learning is a key difference between our work and the standard
autoencoder approach. We treat the noise reduction problem as
one of finding an autoencoder that can map LDCT images to
full-dose CT images. Let xLD be an 2D image from a LDCT
scan, and let xFD be the corresponding full-dose image. We
seek a function F (xLD) whose output minimizes the MSE
loss L when evaluated using the full-dose image:

L(xFD, F (xLD)) = kxFD � F (xLD)k2. (2)

We employ a CNN as a flexible non-linear model for the
mapping function F . CNNs have been successfully used for a
wide variety of image processing tasks such as classification,
segmentation, denoising, and super-resolution. Based loosely
on the image processing procedure of the human brain, these
networks have proven to be very powerful and general models
for manipulating image data. Due to this great flexibility, we
choose a CNN as a model for the mapping function that
minimizes Eq. 2.

A CNN is essentially a parameterized nonlinear function of
its inputs. Let N(xLD|⇥) be the CNN output given a set of
network parameters ⇥ and an input LDCT image xLD. The
problem then becomes finding the network parameters ⇥⇤ that
minimize the MSE loss function:

⇥⇤ = argmin
⇥

(kxFD �N(xLD|⇥)k2). (3)

This minimization step can be performed using standard
techniques such as stochastic gradient descent.

B. Network Architecture

The network architecture of the CNN determines the precise
form of N(xLD|⇥). Determining the best network architecture
for a given problem is an area of active research in the field
of computer vision, and few general principals exist to guide
this choice.

The guiding principle in this work is that the denoising
task is essentially one of feature extraction, and therefore CNN
architectures that have proven to be powerful feature extractors
for other tasks, such as image classification, should also work
well here. For this reason, we model our network architec-
ture after that of residual networks such as ResNet, which
has achieved excellent performance for image classification
tasks [8]. The key feature of residual networks is the “shortcut”
connection which allows features to skip over convolution
operations, thereby potentially allowing information from the
initial layers to be passed directly to the deeper layers.

(a) (b)

Fig. 1. The structure of a single residual block is shown in (a). The numbers
shown for the convolutional layers denote the number of filters and the filter
shape, respectively. The core CNN architecture consists of 10 repeated residual
blocks as shown in (b).

Following the structure of ResNet, our network architecture
consists of repeated identical residual blocks as shown in
Fig. 1(a). Each residual block performs three sets of 2D
convolution operations, with a non-linearity imposed between
them by application of a rectified linear unit (ReLU) activation
function. Batch normalization is performed after each convo-
lution layer to normalize the layer output. We also choose
apply an aggregated group convolution in each residual block,
which has been shown to improve the performance of residual
networks [9]. In a grouped convolution, the input features are
split into separate channels and convolution operations are
applied to each channel, with the outputs then concatenated
back together.

The overall structure of the network is shown in Fig. 1(b).
An input image is fed into a neural network consisting of
10 residual blocks, which produces a set of 128 feature maps.
These feature maps are then passed to a decoding layer, which
simply projects the 128 feature maps back into the image
domain by applying a single convolutional layer kernel size.
The output of the CNN is then subtracted from the input to
produce the final denoised image, which can then be compared
to the full-dose image by evaluating the MSE.

Structuring the network to perform noise subtraction on
the input has a couple of distinct advantages compared
to directly reconstructing the de-noised image. By treating
the CNN output as a perturbation to the original image, a
CNN with randomly initialized parameters starts off with a
much smaller loss, which saves time in the initial training
phase. Furthermore, although the patient anatomy may vary
substantially between scans, we expect the noise texture to
be more consistent between scans for a given scanner and
reconstruction method. Requiring the network to fit for the
noise texture instead of the patient anatomy is therefore a
potentially simpler and more general task.
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C. Training Data
The data used for training this network is identical to the

patient data made available for the “2016 NIH-AAPM-Mayo
Clinic Low Dose CT Grand Challenge” [10]. This dataset
consists of 10 full-dose clinical patient scans, which were
obtained using similar scanner models (Somatom Definition
AS+ and Somatom Definition Flash, operated in single-source
mode, Siemens Healthcare, Forchheim, Germany). For the
results shown here, the images were reconstructed by filtered
backprojection using a medium-smooth kernel (B30). For each
scan, a simulated quarter-dose (QDsim) scan was produced us-
ing a validated projection-based noise insertion algorithm [11].
The use of simulated data taken from the full-dose scans
allows an exact pixel-by-pixel comparison between the images.
This is ideal for training the network using supervised learning
with the QDsim pixel values used as the network inputs, and
the full-dose pixel values defined as the ground truth.

D. Training Methods
The CNN is trained using randomly-centered image crops

of a various sizes which are generated from the full-dose and
corresponding QDsim data. Since the CNN effectively acts as
a non-linear convolutional filter, it can accept an input image
of any size, however, the use of zero-padding at the image
edges during the convolution operations can produce small
differences in the network output depending on the size of
the input. We therefore apply three training steps: An initial
training using 32 ⇥ 32 pixel images, followed by additional
fine-tuning using 64 ⇥ 64 and 256 ⇥ 256 pixel images. The
full training procedure exposes the network to 500000 distinct
images. Testing is performed by evaluating the performance
on full-sized 512⇥ 512 scan slices taken from a separate set
of QDsim data that is never used for training.

The network is implemented in TensorFlow [12] using
Keras [13], and is trained using an NVIDIA GTX 1080 GPU.
The optimization method used is the Adam optimizer [14] with
default parameters.

III. RESULTS

Results of the CNN noise subtraction algorithm can be
qualitatively seen in the examples shown in Fig. 2. All of
the results shown in this section use the exact same CNN,
which is trained as described in the previous section. The input
QDsim images shown in these examples are taken from the
validation data, which was not used during training and is
therefore representative the network response to “new” input.

The CNN effectively identifies and subtracts noise textures
from the QDsim image, producing a much smoother output
with reduced noise characteristics compared to both the QDsim

and FD images. The contrast-to-noise (CNR) ratio calculated
in the liver region increases by 138% compared to the cor-
responding QDsim image and by 55% compared to the FD
image. Low-contrast objects, such as a small liver lesion found
in Fig. 2 and shown profiled in Fig. 3, appear to be more
readily detected in the denoised image compared to the low-
dose image.
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Fig. 2. Effect of CNN-based noise subtraction on abdominal CT images
cropped from testing data that was not used for network training. The top
row shows the simulated quarter-dose input images, the center row shows the
output images after being passed through the CNN, and the bottom row shows
the corresponding full-dose image for reference.

The noise reduction algorithm also preserves sharp edges
and small-scale details found in the image. The latter can be
seen in the noise-subtracted lung image shown in Fig. 4. The
fine vascular structure of the lung is still clearly visible and
undistorted, despite the noticeable degree of smoothing in the
noise-subtracted image.

IV. DISCUSSION

The images obtained using noise subtraction with a deep
CNN exhibit many positive characteristics. Compared to the
QDsim images, the noise is sharply reduced. The texture of the
noise-subtracted image is also perceptually smooth and absent
of obvious artificial characteristic texture that distracts from
the anatomical background.

It is often the case that image de-noising algorithms achieve
smooth textures at the cost of reducing sharpness and/or
distorting fine details. Remarkably, the CNN output is able
to preserve these details while maintaining a high degree of
smoothness, as can be seen in the noise-subtracted images of
the lung.
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Fig. 3. Profile of the contrast across the small liver lesion that can be seen
in Fig. 2. The FD image and the path along which the profile was taken are
shown in the upper panel. The contrast profile along this path for both the FD
(black), QDsim (grey), and CNN output (blue) images is shown below. The
CNN output reduces the contrast fluctuations surrounding the lesion, while
accurately matching the FD image across the lesion center.

Fig. 4. Images of lung tissue cropped from Low-Dose CT Grand Challenge
testing data. The upper right panel shows the simulated quarter-dose scan
that was used as the network input, and the lower right panel shows the CNN
output after noise subtraction. The corresponding full-dose image is shown for
reference in the upper left panel. The difference between the noise-subtracted
image and the full-dose image, which appears to be devoid of any anatomical
features, is shown in the lower right panel.

Overall, the application of a deep residual CNN trained on
the Low-dose CT Grand Challenge data has produced images
with reduced noise that are perceived as being both smooth

and sharp. The precise extent to which this noise reduction
algorithm mitigates the problems with noise in LDCT images
as outlined in Section I is currently being investigated.

While the current work is focused on subtracting noise
textures for a particular type of scanner and a particular
reconstruction method, the results from the testing data show
that method generalizes well across different patient anatomies
and different tissue types. Once the noise-subtraction network
has been trained, the algorithm is able to process images very
quickly, taking approximately 0.5 seconds to denoise a full
scan slice using current GPU hardware (NVIDIA GTX 1080).
The speed, quality, and generality of these results make noise
subtraction via a deep neural network a promising candidate
for future clinical use.
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Determination of Algorithm Parameters by Using 
Input/Output Image Pairs 

Larry Zeng  
Abstract ― Many image reconstruction algorithms contain user-
adjusted parameters such as the number of iterations. The 
parameters are usually tedious to determine. The goal of the 
paper is to propose an automatic way to determine those 
parameters. First, an objective function is setup, which is the 
distance between the reconstructed image and the desired image. 
Second, an optimization algorithm is used to find the optimal 
parameters with the training pairs in the objective function. 
Third, the estimated parameters learned from the second step 
are ready to reconstruct other images. The methodology 
proposed in this paper is inspired by the rapid development of 
machine learning. Machine learning ideas can be extended into 
many areas, where the neural network structure is not necessary. 
Our methodology implies that any algorithm can learn to find its 
optimal parameters by using the training sets. 

I. INTRODUCTION 

N medical image reconstruction algorithms, especially in 
Bayesian algorithms, there are parameters for users to determine. 
A typical example of such parameters is the number of iterations 

in an iterative algorithm. Usually a trial-and-error approach is 
adopted in parameter selection. Inspired by the recent fast 
development in machine learning and its related fields, in this paper, 
we propose an automatic method to determine the parameters if pairs 
of the training images are available. 

 Neural network based machine learning is one form of 
artificial intelligence [1-7]. Nowadays, deep learning is a very 
active research field that uses multiple layers of neural 
network with non-linear activation functions [8, 9]. Some of 
the ideas from the field of machine learning can be borrowed 
and applied to image reconstruction algorithm design without 
using the neural network architecture at all. 

The idea of using machine learning to design the 
parameters in an algorithm is not new. In 1960’s, Professor B. 
Widrow of Stanford University was first to use machine 
learning to design linear filters; the learning was based on the 
least mean squares (LMS) adaptive algorithm [10-13]. The 
LMS algorithm led to the ADALINE and MADALINE 
artificial neural networks and to the backpropagation 
technique. 

One advantage in machine learning is the availability of 
pairs of data: the inputs and the corresponding desired 
outputs. This paper borrows the idea of using the input-output 
pair and develops architecture to determine the algorithm 
parameters. The algorithm in concern can be treated as a black 
box. We only focus on the parameters to be determined. 

In the case of image reconstruction, the training pairs 
contain the noisy projections and their corresponding desired 
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reconstructions. In image de-noising applications, the training 
pairs contain the noisy images and their corresponding desired 
less-noisy images.  

The black box is the algorithm between the input and the 
output. The algorithm can be iterative or analytic. Almost all 
algorithms contain some parameters to be adjusted according 
to the task. In the conventional algorithm development, a set 
of parameters is used to generate an image. This resultant 
image may be too blurry, too noisy, or containing too many 
artifacts. The human developer then replaces the old set of 
parameters with a new set of parameters. A new image is 
produced and evaluated. Another set of parameters is tested. 
This procedure is repeated many times until the human 
algorithm developer is satisfied with the results.  

If training pairs are available, this recursive procedure can 
be performed by a computer, via machine learning. This 
method will be demonstrated by an example in the next 
section. 

II. METHODS 
The purpose of this paper is NOT to provide a recipe for 

people to follow. Instead, this paper uses one example to show 
that it is possible to employ the machine learning strategy to 
determine some adjustable parameters in an algorithm for 
anybody’s own project (see Fig. 1 for the setup)  

 

 
Figure 1. A general machine learning scheme for parameter 
determination. 
 

Let us consider an x-ray CT de-noising problem as an 
illustrative example. In the training stage, we are given pairs 
of CT reconstructed images with low-dose and standard dose, 
respectively. The lower radiation dose is approximately 25% 
of the standard dose.  

A. The image pair 

In the setup, the input of the black box is the low-dose 
image; the output of the black box is the standard-dose image.  
The images were provided by Mayo Clinic in 2016 for the 
Low-Dose CT Grand Challenge competition. The low-dose 
images were generated in Mayo Clinic by adding noise to the 
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regular-dose CT measurements. The “black box” is a de-
noising algorithm described as follows. 

B. The black box ― de-noising algorithm 

Many algorithms are available for the task of image de-
noising, such as Gaussian smoothing, edge-preserving 
anisotropic filters, total variation minimization, Wiener filter, 
wavelet thresholding, bilateral filter, guided filter, non local 
means algorithms, and so on [14-16].  

In this paper, we use a special way to de-noise by using 
an iterative image reconstruction method, similar to the idea 
used in [17]. One advantage of using this method is that we 
are able to model the projection noise which is ray-sum 
dependent. 

The Mayo Clinic provided us pairs of low-dose and regular-
dose x-ray CT patient torso images. The image slice was 512 
× 512 and the slice thickness was 3 mm. The image volumes 
were first forward projected using the parallel-beam geometry, 
to generate projection sinograms. The parallel-beam 
sinograms were then used as the inputs for the iterative 
Landweber algorithm for reconstruction [18]. One form of the 
iterative Landweber algorithm  can be expressed as [19] 
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where  is the ith image pixel at the kth iteration, j  is the 
jth line-integral (ray-sum) measurement value, ji  is the 
contribution of the ith image pixel to the jth measurement, and 
wj is weighting factor for the jth ray-sum j . For transmission 
tomography, the weighting factor is given as the exponential 
function of the negative of the ray-sum, that is, 
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It is well understood that the reprojected sinogram does not 
carry exactly the same information as the original sinogram. 
The spatial resolution may get degraded. The original 
projection data generally do not satisfy the data consistency 
conditions, while the reprojected data always satisfy the data 
consistency conditions. The noise in the original data can be 
assumed to be independent; however, the noise in the 
reprojected data is not independent. 

There are two objective functions involved in our 
methodology. The objective function 1 is the discrepancy 
between the reporjected sinogram and the measurements  

2)(#1Function  Objective jnn jnj j pxaw   .   (2) 

The iterative Lawdweber algorithm (1) is a gradient 
descend algorithm that aims to reduce the objective function 1 
at each iteration. The second objective function is the 
discrepancy between the reconstructed image and the desired 
image 

2)(#2Function  Objective doseFull
nROIn n xx 


  .   (3) 

The desired image is the regular-dose image in our case. The 
desired iteration number k is determined when the objective 
function 2 reaches the minimum. 

One has freedom to set up the second objective function 
according to the application in mind. The purpose of our CT 
images is lesion detection. A large lesion was located in the 
liver of a patient. We set up a 40×50×10 rectangular region-
of-interest (ROI) that contained the lesion. The second 
objective function was the sum of the square of the distances 
between the reconstructed ROI voxels and the desired ROI 
voxels. Both ROI images were normalized to [0, 1] before the 
discrepancy was evaluated. Image values outside the ROI 
were not included in calculation the 2nd objective function. 
C. Determination of the parameters 

In most machine learning projects, large data sets are 
used. We only used one pair of images in selection of the 
optimal iteration number k, by minimizing the 2nd objective 
function. Since the iteration number k is an integer, the easiest 
way to find the optimal k is to run the iterative Landweber 
algorithm for, say, 800 iterations, evaluate the 2nd objective 
function at each iteration, and the find the minimum among 
the 800 function values. 

If one wants to determine many parameters, it is more 
efficient to use a gradient decent method to minimize the 2nd 
objective function.  
D. Applying to other images 

After the parameters are determined, the black box is 
considered trained. The de-noising or image reconstruction 
algorithm is ready to process new inputs in the situations 
where the desired outputs are not available. Of course, the 
adjustable parameters are not universal; they can only be used 
as a guideline for the cases with similar patient size and 
similar noise levels. 

III. RESULTS 

Fig. 2 shows a typical a slice of input/output pair. Fig. 3 
shows a converged image (same slice) with the given training 
input. The machine-selected optimal iteration number in our 
particular example was k = 342. The images are displayed 
using the window [-200, 400] in Hounsfield units. 

The algorithm with k = 342 was then applied to a 
different patient data set which was not in the training set. 
Two images using other iterations numbers are shown in Fig. 
4. Small iteration numbers make the image blurry and large 
iteration numbers produce noisier images. The resultant image 
using k = 342 and the low-dose input image for a different 
patient are shown in Fig. 5.  

Fig. 6 shows how the objective function #1’s value 
changes as the number of iteration increases from k = 1 to k 
=800. The natural logarithm of the function values are ploted 
in Fig. 6. This plot implies that the iterative Landweber 
algorithm effectively minimizes the discrepancy between the 
measurements and the reprojected data. 

Fig. 7 shows how the objective function #2’s value 
changes as the number of iteration increases from k = 1 to k 
=800. The natural logarithm of the function values are ploted 
in Fig. 7. This plot implies that the iterative Landweber 
algorithm does not know where the optimal solution according 
to the objective function #2.  
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Figure 2. Training pair: (Upper) Low dose; (Lower) Standard dose 
 

 
Figure 3. Reconstructed image using machine-selected iteration 
number (k = 342).  
 

 

 
Figure 4. Reconstructed image using other iteration numbers. 
(Upper) k = 50; (Lower) k = 500.  
 

 
 

 
Figure 5. Application of the learned algorithm to a different patient: 
(Upper) Low dose image; (Lower) Processed with k = 342. 
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Figure 6. As the iteration number k increases the objective function 
#1 is minimized by the iterative Landweber algorithm (1). 
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Figure 7. The value in the objective function #2 changes as the 
iteration number k increases. The minimum is reached at k = 342. 
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Deep Learning Reconstruction for 9-View Dual
Energy CT Baggage Scanner

Yoseob Han1, Jingu Kang2, and Jong Chul Ye1

Abstract—For homeland and transportation security appli-
cations, 2D X-ray explosive detection system (EDS) have been
widely used, but they have limitations in recognizing 3D shape
of the hidden objects. Among various types of 3D computed
tomography (CT) systems to address this issue, this paper is
interested in a stationary CT using fixed X-ray sources and
detectors. However, due to the limited number of projection
views, analytic reconstruction algorithms produce severe streak-
ing artifacts. Inspired by recent success of deep learning approach
for sparse view CT reconstruction, here we propose a novel image
and sinogram domain deep learning architecture for 3D recon-
struction from very sparse view measurement. The algorithm
has been tested with the real data from a prototype 9-view dual
energy stationary CT EDS carry-on baggage scanner developed
by GEMSS Medical Systems, Korea, which confirms the superior
reconstruction performance over the existing approaches.

Index Terms—Explosive detection system (EDS), sparse-view
X-ray CT, convolutional neural network (CNN)

I. INTRODUCTION

In homeland and aviation security applications, there has
been increasing demand for X-ray CT EDS system for carry-
on baggage screening. A CT-EDS can produce an accurate
3D object structure for segmentation and threat detection,
which is often not possible when a 2D-EDS system captures
projection views in only one or two angular directions. There
are currently two types of CT EDS systems: gantry-based CT
and stationary CT. While gantry-based CT EDS is largely the
same as medical CT, baggage screening should be carried out
continuously, so it is often difficult to continuously screen
carry-on bags because of the possible mechanical overloading
of the gantry system. On the other hand, a stationary CT EDS
system uses fixed X-ray sources and detectors, making the
system suitable for routine carry-on baggage inspection.

For example, Fig. 1 shows source and detector geometry of
the prototype stationary CT-EDS system developed by GEMSS
Medical Systems, Korea. As shown in Fig. 1(a), nine pairs
of X-ray source and dual energy detector in the opposite
direction are distributed at the same angular interval. For
seamless screening without stopping convey belt, each pair
of source and detectors are arranged along the z-direction as
shown in Fig. 1(b) so that different projection view data can
be collected while the carry-on baggages moves continuously
on the conveyor belt. Then, 9-view fan beam projection data
is obtained for each z-slice by rebinning the measurement

1Y. Han and J.C. Ye are with the Department of Bio and Brain Engineering,
Korea Advanced Institute of Science and Technology (KAIST), Daejeon
34141, Republic of Korea (e-mail: {hanyoseob,jong.ye}@kaist.ac.kr).

2J. Kang is with GEMSS Medical Co. Seongnam, Republic of Korea (e-
mail: jingu.kang@gemss-medical.com).

Fig. 1. X-ray source positions in our prototype 9 view dual energy CT EDS:
(a) x− y direction and (b) θ − z direction, respectively.

data. This type of stationary CT system is suitable for EDS
applications because it does not require a rotating gantry, but
with only 9 projection views it is difficult to use a conventional
filtered backprojection (FBP) algorithm due to severe streaking
artifacts. Therefore, advanced reconstruction algorithms with
fast reconstruction time are required.

For sparse-view CT EDS, model-based iterative reconstruc-
tion (MBIR) with the total variation (TV) penalty have been
extensively investigated [1], [2]. Inspired by the recent success
of deep learning approach for sparse view and limited angle
CT [3], [4], [5], [6] that outperform the classical MBIR
approach, this paper aims at developing a deep learning
approach for real-world sparse view CT EDS. However, neural
network training using the retrospective angular subsampling
as in the existing works [3], [4], [5], [6] is not possible for
our prototype system, since there are no ground-truth data for
the real world sparse view CT EDS. We therefore propose a
novel deep learning approach composed of image domain and
sinogram domain learning that compensate for the imperfect
label data.

II. THEORY

A. Problem Formulation

Recall that the forward model for sparse view CT EDS
system can be represented by

gΘ = PΘRf (1)

where R denotes the 3D projection operator from an x−y−z
volume image to a s− θ − z domain sinogram data with s, θ
and z denoting the detector, projection angle, and the direction
of the conveyor belt travel, respectively. See Fig. 2 for the
coordinate systems. In (1), PΘ denotes the view sampling
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Fig. 2. Sinogram interpolation flow for the proposed method. The final reconstruction is obtained by applying the FBP for the interpolated sinogram data.

operator for the measured angle set Θ, and gΘ refers to the
measured sinogram data. For each projection view data, we
use the notation gθ and Pθ, where θ denotes the specific view.

The main technical issue of the sparse view CT recon-
struction is the non-uniqueness of the solution for (1). More
specifically, there exists a null space NΘ such that

PΘRh = 0, ∀h ∈ NΘ,

which leads to infinite number of feasible solutions. To avoid
the non-uniqueness of the solution, constrained form of the
penalized MBIR can be formulated as :

min
f∈R3

‖Lf‖1, subject to gΘ = PΘR , (2)

where L refers to a linear operator and ‖ · ‖1 denotes the l1
norm. For the case of the TV penalty, L corresponds to the
derivative. Then, the uniqueness of (2) is guaranteed that if
the NL ∩NΘ = {0}, where NL denotes the null space of the
operator L.

Instead of designing a linear operator L such that the
common null space of NΘ and NL to be zero, we can design
a frame W , its dual W̃ , and shrinkage operator Sλ such that
W̃>W = I and

W̃>SλW(f∗ + g) = f∗ ∀g ∈ NΘ

for the ground-truth image f∗. This frame-based regulariza-
tion is also an active field of research for image denoising,
inpainting, etc [7]. One of the most important contributions
of the deep convolutional framelet theory [8] is that W
and W̃> correspond to the encoder and decoder structure
of a convolutional neural network (CNN), respectively, and
the shrinkage operator Sλ emerges by controlling the num-
ber of filter channels and nonlinearities. More specifically,
a convolutional neural network can be designed such that
Q = W̃>SλW and

Q(f∗ + h) = f∗, ∀h ∈ NΘ . (3)

In other word, (3) directly removes the null space component.
Eq. (3) is the constraint we use for training our neural network.

B. Derivation of Image and Projection Domain CNNs

More specifically, our sparse view reconstruction algorithm
finds the unknown f ∈ R3 that satisfy both data fidelity and
the so-called frame constraints [8]:

gΘ = PΘRf, QI(f) = f∗ , (4)

where QI is the image domain CNN that satisfies (3) and f∗

denotes the ground-truth images that are available for training
data. Now, by defining M as a right-inverse of PΘR, i.e.
(PΘR)MgΘ = gΘ,∀gΘ, we have

MgΘ = f∗ + h

for some h ∈ NΘ, since the right inverse is not unique due to
the existence of the null space. Thus, we can show that MgΘ

is the feasible solution for (4), since we have

QIMgΘ = QI (f∗ + h) = f∗ , (5)

for the training data, and

PΘRMgΘ = PΘR(f∗ + h) = gΘ . (6)

Therefore, the neural network training problem to satisfy (4)
can be equivalently represented by

min
QI

N∑
i=1

‖f∗(i) −QIMg
(i)
Θ ‖

2 (7)

where {(f∗(i), g(i)
Θ )}Ni=1 denotes the training data set com-

posed of ground-truth image an its sparse view projection.
Since a representative right inverse for the sparse view pro-
jection is the inverse Radon transform after zero padding to
the missing view, Mg

(i)
Θ in (7) can be implemented using the

standard FBP algorithm. In fact, this is the main theoretical
ground for the success of image domain CNN when the
ground-truth data is available [3], [4], [5], [6]. Moreover, the
fan-beam rebinning makes the problem separable for each z
slices, so we use the 2D FBP for each slice as shown in Fig. 2.

However, the main technical difficulties in our 9-view CT
EDS system is that we do not have ground-truth image
{f∗(i)}Ni=1. One could use physical phantoms and atomic
number to form a set of ground-truth images, but those data
set may be different from the real carry-on bags, so we need a
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new method to account for the lack of ground-truth for neural
network training. Thus, to overcome the lack of the ground-
truth data, the approximate label images are generated using
an MBIR with TV penalty. Then, using MBIR reconstruction
as label data {f∗(i)}Ni=1, an 2D image domain network QI is
trained to learn the mapping between the artifact-corrupted 2D
image and MBIR reconstruction in x− y domain.

One downside of this approach is that the network training
by (7) is no more optimal, since the label data is not the
ground-truth image. Thus, the generated sinogram data from
the denoised 3D volume may be biased. Thus, we impose
additional frame constraint to the sinogram data in addition to
(4):

g∗θ = QS (gθ) , (8)

for the measured angle θ, where QS is the s − z sinogram
domain CNN and g∗θ denotes the ground-truth sinogram data
measured at θ. Then, Eq. (8) leads to the following network
training:

min
QS

∑
θ∈Θ

N∑
i=1

‖g∗(i)θ −QS
(
PθRQIMg

(i)
Θ

)
‖2 (9)

More specifically, as shown in Fig. 2, 3D sinogram data is
generated in the s − θ − z domain by applying the forward
projection operator along 720-projection views after stacking
the image domain network output over multiple slices to form
3D reconstruction volume in the x−y−z domain. Next, a 2D
sinogram domain network QS is trained so that it can learn the
mapping between the synthetic s−z sinogram data and the real
projection data in the s− z domain. Since the real projection
data is available only in 9 views, this sinogram network
training is performed using synthetic and real projection data
in the measured projection views. The optimization problems
(7) and (9) can be solved sequentially or simultaneously, and
in this paper we adopt the sequential optimization approach
for simplicity.

After the neural networks QI and QS are trained, the
inference can be done simply by obtaining x− y − z volume
images from the 9 view projection data by slice-by-slice FBP
algorithm, which are then fed into QI to obtain the denoised
3D volume data. Then, by applying projection operator, we
generate 720 projection view data in s − θ − z domain,
which are fed into the QS to obtain denoised sinogram data
for each θ angle. Then, the final reconstruction is obtained
by applying FBP algorithms. One could use post-processing
using additional TV-based denosing. This algorithmic flow is
illustrated in Fig. 2.

III. METHODS

A. Real CT EDS data Acquisition

We collected CT EDS data using the prototype stationary
9 view dual energy CT-EDS system developed by GEMSS
Medical Systems, Korea as shown in Fig. 1. the distance from
source to detector (DSD) and the distance from source to
object (DSO) are 1202.6mm and 648.2mm, respectively. The
number of detector is 384 with a pitch of 1.5mm. The region
of interest (ROI) is 256 × 256 and the pixel size is 2mm2.

Fig. 3. CNN architecture for our image and singoram domain networks.

The detectors collect low and high energy X-ray at 80 KVp
and 120 KVp, respectively.

We collect 47 sets of projection data from the prototype
CT EDS baggage scanner. Among the 47 sets, 32 dataset are
simple-objects and the other set are realistic carry-on bags.
The 47 set of 28 simple- and 13 baggage-objects was used
during the training phase, and the validation was performed
by two simple- and one baggage-object. The other set was
used for test.

B. Network Architecture and Training

Fig. 3 illustrates modified the U-Net structure [9] for the
image domain and the sinogram domain networks. To account
for the multi-energy image and sinogram data, the input for
the network is two channel multi-energy image and sinogram
data. The proposed network consists of convolution layer,
batch normalization, rectified linear unit (ReLU) [10], and
contracting path connection with concatenation [9]. A detail
parameters are illustrated as shown in Fig. 3.

The proposed networks were trained by stochastic gradient
descent (SGD). The regularization parameter was λ = 10−4.
The learning rate has been set from 10−3 to 10−5, which
has been reduced step by step in each epoch. The number
of epoch was 200. The batch size was 12 and the patch
size for image and projection data are 256 × 256 × 2 and
768 × 384 × 2, respectively. The network was implemented
using MatConvNet toolbox (ver.24) [11] in the MATLAB
2015a environment (MathWorks, Natick). Central processing
unit (CPU) and graphic processing unit (GPU) specification
are i7-7700 CPU (3.60 GHz) and GTX 1080 Ti GPU, respec-
tively.

IV. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed method, we
perform image reconstruction from real 9-view CT EDS pro-
totype system. Fig. 4 illustrates image reconstruction results
of bag using various methods such as FBP, MBIR with
TV penalty, image domain CNN [3], [5], and the proposed
method. The FBP reconstruction results suffered from severe
streaking artifacts, so it was difficult to see the threats in the
tomographic reconstruction and 3D rendering. The MBIR and
image domain CNN were slight better in their reconstruction
quality, but the detailed 3D structures were not fully recovered
and several objects were not detected as indicated by the red
arrow in Fig. 4. Moreover, the 3D rendering results in Fig.
4 correctly identify the shape of grenade and knife as well

The fifth international conference on image formation in X-ray computed tomography 409



Fig. 4. Reconstruction results by various methods from 9-views CT-EDS.

as the frame of the bag, which was not possible using other
methods.

Because we do not have the ground-truth in the image
domain, we perform quantitative evaluation using normalized
mean squares error (NMSE) in the sinogram domain. More
specifically, after obtaining the final reconstruction, we per-
form the forward projection to generate the sinogram data in
the measured projection view and calculated the normalized
mean square errors. Table I showed that the proposed method
provides the most accurate sinogram data compared to the
other methods. Moreover, the s − z projection data in Fig. 5
showed that the projection data from the proposed method is
much closer to the ground-truth measurement data.

TABLE I
NMSE VALUE COMPARISON OF VARIOUS METHODS.

Energy level FBP MBIR-TV Image CNN Ours
80 KVp 1.6647e+1 5.8247e-1 3.3207e-1 0.6845e-1
120 KVp 1.0536e+1 6.0440e-1 3.2249e-1 0.5450e-1

V. CONCLUSION

In this paper, we proposed a novel deep learning recon-
struction algorithm for a prototype 9-view dual energy CT
EDS for carry-on baggage scanner. Even though the number
of projection view was not sufficient for high equality 3D
reconstruction, our method learns the relationships between
the 2D tomographic slices in x− y domain as well as the 2D
projections in s − z domain such that the artifact-corrupted

Fig. 5. A s − z domain sinogram data from (a) measurement, (b) 9-views
FBP (c) MBIR, (d) image CNN, and (e) the proposed method. The number
written in the images is the NMSE value. Yellow and red arrows indicate
grenade and knife, respectively.

image and sinogram data can be successively refined to obtain
high quality images. Using real data from our prototype 9-view
CT EDS system, we demonstrated that the proposed method
outperforms the existing algorithms, delivering high quality
three reconstruction for threat detection.
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Abstract—Iterative reconstruction methods achieve better 

image quality than conventional filtered backprojection (FBP) for 
low-dose CT data. However, due to multiple forward and 
backward projections, the computational cost of iterative 
reconstruction methods is much higher. In this work, we apply the 
residual learning of a convolutional neural network (CNN) to 
reduce noise in the FBP images. We apply images reconstructed 
by the FBP and an iterative method to train the network with the 
goal of producing images that match the quality of the iterative 
images. The developed method is validated on clinical patient data 
acquired from a Siemens SOMATOM Force CT system. The 
experimental results demonstrate that the noise can be reduced 
remarkably and the obtained images are very close to those 
produce with commercial iterative reconstruction. 
 

Index Terms—Computed tomography, iterative reconstruction, 
residual learning, convolutional neural network 
 

I. INTRODUCTION 
T imaging at the lowest possible dose while maintaining 

the diagnostic accuracy is the central tenet in practice, 
referring as the As Low as Reasonably Achievable (ALARA) 
principle. While the carcinogenic risks of ionizing radiation at 
the diagnostic imaging levels remains controversial, it remains 
a priority to minimize the cumulative exposure over a lifetime 
especially for pediatric imaging and lung-cancer screening.   

Advances in scanning technology (e.g., low kV imaging 
[1-3], automatic tube current modulation (ATCM) [4], 
automatic kV-adaption [5], improved detector sensitivity [6]) 
have contributed to reduce dose for the state-of-the-art CT 
scanners. Meanwhile, iterative reconstruction (IR) algorithms, 
including image-based, model-based and hybrid algorithms, 
have had a measurable effect on reducing dose that is needed to 
acquire a diagnostic scan [7, 8]. The latest reconstruction 
technology is typically restricted to premium systems with 
major upgrades happening every 3-4 years.  However, there 
exists a large install base of legacy (> 7 year old) scanners, as it 

This work was supported in part by the NIH/NIBIB U01 grant EB017140 
and R21 grant EB019074.  

Y. B. Zhang is with the Department of Electrical and Computer 
Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA 
(e-mail: yanbo_zhang@ uml.edu).  

R. D. MacDougall, is with the Boston Children's Hospital, Boston, MA 
02115, USA (e-mail: Robert.D.MacDougall@childrens.harvard.edu). 

H. Y. Yu is with the Department of Electrical and Computer Engineering, 
University of Massachusetts Lowell, Lowell, MA 01854, USA (e-mail: 
hengyong-yu@ieee.org). 

is cost prohibitive for a hospital to replace a CT fleet every few 
years. In addition to the financial restrictions, it also has 
workflow restrictions. For example, some model-based 
iterative reconstruction algorithms can take 30-60 mins for 
reconstruction, far too long in an emergency setting.  

Very recently, deep learning has been applied to low-dose 
CT reconstruction and CT image denoising [9-13]. In these 
works, high-quality images obtained from high-dose data or 
iterative reconstruction are adopted as the reference to train the 
designed network. Particularly, Wang summarized the 
applications of deep learning in radiology applications and 
gave an example of CNN based image post-processing [13]. In 
his work, FBP images and model based iterative reconstruction 
(MBIR) images were respectively used as the input and target 
for neural network training. However, this perspective article 
did not provide implementation information or results. Here, 
we are concerned to use a neural network to improve CT 
reconstruction for all scanners It is independent of scanner 
software and proprietary IR algorithms. To this end, we 
investigate a method of reconstructing images from a filtered 
back-projection (FBP) DICOM data set to simulate the 
appearance of an arbitrary IR algorithm. By training a 
convolutional neural network on a patient-matched FBP and IR 
image dataset, a vendor-neutral reconstruction algorithm can be 
created. This approach allows for exams performed on legacy 
CT scanner to provide the image quality of state-of-the-art IR 
algorithms.  

II. METHOD 
Inspired by the residual learning of deep CNN [12], we 

propose a residual network model for the low-dose CT image 
processing. Fig. 1 shows the architecture of the proposed 
network. The developed method consists of two phases: 
network training and post-processing. In the training phase, 
high-quality images are obtained with the advanced modelled 
iterative reconstruction (ADMIRE, Siemens  Healthineers, 
Forchheim Germany) method [14]. The FBP reconstructed 
image is the input of the network, and residual between FBP 
and ADMIRE images is applied as the target. Hence, in the 
post-processing phase, the well-trained network is able to 
predict the difference between the input FBP image and the 
expected ADMIRE image. Then the high-quality image is 
obtained by subtracting the generated residual from the FBP 
image. 

There are five convolutional layers in this network. Each 
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layer consists of 32 convolutional kernels and each of them is 
with the size of 3×3. Padding is performed to ensure that the 
size of the output image is the same to the input. In the second 
to the fourth layers, batch normalization (BN) is used to solve 
the internal covariate shift after the convolution. Batch 
normalization brings several advantages to the method, such as 
fast training and better performance. Finally, ReLU is applied 
to the first four layers after the convolution or convolution+BN. 

III. EXPERIMENTS 

A. Data 
Two patient data were acquired on a third-generation 

dual-source CT system (SOMATOM Force, Siemens). One 
patient data was used for training, and the other patient data was 
applied to test the proposed algorithm. The focal spot size is 0.8 
mm. The source-to-patient distance is 595 mm, and the 
source-to-detector distance is 1085.6 mm. The CT protocol 
used CARE kV and CARE Dose4D for kV selection and mA 
modulation, respectively. The tube voltage ranged from 
100-110 kVp, the Quality Reference mAS was 150 and the 
exposure time was 250 ms. All data were reconstructed using 
both the FBP and ADMIRE. A total of 150 slices were 
reconstructed for each patient, and the slice thickness was 
2mm. The reconstructed images were 512×512 with 0.7324 × 
0.7324 mm2 for each pixel. The convolutional kernel “Bl64d” 
was adopted for reconstruction.  

 

B. Implementation 
The code is implemented in Matlab (R2016a) environment 

running on a PC with AMD FX(tm)-6300 CPU and an Nvidia 
GeForce GTX 970 GPU. In addition, MatConvNet toolbox [15] 
is used for the network training. 

To train the network, the FBP and ADMIRE reconstructed 
images are divided into 64×64 image patches. Then 10,000 
FBP-ADMIRE-pair patches are randomly selected as the 
training data. We train 400 epochs for the proposed network.  

 

C. Evaluation 
We apply the relative root mean square error (rRMSE) and 

structural similarity (SSIM) [16] to quantitatively evaluate the 
results. The rRMSE is defined as 

 
                              𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐟𝐟, 𝐟𝐟ref) = ‖𝐟𝐟−𝐟𝐟ref‖2

‖𝐟𝐟ref‖2
, (1) 

 
where 𝐟𝐟 is the reconstructed image and 𝐟𝐟ref  is the reference 
image. The SSIM is calculated as  
 
                         SSIM(𝐱𝐱,𝐲𝐲) = (2𝜇𝜇𝑥𝑥𝜇𝜇𝑦𝑦+𝐶𝐶1)(2𝜎𝜎𝑥𝑥𝑦𝑦+𝐶𝐶2)

(𝜇𝜇𝑥𝑥2+𝜇𝜇𝑦𝑦2+𝐶𝐶1)(𝜎𝜎𝑥𝑥2+𝜎𝜎𝑦𝑦2+𝐶𝐶2)
, (2) 

 
where 𝐱𝐱  and 𝐲𝐲  are two images, respectively. 𝜇𝜇𝑥𝑥  and 𝜇𝜇𝑦𝑦  are 
local means, 𝜎𝜎𝑥𝑥 and 𝜎𝜎𝑦𝑦 are local standard deviations and 𝜎𝜎𝑥𝑥𝑦𝑦 is 
cross-correlation. 

IV. RESULTS 
Fig. 2 shows the volumetric images reconstructed by the 

FBP, ADMIRE and the proposed method. Representative axial, 
sagittal and coronal images are present. It can clearly be 
observed from the first two columns that the FBP images are 
contaminated by severe noise and the ADMIRE images have 
higher signal-to-noise ratio. By comparison, the images 
processed by the network are very close to the ADMIRE 
images. Fig. 3 plots image profiles indicated by the lines in Fig. 
2. The profile in Fig. 3(a) passes through two flat regions, and 
we can see that the noise level is reduced after the 
post-processing. The line in Fig. 3(b) passes through different 
image slices, and fat, muscle, bone and lung are on this profile. 
It can be seen that the plot of our result is very close to the 
ADMIRE plot.  

To quantitatively evaluate the capability of the proposed 
algorithm, we assume the ADMIRE images as the references 
and calculate the rRMSE and SSIM at each image slice as 
shown in Fig. 4. Overall, the rRMSEs of FBP images are 
0.1236 ± 0.0109, which is reduced as low as 0.0435 ± 0.0041. 
Additionally, the SSIM scores increase from 0.7649 ± 0.0149 
to 0.8922 ± 0.0016 after the post-processing. 

V. DISCUSSION AND CONCLUSION 
The network training is time-consuming. It takes 6.18 hours 

to complete the training in this work. On the contrary, the 
post-processing phase is very efficient, taking only 4.48 
minutes to process 150 slices. Hence, we can train and store the 

 
 

Fig. 1.  Architecture of the proposed residual network. 
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network in advance for fast processing. Because the 
computational cost of the post-processing is dramatically less 
than that of the iterative reconstruction methods, the proposed 
method has a great potential in clinical applications.  

In the network training phase, the training patches are 
collected from only one patient data. Hence, the trained 
network only works for the data with the same scanning and 
reconstruction parameters, such as noise level, filter strength, 
etc. Thus, we need to train different networks for specific 
imaging parameters to deal with various imaging cases. 
Alternatively, we can also adopt training data with variety of 
noise levels and filter strengths to extend its application range. 
However, its performance might be compromised to some 
extent and a deeper network is expected to achieve the same 
capability.  

This preliminary work is evaluated on one patient data. In the 
near future, we will carry out a comprehensive assessment with 
more clinical data. Furthermore, medical physicists and 
radiologists will perform a subjective evaluation.  

In conclusion, we have proposed a residual learning of 
convolutional neural network based post-processing method. 
Experimental results have confirmed that the developed 
network has the capability to significantly suppress image noise 
and to make the obtained images close to the iteratively 
reconstructed images. In the near future, extensive patient data 
will be applied to validate the effectiveness of the proposed 

method and radiologists will be involved for the subjective 
clinical evaluation. 
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Fig. 2 Representative images of FBP (left), ADMIRE (middle) and post-processed (right). From top to bottom, images are axial, sagittal and coronal views, 
respectively. The display window is (-500, 500) HU. 
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Fig. 3.  Plots at the lines indicated by the horizontal and vertical lines in Fig. 2, 
respectively. 
  

 

 
 
Fig. 4.  RRMASE and SSIM before and after the post-processing for each 
slice. 
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Abstract— Computed tomography (CT) ring correction is an 

active area of research. Many strategies exist for reducing ring 
artifacts including experimental and image processing 
procedures. Deep learning (DL) has achieved success in many 
applications for image corrections, including correction for CT-
specific noise and reconstruction artifacts. We propose a DL 
approach to ring artifact correction using a class of 
convolutional neural network known as a residual U-net. The 
U-net contains collapsing encoder layers and expanding 
decoder layers. Pooling and unpooling was performed more 
aggressively in the angle dimension of the sinogram to aid in the 
detection and correction of continuous ring artifacts. The U-net 
was coded in Python using Tensorflow. Functions found in the 
Keras API were employed for convenience. Our network was 
trained on experimental data which had been altered to include 
a variety of random ring artifacts.  The results confirm 
successful removal or attenuation of ring artifacts in 
experimentally acquired micro-CT sets. The performance of U-
net ring correction on experimental data can be further 
improved by increasing the quality of simulated training data 
and the variety of rings it contains. 
 

I. INTRODUCTION 

ing artifacts are concentric patterns which often appear 
in images acquired by third generation computed 

tomography (CT) systems. For micro-CT acquisitions in 
which image resolution is pushed to the extreme, rings 
artifacts are especially prone to occur and to degrade image 
quality. Ring artifacts can stem from a variety of causes, 
including defective detector pixels, non-linear pixel 
responses, inconsistent detector gain, detector and x-ray 
source structural patterns, and changes in system 
performance over time and temperature conditions. 

Many experimental methods for reducing ring artifacts 
have been explored. Minimization of ring artifacts is possible 
by using flat-field correction [1], moveable detector arrays 
[2], and adequate scanning protocols (e.g., dual gain 

 
 

calibration technique [3]). However, it is difficult to totally 
eliminate such artifacts and attain high-quality 
reconstructions through purely experimental measures. 
Image processing techniques for correcting ring artifacts 
have been implemented in the sinogram domain [4], the 
image domain [5], [6], and in combinations of the two [7]. 
The performance of these methods is dependent on the 
quantity and frequency of the ring artifacts. These methods 
generally achieve their best results with few, high frequency 
rings. Low-frequency rings are more difficult to detect and 
correct. More robust approaches to ring artifact correction are 
needed which can adequately minimize the effect of low and 
high frequency artifacts in reconstructions. 

Recently, deep learning (DL) has generated enthusiasm in 
various imaging applications, including image denoising, 
deblurring, super-resolution, segmentation, detection, and 
recognition [8]. Convolutional neural networks (CNNs) are 
powerful DL models recently tested in CT applications.  For 
example, Chen et al. utilized a CNN-based framework for 
artifact reduction in low-dose CT imaging [9]. An algorithm 
using a deep CNN was also applied to the wavelet transform 
coefficients of low-dose CT images to suppress CT-specific 
noise [10]. A broad class of CNN architectures, referred to as 
U-Nets, has been effectively used to reduce reconstruction 
artifacts in low-dose clinical CT acquisitions [11]. These 
studies show that DL techniques can be effectively used to 
detect and correct structural patterns present in CT images. 

 To our knowledge, no study has applied DL techniques 
for ring artifact correction in CT. There are several variants 
of CNNs for image-to-image tasks that could be considered 
for ring artifact corrections including encoder-decoder 
configurations. The information consolidated by the encoder 
encrypts the global structure of the input image, discarding 
non-essential details. The decoder section of the network 
then interprets the encoded data to produce an image with the 
desired features. In this study we use an approach based on a 
U-Net CNN.  This approach takes advantage of the structure 
of ring artifacts in the sinogram domain; ring artifacts appear 
as stripes spanning the angle dimension. We focus here on 
developing and testing a CNN-based ring artifact correction 
method for our in-house developed  
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micro-CT scanner [12], but a similar approach could be 
applied, with appropriate training, to any other CT scanner. 

II. METHODS 

A.  CNN U-Net architecture 

 The network used in this work is shown in Fig 1. The first 
operation performed by the network is to separate input 
sinograms into high and low frequency components using a 
low-pass filter. Care was taken in selecting a cutoff 
frequency for the filter such that all ring artifacts ended up in 
the high frequency map, which is passed through the 
network. This operation effectively zero-centers the data. 
After this operation the high frequency image is normalized 
by its standard deviation. This scaling is reversed at the end 
of the network before adding high and low frequency 
components together to form the corrected sinogram.  

The U-net is divided in encoder and decoder halves. The 
encoder half encodes features relevant to ring detection. The 
decoder portion of the network organizes these features into 
an output image. Each stage in the U-net consists of a pair of 
convolutions and rectified linear unit (ReLU) activations. 
The network contains four distinct levels, separated by max 
pooling and average unpooling operations. In the encoding 
portion of the network, feature maps undergo max pooling, 
reducing the size of the maps and allowing the network to 
find coarser features. In the decoding half of the network, 
feature maps are average un-pooled, bringing the feature map 
dimensions back to match those of the input image. The 
number of feature maps increases as the size of the feature 
maps decreases, allowing for features to be preserved at 
lower resolutions. 

Ring artifacts manifest as continuous linear stripes in the 
sinogram domain, making them a good candidate for 
detection by a CNN. To encourage the network to find ring 
artifacts as continuous lines, the pooling and unpooling 
operations in this network are anisotropic. Max pooling and 
average unpooling are performed in a 2x4 pixel window; the 
larger window dimension corresponds to the sinogram angle 

dimension. Ring artifacts found in the encoding half of the 
network are stretched and combined along the angle 
dimension to create continuous stripes in the output image. 
A ring artifact detected in enough places will be corrected 
across the whole sinogram. 

The network presented here is a residual network, meaning 
that the network is trained to find the residual image which 
connects the corrected and uncorrected images. The sum of 
the input high frequency sinogram and the network output 
will produce a high frequency sinogram free of ring artifacts. 
Residual networks have been situationally shown to train 
faster than networks which attempt to find a direct solution 
[11], [13]. These networks converge faster because most 
kernels and weights are initialized to be close to zero, 
resulting in an initial near-zero output from the network. In 
cases in which the label has small values or is sparse relative 
to the input image, this near-zero initial guess will start much 
closer to the correct solution. In this work, a residual network 
was employed to find image based rings because the desired 
residual output will be both small and sparse. 

The U-net was coded in Python using Tensorflow [14]. 
Functions found in the Keras API [15] were employed for 
convenience in coding portions of the network. 

B. Training data 

Data for training was comprised of a 2:1 mix of 
experimental and simulated sinograms, both altered to 
contain ring artifacts. Realistic artifacts were generated 
through the use of flat field images. A set of 600 flat fields 
were captured over a period of 2 hours with an imaging 
system whose performance varies with time and temperature. 
The flat fields were normalized with one another, generating 
sets of low and high frequency artifact maps where the flat 
fields disagreed, similar to those artifacts that would appear 
in an imaging application after flat field normalization. These 
artifact maps were applied to clean, normalized sinograms 
via multiplication prior to log transforming projection data. 
In addition, bad pixels and patches of bad pixels were 
randomly simulated into other sinograms. In this way we 

Fig. 1.  Map of the network architecture used to remove rings from normalized sinograms. Prior to the trainable layers of the network each input 
image is separated into high and low frequency components via a low-pass filter. The high frequency image is normalized by its own standard 
deviation and sent through the network. At the end of the network the sum of the output and high frequency sinogram are scaled by the old standard 
deviation. The corrected sinogram is obtained by adding back the low frequency image. The network consists of encoder (blue) and decoder (green) 
halves. There are two convolution and ReLU operations performed for each set of maps shown. The number of feature maps after each pair of 
operations is given above the stacks. Concatenation operations between the encoder and decoder allow recovery of high frequency information. 

416 The fifth international conference on image formation in X-ray computed tomography



 

created pairs of artifacted sinograms and their equivalent 
clean labels i.e. sinograms without artifacts.  

C. Training the U-net 

The network was trained on 3600 pairs of sinograms. The 
training set dimensions were 2000 by 360 (detector row by 
projection angles) pixels. The network was trained in batches 
of 48. The Adam optimization algorithm was used to train 
the network by minimizing the mean square error (MSE) of 
the output. The network trained for 24 hours, or 375 epochs. 
Training was ended after 24 hours to prevent overfitting. The 
network was trained on a stand-alone workstation. 
Computations were performed in parallel on four NVIDIA 
Titan Xp graphics cards. 

III. RESULTS 

A. Training performance 

The MSE of the training set during training is given in Fig 
2. By stopping training before it reached its minimum 
training loss, we prevented overfitting. 
 

 
Fig. 2.  Training error as a function of epoch. The network was trained 
for 24 hours on a mix of experimental data with inserted ring artifacts 
and simulated data. Training was ended after one day to prevent 
overfitting the training data.  
 

B. Network performance on experimental data 

The ability of the U-net to detect and correct organic ring 
artifacts was tested on experimental datasets afflicted with 
ring artifacts. The artifacted data was captured on the same 
micro CT system used to acquire the flat field images for the 
generation of training data. The test dataset contained 1000 
equiangular projections over a single 360 degrees of rotation. 
The data was reconstructed with 44 µm isotropic voxels and 
contained both high and low frequency rings. 

Prior to processing the data with the CNN, each sinogram 
was subsampled by a factor of 3 along the angular dimension 
by selecting every third projection. This was done to give the 
sinograms of the test data a similar size and angular step as 
contained in the training data, which contained 360 angles. 
The subsampled sinograms were then individually processed 
by the trained network. The sinograms were restored to their 
original size by interleaving the angles of the subsampled 
sinograms. Filtered backprojection reconstructions (FBP) 
using the original and corrected projections are shown in Fig 
3. Sample images from the reconstructions using uncorrected 

projections illustrate the amplitudes and frequencies of ring 
artifacts that exist in the dataset. The overall amplitude of the 
rings is visibly reduced in the corrected reconstruction. The 
effectiveness of the correction can be better assessed by the 
residual images showing the difference between the original 
and corrected images. These images demonstrate that the 
network has only altered the ring artifacts as image features 
are not present. The line profiles, plotted through the center 
of the reconstructions, show how the artifacts have been 
altered by the network. The largest amplitude rings are most 
affected by the network. Variation in the line profile due to 
vessels, lung, and bone remain visible in the corrected 
reconstruction. However, both high and low frequency rings, 
though diminished, are still present in the corrected image.  
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Fig. 3.  Reconstructions of experimental data with ring artifacts. The 
images were reconstructed to 44 µm voxels and contain a mix of high 
and low frequency ring artifacts. Residual images between the 
original and corrected reconstructions demonstrate that image 
features are left undisturbed by the network, only rings are affected. 
The line profiles are taken from the dashed red lines and demonstrate 
that variation due to structures in the images are preserved in the 
original and corrected reconstructions.  
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IV. DISCUSSION 

In this work, we have examined a class of CNN known as 
a residual U-net for the purpose of ring artifact reduction in 
micro-CT data. This type of network has been successfully 
used to improve CT reconstruction and shows promise for 
the reduction of ring artifacts. 

The network was trained on a mix of experimental and 
simulated data altered to include a variety of random ring 
artifacts. As shown from the MSE of the training (Fig. 2), our 
network was able to learn and correct the pattern of ring 
artifacts in the training data. To help with the task of reducing 
ring artifacts, the simulated rings in the training dataset were 
created with the same artifacts and frequencies captured in 
the test set. This allowed the network to learn the range of 
ring amplitudes and frequencies present in the test data. The 
success of this method is demonstrated in the ring corrected 
reconstruction by a decrease in amplitude of low frequency 
rings, which are generally difficult to identify and correct.  

The network was designed to pool and unpool more 
aggressively in the angle dimension of the sinogram. This 
was done to facilitate identification and correction of artifacts 
represented as continuous stripes. The residual images of the 
test reconstruction (Fig. 3), which are shown as continuous 
circles, demonstrate the success of the network in creating 
near-continuous corrections. The lack of image features 
beyond the rings in the residual images show the ability of 
the network to reduce rings while preserving image structure. 

Convergence of the U-net was difficult to declare because 
there was no good validation set on which to monitor training 
progress. Pairs of simulated features and labels do not 
guarantee that the network will generalize well to data 
outside the simulations. Thus the performance of the network 
was determined qualitatively by its ability to treat sinograms 
with naturally occurring ring artifacts. By checking the 
performance of the network on experimental ring data and 
monitoring the effectiveness of the ring artifact reduction it 
was determined to stop training after 24 hours. We note this 
method for determining convergence as a limitation of this 
work, as it is inefficient and subject to human judgement. 

The network performed well on experimental data (Fig. 3, 
top), but there is room for improvement. The test sets were 
selected to contain a variety of rings, both high and low 
frequency. The highest amplitude rings, both low and high 
frequency, were more successfully addressed by the network 
and show reduced amplitude. However, the highest 
frequency rings were left largely uncorrected as shown in the 
line profiles, particularly if those rings were low amplitude. 
Low amplitude, high frequency rings would affect the MSE 
cost function of the network less than large amplitude or low 
frequency rings. The presence of these rings in the corrected 
images could indicate that the network was not fully trained 
at the time of testing. 

The shortcomings of the network can be largely attributed 
to the training data and the lack of good validation data. The 
ring artifacts in the experimental data which most affect the 
MSE loss of the network saw the most correction. For 

example, the high amplitude rings saw the most correction 
by the network. It is possible that with more training time, 
better results could be attained. The availability of good 
training data is one of the biggest difficulties in machine 
learning. In many cases such data may not exist and must be 
simulated. This is the case for CT ring correction; there is no 
perfect correction for ring artifacts which can produce clean 
label data on which to train, and such a technique would 
invalidate the need for DL ring correction. Training a 
network with data corrected using some other technique 
would only serve to make a network approximate that 
technique. However, using simulations we can create 
adequate training sets provided that we can model the whole 
range of ring artifacts that can appear experimentally. 
 The network presented here has been shown to have the 
ability to correct certain types of ring artifacts in the 
sinogram domain. The performance of the network on 
experimental data can be improved by increasing the quality 
of the training data and validation data. 
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Abstract— This paper presents an approach to extract 

clinically useful information directly from sinograms using a 

neural network approach. In recent years, deep neural networks 

have been applied in a wide variety of image processing fields for 

denoising, detection, recognition, and understanding. Recent 

studies in CT imaging show that neural networks can improve 

image quality, feature extraction, and lesion detectability. Most 

CT applications of neural networks have been in the image 

domain. A few groups have presented so-called end-to-end neural 

networks, which operate directly in sinogram space and perform 

an initial ‘learnt’ reconstruction step, possibly followed by a 

‘learnt’ analysis step.  To our knowledge, the application of 

neural networks to extract diagnostic information directly from 

sinogram data, without an explicit reconstruction step, has not 

yet been presented. 

In this paper, we demonstrate sinogram analysis with neural 

networks in the context of vessel lumen cross-sectional area size 

estimation. This is a proof-of-concept study of neural networks 

toward feature extraction from projection data. We simulated 

blood vessels with different diameters filled with iodine contrast 

agent and applied a fully connected network to the resulting 

sinograms to estimate the vessel cross-sectional area. We also 

applied a similar network to sinograms from a CT measurement 

of a vessel phantom we created using a thorax phantom. Our 

results suggest that the neural network can estimate vessel cross-

sectional area accurately with reasonable error ranges in both 

cases. 

 
Index Terms—Computed tomography, Neural networks, 

Sinogram, Raw data, Estimation 

I. INTRODUCTION 

utomatic extraction of parameters that characterize    

structures and lesions within CT images is becoming 

increasingly important – with the goal of improving workflow 

and providing the radiologist with information that was 

previously not readily available. The associated processing 

approaches are partly designed to mimic and augment the role 

of the radiologist when identifying and extracting 

characteristics of structures contained within the image (e.g. 

computer-aided detection (CAD)), while a more recent goal is 

to extract image information that is not visually apparent for 

characterization by the radiologist (e.g. radiomics). 

When extracting quantitative information from CT data 

with high accuracy, the focus shifts away from the traditional 

image quality considerations. Indeed, for this task, the 

reconstruction step represents only an intermediate step, and a 
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more direct path consists of estimating parameters directly 

from the projection data / sinogram. Thereby one hopes to 

avoid loss of information due to various factors (e.g. 

resolution loss due to interpolation in the reconstruction, 

statistical information, degradation due to motion, etc.) but the 

price is that we must deal with data in the projection domain 

(superimposition of structures, etc.). 

Recent advances in deep learning networks show that this 

type of processing is well suited to dealing with highly 

complex data that are difficult to capture with traditional 

algorithmic approaches. As a first step in this direction we 

present initial results in the development of a solution for 

estimating vessel lumen cross-sectional area directly from 

sinogram data. This is of practical interest, for example, in the 

imaging and evaluation of coronary atherosclerosis – for 

example for characterization of coronary stenosis or for 

creating a model of the coronary vessels for use in 

computational fractional flow reserve (cFFR). 

 For static object analysis, some studies have already 

demonstrated the theoretical advantage of sinogram-domain 

analysis over image-domain analysis in some applications. 

Chesler et al. [1] analytically proved that sinogram-domain 

SNR is greater than image-domain SNR under simple 

conditions where background and target are exactly known. 

There are also simulation studies that support this claim in the 

context of attenuation-coefficient estimation and lesion 

detectability [2], [3]. For dynamic analysis, the data-driven 

approach is sometimes used for cardiac and respiratory motion 

estimation and correction [4]. A direct-sinogram approach was 

also used for automatic cardiac phase selection in 

retrospective ECG gating [5].  

II. METHOD 

A. Neural network model 

In this study, we used a generic neural network to show the 

potential of estimating vessel lumen cross-sectional area 

directly from sinogram data. We used fully connected 

networks with 3 hidden layers, where each layer consists of 48 

neurons for all studies. According to the universal 

approximation theorem, any smooth function can be described 

by one hidden-layer feedforward network [6] - [8]. The 

theorem allows a general expressibility but guarantees neither 

efficiency nor learnability. Extremely large numbers of 

neurons and iterations may be required to fit an arbitrary 

function. Since multiple-layer networks can approximate 

polynomials more efficiently than single-layer networks [6], 

[9], deeper networks are typically used. However, extremely 

deep networks are also difficult to train. We used ReLU 
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activation functions in all neurons and used SGD (stochastic 

gradient descent) for finding the weights in training. The 

network was implemented using Keras with a Tensorflow 

backend. 

B. Simulations 

1) Simple phantom simulation 

We initially performed simple phantom simulations using 

ellipses (representing vessel cross-sections) with different 

sizes, positions, and densities. The major and minor axes 

(diameters) were randomly chosen from a uniform distribution 

from 0 to 5.0 mm, and the center position was also randomly 

selected from a uniform distribution from -2.0 to 2.0 mm in X 

and Y coordinates. The ellipse density was randomly selected 

from a uniform distribution from 1.0 to 1.6 density/cm
3
. No 

background material was used. The angular orientation of the 

elliptical cross-section in the axial plane was varied by 

circularly shifting each sinogram by a random offset along the 

view direction. We used CatSim [10] to simulate a 2D 

parallel-beam geometry with 300 mA, 120 kVp, 1.0 second 

per gantry rotation, and 984 views per rotation. The parallel 

beam spacing was set to 1.0 mm and only the 10 central 

detector pixels were used to capture the projection of the 

ellipses.  

We generated 30,000 training samples and 1,000 test 

samples. Ten percent of the training samples were used for 

validation. The ground-truth ellipse area (mm
2
) was 

mathematically computed from the major/minor axes’ lengths. 

 

2)  Advanced phantom simulation 

To simulate more realistic scenarios, we set up a slightly 

more complicated phantom and CT scan settings. We created 

2D elliptical objects (representing vessel cross-sections) with 

major and minor axes (diameters) randomly selected from a 

beta distribution with a range from 0.5 to 5.0 mm such that the 

mode of the size distribution was at about 1.5 mm. The ellipse 

orientations were randomly selected; the center positions (X 

and Y coordinates) were randomly selected from a uniform 

distribution from -50.0 to 50.0 mm. The ellipse density was 

uniformly selected from 1.2 to 1.6 g/cm
3
. A 200-mm-diameter 

uniform water background was positioned at the center to 

create more realistic quantum noise in the simulated sinogram. 

For each simulation, four random vessel-representing ellipses 

were embedded in the background. We generated 5,000 

training scans and 500 test scans, thereby providing 20,000 

vessel training samples and 2,000 vessel test samples. 

We used CatSim to simulate a 2D axial fan-beam geometry 

with large bowtie filter, 300 mA, 120 kVp, 0.28 seconds per 

gantry rotation, and 984 views per rotation. The detector was 

888 pixels wide with 1.0 mm pitch. To simplify the 

experiment, we assumed that ground truth background and 

target vessel position were known. With this information, each 

target vessel “trace” (i.e., a small range of detector pixels 

centered around the nominal position of the vessel projection 

on the detector) can be extracted from each sinogram and 

supplied to a neural network. The flowchart for creating the 

network input is shown in Fig. 1. First, the ground truth 

background sinogram was subtracted from the sinogram that 

included the target vessel. Then, the vessel trace position was 

found in the sinogram by projecting the target vessel 

(indicated by the red line). The trace between two boundaries 

(indicated by blue lines) was extracted with an interval of 33 

pixels around the red line. The 33-pixel interval was wide 

enough to cover all vessel projections at any position with any 

size. The extracted sinogram was then interpolated in each 

view for the alignment to the true trace position in mm.  

C. Phantom measurements 

A custom-made vessel phantom was constructed consisting 

of vessel inserts in a homogeneous cylindrical background, 

which was then inserted in a QRM pseudo-anthropomorphic 

thorax phantom, and scanned by a 256-slice GE Revolution 

CT (Fig. 2). Twelve cylindrical holes with diameters of 1.0, 

1.1, 1.2, 1.3, 1.4, 1.5, 1.7, 2.0, 2.5, 3.0, 4.0, 5.0 mm were filled 

with 30-mg/mL iodine-water solution. (The hole in the center 

with an 8.0-mm diameter was not analyzed.) The phantom was 

placed at 9 different vertical and horizontal positions. The 

outer and inner six vessel inserts were also swapped for each 

position.  Three axial scans were performed in each position 

using 120 kVp, 350 mA, and 1.0 sec/rotation. Sinograms were 

created from the data from the two central detector rows.  

The procedure of target vessel trace extraction is shown in 

Fig. 3. Starting from the acquired sinogram data (b), a 

reconstruction was performed and a target vessel was 

Fig. 1.  Flowchart of vessel trace extraction from sinogram in a simulation. 

The ground truth background sinogram was first subtracted from the original 

sinogram. Then, the vessel trace location was found by projecting target 
vessel position (red line). The trace was extracted with blue line boundaries, 

then interpolated to align to true position in each view. Then the results were 

supplied to the neural network. 

Fig. 2.  Our vessel phantom inserted into a QRM thorax phantom 

420 The fifth international conference on image formation in X-ray computed tomography



 

identified in the resulting image (a). The location of the target 

vessel determined the corresponding vessel trace in sinogram 

(d, red line). Confounding background information was 

removed from the acquired sinogram by first erasing the 

vessel in the reconstruction using neighboring pixel averaging 

(c), forward projecting the image and subtracting the 

background sinogram (d, without the colored lines) from the 

original sinogram (b). From the resulting sinogram we 

extracted the vessel trace between the two boundaries with an 

interval of 19 pixels (d, blue lines) to obtain (e). Note that the 

first-pass reconstruction may not be strictly necessary, but it 

greatly facilitates identifying the region of interest and 

subtracting the background sinogram. 

After the 12 vessel traces were extracted from each 

sinogram, the vessel sinograms were circularly shifted in 

increments of 22.5 degrees to emulate 16 different start-scan 

angles. A total of 20,736 vessel sinograms were analyzed (12 

vessel phantoms × 18 phantom positions × 3 scans × 2 

detector rows × 16 angles). One half of the datasets were used 

for training, and the other half were used for testing.  

 

III. EXPERIMENT RESULTS 

A. Simulations 

1) Simple phantom simulation 

Fig. 4 shows a scatter plot of the estimate versus ground 

truth for the vessel cross-sectional area (mm
2
). The red line 

indicates the ideal.  The variance of estimate was almost 

uniform for all sizes. The accuracy was slightly improved as 

the vessel became larger. Fig. 4 also shows the trained 

weights in the first hidden layer. For improved display, 

these weights correspond to a 41-view case instead of a 

984-view case. It can be seen that trained network typically 

contains edge detection filters in the first layer. 

 

2) Advanced phantom simulation 

Fig. 5 shows four scatter plots of estimate versus ground 

truth for the advanced phantom simulation.  The top left shows 

the noiseless case (infinite mA) while the top right shows 

results with noise (finite mA) but without a 200-mm water 

background phantom. The bottom left is with noise and with 

the background phantom. We can observe that the noise level 

impacts the estimation accuracy substantially. The variance of 

estimation becomes larger as quantum noise increases. 

However, we found that the error could be dramatically 

reduced by partially using the weights obtained from pre-

training with noiseless data. The bottom right scatter plot is 

the results from the modified network with the same data. 

More specifically, we first trained a full network with 

noiseless data and L2 regularization. Then all other layer 

weights were trained with noisy data while the first layer was 

frozen. With this hybrid network, the error was reduced and 

became comparable to the experiment without a background 

phantom. This result implies that quantum noise makes 

network training difficult (in general, the first few layers are 

more difficult to train due to the vanishing gradient problem). 

However, the results can be improved by utilizing a hybrid 

training with noiseless data, which can be substituted by high 

mA data. 

B. Phantom measurements 

Note that there were substantial differences between the 

actual scan and simulation experiments. First, the number of 

vessel diameters was limited, so “ground truth” data in the 

scatter plot became discrete. Second, the minimum diameter 

of our circular vessels was 1.0 mm due to the mechanical 

challenges of phantom construction. We also tested only a 

single density of contrast agent (30 mg/mL). As for the vessel 

trace extraction, we developed a new scheme since target and 

background were not exactly known for the actual scan.  

Fig. 5 shows a scatter plot of the estimate versus ground 

truth for the actual scans. The variance of estimation is 

uniform for all sizes and reasonably small compared to the 

errors in the simulation results. The background subtraction 

and vessel trace extraction did not seem to degrade the 

estimate accuracy. 

 

IV. CONCLUSION 

In this paper, we demonstrated the feasibility of blood 

vessel lumen cross-sectional area estimation directly from CT 

sinogram data using a trained neural network. In simulations, 

we tested ellipses with different sizes, orientations, positions, 

and densities under realistic conditions. Although training 

becomes more challenging as quantum noise increases, the 

estimation error could be dramatically reduced by partially 

using weights obtained from pre-training with noiseless data, 

which can be substituted by high mA data. We also performed 

a similar evaluation using a custom-made vessel phantom 

scanned by a GE Revolution CT scanner. Although the vessel 

characteristics of the phantom were limited and simplified 

compared to the simulated scenarios, the estimation error was 

quite reasonable. The capabilities of sinogram-domain 

analysis versus image-domain analysis still need to be 

carefully and extensively investigated; however, our study 

 
Fig. 3.  Flowchart of vessel trace extraction in an experimental scan. The 
target vessel was erased from the reconstructed image (a) by neighboring 

pixel averaging (c). The image was then forward projected (d) and the 
sinogram was subtracted from the original sinogram (b). From the 

resulting sinogram, the vessel trace between the two boundaries (blue line) 

was extracted to obtain (e).  
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clearly demonstrated that it may be possible to use CT 

sinograms and neural networks to estimate blood vessel cross-

sectional area. 
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Fig. 5.  Scatter plots of estimation vs. ground truth for ellipse area (mm2) in an advanced phantom 
simulation. Top left is the noiseless case; top right is with noise but without 200-mm water 

background phantom; bottom left is with noise and with background phantom. Bottom right is the 

results with the same data, but the network partially reuses weights obtained from training with 

noiseless data. 

  
Fig. 6.  Estimation vs. ground truth for circular 

cross section area (mm2) using a custom-made 
vessel phantom. Twelve cylindrical holes with 

different diameters were filled with 30-mg/mL 

iodine-water solution, installed in a QRM 
anthropomorphic thorax phantom, and scanned by 

a GE 256-slice Revolution CT. 

      
Fig. 4.  Left: Scatter plot of estimation vs. ground truth for vessel cross section area (mm2) in a simple phantom simulation. Middle: An example of a 

simulated sinogram. Right: The weights in the first layer of the trained network.  
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Abstract-Metal artefacts is common in diagnostic dental CT 

images. Due to the high attenuation of heavy matters such as 

metals, severe global artefacts occur in reconstructions. Typical 

metal artefact reduction (MAR) techniques segment out metal 

regions and estimate the corrupted projection data by various 

interpolation methods. To improve the inaccuracy of 

interpolation, we proposed a three-step MAR which is easy to 

implement: firstly, metal-related projection data are recognized 

and a preliminary image reconstruction is done using linearly 

interpolated data for metal-related regions; Secondly, use 

deep-learning network to remove artefacts from linear 

interpolation and recover non-metal information; Thirdly, add 

ROI reconstruction of metals. The advantage of this method is 

that the error in reconstructions from linear interpolation can be 

easily simulated and can be well generalized to real 

interpolation-based MAR results. The proposed method was 

validated with practical clinical dental CT data. The image 

quality was significantly improved with little metal artefacts left. 

I. INTRODUCTION 

etal artefacts reduction (MAR) is a persistent problem in

modern clinical computed tomography (CT) imaging 

especially for dental CT. The high attenuation of metal 

components and beam-hardening effects introduce severe 

global streaking and shading artefacts so that significantly 

influence diagnosis. In last decades, various techniques have 

been proposed for MAR. Dual-energy CT can restrain 

beam-hardening artefacts [1]. One commonly used type of 

methods is to recognize metal projection and estimate it with 

interpolation or from forward projections [2, 3, 4]. Removing 

CT image artefacts by deep neural networks have be studied 

recently [5- 8]. For supervised learning, reference images are 

needed to form loss functions (usually L2-norm) in network 

training. In simulation, metal components are added to 

metal-free images to form labels. Then forward projection and 

reconstruction are implemented to acquire images with metal 

artefacts used as network inputs. It has been demonstrated that 

an image-domain U-Net structure can easily remove simulated 

metal artefacts and significantly improve image quality [7]. 

However, real metal artefacts are complicated by 

beam-hardening, scattering, high level of noise and other 

factors. It is difficult to generalize simulation results to real 

situation. Hence, we would like to find a new method to 

Kaichao Liang, Li Zhang, Kongkai Yang, Yuxinag Xing are members of 

Key Laboratory of Particle & Radiation Imaging and Department of 

Engineering Physics, Tsinghua University. Yirong Yang is member of 
Department of Engineering Physics, Tsinghua University. Yuxiang Xing is the 

corresponding writer (Xingyx@mail.tsinghua.edu.cn).. 

bridging simulation and real situation. 

In this work, we proposed a new MAR method based on 

optimizing coarse reconstructions from interpolated non-metal 

projection data. A U-net structure was trained in image domain 

to remove interpolation artefacts. It took 

interpolation-reconstructed images as input. For training, 

corresponding metal-free images were used as labels. The 

trained U-Net significantly improved real metal 

interpolation-reconstructed image quality. 

II. METHOD

A. Interpolation-based MAR 

In an X-ray CT, we use = +p Hμ n  to denote the discretized 

projection process with where 1Nμ being a vector denoting 

a N N image of effective attenuation map within the 

field of view (FOV). The matrix H  M N is a system matrix 

with its elements Hij descripting the contribution from pixel j to 

ith ray path, and n is a zero-mean noise vector. 1Mp is the 

acquired projection. When imaging an object with metals, we 

can separate the attenuation map into metal and non-metal 

components: metal= +μ μ μ . Correspondingly, we define p Hμ  

and
metal metalp Hμ . For interpolation-based MAR, a 

preliminary reconstruction image 
0
μ̂  is firstly acquired by a 

simple analytic reconstruction. Next, metal components are 

segmented out by a threshold: metalˆ ˆ ˆ={ : threshold}μ μ μ . 

Forward projection of metal components metal metalˆ ˆ=p Hμ  is used 

to locate metal traces. Then, the metal projections are replaced 

by interpolation in projection domain:  

Here,  g
i
 denotes the ith element in a vector, and 

interp  the 

interpolation function. The preliminary estimation 
0
μ̂  are 

reconstructed from p̂ . Fig.1 illustrates the interpolation-based

MAR process for a 2D fan-beam CT. Obviously, the
0
μ̂  has 

severe artefact. Our method use deep learning method to get

 DL 0ˆ=μ μ . Here we use 
DL to denote the operation of deep 

learning defined by our network. 

Optimize interpolation-based MAR for practical 

dental CT with deep learning 

Kaichao Liang, Li Zhang, Hongkai Yang, Yirong Yang, Yuxiang Xing 
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B. U-Net structure 

Convolutional neural networks (CNN) is a commonly used 

type of deep neural networks in imaging field. It reduces 

numbers of parameters by weights-sharing [9]. U-Net is a net 

structure based on CNN. It was firstly proposed for 

segmentation task [10]. U-Net achieves bigger receptive field 

with down-sampling process, and recovers spatial resolution by 

concatenating un-pooled feature maps with up-sampled feature 

maps. Considering that error from interpolation in projection is 

non-local, we pick U-Net to be our network structure. Our 

U-Net is as in Fig. 2. We use four down sampling and four up 

sampling in the network structure with 18 convolutional layers 

in total. Adjacent convolutional layers are connected with 

active functions [11] and batch normalization layers [12]. 

 

C. Preparation of training dataset and training 

For real CT images containing metal components, there are 

no ground-truth available. We simulated training dataset 

containing various artefacts from projection-domain 

interpolation. Firstly, metal-free images of high quality were 

prepared. Then, we randomly added metal on teeth and 

determine locations of metal projections. After that, linear 

interpolation was used to obtain metal projections. FBP 

reconstructions of these interpolated projections formed the 

simulated dataset of 
0
μ̂ . The high quality images before 

metal-insertion were used as labels. Please notice that the 

manually planted metal components were only used to locate 

metal traces so that only the planted metal shapes influence 

results. Fig. 3 shows some examples of metal insertions.  

We trained our network by minimizing L2-norm loss 

function between the outputs of U-Net and labels. Instead of 

minimizing the L2-norm loss over all pixels within the images, 

we ignored the differences in metal regions so that the network 

can focuses more on global artefacts from projection-domain 

interpolation rather than local metal shapes. 

III. EXPERIMENT RESULTS 

We acquired realistic projection data from a commercial 

Dental CT system. For our 2D experiment, we took metal-free 

CT images of 1383 patients. Each images were planted with 

metal components of different shapes to train our network. 

Among them, 1000 were used as training set, and the left were 

used as validation set. We also collected 1000 real data with 

metal components to test the trained networks. It took about 80 

epochs for the network to converge. The error curves are 

showed in Fig. 4. After training, we test our network on real 

patient data with metal plants. Results are shown in Fig. 5. We 

demonstrated four cases with complicate components of metal. 

In all four cases, the streaking and shading artefacts from metal 

around metal area are significantly reduced. We can see that our 

simulation-data trained network can be well generalized to real 

cases. 

 

 

 
Fig.1 Interpolation-based MAR process with the orange arrows indicate 

the steps. (a) Acquired projection. (b) Forward projection of metal 

components from (e). (c) Interpolated projection. (d) FBP reconstruction 

from (a). (e) Segmented metal components. (f) FBP reconstruction from 

(c). 

 
Fig. 2 U-Net structure. 

 

 

 
Fig. 3 Examples of high quality images without and with metal 
insertions. Top row: original meatal-free images. Bottom row: 

metal-inserted images. 
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IV. CONCLUSION

In this work, we proposed a strategy to build a transferable 

learning from simulation to practical system for metal artefact 

reduction. A supervised deep-learning method can thus be 

applied directly for practical usage. Our strategy is to 

transforms MAR problem to interpolation artefacts reduction 

problem so that simulation training data with ground-truth 

labels can easily model the same features with real data. The 

network significantly optimized both simulation data and real 

data. Our experimental results demonstrated that 

projection-domain interpolation + FBP + U-Net frame is an 

effective MAR method that can be used to practical dental CT. 

While we carried out our experiments in 2D, the method can be 

extended to 3D easily. 
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Fig. 4 Convergence of the loss function for the U-Net 

Fig. 5: Four cases of MAR with trained U-net. From left to right: Reconstructions with no MAR, MAR with interpolation, proposed Interpolation + 

U-Net，proposed Interpolation + U-Net together with metals. 
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Performance comparison of deep learning based 

denoising techniques in low-dose CT images 

Byeongjoon Kim, Hyunjung Shim, Jongduk Baek 

 

 
Abstract—Deep learning has become a promising tool for 

reducing noise in low-dose CT images. However, it has not 

been explored the dependency of the network modifications on 

denoising performance. In this work, we compare the 

denoising performance of various network structures and loss 

functions (i.e., L1, L2, and perceptual loss function). The 

network training was conducted using images from XCAT 

phantom data with different quantum noise levels, and tested 

using independently generated XCAT images. The results 

show that UNet with a perceptual loss function reduces the 

noise effectively while preserving details in ultra-low dose CT 

images. 

Keywords—low dose, computed tomography, deeper network, 

loss functions 

I. INTRODUCTION 

URING the last decade, reducing a patient dose in CT 
scans has become an important issue, and thus there 

have been much efforts in developing techniques to improve 
image quality of low dose CT images. While employing 
iterative techniques [1-3], or adapting filtering based 
denoising techniques into sinogram [4,5] and reconstruction 
space [6,7] were effective to reduce CT noise, these 
techniques often introduced image blurs or required high 
computational costs.   

Recently, convolutional neural networks (CNNs) have 
been shown the impressive performance for color image 
denoising. Upon this success, the initial result in low dose 
CT denoising using a 3-layer CNN was presented by Hu 
Chen et. al. [8]. While the 3-layer CNN shows promising 
results with improved computational efficiency and 
sharpness of the object structures, when the noise level is 
higher or the object structure is more complex, more 
powerful model using a deeper network or different loss 
functions would be required for effective denoising in low 
dose CT images. 

The naïve approach to constructing a deeper network is 
to include additional layers on top of the 3-layer network, 
but this entails difficulty in network optimization, such as 
gradient vanishing. To implement the deeper network 
architecture without gradient vanishing problem, residual 
blocks have been introduced in object classification problem 
[9]. Residual blocks force the networks to learn residual 
mapping functions, effectively increasing the gradient 
during training such that the gradient vanishing can be 

alleviated. Alternative approach is to utilize the autoencoder 
architecture such as denoising autoencoder or UNet, which 
combines the autoencoder with skip connections and is 
widely used in bio-medical applications [10].  

Choosing an appropriate loss function is also important 
to improve the quality of results. The effect of loss functions 
has been investigated in the problem of color image 
denoising [11]. However, this issue has not been discussed 
in the domain of medical imaging. In this work, we 
investigate the denoising performance in ultra-low dose CT 
images using a variant of deeper networks with various loss 
functions, and compare them with the 3-layer CNN. 

II. METHODS 

A. Network Architecture  

A-1. Deep Residual Network 

The deep residual network consists of a single 3x3 
convolution layer followed by six residual blocks and a 
single 1x1 convolution layer. The residual blocks are 
composed of batch normalization, ReLU and 3x3 
convolution layers. Each residual block has a skip 
connection that adds output of a previous residual block to 
output of a present residual block. For each 3x3 convolution 
layer, 32 filters are learned. We denote this network as a 
DResNet as shown in Fig. 1(a). 

A-2. UNet  

The UNet in [10] was modified by replacing up-
convolution with nearest neighbor interpolation in order to 
reduce checkerboard artifacts induced by deconvolution. 
Thus, the modified UNet is composed of 23 convolutional 
layers. As illustrated in Fig. 1(b), UNet includes 9 sub-unit, 
called a module, and each module with downsampling (or 
upsampling) would be the input to the next module. In 
addition, UNet also introduces a skip connection, which 
concatenates the output of encoder module to the input of 
the decoder module with the same scale. In this way, details 
from encoder layers can be directly transferred to the 
decoder, preventing information loss caused by down-
sampling.  

A-3. Loss functions 

 DResNet and UNet were trained with different loss 
functions: L1 loss, L2 loss, and the perceptual loss. 
Perceptual loss measures the quality of image using 
differences between feature representations instead of pixel 

D 
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differences. This strategy has been successfully applied to 
image generation tasks, such as texture synthesis [12] and 
style transfer [13]. In this paper, the perceptual loss was 
calculated at the block3_1 layer of the VGG-16, denoted as 
VGG loss. The intermediate layer, block3_1, was chosen 
because calculating loss at the higher feature domain 
produces distortions in texture and object shape in denoising 
results [14], while the lower feature domain does not capture 
abstract information that helps considering semantically 
meaningful information. Because of pooling layers used in 
the VGGNet, our network with perceptual loss alone 
produces a checkerboard artifact in denoising results. To 
reduce this artifact, our networks were fine-tuned with L1 or 
L2 loss, denoted as VGG-L1 and VGG-L2, respectively. 

A-4. Trained networks 

We trained DResNet with L1 and L2 loss functions, 
each denoted by DResNet-L1, DResNet-L2. The UNet was 
trained with L1 and L2 loss functions, and perceptual loss: 
UNet-L1, UNet-L2, UNet-VGG, UNet-VGG-L1, UNet-

VGG-L2. For comparison with shallow networks, the 3-
layer CNN was also trained using L2, denoted as Hu-L2.  

B. Dataset 

The abdomen part of an XCAT phantom was used for 
data generation. 12 different patients were simulated by 
varying patient size and amounts of fat and muscle. For each 
patient, 50 abdomen slices were extracted, and projection 
data were acquired using Siddon’s method [15]. To generate 
different noise levels, 100, 300, 500, and 1000 detected 
photons per detector cell (i.e., N0) were used by assuming 
the ideal bowtie filter. The images were reconstructed by 
direct fan beam reconstruction with an equally spaced 
detector array [16]. The simulation parameters are 
summarized in Table I. The noise generation process was 
conducted twice independently for each projection data, 
which generates 4800 images in total. For the network 
training, 3600 images from 9 patients were used, and the 
rest 1800 images were used for test. A sample image is 
presented in Fig. 2. 

C. Training Configurations 

Patches with a size of 32x32 pixels were extracted from 
each image by sliding window at every 16 pixels. Also, the 
DResNet was trained with those of 32x32 patch while UNet 
was trained with a full-scale image. A batch size of 
DResNet was 256 while that of UNet was 1. UNet-VGG-L1 

TABLE I. Simulation parameters 
 

Parameters Values 

Phantom 
Size 51.2 × 51.2 cm2 (512 × 512) 

Pixel width 0.1 cm 

Reconstructed 

Images 

Size 
43.52 × 43.52 cm2 (256 × 

256) 

Pixel width 0.17 cm 

Geometry 

Source-isocenter 

distance 
50 cm 

Source-detector 

distance 
50 cm 

Data acquisition 
angle 

360° 

Number of 

views 
1024 

Detector array 
length 

102.4 cm (512 × 1) 

Detector cell 

width 
0.2 cm 

Photon 
Energy 70 keV 

Blank scan flux 100, 300, 500, 1000 

 

Fig. 2. (a) Sample abdomen CT image (left) and (b) region of interest 
extracted from the red dotted square (right). 

 
Fig. 1. Network architecture of (a) DResNet (left) and (b) UNet (right) 
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and UNet-VGG-L2 were trained for 50 epochs and all other 
networks were trained for 40 epochs. The number of 
iterations was determined empirically by observing the 
convergence of the loss function. For the solver, we chose 
an Adam optimizer [17], and the learning rate initially to be 
0.005, and gradually reduced to 0.0001. For each network, 
training time took 2 to 4 hours. 

III. RESULTS 

 Fig. 3 and Fig. 4 compare the original FBP image, 
noiseless image, and denoised images from the various 
network structures with different noise levels (i.e. 100 and 
1000 detected photons per detector cell cases). In Fig. 3, 

Hu-L2 loses details of the original images as shown by two 
red circles, but all other networks preserve the original 

details with reduced noise. When the noise level is high, 
denoising performance varies for different networks as 
shown in Fig. 4. It is observed that the denoising 
performance of Hu-L2 is worse than other networks. While 
the DResNet-L1 and DResNet-L2 eliminate the noise 
effectively, small features are also blurred out. UNet-L1 and 
UNet-L2 preserve details of the original structures, but the 
effect of using different loss function is reflected as 
preserving the sharpness of the original structures, including 
small features. UNet-VGG shows the checkboard artifacts 
as addressed earlier, which is removed effectively by UNet-
VGG-L1 and UNet-VGG-L2 networks. Overall, UNet-
VGG-L1 and UNet-VGG-L2 networks provide good 

denoising performance without losing small features of the 

 
Fig. 3. The region of interest in (a) low dose reconstructed image (i.e., 1000 detected photons per detector cell), (b) noiseless reconstructed image, output of (c) 
Hu-L2, (d) DResNet-L1, (e) DResNet-L2, (f) UNet-L1, (g) UNet-L2, (h) UNet-VGG, (i) UNet-VGG-L1, and (j) UNet-VGG-L2. The red dotted circles indicate 

details in interest.  

 
Fig. 4. The region of interest in (a) ultra-low dose reconstructed image (i.e., 100 detected photons per detector cell), (b) noiseless reconstructed image, output of 
(c) Hu-L2, (d) DResNet-L1, (e) DResNet-L2, (f) UNet-L1, (g) UNet-L2, (h) UNet-VGG, (i) UNet-VGG-L1, and (j) UNet-VGG-L2.  The red dotted circles 

indicate details in interest. 
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original image. 

Table II summarizes quantitative results (i.e., root mean 
square error (RMSE), peak signal to noise ratio (PSNR), and 
structural similarity (SSIM) index) of denoising 
performance with different network structures. It is observed 
that UNet-VGG-L1 and UNet-VGG-L2 networks provide 
the highest denoising performance for both low dose and 
ultra-low dose CT images. Note that UNet-VGG was not 
considered in the quantitative evaluation due to the 
checkerboard artifacts. Our results show that UNet shows 
better denoising performance than DResNet, which would 
be attributed to its larger receptive field and various relative 
kernel sizes by pooling layers. Since the CT noise is highly 
correlated, using a larger receptive field in UNet can be 
more effective in denoising of CT images. 

IV. DISCUSSION AND CONCLUSION 

In this work, we investigate the denoising performance 
in low dose and ultra-low dose CT images using various 
network structures and loss functions of deep neural 
network. Our results showed the strength of the deeper 
network with a perceptual loss function for denoising of 
ultra-low dose CT images. While we used simple image 
quality metrics (i.e., RMSE, PSNR, SSIM) to evaluate the 
network performance, it would be more appropriate to use 
mathematical observer models due to the non-linear nature 
of the deep neural network. In the future, we plan to conduct 
a task-based assessment using mathematical observer 
models for each network.  
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TABLE II. Results of quantitative evaluation for test images with different noise levels (N0). 
 

 Input Hu-L2 DResNet-L1 DResNet-L2 UNet-L1 UNet-L2 
UNet-VGG-

L1 

UNet-VGG-

L2 

N0 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 

RMSE

(1e-3) 
6.37 

±0.05 

20.27 

±0.16 

8.64 

±0.69 

13.27 

±0.70 

2.21 

±0.11 

4.80 

±0.26 

2.11 

±0.09 

4.50 

±0.24 

3.54 

±0.27 

5.40 

±0.24 

3.88 

±0.53 

4.74 

±0.56 

3.86 

±0.31 

4.57 

±0.36 

3.64 

±0.31 

4.45 

±0.36 

PSNR 
43.92 

±0.06 

33.86 

±0.07 

41.30 

±0.69 

37.56 

±0.46 

53.12 

±0.43 

46.39 

±0.47 

53.51 

±0.37 

46.96 

±0.47 

49.04 

±0.65 

45.36 

±0.39 

48.30 

±1.09 

46.54 

±0.96 

48.31 

±0.70 

46.84 

±0.67 

48.80 

±0.74 

47.06 

±0.70 

SSIM 
0.9692

± 

0.0009 

0.7670

± 

0.0054 

0.9755 

± 

0.0027 

0.9015

± 

0.0085 

0.9974 

± 

0.0003 

0.9891

± 

0.0013 

0.9977 

± 

0.0002 

0.9904

± 

0.0011 

0.9947 

± 

0.0015 

0.9876

± 

0.0015 

0.9940 

± 

0.0023 

0.9913

± 

0.0027 

0.9940 

± 

0.0012 

0.9919

± 

0.0014 

0.9945 

± 

0.0011 

0.9921

± 

0.0013 
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Variational network learning for low-dose CT
Erich Kobler, Matthew J. Muckley, Baiyu Chen, Florian Knoll, Kerstin Hammernik,

Thomas Pock, Daniel K. Sodickson, and Ricardo Otazo

Abstract—The reconstruction of high quality images from low-
dose X-ray CT scans data is a topic of significant technical
and clinical relevance. In this paper, we develop learning-based
variational networks (VNs) to reconstruct low-dose 3D helical
CT data. We consider two dose reduction methods: (1) x-ray
tube current reduction and (2) x-ray beam interruption also
known as SparseCT. In the first case we train a VN to denoise
the current-reduced reconstruction to account for the smaller
signal-to-noise ratio, whereas, in the second case the VNs learn
reconstruction schemes that suppress undersampling artifacts.
We use 4 clinical abdominal 3D scans to train VNs for 4-fold
dose reduction and compare against state-of-the-art model-based
denoising and sparse reconstruction methods on a 5th clinical
abdominal test scan. The proposed VNs improve performance
over state-of-the-art iterative model-based denoising and sparse
reconstruction techniques. VNs for SparseCT compare favorably
to VNs for current reduction, particularly for reconstruction of
small low-contrast features.

Index Terms—CT image reconstruction, SparseCT, low-dose
CT, compressed sensing, machine learning, variational networks

I. INTRODUCTION

The increasing utilization of CT scanners in clinical imaging
examinations, has triggered the need to reduce the radiation
dose, particularly for recurrent studies. One of the most com-
mon approaches is to reduce the tube current, e.g., tube current
modulation [1], or lower tube currents in conjunction with
iterative model-based denoising methods [2]. These techniques
have been successfully integrated in commercial scanners, but
they only offer moderate radiation dose reductions of 30-
40% in practice, due to compromises between denoising and
smoothing.

The radiation dose can also be mitigated without reducing
the tube current by decreasing the number of X-rays that
penetrate a patient during a CT scan. The compressed sensing
(CS) theory [3] supports this approach, since CT images are
compressible in a transform domain and reducing the num-
ber of X-ray projections results in small additive incoherent
streaking artifacts. A simple way to omit projections is to
perform angular undersampling, i.e., just acquire projections
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for a fraction of the angular views, as proposed by [4]. The
SparseCT method [5] extended this idea by blocking a subset
of X-rays in an incoherent way across the angular and slice
dimensions, which divides the overall undersampling along
multiple dimensions and thus increases the perfromance of
CS for reconstruction of the whole volume.

Recent low-dose CT reconstruction algorithms for low-
current and/or undersampled data are typically model-based
iterative methods that incorporate prior knowledge to increase
image quality. These prior models are typically rather simple
and model just a small subset of the CT image statistics, e.g.,
the popular total variation (TV) prior enforces sparsity in the
image gradient domain. In addition, the balance between a
regularizing prior term and a data fidelity term has to be empir-
ically tuned to generate suitable reconstructions. In accelerated
magnetic resonance imaging, deep learning was introduced
to overcome this empirical tuning and to learn image mod-
els that are tailored towards medical imaging, demonstrating
significant improvements over standard compressed sensing
algorithms [6]. Likewise, recent work on deep learning for
low-dose CT demonstrated improved performance compared
to standard denoising and sparse reconstructions [7]–[9]. The
U-net-like structures of [8] and [9] as well as the residual en-
coding network of [7] learn a mapping from low-dose filtered
back-projection images to reference images that encodes and
decodes the relevant information, in contrast to the step-wise
refinement structure of [6].

In this work, we propose to learn variational networks for
low-dose CT data acquired with tube current reduction and
SparseCT. We train the VNs on four clinical abdominal data
sets and evaluate the reconstruction quality of the proposed
VNs on a test data set and compare it to state-of-the-art model-
based reconstructions.

II. MODEL-BASED CT RECONSTRUCTION

The process of acquiring CT data of a volume u ∈
RM×N×D can be formalized as

d = Au+ n , (1)

where d ∈ RP is the post-log measured data of P X-ray pro-
jections. The random variable n models the effects of quantum
and electronic noise and is assumed to be Gaussian due to pre-
processing. The linear forward operator A : RM×N×D 7→ RP
implements the mapping from the volume to the measurement
data that is defined by the scanner geometry. For SparseCT A
additionally implements the undersampling pattern.
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u0 −∇f1
{TCR,SCT}(ut) +
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(a) Variational Network (VN) structure for CT
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Kc(t) -φ′c(t) K∗c(t) +

· − u0 -λc(t)

ut

(b) VU for CT denoising
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(c) VU for CT reconstruction

Fig. 1. (a) Illustration of the VN for CT and the variational units (VU) for
(b) CT denoising and (c) CT reconstruction.

For a given noisy and possibly undersampled CT scan data
d, the inverse problem of recovering the volume u is usually
defined by a variational minimization problem such as

min
u
F (u) := β‖∇u‖1 +

1

2
‖Au− d‖22 . (2)

Here the scalar β ≥ 0 is used to balance the solution between
smoothness, which is enforced by the total variation (TV), i.e.,
`1-norm of the image gradients, and data fidelity. A suitable
algorithm to solve (2) is the primal-dual approach with line
search [11], since it requires just a view evaluations of the
operator A that are computationally expensive.

III. VARIATIONAL NETWORKS FOR CT

Typical optimization schemes for variational imaging mod-
els, such as (2), can be implemented using convolutional net-
works. This observation, inspired [12] to train all parameters of
a gradient descent scheme for variational image reconstruction
models, i. e., analysis operators, potential functions, weighting
and step sizes, from data. Variational networks (VNs) [13]
connect this scheme, convolutional neural networks and vari-
ational minimization. To adapt VNs for CT, we apply fields-
of-experts-type priors [14] of the form

Rc(u) = 〈1, φc(Kcu;Wc)〉 (3)

that are parameterized by a convolution operator Kc :
RM×N×D 7→ RM×N×D×Nk , which stacks Nk 3D convo-
lutions Ki

c : RM×N×D 7→ RM×N×D, and corresponding
potential functions φic(·;wic) : R 7→ R. These functions are
point-wisely applied to the corresponding filter response and
are parameterized by the weights wic ∈ RNw . For the sake
of simplicity, we group all these functions into φc(·,Wc) and
their parameters (wic)

Nk
i=1 into Wc.

We use this prior model to construct a variational energy
that fits into the VN framework [13] and define it as

F{TCR,SCT} : =
C∑
c=1

f c{TCR,SCT}(u) (4)

f c{TCR,SCT}(u) = Rc(u) +
λc
2
D{TCR,SCT}(u) , (5)

where the data term D{TCR,SCT}(u) is adapted according to
the dose-reduction approach. In the case of tube current reduc-

tion (TCR) we learn to denoise initial low-dose reconstruction,
hence we use a simple `2-norm denoising data term

DTCR(u) = ‖u− u0‖22 . (6)

In the case of SparseCT (SCT) we use the forward operator A
and the undersampled data d to enforce data consistency to the
undersampled data and facilitate the reconstruction scheme

DSCT (u) = ‖Au− d‖22 . (7)

For both low-dose VNs we use a cyclic component selection
function, i.e., c(t) = mod (t, C), and follow [13] to define
a variational unit (VU) as

ut = ut−1 −∇f c(t){TCR,SCT}(ut−1) , (8)

where the gradients of the energy components are given by

∇f cTCR(u) = K∗cφ
′
c(Kcu;Wc) + λc(u− u0) (9)

∇f cSCT (u) = K∗cφ
′
c(Kcu;Wc) + λcA

>(Au− d) . (10)

The adjoint operator of Kc is denoted as K∗c and it is defined
as a convolution with all 180 rotated filter kernels followed by
a point-wise summation. Figure 1 illustrates the computation
outline of a VN for low-dose CT. The input u0 is transformed
into the output uT by applying T steps of the form (8).

A. Training of VNs for CT

To train a VN for a set of training samples (us0, u
s
tar)

S
s=1,

we minimize the problem

min
θ∈T

1

2

S∑
s=1

‖bs � (usT − ustar)‖22 , (11)

where θ = {Wc,Kc, λc, c = 1 . . . C} holds all the parameters
of the VN. As [13], we constrain the parameters to an admis-
sible set T that enforces λc ≥ 0 and that each convolution
filter has zero-mean and its `2-norm lies on the unit ball. We
are only interested in reconstructing the central scan regions
because of the missing ray density at border regions. Thus
we apply a binary mask bs ∈ {0, 1}M×N×D that selects
the 9 central slices where utar ∈ [0, 1] and � indicates a
point-wise multiplication. Note that we rescaled the images
such that the HU interval [−200, 280] is mapped to [0, 1]
to ease training and account for the desired HU range. We
solve the constrained training problem (11) by using the Adam
optimizer [15] extended by an additional back projection step
onto T after each gradient step. We perform 1000 gradient
steps using the default moments of the Adam optimizer and a
step size of 1× 10−2.

B. Experimental Setup

For the reconstruction of low-dose CT data we apply
T = C = 10 variational units and use Nk = 32 convolution
filters of size 11 × 11 × 3 and their corresponding activation
functions are parameterized by Nw = 31 Gaussian radial
basis functions. We scaled the volumes for both training and
test data such that the interesting Hounsfield unit interval
[−200, 280] is mapped onto [0, 1] to ease the training of the
parameters. We use 8 filter-function-pairs that are defined
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TABLE I
TRAINING AND TEST DATA SETS

reference tube current tube voltage radiation dose gantry rotations
mAs kV CTDIvol -

train

240 120 21.19 16
240 120 19.01 26
240 120 22.26 19
350 120 29.63 20

test 320 100 12.90 17

on the interval [−4, 4] to regularized the entire HU range,
whereas, the remaining 24 filter-function-pairs are defined on
[−1, 1] to account for the details in the desired tissue interval.
In total 126,090 parameters were trained for each VN.

We used four clinical 3D in vivo abdominal CT scans of
different patients of a Siemens Definition AS scanner. Table I
shows acquisition properties of the train and test scans. In
order to fit the CT data reconstruction onto a single GPU, we
split the data of each CT scan after a full gantry rotation and
ended up with 81 batches for training and 17 test samples.
For every sample we reconstructed an imaged volume of size
384 × 384 × 30. The target volumes ustar were computed by
solving (2) with β = 1 using [11] on the full-dose CT data.
Likewise, the initial reconstructions us0 were generated with
β = 1× 10−9 using either simulated fully-sampled low-dose
data [16] or binary subsampled full-dose data for SCT. We
apply the same W1S4 undersampling pattern as in [17] for a
4-fold dose reduction.

IV. RESULTS

We used the test data set to evaluate the reconstruction
quality of the learned VNs for both TCR and SCT for 4-
fold radiation dose reduction. Table II depicts a quantitative
evaluation of the root mean squared error (RSME) of the
proposed VNs and state-of-the-art model-based denoising and
reconstruction approaches. In Fig. 2, we qualitatively compare
representative abdominal slices reconstructed by the proposed
VNs to the full-dose reference, SAFIRE [2] and TV recon-
struction.

In the case of tube current reduction, the proposed VN for
TCR outperforms SAFIRE [2] in terms of RMSE and also in
reconstruction quality. The VN presents a higher noise reduc-
tion of the imaged volume, while keeping the fine structure
of the vessels in the liver. The resulting images are slightly
smoothed though. Since SAFIRE applies an edge-enhancing
kernel to highlight edges in the reconstructions, we removed
the skin region from the binary mask b in the evaluation
process to perform a fair comparison. Fig. 3 depicts the
difference to a corresponding reference slice for the considered
methods. Clearly, SAFIRE yields higher differences at edge
regions but also the remaining regions are rather noisy.

In the case of SparseCT, the trained VN yields a lower
RMSE than the TV model-based reconstruction using 4-fold
undersampled test data. The VN for SCT removes the aliasing
artifacts better than the TV reconstruction, while maintaining
the fine vessels in the liver. Moreover, the reconstructions of
the VN for SCT present more details than those of the VN
for TCR and are also sharper, highlighting the advantages
of SparseCT over tube current reduction for the same dose

TABLE II
QUANTITATIVE COMPARISON OF THE DIFFERENT 1/4-DOSE CT METHODS

BY MEANS OF RMSE TO THE TARGET utar , MEASURED IN HU.

SAFIRE [2] TV VN TCR VN SCT
17.75± 2.11 8.84± 1.20 7.91± 0.90 7.72± 0.82

reduction factor. In addition, the reconstructions of a VN for
SCT using 6-fold undersampling are shown on the right in
Fig. 2. Despite the increased dose reduction, the VN for SCT is
able to reconstruct the fine details and remove aliasing artifacts
and yield reconstructions with a similar quality.

V. CONCLUSION

In this work, we extended variational networks to recon-
struct CT volumes from low-dose data. We learned VNs for
two popular radiation dose reduction methods, namely tube
current reduction and SparseCT. The proposed VNs yield
reconstructions that outperform state-of-the-art denoising and
sparse reconstruction methods for low-dose CT. The VNs
present a higher noise and artifact reduction, while fine details
such as vessels are properly reconstructed. The learned recon-
structions for undersampled data (SCT) show more details and
are sharper than the learned denoising scheme for reduced-
current data (TCR). Our experiments suggest that the proposed
VNs increase the image quality for a given radiation dose
and would enable higher radiation dose reductions. Future
work includes the extension of the binary undersampling
masks of SparseCT to more realistic undersamling masks as
in [18]. Additionally, we work on speeding up the training and
reconstruction process by means of ordered-subsets.
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(a) full-dose (b) SAFIRE (c) TV (d) TCR (e) SCT (f) SCT

Fig. 2. Representative slices for reconstruction of in vivo abdominal test data for low-dose CT. The purple boxes report RMSE values. (a) Target: TV (β = 1)
reconstruction of the fully-sampled high dose data, (b) SAFIRE [2] using 1/4 dose, (c) TV (β = 1.75) reconstruction using 4-fold undersampling, (d) VN
for TCR reconstruction using T = 10 steps and 1/4 dose, (e) VN for SCT reconstruction using T = 10 steps and 4-fold undersampling, and (f) VN for
SCT reconstruction using T = 10 steps and 6-fold undersampling.

(a) SAFIRE (b) TV (c) TCR (d) SCT (e) SCT

Fig. 3. Error to the reference reconstruction utar for the first two slices presented in Fig. 2. (a) SAFIRE [2] using 1/4 dose, (b) TV (β = 1.75) reconstruction
using 4-fold undersampling, (c) VN for TCR reconstruction using T = 10 steps and 1/4 dose, (d) VN for SCT reconstruction using T = 10 steps and 4-fold
undersampling, and (e) VN for SCT reconstruction using T = 10 steps and 6-fold undersampling. Note that we mapped the HU interval [-150, 150] to [0,
1] to ease visualization.
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MR to X-ray Projection Image Synthesis
Bernhard Stimpel, Christopher Syben, Tobias Würfl, Katrin Mentl, Arnd Dörfler, and Andreas Maier

Abstract—Hybrid imaging promises large potential in medical
imaging applications. To fully utilize the possibilities of corre-
sponding information from different modalities, the information
must be transferable between the domains. In radiation ther-
apy planning, existing methods make use of reconstructed 3D
magnetic resonance imaging data to synthesize corresponding X-
ray attenuation maps. In contrast, for fluoroscopic procedures
only line integral data, i.e., 2D projection images, are present.
The question arises which approaches could potentially be used
for this MR to X-ray projection image-to-image translation.
We examine three network architectures and two loss-functions
regarding their suitability as generator networks for this task.
All generators proved to yield suitable results for this task.
A cascaded refinement network paired with a perceptual-loss
function achieved the best qualitative results in our evaluation.
The perceptual-loss showed to be able to preserve most of the
high-frequency details in the projection images and, thus, is
recommended for the underlying task and similar problems. The
abstract goes here.

Index Terms—Medical image synthesis, multi-modality fusion,
machine learning, Fluoroscopy

I. INTRODUCTION

Promising concepts on how a combined magnetic resonance
(MR) and computed tomography (CT) imaging device may
look like were proposed in the past. Wang et al. [1] published
a top-level design of an MR-CT scanner consisting of two
superconducting electromagnets surrounding multiple, rotat-
able X-ray sources. The desired application for their model
is combined image reconstruction for plaque characterization.
In contrast, [2] focused on the interventional applicability of
a hybrid MR-X-ray system and showed the great potential of
this application. Assuming an imaging device that is capable
of acquiring corresponding X-ray and MR projection images
simultaneously, or at least consecutively in the same state of
motion, the combined information would be highly useful for
fluoroscopic procedures. On the one hand, overlay strategies
of both modalities in their respective form could be used to
simultaneously visualize soft- and dense-tissue or -material.
On the other hand, the information of one modality could
be transferred to the domain of its counterpart. This infor-
mation could then be used for further processing and image
enhancement. A possible application would be to exploit the
high signal-to-noise ratio of MR imaging, especially in soft-
tissue regions, to apply denoising methods on the correspond-
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ing X-ray images. Considering that the noise level in X-
ray Fluoroscopy is directly related to the applied radiation
dose, a higher tolerance for noise could lead to reduction
of harmful patient radiation exposure. Furthermore, it allows
for investigations in the field of super-resolution. Most of the
mentioned applications would require corresponding images
in the same domain. The acquisition of projection images that
match the typical projective distortion directly from the MR
is possible, as shown by [3], [4]. To allow for further down-
stream processing, a possibility to transfer the information
between the projection images in the distinct domains would
be useful. Similar methods are already used in radiation
therapy planning, where attenuation maps are estimated from
pseudo-CT scans that are synthesized from corresponding MR
data [5], [6], [7]. However, all these methods are based on 3D
tomographic image data. In contrast, for fluoroscopic proce-
dures this transfer between the domains must be performed
based on line integral data, i.e., 2D projection images, and not
on reconstructed images. Motivated by its possible applications
and inspired by existing methods from radiation therapy and
natural image synthesis, we investigate different deep learning-
based methods for X-ray projection image synthesis from MR
projections.

II. METHODS

Convolutional neural networks have shown great results in
natural and medical image synthesis [6], [8]. Based on this,
three different generator network architectures are used in the
underlying work with the goal to generate X-ray projections G
from input MR projection images I . Training and evaluation
are done using corresponding MR and label X-ray projections
L. All models have been adapted to our specific application.
An overview of the investigated network architectures is given
in Figure 1. Furthermore, we examined the impact of two
different loss-functions on the generated results.

A. Model Architecture

Convolutional auto-encoders are a popular choice for gener-
ator networks in image synthesis. In general, an auto-encoder
consists of an encoder and a decoder path. In the encoder path
the image’s resolution is decreased and the filter dimension is
increased. The subsequent decoder path reverts this process
to reach the initial resolution and dimension again. Enhancing
the encoder-decoder structure with skip-connections between
corresponding resolution levels has proven to be beneficial
regarding the conservation of spatial information lost during
down-sampling. Our first network model is close to the well-
known ”U-net” introduced by Ronneberger et al. [9]. Instead
of maximum pooling layers we use strided convolution with
stride two for up- and down-sampling. In addition to the
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Fig. 1: Schematic architectures of the different generator networks.

architecture presented in Figure 1, the first three layers of
the synthesis path use dropout with a keep probability of 50
percent.

The second generator network is a deep residual network
(ResNet) [10] which was initially proposed for image recog-
nition. The key component of this approach are residual
connections that allow for more robust training of deeper
networks than before. Besides the original application, this
network architecture proved to yield good result in generative
tasks. We use the model proposed by [11] for style transfer to
generate our estimated X-ray projections. Deviating from their
proposal, we add nine residual blocks instead of the originally
proposed five.

Finally, a cascaded refinement network (CRN) is used as
image generator. This model was recently proposed by Chen
et al. [12] and yielded good results on natural image synthesis
from a semantic layout. In contrast to many currently proposed
approaches, their model does not use adversarial training but
relies on a single feedforward network. The semantic layout
as input is replaced by MR projection images in our case. The
network consists of multiple refinement modules that work in
a multi-scale strategy from coarse to fine as presented in Fig-
ure 1. The full model is built from 8 single refinement modules
and the final 1 x 1 convolution layer maps the output to a single
channel image. A major difference to the first two network
architectures is that Chen et al. relinquished convolutional
layers in the down-scaling path and, instead, only use resizing
operations. Input information from higher resolution scales is
solely incorporated using concatenation. By this, additional
model capacity can be used for the subsequent up-scaling path.

B. Objective Functions
The choice of the objective function is a key aspect in

every machine learning application. Multiple functions have
been used for the task of image-to-image translation and
image synthesis in the past. We picked two different loss-
functions to compare them in our approach. Since a one-to-
one correspondence is given by the matching image pairs, a
simple but suitable loss function for image generation tasks is
the `1-norm [13]. Pixel-wise comparison of the generated and
label image intensities via the `1-loss function can be done by
calculating

E`1(L,G) =
N∑
i

|L(i)−G(i)| , (1)

where i denotes one image pixel, i ∈ N , and N is the number
of all pixel in one image.

A second loss function that was recently proposed for
natural image synthesis without corresponding image pairs is
the perceptual-loss [11]. The perceptual-loss does not calculate
the error between the estimated and real intensity values.
Instead, the generated and the label image are fed into a
pre-trained image classification network that we will refer to
as evaluation network in the following. While the resulting
classification scores are not of interest, the raw feature activa-
tions between the different input images are compared. The
underlying theory is that similarly looking images activate
the same units in the image classification network, i.e. the
higher the accordance between both feature activations the
more similar the generated and label image are. The loss
function can be written as

Ep(L,G) =
K∑
k

(V k(L)− V k(G)) , (2)

where V k(L) and V k(G) is the feature activation map of the
evaluation network for the label image L and the generated
image G at the current layer k, k ∈ K. In this approach,
the perceptual-loss is computed on the VGG-19 network [14]
which was pre-trained on the ImageNet data set [15].

All generators are trained with an ADAM optimizer [16]
and a learning rate of 0.004 for 100 epochs.

III. EXPERIMENTS

Experiments were conducted using data of a realistic MR
and X-ray sensitive phantom of the human head. Data was
acquired on a 1.5 T Aera MR and a Axiom-Artis C-arm CT
scanner (Siemens Healthcare GmbH, Forchheim, Germany).
An ultra-short echo time sequence was used for the MRI scans.
The reconstructed images’ resolution is 320 x 320 x 250 with
a spacing of 0.93 x 0.93 x 0.93 mm3. The X-ray scans of the
same phantom exhibit a voxel size of 0.48 x 0.48 x 0.48 mm3

and a resolution of 512 x 512 x 399. Image registration of
the corresponding scans was performed using elastix. The
input (MR) and label (CT) images were generated by forward
projecting the registered stack from various angulations using
the CONRAD framework [17]. In this manner, 3200 different
projection image pairs of both modalities were created and
randomly divided into 3000 training and 200 testing images.
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MAE SSIM PSNR

U-net - p-loss 0.083 0.891 26.994

ResNet - p-loss 0.077 0.924 27.675

CRN - p-loss 0.071 0.931 28.353

U-net - l1-loss 0.068 0.917 28.506

ResNet - l1-loss 0.058 0.938 30.067

CRN - l1-loss 0.084 0.920 27.097

TABLE I: Quantitative results of the different network archi-
tectures and loss functions

The evaluation of the output can be done by calculating
the deviation of the generated X-ray G from the real X-ray
images L. The mean squared error (MSE) can be used to this
end. It is computed as

MSE(L,G) =
1

N

N∑
i

∥∥L(i)−G(i)
∥∥2
2
. (3)

Yet, not only the absolute difference of estimated values
is of interest in projection image synthesis. The generated
projection images must also correspond to each other from
a visual point of view, which cannot be determined entirely
be pixel-wise comparison of the image pairs. To this end, the
structural similarity (SSIM) index [18], a perception-based
metric, is computed. Assuming two patches g and l of the
generated and label image. The SSIM is then computed as

SSIM(g, l) =
(2µgµl + c1)(2σgl + c2)

(µ2
g + µ2

l + c1)(σ2
g + σ2

l + c2)
, (4)

where µ is the mean, σ2 the variance, and σ the covariance.
To avoid instabilities, the constants c1 and c2 are introduced
that are defined as ci = (KiL)2, i ∈ {1, 2}, with L being
the dynamic range of the intensity values and K1 = 0.01 and
K2 = 0.03. Computing Equation 4 for all pairs of patches g
and l yields the final SSIM measure for the whole image.

The third evaluation metric that is computed is the peak
signal-to-noise ratio (PSNR). The PSNR measures the ratio
between the highest intensity value and the occuring noise and
is often applied to measure image quality, especially regarding
reconstruction and compression loss. It is computed by

PSNR(L,G) = 20log10

max(G)

MSE(L,G)
. (5)

In the subsequent chapter results for all metrics will be
presented. To present comparable absolute numbers, all images
were scaled from -1 to 1 prior to the error metric calculations.

IV. RESULTS AND DISCUSSION

The quantitative and qualitative results of the proposed
experiments are presented in Table I and Figure 2. By ex-
amining these it can be observed that the differences in the
calculated MSE of all network architectures and incorporated
loss functions are only small. The best results in terms of pixel-
wise deviation could be achieved with the ResNet architecture
combined with the `1-loss function. This network achieves a
deviation from the reference of only 0.058, i.e., 2.4 percent.
Also the results of the U-net and CRN networks are still

good with deviations of 2.6 and 2.9 percent. Similarly small
variation can be observed in the structured similarity measure.
The ResNet and CRN exhibit approximately equal quality
with SSIM measures of 0.938 and 0.920 for the `1-loss and
0.924 and 0.931 for the perceptual-loss, respectively. The
results generated with the U-net are slightly worse. The highest
peak signal-to-noise ratio is achieved by the ResNet (`1-
loss), followed by the U-net (`1-loss) and CRN (p-loss). It is
noteworthy that the ResNet and U-net both achieve the highest
results in all error metrics using the `1-loss while the opposite
is the case for the CRN which works best with the perceptual-
loss function.

Overall, the perceptual-loss achieves competitive and in
some cases even better results than the `1-loss when com-
paring the pixel-wise error metrics. For example, the cascaded
refinement network’s MSE is 0.013 smaller for the perceptual-
than for the `1-loss. This might be suspicious at first sight,
considering that the `1-loss purely optimizes for this pixel-
wise error in the training process while the perceptual-loss
compares the raw feature activations of the evaluation network.
Contrarily, this behavior cannot be observed for the U-net
and ResNet. The results produced with the `1-loss achieve
higher values for all error measures for these networks. An
explanation for this obervation is that the intensity values
of the input image still cause an impact on the respective
layers output in the evaluation network when computing the
perceptual-loss. Consequently, these differences also transition
to the computed loss value for all feature layers. Even though
the perceptual-loss incorporates the raw intensity values, it is
not guaranteed that the scaling of these is conserved in this
process. By this, the relative changes can be similar, whereas
the absolute range of values changes and, correspondingly,
also the pixel-wise error metrics.

Another observation is that the perceptual-loss is able to
conserve high-frequency details in the image. The fine line in
the projection images that forms a circle around the cranium
is visible in the input (Figures 2a & 2f), as well as in the label
images (Figures 2e & 2j), and also in the images generated
with the perceptual-loss function (Figures 2b, 2c, and 2d).
In contrast, all generators ”loose” this line when the `1-
loss is applied (Figures 2g, 2h, and 2i). This effect is also
qualitatively observable in other parts of the images. Despite
achieving equal or better results regarding the error metrics,
the generally less sharp look of the results generated with the
`1-loss function is apparent. This behavior is in accordance
with previous observations that concluded that an perceptual-
loss leads to sharper images than a comparable `1-loss [19].
Considering the common applications of X-ray Fluoroscopy,
e.g., interventional guidance for stents and similar devices,
high spatial resolution is a key requirement. Utilizing a loss
function that is able to preserve high-frequency details in the
images is desirable to this end. The perceptual-loss appears to
be suited for this task as presented in our evaluation.

V. CONCLUSION

We showed the feasibility of image-to-image translation
from MR projection images to corresponding X-ray pro-
jections. Three generator networks and two different loss
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(a) Input: MR proj. (b) Output: U-net p-loss. (c) Output: ResNet p-loss. (d) Output: CRN p-loss. (e) Reference: X-ray proj.

(f) Input: MR proj. (g) Output: U-net `1-loss. (h) Output: ResNet `1-loss. (i) Output: CRN `1-loss. (j) Reference: X-ray proj.

Fig. 2: Results of the projection synthesis. Top row: Results generated with the perceptual-loss function. Bottom row: Results
generated with the `1-loss function.

functions were implemented and evaluated to this end. All
examined network architectures achieved good results on the
proposed task. When comparing the generated projection im-
ages of all networks it became apparent that the loss function
has a greater impact on the images’ quality than the actual
architectures of the network. The perceptual-loss proved to
be able to conserve even small high-frequency details in the
course of the image-to-image transfer. Because high-spatial
resolution is desired in most fluoroscopic procedures, we rec-
ommend using this perceptual-loss function for the underlying
task. The best quantitative and qualitative results with this loss
function could be achieved by a cascaded refinement model in
this work. The high-quality of the generated projection images
unveils large potential regarding the applicability to multi-
modal denoising, super-resolution, and more. As a next step,
we plan to transfer this approach to real patient data. Addition-
ally, the effect of combining multiple different MR acquisition
protocols and weighting schemes will be investigated.
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Deep Neural Network for CT Metal Artifact
Reduction with a Perceptual Loss Function

Lars Gjesteby, Hongming Shan, Qingsong Yang, Yan Xi, Bernhard Claus,
Yannan Jin, Bruno De Man, and Ge Wang

Abstract—Machine learning and deep learning are rapidly
finding applications in the medical imaging field. In this paper,
we address the long-standing problem of metal artifacts in
computed tomography (CT) images by training a deep convo-
lutional neural network for streak removal. While many metal
artifact reduction methods exist, even state-of-the-art algorithms
fall short in some clinical applications. Specifically, proton
therapy planning requires high image quality with accurate
tumor volumes to ensure treatment success. We explore a deep
network structure with residual learning to correct metal streak
artifacts after a first-pass by a state-of-the-art interpolation-based
algorithm, NMAR. Our experiments compare a mean squared
error loss function with a perceptual loss function to emphasize
preservation of image features and texture. Both visual and
quantitative metrics are used to assess the resulting image quality
for metal implant cases. This study shows that image-domain
deep learning can be highly effective for metal artifact reduction
(MAR), and highlights the benefits and drawbacks of different
loss functions for solving a major CT reconstruction challenge.

Index Terms—Computed tomography (CT), convolutional neu-
ral network (CNN), metal artifact reduction (MAR), deep learn-
ing, proton therapy

I. I

Metal artifacts are a classical problem in CT that greatly
hinder image formation accuracy. Methods to reduce these
artifacts have had varying degrees of success over the past four
decades (see [1] for a comprehensive overview). However,
there remain important applications in which even state-of-the-
art correction algorithms may fail to provide sufficient image
quality. Specifically, proton therapy planning requires precise
localization of tumors because energy lost by charged particles
is inversely proportional to the square of their velocity, so
most of the dose from the proton beam is delivered in a very
small area. Tumor volume estimation is very sensitive to image
reconstruction errors, and miscalculation due to metal artifacts
may result in tumor recurrence or radiation toxicity [2], [3].
Projection completion algorithms are the primary MAR

tool currently in use. They aim to correct/replace corrupted
data inside the metal trace of the CT sinogram with data
synthesized by an interpolation technique [4]–[7], reprojection
from a prior image [8]–[11], or a combination of both that
involves normalization [12]–[14]. Among these, NMAR is
considered a state-of-the-art method that employs interpolation

L. Gjesteby, H. Shan, Q. Yang, Y. Xi, and G. Wang are with the Biomedical
Imaging Center, Department of Biomedical Engineering, Rensselaer Polytech-
nic Institute, Troy, NY, USA (contact: wangg6@rpi.edu)
B. Claus, Y. Jin, and B. De Man are with Imaging, General Electric Global

Research Center, Niskayuna, NY, USA (contact: deman@ge.com)

and normalization with a prior image to replace data in the
metal trace [13].
Additional MAR techniques can be categorized as scan

acquisition improvements, physics-based pre-processing, iter-
ative reconstruction, and image post-processing. While im-
age post-processing algorithms have had only limited suc-
cess [15], [16], their merits are better seen when combined
with projection-domain correction [17]. While these methods
remain unsatisfactory for the most challenging applications,
the addition of deep learning could change that.
The field of machine learning/deep learning has risen

rapidly to solve increasingly complicated problems [18]. This
technology presents a novel way to reduce CT metal artifacts,
with our initial efforts reported within the past year [19]–
[21]. Particularly, Convolutional neural networks (CNNs) are
powerful in their ability to extract detailed features and learn
patterns from large datasets, which has enabled great successes
in image processing and analysis tasks [22]–[24]. The super-
vised learning process relies on labeled images so that the
network learns how to map features between the input and the
label/target. Once trained, the network uses forward prediction
to estimate an output given an unlabeled input.
The main objective of this study is to use deep learning to

reduce streak artifacts remaining after initial MAR correction
in critical image regions around the metal object. Inspired by a
rain streak removal method in natural images [25], [26], we de-
veloped a deep convolutional neural network architecture that
utilizes a detail layer/image, which is a sparse representation
of the artifacts to simplify the learning process. This approach
differs from our most recent work in which the networks
learned direct image-to-image mapping from metal-corrupted
CT images to their corresponding artifact-free images [21].
The network is trained with clinical-like datasets generated
from real CT scans with hip prostheses and spinal fixation
rods added. We investigated both a mean squared error loss
function and a perceptual loss function to preserve features.
The resulting image quality and visual appearance from both
networks is quantified and compared to that of the artifact-free
ground truth, the NMAR algorithm, and our previous direct
CNN method.

II. M
A. Data Synthesis
The Visible Human Project dataset was used as the basis

for all training and validation data [27]. Two sets of voxelized
phantoms were created from the volumetric data in the pelvic
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Fig. 1. Network structure for DestreakNet. There are two parallel streams, f and g, each containing an initial layer followed by 20 residual units. Patches
from the NMAR image and patches from the detail image are input to f and g, respectively. The outputs of these streams are merged in the feature space,
and then passed through h, which contains eight parameter layers and a final layer, to yield the final output. All convolution layers have 32 filters (except for
the final layer, which has only one filter), each of which has a 3× 3 kernel and uses zero-padding. Batch normalization (BN) is used after each convolution
layer (except for the final convolution layer), and is followed by a rectified linear unit (ReLU). The input and output patches are of size 56× 56.

and spinal regions. Titanium was added in the femoral head
region to represent a hip prosthesis (up to 20 mm radius) and
next to vertebrae to represent spinal fixation rods (up to 10 mm
radius). Then, industrial CT simulation software, CatSim [28],
was used to scan both sets of phantoms to generate the metal-
corrupted and artifact-free projections, and reconstruction was
performed with filtered back-projection. The scan geometry
simulated a GE LightSpeed VCT system architecture, with
key parameters including a tube voltage of 120 kVp, a tube
current of 300 mA, 108 photons, 888 detector columns, and
720 views at uniform projection angles between 0-360 degrees.
The phantoms without metal were scanned with a 100 keV
monoenergetic beam to minimize general noise and beam
hardening artifacts.

The 512 × 512 reconstructed images of the metal-added
phantoms contained severe artifacts. The NMAR algorithm
was used to perform initial correction on the data via sinogram
interpolation and provided baseline artifact reduction in the
subsequent reconstructed images. This NMAR result served as
the input to one stream of the network. Scans on the datasets
without metal yielded images without artifacts to serve as the
“ground truth” and target/label of the network. The phantom
pairs were scanned for a total of 50 image slices at 1mm-
thickness. Eight images were reserved for testing/validation
and not used in the training process. From the full-size images,
approximately 150,000 patches of size 56×56 were extracted

from the images to form the dataset to train the CNNs.

B. Network Design

Our network structure is shown in Fig. 1, which we refer to
as DestreakNet. Some parameter layers are grouped in pairs
that we refer to as residual units. Within each residual unit,
the network learns the residual error between the input and
output of the unit. Training on the residual difference reduces
the mapping range of pixel values used for learning [29]. Each
residual unit (Fig. 2) contains two convolution layers (Conv),
each of which is followed by batch normalization (BN) and
a rectified linear unit (ReLU) activation function to maintain
non-linearity. All convolution layers contain 32 filters with
a 3 × 3 kernel and use zero padding. There are two parallel
streams of the network, f and g, both with identical structures.
Each stream begins with one parameter layer, followed by
20 residual units. The feature-maps of the streams f and g
are then summed together to pass though h, which contains
eight more parameter layers and a final layer without batch
normalization.
In the work of [25], the image is modeled as follows:

I = Idetail + Ibase, (1)

where Idetail denotes the detail image, and Ibase denotes the
base image. The base image can be obtained by low-pass
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Fig. 2. Residual Unit. Each residual unit contains two convolution layers,
each of which is followed by batch normalization (BN) and a rectified linear
unit (ReLU).

filtering I , after which the detail image is represented as
Idetail = I − Ibase.
We adopt a similar approach, but make several key changes

that better fit our specific task. The NMAR images have more
content information but less streaks, while the uncorrected
images have more metal streaks but less content. To harness
the content information from NMAR images and the streak
information from uncorrected images, two streams of our
network, f and g, take data from the NMAR images and
detail images, respectively. To create our detail image, D,
the original uncorrected image before NMAR correction, U , is
passed through a low-pass guided filter [30]. Then, the filtered
image or base image, F(U), is subtracted from the original
uncorrected image:

D = U −F(U). (2)

After subtracting the base image from the uncorrected
image, the background interference is removed and only metal
streaks and object structures remain in the detail image. Given
the NMAR image, I , and the detail image, D, the output of
our network can be expressed as:

Ỹ = h
(
f
(
I
)
+ g

(
D
))

, (3)

where h, f , and g are streams of layers in the network.

C. Loss Functions and Training
We explored two loss functions for optimizing the network.

A mean squared error (MSE) loss function calculates the pixel-
by-pixel error between the output, Ỹ i, and the target, Y i:

LMSE =
1

N

N∑
i=1

∥∥∥Ỹ i − Y i

∥∥∥2
F
, (4)

where N is the number of training samples and subscript i
denotes the i-th sample in training set.
We also employed a perceptual loss function to mitigate

over-smoothing effects that can result from the MSE loss

function. The perceptual loss function from the pre-trained
VGG network [31] is used to optimize the network output in
the feature space to preserve texture:

LP =
1

N

N∑
i=1

∥∥∥ϕ(Ỹ i)− ϕ(Y i)
∥∥∥2
F
, (5)

where ϕ is a feature extractor to indicate loss calculation in
the feature space. In our experiment, we use the output of
the 16th convolution layer in the VGG network as the feature
extractor.
During training, the network adjusts its parameter weights

in each layer to minimize the loss function. Training was run
on an Nvidia GeForce GTX 1080 Ti graphics card using the
TensorFlow framework in Python for 60 epochs, which took
approximately seven hours. The network learning rate α was
initialized to 10−3. In the t-th training epoch, the learning
rate αt was decayed proportional to the epoch number: αt =
α/

√
t.

III. R
To validate the network performances, hip and spine image

slices withheld from training were used. We present a hip
prostheses case in Fig. 3, which shows the metal-free truth, the
initial uncorrected reconstruction image, the NMAR-corrected
image, and the results of our networks with MSE and per-
ceptual loss functions. We also compared with a contracting
path convolutional encoder-decoder (CPCE-MSE) trained on
a direct image-to-image mapping without incorporating a
detail image [32]. The initial reconstruction from the raw
projection data yielded a poor image with many streaks, a dark
band along the lines of greatest attenuation, and regions of
missing data. The pre-correction artifacts are severe in the hip
case due to the large implant size. Our network significantly
reduced streak artifacts that remained in the image after initial
correction by the NMAR algorithm. The linear interpolation
steps of NMAR appeared to introduce artifacts that could be
due to incomplete segmentation of the metal.
The image quality metrics are displayed in Table I for all

results in Fig. 3. We compared structural similarity index
(SSIM) and peak signal-to-noise ratio (PSNR) in reference
to the artifact-free truth. Both networks increase the SSIM
and PSNR scores by a substantial amount. The DestreakNet-
MSE output has the highest image quality scores, but an
over-smoothing effect is evident. The DestreakNet-Perceptual
output better preserves features and texture to give a more
visually-pleasing result, although the image quality scores are
slightly lower than those of both networks using MSE loss
functions.

IV. D C
This MAR study explores a deep neural network structure

for reducing metal artifacts in CT images. We provide the
network with information on both the streak artifacts and the
image feature content to strengthen the learning process. We
show the benefits and drawbacks of different loss functions
from a visual and quantitative standpoint, with an emphasis
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Artifact-Free 

Reference
Uncorrected NMAR CPCE-MSE

DestreakNet-

MSE

DestreakNet-

Perceptual

Fig. 3. Deep learning results for a hip prostheses case. The full images are displayed with zoomed ROIs on a critical image region. Left to right:
Artifact-free truth; Initial uncorrected reconstruction; NMAR-corrected image; CPCE network using MSE loss [32]; Our deep neural network using MSE loss;
Our deep neural network using perceptual loss.

TABLE I
S (SSIM) - -
(PSNR) F . 3 - .

SSIM PSNR

Uncorrected 0.2382 9.1830

NMAR 0.7014 18.8975

CPCE-MSE 0.8398 22.7963

DestreakNet-MSE 0.8636 23.8582

DestreakNet-Perceptual 0.8264 22.1685

on perceptual loss to preserve image features and texture.
Our work is based on a superiority principle of data-driven
machine learning, which seeks to improve upon any state-
of-the-art traditional MAR result by using a well-trained
network. In principle, learning-based MAR techniques will
always outperform the best result, and could be repeatedly
applied. This can be viewed as a monotonically-increasing
sequence that possibly approaches the ground truth as the
limiting point.
The key improvements to our image-domain deep learning

process are the detail image and training on the residual
error. With a detail image, the network can learn where
the prominent streaks are in the uncorrected image. With
residual error training, we reduce the solution range for the
network to learn, which yields better results than our previous
direct network methods. Our deep neural network pipeline for
MAR can be further developed with an improved network
architecture and refined parameters, and can include more
diverse and enlarged implant types. The larger and the more

challenging the dataset is, the better the MAR network can
be trained. We are also exploring ways to better guide the
network to distinguish between artifacts and features.
In conclusion, we have demonstrated how deep networks

can help MAR in a significant way by providing a substantial
gain on the results achieved with some of the best existing
methods. The importance of the loss function is evident when
comparing results among different networks. We continue to
pursue advances for tomographic imaging in the machine
learning framework, especially artifact reduction to help im-
prove clinical applications such as radiation therapy planning.
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