




Welcoming Address 

Dear Colleague, 

It is a pleasure to welcome you in Salt Lake City for the third edition of The International Conference on Image 
Formation in X-ray Computed Tomography, also known as “The CT meeting”. 

The idea for this meeting came about six years ago, following a wish from many to have a venue where CT 
scientists could meet together to discuss in depth all aspects that impact the image formation process in CT. These 
aspects include dose evaluation and dose reduction strategies, non-linearity effects and compensation schemes 
for these effects, image reconstruction algorithms, spectral decomposition, dynamic effects, geometrical 
calibration, phase-contrast physics, and image quality assessment.  

Pleasantly, the meeting this year attracted a few more submissions than in 2012. However, in an effort to further 
increase the quality of the presentations, which is already very high, and to also increase the merit of receiving a 
classical poster presentation, the bottom 5% of submissions was rejected. Whereas 57 presentations were given 
at the first meeting, in 2010, and 104 at the second meeting, in 2012, 105 presentations will be given this year, 
including a special session on homeland security applications. The breadth of the topics being covered is amazing. 
I am grateful to all authors for submitting their work. As in 2010 and 2012, oral presentations have been allocated 
significant time to allow for in-depth discussion between the attendees. Also, comfortable poster sessions have 
been planned, and attractive locations have been selected to promote discussion during the meals. 

The meeting could not be a success without a great scientific committee. I would like to take the opportunity here 
to once again thank the following scientists, for their support, as well as for their help with the evaluation of 
submitted abstracts, which was critical in shaping the scientific program: 
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Vrije Universiteit of Brussels, Belgium 
GE Global Research Center, NY, USA 
Stanford University, Stanford, CA, USA 
University of Michigan, MI, USA 
Siemens Healthcare Sector, Germany 
Varian Medical Systems, CA, USA 
UMass Medical School, MA, USA 
Philips Research Laboratories, Hamburg, Germany 
University of Erlangen-Nuremberg, Germany 
GE Healthcare, WI, USA 
University of California, San Diego, CA, USA 
German Cancer Research Center (DKFZ), Heidelberg, Germany 
University of Central Florida, FL, USA 
Philips Research Laboratories, Hamburg, Germany 
University of Tsukuba, Japan 
University of Chicago, IL, USA 



Guenter Lauritsch 
Harry Martz 
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Norbert Pelc 
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Ge Wang 
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Once again, we were also fortunate to receive generous support from 

 Siemens AG, Healthcare Sector
 Toshiba Medical Systems Corporation
 GE Healthcare
 Varian Medical Systems

This financial support is essential to accommodate a lower registration fee for graduate students. This year, we 
have 142 attendees out of which a third are students. 

Finally, I am thankful to Andrew Karellas for his continuous support and advice, particularly regarding the 
associated special issue of Medical Physics; I am grateful to Katharina Schmitt and Zhicong Yu for providing me 
with a very strong hand; and I am grateful for the help from my colleague, Larry Zeng, without whom I could not 
run such a conference. 

I wish you all a pleasant meeting. 

Frederic Noo, Ph.D. 
General Chair  
Utah Center for Advanced Imaging Research (UCAIR) 
Department of Radiology 
University of Utah 
E-mail: noo@ucair.med.utah.edu 
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Optimization-based direct inversion of spectral CT
data into a materials decomposition

Emil Y. Sidky1, Taly Gilat-Schmidt2, and Xiaochuan Pan1

Abstract—A one-step inversion algorithm for spectral
computed tomography (CT) is developed that yields material
decomposition maps from multi-energy X-ray transmission
data as what could conceivably be measured with photon-
counting X-ray detectors. This approach is potentially de-
sirable because incorporation of many physical constraints
can be implemented directly on the material maps. Use of
such constraints may stabilize reconstruction from spectral
CT data thereby improving noise properties. Performing
the proposed one-step image reconstruction can also aid in
design of spectral CT acquisition parameters such as setting
energy window thresholds.

I. INTRODUCTION

Spectral CT has recently gained much attention as
research on photon-counting detectors with energy resolv-
ing capability progresses [1,2]. Spectral CT may yield
images free of beam-hardening artifacts and may possibly
provide quantitative information particularly for imaging
involving K-edge contrast agents [3]. Image reconstruction
for spectral CT is the topic of this conference contribution.

Image reconstruction for spectral CT falls into
two broad categories: pre-reconstruction and post-
reconstruction methods. Pre-reconstruction methods pro-
cess the multi-energy transmission data to estimate
sinograms of various physical quantities such as
monochromatic attenuation or material maps, while post-
reconstruction involves combining images reconstructed
from data acquired at different energy windows. The latter
method potentially suffers from beam-hardening and is not
quantitative because the X-ray transmission data in the
extended energy windows are processed with the negative
logarithm, as is done in standard CT, yielding only an ap-
proximately self-consistent sinogram. Pre-reconstruction
methods on the other hand aim at estimating a consis-
tent sinogram of a physical map of the subject, but the
downside is that the preprocessing is fairly unstable and
can amplify noise.

1The University of Chicago, Department of Radiology MC-2026,
5841 S. Maryland Avenue, Chicago IL, 60637.

2Marquette University, Department of Biomedical Engineering, PO
Box 1881, Milwaukee WI, 53201.

The approach taken here is more aligned with pre-
reconstruction methods in that we aim for quantitative CT,
but we seek to perform the reconstruction in a single-step
inversion. With standard pre-reconstruction techniques
there are two steps: preprocessing to obtain sinograms
of physical subject maps, followed by reconstruction of
these maps. Here, we directly relate the physical maps
to the spectral CT data, and invert this model implicitly
through optimization. Use of optimization also allows us
to enforce physically motivated constraints that can help
to stabilize reconstruction. This approach is facilitated
by recent developments on algorithms for large-scale
constrained optimization. In particular we make use of
the Chambolle-Pock (CP) algorithm [4,5] to solve the
formulated optimization problem for spectral CT image
reconstruction.

In this work, we make use of the materials decomposi-
tion approach for spectral CT. The data model, optimiza-
tion formulation, and its inversion are presented in Sec.
II. Results are shown in Sec. III for simulated spectral
CT data using the FORBILD head phantom aiming at
revealing the stability of image reconstruction for data
taken in two versus five energy windows.

II. M ETHODS

For developing the image reconstruction algorithm for
spectral CT, we employ a data model which contains only
the essential spectral physics

Iw,ℓ =

∫

dE Sw(E) exp

[

−

∫

ℓ

dt µ(E,~r(t))

]

, (1)

where Iw,ℓ is the transmitted X-ray intensity along ray
ℓ in energy windoww; Sw(E) is the product of beam
spectrum and detector response for energy windoww;
andµ(E,~r(t)) is the energy dependent linear X-ray atten-
uation coefficient. Direct reconstruction ofµ(E,~r(t)) is
impractical because transmission intensity is measured in
only a few energy windows. Employing physical modeling
can help reduce the dimensionality of the unknown atten-
uation map. Here, we employ the material map decompo-
sition method whereµ is expressed in terms of materials
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that are expected to be in the subject

µ(E,~r(t)) =
∑

m

(

µm(E)

ρm

)

ρmfm(~r[t]), (2)

whereρm is the density of materialm; µm(E)/ρm is the
mass attenuation coefficient of materialm; and fm(~r) is
the occupation fraction of materialm at location~r. In the
rest of the text we refer tofm(~r) as a material map, and it
is these quantities that we aim to reconstruction from the
measurementsIw,ℓ. Physically,fm(~r) cannot be less than
zero nor greater than one. If there are multiple materials
at ~r, for example contrast agent and blood,fm can take
on a fractional value.

Combining Eq. (1) with Eq. (2) presents us with our
data model which relates the quantities measured,Iw,ℓ,
with the quantities we seek,fm(~r). One-step inversion of
this model affords us the opportunity to directly code con-
straints onfm(~r). Working toward setting up our desired
optimization problem, we discretize the integrations in Eq.
(1) and write the data fidelity term in terms of the negative
logarithm of the transmission intensity:

g(fm) = − ln
(

IDD
w,ℓ(fm)

)

for all w, ℓ and, (3)

whereg is a vector containing the negative logarithm of
the transmission intensity at all rays and energy windows;
fm is a discrete pixel representation of material mapm;
and the DD superscript onI indicates discretization of
the integrations in the definition ofIw,ℓ. The reason for
introducing the negative logarithm in Eq. (3) is that it
yields a nearly linear relationship betweeng and fm.

The optimization problem investigated in this work
takes the following form

{f∗m|m = 1, . . . ,M} = arg min
{fm|m=1,...,M}

1

2
‖g(fm) − gdata‖

2

2

(4)

suchthat 0 ≤ fm ≤ 1;
∑

m

fm ≤ 1;

and‖∇fm‖1 ≤ γm,

where the bound constraints onfm reflect physical bounds
on the material maps; the sum constraint ensures that the
partial volumes of each material does not exceed unity
within each voxel; and the final constraint bounds the
total variation (TV) norm to a valueγm for each material
map. The sum constraint could also be formulated as an
equality, because each voxel must be filled with some
combination of substances. But in such a case, air needs
to be included among the material maps. We prefer to
drop representation of an air map and allow for voxels
which are only partially filled. The constraints on the
TV of each map is known to improve robustness of the

image reconstruction against view-angle undersampling
and it may also help stabilize the inverse problem against
the near linear dependence in energy of the material
attenuation coefficients.

The proposed optimization problem in Eq. (4) may
not be convex, because the quadratic function in the
objective involves the functiong(fm), which may have
locations where it is concave. Aside from the objective,
all the constraints are convex. The deviation from con-
vexity is, however, slight becauseg(fm) is approximately
linear. Although the CP algorithm is derived for convex
optimization, it turns out that we can apply it to this
constrained optimization problem by using reweighting;
we have recently employed this strategy to an optimization
with more severe nonconvexity [6]. In this work, we
consider only inversion of the spectral CT data into tissue
maps, but we point out that these maps can be then used
to form other types of images such as the attenuation
map at a single energy. Furthermore, other decomposition
techniques can be formulated in a similar way.

III. R ESULTS

bone map brain map

Fig. 1. Material mapsfm for the Head phantom used for the
spectral CT simulation. The maps are 256×256 pixelized arrays and
the values are one at pixels containing the corresponding material and
zero otherwise. The images are shown in a gray scale window [0.8,1.2].

To demonstrate application of Eq. (4) to image recon-
struction for spectral CT, we simulate transmission data
at multiple energy windows for the head phantom. We
modify the phantom so that all soft tissues in the phantom
are assigned brain tissue and bone remains bone as shown
in Fig. 1. In this way the phantom has only two materials.
The mass attenuation curves used in the simulation are the
measured values for bone and brain as listed in the tables
compiled by Hubbell and Seltzer [7]. The specific question
we investigate is if the number of energy windows has an
impact on stability of the image reconstruction.

The X-ray spectrum is modeled for a 120 kV X-ray
source, and it is plotted in Fig. 2. On the detector side,
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Fig. 2. Normalized spectrum of typical 120kV X-ray source.

we taketwo ideal window configurations: one where five
energy windows span the range from 20 to 120 keV in
intervals of 20 keV, and one where this same range is
covered by two windows of width 50 keV. The scanning
configuration is circular fan-beam with a source-to-iso-
center distance of 50 cm and a source-to-detector distance
of 100 cm. The number of views for the simulation is 128
and the detector is a linear array consisting of 512 equally
spaced bins.

The first two sets of results are computed from ideal
noiseless data for two energy windows in Fig. 3 and five
energy windows in Fig. 4. By ideal data, we mean that
the model for the image reconstruction is the same as
the one that generates the data. In this case it is possible
to drive the data discrepancy to zero. Also, because
we are testing ideal recovery, we set the TV constraint
parametersγm to the actual values from the corresponding
phantom material maps. To obtain a sense of stability we
view the material map estimates for different root-mean-
square-error (RMSE) values of the data discrepancy along
the trajectory of the map iterates. Because the data are
ideal it is possible to drive the data RMSE to zero. The
figures show images of the intermediate map estimates
and corresponding RMSE metrics. The interesting point
is that the reconstruction provided by solving Eq. (4) for
both cases is fairly robust because the given data RMSE
values are reasonably large. The results with noisy data,
below, corroborate this point. It is also clear that the five
window data provides more stable reconstruction, as might
be expected. The images contain fewer artifacts and the
image RMSEs are lower for the five window data as
compared with the two window data.

In order to obtain some sense of the impact of data
noisy, we employ the five-window spectral CT configura-
tion and add noise to the transmission measurements with
a Gaussian model that resembles a Poisson distribution.
The variance at each ray and within each energy window

bone map brain map

data: 0.005    bone: 0.043

data: 0.010    bone: 0.066

data: 0.020    bone: 0.102

               brain: 0.057

               brain: 0.085

               brain: 0.134

Fig. 3. Reconstructed material maps for ideal noiseless two energy
window transmission data. The images shown, in the gray scale
[0.8,1.2], come from a single run of the CP algorithm. The rows
are distinguished by different levels of progress as measured by root-
mean-square-error (RMSE) data discrepancy, labeled in the left column
of images, between estimated and given spectral CT data. Note that
iteration number correlates inversely with data discrepancy. Also given
is the RMSE of the images with respect to the corresponding phantom
material map. These numbers together with the images give a sense of
the stability of the image reconstruction.

is taken to be one over the transmitted flux assuming
2 × 105 photons are incident. The results are shown in
Fig. 5. Note that results for a data RMSE of 0.005 are not
available because of inherent inconsistency induced by the
noise model. It is clear from the images that some artifacts
are introduced into the map reconstruction by the noise.
But an interesting point is that the image RMSE values
are actually lower for the same data RMSE in the noisy
case. This results from the fact that there is actually a fair
amount of uniform image bias in the noiseless results.

IV. SUMMARY

We have formulated an optimization-based method for
direct inversion of spectral CT data into material maps.
Many physical constraints are incorporated, which aid in
stabilizing the inversion. Preliminary results indicate that
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bone map brain map

data: 0.005    bone: 0.031

data: 0.010    bone: 0.051

data: 0.020    bone: 0.078

               brain: 0.042

               brain: 0.063

               brain: 0.095

Fig. 4. Same as Fig. 3 except the reconstruction was performed for
ideal noiseless five energy window transmission data.

the method is robust against noise. Many extensions of
these preliminary results will be investigated. In particular,
we will introduce other soft tissues into the phantom
while a two-material basis expansion, and correspondingly
we will seek other convex formulations of the physical
constraints to account for the presence of multiple soft
tissues. We will also investigate phantoms with K-edge
contrast agents using a three-material basis expansion. The
use of the CP algorithm will allow us the flexibility to
prototype alternate optimization problems for these more
complex situations. Finally, we will add other physical
factors to the data model such as scatter, and include non-
ideal response of the photon-counting detectors.
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bone map brain map

data: 0.011    bone: 0.022

data: 0.020    bone: 0.066

               brain: 0.026

               brain: 0.079

Fig. 5. Same as Fig. 4 except the reconstruction was performed for
noisy five energy window transmission data. The simulated incident
integrated flux per bin and energy window is 2×10

5 photons. The
minimum data RMSE was 0.011 due to the data inconsistency from
the simulated noise.
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Maximum a Posteriori Reconstruction of CT Images
Using Pixel-based Latent Variable of Tissue Types

Kento Nakada, Katsuyuki Taguchi, George S. K. Fung, and Kenji Amaya

Abstract—We propose a new framework to jointly perform
image reconstruction, material decomposition, and tissue type
identification for Photon counting detector CT (PCD-CT) by
applying maximum a priori (MAP) estimation with pixel-based
latent variables for tissue types. With the latent variables, the
proposed method utilizes region-based coupled Markov random
field to describe continuity and discontinuity of human organs,
and Gaussian mixture model to incorporate statistical relation
between tissue types and their attenuation characteristics. The
proposed method estimate CT images and their tissue types
jointly, which enables us to not only identify tissue types
more accurately, but also reconstruct CT images with decreased
noise and enhanced sharpness thanks to the information about
human tissue types. The performance of the proposed method
is quantitatively compared with a quadratic penalized likelihood
method and filtered backprojection.

I. INTRODUCTION

Iterative reconstruction methods for x-ray computed tomog-
raphy (CT) have improved tradeoffs of the spatial resolution
and noise of images compared with analytical methods. Most
of iterative methods estimate images by penalized maximum
likelihood (PML) method. While the likelihood term is based
on rigorous statistics of measured data, the regularization (or
prior) term is empirical and can be inaccurate. For example, in
the Huber prior [1] the transition point between the quadratic
and the linear penalties is defined without exact knowledge
of the tissue type the pixel-of-interest belongs to, and the
same parameter set is applied to any tissue types, which
refers to biological compounds such as adipose, heart muscle,
liver parenchyma, lungs, ribs, spines, and iodine-enhanced
blood. We hypothesize that more accurate regularization can
be performed with knowledge of tissue types pixels-of-interest
belong to, and therefore, the image quality can be improved.
The values of neighboring image pixels of linear attenuation
coefficients are expected to vary smoothly and continuously
when they are in the same tissue, while the values may be
discontinuous at organ boundaries. Moreover, a suitable level
of discontinuity can be obtained for each boundary from the
tissue types on both sides of the boundary. The challenge is
how to obtain the knowledge of the tissue types for all image
pixels.

Photon counting detector-based (PCD-)CT counts the num-
ber of transmitted x-ray photons within three or more energy

K.N and K.A are with the department of Mechanical and Environmental In-
formatics at Tokyo Institute of Technology School of Information Science and
Engineering, Meguro, Japan (email: nakada.k.ac@m.titech.ac.jp,
kamaya@a.mei.titech.ac.jp).

K.T and G.S.K.F are with the Russell H. Morgan Department of Radiology
and Radiological Science at the Johns Hopkins University School of Medicine,
Baltimore, MD (email: ktaguchi@jhmi.edu).

windows, which allows for the use of three basis functions
in material decomposition [2]. A linear combination of three
basis functions—e.g., photoelectric effect, Compton scattering,
and discontinuity at the K-edge of contrast agent—can accu-
rately model the energy-dependent linear attenuation coeffi-
cient of any materials involved in clinics except for metallic
implants [3]. The coefficients of basis functions, which we
call characteristic coefficients in this paper, are functions of
the chemical composition of the attenuator, thus, are unique
to tissue types [4].

We propose a novel image reconstruction method, JE-
MAP, which jointly estimates images of the energy-dependent
linear attenuation coefficients and tissue types from PCD data
through material decomposition process. JE-MAP algorithm
employs maximum a posteriori (MAP) joint estimation based
on pixel-based latent variables for tissue types. The prior
information with region-based coupled Markov random field
model [5] and Gaussian mixture model are used. Compared
with the primitive version [6], we have designed a new prior
for better describe the level of discontinuity, implemented
a more computationally efficient optimization algorithm, and
performed a systematic and thorough quantitative evaluations.

II. METHODS

A. Problem Modeling

The energy-dependent linear attenuation coefficients at pho-
ton energy E, x(E), can be described as a linear combination
of three basis functions, Φn(E), n = 1, 2, 3,

x(E) =
3∑

n=1

wnΦn(E), (1)

Φ(E) =

(
E−3

E0
−3 ,

fKN(E)

fKN(E0)
,
fIo(E)

fIo(E0)

)
, (2)

where E−3 denotes the photoelectric effect, fKN(E) is the
Klein-Nishina function for Compton scattering, fIo(E) is a
mass attenuation coefficient of iodine element, and E0 is
the reference energy. We call the coefficients vector w char-
acteristic coefficients. Our goal is to estimate characteristic
coefficients and the tissue type for each image pixel from
measured PCD sinogram data.

We introduce latent variables zi to express the tissue type
at each image pixel i, i = 1, ..., I , using so called Potts model
represented by the 1-of-K scheme [7].

zi ∈
{
(1, 0, ..., 0)T , ... , (0, 0, ..., 1)T

}
, zi ∈ {0, 1}K . (3)

Thus, each image pixel is labeled by one of K tissue types.
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Now let W = {wi|i = 1, ..., I} represent a set of the
characteristic coefficients on the tomographic image, and
Z = {zi|i = 1, ..., I} be a set of the latent variables. Fur-
thermore, let j = 1, ..., J represent a set of index of detector
pixel, and then Ŷ = {ŷj |j = 1, ..., J} be a set of PCD-CT
measurements on sinograms, where each pixel is given by
ŷj = (ŷ(j,1), ..., ŷ(j,b)) which indicates photon counts detected
by each of b energy bins.

B. Cost functions

The problem of image reconstruction, material decomposi-
tion, and tissue type identification can be formulated as joint
MAP estimation regarding W and Z as random variables,
whose solution can be obtained by

(W ∗,Z∗) = arg min
W ,Z

{
− ln p(Ŷ |W )− ln p(W ,Z)

}
,

s.t. wi ≥ 0 (i = 1, ..., I), (4)

where p(Ŷ |W ) is likelihood distribution, and p(W ,Z) is
prior distribution.

1) Likelihood Modeling: We assume an ideal photon count-
ing detectors, that is, there is no pulse pileup effect [8] or
spectral response effect [9]. Thus the probability of photon
counts Ŷ given the object is expressed as Poisson distribution
with sufficiently large expected value, which can then be
approximated to by a Gaussian distribution.

− ln p(Ŷ |W ) =
1

2

J∑
j=1

(ŷj − yj)
T
Σ−1

dtc,j (ŷj − yj) , (5)

yj = h(wprojj), (6)
Σdtc,j = diag(yj1, yj2, ..., yjb), (7)

where yj ∈ Rb and Σdtc,j ∈ Rb×b means the expected values
and the covariance matrix of detected photon counts in b
energy bins at jth pixel on the sinogram, function h : R3 → Rb

relates line integral of the characteristic coefficients, wproj, to
the expected photon counts through Eq.(1) and Beer’s law.

2) Prior Distribution Modeling: We define the prior distri-
bution as a combination of a region-based coupled Markov
random field (MRF) model [5] and statistical distribution
between W and Z,

ln p(W ,Z) := ln pMRF(W ,Z) + ln psta(W ,Z). (8)

Region-based Coupled MRF Model: We adopt a region-
based coupled MRF model to express geometrical continuity
and discontinuity of human organs, regarding characteristic
coefficients as observable variables and tissue types as latent
variables. Let ne(i) be a set of index of neighboring voxels
around image pixel i. Considering Potts model of tissue types,

we design the region-based coupled MRF model as follows,

− ln pMRF(W ,Z) = E(W ,Z) + lnBMRF, (9)

E(W ,Z) =
1

2

I∑
i=1

∑
i′∈ne(i)

{
β1(zi · zi′)(wi −wi′)

2

+ β2(1− zi · zi′) {(wi −wi′)− (µ(zi)− µ(zi′))}2
}
,

(10)

where E(W ,Z) represents the energy function of Gibbs
distribution and BMRF means the normalization constant.
µ(zi) represents the statistical expected value of characteristic
coefficients which correspond to zi. When two tissue types zi
and zi′ are the same, the first term of Eq.(10) encourages the
smoothness. In contrast, when the tissue types are different,
the second term encourages the difference in pixel values at
the boundary of organs to be close to the expected difference.
Two parameters, β1 and β2 balances the effect of the two
terms.

Gaussian Mixture Model: We model statistical relation be-
tween characteristic coefficients and tissue types. The expected
values of w for zi were obtained from NIST database [10],
and we assumed that w is multivariate Gaussian distributed.
We then modeled the relationship between w’s and all tissue
types for a image pixel using a multivariate Gaussian mixture
model.

− ln psta(W ,Z) = −β3

I∑
i=1

{ln p(zi) + ln p(wi|zi)}

= β3

I∑
i=1

{
lnK +

K∑
k=1

z
(k)
i

{
1

2
(wi − µk)

TΣ−1
k (wi − µk)

+ lnCk

}}
, (11)

where β3 is a weighting parameter, z(k)i means the kth element
of zi, and µk, Σk, and Ck are the expected value, covari-
ance matrix, and normalization constant of the multivariate
Gaussian distribution for kth tissue type, respectively. Here
we assumed p(zi) is uniformly distributed.

C. Constraint Optimization

1) Approximation of Likelihood: For the purpose of solving
this optimization problem easily with a quadratic program-
ming, we approximate the non-linear likelihood function to a
quadratic surrogate function, i.e., in Eq.(5),

ŷj − yj ≈ Jh(ŵprojj −wprojj), (12)

where Jh means a Jacobian matrix of function h. By rewriting
Eq.(5) as a function of wproj, a quadratic programming can be
used in the iteration assuming that the distribution of wproj can
be approximated by multivariate Gaussian model [11].
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2) Iterative Method: In addition, to avoid combinatorial
explosion of discrete variables z, we adopt Iterative Condi-
tional Modes algorithm [12], which updates parameters of
each pixel successively. For pixel i, the sub-minimizer wi is
found while zi being fixed at one of K tissue types. Since
the cost function becomes convex over wi in each update,
its constrained minimization can be computed analytically
with the Karush-Kuhn-Tucker conditions. After performing
the sub-minimization procedure for all K tissue types, the
characteristic coefficients wnew

i and tissue type znew
i which

give the minimum cost are selected and used in the succeeding
process.

III. EVALUATION METHODS

(a) Tissue types (b) CT number

(c) Photoelectric ef-
fect coefficient

(d) Compton Scatter-
ing coefficient

(e) Iodine(K-edge) co-
efficient

Fig. 1. Thorax of a modified XCAT phantom. Geometrical textures were
added to each tissue, such that pixel values inside an organ are not homo-
geneous. (a) Nine tissue types including air indicated by different colors. (b)
The monochromatic CT image at 70 keV. WW 600 HU and WL 0 HU. (c-e)
The distributions of three characteristic coefficients.

A. Phantom and scan

We used a modified thorax image of XCAT phantom with
nine tissue types shown in Fig.1. The phantom image covered
40×40 cm2 by 512×512 pixels, and geometrical texture was
added to make image pixel values inside an organ heteroge-
neous. We simulated noisy projections of parallel beams with
Poisson noise with tube voltage, 140 kV; incident x-ray, 105

counts per projection ray; 360 projections over 180◦; 4 energy
thresholds at 0, 40, 70, 100 keV. 100 noise realizations were
performed.

B. Reconstruction and tissue type classification

First, material decomposition was performed to obtain three
sinograms of the characteristic coefficients from PCD data .
Then, images of the characteristic coefficients were recon-
structed using the following three methods: FBP, PML, and
JE-MAP. The FBP images were used as an initial estimate
of PML and JE-MAP. For each image pixel, a tissue type
is chosen which gives the minimum L2-norm distance from
statistical expected values to the image pixel value.

FBP: FBP with ramp filter was performed on each of the
three sinograms of the characteristic coefficeints independently
to obtain the corresponding image.

PML: PML minimizes the likelihood of data (Eq. (5))
with a quadratic regularizer weighted by 2×105.

JE-MAP: JE-MAP was performed with β1 = 2×105, β2 =
30, and β3 = 1.0. The covariance matrix Σk was sampled from
the phantom and scaled by β4 = 2.5×10−2.

IV. EVALUATION RESULTS

Figure 2 presents the estimated tissue types and monochro-
matic CT images at 70 keV from one noise realization and
Fig. 3 shows profiles along the line shown in Fig. 2(f). These
results showed that JE-MAP decreased the image noise while
maintaining the sharpness and the accuracy of tissue types at
the boundaries of organs.

Figure 4 shows bias and standard deviation of CT images
at 70 keV and the accuracy of tissue type identification, both
calculated over 100 noise realizations. The results are also
summarized in Table I. It can be seen that JE-MAP provided
the least noise and had small biases in general; however,
negative biases were found with iodine-enhanced blood in the
heart.

The tradeoffs between the spatial resolution and image noise
were studied. The image noise was quantified by standard
deviation values averaged over adipose regions. The spatial
resolution was quantified by fitting the error function to
horizontal edge profiles at the contour of the phantom. The
measurements were performed on images blurred by different
Gaussian filters. The obtained tradeoff curves were shown in
Fig. 5, where the left top end-point of the curves was obtained
from the images reconstructed by the corresponding method.
JE-MAP provided the best tradeoff performance.

These results showed that JE-MAP improved the accuracy
of tissue type identification for the entire image, while also
improving the edge sharpness and image noise. A problem was
found in biases with soft tissues, which we think was attributed
to suboptimal parameters β1, β2, β3, β4. JE-MAP tends to
mislabel liver tissue as muscle, because their true characteristic
coefficients had a significant overlap. The expected values
were very close and their sample variances were large.

Fig. 2. Images of (a-c) the estimated tissue types and (d-f) monochromatic
CT images at 70 keV. WW 600 HU, WL 0 HU.
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Fig. 3. Profiles of CT images at 70keV along the line in Fig.2(f) through
adipose, rib, lung, thin layer of adipose, and liver.

TABLE I
IMAGE NOISE AND THE ACCURACY OF TISSUE TYPE IDENTIFICATION.

FBP PML J.E.
Stdev. (HU) 112.4 48.1 35.8
Accuracy(%) 58.5 78.9 89.2

Fig. 4. Results of 100 noise realizations: (a-c) bias and (d-f) noise of CT
images and (g-i) the accuracy of tissue type identification. Display window
width and level are: (a-c) 100 HU, 0 HU, (d) 100 HU, 100 HU, (e,f) 30 HU,
60 HU, (d) 100 HU, 100 HU, and (g-i) 50%, 100%.

Fig. 5. Noise-resolution tradeoff curves.

V. CONCLUSION

In this paper, we have proposed a new joint estimation
framework employing MAP estimation using pixel-based la-
tent variables for tissue types. The method combines the
geometrical information described by region-based coupled
MRF, statistical relation between tissue types and material-
based characteristic coefficients, and noise models of PCD
data, and makes possible the continuous MAP estimation of
CT image and tissue types directly from detected photon
counts. The quantitative evaluation showed that proposed
method estimates images with better accuracy of tissue type
identification , noise reduction, and edge preservation than the
sequential method using simple quadratic penalty. Meanwhile
the quantitative noise realization results also show that it
has a problem with bias and wrong identification of tissues
with very close attenuation characteristics. However, The joint
estimation framework has potential to further improve its
performance by introducing more information about tissues in
human body, e.g., the location, size, and number of tissues,
or limited variation of neighboring tissues, which can be
formulated by pixel-based latent variables.
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A generalized vectorial total-variation for spectral
CT reconstruction

David S. Rigie and Patrick J. La Rivière

Abstract—In this work we introduce a novel generalization
of the total-variation semi-norm for vector-valued images and
demonstrate its potential usefulness for reconstructing sparse-
view, spectral CT data. The proposed vectorial TV (VTV)
encourages a common edge structure among spectral channels.
We show that it leads to a simple optimization problem that
can be efficiently minimized using the primal-dual algorithm
proposed by Chambolle et al [1] and present the results of a
simulation study. We find that the coupling between channels
results in better apparent image quality and improved over-
all reconstruction accuracy when compared with independent,
channel-by-channel reconstruction.

I. INTRODUCTION

Over the past few years, there has been a growing interest
in iterative reconstruction algorithms for CT using total-
variation (TV) regularization, which others have shown can
lead to high quality reconstructions from highly undersampled
projection data [2]. Simultaneously, rapid advances in energy-
discriminating detectors have generated a surge of interest in
spectral CT, where the broad x-ray tube spectrum is sampled
into multiple “color” channels of data, which could lead to the
elimination of common artifacts [3], patient dose reduction [4],
and entirely new clinical applications of CT [5], [6].

In this work we will propose a generalization of the
total-variation semi-norm for reconstructing such multi-energy
datasets. The simplest way to apply the existing TV-based
reconstruction methods to spectral CT is to separately re-
construct the projection data from each spectral channel, but
we will show that superior reconstructions can be obtained
by using a generalized, vectorial TV norm that leverages the
strong spatial correlations in the image domain between the
various channels.

Our proposed vectorial TV (VTV) is motivated by the no-
tion that images reconstructed from different channels should
have a common edge structure. The conventional TV pertains
to scalar image functions and its application to CT recon-
struction is motivated by the idea that the gradient-magnitude
image should be approximately sparse. Our VTV generalizes
this approach for vector image functions and is based on
the nuclear norm of the Jacobian derivative. In addition to
introducing a desirable coupling between the spectral channels,
this VTV has a simple dual formulation and can be handled
readily by many of the recent primal-dual algorithms with
virtually no increase in computational burden.

In this work we will give some basic theoretical motivation

David Rigie and Patrick J. La Rivière are with the Department of Radiology
at the University of Chicago

for our generalized VTV, provide update equations for VTV
constrained spectral CT reconstruction based on the primal-
dual algorithm by Chambolle et al. [1], and briefly discuss
some preliminary simulation results.

II. THEORY

A. Definitions and notation

First, we will establish some of our notational choices to
avoid confusion. In this work we will refer to two different
kinds of matrix norms. The first type is the “entry-wise” p-
norm, which for matrix X is defined as

‖X‖p =

∑
i,j

|Xij |p
1/p

. (1)

For p = 2 we get the common “Frobenius norm”.
The second type is the “Schatten p-norm”, which arises

when applying the `p-norm to the vector of singular values
associated with X . We will use the uncommon notation ‖.‖Sp,
where specifically for a matrix X , the Schatten p-norm is given
by

‖X‖Sp =

(∑
i

|σi|p
)1/p

, (2)

where σi denotes the ith singular value of X . Some common
special cases are the “nuclear norm” (p = 1), the Frobenius
norm (p = 2), and the “spectral norm” (p =∞).

B. Constrained TV image reconstruction

For conventional, non-spectral CT the basic framework
for TV-based image reconstruction is summarized by the
following optimization problem,

argmin
u
{ ‖u‖TV s.t. ‖Au− f‖2≤ ε } (3)

where A is the projection matrix, u is the desired image, and ε
is a parameter that balances the trade-off between data fidelity
and regularity. Next we will define the conventional TV semi-
norm ‖.‖TV and develop the motivation for our generalized
VTV.

C. The scalar TV

The total-variation semi-norm typically employed for CT
reconstruction is given by equation 4.

‖u‖TV=
L∑

j=1

‖∇ju‖2, (4)
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The operator ∇j is the discrete approximation to the gradient
at pixel j, and L is the total number of image pixels. In
addition to its usefulness for handling sparse data, this penalty
is both edge-preserving and convex, which are important
properties that should, ideally, be preserved in any potential
generalization to multi-spectral data.

D. The proposed vectorial TV

Now we consider extending this notion to spectral CT,
where the image and data vectors consist of M different
spectral channels.

u =


u1
...
uM

 , f =


f1
...
fM

 (5)

The VTV that we propose is given by equation 6.

‖u‖
VTV

=
L∑

j=1

‖Dju‖S1, (6)

Since u is now a vector function, where each pixel corresponds
to a vector of “color” values, the quantity Dju is the discrete
approximation of theM×N Jacobian matrix at pixel j, where
M and N refer to the number of spectral channels and spatial
dimensions, respectively. We have replaced the `2-norm of the
gradient with the nuclear norm (a.k.a. Schatten 1-norm) of the
Jacobian. At pixel j the Jacobian has the following structure

Dju =


← (∇ju1)

T →
...

← (∇juM )
T →


M×N

, (7)

where each row is given by the discrete gradient of the
corresponding spectral channel.

We hypothesize that a sensible penalty for sparse spectral
CT reconstruction should try to minimize the rank of this
Jacobian over all pixels. The rank of the Jacobian will be
zero in constant-valued regions of the image, and it will be
one when the gradient vectors of each spectral channel point
in the same direction. Such a rank minimizing penalty would
encourage gradient-sparse solutions in the same way as the
conventional TV and it would also favor solutions that have
common edge directions in all channels. Figure 1 gives a
graphical illustration of the Jacobian for an ROI of a multi-
spectral image.

A true rank minimizing penalty would seek to minimize
‖.‖S0, but this would lead to an optimization problem that
is non-convex and NP-hard, so instead we use ‖.‖S1 as a
convex surrogate. We do not provide specific justification for
this relaxation, but such a substitution is implicit in all TV
penalties.

Some other possible vectorial TVs have been proposed in
the field of color image processing [7], [8], but to our knowl-
edge the one described here is original, and the application
of any VTV to CT reconstruction has yet to be studied. For

Fig. 1. Closeup ROI images of the NCAT phantom at 60 (left), 80 (middle),
and 100 keV (right) with their gradient vector-fields superimposed. Each row
of the Jacobian matrix corresponds to a point in one of these vector-fields. It
will have a low rank if the directions are consistent between energy channels.

brevity, we do not present those other variants in this work
because our proposed VTV exhibited better performance in
all of our experiments.

E. Efficient minimization

Using this newly proposed VTV, our primal optimization
problem is given by equation 8.

argmin
u
{ ‖u‖VTV s.t. ‖Au− f‖2≤ ε } (8)

where the operator A is simply the CT projection matrix
applied to each channel of u. In order to efficiently solve
this problem, we employ the primal-dual algorithm proposed
by Chambolle and Pock [1].

The basic premise is to recast (8) into a saddle-point
problem and to alternate between gradient descent steps in the
primal variable and ascent steps in the dual variables using
a proximal splitting scheme [9]. The saddle-point problem
equivalent to (8) is

min
u

max
ζ,q

{
− 〈u,Div(ζ)〉+ 〈q, Au− f〉 − δS(ζ)− ε‖q‖22

}
,

(9)
where δS(ζ) is an indicator function defined as

δS(ζ) =

{
∞ σmax(ζ) ≤ 1

0 otherwise
, (10)

and the Div operator is the discrete divergence operator applied
to each spectral channel of ζ. The update equations follow
from this saddle-point problem in a straight-forward manner.
The details on how to apply the CP algorithm to related
optimization problems can be found in Sidky et al [10].

III. SIMULATION STUDY

A. Basic setup

To investigate the merits of the proposed vectorial TV
regularizer, we carried out a simple 2D simulation experiment
on a pixelized anthropomorphic phantom composed of bone
and water, shown in figure 2. Our phantom is derived from
a pixelization of the NCAT phantom [11]. We simulated 100
views of noisy, projection data at 60, 80, and 100 keV with
a detector sampling of 896 bins and performed constrained
TV reconstructions using both a naive, channel-by-channel
approach and the proposed vectorial TV. All images were
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Fig. 2. An anthropomorphic thorax phantom, composed of bone and soft-
tissue (water)

reconstructed onto a 512 × 512 grid with 1 mm pixels. To
isolate the effects of the VTV regularizer in this pilot study,
we make several unrealistic assumptions. First, each energy-
channel of spectral CT data is perfectly mono-energetic,
removing any nonlinear, beam-hardening effects. Secondly,
the same CT system matrix is used for both data generation
and reconstruction, and finally, the noise-level in each energy
channel is approximately equalized by fixing the number
of transmitted photons. We don’t believe that any of these
assumptions will critically change our findings and plan on
relaxing them in future investigations.

B. Selecting the parameter ε

Our optimization problem (8) has one free parameter, ε that
controls the trade-off between data-fidelity and regularity. In
practice, the best choice of ε will depend on how noisy the
data is and the particular clinical task. However, we do not
attempt to seek out an “optimal” value of ε because we are
only interested in comparing our VTV to a channel-by-channel
application of the conventional TV. In that case, it is only
important that we use the same ε when making the comparison.
For our purposes, it is particularly important that we use this
data-constrained TV minimization framework, as opposed to
the equivalent unconstrained optimization problem, because
our proposed vectorial TV has inherently different scale than
the conventional TV. This would make it very difficult to
achieve a fair comparison when using the unconstrained form.

Since, in this simulation study, we have the ground truth
images available to us, we can use them to establish a baseline
for reasonable ε values. Particularly we calculate a reference
value, ε∗ as

ε∗ = ‖Autrue − f‖2, (11)

where utrue is the ground truth image data and f is our noisy
projection data. Then we perform reconstruction selecting ε =
γε∗, where 0 < γ < 1. For this study, we used γ values of
0.2, 0.5, and 1.0 in order to evaluate the impact of our VTV
for different levels of regularization.

C. Results

The 60, 80, and 100 keV energy channel images were re-
constructed, and a post-reconstruction, image-domain material
decomposition was performed. Since we simulated perfectly
monochromatic data, the decomposition amounts to solving a

TABLE I
IMAGE RMSE VALUES FOR THE CONVENTIONAL TV APPLIED

CHANNEL-BY-CHANNEL (TVS ) AND THE PROPOSED VTV

TVS VTV

ε/ε∗ 0.2 0.5 1.0 0.2 0.5 1.0

60 keV image 0.057 0.025 0.015 0.048 0.023 0.011

80 keV image 0.040 0.017 0.010 0.036 0.016 0.007

100 keV image 0.035 0.014 0.008 0.032 0.013 0.005

bone image 0.560 0.228 0.074 0.477 0.216 0.045

water image 0.752 0.303 0.086 0.649 0.288 0.039

trivial linear system. Figure 3 shows the results for the soft-
tissue and bone channels for three different choices of ε. Note
that the material decomposition process tends to amplify noise
and artifacts, which makes it easier to visualize errors in the
reconstructions.

Qualitatively, we observe that using our vectorial TV reg-
ularizer has a universally positive impact on the images,
reducing artifacts and producing much cleaner edges. We
observed this trend for all energy channels and epsilon values.
Additionally, we observe that the overall image accuracy is
improved, which can be seen from the RMSE values in table
I.

IV. SUMMARY

In summary, we have introduced a novel generalization of
the total-variation semi-norm for reconstructing spectral CT
data. It possesses many of the desirable properties of the
conventional TV penalty and introduces a coupling between
spectral-channels that encourages a consistent edge structure.
In our simulation experiment, we showed that our VTV
penalty results in cleaner edges and reduced artifacts com-
pared to separately reconstructing each channel. An additional
benefit is that the resulting optimization problem is no more
difficult than the conventional constrained TV minimization
problem, and we have provided simple updates based on the
primal-dual CP algorithm.

In the future we plan on testing our VTV penalty under more
realistic data conditions and exploring alternative applications.
Conceptually, our extension of the conventional TV is quite
general and could conceivably be useful for a wide variety of
problems involving multi-channel data with a consistent edge
structure.
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Statistical Image Reconstruction for Metal Artifact
Correction Using kV and Selective MV Imaging

Meng Wu, Dragos Constantin, Josh Star-Lack, and Rebecca Fahrig

Abstract—The goal of this study is to improve the image quality
of radiotherapy planning CTs for patients with metal implants
or fillings by completing the missing kilovoltage (kV) projection
data with selectively acquired megavoltage (MV) data that do not
suffer from photon starvation. Using the two imaging systems that
are available on current radiotherapy devices, the metal streaking
artifacts are avoided and the soft tissue contrast is restored,
even in the areas where the kV data cannot not contribute any
information. We implemented two statistical image reconstruc-
tion methods, dual-energy penalized least squares (PWLS) and
polychromatic maximum likelihood (PML), for combining kV
and selective MV data. The PML method can reduce the beam
hardening artifact caused by the metal in the low energy MV
X-ray data. Cramer-Rao Lower Bound for Compound Poisson
model is used to select the MV beam energy. The PML method
using a 2.5 MVp beam can possibly provide soft tissue contrast
and lower radiation dose than using a 6 MVp beam

Keywords—CT, Reconstruction, Metal artifact reduction, Com-
pound Poisson

I. INTRODUCTION

Streak artifacts caused by metal objects such as dental
fillings, surgical instruments, and orthopedic hardware may
obscure important diagnostic information in X-ray computed
tomography (CT) images. Radiotherapy planning is often times
flawed or even rendered impossible if the structures of interest,
that are to be segmented in the planning CT, lie on the same
imaging plane as high-density objects inside the patient’s body
[1]. Plans are inaccurate due to the streak artifacts that result
from the photon starvation along the X-ray paths traversing the
metal objects. Filling the metal-affected regions with data that
produce an overall smooth image is not sufficient to restore
all the image details. In order to improve the image quality of
radiotherapy planning CTs for patients with metal implants
or fillings, we proposed to complete the kilovoltage (kV)
projection data with selectively acquired Megavoltage (MV)
projection data.

Recent radiotherapy devices often include detectors for both
kV and MV cone beam CT imaging [2]. Since the high-energy
MV X-ray beam does not suffer from photon starvation, a
combination of the on-board imaging devices may provide a
streak-free and high-resolution CT reconstruction even for the
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soft tissue that is in the same image plane as the metal objects.
In addition, the multi-leaf collimators on the radiotherapy
device allow restriction of the additional MV acquisition onto
the metal implants, and thus the improvement of image quality
can be achieved at a moderate dose increase for the patient [3].

The new challenge in image reconstruction is how to modify
the MV projection data so that it can be used to complete the
missing information in the kV projections. A lower energy
MV X-ray spectrum may provide higher soft tissue contrast,
higher quantum detection efficiency, and lower radiation doses
to the patient. However, the low energy MV X-ray spectrum
may have beam hardening artifacts caused by the high density
metal object [4]. The wide spectrum of the MV X-ray beam
also causes higher noise, especially when using the current
energy integrating detector rather than novel photon counting
detectors [5]. In this study, we investigated the use of statisti-
cal reconstruction methods for kV/MV combined imaging to
achieve better image quality using relatively lower MV energy.

II. METHODS

A. Measurement model
The expected X-ray energy integrating signal measured in

the projections is

E(Y CP
i ) =

∫
εη(ε)bi(ε)e

−[Aµ(ε)]idε, (1)

where bi(ε) denotes the number of X-ray photons of the ith
ray (pixel) at the energy ε, η(ε) denotes the energy-dependent
detector quantum efficiency, [Aµ]i denotes the discrete line
integral in matrix form, and µ(ε) denotes the energy-dependent
X-ray attenuation coefficients of the object.

The energy integrating detector signal follows the Com-
pound Poisson (CP) statistical model [6], [7]:

Y CP
i ∼

∫
εPoisson{η(ε)bi(ε)e

−[Aµ(ε)]idε}+ ni, (2)

where ni denotes additive signals ( e.g. electronic noise) that
are often modeled as a Gaussian random variable N (ri, σ

2
i ).

When the X-ray energy is low (around 100kVp), the energy
integrating effect is small. Then it is appropriate to use the
simple Poisson (SP) model for the detector signal as

Y SP
i ∼ Poisson{

∫
η(ε)bi(ε)e

−[Aµ(ε)]i}dε+ ni, (3)

Unlike SP, the mean and variance of the CP model are
different. The variance of the CP signal is

Var(Y CP
i ) =

∫
ε2η(ε)bi(ε)e

−[Aµ(ε)]idε. (4)
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There is no explicit probability mass function of the CP
distribution, and the likelihood function is very complicated.
One way to simplify the noise model is to scale the signal,
such that the mean and the variance of the signal are equal
[7]. Then we can approximate the scaled CP signal

Ỹi =
Y CP
i

ε
∼ Poisson{1

ε

∫
εη(ε)bi(ε)e

−[Aµ(ε)]idε} (5)

with the SP model, under which the maximum likehood
reconstruction method is developed. The scale factor ε is given
by

ε =

√
Var(Y CP)

E(Y CP)
. (6)

Using the mean energy of the X-ray spectrum is usually good
enough. If the output spectra do not vary very much, one ε
value can be applied to the entire set of data. For the SP model,
the scaling is equivalent to ε = 1.

B. kV/MV penalized weighted least squares (PWLS)

The PWLS algorithm has been used for dual-energy (DE) X-
ray CT iterative reconstruction under the assumption that both
beams are monochromatic. The algorithm forms a quadratic
approximation of the Poisson log-likelihood function and min-
imizes piecewise differences of the image at the same time [8],
[9]. The DE PWLS algorithm with proper modification may
also be applicable for kV/MV image reconstruction. Ideally,
the DE PWLS algorithm minimizes the object function

Φ(µ(ε)) = ‖AkVµ(εkV)− lkV‖2wkV

+ ‖AMVµ(εMV)− lMV‖2wMV + βR(µ(ε)).
(7)

where AkV and AMV denote projection matrices for the two
geometries. The least-squares weights wi and logged sinogram
li are computed as

wi =
{Yi − ri}2+
εYi + σ2

i

, li = log

( ∫
εbi(ε)η(ε)dε

max{Yi − ri, s}

)
, (8)

where ri and σ2
i denote the mean and variance of the additive

signals, s is a small positive number. The argument R is the
regularization function of the image. The Huber function of the
6 neighboring pixel differences is used as the penalty function
of image roughness in this study.

Both µ(εkV) and µ(εMV) denote the linear attenuation coef-
ficients of same scan object at different x-ray energies εkV and
εMV, and have to be reconstructed together. However, unlike
the conventional dual-energy CT system, the kV and selective
MV system has only one complete set of projection data. One
complete sinogram is not sufficient to reconstruct two density
maps of the two basis materials directly as in [8]. To overcome
this limitation, we fixed the ratios of the soft tissue and bone.
Thus, only one combined density must be solved. We first
computed the fraction maps of two materials from a prior
image using a metal artifact reduction (MAR) reconstruction
[10]. Then the ratios of the densities between the soft tissue

and the bone are fixed throughout the iterative reconstruction.
The fraction maps of two base materials are given by

fsoft,j =


1 if µ(0)

j ≤ µkV
soft

µkV
bone−µ

(0)
j

µkV
bone−µ

kV
soft

if µkV
soft < µ

(0)
j < µkV

bone

0 if µ(0)
j ≥ µkV

bone

fbone,j = 1− fsoft,j ,

(9)

where fsoft,j and fbone,j denote the fractions of soft tissue
and bone of the jth voxel, and µ

(0)
j denotes the attenuation

coefficient value in the prior reconstruction. µkV
soft and µkV

bone are
linear attenuation coefficients of the soft tissue and the bone
at the effective energy εkV of the kV X-ray. Thus the linear
attenuation coefficients of the object can be expressed as

µj(ε
kV) =

(
mkV

softfsoft,j +mkV
bonefbone,j

)
ρj = mkV

j ρj

µj(ε
MV) =

(
mMV

softfsoft,j +mMV
bonefbone,j

)
ρj = mMV

j ρj ,
(10)

where mkV
j and mMV

j denote the pre-computed combined mass
attenuation coefficient of the jth voxel for the kV and MV
spectrum, and ρj denotes the combined density of the scanned
object that is unknown. Because the PWLS method is based
on the monochromatic X-ray assumption, it is not necessary
to segment out the metal object that is only covered by the
MV data.

By fixing the fractions of the two base materials, we obtain
the following object function for the kV/MV imaging:

Φ(ρ) = ‖AkVMkVρ− lkV‖2wkV

+ γ‖AMVMMVρ− lMV‖2wMV + βR(MkVρ)
(11)

Matrices MkV and MMV are diagonal matrices of the com-
bined kV and MV dependent mass attenuation coefficients
(10). The parameter γ magnifies the MV soft tissue contrast
to ensures that the kV/MV PWLS method has more uniform
impulse response. The scaling factor γ also it increases the
impact of the noise in the MV data on the final reconstruction,
but the soft tissue contrast is more desirable in this study.

C. kV/MV polychromatic maximum likelihood (PML)
Using a lower energy MV X-ray spectrum (e.g. 2.5 MVp

instead of 6 MVp) may increase beam hardening due to the
emery-dependent attenuation coefficients of the metal object.
The kV/MV PWLS method, based on the monochromatic
assumption, may not be able to correct the beam hardening
artifacts. Hence, we studied a statistical polychromatic recon-
struction method [7], [9] to correct the beam hardening artifacts
when using relatively low energy MV X-rays. Similar to the
kV/MV PWLS method, the object function of the PML method
is

Φ(ρ) =
∑
i

(
Y kV
i log Ŷi

kV
(ρ) + Ŷi

kV
(ρ)
)

+ γ
∑
i

(
Y MV
i

ε
log

Ŷi
MV

(ρ)

ε
+
Ŷi

MV
(ρ)

ε

)
+ βR(MkVρ)

(12)
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where Ŷi
kV

(ρ) and Ŷi
MV

(ρ) are computed using Eqn. (1).
The SP likelihood function is used for the kV projections
for simplicity. The material fraction maps are extended to
more than two materials, because the metal objects have to be
segmented out and used for beam hardening prediction in Eqn.
(1). The calculation of the material fraction maps is similar to
Eqn. (10) with more than two thresholds.

D. MV energy comparison
To compare the efficiency of MV X-ray beams with different

energies, the Cramer-Rao Lower Bound (CRLB) for estimating
soft tissue changes in the projection signal is used. The Fisher
information of the x-ray projection signal with SP distribution
in Eqn. (3) is

I(t) = −Et
[
∂2

∂t2
log p(Y ‖Ŷ (t))

]
=

1

Ŷ (t)

(
∂Ŷ (t)

∂t

)2

(13)
where p(Y ‖Ŷ (t)) denotes the probability density function of
the detector signal Y with mean parameter Ŷ (t), and t denotes
a small soft tissue thickness change along the X-ray paths. The
mean parameter is given by

Ŷ (t) = B

∫
η(ε)b̂(ε)e−tµsoft(ε)−q(ε)dε, (14)

where B denotes the total photon counts of the attenuated X-
ray beam, b̂(ε) denotes the normalized x-ray spectrum, and
q(ε) denotes the total amount of attenuation of X-rays passing
through the patient body, which are assumed to be constants
when computing the CRLB

∂Ŷ (t)

∂t
= −B

∫
η(ε)b̂(ε)µsoft(ε)e

−tµsoft(ε)−q(ε)dε. (15)

Insert Eqn. (14) and Eqn. (15) into Eqn. (13), and we can
obtain the CRLB of the soft tissue signal for a given spectrum
using the SP model

CRLBSP (t‖B, b̂(ε)) ≈ 1

B

∫
η(ε)b̂(ε)e−q(ε)dε(∫

η(ε)b̂(ε)µsoft(ε)e−q(ε)dε
)2 ,

(16)
and the CRLB using the CP model is further corrupted by
the additional noise caused by the energy integrating effect.
We approximate the CRLB of CP by replacing the mean and
variance terms

CRLBCP (t‖B, b̂(ε)) ≈ 1

B

∫
ε2η(ε)b̂(ε)e−q(ε)dε(∫

εη(ε)b̂(ε)µsoft(ε)e−q(ε)dε
)2 .
(17)

E. Simulations
A numerical dental phantom including two metal fillings is

used in the simulation in order to assess the ability to recover
missing information. The phantom contains one gold and one
amalgam filling with diameters about 5 mm. The phantom
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Fig. 1: X-ray spectra and material attenuation coefficients used
in the simulations. (a) 2.5 MVp and 6 MVp spectra. (d) Energy
dependent attenuation coefficient of soft tissue, bone, titanium,
amalgam, and gold.
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Fig. 2: The CRLB values as a function of total photon counts /
pixel for 2.5 MVp and 6MVp x-ray beam penetrating different
thicknesses of gold.

also features two bar-shaped soft tissue patterns. The soft
tissue pattern uses adipose tissue that is 150 HU smaller than
the surrounding soft tissue material. All anatomical features
are specified as materials whose energy-dependent attenuation
profile is derived from the NIST database. The cone-beam
CT projections were simulated based on the TrueBeam radio-
therapy system (Varian Medical System, Palo Alto, CA). The
collimated kV and MV detectors data contain 512 × 16 pixels
with 0.768 mm and 0.784 mm widths, respectively. Both the
beams have 480 projections for a 360◦ rotation. The source-to-
detector distance is 1000 mm, and the source-to-axial distance
is 500 mm. The reconstructed volume has 400 × 400 × 6
voxels with spacing of 0.4 mm × 0.4 mm × 2 mm.

The simulation used a 120 kVp spectrum (mean: 54.7 keV,
standard deviation: 19.9 keV) to generate kV projections. A
2.5MVp beam (mean: 677 keV, standard deviation: 428 keV)
and a 6 MVp beam (mean: 1.66 MeV, standard deviation
1.24 MeV) were used to generate the MV projections. The
normalized MV spectra are shown in Figure 1. The MV
detector was assumed to be made by 1.5 cm thick CdWO4

pixelated scintillators with total 20% loss. The MV projections
were restricted to the shadow that the fillings cast onto the
detector, plus a margin of 3 pixels to each side. The X-ray
beam intensities are 4×105 counts / pixel for the kV projection,
6 × 104 counts / pixel for the 2.5 MVp beam, and 6 × 104

counts / pixel for the 6 MVp beam. The parameters γ =
30(PWLS)/100(PML) and β = 1×104 for both the MV X-ray
spectra and the reconstruction methods. Separable quadratic
surrogate with 16 ordered subsets is used to optimize the object
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(a) Ground Truth (b) 2.5 MV PWLS (c) 2.5 MV PML

(d) NMAR (e) 6 MV PWLS (f) 6 MV PML

Fig. 3: Image reconstruction results. The images are displayed
at the window level [-400, 800] HU, and ROI images are
displayed at the window level [-200, 200] HU. The NAMR
image is reconstructed using the normalized metal artifact
reduction method [10].

III. RESULTS

Figure 2 shows the CRLB values as a function of total
photon counts / pixel for the 2.5 MVp and 6 MVp X-ray
beam penetrating different thicknesses of gold. The patient
has thickness of 20 cm soft tissue and 2 cm bone. When the
metal thicknesses are 0 mm and 5 mm, the 2.5 MVp beam has
smaller CRLB than 6 MVp beam using the CP model. The two
MV beams have similar CRLB values when the thickness of
the gold object is 10 mm because most of the photons in the
2.5 MVp spectrum are blocked by the gold.

Figure 3 shows the reconstructed images using our proposed
image reconstruction methods. Two regions of interest (ROI)
of the soft tissue patterns are displayed below each image.
The left ROI image is the upper soft tissue pattern that is
between the two metal fillings. Both the iterative reconstruction
methods could effectively reduce streak artifacts and recover
the missing soft tissue information in the kV data. The images
using 2.5 MVp X-ray beam have similar soft tissue contrast
as using 6 MVp beam. However, the PWLS method using 2.5
MVp beam has beam hardening artifact, the dark line between
the two fillings. The PML method can effectively reduce the
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Fig. 4: MV dose distribution maps using Geant4 Monte Carlo
simulations.

beam hardening artifact. The root mean squared error (RMSE)
of the soft tissue patterns using the PML method and the 2.5
MVp beam are 53 HU and 45 HU. The PML images using
the 6 MVp beam have similar RMSE values of the soft tissue
patterns.

Greant4 Monte Carlo dose simulation showed the MV dose
to the patient is low due to the collimation onto the fillings or
implants. Figure 4 shows the MV dose distribution maps of the
two phantoms. Using the 2.5 MVp beam delivers less radiation
dose to the soft tissue and the tooth than 6 MVp beam, while
providing similar the metal artifact correction results.

In conclusion, our proposed statistical image reconstruction
algorithms using kV selective MV data can partially restore the
lost information caused by the metal objects. The PML method
allows use of a lower energy X-ray beam without having beam
hardening artifacts.
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Fig. 3: Image reconstruction results. The images are displayed
at the window level [-400, 800] HU, and ROI images are
displayed at the window level [-200, 200] HU. The NAMR
image is reconstructed using the normalized metal artifact
reduction method [10].

functions of the kV/MV PWLS and the PML methods [9].

III. RESULTS

Figure 2 shows the CRLB values as a function of total
photon counts / pixel for the 2.5 MVp and 6 MVp X-ray
beam penetrating different thicknesses of gold. The patient has
thickness of 20 cm soft tissue and 2 cm bone. When the metal
thicknesses are 0 mm and 5 mm, the 2.5 MVp beam has a
smaller CRLB than 6 MVp beam using the CP model. The
two MV beams have similar CRLB values when the thickness
of the gold object is 10 mm. Because most of the photons
in the 2.5 MVp spectrum are blocked by the gold, and more
photons in the 6 MVp beam reach the detector. The larger
number of detected photons cancels the drawback of energy
integrating effect of the 6 MVp beam.

Figure 3 shows the reconstructed images using our proposed
image reconstruction methods. Two regions of interest (ROI)
of the soft tissue patterns are displayed below each image.
The left ROI image is the upper soft tissue pattern that is
between the two metal fillings. Both the iterative reconstruction
methods could effectively reduce streak artifacts and recover
the missing soft tissue information in the kV data. The images
using 2.5 MVp X-ray beam have similar soft tissue contrast
as using 6 MVp beam. However, the PWLS method using 2.5
MVp beam has beam hardening artifact, the dark line between
the two fillings. The PML method can effectively reduce the
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Fig. 4: MV dose distribution maps using Geant4 Monte Carlo
simulations.

beam hardening artifact. The root mean squared error (RMSE)
of the soft tissue patterns using the PML method and the 2.5
MVp beam are 53 HU and 45 HU. The PML images using
the 6 MVp beam have similar RMSE values as those of the
soft tissue patterns.

Geant4 Monte Carlo dose simulation shows that the MV
dose to the patient is low due to the collimation onto the
fillings. Figure 4 shows the MV dose distribution maps of the
two phantoms. Using the 2.5 MVp beam delivers less radiation
dose to the soft tissue and the tooth than 6 MVp beam, while
providing similar the metal artifact correction results.

In conclusion, our proposed statistical image reconstruction
algorithms using kV selective MV data can partially restore the
lost information caused by the metal objects. The PML method
allows use of a lower energy X-ray beam without having beam
hardening artifacts.
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Dose reconstruction for real-time patient-specific 
dose estimation in CT 

Bruno De Man, Mingye Wu, Paul FitzGerald, Yannan Jin, Zhye Yin, Peter M Edic, Yangyang Yao, 
Xiaoyu Tian, Ehsan Samei 

Abstract— We present a new method for reconstructing 
absorbed dose on a per voxel basis, directly from the actual 
projection data. While the method is approximate, 
preliminary results indicate that the method may offer a 
favorable tradeoff between computational efficiency and 
accuracy. From the volumetric dose estimates, traditional dose 
metrics such as organ dose, skin dose, average absorbed dose 
and effective dose can readily be computed without requiring 
a quantum-based approach such as Monte Carlo. This method 
will not replace measurements or Monte Carlo approaches 
but we expect that it will prove useful in applications where 
real-time patient-specific dose estimation is required. 

Keywords—Computed Tomography, Radiation dose. 

I. INTRODUCTION

X-ray computed tomography (CT) has become one of 
the most widespread diagnostic tools in medicine. While 
clinically invaluable, CT’s associated radiation dose now 
makes up a significant portion of the overall population dose 
[1]. Increased awareness has driven CT vendors and users 
alike to improve the design and use of CT by optimizing the 
scan region, tube current, tube voltage, x-ray detection and 
reconstruction (Figure 1). 

Figure 1: Opportunities for dose reduction in CT design and clinical use. 

An important factor in minimizing dose is the ability to 
estimate it. Assessing dose levels can be useful in multiple 
contexts: 

• Research and development of CT hardware and
algorithms

• Prospectively, before the clinical user decides

to go ahead with the scan 

• Prospectively, as part of an automated or
manual scan planning process

• Retrospectively, to report the dose that was
used during a scan

Depending on the purpose, time may be an important 
factor and time-consuming dose estimation methods may 
need to be substituted with more approximate but faster 
techniques. In other situations, accuracy may be more 
important, and organ-by-organ estimates may be desired. 

Several methods exist for estimating dose in CT [2]. The 
CT dose index (CTDI) metric uses a pencil ionization 
chamber positioned at discrete locations inside a fixed-size 
circular PMMA phantom. The size-specific dose estimate 
(SSDE) metric applies patient size-dependent correction 
factors to CTDI values, for a more relevant estimate of dose 
in the specific patient. Obviously, cylindrical phantoms are 
crude approximations of patient anatomy and don’t offer 
doses specific to individual organs. In an era of increased 
focus towards precision medicine (and precision imaging), 
including patient-specific and organ-specific scan 
optimization [3], the CTDI and SSDE metrics are severely 
limited.  

Monte Carlo (MC) simulation is generally considered as 
the gold standard for CT dose estimation [4]. MC-based 
approaches produce voxel-based estimates of the absorbed 
dose, from which average absorbed dose, risk indices, 
effective dose, and organ doses can be computed. However, 
their quantum nature makes them noisy and computationally 
expensive. Massive parallelization such as using graphics 
cards (GPU) may make them more practical [5]. 

In this work, we propose a new approach for CT dose 
estimation, inspired by numerical ray tracing operations. 
The goal was to make a patient-specific voxel-based 
estimate without the overhead of a quantum-based 
approach. While the approach is based on significant 
approximations, we hypothesize that it is still substantially 
more accurate than lookup-based approaches such as CTDI 
and SSDE. Section II gives a detailed description of the new 
approach. Section III contains initial evaluation results. 
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Yin are with the CT Systems and Application Laboratory, GE Global 
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Yangyang Yao and Mingye Wu are with the X-ray and CT Laboratory, GE 
Global Research,  Shanghai, China. Xiaoye Tian and Ehsan Samei are with 
Medical Physics, Biomedical Engineering, Duke University, Durham, NC 
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II. METHODS  

A. Projection-domain dose estimation 
The proposed method is best understood from the 

patient’s perspective.  Reasonable questions to ask about an 
x-ray beam are: (1) how much energy is applied to the 
patient, (2) how much energy interacts with the patient and 
(3) how much energy is absorbed in the patient. The applied 
energy is defined as the x-ray energy arriving at the patient 
in a given x-ray beam (Eincident in Figure 1). Some of that 
energy will go straight through the patient (Etransmitted), some 
of it will be absorbed (Eabsorbed), and some of it will be 
scattered (Escattered). A large portion of the scattered x-rays 
will be absorbed elsewhere in the patient, but some will 
escape from the patient. 

 
Figure 2: Schematic view of interaction processes of an x-ray beam with a 
patient. 

We define the interaction energy as the energy that 
interacts with the patient, either through scattering or 
through absorption. It is the amount of energy that was 
removed from the primary beam prior to reaching the 
detector, by a combination of the physical attenuation 
processes in the patient (photo-electric absorption, Compton 
scatter and, in the case of high energies, pair formation). 
This can be readily computed by subtracting the transmitted 
energy from the applied energy, both of which can be 
derived from the detected signals, with and without the 
patient in the scanner. In the case of an energy-integrating 
detector, the detected signal is simply the total energy 
absorbed by the detector. In the case of a photon-counting 
detector, an energy-weighted sum over all energy bins 
would yield a similar estimate. Figure 3 shows the air signal 
(Iair) and the transmitted signal (Itransmitted) for a single CT 
view. Integrating the interaction energy across all detector 
channels results in the total interaction energy for a 
particular x-ray projection measurement or view. The 
striped area in Figure 3 is a measure for the total interaction 
energy for that view.  

 
Figure 3: Air signal and transmitted signal for a single CT view. 

   Absorbed dose is defined as ‘absorbed’ energy per unit 
mass. We hypothesize that the interaction energy is 
‘correlated’ (not equal) to the absorbed energy: the first 
includes scattered energy and the latter does not. However, 
we hypothesize that for certain scan parameters there exists 
a monotonic relationship between absorbed energy and 
interaction energy, hence making it possible to use the latter 
to estimate the former. The fact that most scattered x-rays 
are absorbed elsewhere (and most likely nearby) may be a 
good justification for this. A detailed description of this 
projection-domain dose estimation is presented in [6]. 

 

B. Dose reconstruction 
We now take this idea a step further and apply it to each 

piece of tissue the x-ray beam encounters.  We first consider 
a single x-ray beam with energy Einc(0) as it enters the first 
row or slab in the image with attenuation µ, voxel size d and 
incidence angle θ. The energy interacting with the first row 
in the image is computed as 

Eabs(1)=Einc(0)*(1- exp(-µ*d/cosθ)),    (1) 

and the remaining energy as the beam enters the next row is 
computed as (see Figure 4): 

Einc(1)=Einc(0)*exp(-µ*d/cosθ).    (2) 

 
Figure 4: Schematic view of interaction processes of an x-ray beam with a 
slab of thickness d and linear attenuation coefficient µ. 

Typically, a given voxel will only account for a portion 
of the absorbed energy Eabs(1), proportional to its footprint in 
the beam compared to the footprint of the entire beam. The 
challenge is to define an algorithm that correctly tracks 
energy losses as a beam propagates through the voxel grid. 
At the same time, the lost energy needs to be distributed 
correctly across the corresponding voxels. We impose the 
following two criteria: (1) after propagating through the 
entire voxel grid, the energy loss should be consistent with 
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the loss computed from the line integral through that voxel 
grid (sum of the losses equals the loss over the sum) and (2) 
for a uniform/smooth phantom and a uniform/smooth flux 
profile, the dose distribution should also be uniform/smooth. 

One approach is to start from a ray-driven projector, 
such as Siddon’s intersection-length method [7] or Joseph’s 
interpolation-based method [8], and deposit the 
corresponding energy losses in the respective voxels. For 
instance, for Joseph’s method, the incremental energy 
deposited in voxel j may be computed as 

Eabs(j)=Eabs(j)+ ai,j *Einc(n)*(1- exp(-µeff*d/cosθ)) (3) 

µeff=ai,j*µj+ai,j+1*µj+1    with     ai,j+ai,j+1=1  (4) 

where ai,j is the interpolation coefficient for voxel j and ray 
i, and Einc(n) is the beam energy after penetration through the 
previous slab. However, in order to satisfy the second 
criterion of uniformity and smoothness, the result needs to 
be normalized. Thus for each view, we compute 

Eabs(j)=Eabs(j) / Σiai,j..      (5) 

For Siddon’s method a similar type of normalization can be 
applied. 

We’ve chosen a distance-driven implementation [9], 
since it naturally takes care of the normalization. 

 
Figure 5: Geometric illustration of overlap coefficients for voxel j and ray i. 

The distance-driven overlap kernel (Figure 5) was used 
to compute the relative footprint of a voxel inside the beam, 
so the interaction energy for voxel j from beam i is 
computed as 

Eabs(j)=(oxji *ozji)/( bxi *bzi)*Einc(n)*(1- exp(-µj*d/cosθ)), 
           (6) 

where oxji and ozji are the overlap coefficients between 
voxel j and beam i in the x and z direction, respectively, 
and bxi and bzi are the beam widths of beam i in the x and z 
direction, respectively. The linear attenuation coefficient µ 
is obtained from a CT reconstruction (either filtered 
backprojection or iterative reconstruction). Note that the 
sum of all interaction energies across the slabs equals the 

total interaction energy from the sinogram based method, 
since 

1-exp(-p1)+exp(-p1)(1-exp(-p2))+exp(-p1-p2)(1-exp(-
p3))……=1–exp(-p1-p2-p3-…….),    (6) 

where pi is attenuation at the ith row of image. We assumed 
above that the projection is more vertical, hence we track 
the beam from row to row (in y) (from xz-slab to xz-slab). 
For projections that are more horizontal, the same 
procedure is followed from column to column (or from yz-
slab to yz-slab), and the index x is replaced by y, similar to 
the standard distance-driven approach [9]. 

III. RESULTS AND DISCUSSION 
The projection-domain dose estimation was previously 

[6] demonstrated to have good correspondence with Monte 
Carlo based results, as illustrated in Figure 6.  

 
Figure 6: Transfer function from projection-domain dose estimates to 
Monte Carlo dose estimates. The results were obtained for a helical body 
phantom including a variety of tube voltages (80,100,120,140kVp) and tube 
currents. 

Figure 7 shows a 2D dose reconstruction for a single 
view for a simple phantom consisting of two embedded 
squares with different attenuation. The x-ray source location 
for this view was at the top center; green reflects the highest 
absorbed dose and red reflects zero absorbed dose. As 
expected, the dose decreases rapidly as x-rays propagate 
through the phantom, and it increases with local density. 
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Figure 7: 2D dose reconstruction for a single view for a simple phantom 
consisting of two embedded squares. 

Figure 8 shows a 3D dose reconstruction for a clinical 
CT scan. Yellow represents the highest absorbed dose (near 
the skin) and black represents zero absorbed dose (in air). 

 
Figure 3: 3D dose reconstruction for a clinical CT scan of the thorax. 
Yellow is highest dose and black is lowest dose. 

 

While the methodology is already implemented, we still 
need to apply a conversion from interaction energy to dose. 
This conversion is currently implemented as a single scale 
factor. However, accuracy could be further improved by 
empirically compensating for the scatter effect. For 
example, more photons are likely to scatter out of the patient 
for interactions near the edge of the patient’s skin than deep 
within the patient.  Potential uncertainty associated with the 
scatter in and out of the projection plane also needs to be 
quantified. 

 

 

 

To compute absorbed dose, we normalize the interaction 
energy by mass. The mass in each voxel is estimated from 
µ, obtained from the reconstructed image: 

m = µ / (µ/ρ) ∗ v       (7) 

with (µ/ρ) the estimated mass attenuation coefficient and v 
the voxel volume. 

If a good estimate of the spectrum is available, the 
polychromatic nature of the x-rays can be taken into account 
as well. The spectrum is divided in a number of energy bins, 
and the above procedure is repeated for each energy bin. 
The total dose is the sum of the doses at each energy. 

More rigorous validation based on comparison to a 
Monte Carlo baseline is in progress and is planned to be 
presented at the time of the conference. The current 3D dose 
reconstruction implementation is based on a monochromatic 
single-material model and will be extended to a 
polychromatic multi-material model. Finally, our goal is to 
optimize the accuracy by including location dependent 
scatter correction factors. 

We have presented a new approach for fast, patient-
specific estimation of CT dose in each voxel. We hope that 
this approach will prove useful in real-time or quasi-real-
time applications, such as organ dose, skin dose and 
effective dose prediction and reporting.  
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CT Protocol Optimization at the Dawn of Iterative
Reconstruction: Challenges and Solutions

Ke Li, Jie Tang and Guang-Hong Chen

Abstract—The past decade has witnessed tremen-
dous advances in CT technology, among which itera-
tive reconstruction (IR) algorithms have drawn much
recent attention due to the promise of generating clin-
ically acceptable CT images at very low dose levels.
However, the nonlinear nature of IR has brought new
challenges to the optimization of CT scanning proto-
cols, as the dependence of CT image quality and di-
agnostic performance on CT scanning parameters have
been fundamentally modified. This work features a new
experimental framework that aims at addressing these
challenges. It enables various aspects of the physical
characteristics of IR images to be accurately measured
and their dependences on CT scanning parameters to
be understood. The method offers a potential solution
to the task-based CT protocol optimization for IR with
the goal of maximizing diagnostic performance with the
lowest possible radiation dose.

I. Introduction
CT iterative reconstruction (IR) algorithms have drawn

much attention during the last decade because of the
promise of generating clinically acceptable CT images
at very low dose levels. While IR may offer additional
flexibilities to the CT reconstruction process, its nonlinear
nature has brought new challenges to the scanning pro-
cess: The dependence of CT image quality and diagnostic
performance on scanning parameters (e.g., exposure level,
slice thickness, etc) have been fundamentally modified by
IR, therefore the direct use of CT protocols developed in
the era of filtered backprojection (FBP) is not appreciate
for both dose and diagnostic performance considerations.
As a result, CT protocols must be carefully re-optimized
at the advent of IR algorithms to help fully utilize their
potential in dose reduction and/or diagnostic performance
improvement.

This paper reports an experimental framework that
aims at addressing the challenges in optimizing CT pro-
tocols for IR. The framework is based on a task-based
approach to quantify the physical characteristics of IR im-
ages. It uses image ensembles generated by consecutive CT
scanning of anthropomorphic physical phantoms of differ-
ent sizes and containing lesions of different sizes/contrast
levels. To investigate the dependence of spatial resolution
on CT scanning parameters in IR, ensemble averaging
was performed across the repeated CT scans to reduce
noise, which allows spatial resolution performance at the
edges of low contrast lesions to be accurately measured

K. Li and G.-H. Chen are with Department of Medical Physics
and Department of Radiology, University of Wisconsin-Madison, WI;
J. Tang is with GE Healthcare, Waukesha, WI

even at low dose level. The ensemble averaging approach
also relaxes the requirement of radial- and slice-averaging
traditionally used to measure low-contrast spatial reso-
lution, which enables local spatial resolution assessment
at irregularly-shaped features of interest (e.g., lung/tissue
interface). To investigate the dependence of noise on CT
scanning parameters in IR, noise ensembles generated
by the repeated CT scans are used to calculate noise
standard deviation (σ) maps, which strongly depends on
the local contrast level in IR. These meticulously-designed
spatial resolution/noise measurements also enables further
understanding of possible tradeoff relationship and their
joint contributions to the overall CT image quality, which
was quantified by an image domain-based and human
observer-validated channelized Hotelling observer (CHO)
measurement method.

II. Experimental Methods
A. Data acquisition, image reconstruction and phantoms

The study used a 64-slice clinical CT scanner (Discovery
CT750 HD, GE Healthcare, Waukesha, WI) equipped with
both a standard reconstruction engine and a statistical
model-based iterative reconstruction engine (Veo R©, GE
Healthcare, Waukesha, WI) to acquire CT images of a
pediatric phantom (ATOM 10-year-old pediatric phantom,
Model 706, CIRS Inc., Norfolk, VA). The scanner was
collimated to a 20-mm-thick section in the thoracic region
of the phantom. The physical dimensions of cross-section
of the phantom at this position is approximately 20 cm
(AP) × 17 cm (LR). The phantom was scanned at a fixed
scanning time of 0.5 seconds and at four different mA levels
(40, 80, 120, 160), which correspond to CTDIvol of 3.99,
7.99, 11.98, 15.97 mGy, respectively. These exposure levels
will be referred in the remainder of the paper as 25%,
50%, 75%, and 100% dose, respectively. The x-ray tube
potential was fixed at 120 kV. The slice thickness and
slice interval were both 0.625 mm. Each reconstruction
generated a stack of 32 axial CT images. At each dose
level, the CT scan was repeated for either M = 100 times
(when low contrast inserts were used) or M = 50 times
(otherwise).

The image quality of Veo was evaluated locally at several
representative landmarks in the phantom, including a
Nylon pin that connects Sections 15-16 of the pediatric
phantom together and the anatomical interfaces of lung
tissue/bone and lung tissue/soft tissue. In addition, a
�=37 mm factory QA insert that fits into the phantom
and contains cylindrical targets with two different con-
trasts values (13 HU and 33 HU) was used (Soft tissue
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Fig. 1. The anthropomorphic pediatric phantom used in our study.

TABLE I
CT contrast values of eight objects in the phantom.

Material Background Contrast (HU)
Object 1 +1% Soft tissue Soft tissue 13
Object 2 +2% Soft tissue Soft tissue 33
Object 3 Nylon Soft tissue 62
Object 4 Water PMMA 120
Object 5 11.2 mg/mL I PMMA 224
Object 6 16 mg/mL I PMMA 346
Object 7 Soft tissue Lung 814
Object 8 Bone Lung 1710

insert, Model 700-QA, CIRS Inc., Norfolk, VA). Finally, a
�=38 mm in-house acrylic phantom plug that contains
�=5.0 mm cylindrical cavity was used to replace the
QA insert. The cavity was filled with iodine solutions
of three different concentrations (8, 11.2 16 mg/mL) to
provide three additional contrast values. Therefore, the
study covered a total of 8 contrast levels, which provides
a relatively rich database for understanding the contrast
dependence of various physical characteristics of Veo. The
experimentally measured mean contrast values of these
objects are listed in Table I.

B. Spatial resolution measurement method
This work characterized the spatial resolution of IR in

the spatial domain using point spread function (PSF),
which is given by taking the spatial derivative of the
system edge spread function before being normalized by
the area under the curve:

PSF(x⊥) = dI(x⊥)/dx⊥∫
dx⊥ {dI(x⊥)/dx⊥}

(1)

where x⊥ denotes the direction running normal to an edge
of interest, I denotes image pixel value with the unit of
[HU]. For circular objects, any lines going through their
centers are normal to their edges; for objects with irregular
boundaries, the tangent lines of each point on the edge was
firstly located by taking the spatial gradient of the edge
central line, then the normal direction of each point on the
edge was calculated from the tangent line.

While the entire PSF curve serves as a complete de-
scriptor of spatial resolution, there is often a need to
quantify the spatial resolution with a numerical figure
of merit (FOM). For example, the spatial frequencies
corresponding to the 50% and 10% MTF values (i.e. f50
and f10 respectively) are often used as the FOMs of spatial
resolution [1]. To quantify the spatial resolution of IR using

a number, the full width at half maximum (FWHM) of
the PSF was used as the FOM of spatial resolution in this
work.

C. Noise measurement method
In this work, the noise standard deviation was measured

locally for each imaging task from the ensembles of re-
peated scans by

σ(x, y) =

√√√√ 1
M − 1

M∑
i=1

[
Ii(x, y)− Īi(x, y)

]2
, (2)

in which the mean image pixel value Ī is given by

Ī(x, y) = 1
M

M∑
i=1

Ii(x, y). (3)

D. Channelized Hotelling observer measurement method
To quantify the joint contributions of spatial resolution

and noise to the final CT image, a FOM for the overall
image quality is needed. This work employed the image-
domain-based channelized Hotelling observer (CHO) anal-
ysis and used the CHO detectability index [2], [3] as the
FOM. The CHO method has been validated by human
observers to work with CT images generated by nonlinear
iterative reconstruction methods [4]. In this work, the
CHO method was implemented using the Gabor channel
basis, which has been previous validated to have close
resemblance with human observer responses [4]. Parame-
ters of the channel basis functions (e.g., central frequency,
bandwidth, cutoff frequency, etc.) were chosen to be con-
sistent with this earlier work.

III. Results
A. Dependence of spatial resolution on CT scanning pa-
rameters

Figure 2 shows that the spatial resolution of Veo
strongly depends on the imaging task: the span of the
PSF measured with low contrast object 1 is significantly
wider than that measured with the high contrast object 7.
The crossover contrast is about 200 HU at 25% exposure
level. Similarly, the spatial resolution of Veo demonstrated
a strong dependence on the exposure level: The FWHM of
PSF always increases with decreasing exposure level, and
the crossover contrast dropped to about 70 HU at 100%
exposure level.

B. Dependence of noise on CT scanning parameters
Noise standard deviation (σ) maps measured locally on

the objects of interest are shown in Fig. 3. Note that the
display level used for the σ maps of Veo is only 31% of that
of FBP, which indicates that Veo generated images with
much smaller noise magnitude than FBP. However, noise
in Veo images demonstrated a strong contrast dependence;
edges of high contrast objects (e.g., Object 6) lead to
significantly larger σ in their immediate neighborhoods
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1Fig. 2. Representative experimental PSF measured at 25% dose level. The FBP result of the low contrast Object 1 in (a) was too noisy to
enable the (Gaussian) fitting.

(than in other areas with uniform signal level), while edges
of low contrast objects (e.g., Object 4) lead to a uniform
noise reduction. This suggests that noise magnitude in Veo
has a strong contrast dependence even at a given exposure
level. Fig. 4 summarizes this phenomenon by displaying
σ as a function of both contrast and dose level.It clearly
demonstrates that, in addition to the well-known dose
dependence, noise of Veo images measured locally at the
edge of on object increased with increasing contrast level
at any x-ray exposure level.
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Fig. 3. Noise standard deviation (σ) maps measured at 25% dose in
the neighborhood of three representative objects. Noise magnitude
on the edges of these objects demonstrated a strong dependence on
imaging task in IR.

Previous studied have demonstrated that Veo lead to
significant noise reduction in the uniform regions of test
objects [5], [6]. An immediate question based on the results
in Fig. 4(a) is, how does the noise of Veo images compared
with that of FBP images if the noise was strictly measured
on the edges of test objects? To address this question,
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Fig. 4. Summary of dependence of noise on x-ray exposure level and
imaging task. (a) Absolute σ of Veo; (b) Ratio in σ between Veo and
FBP.

the noise standard deviation of Veo images (σVeo) was
divided by that of FBP images (σFBP) measured at each
dose/contrast level and the results are shown in Fig. 4(b).
It demonstrates that, even when assessed right on the
edges of test objects, in most cases Veo still lead to
significant noise reduction. Only when the contrast level
exceeded 1300 HU did Veo generate higher noise than FBP
at the edges. The crossover contrast increased slightly with
decreasing dose level.

C. Dependence of overall image quality on CT scanning
parameters

Fig. 5 shows the CHO detectability indices for the
detection of six different objects. The actual ROI images
are provided in the figure to facilitate the readers to
evaluate their image quality. For both FBP and Veo, d′
increased with object contrast and radiation dose; at any
contrast/dose level being tested, Veo always led to better
overall CT image quality. The relative increment in d′
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Fig. 5. CHO detectability indices (d’) as a function of exposure level
and imaging task. The ROI images were cropped from the original
DICOM CT images.

varied between 48% to 114% depending on contrast and
dose level. These results have two indications: (1) for low
contrast detection tasks, the influence of the aggressive
noise reduction outweighs spatial resolution degradation
in Veo; (2) for high detection tasks, despite the relative
increment in edge noise, the edge enhancement feature and
the denoising feature in the surrounding uniform regions
introduced by Veo can effectively improve the overall CT
image quality.

IV. Discussions
A. Novelties
• The noise and spatial resolution characterization

were done locally using noise ensembles generated
by repeated scans, which addressed the concern of
noise/resolution nonstationarity introduced by IR al-
gorithms.

• As an earlier study has shown that uniform phantoms
may not be sufficient to characterize the performance
of IR algorithms [7], our study used an anthropomor-
phic phantom that contains realistic and anisotropic
anatomy.

• The local noise measurement allowed noise at edges
of objects to be quantified. Our results clearly demon-
strate the need to quantify noises at DC regions and
edges separately in IR. This is fundamentally different
from FBP.

• Noise at edges of objects were characterized at eight
contrast levels and the results show that edge noise

may be strongly correlated with edge contrast in IR.
• Spatial resolution were characterized at edges with

eight contrast levels, including an ultra challenging
case of 13 HU. Our results show that the edge noise
and edge sharpness may have a tradeoff in IR.

• The joint contributions of noise and spatial resolution
to image quality were assessed in the image domain
using the CHO detectability analysis to help under-
stand the benefit of IR.

B. Limitations and future works
• Compared with actual patients, the anatomical struc-

ture in the anthropomorphic phantom is still rela-
tively simple. Due to the nonlinearity of MBIR, to
what extent results drawn from this work can be
generalized to clinical cases warrants further study.

• Although the CHO method has been validated to
have good correlation with physicist readers for a
specific IR algorithm, whether it can accurately rep-
resent the diagnostic performance of physicians for
other IR algorithm is still unknown and need to be
addressed through carefully designed human observer
experiments.

V. Conclusion
In summary, an experimental framework was developed

to help relate CT scanning parameters with CT imaging
performance in IR. The framework enabled experimental
findings of several unique characteristics of IR, indicating
that some of the rules-of-thumb used by imaging physicists
to optimize CT protocols have been challenged. Extra
efforts must be made when prescribing CT scanning pro-
tocols when IR is used so that its potential clinical benefit
can be maximized.
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APPLICATION OF TASK-BASED MEASURES OF IMAGE QUALITY TO EVALUATION OF IMAGE

RECONSTRUCTION METHODS IN X-RAY CT

J. Xu, F. Elshahaby, M. K. Fuld, G. S. K. Fung, and B. M. W. Tsui

Abstract—Iterative reconstruction (IR) methods for x-ray CT
is a promising approach to improve image quality or reduce
radiation dose to patients. The goal of this work was to use
task based image quality measures and the channelized Hotelling
observer (CHO) to evaluate both analytic and IR methods for
clinical x-ray CT applications. We performed realistic computer
simulations at different radiation dose levels, from a clinical
reference low dose D0 to 75%D0 and 37.5%D0 . A fixed size
and contrast lesion was inserted at different locations in the
liver of the phantom to simulate a weak signal. The simulated
data were reconstructed on a commercial CT scanner using the
vendor-provided analytic and IR methods. The reconstructed
images were analyzed by CHOs with both rotationally sym-
metric (RS) and rotationally oriented (RO) channels, and with
different numbers of lesion locations (5, 10, and 20) in a signal
known exactly (SKE), background known exactly but variable
(BKEV) detection task. The area under the receiver operating
characteristic curve (AUC) was used as a summary measure to
compare IR and analytic methods; the AUC was also used as the
equal performance criterion to derive the potential dose reduction
factor of IR. In general, there was a good agreement in the relative
AUC values of different reconstruction methods using CHOs
with RS and RO channels, although the CHO with RO channels
achieved higher AUCs than RS channels. The improvement of
IR over analytic methods depends on the dose level. At 75%D0,
the performance improvement was statistically significant. The
potential dose reduction factor also depended on the detection
task. For the SKE/BKEV task involving 10 lesion locations, a
25% dose reduction at D0 was achieved; the same claim cannot
be made for the SKE/BKEV task involving 20 lesion locations.

I. METHOD

A. Data generation

The XCAT phantom was developed for multi-modality
imaging research [1]. Using parametric non-uniform rational
B-spline surfaces to describe organ shapes, it is capable
of modeling the accurate human anatomy with cardiac and
respiratory motions; the parametric approach makes it easy to
simulate variations of anatomy and physiology in a patient
population. DRASIM is a vendor-developed computer simula-
tion package for in-house system design and optimization [2].
The native DRASIM was able to simulate projections using
geometric phantoms, but it has accurate models for x-ray gen-
eration and detector physics for Siemens scanners. Combining
the strengths of both tools, the XCAT/DRASIM package [3]
inherits the physics models in DRASIM and enhances it with
realistic human anatomy from the XCAT, so that patient-like
CT projection can be obtained. The XCAT/DRASIM package
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has been used to investigate performance issues of both photon
counting and energy-integrating CT systems [4]–[6].

Our clinical interest was low contrast lesion detection in the
liver. The projection data of the body background and the liver
lesions were separately generated using the XCAT/DRASIM
package with parameter settings in Table I. With the exception
of the x-ray source energy, these parameters followed standard
clinical protocols of chest, abdomen, and pelvis exams. We
simulated monochromatic x-ray projection at 70 keV, which
was chosen to approximate the effective energy of 140 kVp
polychromatic tube spectrum. Both the z- and in-plane fly-
ing focal spots were switched off. The decision to simulate
monochromatic x-ray beam was based on the available re-
construction methods. As we will discuss in Section I-B, the
simulated projection will be uploaded to a Siemens CT scanner
for image reconstruction. At the point where the projection
data access the data processing pipeline, the reconstruction
engine assumes that the projections are ideal line integrals,
and any beam-hardening effects have been pre-corrected. A
monochromatic simulation is a simplification of the complex
x-ray data generation process, and removes extraneous factors
that are non-central to our study.

TABLE I: Parameter settings in computer simulations.
pitch rotation speed slice width views per 2π

30.7 mm 0.5 sec 1.2 mm 1152
detector detector source
channels rows energy*

dose levels

736 32 70 keV (1, 3
4
, 3
8
) × D0

* The monochromatic energy 70 keV was chosen to approximate the
effective energy of a 140 kVp polychromatic tube spectrum.

We simulated noisy projection data of the body background
from the XCAT phantom. A total of 6 gantry rotations (6
x 1152 views) was used to cover the liver. The noise levels
were adjusted by changing the tube current mA settings in
DRASIM. We used three mA settings corresponding to three
dose levels, (1, 3

4 , 3
8 ) × D0. At each dose level, 200 noise

realizations were generated. To relate D0 to clinical dose
measures, we used the reconstructed image of the XCAT phan-
tom at D0 and compared the noise standard deviations within
several liver region-of-interests (ROIs) with a patient data set
of similar body size (33 cm lateral), scanned and reconstructed
using the same parameters. The noise standard deviations were
comparable (∼ 25 HU). Expressed as CTDIvol, the scanner
radiation output for the patient acquisition was 11.74 mGy.

The low contrast lesions were modeled by 5 mm diam-
eter spheres with density of 1% of water. A total of 20
lesions distributed through the liver were generated. Noise-
free projections of the lesions were simulated using parameters
in Table. I. For each of the three dose levels, 100 noise
realizations of the body background projection were added to
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the lesion image to form lesion-present projection; the other
100 body background projections were used as lesion-absent
projection.

As the x-ray projection formation process is nonlinear, the
lesions should ideally be inserted in the XCAT phantom and
noisy projection simulated from the combined phantom. Our
data generation essentially approximated the nonlinear forward
process by a linear one, and assumed that the noise in the
lesion-only projection was negligible. Such an approximation
can be justified by using weak signals. That is the presence
or absence of low contrast lesions mainly affects the mean of
the projection, but not much the noise of it. An advantage of
this approach was that adjusting the lesion contrast could be
achieved by tuning a weight coefficient of the lesion projection
without regenerating the body background projection, which
would be time-consuming. This can result in tremendous
computation savings when trying to determine a proper range
of the lesion contrast so that the detection task is neither too
easy (AUC ≈ 1) nor too difficult (AUC ≈ 0.5).

B. Image reconstruction

The simulated projection data were reformatted using a
vendor-provided proprietary program so that they could be up-
loaded to and reconstructed on a 128-slice commercial scanner
(Siemens Definition Flash, Siemens Healthcare). Each data set
was reconstructed using both an analytical weighted filtered
backprojection (WFBP) method [7] and a sinogram affirmed
iterative reconstruction (SAFIRE) method (version VA40). The
reconstructed image characteristics can be controlled by a
variety of kernels for both methods, e.g., B41F for WFBP
and a corresponding I41F for SAFIRE, and an additional
strength parameter of 1 - 5 for SAFIRE. We selected 4 kernels,
B31F, B41F, B50F, and B70F for WFBP reconstruction, and
the corresponding kernels I31F, I41F, I50F, and I70F were
used for SAFIRE reconstruction, each with strengths of 1,
3, and 5. These kernels were selected based on the noise-
resolution tradeoff [Fig. 1] calculated using a 20 cm water
QA phantom scan. The QA phantom was scanned at CTDIvol
of 27.2 mGy, using a 120 kVp spectrum and the same
geometric parameters listed in Table I. It can be seen in Fig. 1
that the selected kernels cover a wide range on the noise-
resolution tradeoff curve. Unlike the iteration numbers in IR
methods which often provide tradeoff between resolution and
noise, increasing SAFIRE strength can reduce noise without
sacrificing resolution. In other words, the strength parameter
cannot be identified with the iteration numbers.

In total, there were 16 reconstructed images (WFBP with 4
kernels, and SAFIRE with 4 kernels x 3 strengths) for each
projection data set. This was repeated for the 100 lesion-
present and 100 lesion-absent at the three dose levels. The
reconstruction voxel size was (0.35 mm)3, with a FOV of
(180 mm)3 enclosing the liver. The reconstructed image slice
thickness and slice interval were both 1.5 mm.

C. Application of the channelized Hotelling observer

The reconstructed images were sent to our computer cluster.
Unless noted otherwise, all postprocessing were performed

0.8 1 1.2 1.4 1.6
0

5

10

15

20

25

30

35

31F41F

50F

70F

FWHM [mm]

no
is

e 
st

an
da

rd
 d

ev
ia

tio
n 

[H
U

]

 

 

WFBP
SAFIRE−1
SAFIRE−3
SAFIRE−5

Fig. 1: The noise-resolution tradeoff of WFBP and SAFIRE with
difference kernels and SAFIRE strengths. The notations 31F, 41F,
etc, denote B31F, B41F for WFBP, and I31F, I41F for SAFIRE.
Compared with WFBP, increasing SAFIRE strength reduces image
noise while preserving resolution at the corresponding kernels.

using our in-house analysis tools. From the 3D stack of
reconstructed images, the transaxial image slice across the
lesion center was located. A 64 x 64 ROI centered on the lesion
location for all 20 lesions was cropped and then processed
using CHO analysis. This is the single slice CHO approach
used in [8]. Below we describe the two channel mechanisms
and define the lesion detection task.

1) Rotationally symmetric square channels: These channels
have been widely applied in nuclear medicine; they were
found to correlate well with human observer performance in
various defect detection tasks [9], [10]. We used 5 octave-
wide rotationally symmetric channels. In the (2D) frequency
domain, these channels consisted of annular passbands of the
form [ 1

64 , 1
32 ] [ 1

32 , 1
16 ] [ 1

16 , 1
8 ] [18 , 1

4 ] [14 , 1
2 ] cycles per pixel. The

frequency domain channels were transformed to the spatial
domain; the DC components in the spatial channels were
explicitly eliminated by subtracting the average value of the
channel profiles.

2) Gabor channels: These channels have been applied in
recent works in evaluating CT images [11]–[13]. The spatial
domain channel profiles are of the form

g(x, y) = exp{−4 log 2[(x − x0)2 + (y − y0)2]
w2

s

}×
cos[2πfc((x − x0) cos θ + (y − y0) sin θ) + ξ] (1)

The parameters x0, y0 were the lesion centers, (32, 32) in this
work. The other parameters follow previous works. Specif-
ically, two phase parameters ξ = 0, π/2, four frequency
channels with central frequency fc = 3

128 , 3
64 , 3

32 , 3
16 cycles

per pixel, five orientations θ = 0, 2π/5, 4π/5, 6π/5, 8π/5, and
ws is the spatial channel width, given by ws = 4 log 2/(πwf ),
wf the bandwidth of the frequency channels, 1/64, 1/32,
1/16, and 1/8 cycles per pixel for the central frequencies f c

that we used. In total there was 40 channels. Similar to the
calculation in the square channels, the DC component of the
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spatial domain channel profiles was eliminated.
3) CHO training and testing, and ROC analysis: The spa-

tial channel profiles were applied to the 64 x 64 transaxial im-
age slice containing the lesion center, obtaining 5-component
(square channels) and 40-component (Gabor channels) fea-
ture vectors for each reconstructed image. For each channel
mechanism, all feature vectors from the 20 lesion locations
were assembled, those feature vectors corresponding to lesions
at 1-5, 1-10, and 1-20 [Table II] were selected and used in
CHO training and testing. For example, when 5 locations were
selected, lesions at locations 1 to 5 were used in CHO training
and testing. There were 500 lesion-present feature vectors (5
locations and 100 noise realizations) and 500 lesion-absent
feature vectors.

We used the leave-one-out training and testing paradigm
[14]. Let there be m lesion-absent and n lesion-present feature
vectors. To obtain the rating values for ROC analysis, one of
the m lesion-absent feature vectors was held out, while the
remaining m − 1 lesion-absent and n lesion-present feature
vectors were used to estimate the mean and the covariance
matrix of the feature vectors. The CHO template wCHO was
applied to the previously held-out sample, and a rating value
was obtained. By holding out a different sample each time
from the lesion-absent (present) class, we would obtain m (n)
rating values for the lesion-absent (present) class.

These rating values were analyzed by the nonparametric
ROC approach in [15], available in the ROC-kit of the Univer-
sity of Chicago, to estimating AUCs, the standard deviations
of the AUCs, and the correlation between two AUCs. The
estimated AUC statistics were then used to calculate the one-
sided p-value for the null hypothesis that the two AUCs
under consideration were the same. In this work, the statistical
significance was defined to be p < 0.05. This procedure was
performed for 5, 10, and 20 lesion locations at all three dose
levels and using CHOs with square and Gabor channels.

TABLE II: Locations of the 20 liver lesions.
location locationindex

(x, y, z) mm
index

(x, y, z) mm
1 (-99, 5, 532.5) 11 (-65, 35, 472.5)
2 (-99, -35, 532.5) 12 (-85, -15, 472.5)
3 (-99, 5, 519) 13 (-91, -55, 472.5)
4 (-99, -35, 519) 14 (-59, 33, 459)
5 (-69, 33, 502.5) 15 (-91, -3, 459)
6 (-103, -3, 502.5) 16 (-91, -43, 459)
7 (-99, -39, 502.5) 17 (-89, 9, 442.5)
8 (-65, 33, 489) 18 (-89, -35, 442.5)
9 (-99, 5, 489) 19 (-83, 5, 421.5)
10 (-99, -43, 489) 20 (-67, -59, 421.5)

If we only use a single lesion location in the CHO analysis,
the detection task is a simple signal known exactly (SKE),
background known exactly (BKE) task. On the one hand, the
simplicity of the task may not reflect well the complexity
of clinical diagnosis; on the other hand, results from our
single lesion analysis did not have the statistical significance
to differentiate the performance of different reconstruction
methods. Combining multiple lesion locations helps to reduce
the error bars of the AUC estimates. At the same time, using
multiple lesion locations transformed the detection task to a
special case of an SKE/BKEV, background known exactly but

variable, task. The backgrounds at different lesion locations
have the same mean since the liver background has uniform
intensity. But the noise statistics at different lesion locations
are different due to the helical scan geometry. The overall
covariance matrix from multiple lesion locations is a (uniform)
mixture of the covariance matrices at the individual lesion
locations. The number of lesions included in the CHO analysis
determines the statistical variations in the SKE/BKEV task.

II. RESULTS

A. Detection task performance comparison

Our results showed that the kernel choices did not affect
much the AUCs for either WFBP or SAFIRE, and higher
SAFIRE strengths improved AUC values. As representatives
from the two methods, we analyzed the statistical signif-
icance in the performance difference between WFBP with
kernel B31F and SAFIRE at strength 5 (SAFIRE-5) with
the corresponding kernel I31F. This analysis was performed
for all three dose levels, using CHOs with both square and
Gabor channels, and in the SKE/BKEV detection task with
background variations from 5, 10, and 20 lesion locations.
Table. III listed the AUC values and their standard deviations
for WFBP (B31F) and SAFIRE-5 (I31F), and the calculated
one-sided p values. For CHOs with square or Gabor channels,
despite their difference in the absolute AUC values, there
was agreement regarding statistical significance results in the
performance difference.

TABLE III: The AUC values and test for statistical significance
between WFBP (B31F) and SAFIRE-5 (I31F) at different dose levels.

D0

WFBP (B31F) SAFIRE-5 (I31F)
AUC1 ± stdv1 AUC2 ± stdv2 p(p1)

5 loc 0.839 ± 0.012 0.860 ± 0.011 0.092
s 10 loc 0.840 ± 0.0086 0.865 ± 0.0079 0.016

20 loc 0.829 ± 0.0063 0.854 ± 0.0058 0.0024
5 loc 0.89 ± 0.010 0.903 ± 0.0093 0.15

g 10 loc 0.887 ± 0.0072 0.906 ± 0.0064 0.028
20 loc 0.870 ± 0.0055 0.890 ± 0.0050 0.0056

75%D0

WFBP (B31F) SAFIRE-5 (I31F)
AUC1 ± stdv1 AUC2 ± stdv2 p(p1)

5 loc 0.812 ± 0.013 0.852 ± 0.012 0.0099
s 10 loc 0.810 ± 0.0094 0.839 ± 0.0087 0.011

20 loc 0.783 ± 0.0071 0.808 ± 0.0067 0.0036
5 loc 0.85 ± 0.012 0.88 ± 0.010 0.030

g 10 loc 0.853 ± 0.0083 0.878 ± 0.0075 0.0083
20 loc 0.826 ± 0.0064 0.851 ± 0.0059 0.0018

s: square channels; g: Gabor channels.
The shaded cells mark those p-values that are < 0.05.

B. Dose reduction potential of IR

The improvement in detection task performance can be
traded for reduced radiation dose at the same performance. To
quantitatively estimate the dose reduction potential of SAFIRE
over WFBP, we compared the performance of WFBP (B31F)
at dose D0 with that of WFBP (B31F) and SAFIRE-5 (I31F) at
dose 75%D0. A 25% dose reduction at D0 by using SAFIRE
can be claimed when two conditions are both satisfied: (1) the

The third international conference on image formation in X-ray computed tomography Page 27



TABLE IV: Evaluation of dose reduction potential of SAFIRE versus WFBP.
D0 75%D0

WFBP (B31F) WFBP (B31F) SAFIRE-5 (I31F) 25% dose reduction @ D0?
AUC1 ± stdv1 AUC2 ± stdv2 p(p2) AUC2 ± stdv2 p(p3)

5 loc 0.839 ± 0.012 0.812 ± 0.013 0.064 0.852 ± 0.012 0.21 No*
s 10 loc 0.840 ± 0.0086 0.810 ± 0.0094 0.0088 0.839 ± 0.0087 0.49 Yes

20 loc 0.829 ± 0.0063 0.783 ± 0.0071 2.6 e-07 0.808 ± 0.0067 0.012 No
5 loc 0.89 ± 0.010 0.85 ± 0.012 0.0071 0.88 ± 0.010 0.28 Yes*

g 10 loc 0.887 ± 0.0072 0.853 ± 0.0083 0.00057 0.878 ± 0.0075 0.18 Yes
20 loc 0.870 ± 0.0055 0.826 ± 0.0064 6.2 e-08 0.851 ± 0.0059 0.011 No

The notation * marks a disagreement in results using the square and Gabor channels.

performance degradation of WFBP (B31F) from D0 to 75%D0

is significant; and (2) the performance difference between
WFBP (B31F) at D0 and SAFIRE-5 (I31F) at 75%D0 is
not significant. Condition (1) is to ensure that the starting
dose level D0 is appropriate for the specific task considered,
and decreasing from D0 will incur a performance loss in the
detection task without using advanced algorithms such as IR.
Table IV summarizes our analysis.

From Table IV, it is seen that 25% dose reduction at D0 can
be claimed for the SKE/BKEV detection task with 10 lesion
locations. The same conclusion can be drawn using CHOs
with either square or Gabor channels. Dose reduction cannot
be claimed for the task involving 5 or 20 lesion locations.
For 20 lesion locations, the 25% dose reduction was rejected
by violating condition (2). The results for 5 lesion locations
are interesting in that there is a disagreement in conclusions
between CHO using square channels and Gabor channels. This
disagreement was in the performance loss of WFBP at D0

and 75%D0. For the CHO with Gabor channels, 25% dose
reduction at D0 can be claimed. For the CHO with square
channels, the 25% dose reduction was rejected by violating
condition (1).

III. CONCLUSIONS

We applied channelized Hotelling observers (CHO) in an
SKE/BKEV lesion detection task to evaluate the image quality
of analytic and iterative image reconstruction methods for CT
applications. For the CHO implementation, we considered two
channel mechanisms with rotationally symmetric (RS) and ro-
tationally oriented (RO) channels. It was shown that the CHO
with RO channels achieved higher AUC values than the CHO
with RS channels. There was in general a good agreement in
the relative AUC values of different reconstruction methods
(with kernel choices and IR strength variations) between the
two channel mechanisms. The image quality improvement of
IR over the analytic method depended on the dose levels
in the projection data. In our examples, the performance
improvement at 75%D0 was significant, Dose reduction from
D0 to 75%D0 was demonstrated for the SKE/BKEV task
involving 10 lesion locations.
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Mixed Confidence Estimation for Iterative CT
Reconstruction

David S. Perlmutter, Soo Mee Kim, Paul E. Kinahan, Adam M. Alessio

Abstract—We present a statistical analysis of our previously
proposed Constrain-Static Target-Kinetic algorithm for 4D CT
reconstruction. This method, where framed iterative reconstruc-
tion is only performed on the dynamic regions of each frame,
while static regions are fixed across frames to a composite image,
was proposed to reduce computation time. In this work, we
generalize the previous method to describe any application where
a portion of the image is known with higher confidence (static,
composite, lower-frequency content, etc.) and a portion of the
image is known with lower confidence (dynamic, targeted, etc).
We show that by splitting the image space into higher and lower
confidence components, CSTK can lower the estimator variance
in both regions compared to conventional reconstruction. We
present a theoretical argument for this reduction in estimator
variance and verify this argument with proof-of-principle simu-
lations. This method allows for reduced computation time and
improved image quality for imaging scenarios where portions of
the image are known with more certainty than others.

I. INTRODUCTION

Specific CT imaging applications can have the property that
certain regions in the image are known with more confidence
than other regions. For example, in dynamic contrast enhanced
acquisitions, large regions of the field of view may stay static
for each time frame (essentially no change), while targeted
regions have varying contrast kinetics. Conventionally, inde-
pendent reconstructions would be performed for each frame.
Several methods have been proposed that use a low-resolution
composite image, reconstructed from a time-averaged sino-
gram, to aid reconstruction. Composite images have been used
as a weight applied to filtered back projection [1] images and
as a prior term in a total variation minimization algorithm
[2]. We propose a method that uses all frames to reconstruct
the static regions and uses individual frames to reconstruct
only the kinetic portion (Constrain-Static Target-Kinetic). This
application could be characterized as having side-information
to increase the confidence of the static region, while desiring
an optimal image of the lower-confidence, kinetic region.
This class of methods is advantageous for both substantially
reducing reconstruction time and reducing noise in the lower-
confidence region.

This general approach could be applied in all applications
where side-information could increase the confidence in spe-
cific regions, leading to improved image quality in the lower-
confidence area. An obvious application is with multi-frame or
gated images where portions of the image do not change be-
tween frames (higher confidence regions). Other applications
could include images where regions are assumed or known

Imaging Research Lab, University of Washington, Seattle, WA USA (email:
dperl@uw.edu )

to have lower frequency content than others. For example,
when imaging the lungs, it could be assumed that extra-lung
content has much lower spatial frequency and therefore could
be known with more confidence than intra-lung content.

In our previous work [3] [5], we proposed the Constrain-
Static Target-Kinetic (CSTK) reconstruction algorithm as a
method to reduce computation time in 4D CT image recon-
struction by devoting full computational resources to only
the dynamic region of interest. This paper extends that work
by presenting an analytic argument, based on an estimator
variance analysis [6], that CSTK also improves noise levels
throughout the image, including the dynamic region of interest.
We feel this analysis can be extended to the situations above,
where locally varying performance can be leveraged. We verify
our analytic argument with simulation studies.

A. CSTK Algorithm

Constrain-Static Target-Kinetic reconstruction (CSTK) is a
method to reduce computation time of most iterative 4D CT
reconstruction algorithms. It comprises the following steps;
1) classify each image pixel as either static or kinetic across
frames, perhaps using a high-noise estimate of each frame,
2) form a low-noise, low-resolution ”composite image” to
initialize all frames, and 3) update only the kinetic pixels
in each frame. The resulting computation reduction scales
linearly with the percentage of dynamic pixels, minus the
time to form the composite image. Previous work [3] showed
two applications, Retrospective Gated CT Angiography and
Dynamic Perfusion CT, in which CSTK provided similar
image quality to conventional OSEM reconstruction with 50%
dynamic pixels, and therefore 50% compute time.

II. STATISTICAL FORMULATION

A. Static Model

We start by adopting the standard quadratic approximation
to the static transmission tomography problem. We wish
to estimate the x-ray attenuation coefficients of each pixel
in an image, θ = [θ1, ..., θm]

T ∈ Rm, from observations
Y = [y1, ..., yn]

T ∈ Rn, where yi = − log (pi/I0) are the
post-log-corrected, measured sinogram bins. By taking the
second order Taylor series expansion of the Poisson likelihood
[4], the system model can by approximated as,

P (Y | θ) ≈ N (Aθ , Q) (1)

where A is the tomographic model, a forward projection
operator, and Q = diag(1/pi). Recognizing this as a weighted
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least squares problem, the maximum likelihood estimator θ̂ML

can be written explicitly as the least squares solution,

θ̂ML = arg max
θ

P (Y |θ) =
(
ATWA

)−1
ATW Y (2)

Where W = Q−1. It is easy to show that θ̂ML is unbiased
(E[θ̂ML] = µθ̂ = θ) and that Cov[θ̂ML] = Σθ̂ = (ATWA)−1.
If we choose to add a quadratic prior term to control noise
amplification, the solution becomes,

θ̂MAP = arg max
θ

P (θ|Y ) =
(
ATWA+R

)−1
ATW Y (3)

where R describes the prior term. In the following we will
assume no prior for simplicity, although this analysis could be
extended to the quadratic prior case.

B. Dynamic Model

We now consider the 4D extension to the static problem
in which we want to estimate multiple images over K time
frames, or θθθ =

[
θ1, ... , θK

]T
from YYY =

[
Y 1, ... , Y K

]T
,

where each θj ∈ Rm, Y j ∈ Rn. A straightforward approach
is to treat each frame as a separate static estimation problem,
i.e.,

θ̂jML =
(
ATW jA

)−1
ATW j Y j (4a)

µj
θ̂ML

= θj Σj
θ̂ML

= (ATW jA)−1 (4b)

but this solution ignores potentially useful information about
θj in Y ¬j , where the ¬j superscript indicates all frames
besides j. To improve on this, we separate the parameter space
into a static and dynamic component, namely, θj = [θs, θ

j
d]
T .

Previous work on CSTK [3] suggests practical ways to do this
partitioning. It is assumed that θs is constant across all frames,
and θjd constant only across frame j. This assumption allows
us to factor the posterior distribution as,

P (θj |YYY ) = P (θs, θ
j
d|Y

j , Y ¬j) (5)

= P (θjd|Y
j , θs)P (θs|YYY ). (6)

The first term in eq. (6) is the conditional of eq. (1), and
so is itself multivariate Gaussian variate. The second term
is a marginal of the composite image, which is Gaussian
distributed if the composite is Gaussian distributed. Although
this may not be true for arbitrary composite images, we restrict
the composite image to unbiased linear estimators of eq. (1),
which we call θ̂c with covariance Σc

θ̂
. Thus, if:

Σθ =

[
Σss Σsd
Σds Σdd

]
then,

P (θs|YYY ) = N (θs, Σcss) (7a)

P
(
θjd|Y

j , θs

)
= N

(
µjd|s, Σjd|s

)
(7b)

µjd|s = µjθd + Σjds(Σ
j
ss)
−1(θ̂c − θs) (7c)

Σjd|s = Σjdd − Σjds(Σ
j
ss)
−1Σjsd (7d)

where eq. (7a) come directly from the marginal disribution
and eqs. (7b) to (7d) from the conditional distribution of a
multivariate Gaussian. Notice that eq. (7b) depends on θs only

linearly through its mean. This ensures that the product of
eq. (7a) and eq. (7b) is also Gaussian, parameterized by

µjθ =
[
θs, θ

j
d

]T
(8a)

Σjθ = (8b)[
Σcss Σjds(Σ

j
ss)
−1Σcss

Σcss(Σ
j
ss)
−1Σjsd Σjd|s + Σjds(Σ

j
ss)
−1Σcss(Σ

j
ss)
−1Σjsd

]
.

Equation (8) is the main result of this paper. Notice that
θ̂CSTK = µjθ is unbiased, as might be expected (this would
not be true if we included a prior term). Also, the covariance
can be directly compared with eq. (4), the straightforward
reconstruction approach. First, the static pixel variance under
CSTK is simply Σcss. A reasonable choice for the composite
image would be the average of each frame estimate, θj , in
which case Σcθ ≈ 1

KΣj
θ̂ML

. More interestingly, the dynamic
pixel variance (lower right term of 8b), is the sum of two
terms; Σjdd, and a correction factor, Σ∗, where,

Σ∗ = Σjds(Σ
j
ss)
−1Σcss(Σ

j
ss)
−1Σjsd − Σjds(Σ

j
ss)
−1Σjsd.

To better understand 8b, consider two cases; when Σcss = 000
and Σcss = Σjss. In the first case, the full dataset YYY provides
perfect information about θs, and the covariance of the dy-
namic portion of the image, θjd, reduces to the conditional
covariance Σjd|s, which is guaranteed to be smaller than Σjdd.
In the second case, the covariance of the static portion of the
composite image equals the covariance of the static portion of
a single frame; i.e. the composite image did not improve the
estimate of θs. Then Σ∗ = 000, and the covariance is simply Σjdd.
In practice, we expect to lie somewhere in between these two
bounds; the composite provides some extra, but not perfect,
information about θs, which helps lower the covariance of both
dynamic and static pixel estimates.

C. Numerical Validation

To validate our analysis we compared our predicted covari-
ance with those measured from simulations of a small, 10x10
pixel image. We used a sinogram of 15 detectors x 16 views
to make explicit computation of the pseudoinverse tractable.
We added Gaussian noise according to the approximate signal
model in eq. (1). Figure 1 shows the predicted variance
of each pixel using simple framed recon and CSTK, from
eq. (4) and eq. (8), respectively. While the true image is static,
we nonetheless treat the inner pixels (red pixels in fig. 1,
upper left) as dynamic, and collected 10 frames of data. The
CSTK image shows dramatic variance reduction in the static
region, but also significant reduction in the inner, dynamic
region. We then computed θ̂c, θ̂1ML, and θ̂CSTK using YYY , Y 1,
and the CSTK method. Figure 1 shows that the predicted,
theoretical variance of a single row of pixels agrees well with
the sample variance over 1000 noise realizations. Figure 1 also
shows the average variance of over all dynamic pixels as the
number of frames increases. The framed recon is constant,
since it doesn’t share information across frames, while the
composite image shows the typical 1

N variance reduction. The
CSTK variance initially decreases rapidly, then plateaus to the
average variance of Σjdd.

Page 30 The third international conference on image formation in X-ray computed tomography



Single Frame CSTK

 

 

0  

0.5

1  

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

V
a

ri
a

n
c
e

 (
n

o
rm

a
liz

e
d

)

Central Row of Pixels
10 20 30

0

0.2

0.4

0.6

0.8

1

# Frames

M
e

a
n

 V
a

ri
a

n
c
e

 (
n

o
rm

a
liz

e
d

)

 

 

Composite

Frame

CSTK

DynamicStatic Static

Fig. 1: First row presents theoretical variance image for single
frame reconstruction and CSTK. The CSTK estimate achieves lower
variance everywhere, including the central, dynamic region (yellow
region, in upper right). Lower left: Profile through central row of
variance image for 3 reconstruction methods, with simulated values
as datum and theoretical values as lines. Lower right: Average pixel
variance of the dynamic region as a function of frames acquired.
Simulated data are datum and theoretical values are lines.

III. EXPERIMENTAL RESULTS

To demonstrate the utility of these results in a more realistic
dynamic CT scenario, we simulated data from a 128x128
dynamic target, pictured in the top row of fig. 4 (the central
object is moving continuously at a rate of 8 pixels per
frame, where a frame is a full 360 degree revolution of the
detector). The dynamic pixels were chosen a priori as an
ellipse, pictured in fig. 2. Note, the dynamic pixels are not
truly constant within a frame, as assumed in the statistical
analysis. The measurement sinogram was 200 detectors x 150
views per frame for 5 frames, with Poisson distributed noise;
pi ∼ Poisson(λi), where λi = I0 e

−
∑

j ci,jθj across line of
response i. For reconstruction, we use iterative coordinate
descent (ICD), but only update dynamic pixels. The choice
of composite image is important, and must balance low-noise
and computation time. We chose our composite image to be the
ICD reconstruction of the average sinogram across all frames.
Figure 4 compares the CSTK reconstruction of each frame

with that of simple framed recon. The CSTK noise appears
lowest, particularly in the static region. However we are
primarily concerned with performance in the dynamic region.
We present the image roughness (pixel-to-pixel variance) in
the uniform portion of the dynamic region and total RMSE in
the dynamic region. Both metrics are normalized and shown
above each image. Figure 3 compares the convergence of both
methods. To fairly account for the composite compute time,
Tc, in CSTK, the CSTK data is offset by Tc/K, the time to
compute reconstruction from averaged sinogram. From fig. 3
and fig. 4, the CSTK method achieves about 15% less noise

Composite Image Dynamic Pixels 

Fig. 2: Left: Composite image using ICD on the full dataset, YYY .
Right: Mask for elliptical region of dynamic pixels.

in the dynamic region in 90% less compute time than simple
frame recon. Both factors should increase with number of
frames and the percentage of static pixels, as long as the
static/dynamic pixel segmentation remains accurate.

IV. CONCLUSION AND FUTURE WORK

We have shown that CSTK reconstruction, applied to ML
estimation of cardiac gated CT imaging, can both save compu-
tation time and lower noise throughout the image. The results
confirm the intuition that side information, in the form of
increased confidence of particular parameters, can decrease
noise. As the strength of the side information increases, i.e.
more frames or a higher percentage of static pixels in CSTK
and the correlation between side information and pixels of
interest increases, the noise reduction is greater. Future work
is needed to better understand the effect of CSTK in MAP
reconstruction, when a prior term is added to the cost function.
We believe mixed confidence estimation can be extended to
other applications where local image quality can either benefit
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Fig. 3: Convergence metrics for reconstruction of first frame. Each
data point is a full iteration of ICD. Top: Negative log-likelihood
value vs. computation time for simple framed (blue) and CSTK (red)
recon. Bottom: Mean percent pixel change vs. computation time.
Algorithm was terminated when mean pixel change was < 1%.
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Fig. 4: Top row: Truth image in the center of each time frame. Row 2-3: Framed ML, and CSTK estimate for each frame. Above each image
are image quality metrics of dynamic pixels only. RMSE is the total root mean squared error of the reconstruction. ’rough’ is the standard
deviation of pixels in a flat patch in the dynamic region. Both metrics are normalized.

from side information or be traded for improved performance
elsewhere.
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Vessel Overlap Sparsity Index  –  

A Predictive Metric for 3D+T Accuracy 
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Abstract—3D+T methods such as 4D DSA encode time-

varying contrast information measured in only a few projections 

into an a priori 3D angiographic dataset.  The methods have been 

shown to be accurate for cases where there are limited 

occurrences of overlapping vessels in the projection views.  

However, as the complexity of the 3D data increases, the 

algorithms are required to incorporate additional methods to 

correct for these occurrences that result in underdetermined 

problems.  To date, the complexity of the 3D datasets has been 

described only in the context of “sparsity”, where only the 

number of non-zero voxels (relative to the total number of voxels) 

is considered.  In this work, we propose a novel metric called the 

vessel overlap sparsity index (VOSI) to characterize the 

complexity of a given 3D dataset and evaluate its performance in 

predicting the results of a simple 3D+T algorithm that does not 

correct for overlap.  We demonstrate in phantom experiments, 

that VOSI outperforms the standard sparsity metric in terms of 

predictability of the mean squared error metric (MSE) for 

scenarios of varying complexity. The strong correlation of VOSI 

and MSE makes it possible to characterize the complexity of 

given datasets and can serve as a baseline metric for comparing 

the overlap correction algorithms of various 3D+T algorithms for 

a 3D dataset of a given VOSI metric value. 

I. INTRODUCTION  

 Recently, new methods for generating time-resolved 3D 
angiography have been developed by several groups[1]–[6].  
These methods use an a priori segmented 3D vascular model,  
typically derived from rotational angiography (3D DSA).  The 
segmented voxels are then used to define a sparse subset voxels 
that are encoded with time-varying measured data from x-ray 
projections at one or more fixed or rotating gantry positions.  
The projections are acquired such that the flow of a contrast 
agent through the vascular anatomy is captured.   

 The resulting 3D+T dataset has the potential to add clinical 

value by presenting the time-resolved angiographic data in 3D, 
allowing the user to rotate and view the 3D+T image from any 

arbitrary projection at any reconstructed time point.  Volume 
rendering techniques can also be applied to this data to further 
enhance the physician’s ability to understand depth and 
morphological details of the vascular anatomy.  Figure 1 shows 
an example of the 4D DSA algorithm[1], [2] results visualized 
with a volume rendering display 

3D+T algorithms such as 4D DSA have been shown to be 
very accurate for simple anatomical situations where there is 
little to no overlap between vascular structures along a 
projection ray, often referred to as “sparse” vascular anatomy.  
However, as the vascular anatomy becomes increasingly 
complex and less “sparse”, the number of overlapping vascular 
structures in the measured projection increases.  This situation 
leads to an increasingly underdetermined system of unknown 
voxel time attenuation (TAC) values  (   )  (where   
represents the 3D voxel location) relative to our measured 
projection values   (   ), where   represents 2D coordinates 
in the coordinate system for the measured projection at time  .  
Each 3D+T algorithm uses varying assumptions and techniques 
(which range significantly in complexity and computational 
requirements) to calculate corrected  (   ) values for vessel 
overlap situations.  Regardless of the 3D+T approach, as the 
incidence of vessel overlap increases, the more difficult the 
problem becomes to recover the correct TAC values. 

Currently, there is no accepted method or metric used to 
evaluate and characterize the complexity of a given 3D DSA 
dataset for use in generating 3D+T results.  Literature related to 
the topic of undersampled signal recovery commonly refers to 
these datasets as having a necessary level (or amount) of 
sparsity[7], [8].  In this case, they are defining sparsity as a 
vector with very few non-zero elements relative to the total size 
of the vector.  Increasing the number of blood vessels will 
decrease the sparsity of the 3D DSA volume, lead to an 
increased number of overlap occurrences, and potentially 
reduce the accuracy of the 3D+T result.  However, the classic 
definition of sparsity for the 3D DSA volume is not sufficient 
to predict the results of the 3D+T algorithm alone.  Due to the 
projection geometry, the spatial locations and distributions of 
the vessels also plays a significant factor in the accuracy of the 
3D+T results.  Figures 2 and 3 provide a simple example to 
illustrate this point.       

Figure 2 shows a cross-sectional slice of a simple digital 
phantom with three vessels.  In four different scenarios, the 
average distance between the vessels was increased by 
approximately a factor of two (Fig.2 a-d).  It is important to 
note that each scenario exhibits the same sparsity as defined by 
the number of non-zero voxels.  Only the positions of the 
vessels have changed.  Each vessel was assigned a unique TAC 
as shown in the right pane.  Using a forward projection, this 
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Fig. 1. Volume-rendered 4D DSA reconstruction result for three different 

time points (0s, 2.5s, and 5s), viewed at three unique orientations. 
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data can then be used to generate measured projection data, 
which can then in turn be used to generate 3D+T results.  For 
the purposes of this paper, 

we will use a basic 3D+T algorithm derived from the 4D DSA 
method[1], [2].  However, in order to best analyze the results 
and develop an appropriate metric, we will not implement a 
method for vessel overlap correction in this work in order to 
best establish an initial correlation between the metric and 
3D+T results.  Figure 3 shows the results of the basic 3D+T 
algorithm with no overlap correction (green) for increasing 
distance between vessels compared to the ground truth (blue). 

 

These examples clearly show that the accuracy of the 3D+T 
results are influenced not only by the number vessels present, 
but also by the spatial distribution of these vessels.  The goal of 
this research was to develop a vessel overlap sparsity index 
(VOSI) metric that is capable of more accurately predicting the 
quality of 3D+T results given specific anatomy.  The VOSI 
metric has the potential to characterize the complexity of a 
given dataset and offer guidance as to when 3D+T algorithms 
can accurately be applied for clinical cases where the ground 
truth is not known.  The VOSI metric will also provide a data-
dependent metric by which 3D+T implementations can be 
compared for their ability to accurately recover TAC 
information for cases of a known VOSI metric value.   

II. METHODS AND MATERIALS 

A. Digital Phantom Design 

In order to support the initial development of the vessel 

overlap incidence metric, two series of digital phantom slices 

were developed.  In the future, this concept can be extended to 

incorporate the full z-axis series of slices (3D volume).       

 

 
The first series of phantom slices consist of 3 different slices, 

each with an increasing number of simulated vessel cross 

sections with a uniform diameter.  The simplest of these 

consist of a single vessel, with the most complex slice having 

10 vessels as shown in Figure 4.  The locations of the vessels 

are randomly selected for each slice, with the constraint that 

no vessel may overlap with another vessel.  The second series 

of phantom slices also consisted of 3 slices, each with a 

decreasing radius within which a constant number of vessels 

(n=10) are randomly distributed relative to the total field of 

view (FOV) of the slice. The radius deceased from 75% of the 

total FOV to 35% of the FOV in steps of 20%. 

For the purposes of this initial work, all calculations were 

performed using simulated rotational acquisitions with parallel 

ray geometry using Matlab R2013a (The Mathworks, Inc., 

Matick, MA).  This technique can be extended to support fan 

beam and cone beam geometry as applicable. 

B. Methods for Generation of Ground Truth Datasets 

For each digital phantom slice dataset, voxels that define a 

unique vessel within the slice were assigned a randomly 

generated TAC to represent the time-varying contrast kinetics 

for that particular vessel.  For all cases, a total number of 180 

time steps were used.  The TAC curve was generated as a 

Gaussian distribution in time with a randomly assigned time 

shift within the interval of [-45, 45] time steps and a randomly 

assigned standard deviation (σ) within the interval [-11, 11].  

After the TACs were assigned to each vascular voxel in the 

2D slice, the resulting dataset represents the ground truth data 

that will be used to evaluate the accuracy of the 3D+T result. 

After the time-resolved ground truth voxel data was 

generated, each time step was then reprojected for each 

angular step to create a series of time-varying projections that 

range from [0°, 179°] with an angular step size of 1°.  This 

data represents the measured projection values that are then 

used as input to the 3D+T algorithm.  Figure 5 demonstrates 

an example of this data.  Figure 5a shows the sinogram of the 

 
Fig. 2. Left:  Simple 3 vessel phantom model with increasing distance 

between the 3 vessels (a,b,c,d).  Right:  TAC curve functions assigned to 

each of the 3 vessels. 

 

 
Fig. 3. Left:  Vessel location #1 3D+T TAC results (green-dashed line) for 

increasing average distance between vessels compared to ground truth (blue 
line) (a-d).  Right:  Mean Squared Error plots for each vessel as a function 

of average distance between vessels. 

 

 
Fig. 4. Example digital phantom slices with increasing number of randomly 

placed vessels (1, 5, and 10 vessels). 

 

 

Fig. 5. a)  Sinogram of constraint 3D data (single slice).  b)  Sinogram of 
time-varying projections based on the ground truth phantom 
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static 3D slice after reprojection.  Figure 5b shows the 

sinogram of the ground truth 3D+T digital phantom after the 

reprojection of each time step.     

 

C. Vessel Number Area Histgram 

The VOSI metric is based on the dose volume histogram 

concept commonly used in radiation therapy[9].  Realizing 

that 3D+T reconstruction accuracy is strongly related to the 

degree of overlap of vessels within a projection data set, the 

VOSI metric measures the percent of the sinogram in which 

vessels can be uniquely counted or distinguished.  For 

example, Figure 6a shows slice with a total of 10 vessels. 

Figure 6b displays the corresponding sinogram for Figure 6a. 

For each view angle in the sinogram, a determination was 

made of how many unique vessels could be distinguished. A 

unique vessel was defined as one or more nonzero values 

bordered by zero values. In the case of vessel overlap, two or 

more vessels will be counted in the sinogram as a single 

nonzero series of values for a given view angle and therefore 

considered as a single vessel. Figure 6c is a plot of the number 

of distinguished vessels as a function of view angle. Figure 6d 

is a plot of what we refer to as the vessel number area 

histogram. This histogram plots the percent of the sinogram at 

or above a given vessel number. The VOSI metric is then 

calculated as 

the ratio of the area under the curve of the vessel number area 

histogram to the ideal vessel number area histogram.  The area 

under an ideal vessel number area histogram (where all vessels 

are detected correctly) is calculated as 100% multiplied by the 

number of vessels in each slice. Due to vessel overlap, the 

known vessel number cannot be determined from the 

sinogram, and was calculated from the actual image slice 

using connected components analysis.  In practice the known 

vessel number can easily be determined from the segmentation 

of an a priori 3D DSA image volume.   

D. Methods for Evaluation of 3D+T Results 

The original static slice data (a priori 3D DSA volume) and 

the measured time-varying projections are then used as input 

to the 3D+T algorithm defined in the introduction.  For 

evaluation, the results of the 3D+T algorithm are then 

compared to the original ground truth data using a mean 

squared error (MSE) analysis.  

Figure 7 shows an example of a time frame from the ground 

truth data (Figure 7a), the 3D+T result from the same time 

frame (Figure 7b), and the residual comparison image (Figure 

7c).  The MSE was calculated across all time points for each 

vessel.  The average MSE was then calculated across all 

vessels for each slice providing a composite MSE value for 

each vessel phantom configuration.  This composite MSE 

value was then used to evaluate the performance of our metric.  

In order establish a large sample size of simulation results, 

each series of phantoms (increasing vessel number and 

decreasing FOV) were generated and evaluated for 30 unique 

vessel position instances.  Results were averaged across the 30 

instances and the performance of the VOSI metric was 

compared to the MSE of the 3D+T results. 

III. RESULTS 

In the simulations that were performed across the two series of 

phantoms (increasing vessel number and decreasing FOV), the 

VOSI metric showed a very close inverse correlation to the 

MSE results of the 3D+T simulations.  Figure 8 provides a 

graphical representation of the MSE and VOSI results as a 

 
Fig. 6. a) Vessel phantom (n=10).  b) Sinogram of (a).  c) Vessel detection 

as a function of view angle.  d) Vessel number area histogram   

 

 
Fig. 7. a)  Ground truth slice for t=179.  b)  3D+T result for t=179.  c) 

Residual comparison image used to calculate MSE 

 

 
Fig. 8. a) Plot of MSE as a function of vessel number compared with VOSI 

metric as a function of vessel number.  b)  Plot of MSE as a function of FOV 
compared with VOSI metric as a function of FOV.  c-d) Results of sparsity 

metric substituted for VOSI.   
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function of vessel number (Figure 8a) and FOV constraint 

(Figure 8b).  Both Figure 8a and Figure 8b demonstrate a close 

inverse relationship between the VOSI metric and the MSE 

results of the 3D+T calculations.  Figure 8c and 8d plot the 

same relationship substituting sparsity for the VOSI metric.  

Figure 8c shows a strong correlation between sparsity and the 

MSE results for increasing vessel number.  However, Figure 

8d demonstrates the failure of the sparsity metric to correlate 

with MSE results.  Figure 9a and Figure 9b show 

scatter plots of the VOSI versus MSE metric for all simulation 

data points (n=90) for the vessel number and FOV series 

respectively. 

The Pearson correlation coefficient for VOSI and MSE was 

calculated for each series (increasing vessel number and FOV) 

and also shows a strong inverse correlation (r=-0.91, p<0.01 

and r=-0.78, p<0.01 respectively), further confirming the 

results shown in Figures 8 and 9 for the VOSI metric.  The 

Pearson correlation coefficient was also calculated for sparsity 

and MSE, confirming a strong correlation between sparsity 

and MSE for vessel number, but no correlation for FOV 

(r=0.90, p<0.01 and r=0,p=1 respectively). 

The VOSI metric can be examined as a function of slice 

number (or z-axis position) as shown in Figure 10a-c.  In this 

case, the VOSI metric can be used to identify the areas within 

a 3D volume that are most likely to have vessel overlap that 

will impact the 3D+T results.   

Alternatively, a composite VOSI score can be assigned to a 

given 3D DSA volume.  In these cases, it is suggested to 

weight the composite VOSI metric to a percentage of the 

lowest total VOSI scores of the slices.  Future work will be 

aimed at developing guidelines for establishing the composite 

VOSI metric. 

IV. SUMMARY 

In summary, the VOSI metric demonstrates a very strong 

inverse correlation with 3D+T results for vessel phantoms of 

various complexities.  In practice the VOSI metric can be used 

classify the complexity of given datasets for use with 3D+T 

algorithms.  As shown in this work the VOSI metric can be 

used to predict the performance of a 3D+T algorithm that does 

not include corrections for vessel overlap.  In practice, 3D+T 

algorithms that include overlap correction techniques can be 

evaluated against phantoms of varying VOSI scores in order 

establish a baseline in which to judge the performance of the 

overlap correction.  In other words, for a dataset with a given 

VOSI value, the MSE error associated with a given 3D+T 

algorithm can be estimated and compared with other 

approaches. 
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Fig. 9. a) Scatter plot of VOSI vs MSE for vessel number series (n=90).  b)  

Scatter plot of VOSI vs MSE for FOV series (n=90).  c) Scatter plot of 

sparsity vs MSE for vessel number series.  d) Scatter plot of sparsity vs MSE 
for FOV series. 

 

 
Fig. 10. a) Plot of VOSI metric as a function of z-axis position.  b)  Anterior 

view of 3D DSA aligned with 10a to demostrate the anatomical regions with 

highest overlap issues.  c) Lateral view of 3D DSA also aligned to 10a 
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Noise-Weighted Spatial Domain FBP Algorithm 
Gengsheng L. Zeng 

Abstract—The purpose of this paper is to implement a noise-
weighted FBP algorithm in the form of “convolution” 
backprojection, but this “convolution” has a spatially variant 
integration kernel. Noise-weighted filtered backprojection (FBP) 
algorithms have been developed in recent years, with filtering 
being performed in the Fourier domain. The noise weighting 
makes the ramp filter in the FBP algorithm shift-varying. It is 
not efficient to implement shift-varying filtration in the Fourier 
domain. It is known that Fourier-domain multiplication is 
equivalent to spatial-domain convolution. An expansion method 
is suggested in this paper to obtain a closed-form integration 
kernel. The noise weighted FBP algorithm can now be 
implemented in the spatial domain efficiently. The total 
computation cost is less than that of the Fourier domain 
implementation. Computer simulations are used to show the 
three-term expansion method to approximate the filter kernel. A 
clinical study is used to verify the feasibility of the proposed 
algorithm. 

Keywords—Image reconstruction; analytical reconstruction 
algorithm; tomography; noise modeling; CT; Convolution 

I. INTRODUCTION 

The filtered backprojection (FBP) algorithm has been in 
use for several decades [1-5]. It is the workhorse of x-ray CT 
image reconstruction. A drawback of the FBP algorithm is that 
it may produce very noisy images. Algorithms based on 
optimization of an objective function are able to incorporate 
the projection noise model and produce less noisy images than 
the FBP algorithm. Usually these algorithms are iterative 
algorithms [6-10]. In order to shorten the computation time of 
an iterative algorithm, effort has been made to transform a 
regular iterative algorithm into an iterative FBP algorithm [11]. 
Another approach to noise control is to apply an adaptive filter 
or nonlinear filter to the projection measurements [12, 13]. We 
recently developed a non-iterative FBP algorithm that can 
model the projection noise on a view-by-view or ray-by-ray 
basis [14, 15]. 

One drawback of the noise-weighted FBP algorithm 
presented in [15] is that the modified ramp filtering must be 
implemented in the Fourier domain, because we did not know 
the expression of the spatial-domain "convolution" kernel. It is 
not efficient to implement shift-varying filtration in the Fourier 
domain. Projection data at each view must be filtered multiple 
times (say, 11 times) if the Fourier domain filtering method is 
used as suggested in [15]. It is known that Fourier-domain 
multiplication is equivalent to spatial-domain convolution. In 
principle, any FBP algorithm with Fourier-domain filtering can 
find its equivalent FBP algorithm that performs filtering in the 
spatial domain as convolution, if the convolution kernel can be 
readily obtained. 

G. L. Zeng is with the Department of Engineering, Weber State University, Ogden, UT 
84408, USA, and the Utah Center for Imaging Research, Department of Radiology, 
University of Utah, Salt Lake City, UT 84108, USA. E-mail: larryzeng@weber.edu. (801) 
581-3918 

This paper will implement the noise-weighted FBP 
algorithm presented in [15] in the form of "convolution" 
backprojection. However, this "convolution" is not a true 
convolution operation, because the integration kernel varies 
according to the noise variance. An expansion method will be 
suggested in this paper to obtain a closed-form integration 
kernel so that the "convolution" can be computed efficiently. 

II. METHODS 

Part A of this section will review and summarize what we 
already know about the noise-weighted FBP algorithm, 
according to our recent publications [14, 20]. Part B is the main 
contribution of this paper, and the Fourier-domain filtering in 
the noise-weighted FBP algorithm will be converted into 
spatial-domain filtering in the form of a dot product, which is 
similar to convolution. 

A. Noise-weighted FBP algorithm 

The noise-weighted FBP algorithm was derived based on 
minimizing the following weighted least-squares objective 
function v( f ) with a data fidelity term and a Bayesian penalty 
term: 
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where the image to be reconstructed is f(x, y) and its Radon 
transform is [Rf](s, ), which is defined as [5] 

 








 dxdysyxyxfsRf )sincos(),(),]([  .  (2) 

In (2),  is the Dirac delta function,  is the detector 
rotation angle, and s is the line-integral location on the 
detector. The Radon transform [Rf](s, ) is the line-integral of 
the object f(x, y). Image reconstruction is to solve for the object 
f(x, y) from its Radon transform [Rf](s, ). The first term in (1) 
is the data fidelity term that encourages the Radon transform of 
f(x, y) to be close to the measured projections p(s,). In the 
first term, the norm is the conventional L-2 norm with a 
weighting function w.  The second term in (2) is the Bayesian 
term that encourages a filtered version of f(x, y) to look like a 
prior image g(x, y). 

The function c(x,y) is a symmetric image domain 
convolution kernel and “**” represents the image domain 2D 
convolution. If c(x,y) is the 2D Dirac delta function 

)()(),( yxyx   , then the Bayesian term encourages 
 to be similar to g(x, y). For example, f(x, y) can be a 

high-noise dynamic image and g(x, y) can be a low-noise slow-
motion image by averaging images from adjacent time frames. 

),( yxf

If g(x, y) = 0 and c(x, y) = (x, y), the Bayesian 
regularization term encourages a minimum norm solution. 
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Note: There was a mistake in the Appendix A of [19] where we 
said that when c(x, y) = 1 the regularization term encourages a 
minimum norm solution. If g(x, y) = 0 and c(x, y) is a 
Laplacian kernel (i.e., the sum of second-order partial-
derivative kernels), the regularization term encourages a 
smooth image. 

After minimizing the objective function (1) by using the 
calculus of variations,21, the optimal solution f(x, y) must 
satisfy an Euler-Lagrange equation,19  which is an integral 
equation and may not have an explicit solution if the weighting 
function w depends on both variables s and . If we restrict that 
the weighting function w only depends on with 

xy  /tan  , not on s, an explicit solution of the optimal 

solution f(x, y) can be obtained in the Fourier domain: 
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where B, C, F, and G are the 2D Fourier transform of b, c, f, 
and g, respectively. The derivation of (3) was given in [18, 19]. 
It is interesting to see two extreme cases of (3). In the case of 

0 , (3) becomes 

22),()(),()( yxyxyx BwFw    

or (assuming 0)( w ) 

22),(),( yxyxyx BF   . (3a) 

In the case of  = ∞, (3) becomes 

),(),(|),(|),( 2

yxyxyxyx CGCF    

or 

),(),(),( yxyxyx GCF   .  (3b) 

Eq. (3a) enforces the data fidelity term in the objective 
function (1), and (3b) enforces the Bayesian penalty term in 
(1). Here  is the pure backprojection of the raw 
projections without any filtering. Using the Central Slice 
Theorem,5 an FBP algorithm can be readily obtained from (3) 
as 
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where q is the filtered version of the combined data pcombined:  
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and the convolution kernel  for the filter is a modified 

ramp filter kernel and is defined as 
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Thus, the function q used in (4) is the convolution of 
pcombined and  with respect to variable s: )()( shw 

)(),(),( )( shspsq wcombined   .   (7) 

It is interesting to notice that when  = 0, the filter defined 
in (6) is reduced to the conventional ramp filter and the noise 
weighting is not effective. Therefore, it is importance to 
include a Bayesian term in the objective function if you intend 
to enforce noise weighting in an FBP reconstruction.  

In (6), )(1 C is a central section of ),( yxC  . If c(x, y) = 

(x, y), then 1)(1 C . In (5), the secondary data ),( spg

,(

are 

generated from the prior image g(x, y) by first convolving with 
the filter kernel c(x, y), second performing forward projection, 
and third ramp filtering. In order to understand the reason that a 
ramp filtering procedure is needed in generation of )spg , 

we notice that b(x, y) is the bacprojection of p(s, ) and g(x, y) 
is the bacprojection of ),( spg [at this moment, let us 

temporally assume  c(x, y) = (x, y)], and that and b(x, y) is a 
blurred image and g(x, y) is sharp image as f(x, y). 

In the rest of the paper except for Part E in this section, we 
will only consider the case of c(x, y) = (x, y) and g(x, y) = 0 
for the sake of simplicity. In this special case, we have 
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We denote the filter's Fourier-domain transfer function as 
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The above discussion is under the assumption that the noise 
weighting w() is a function of view angle . This view-by-
view noise-weighting scheme can be extended to a ray-by-ray 
noise weighting scheme in an ad hoc manner [15]. For ray-
based noise weighting, w is a function of the ray: w = w(ray) = 
w(s, ). At each view angle , we quantize the ray-based 
weighting function into n+1 values: w0, w1, …, wn, which in 
turn give n+1 different filters as defined in (10). That is, 

)/||1/(||)( kk wH   , for nk ,...,1,0 . (11) 
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Using these n+1 filters, n+1 sets of filtered projections are 
obtained. Before backprojection, one of these n+1 projections 
is selected for each ray according to its proper weighting 
function. Only one backprojection is performed using the 
selected filtered projections. 

B. Spatial domain implementation 

It is well known that using FFT and IFFT to implement 
convolution is more computationally efficient than calculating 
convolution directly in the spatial domain. Let the detector size 
be N. If the filter is shift invariant, the spatial domain 
convolution takes  arithmetical operations, while the 
FFT/IFFT method computes can it with  
operations. However, if the filter is shift variant, the spatial 
domain implementation still takes  arithmetical 
operations, while the FFT/IFFT method computes it using 

 operations. 

)( 2NO
)log( NNO

)( 2NO

)log( 2 NNO

At the end of Part A, the spatially varying filter was 
implemented by Fourier-domain multiplication and using n+1 
filters with the help of quantization. In our previous 
implementations, the value n was selected as 10. Without using 
the quantization method, one would use 1024 filters to filter the 
projections 1024 times, if there were 1024 detection channels 
(or detection cells) on the detector. Therefore, it is not efficient 
to perform filtering in the Fourier domain if the filter is shift 
variant. 

On the other hand, it is much more efficient if filtering is 
implemented in the spatial domain as integration when the 
kernel is spatially varying. If the integration kernel has a 
closed-form expression, the computation cost for spatial-
domain filtering is the same as that of convolution, both using 
a dot product for implementation. 

A routine method to find a discrete filter kernel is to 
evaluate the following integral [5], which is the 1D inverse 
Fourier transform of the transfer function defined in (10) with 
w() replaced by w(s, ) and s replaced by integer n: 
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where we used the property that the transfer function )(wH  is 
an even function. After quantization, w in (12) is wk. It is 
unlikely that the integral in (12) has an explicit closed-form 
expression. 

Our method is to find a finite expansion of the function 
)(wH  and the expansion should have closed-form inverse 

Fourier transform. Since )1(1 0   with 00   is a 
monotonically decreasing function on [0, 1/2], we have 
decided to use the following approximation: 

)(
31

210

0




  


eee  with 
w

 0 ,  (13) 

where the parameters 1 and 2 are to be determined. The range 
of  is [0, 1/2]. The approximation (13) is already exact at  = 
0. We further request that (13) to be exact at  = 1/4 and  = 
1/2. Thus, we have two unknowns (1 and 2) and two 
equations: 
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Solving these two equations yields 
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where  
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Using the above results and an integral table, the closed-
form filter kernel (12) can be obtained as ( 0n ): 
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and 
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The  purpose of (19) is to guarantee that .0)0( wH  The 

filter kernel  is an even function with respect to index n. )(nhw

If we take the limit of 0 , (18) reduces to 
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which is the well-known convolution kernel for the 
conventional ramp filter. 

C. Selection of  and weights w 

The newly derived FBP algorithm's filter kernel depends on 
0 = /w(s, ), which in turn depends on the Bayesian term 
control parameter  and the current ray weighting factor 

),( sw . 

The principle of selecting both  and w(s, ) is exactly the 
same as that for the Fourier-domain implementation. Both 
methods can use the same  and w(s, ) values. There is a 
trade-off consideration for the objective function (1). A larger 
 value emphasizes the regularization Bayesian term more, and 
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usually encourages a smoother image with a lower resolution. 
Setting  to zero or an extremely small positive value results in 
a high resolution but noisy image. As discussed in Reference 
16, the FBP algorithm is somewhat equivalent to an iterative 
algorithm with an iteration number of infinity. Also, when  = 
0, the relative noise weighting is not effective. By “relative” we 
mean that the projection rays compete with each other, and 
some rays are emphasized while others are de-emphasized by 
assigning a set of weights w(s, ), one for each ray. The 
weights are also relative, meaning that you can scale the 
weights w(s, ) by a constant value. However, this scaling 
value affects the selection of the value of . Usually, the 
weights w(s, ) are selected as the reciprocal of the noise 
variance (or a function of the variance) of projection value of 
the associated ray. 

One may argue that in an iterative algorithm the noise 
weighting is always effective, regardless whether there is a 
Bayesian term or not. When a system of linear equations is not 
consistent due to noise, noise weighting is commonly used to 
define an acceptable "solution." When a linear system has a 
unique solution, the noise weighting should not affect the final 
(unique) solution. However, an iterative algorithm can only 
present a result with a finite number of iterations. Even though 
the final solution is unique, the noise weighting can alter the 
path towards to unique solution. Because the final solution is 
usually very noisy, early algorithm termination is the most 
common method for regularization. The effects of multiple 
convergent paths and early termination make the noise 
weighting effective in an iterative algorithm, regardless 
whether there is an explicit Bayesian regularization term or 
not. An effective regularization is always applied in one way or 
another. 

One may ask under what conditions an imaging system can 
provide a unique (but maybe noisy) solution. An imaging 
system is usually modeled as an over-determined linear system, 
in which the number of unknowns (i.e., the image pixels) is 
less than the number of equations (i.e., the number of detection 
rays or cells or channels). Due to noise, this linear system is 
inconsistent and it does not have a solution. Let such a system 
be denoted in the matrix form as 

PAX  ,    (21) 

where X is a vector contains all unknown image pixels, A is the 
projection matrix, and P is the array of noisy projections. 
However, its associated normal equation or weighted normal 
equation shown below, respectively, can give a unique least-
squares solution: 

PAAXA TT   or ,   (22) WPAWAXA TT 

where W is a certain weighting matrix. As discussed in [16], an 
FBP algorithm can be viewed as a solution to the least-squares 
problem, which is the unique solution to the “normal 
equation,” which is formulated in the continuous image 
domain. 

D. The case of c  and  0g

In the case of c  and , the Bayesian term 
encourages a solution f(x, y) that looks like g(x, y) as much as 

possible while satisfies the projections as much as possible. For 
this special situation, (3) becomes 
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From the derivation in Part B, we conclude that the filter 
kernel  for this case is the same as that defined in (18) 

and (19). The only change is to replace the projections p(s,) 
by the combined projections 
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where the secondary data ),( spg are generated from the prior 

image g(x, y) by first performing forward projection and then 
ramp filtering. 

E. The case of c being a Laplacian filter and g = 0 

If the filter c in Bayesian term of (1) is not a delta function 
, but is a Laplacian filter, which is a second-order derivative 
filter and is usually used as an edge detector, this Bayesian 
term penalizes sharp edges and high frequency noise. The 1D 
Fourier transform of the Laplacian kernel is 2. Thus, the 
modified ramp filter for this case will have a Fourier-domain 
transfer function as 
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This function (25) has a faster high frequency gain drop-off 
rate than (10). Unfortunately, for this situation, the following 
approximation 
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is rather poor. The Taylor expansion approximation 
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is also poor if 0 > 1.  A third option is the following 
expansion approximation 
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The range of  is [0, 1/2]. The approximation (28) is 
already exact at  = 0. We further request that (28) to be exact 
at  and  = 1/2. Thus, we have two unknowns (1 
and 2) and two equations: 
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Solving these two equations yields 
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It can be verified that the fit (28) is satisfactory. The 
problem is that the definite integral 
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can only be expressed in terms of the special function erf called 
the "error function." One could use a lookup table for the 
function erf or use further approximation of the function erf. 

To date we do not yet have any good results for this special 
case: either the fits (26) and (27) are poor, or the inverse 
Fourier transform (33) does not have a closed-form expression. 
The example in Part E shows that the spatial-domain filtering 
method developed in Part B is not universal, and it can be 
inefficient if no closed-form kernels are available. In this case, 
it is better to use the Fourier-domain filtering. 

F. Kernel for curved-detector fan-beam FBP algorithm 

The discussion so far is about the development of a 
modified ramp filter that is suitable for the parallel-beam or 
flat-detector fan-beam imaging geometries. For the curved-
detector fan-beam imaging geometry, its convolution kernel 
hcurve(n) is a scaled version of the parallel-beam or the flat-
detector fan-beam geometry's convolution kernel h(n) [5]: 
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where D is the fan-beam focal length. Applying the curved-
detector fan-beam relationship (34) to the newly developed 
noise-weighted kernel (18) yields 
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III. III. IMPLEMENTATION AND DATA SETS 

A. Implementation of the proposed FBP algorithm 

Like the conventional convolution backprojection FBP 
algorithm, the proposed FBP algorithm first filters the 
projection data with a spatially variant, noise weighted, ramp 

filter, and the filtering is performed in the spatial domain by 
evaluating a dot product. The filtered data are then 
backprojected into the image domain. Since the backprojection 
procedure of our algorithm is identical to the conventional 
backprojection, we only discuss the discrete implementation of 
the filtering procedure below. 

We denote the discretely sampled projections as pd(n, m), 
where n is the index on the detector and m is the index of the 
view angle. We use a subscript d to indicate discretely sampled 
functions. For any fixed view angle m, do the following: 

Loop through the detector cell index n:  

Step 1: Consider the noise model of pd(n, m) and estimate 
the variance of the measurement pd(n, m). Let the 
weighting factor wd(n, m) be the reciprocal of the 
variance (or a function of the variance).  

Step 2: Evaluate the spatial-domain filter kernel hw(n) 
according to (18) and (19). 

Step 3: Calculate filtered projection value qd(n, m) using a 
dot product: 

 
k

dwd mkpnkhmnq ),()(),( . (36) 

Next n 

In forming the spatial-domain filter kernel hw(n), one needs 
to select a Bayesian term control parameter . A larger  gives 
a smoother and less noisy image. This value is chosen by trial-
and-error and by incorporating with the selection of the 
weighting function w. 

B. Low-dose cadaver CT data 

To illustrate the feasibility of the proposed spatial-domain 
filtering FBP algorithm, a cadaver torso was scanned using an 
x-ray CT scanner with a low-dose setting. Data were collected 
with a diagnostic scanner (Aquilion ONETM, Toshiba America 
Medical Systems, Tustin, CA, USA; raw data courtesy of 
Leiden University Medical Center).  

The imaging geometry was curved-detector cone-beam, the 
x-ray source trajectory was a circle of radius 600 mm. The 
detector had 320 rows, the row-height was 0.5 mm, each row 
had 896 channels, and the fan angle was 49.2°. A low-dose 
noisy scan was carried out. The tube voltage was 120 kV and 
current was 60 mA. There were 1200 views uniformly sampled 
over 360°. The reconstructed image array was 840  x 840 and 
the image resolution was 0.5 mm. The noise weighting factor 
for this data set was chosen as w = exp(-0.3 p), where p is the 
line-integral measurement. The Bayesian term control 
parameter  was chosen as 1.0 x 10-7. 

Only the central slice of image volume was reconstructed. 
The images were reconstructed by the conventional fan-beam 
FBP algorithm without noise weighting and by the proposed 
FBP algorithm with noise weighting using spatial-domain 
modified ramp filtering. 

The third international conference on image formation in X-ray computed tomography Page 41



IV. RESULTS 

Fig. 1 shows the Fourier-domain transfer functions of 4 
filters according to approximation (13), for 0 = 0.1, 1, 5, and 
20, respectively. The original functions represented by the left-
hand-side of (13) are shown in solid curves, and the three-term 
expansions represented by the right-hand-side of (13) are 
shown in dotted curves. Approximations are shown to be fairly 
accurate, and more accurate approximations are obtained for 
smaller 0 values.  

 

Fig. 1. Four pairs of Fourier-domain transfer functions according to 
approximation (13). The original functions represented by the left-hand-side 
of (13) are shown in solid curves, and the three-term expansions represented 
by the right-hand-side of (13) are shown in dotted curves. 

Since an accurate approximation is usually achieved in a 
small region close to a point of interest, for example, about 0 
= 0. In order to obtain a good approximation in a large region 
with only few terms, it is important to select the basis functions 
that look similar to the original functions to be expanded. This 
was the reason that we chose  to expand }{ ke )1/(1 0 , 
and  to expand . This was also the reason 
that we did not use Taylor expansion for 1 0

}{
2ke )3

01/(1 
)1/(   or 

, because when )1 3

0/(1 10   the approximation errors 
are large. Unfortunately, the functions  or  do 
not have closed-form inverse Fourier transform expressions. 

}{
2ke }{

2 ke

Fig. 2(a) shows the conventional (without noise weighting) 
fan-beam convolution backprojection reconstruction of a 
transverse slice in the abdominal region of the cadaver. The x-
rays through the arms are attenuated more than x-rays in other 
orientations, and create the left-to-right streak artifacts in the 
middle of the image. Fig. 2(b) shows the reconstruction result 
using the proposed noise-weighted FBP with spatial-domain 
filtering implementation. The streak artifacts are effectively 
removed. Fig. 2(c) is the gold standard image, which is the 
conventional fan-beam convolution backprojection 
reconstruction using the standard dose CT data. The tube 
voltage was 120 kV and current was 500 mA. 
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b 0 = 5 

Fig. 2. Images reconstructed using low-dose CT clinical cadaver data. (a) 
Conventional convolution backprojection reconstruction. (b) Proposed noise-
weighted FBP reconstruction with spatial-domain filtering. (c) Gold-standard: 
conventional convolution backprojection reconstruction using regular dose 
CT data. 

V. CONCLUSIONS 

This paper developed a spatial-domain implementation 
method for our previously proposed noise-weighted FBP 

0 
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algorithm. Owing to the spatially variant nature of noise 
weighting, the filter in the FBP algorithm varies from ray to 
ray and it is not very efficient to implement it in the Fourier 
domain. 

[6] A. Dempster, N. Laird and D. Rubin, “Maximum likelihood from 
incomplete data via the EM algorithm,” J. R. Stat. Soc. Series B 39B, 
1–38 (1977) 

[7] L. A. Shepp and Y. Vardi, “Maximum likelihood reconstruction for 
emission tomography,” IEEE Trans. Med. Imag. 1 113–122 (1982) 

In spatial-domain implementation, filtering is achieved by 
performing a dot product of the projections with an integration 
kernel. This kernel function is discrete for a discrete 
implementation. To be efficient (meaning, fast computation), 
we require the kernel have an explicit closed-form expression. 
It is unlikely that the noise-weighted ramp filter 

|)|1/(|| 0  

()3/|(| ||0    e

has a closed-form inverse Fourier transform, 
but it can be accurately approximated by 

, which has a closed-form 
inverse Fourier transform expression. Thus, an explicit 
expression of the integral kernel can be obtained. 

)|||| 21    ee

[8] K. Langer and R. Carson, “EM reconstruction algorithms for Emission 
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This approach of obtaining a closed-from integration kernel 
is not universal. We gave a counter-example of a noise-
weighted ramp filter , for which we were 
unable to find a closed-from integration kernel.  

)||1/(|| 3

0  

[13] M. Kachelrie, O. Watzke, and W. A. Kalender, “Generalized multi-
dimensional adaptive filtering for conventional and spiral single-slice, 
multi-slice, and cone-beam CT,” Med. Phys. 28 475-490 (2001) 

[14] G. L. Zeng, “A filtered backprojection MAP algorithm with non-
uniform sampling and noise modeling,” Med. Phys. 39 2170-2178 
(2012) 

ACKNOWLEDGMENTS [15] G. L. Zeng and A. Zamyatin, “A filtered backprojection algorithm with 
ray-by-ray noise weighting,” Med. Phys. 40, 031113 (2013); 
http://dx.doi.org/10.1118/1.4790696 (7 pages), Online Publication 
Date: 28 February 2013  

The author thanks Raoul M. S. Joemai of Leiden University 
Medical Center for collecting and providing the cadaver CT 
scan raw data. [16] G. L. Zeng, “A filtered backprojection algorithm with characteristics of 

the iterative Landweber algorithm,” Med. Phys 39 603-607 (2012) 

[17] G. L. Zeng, “Filtered backprojection algorithm can outperform 
maximum likelihood EM algorithm,” Int. J. Imag. Sys. Tech. 22 114-
120 (2012) 

REFERENCES 
[1] J. Radon, “Über die Bestimmung von Funktionen durch ihre 

Integralwerte längs gewisser Mannigfaltigkeiten,” Ber. Verh. Sächs. 
Akad. Wiss. Leipzig, Math.-Nat. K1 69 262–267 (1917) 

[18] G. L. Zeng, Y. Li, and E. R. V. DiBella, “Non-iterative reconstruction 
with a prior for undersampled radial MRI data,” Int. J. Imag. Sys. Tech. 
23 53-58 (2013) [2] R. N. Bracewell, “Strip integration in radio astronomy,” Aus. J, Phys. 9 

198-217 (1956) [19] G. L. Zeng, Y. Li and A. Zamyatin, “Iterative total-variation 
reconstruction vs. weighted filtered-backprojection reconstruction with 
edge-preserving filtering,” Phys. Med. Biol. 58 3413-3432 (2013) 

[3] B. K. Vainstein, “Finding structure of objects from projections,” 
Kristallografiya, 15 984-902 (1970) 

[4] L. A. Shepp and B. F. Logan, “The Fourier reconstruction of a head 
section,” IEEE Trans. Nucl. Sci. NS-21 21-43 (1974) 

[20] G.L. Zeng G L, “Noise weighted FBP algorithm versus ML-EM 
algorithm,” J. Nucl. Med Tech. 41 283-288 (2013) 

[5] G. L. Zeng, Medical Image Reconstruction, A Conceptual Tutorial, 
Springer, Beijing (2010) 

[21] B. van Brunt, The Calculus of Variations, Springer, New York (2004)

 

The third international conference on image formation in X-ray computed tomography Page 43

http://link.aip.org/link/doi/10.1118/1.4790696


 

Abstract—The same projection data (or line integrals) is often 

measured multiple times, e.g., twice from opposite directions 

during one gantry rotation. Such redundant data must be 

normalized by applying redundancy weighting, which assumes 

that the noise of the data is uniform. This assumption, however, 

does not hold with tube current modulation techniques. The 

variance of data, which is inversely related to the tube current, 

varies significantly by a factor of 2-20. To improve how the 

projection data is used during reconstruction, we developed a 

new redundancy weighting scheme. It not only honors the data 

statistics, but also controls how much to honor from 100% 

(αs=1.0) to 0% (αs=0.0) by a parameter αs. The proposed 

weighting scheme reduces to the conventional redundancy 

weighting scheme when αs=0.0. In this work, we evaluated the 

performance of the proposed scheme using computer 

simulations targeting at myocardial perfusion CT imaging.  

Index Terms—CT, redundancy, statistics 

I. PURPOSES 

HE same CT projection data (or line integrals) is often 

measured multiple times, e.g., twice from opposite 

directions during one gantry rotation. Such redundant data 

must be normalized by applying redundancy weighting, 

which assumes that the noise of the data is uniform. This 

assumption, however, does not hold with tube current 

modulation techniques. For monochromatic x-rays, the 

variance of data is proportional to the expected data, which is 

affected by the following factors: the x-ray intensity exiting 

the x-ray tube, and the attenuation of x-rays with the bowtie 

filter and the object.  Assuming that the bowtie filter is 

symmetric with respect to fan- and cone-angles, the variance 

of the redundant data for the same ray is proportional to the 

tube current values used to acquire the projections. To 

improve how the projection data is used during 

reconstruction, we developed a new redundancy weighting 

scheme. It not only honors the data statistics, but also 

controls how much to honor from 100% (αs=1.0) to 0% 

(αs=0.0) by a parameter αs. The proposed weighting scheme 

reduces to the conventional redundancy weighting scheme 

when αs=0.0.  

We will evaluate the new weighting scheme using 

myocardial CT perfusion (CTP) imaging. CTP imaging has 

shown promise in improving the positive predictive value of 

cardiac CT examinations. One major challenge with CTP is 

the presence of halfscan artifacts, due to which measured 

pixel values of the same tissue vary as much as 30-50 

Hounsfield unit (HU) from one heart beat to another and 

sometimes from lesion to lesion [1, 2]. This fluctuation of 

pixel values is larger than the targeted ischemic contrast one 

wishes to detect (i.e., 10-30 HU) and degrade both the 

perfusion defect detection performance and the 

reproducibility of the CTP test.  

The halfscan artifacts are associated with the halfscan 

algorithm [3, 4] which is the generic cardiac CT image 

reconstruction method implemented in all CT scanners. Let 

dR define the effective angular range of projection data used 

for image reconstruction (Fig. 1). The halfscan method uses 

a dR of 0.5 rotations, and causes streaks in images that rotate 

with the “central angle,” which is the projection angle that 

corresponds to the center of dR. A patient’s heart beat is a 

voluntary motion and it is impossible to mechanically 

control the central angle for each heartbeat and each scan. 

Thus, pixel values may vary from one image slice to another 

if several axial scans are performed to cover the entire heart, 

and also from one scan to another. Various factors make 

projections taken from the opposite direction slightly 

different, and they include cone-angle and scattered 

radiation. The former becomes a problem because the 

halfscan weight is designed to handle the redundancy of 2D 

Radon data in fan-beam geometry but is applied to 3D 

Radon data in cone-beam geometry prior to filtered 

backprojection. The inconsistency is noticeable when the 

cone-angle is large [5].  

We propose to improve CTP using a larger dR, a motion 

compensated image reconstruction technique, and a tube 

current modulation technique (Fig. 2). The motion 

A new redundancy weighting scheme for non-stationary data 
Katsuyuki Taguchi and Jochen Cammin 
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Figure 1.  (Top) Synthesized patient images at mid-diastole show 

typical halfscan artifacts. WW/WL = 200/100 HU. (a) The true 

image with perfusion defect of 24.4±5.8 HU (range, 7.8-34.3 HU) 

(yellow arrow). (b,c) Images reconstructed by halfscan method 

when the scan started from (b) 0º and (c) 180º. Averaged pixel 

values inside myocardium varied significantly from (a) the true 

value of 80.2 HU to (b) 69.3 HU or (c) 100.8 HU. (Bottom) 

Diagram modified from Ref. [1] shows that images are 

reconstructed from halfscan data (blue arcs, dR=0.5 rotation, see 

Fig. 2) at different central angles (red lines).  

(b) (c)(a)

 K. T. and J. C. are with the Russell H. Morgan Department of 

Radiology and Radiological Science at the Johns Hopkins 

University School of Medicine, Baltimore, MD (email: 

ktaguchi@jhmi.edu). 

Page 44 The third international conference on image formation in X-ray computed tomography

mailto:ktaguchi@jhmi.edu


 

compensated reconstruction will minimize the motion 

artifacts; the tube current modulation will allow for a larger 

dR while limiting the radiation dose to patient. The tube 

current is set higher at IH for the cardiac phase-of-interest for 

a duration of dH and lower at IL for the other phases. This 

makes the statistical variation of projection data for the same 

ray-of-interest varying strongly: the fluctuations are smaller 

during IH and larger during IL. In this work, we evaluate the 

performance of the proposed scheme using computer 

simulations targeting at myocardial perfusion CT imaging.  

II. THEORY 

A. The current redundancy weight  

Let g(β,γ,α) be cone-beam projections of an object f 
measured along a continuous circular orbit with a radius of 

R, where (β,γ,α) denote projection-, ray-, and cone-angle, 

respectively. The image can be reconstructed using a 

weighted filtered backprojection over the range where the 

redundancy weight w is non-zero:  

 ̂  
 

  
∫

 

  (   )
[(   )       ]  ,     (1) 

where hramp is a ramp filter kernel,  L is the distance from the 

focus to the reconstruction point projected onto an xy-plane, 

w is a weighting function that normalizes the redundancy of 

data g. That is, when the 2D redundancy is considered (Fig. 

3):  

∑  (  ( )   ( ))   , n=0,±1,±2,±3, …,    (2) 
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A 1D function is used to define the effective range of 

non-zero values and enforce the smoothness along β and γ: 
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where βR and dR correspond to the 

full-width-at-half-maximum of the projection angular range 

used for image reconstruction in radians and in rotations, 

respectively, β0 is the central projection angle of the range 

(see Figs. 1-2),   is a convolution operation, hs is a 1D 

smoothing kernel, and βf1 is the feathering range, which must 

be larger than the full fan-angle. A smooth redundancy 

weighting function can be obtained by 

  (      )   (    ) ∑  (  ( )(   )   ) ⁄   (9) 

and is used in the place of w in Eq. (1) for the current 

method.  

B. The proposed redundancy weight  

We will first propose a new redundancy weighting 

scheme which honors the data statistics, then combine it with 

the current scheme to control how much to honor the 

statistics.  

When multiple line integrals are acquired at different 

tube current values at I(  ), I(  ),… the relative variance of 

the acquired line integrals can be approximated by an inverse 

of  the tube current values,    ( (  ))    ( (  ))   

   (  )  
  (  )  , due to the logarithm process to convert 

counts into line integrals. An image can be decomposed into 

multiple images each of which are reconstructed only from a 

ray-of-interest. Let us consider the noise of the partial image. 

When the image reconstruction is performed using Eq. (1), 

the image variance at the mid-point of a given ray-of-interest 

(when L = Lc(n) in Fig. 3) can be modeled by 

     ∑   (  ( ))  
  (  ( )) ⁄ ,      (10) 

where C and   
  are constant. The image noise is minimized 

when each datum is weighted by  ( ) , honoring data 

statistics. However, such weights may produce image 

artifacts because if any discontinuities exist in I(β), they 

would result in discontinuities in w along γ, which would 

then be amplified by the ramp filtering process. Thus, a 1D 

smooth function is used to enforce the smoothness and  

 
Figure 2.  Prospectively ECG-gated CTP scan 

 
Figure 3. Two-dimensional redundant data 
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where dH is the duration in gantry rotations that corresponds 

to higher tube current value IH (see Fig. 2) and 2βf2 are the 

feathering range.  

Using two functions q and s, we get a redundancy weight 

w2 that honors statistics, guarantees the smoothness, and 

limits the effective range of non-zero values to βR :  

  (         )  

 (    ) (    ) ∑ [ (  ( )   ) (  ( )   )] ⁄ .   (13) 

Finally the proposed weights are obtained by a weighted 

summation of two weights w1 and w2  

    (            )  (    )          , (14) 

and used in the place of w in Eq. (1). The parameter αs 

controls how much to honor the data statistics from 100% 

(αs=1.0) to 0% (αs=0.0).  

III. EVALUATION METHODS 

A. Noise analysis 

Assuming that an on-centered cylinder or sphere is 

scanned without changing the x-ray energy, the noise at the 

origin was estimated. We calculated normalized image noise 

standard deviation,    ⁄ , using Eqs. (10) and (14) with 

various scan and reconstruction parameters such as IL/IH, dH, 

dR, and αs, and further normalized it by that of the current 

halfscan method (dR=0.5 rot. and αs=0.0).  

B. Synthesized patient data 

A synthesized patient image with a static heart with a 

perfusion defect was scanned with a tube current modulation 

using the following parameters: IH=875 mA, IL/IH =0.1, dH 

=0.75 rot., 0.3 sec/rot., and 1000 projections/rot. The scan 

started from 12 different angles, each 30º apart, and 5 noise 

realizations were performed for each angle, resulting in 60 

scans in total.  

Images were reconstructed using the following four 

parameter sets: (1) dR=0.5 rot., αs=0.0 (halfscan); (2) dR=1.0 

rot., αs=0.0; (3) dR=1.0 rot., αs=0.5; and (4) dR=1.0 rot., 

αs=1.0. 

Twenty-eight ROIs were placed on the myocardium. The 

standard deviation of the mean values of the same ROI over 

the starting angles is measured, and the average of the 

standard deviation values over 28 ROIs was used to quantify 

the strength of halfscan artifacts. Image noise was quantified 

by the standard deviation of pixel values within ROIs 

averaged over all five noise realizations and 28 locations. 

Perfusion ratios were quantified using the myocardial signal 

density ratio [6, 7], and perfusion defect detection tests were 

performed by sweeping the threshold values.  

IV. EVALUATION RESULTS 

A. Noise analysis 

Figure 3(a) shows plots of s, q, and w for γ=0 over β with 

αs=0.0 and 1.0 when IL/IH =0.2, dH =0.75 rot., dR =1.50 rot., 

βf1=28.6°, and βf2 =50.0°. It can be seen that w with αs=0.0 

was almost constant at 0.33 as most rays were measured 

three times over 1.5 rotations. In contract, w with αs=1.0 was 

larger when q was larger where tube current IH provided a 

better data statistics. Figures 3(b)-(c) show that the middle 

part of w with αs=1.0 vary with γ as the halfscan weight, 

while w with αs=0.0 was similar to the overscan weight [4].  

Figure 3(d) presents that (i) the estimated image noise 

with αs=0.0 increases with using a larger projection angular 

range dR; and (ii) the least image noise was achieved when 

statistics were completely honored with αs=1.0, while αs=0.5 

was a close second.  

B. Synthesized patient data 

 Images of one noise realization reconstructed by the four 

parameter sets were shown in Fig. 4 (a-d). Results are 

summarized as follows. (i) The measured image noise agreed 

with the expected value predicted by the theoretical model. 

(ii) The image noise observed at the myocardium confirmed 

the findings discussed in Sec. IV.A.  

Regarding the measured halfscan artifacts (Fig. 4(e)), the 

following observations can be made. (i) Halfscan artifacts 

were as large as 14.5 HU with the halfscan algorithm (dR=0.5 

rot.). (ii) Regardless of the value of αs, the use of larger dR 

decreased the artifacts substantially. (iii) The halfscan 

artifacts were the least with the conventional weighting 

scheme (αs=0.0) and was 3.4 HU or 23% of the halfscan 

method, while αs=0.5 resulted in 4.8 HU or 33%.  

The result of the perfusion defect detect detection test was 

      
Figure 3. (a) Plots of s, q, and w for γ=0 when IL/IH =0.2, dH =0.75 rot., dR =1.50 rot., and βf1=28.6°, βf2 =50.0°. (b,c) w(β,γ) with (b) αs=0.0 

and (c) αs=1.0. The window was set for (0,1). (d) Image noise measured (markers) and predicted by the theoretical model (curves). (e) 

Halfscan artifacts. 
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presented in Fig. 4(f) and summarized as follows. First, 

perfusion detection performance was better with dR=1.0 rot. 

than with halfscan (left, dR=0.5 rot.) in terms of the 

area-under-the-ROC-curve (AUC) values (0.935-0.938 

versus 0.908, P < 0.001), the positive predictive value (PPV) 

at a negative predictive value of 95% (69.0-70.6% vs 58.0%, 

P < 0.003), and sensitivity at a false positive rate of 0.10 

(0.80-0.89 vs 0.65, P < 0.001). Thus, it is critical to increase 

dR, the projection angular range. Second, among the three 

methods, αs=0.5 provided the best performance index values, 

although the difference was not statistically significant.  

V. DISCUSSION AND CONCLUSIONS 

We have developed a new redundancy weighting scheme 

which not only honors the data statistics but also controls 

how much to honor by the parameter αs. The results of the 

study showed that the proposed method allowed for a 

tradeoff between the image noise and halfscan artifacts when 

applied to CT perfusion imaging with tube current 

modulations. In the future, one can change the parameter αs 

adaptively, e.g., keeping αs smaller (thus, favoring equal 

weights) for projections up to 1 gantry rotation and making it 

larger (thus, favoring statistics) for the others.  

One might think that the performance of CTP may not be 

sufficient even after the improvement. This is a challenging 

case with a heterogeneous and weaker perfusion defect. Our 

previous study with about twice as severer and homogeneous 

perfusion defect showed that the performances were 

improved by the proposed method (P < 0.001) and the 

improved indices were satisfactory: AUC, 0.994 vs 0.973; 

PPV, 100% vs 78.2%; sensitivity, 1.00 vs 0.89.  

To our knowledge, incorporating statistical weights into 

redundancy weights has not been discussed. The use of 

redundancy weights in addition to statistical weights in 

iterative reconstruction methods has been discussed recently, 

and the merit was found in accelerated convergence [8]. The 

results of this study imply that there may be other merit such 

as decreased halfscan artifacts when both the redundancy 

and statistics of data are taken into account.   
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Figure 4. (a-d) Images reconstructed by (a) dR=0.5 rot., αs=0.0 (halfscan); (b) dR=1.0 rot., αs=0.0; (c) dR=1.0 rot., αs=0.5; and (d) 

dR=1.0 rot., αs=1.0. The window width and level were set 300/100 HU. (e) Halfscan artifacts. (f) Results of the perfusion defect detection 

test. (†) P < 0.003.  
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Construction of an atlas of filter configurations for
fluence field modulated CT

Timothy P. Szczykutowicz, Ph.D., Charles A. Mistretta, Ph.D.

Abstract—Purpose: Fluence field modulated CT
(FFMCT) and volume of interest (VOI) CT imaging
applications require adjustment of the profile of the
X-ray fluence incident to a patient as a function of
view angle. The unique fluence profile at each angle,
however, must be known in order to perform the log
normalization step used to obtain the projection line
integrals required for CT image reconstruction. Since
current FFMCT prototypes can theoretically take
on an infinite number of configurations, measuring a
calibration data set for all possible positions would
be difficult. Therefore, the present work aims to
calculate an atlas of configurations that will span all
of the possible body regions, patient sizes, patient
positioning, and imaging modes (FFMCT and VOI
imaging). The hypothesis here is that there exists
some finite number of unique modulator configura-
tions that effectively “span” the infinite number of
possible fluence profiles with minimal loss in per-
formance. Methods: CT images of a head, shoulder,
thorax, abdominal, and pelvis anatomical slices were
dilated and contracted to model small, medium, and
large sized patients. The modulator configurations
required to compensate for each image were com-
puted assuming a FFMCT prototype (digital beam
attenuator, DBA) was set to equalize the detector
exposure using the algorithm described in Szczyku-
towicz and Mistretta 2013a. The Pearson correlation
coefficient was computed between each of the DBA
configurations and used to determine the atlas set
of configurations that effectively “span” all clinically
required configurations. Results: The results demon-
strate that the technique works and allows reduction
in the total number of required wedge configuration
from tens of thousands to only a few hundred. Nu-
merical results demonstrate that the mean change
in image noise between a constrained (limited to
38 wedge configurations) and an unconstrained (lim-
ited to 900 wedge configurations) DBA configuration
was 6%. The number of incident photons delivered
using an atlas was found to be within 2% of the
unconstrained case. Conclusions: The methodology
proposed in this work will enable DBA-FFMCT and
DBA-VOI imaging in the clinic without the need for
patient specific air-scans to be performed. In addition,
the methodology proposed here is directly applicable
to other modulator designs such as piecewise linear,
TomoTherapy MVCT, or inverse geometry CT.

T.P. Szczykutowicz and C.A. Mistretta are with the Depart-
ments of Radiology and Medical Physics University of Wisconsin-
Madison 1111 Highland Avenue Madison, WI 53705 C.A. is also
with the Department of Biomedical Engineering at the University
of Wisconsin-Madison Email: szczykutowic@wisc.edu

I. Introduction

The use of different kV, tube current, and bowtie
filter sizes on today’s state-of-the-art CBCT and CT
modalities allow for a modulation of the fluence incident
onto patients. However, on many commercially available
CBCT and CT systems, one is not free to choose any
combination of kV, mA, and bowtie filter. Often only
several kV stations are available (typically around 4), the
mA is often restricted due to tube heating constraints,
and at most 3 different sized bowtie filters are available
(often, CBCT does not employ bowtie filters). While
some of these limits are do to engineering constraints,
some are mandatory to keep the amount of system
calibration logistically feasible. The need for system cali-
bration in CBCT and CT stems from the requirement to
obtain projection data for image reconstruction. In order
to create line integral projection data from transmitted
signal intensity measurements, the fluence incident to
the patient must be known. This is commonly referred
to as collecting “air-scan” data as it is collected with no
phantom object in place, hence the scan is taken entirely
of air. This can be observed easily by considering Beer’s
law (I = Io ·exp(−P )). One desires the projection line in-
tegral P , one measures the signal recored at the detector
transmitted through the patient I, therefore the quantity
incident to the patient, Io must be known. In CBCT and
CT imaging, Io varies as a function of fan angle due to
the bowtie filter and the heel effect for a given mA and
kV. As the mA and kV can change as a function of view
angle due to dose modulation, calibration tables must
be made or models of the response of Io as a function of
fan angle, kV, bowtie filter, and mA must be obtained.

The experimental implementation of FFMCT devel-
oped in our previous work (Szczykutowicz and Mistretta
2013a, 2013b, and 2014[1], [2], [3]) used a scan specific
method to calculate the “air scan” data Io. While this
approach allowed for artifact free DBA-FFMCT and
DBA-VOI images to be created, it required an air scan
be performed using the same wedge configurations as
were used to acquire the scan data in which the phantom
object was in the beam. In a clinical environment, this
type of work flow would not be feasible, especially in an
interventional CT or CBCT setting where the patient
cannot easily be moved out of the scan field of view in
the middle of a procedure.

The X-ray optics are complicated for the DBA as
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it is currently designed as two separate wedges (right
triangular prisms). In addition, the beam hardening due
to the wedges must be modeled accurately. These two
issues have made creating a model for the attenuation
from the DBA wedge difficult. Therefore, in this paper,
we take the same approach as that of today’s CBCT
and CT vendors; we assume physical measurements can
be obtained for a range of operating points and that
these operating points will “span” the range of clinically
required configurations.

The methodology presented here could also be ap-
plicable to the FFMCT technology implemented by
other research groups such as Hsieh and Pelc[4], [5] or
the simulation work being carried out by Bartolac and
Jaffray [6], [7], [8]. In addition, the technique described in
this work should have applications in volume of interest
imaging (VOI) [9], [10], [11], [12]. All of these techniques
rely on imaging with a fluence field that changes from
view to view or changes on a patient to patient basis.

II. Materials and Methods
In this paper, the guiding assumption is that it is

possible to use only a sub-set of all possible wedge con-
figurations with a negligible effect in terms of dose and
image quality. In other words, if the wedge configuration
for a given phantom at a given view angle is restricted to
be selected from a set of pre-calibrated atlas positions,
the difference in the incident fluence profile from the
ideal configuration and the atlas configuration should be
minimal.

A. Atlas calculation for DBA-FFMCT
The ideal atlas will be capable of “spanning” all

patient body regions, sizes, and offcenterings (see Fig-
ure 1a). Different body regions must be simulated to
create an “ideal” atlas due to the different tissue inho-
mogeneities present in different body regions (i.e. the
shoulders represent a large change in attenuation in
the lateral direction but not so much in the anterior-
posterior direction while the thorax has a large change
in attenuation over the anterior-posterior projections due
to the lung fields and mediastinum). Different body sizes
will require different thicknesses of DBA wedge configu-
rations as well as engage more wedges further from the
iso-ray than would be used for smaller patients. Different
patient offcenterings must be simulated because even
for the same body region and patient size, the DBA
configuration must change as the patient is moved away
from iso-center.

The total number of view angles (denoted by
NumV iews) used in the atlas computation is equal to
the number of body regions times the number of body
sizes times the number of offcentering positions times
the number of view angles for each body region/body
size/offcentering configuration; 360 view angles were

(a) (b)

(c)
Fig. 1. (a) View of all of the digital phantoms used to construct
the atlas set of wedge configurations. (b) Wedge configurations
(thicknesses) for each of the sinograms shown in Figure (c); hor-
izontal axis is view angle, vertical axis is wedge index for each of
the sub figures. (c) Sinograms for each of the images shown in (b);
horizontal axis is view angle, vertical axis is detector index for each
of the sub figures.

used for each specific body size/region/offcentering sim-
ulation. 888 detector elements and a source to isocenter
distance of 541 mm was used. The number of DBA
wedges (nDBA) was 10.

The atlas construction method computes the Pearson
correlation (Cj,k where each pair of j, k denotes the
Pearson Correlation coefficient of the jth view angle
with the kth view angle) coefficient between wedge
configurations (H(i, v) where i is the detector index
and v is the view angle index) spanning multiple body
regions, sizes, and offcenterings. j, k and v range from 1
to NumV iews. H(i, v) is calculated using the method
described in Szczykutowicz and Mistretta 2013a[1]. The
wedge configurations are depicted in Figure 1b. The
sinograms corresponding (i.e. used to determine the
wedge configurations) to Figure 1b are shown in Figure
1c.

For each j in Cj,k, all view angles k having a Pearson
Coefficient larger than a threshold (denoted by tr) are
averaged. The result is a vector of wedge configurations
denoted by H(i, v) (i.e. for each wedge combination, all
other combinations that are similar to that combination
are averaged). The number of “unique” configurations
within are determined in an iterative manner. “Unique”
is defined as the case when, for a given configuration, the
Pearson correlation coefficient computed between that
configuration and all other configurations is less than
tr. In order to extract only the “unique” configuration
from within H(i, v), each configuration is compared to
all other combination as follows. The first (v = 1)
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configuration in H(i, v) is added to the atlas library.
Then, starting with the second (v = 2) configuration
in H(i, v), each configuration is compared with the
other entries in the library. If the Pearson correlation
coefficient is less than tr for all atlas library members,
then that configuration is added to the atlas library.
This process is repeated for all view angles (v = 1 to
numV iews) and produces a small subset of average DBA
wedge configurations that “span” the space of all the
configurations in H(i, v) (all body regions, sizes, and off-
centerings). During an actual DBA scan, the DBA would
simply be restricted to such a set for which the air-scan
can be pre-calculated.

B. Creation of the different body regions
Head, shoulder, thorax, abdominal, and pelvis

anatomical CT axial slices were obtained (IMAIOS SAS
image gallery, Montpellier, France). The images were
converted to Hounsfield units using tissue attenuation
values taken from NIST[13] for cortical bone, soft tissue,
and fat and a simple image based threshold for each
of the materials. These slices were then dilated using 2
dimensional linear interpolation and shifted to simulate
patient off centering. The dilation amounts, as can be
seen from Figure 1a were tuned such that the slices
occupied almost the entire 50 cm imaging field of view.
At the smallest dilation amounts, the anatomy occupied
roughly 1/3 of the field of view. Since 360 degree rotation
scans were simulated, the rotation of the anatomy within
the slices was not varied. The off centering amounts were
0, 3, and 8 cm.

C. Atlas construction for volume of interest DBA imag-
ing

It turns out the number of wedge positions required
for VOI imaging as implemented by our group previously
[14], [3] is actually given by the Gauss integer summation
expression,

# of unique positions = nDBA(nDBA + 1)
2 . (1)

Equation 1 can be derived considering that only two
positions are possible for each wedge (when the DBA is
implementing VOI imaging), each wedge can either be
set to its thickest or thinnest configuration. Considering
also that a maximum of 1 VOI is imaged during an
acquisition, for nDBA wedges, we can have 1,2, ...nDBA
wedges open (thinnest position) and the rest of the
wedge closed (thickest position) at a total of nDBA,
nDBA − 1, ...1 positions. Summing the total number
of positions is simply the sum of integers 1 to nDBA.
Assuming all of the possible DBA-VOI configuration
are put into the atlas, there should be no difference
in performance between using an atlas and not using
an atlas for DBA-VOI imaging. More complicated VOI
approaches would likely require a non binary wedge
positioning scheme [7].

D. Quantifying performance loss with atlas

In order to quantify the changes in image quality
and dose when using the atlas method, a numerical
simulation was performed. The DBA was simulated, and
CT images reconstructed using the framework described
by Szczykutowicz and Mistretta 2013 [1]. The change
in image quality was studied by considering the change
in the voxel standard deviation between constrained
and unconstrained DBA-FFMCT acquisitions. 10 noise
instances were simulated for a DBA-FFMCT acquisition
free to take on any wedge configuration and 10 noise
instances were simulated for a DBA-FFMCT acquisition
constrained to a subset of the configurations used in
the unconstrained case. A tr value of 0.99 was used
to calculate the atlas for the constrained DBA-FFMCT
acquisition. Voxel standard deviation maps were created
from the 10 runs for each acquisition type and the
percent change in these maps was computed.

To compare the dose between non restricted and atlas
constrained DBA-FFMCT, the total number of photons
incident onto the phantoms was compared.

III. Results and Discussion

A. Atlas creation

Figure 2a depicts the Pearson correlation coefficient
(Cj,k) for each of the wedge configurations shown in
Figure 1b. The thresholded version of Figure 2a is shown
in Figure 2b. Figure 2c depicts H(i, v), the result of
averaging over each of the similar configurations within
the thresholded Cj,k. Using the algorithm described
in Section II-A, H(i, v) is reduced to the final set of
wedge configuration as shown in Figure 2d. This atlas
construction method reduced the number of “air scan”
projection from 12,960 unique wedge configurations to
only 410.

B. Numerical results quantifying performance lose due
to atlas

Figure 3 depicts the result of constraining a DBA-
FFMCT acquisition to only 38 out of 900 configurations.
In this case the atlas for the constrained DBA-FFMCT
acquisition was created from the configurations used for
the unconstrained DBA-FFMCT acquisition using tr =
0.99. Figure 4 depicts the percent change in the voxel
standard deviation between the two acquisitions. The
mean percent change in standard deviation over the
phantom (i.e. excluding the air outside the phantom)
was 6%.

Comparing the total number of photons incident onto
the phantoms: a relative “dose” of 0.9835 for the con-
strained case relative to the unconstrained acquisition
was observed.
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(a) (b)

(c) (d)
Fig. 2. (a) Cross correlation coefficient calculated for each wedge
position with every other wedge position combination. The diago-
nal in this image has a value of 1 as it represents each of the wedge
configurations shown in Figure 1b correlated with themselves. (b)
Thresholded version of Figure 2a. All values below a correlation
coefficient value of 0.99 (tr = 0.99 in this case) have been set to
zero. (c) For each of the cases over the threshold as shown in (b),
the mean wedge configurations are displayed in this figure. (d)
The correlation between each of the configurations shown in (c)
was calculated and only one wedge configuration was kept for each
group of wedge positions having correlation coefficients of 0.99 or
higher. This reduced the total number of required wedge positions
from 12,960 to 410.

(a) (b)

(c) (d)
Fig. 3. (a) and (b) depict constrained and non constrained DBA
FFMCT CT images respectively. (c) and (d) depict the voxel
standard deviation of 10 independent noisy instances of (a) and (b)
respectively. Images (a) and (b) are displayed at [0 0.054] mm−1.
Images (c) and (d) are displayed at [0 9.4E-3] mm−1.

IV. Conclusions
This work outlines a clinically feasible solution for

the determination of air scan free DBA-FFMCT CT
imaging. In addition, the methodology presented here
could also be applicable to the FFMCT technology
implemented by other research groups such as Hsieh and
Pelc[4], [5] or the simulation work being carried out by
Bartolac and Jaffray.[6], [7], [8] In addition, the tech-

Fig. 4. Percent
difference between
images 3c and
3d. The image is
displayed using a
range -20 to 20 %.

nique described in this work should have applications in
volume of interest imaging (VOI).[9], [10], [11], [12] All
of these techniques rely on imaging with a fluence field
that changes from view to view or changes on a patient
to patient basis.
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 Feasibility study on ultra-low dose 3D scout of organ 

based CT scan planning 

Zhye Yin, Yangyang Yao, Albert Montillo, Peter M Edic, Bruno De Man 

Abstract—3D volumetric CT images hold the potential to 

become a rich source of information for 3D organ segmentation 

and far exceed that made available through 2D radiograph 

images. Acquiring and generating 3D volumetric images for scan 

preparation purposes, i.e. 3D scout, while delivering radiation 

dose equivalent to conventional 2D radiograph is challenging. We 

explore various acquisition parameters and post-processing 

methods to reduce dose of a 3D scout while reducing the noise 

and maintaining the edge strength around the target organ. We 

demonstrated that similar edge strength and noise to the 

conventional dose CT scan can be achieved with 3D scout 

acquisition and post-processing while being dose neutral to a 2D 

scout acquisition.  

Keywords— CT acquisition protocol; low dose; 3D scout; organ 

segmentation; IQ metric 

I.  INTRODUCTION 

Segmentation or extraction of organ boundaries from the 
2D radiograph preparatory scans, i.e. 2D scouts, has been 
explored before [1-3]. Due to overlapping nature of tissues 
projected onto a 2D scout, segmentation of adjacent soft tissue 
organs has proven to be very challenging. In a clinical setting, 
3D helical acquisitions are often used to precisely localize 
target organs before the main scan but the radiation dose for 
such preparatory scans is quite high. In this paper, we propose 
a 3D volumetric preparatory scan, i.e. 3D scout, to segment 
target organs for scan planning while delivering radiation dose 
similar to conventional 2D scout.  

The dose from a conventional 2D scout acquisition is a 
small fraction of the dose from the main scan, typically 0.4%-
2%. Therefore, acquiring an ultra-low dose 3D scout delivering 
similar dose to conventional 2D scout while maintain image 
quality sufficient for organ segmentation is immensely 
challenging.  Reconstructed images from such a low dose 
acquisition contain high noise and image artifacts such as 
streaks. Consequently conventional edge and region based 
image segmentation methods [4-5] tend to yield low 
segmentation accuracy [6-8]. More advanced model based 
organ segmentation (MBS) methods hold greater potential to 
overcome some of these challenges, however even these can 
fail when the noise or streaks are prominent [9-11]. 

1

Zhye Yin, yin@research.ge.com, Albert Montillo, Peter Edic and Bruno De 

Man are with GE Global Research in Niskayuna, NY. Yangyang Yao is with 
GE Global Research in Shanghai, China. 

In this work, we explored various ultra-low dose 
acquisition and post-processing strategies to reduce the 
radiation dose of a 3D scout. To evaluate each strategy, we 
defined the image quality metrics that reflect organ 
‘segmentability’, i.e. ability to segment, rather than using a 
specific segmentation approach so that our experiments are 
largely independent of the specific organ segmentation 
algorithm. Though multiple body regions such as head, chest 
and abdomen are routinely scanned, we focus on the abdomen 
and specifically the liver organ since it is one of the most 
challenging organs due to its shape complexity, intersubject 
shape variability, and low boundary contrast. However it is 
straightforward to extend our work and methodology to other 
organs and applications.  

Table I. Key DOE parameters 

DOE mA 
rotation 

speed 
mAs 

# of 

views 
dose% 

Without noise reduction techniques 

1 2000 0.4 800 1000 N/A Ground Truth 

2 600 0.4 240 1000 100% Baseline 

3 240 0.4 24 250 10% Pulsed Acq. 

4 240 0.4 12 125 5% Pulsed Acq. 

5 120 0.4 12 250 5% Pulsed Acq. 

6 120 0.4 6 125 2.5% Pulsed Acq. 

7 60 0.4 6 250 2.5% Pulsed Acq. 

8 60 0.4 3 125 1.25% Pulsed Acq. 

Noise Reduction techniques 

9 60 0.4 3 125 1.25% Detector rebin(4) 

10 60 0.4 3 125 1.25% Detector rebin(9) 

11 60 0.4 3 125 1.25% Smooth Kernel 

12 60 0.4 3 125 1.25% Fast Iter. Recon 

Combination of noise reduction techniques 

13 60 0.4 3 125 1.25% Kernel+D.Rebin 

14 60 0.4 3 125 1.25% Kernel+Rebin+Iter 

Electronic Noise Reduction 

15 60 0.4 12 250 5% 2x exposure 

16 60 0.4 6 125 2.5% 2x exposure 

17 60 0.4 3 62 1.25% 2x exposure 
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II. METHODOLOGY 

To achieve ultra-low dose for 3D scout, we proposed two 
low dose acquisition methods and three post-processing and 
reconstruction approaches.  

For low dose acquisition, we reduced the dose of 3D scout 
by reducing mA and by reducing the number of views while 
maintain same exposure time per view, i.e. by emulating 
pulsed acquisition. Detailed acquisition parameters in our 
design of experiments (DOE) are shown in Table 1, DOE1-
DOE8. To simulate ultra-low dose 3D scout, we use CATSIM 
with the anthropomorphic xCAT phantom [12-13]. A 3

rd
 

generation axial scan mode is adopted for simplicity and 8 
rows of detectors are positioned over the liver region.   

We simulated three denoising and reconstruction 
techniques: detector rebinning, smooth reconstruction kernel 
and fast iterative reconstruction algorithm such as ASIR, 
shown in Table 1, DOE9-14. Since organ segmentation 
algorithms mostly utilize the gradient information along the 
boundary, spatial resolution becomes less critical for the 
success. First, we proposed 2 by 2 and 3 by 3 detector 
rebinning approaches where the detector cells in neighboring 
rows and columns, 4 pixels and 9 pixels respectively, are 
combined into one effective cell. Second, since filter kernels 
for the FBP type reconstruction algorithms can be tuned to 
yield smooth and less noisy images, we select the smoothest 
reconstruction kernel available which can be aggressively 
modified further to achieve more smoothing in future. Finally, 
we emulated fast iterative reconstruction which typically has 
50% noise reduction capability by simulating multiple 
acquisitions at same location with random noise seeds and 
averaging those runs.   

Since electronic noise in CT acquisition sometimes 
dominates overall noise characteristic and makes it difficult to 
de-noise, we additionally simulated acquisitions with prolong 
exposure and compared the difference, shown in Table 1, 
DOE15-17.   

All images are reconstructed with conventional FBP 
reconstruction algorithm with 1mm by 1mm by 0.625mm 
voxel size. The DFOV is 360mm and scan time per revolution 
is 0.4s.  We simulated a noiseless scan, shown in Table 1, 

DOE1 and a conventional main scan with 240mAs, shown in 
Table 1, DOE2.  The dose percentage shown in the last column 
in Table 1 was computed relative to DOE2, the conventional 
main scan.  

We devised two image quality metrics for organ 
segmentability. The first metric measures the noise at the 
interior portion of liver using 2cm by 2cm rectangular region 
of interest (ROI), shown as dotted box in Figure 1(a). The 
organ interior noise σ is expressed as the standard deviation of 
voxel intensities from a ROI in the liver interior: 

      (               )                             (1) 

The success of organ segmentation in ultra-low dose 3D 
scout is highly dependent of the contrast changes along the 
boundary of organ. High frequency artifacts such as streaks, 
increased noise, and blurred boundary due to heavy post-
processing all can impair the success of organ segmentation. 
To measure the strength of the contrast change at the boundary, 
we propose a new metric, normalized edge strength (NES) 
which adds normalization to prior metrics [14]. We manually 
extract the ground truth boundary from the liver in the 
reconstruction image of xCAT phantom using VV 4D slicer 
[15]. This boundary is represented by a piecewise linear 
polygonal curve and shown in blue in Figure 1(b). We extract 
the intensity profile along this curve from the image and denote 
the intensity profile along the boundary curve as c(t) were t 
parameterizes arc length along c, i.e. boundary curve. A clearly 
defined edge will have a high intensity gradient perpendicular 
to the boundary and a low gradient parallel to the boundary. To 
measure the perpendicular gradient, we evenly distribute 7mm 
line segments straddling the boundary, illustrated with green 
line segments in Figure 1(b). We extract the intensity profiles 
along those line segments and denote them as s(r) where r 
parameterizes arc length along s, i.e. line segment. Finally, we 
define the normalized edge strength (NES) of a boundary as:  

    
          ({   |

   ( )

  
|}
   

 

  )

         ({|
  ( )

  
|}  )

 (2) 

For robustness to outliers, instead of taking average of 
gradients, we trimmed the highest and the lowest 2.5% values. 
For a vector input v, the trimmean(v,5) function computes the 
mean of elements in v, excluding the highest and lowest 2.5% 
values. 

III. RESULTS AND ANALYSIS

The reconstructed images at iso-plane for each DOE are 
shown in Figure 2. Qualitatively we observe that as mA and 
number of views drop, images rapidly lose soft tissue contrast 
and the boundary of liver becomes invisible, shown in Figure 
2(6), (7) and (8). Images with combination of various 
denoising techniques result in noisy but more visible organ 

Figure 1:  (a) liver region with 2cm by 2cm rectangular ROI 

in yellow for noise measurement (b) interpolated ground 

truth contour to measure NES (magnified view)
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boundaries, shown in Figure 2(10), (13) and (14). Especially, 
the image processed with the combination of 9-pixel detector 
rebinning, smooth reconstruction kernel and fast iterative 
reconstruction, shown in Figure 2(14), presents with well-
defined liver boundary while delivering only fraction of dose, 
1.25%, from the baseline (DOE2, Figure 2(2)). By allowing 
twice the x-ray exposure time per view, electronic noise was 
suppressed, as shown in Figure 2(15), (16) and (17). To 
deliver similar dose while allowing longer exposure, the 
number of views was aggressively reduced to 62, only 6.2% 
of 1000 views in the baseline case. However, we observe that 

images reconstructed without dedicated sparse view 
reconstruction algorithm have very high noise and invisible 
organ boundaries, shown in Figure 2(17). 

To objectively and quantitatively compare the performance of 
various simulated 3D scout acquisitions, we plot both image 
quality metrics and % dose for every DOE shown in Table 1. 
Noise performances of various 3D scout acquisitions and post 
processing techniques are shown by the blue line in Figure 3 
while the red line shows corresponding % dose level. DOE1 
was simulated with 2000mA to produce noise-free ground 
truth. DOE2 was simulated with 240mAs with full number of 
views and served as baseline. With combination of three de-
noising approaches, the interior noise metric successfully 
reached the level of the baseline, DOE2, with only 1.25% of 
dose level in DOE2.  Similarly, the performance of 
normalized edge strength (NES) of various 3D scout 

Figure 2: 3D scout with various acquisitions and post-

processing techniques are shown. See Table 1 for details.    

Figure 3:  interior noise metric and % dose from 240mAs 

baseline scan are shown in red and blue lines respectively. 

Each detector rebinning is labeled as 2x2 and 3x3. Smooth 

reconstruction kernel is labeled “soft”. Fast iterative 

reconstruction is labeled “Iter”. 

Figure 4:  Normalized edge strength (NES) and % dose 

from 240mAs baseline scan are shown in red and blue 

respectively. Each detector rebinning is labeled as 2x2 and 

3x3. Smooth reconstruction kernel is labeled as soft. Fast 

iterative reconstruction is labeled as Iter. 
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acquisitions and post processing techniques are shown by the 
blue line in Figure 4 while the red line indicates corresponding 
% dose level. We observe that normalized edge strength 
(NES) increases greatly for 2 by 2 and 3 by 3 detector 
rebinning technique, DOE9 and DOE10, while the dose 
percentage is as low as 1.25%.  On the other hand, smooth 
reconstruction kernel and fast iterative reconstruction 
emulation don’t improve normalized edge strength (NES) as 
much as detector rebinning. The combination of detector 
rebinning, smooth reconstruction kernel and fast iterative 
reconstruction techniques (DOE14) improves the normalized 
edge strength (NES) ever further, reaching nearly the level of 
full dose acquisition (DOE2). 

IV. CONCLUSION

We investigated the feasibility of 3D volumetric 
preparatory scan, i.e. 3D scout, with ultra-low dose that is 
comparable to the dose of a conventional 2D scout while 
providing sufficient image quality, especially edge strength 
and uniformity, to make soft tissue organ boundaries 
prominent to facilitate segmentation and subsequent scan 
planning purposes. We proposed to reduce dose by reducing 
mA and the number of views while maintaining x-ray 
exposure time per view.  We also proposed additional 
reconstruction and post-processing approaches to further 
improve image quality. We defined two image quality metrics 
to measure the edge strength at the boundary and noise 
uniformity inside of organs. We demonstrated that 3D scout 
can achieve equivalent image quality as a regular 240mAs 
diagnostic scan while delivering only 1.25% of dose. This 
work presents an approach that allows investigating the 
feasibility of 3D scout independent of the organ segmentation 
algorithm. In future, we plan to investigate the feasibility of 
3D scout with further reduced streaking artifacts, to improve 
image quality visually and to further evaluate with learning-
based organ localization algorithm that we are developing [2-
3]. 
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Task-based comparison of linear forward projection
models in iterative CT reconstruction

K. Schmitt, H. Schöndube, K. Stierstorfer, J. Hornegger, F. Noo

Abstract—Iterative reconstruction methods are currently un-
der extensive investigation for x-ray computed tomography. A
major step in the design of iterative reconstruction algorithms is
the choice of the forward projection model, particularly because
the decision being made at this level affects both bias and
noise properties of the reconstruction, in addition to choices
made later in the algorithm design. In this work, we compare
three important forward projection models that rely on linear
interpolation: Joseph’s method, the distance-driven method, and
the bilinear interpolation method. The comparison focuses on
task-based assessment, using a signal-known-exactly/background-
known-exactly binary classification task under various geomet-
rical settings. The study is applied to two-dimensional fan-beam
x-ray CT reconstructions with several noise realizations.

I. INTRODUCTION

Currently, significant effort is spent on the development of
statistical iterative reconstruction algorithms for CT imaging,
particularly for the aim of enabling CT exams with a lower
dose. This effort needs to be accompanied with a careful
assessment of image quality, because both bias and noise
properties of the CT reconstruction can change dramatically
according to the choices being made in the selection of
the algorithm and the associated parameters. To achieve an
objective comparison of image reconstruction algorithms in
CT, a task-based metric should be considered [1].

A comparative evaluation of Joseph’s method, the distance-
driven method and the bilinear interpolation method was
presented in 2013 in [2]. In that work, basic metrics measuring
bias and noise properties were used to quantify image quality,
and no significant differences were found between these three
linear interpolation models. Here, this study is refined in two
aspects: i) new geometries that challenge further each forward
projection model are introduced, ii) task-based assessment is
used to evaluate the image quality.

II. BACKGROUND

Joseph’s method [3] and the distance-driven method [4]
follow the same idea. This idea is to evaluate each line integral
with a simple sum in x or y together with a linear interpolation
between grid points in y or x, respectively. In Joseph’s method
the direction of summation is chosen according to the direction
of the line: if the line is mostly parallel to the x axis,

K. Schmitt, H. Schöndube and K. Stierstorfer are with Siemens AG, Health-
care Sector. J. Hornegger is with the Pattern Recognition Lab, University of
Erlangen-Nürnberg, Erlangen, Germany. F. Noo is with the Department of
Radiology, University of Utah, Salt Lake City, Utah, USA.

The concepts presented in this paper are based on research and are not
commercially available. This work was partially supported by NIH grant R01
EB007236; its content is solely the responsibility of the authors and do not
necesarily represent the official views of the NIH.

the summation is in x, otherwise it is in y. In the fan-
beam geometry, this definition implies that the direction of
summation may change from one line to another, across views
as well as within views. In the distance-driven approach, the
direction of summation is fixed for all lines within a fan-
beam view, i.e., the position of the x-ray source defines the
summation direction for all rays within the view. Moreover, the
distance-driven approach takes the detector width into account,
whereas Joseph’s method does not. This last aspect implies
that, in the distance-driven method, more image pixels may
be used for some rays.

The concept behind the bilinear method is to use bilinear
interpolation to estimate the value of the linear attenuation
coefficient at all points along the line defining the x-ray
measurement, and then integrate (sum) these values together
[5]. This concept can be efficiently implemented using a basis
function description involving B-splines of order 1. Since
the basis function approach yields a continuous model for
the image, the definition of line integrals modeling the CT
measurements is straightforward, as explained in Horbelt [6].
In particular, a different treatment according to the direction
of the line is not needed.

III. EVALUATION METHODOLOGY

A. Iterative reconstruction technique

Let c be the vector of unknown image values, let g be
the vector grouping the CT measurements, and let A be the
matrix that links c to the CT measurements. Reconstruction
was performed using Landweber iterations, which are given
by the following equation:

c(n+1) = c(n) + β ·AT
(
g −Ac(n)

)
. (1)

In this equation, β is a convergence controlling factor that was
chosen as 0.90 times 2/σmax where σmax is the maximum
singular value of the matrix A. The initial image vector, c(0),
was always chosen as the zero vector. Conceptually, the above
iterative step can be interpreted as a steepest gradient descent
method to find the minimum-norm minimizer of

J(c) = ‖Ac− g‖2 , (2)

which amounts to modelling the CT measurements as Gaus-
sian deviates with equal variance.

Note that the minimum-norm minimizer of J(c) was never
reached in our evaluations as reconstruction was always
stopped after a fixed number of iterations. When this number
increases, resolution typically improves at the cost of noise
and discretization errors, which progressively increase. This
trade-off was used as a regularization means. All results are
reported as an indirect function of the number of iterations,
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full-scan

FFS off

short-scan

G1-MPS

high magnification

full-scan short-scan

moderate pixel size

small pixel size

G1-SPSG1-SPS

FFS on

G2-MPS

G1-SPSG2-SPS

FFS off

G3-MPS

G1-SPSG3-SPS

FFS on

G4-MPS
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FFS off
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G1-SPSG6-SPS

FFS off

G7-MPS

G1-SPSG7-SPS

FFS on

G8-MPS

G1-SPSG8-SPS

Fig. 1: Labeling of the 16 geometrical settings.

using a figure-of-merit related to resolution. The results were
obtained by storing every fifth iteration, starting with the result
from the first iteration, and stopping after 1000 iterations.

B. Geometrical settings

Our comparison study includes 16 different realistic ge-
ometries. We differentiate between moderate pixel size (MPS)
and small pixel size (SPS), low and high magnification, full-
scan and short-scan, flying focal spot (FFS) off and FFS
on. These aspects allow us to probe various features of the
forward projection models. For example, pixel size is an
important factor for both Joseph’s and the bilinear method,
since, in some views, some pixels may not contribute to any
ray when the pixel size is too small. On another hand, high
magnification may impact the distance-driven method more
since the summation direction does not change within a view
for this method. Also, the data redundancies that are present
within a full-scan may allow artifact/noise cancellations that
are not feasible with a short-scan. Note that the results in [2]
only used two geometries: the moderate pixel size with low
and high magnification.

The same label concept is used for the moderate and the
small pixel size, as shown in figure 1. Thus, each geometrical
setting is associated with a number and an abbreviation denot-
ing the pixel size. For instance, G1-MPS denotes geometrical
setting 1 with moderate pixel size, where geometrical setting
G1 is defined using low magnification, full-scan mode and no
flying focal spot.

All image and data acquisition parameters are summarized
in table I. Square pixels were used in each geometrical setting.
The pixel grid was always centered on the origin, and the
computations were only carried out over the pixels that were
within 13 cm from the origin. For both magnifications, the
parameters were chosen so as to achieve the same resolution
at field-of-view (FOV) center. For the short scan, the rotation
of the source was over 240 degrees, starting from the x-axis.

C. Data simulation

Simulations were performed in fan-beam geometry (3rd

generation CT curved detector) using the FORBILD head
phantom. The simulation model included a sub-sampling of
the x-ray tube focal spot, of each detector element, and of
each source position. These settings allowed us to model
the shift-variant effect of the x-ray tube anode angle, β, on
resolution; to model the blurring that results from continuous
x-ray emission; and to model the blurring that results from
the finite size of the focal spot and detector elements. In total,

pixel size
moderate (MPS) small (SPS)
∆ = 0.75 mm ∆ = 0.375 mm
Nx = 351 Nx = 701
Ny = 351 Ny = 701

magnification
low high

R0 = 57 cm R0 = 36 cm
Nu = 380 Nu = 380
∆u = 0.75 mm ∆u = 0.75 mm

FFS
off on

uoff = ∆u/4 uoff = ∆u/8

sc
an

m
od

e

fu
ll Nλ = 1200 Nλ = 2400

Nin = 60,000 Nin = 30,000

sh
or

t

Nλ = 800 Nλ = 1600
Nin = 90,000 Nin = 45,000

TABLE I: Fanbeam scanning parameters: ∆ is the size of the pixels, Nx
and Ny are the number of pixels in x and y, R0 is the radius of the source
trajectory, Nu is the number of detector pixels, ∆u is the detector pixel size
at FOV center, Nλ is the number of projections, uoff is the detector pixel
offset, Nin is the number of photons emitted along each ray.

each CT measurement was simulated as an average of 405 line
integrals. The computation of each line integral was based on
analytical expressions, and the average was performed before
applying the logarithm. The x-ray tube focal spot size was
0.12 cm× 0.09 cm, and the anode angle was β = 7◦.

All evaluations with noise involved 50 noise realizations for
each geometrical setting. Poisson noise was used with a fixed
number of incoming photons, Nin, for each ray. This number
changed from one geometry to the next to ensure that the total
exposure was always the same. The different values that were
used for Nin are listed in Tab. I. Note that no compensating
bowtie and no tube current modulation were included in the
noise simulation.

D. Resolution measurement

The modulation transfer function (MTF) was used to eval-
uate resolution. This function was obtained using a phantom
that consists only of the central low contrast ellipse within
the FORBILD head phantom. For any reconstruction of this
phantom, an edge profile that gives the reconstructed value
as a function of the distance from the ellipse was computed.
Then, the MTF was obtained as the Fourier transform of the
differentiated edge profile. Since the selected reconstruction
method is linear, this approach is suitable to evaluate the
resolution achieved within the neighborhood of the large
low-contrast ellipse in reconstructions of the FORBILD head
phantom. Given that the resolution varies from one forward
projection model to the other and also changes at a different
pace with the number of iterations for each model, we present
all figures-of-merit as a function of ν0.5, the frequency at
which the MTF value is down by 50%.

IV. IDEAL OBSERVER STUDY

Image quality was evaluated using the ideal observer
applied to a signal-known-exactly/background-known-exactly
(SKE/BKE) binary classification task. Class 1 contains all
images where the signal is normal, and class 2 contains all
images where the signal corresponds to a disease. The area
under the receiver-operating-characteristic (ROC) curve, called
AUC, was used as the measure of performance.
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A. Theory

The noise in the fan-beam data was assumed to be Gaussian
distributed, and the signal was chosen so that it has negligible
effect on the data statistics. Under these assumptions, both
image classes are characterized by the same covariance matrix,
Σ, and AUC = Φ(SNR/

√
2) where SNR is the signal-to-

noise ratio of the observer and Φ is the cumulative distribution
function for the standard normal distribution. By definition,

SNR =
√

∆µTΣ−1∆µ , (3)

where ∆µ = µ2 − µ1 is the difference between the mean
image under class 2 (µ2) and the mean image under class 1
(µ1).

When only a finite number of images are available, statis-
tical variability can be an issue. To maximize the statistical
power of the study, the known-means approach described
in [7], [8] was employed. Briefly, AUC was estimated as
Φ(ŜNR/

√
2) with

ŜNR = γ
√

∆µTS−1∆µ and γ =

√
2π
m+n

B
(
m+n−p

2 , 12
) (4)

where p is the number of pixels centered on the signal location,
m and n are the number of measurements for class 1 and
class 2, respectively, B is the Euler Beta function, and S is
the pooled sample covariance matrix. The values chosen for
m, n and p are discussed later, in section IV.C.

Using the results in [7], the standard deviation for our AUC
point estimator can be approximated by

σ = Φ′(ŜNR/
√

2) · τ · ŜNR with τ =

√
η

l − 1
− 1

2
(5)

where Φ′ is the derivative of Φ, l = m + n − p, and η =
(l + p)γ2/2.

B. task-selection

A discrimination task that is representative of a medical
task was sought. The class 1 signal was defined as a circle of
radius rc and center point C. The class 2 signal was created
from the class 1 signal as follows. First, the class 1 signal
was truncated using four clipping lines at a distance of ±dc
of C in the vertical and horizontal directions, as shown in
figure 2. The remaining part of the signal looks like a square
with blunt edges. Four circles of radius rl at distance ±dl
from C were superimposed on this square to yield the class
2 signal. In each class, the difference between the signal and
the background was 10HU and the lesion was centered in the
central low contrast ellipse of the FORBILD head phantom.
The medical analogy to our two classes is the classification
between lesions with a fuzzy or sharp boundary, as fuzziness
is often a marker for malignancy.

Various expressions of the class 2 signal were obtained by
varying dl and rc while using a fixed value for rc and dc.
The involved values were dl = 0.30, 0.34, . . . , 0.50cm, rl =
0.25, 0.27, . . . , 0.37cm, rc = 0.65cm and dc = 0.55cm.

To find a preferred setting for the class 2 signal, 10, 000
noisy filtered backprojection (FBP) reconstructions were per-
formed at three resolution levels in geometry G1-MPS. Then,

r
c r c

rl

dl

dc

C C

class 1 class 2

C

Fig. 2: (left) Class 1 is a circle with radius rc. (middle) This draft shows
how the (right) lesion object of class 2 was obtained.

rl [cm]
0.25 0.27 0.29 0.31 0.33 0.35 0.37

d
l

[c
m

]

0.30 0.792 0.777 0.748 0.706 0.653 0.594 0.560
0.34 0.751 0.712 0.663 0.609 0.572 0.601 0.667
0.38 0.675 0.625 0.586 0.599 0.655 0.720 0.782
0.42 0.604 0.602 0.645 0.704 0.764 0.818 0.863
0.46 0.639 0.690 0.746 0.799 0.845 0.882 –
0.50 0.728 0.779 0.825 0.863 – – –

TABLE II: AUC values obtained using 10,000 FBP noise reconstruction
with no apportization.

the AUC value corresponding to the various expressions of
the class 2 signal were computed. For this computation, a
choice had to be made on the number of pixels involved in
the definition of µ1 and µ2. We decided to use all pixels that
were at a distance 8.25 mm or less from C. The results of
this preliminary experiment are shown in table II for a re-
construction with no apodization. Only small differences were
observed when changing the resolution of the reconstruction.

Based on the results in table II, the signal corresponding to
dl = 0.34 cm, rl = 0.27 cm and AUC = 0.712 was selected
for class 2. Also, we decided to carry out all further evaluations
of AUC based on this signal with the pixels that are at distance
8.25 mm or less from C. This last decision yield p = 373 in
the MPS setting and p = 1513 is the SPS setting.

C. Controlling statistical variability

A well-known statistical difficulty associated with the uti-
lization of the ideal observer is the large number of measure-
ments required for classes 1 and 2 altogether. Basically, m+n
needs to be larger than p, which is particularly challenging
given the above values of p. To overcome this problem while
using only 50 noise realizations for each geometry (which
already entail significant computer resources), the following
approach was adopted. Instead of considering that each noise
realization provides only one sample for the computation of
S, we considered that each noise realization provides 49
samples. Thus, the total number of samples involved in our
computation of AUC was 2450. To obtain the 49 samples, the
noise properties were assumed to be slowly varying around the
signal location. More specifically, one sample was obtained
using the p pixels centered on C, as expected, and the other
48 samples were obtained using p pixels centered on shifted
locations. These locations were on a 7×7 grid centered on C
with a pitch of 18 mm.

To validate the above concept, the AUC value obtained by
using 10, 000 FBP reconstructions was computed by using
either 1 or 49 samples per noise realization. The result was
an AUC value of 0.7251 for the approach with 49 samples,
and a value of 0.7122 for the other case. This result provided
enough confidence for utilization of the approximation.
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At the same time, to determine how reliable formula 5
would remain to evaluate statistical variability, the 10, 000 FBP
reconstruction were split into 200 sets of 50 noise realizations,
yielding each one AUC value. The standard deviation over
these 200 values was computed and compared to the mean
value obtained from 5. The result was a sigma value of
0.00295 in the first case versus 0.00310 in the second case,
demonstrating excellent agreement.

Note that the tests described above were performed in
setting G1-MPS with no apodization on the ramp filter. No
significant differences were expected for different settings and
resolution level.

D. Results

The results are shown in two formats that allow assessing
dependence on resolution as well as on geometry for each
pixel size. The first format displays the mean AUC value over
the geometries as a function of ν0.5 for any given pixel size.
This format was straightforwardly applied for the MPS setting.
On the other hand, some adjustment were needed in the SPS
setting, because a saturation in resolution was observed for
geometries 3 and 4 in this setting. The adjustment amounted
to apply the mean over the eight geometries only for ν0.5 ∈
[1.58, 5.43] lp/cm, and to use the mean over the remaining
geometries for ν0.5 ∈ (5.43, 6.79] lp/cm.

The second format displays the AUC value after averaging
over the frequency range. This average value is reported in a
bar plot for each pixel size, as a function of the geometrical
settings. In the MPS case, the average was taken over ν0.5 ∈
[1.58, 6.29] lp/cm. In the SPS case, the average was over ν0.5 ∈
[1.58, 5.43] lp/cm.

Figure 3 shows the results obtained in the MPS case. As
can be seen, there is practically no difference in performance
between the three forward projection models. The standard
error associated with these plots was as follows. In the first
format, the standard deviation value for each point on the
curves was about 0.0011 for each forward projection model.
In the second format, the standard deviation on each bar was
about 0.0031. These numbers convey high statistical accuracy,
and also convey that the small differences observed in each
format are not statistically significant.

Figure 4 shows the results obtained in the SPS case. As can
be seen, there is again practically no difference in performance
between the three forward projection models. The standard
error associated with these plots was as follows. In the first
format, the standard deviation value for each point on the
curves was about 0.0016 for each forward projection model.
In the second format, the standard deviation on each bar was
about 0.0046. As in the MPS case, These numbers convey high
statistical accuracy, and also convey that the small differences
observed in each format are not statistically significant.

V. DISCUSSION AND CONCLUSION

We have presented the results of a task-based compari-
son of three classical linear forward projection models. The
comparison was extensive in terms of geometrical settings,
including cases that challenge each model. The results show
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Fig. 3: Results for the MPS case. (left) AUC value averaged over geometries as a
function of ν0.5, the frequency at which the MTF reaches 50% of its peak value.
(right) AUC value averaged over ν0.5 for each geometrical setting.
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Fig. 4: Results for the SPS case. (left) AUC value averaged over geometries as
a function of ν0.5; the average only includes all geometries for ν0.5 < 5.43; for
ν0.5 < 5.43, geometries 3 and 4 could not be included. (right) AUC value averaged
over ν0.5 for each geometrical setting.

that the choice of the model had very little influence on
performance for the task, even though important differences
could be noted visually, in terms of pixel noise variance and
correlation among pixels (not shown in this abstract). Overall,
these difference seem to balance out, so that there is no net
effect on task performance. In the future, we will investigate
if such observation can also be made when using human
observers and also when using more challenging tasks.
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Abstract—Angiographic C-arm systems are capable of 
performing computed tomography (CT) imaging for assisting 
in therapy planning, performance and assessment. Due to the 
long acquisition time, C-arm CT of dynamic structures is 
challenging. Cardiac motion has to be estimated and 
compensated in the reconstruction step. The quality of the 
motion estimation algorithm mainly dictates the resulting 
image quality.  A common strategy to reduce the requirement 
of motion estimation is to exclude problematic heart phases by 
ECG-gating. A small ECG window improves the temporal 
resolution, but the usage of fewer data leads to undersampling 
artifacts. In contrast, larger ECG windows yield better image 
quality at the account of stronger cardiac motion artifacts. The 
bootstrapping approach presented here allows increasing the 
size of the ECG window in an iterative manner. The technique 
was evaluated on a clinical data set of 58 cases. Image quality 
was assessed by a human observer. Vessel sharpness and 
diameter were determined by a semi-automatic evaluation tool. 
The vessel diameter in 3-D was compared to a gold standard 
measurement in the 2-D projection images. Good image quality 
was achieved. The diameter of the arteries was determined 
reliably. The evaluation study clearly shows the benefit of using 
more projection data for dynamic image reconstruction. 
Besides avoiding undersampling artifacts a sharper 
reconstruction filter kernel can be applied. There is no clear 
choice in using either an 80% or 100% width of the ECG 
gating window. While using (almost) all acquired projection 
data, the technique appears efficient in dose and contrast 
agent. 

Keywords—C-arm computed tomography, cardiac imaging, 
motion compensation, image reconstruction, clinical evaluation 

I.  INTRODUCTION 

Angiographic C-arm systems are capable of performing 
computed tomography (CT) imaging. 3-D imaging in the 
catheter laboratory assists in therapy planning, performance 
and assessment. However, due to the long acquisition time 
of several seconds, CT imaging of dynamic structures like 
coronary arteries is a challenging task. In recent years 
various approaches were developed that account for cardiac 
motion in the reconstruction step [1], [2], [3], [4] by first 
estimating the coronary motion from the acquired data and 
then compensating it in the image reconstruction algorithm. 

 
Fig. 1. Overview of the motion estimation and compensation 
reconstruction framework. 

The quality of the motion estimation algorithm is a key 
factor for the resulting image quality. Any type of error is 
strongly propagated into the quality of the motion 
compensated reconstructed image. Especially data from 
heart phases with strong motion, e.g. systole might degrade 
reconstruction results significantly. Therefore a common 
technique is to use that prior knowledge and to exclude the 
strong motion phases by ECG-gating of the input data. 
However, there is a trade-off in ECG-gating. A small ECG 
window improves temporal resolution but the utilization of 
few data leads to undersampling artifacts. A large ECG 
window yields better image quality but strong cardiac 
motion yields errors in estimation and compensation. 

The approach [4] presented here allows for flexibility in 
ECG gating. In particular, it allows increasing the size of the 
ECG window by an iterative bootstrapping [5]. Finally, all 
acquired data might be used for the final image 
reconstruction step. So far, no investigations about the 
optimal size of the ECG window have been performed. This 
paper reports on an empirical study on 58 human, clinical 
data sets. Different algorithmic parameters are investigated 
on that ensemble. 

II. MOTION COMPENSATED IMAGE RECONSTRUCTION 

A. Brief description of the algorithm 
A detailed description can be found in [3][4]. A short 

summary is given here. Fig. 1 shows an overview of the 
components. (Step 1): An initial ECG-gated reconstruction 
is performed. (Step 2): Non-vascular tissue is removed by a 
thresholding operation. The vascular structure is forward 
projected using a maximum intensity forward projection. 
(Step 3): The original projection images are pre-processed 
using a morphological top-hat operation and a thresholding, 
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so that non-vascular tissue is removed. (Step 4): The pre-
processed original projections and the forward projections 
are registered using affine and deformable 2-D–2-D 
registration in a multi-resolution scheme. (Step 5): A 
motion-compensated, ECG-gated reconstruction is 
performed using the deformation field from the registration 
step. (Step 6): The procedure is repeated either for further 
refinement or for increasing the number of acquisition data 
used for image reconstruction. 

B. Iterative bootstrapping approach for ECG windowing 
The iterative loop of step 6 is used for enlarging the 

width of the ECG window and therefore improving image 
quality. ECG gating is defined by the center at heart phase 
hr and the width ω of the gating window. hr and ω are 
expressed as a fraction of the heart cycle in the range of 0 
and 1.  

Three iteration cycles are performed. Cycle 1 is started 
with an initial image using an ECG gating window of width 
ω=0.4. This cycle determines a first approximation of the 
motion field since the motion artifacts of the initial image 
degrade motion estimation. Cycle 2 refines motion 
estimation using the motion-compensated image of cycle 1. 
Cycle 3 allows increasing the ECG gating window width. 
Two variants are investigated using ω=0.8 and ω=1.0. 

III. CLINICAL EVALUATION 

A. Patient population 
This study investigates 58 human cases. The coronaries 

were contrasted selectively. Rotational angiograms were 
acquired of 39 left coronary arteries (LCA) and 19 right 
coronary arteries (RCA). Heart rate and variability are 
critical parameters: The length of the heart’s rest-phase 
with minimal motion is reduced by increasing heart rate. 
ECG-gating relies on a periodic motion during different 
cardiac cycles. A variability of the heart rate is likely to 
degrade the temporal resolution. The median heart rate 
during acquisition was 71bpm. 18, 18, and 22 cases showed 
low (<60bpm), medium (between 60bpm and 75bpm), and 
high (>75bpm) heart rate. The median heart rate variability 
was 1.3bpm with 50 cases smaller 5bpm and 8 cases above. 

B. Image acquisition and reconstruction parameters 
Images were acquired on an Artis zeego system 

(Siemens AG, Healthcare Sector, Forchheim, Germany) 
using a large flat panel detector of size 40cm×30cm. An 
acquisition rotation lasts 5s at a frame rate of 30fps 
achieving 133 projection images in total. Detector 
resolution is 308µm pixel length in each direction. 
Acquisitions were performed under strict breath-hold. 
Normal sinus heart rhythm occurred without any regulation 
drugs. Contrast agent was injected directly into the 
coronaries at a flow rate of 1-2ml/s, achieving a total 
contrast burden below 10ml. 

All reconstructed volume images show an isotropic voxel 
length of 500µm. The ECG gating window center was set 
to end systolic and end diastolic heart phases in 7 and 51 
cases. The median of hr was 75%. Four reconstructed 
volume images will be compared. (Initial): Initial image 
with ECG window width ω=0.4 reconstructed from 45-56 
projection  images   using a   smooth   filter  kernel.   (RMC 

  

  
Fig. 2. Volume rendered image of a left coronary artery. Top left: Initial 
image. Top right: RMC 40%. Bottom left: RMC 80%. Bottom right: RMC 
100%. 

40%): Motion-compensated reconstruction after iteration 2 
with ω=0.4 and using a smooth filter kernel. (RMC 80%): 
Motion-compensated reconstruction after iteration 3 with 
ω=0.8 and using a normal filter kernel. (RMC 100%): 
Motion-compensated reconstruction after iteration 3 with 
ω=1.0 and using a normal filter kernel. 

C. Visual image inspection 
Image quality was assessed visually by a human 

observer. The coronary tree was divided into segments 
according to Ref. [6]. Each segment was scored using 
grades from 0 (not visible), 1 (substantial artifact), 2 
(moderate), to 3 (perfect). 

D. Quantitative evaluation tool CoroEval 
The semi-automatic evaluation tool CoroEval computes 

vessel sharpness and diameter from volume images of 
magnetic resonance or C-arm CT [7]. CoroEval requires a 
centerline segmentation which can be performed either 
manually using CoroEval or by an external tool. The 
centerline is smoothed and sampled regularly at an interval 
of 1.0mm. At each sample point ten radial profile lines are 
extracted, smoothed and examined. Nine points of interest 
are detected at each profile line: The maxima at the vessel 
center, the left and the right minima beyond the border of 
the vessel, and for each side the point of 20%, 50%, 80% of 
the difference between maximum and minimum. 

1) Vessel sharpness. Let dl and dr be the distances of 
the 20% and 80% points on the left and right side of the 
maximum, respectively. The vessel sharpness s on a profile 
line is defined as ( )rl dds += 2 . The vessel sharpness at a 

centerline sample point is just the average of the sharpness 
measures of all profile lines. 

2) Vessel diameter. The elliptical shape of a vessel 
cross-section is taken into consideration. An ellipse is fit to 
the 50% points of each profile  line  after  outlier  detection. 
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Fig. 3. Image quality score for all vessel sections examined by a human 
observer. The average over all vessel segments is computed. 

The diameter of the cross-section is just the radius of a 
circle which has the same area as the constructed ellipse. 

E. Ground truth of vessel size 
As a ground truth the vessel diameter was measured in 

the 2-D projection data by the validated Quantitative 
Coronary Analysis (QCA) tool of the syngo Workplace – 
Angio/Quant package (Siemens AG, Healthcare Sector, 
Forchheim, Germany). The QCA tool segments the 
coronary artery automatically after manual detection of the 
start and end point of the section. Length measurements are 
calibrated by the known diameter of the contrasting 
catheter. 

F. Statistical analysis 
The statistical distribution of the evaluation results is 

shown in boxplots. The box contains the middle 50% of all 
values (interquartile range IQR). Within the box, the 
median is shown by a thick line, the mean by a star. The 
whiskers extend to the last data value within 1.5·IQR of the 
box. More extreme values are shown as circles. 

Statistical significance of the difference of the means of 
two distributions was tested with t-tests. Since all four 
reconstructions for a specific dataset were generated from 
the same projection data, paired t-tests with Bonferroni 
correction [8] for multiple testing were used. The 
significance of all results shown in the following is 
p<0.001. 

IV. RESULTS 

A. Visual image inspection 
As an example Fig. 2 shows volume rendered images of 

a left coronary artery using all four methods to be 
compared. Increasing the ECG gating window width from 
ω=0.4 (RMC 40%) to ω=0.8 (RMC 80%) clearly improves 
image quality. The comparison of ω=0.8 (RMC 80%) and 
ω=1.0 (RMC 100%) is ambivalent. Using all projection 
data at RMC 100% removes background noise, but some 
final parts of distal vessels vanish at the same time. 

Fig. 3 displays the image quality score of a human 
observer. The shown score is computed as the average of 
the scores given for each vessel segment. Reconstructing 
from all projection data (ω=1.0) achieved the best image 
impression. Fig. 4 shows the same score evaluated for 
vessel sections of large diameter  only.  The  quality  scores 

 
Fig. 4. Image quality score of large vessel sections examined by a human 
observer. The average over all vessel segments is computed. 

improve for all images reconstructed using motion 
compensation. 

B. Quantitative evaluation 
1) Success rate. Quantitative analysis is performed only 

for cases with a successful vessel segmentation for all 
reconstructed volumes. 31 of 39 LCA and 15 of 19 RCA 
cases are assessed, 12 are rejected. In six of them the 
segmentation failed for the initial image only. In the other 
six cases no reconstructed image could be segmented. In 
five cases this is due to acquisition errors such that not 
sufficient contrast agent is admitted into the coronary 
arteries. In one case the failing reason is not known. 

2) Vessel sharpness. According to Fig. 5 motion-
compensated reconstruction using an ECG-gating window 
width of ω=0.8 yields the sharpest vessel edges. Regarding 
this property ω=0.8 seems to be optimal in the trade-off 
between temporal resolution and sufficient input data. 

3) Vessel diameter. For ground truth values, a QCA 
measurement has to be performed in 2-D projection images. 
In 24 and 15 of LCA and RCA cases appropriate data sets 
were found displaying the desired vessel in good quality 
and contrast. The main branch of the vessel is selected and 
the average of the diameter deviation on that selection is 
plotted in Fig. 6. Intra-observer variations in using QCA on 
projection images at different angulations are indicated as 
dashed green lines. The standard deviation of repeated 
QCA measurements was 0.14mm. All volume images 
reconstructed using motion-compensation slightly 
underestimate the diameter value, while the initial image 
overestimates it. Most values of the RMC diameters are 
located inside the variance region of the ground truth. 
However, the median of RMC 80% is slightly below the 
variance region. 

V. DISCUSSION 

The gain of using more projection data for motion-
compensated image reconstruction is clearly seen. On the 
other side there is no clear answer which width of the ECG 
gating window might be optimal. The investigated quality 
properties either prefer ω=0.8 or ω=1.0. 

The image quality score of the human observer in Fig. 3 
seems to be disappointing since the largest median value is 
still below 2 (moderate image  quality).  However,  we have 
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Fig. 5. Vessel sharpness as an average over all sampling points of the 
centerline. 

to keep in mind that all cases are considered in that study 
even those deficient acquisitions having not sufficient 
contrast agent into the vessels. Further, distal vessels are 
included in the quality score as well. Motion estimation of 
distal vessels is quite complex since larger structures 
dominate the cost function. Distal vessels are not relevant 
for most clinical applications since e.g. percutaneous 
coronary interventions (PCI) solely focus on dilating 
stenosis of proximal to mid vessel sections, which feed a 
large portion of the myocardial mass. The image quality 
scores from vessels having larger diameter values 
significantly improve. 

The diameter of the vessels is measured reliably. The 
observed deviations might be explained by measurement 
errors. There is also a variance in the ground truth values. 
The diameter of elliptical vessels alters with the viewing 
angle in 2-D. 

VI. CONCLUSION 

The proposed reconstruction technique using motion 
estimation and compensation was evaluated on a clinical 
data set of 58 cases. Good image quality was achieved. The 
diameter of the coronary arteries was determined reliably in 
consideration of the variance in the ground truth. 

The evaluation study clearly shows the benefit of using 
more projection data for image reconstruction. 
Undersampling artifacts can be reduced and a sharper 
reconstruction filter kernel can be applied improving spatial 
resolution. On the other hand temporal resolution is 
reduced when increasing the width of the ECG-gating 
window. Most of the object motion can be estimated and 
compensated. However, some remains. There is no clear 
choice in using either an 80% or 100% width of the ECG-
gating window, yet. 

The presented method allows dynamic imaging of 
coronary arteries in the catheter laboratory using an 
angiographic C-arm system. While using (almost) all 
acquired projection data the technique appears efficient in 
dose and contrast agent. 
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Abstract—Advanced optimization-based algorithms have
been demonstrated to be capable of yielding cone-beam
CT (CBCT) images of improved quality than conventional,
analytic-based algorithms under a number of clinically relevant
imaging conditions. It has been recognized that appropri-
ate selection of parameters for optimization-based algorithms
is crucial when the algorithm is tailored to reconstructing
images of optimal utility in the specified imaging tasks. In
this work, we investigate the strategy for determination of
a key parameter for an optimization-based algorithm in the
contexts of three imaging tasks relevant to clinical image-
guided radiation therapy (IGRT). We acquired CBCT data
of a calibration phantom with a clinical imaging configuration,
and performed image reconstruction by using the adaptive-
steepest-descent-POCS (ASD-POCS) algorithm with a range
of the parameters. Technical-efficacy metrics were designed
and computed for quantitatively characterizing the impact of
the algorithm parameter on the image utility for the specified
tasks, from which the optimal selection of the parameter was
determined. The parameter-determination strategy developed
in this study can be applied for achieving a fully exploration
of image-quality potential for current CBCT systems under
clinical imaging conditions.

I. INTRODUCTION

Cone-beam CT (CBCT) has seen remarkable growth over
the past decade in a wide range of clinical applications,
such as image-guided radiation therapy (IGRT). Current
CBCT systems employ the FDK algorithm for image re-
construction, which poses limitations to fully exploration of
image quality. Meanwhile, the FDK algorithm also requires
densely-sampled data along the angular direction, which in
general contribute to a relatively high radiation exposure to
the imaged patient.

In recent years, advanced optimization-based algorithms
have been actively developed for application to image re-
construction in CBCT. They have been demonstrated in a
number of imaging conditions to be capable of yielding
high-quality reconstructions and less susceptible to sparse
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angular sampling. Whereas a variety of optimization-based
algorithms have been proposed and investigated, it has
been recognized that the selection of parameters for these
algorithms play a pivotal role in achieving the full potential
of reconstruction quality. Adequate selection of parameters
is dependent upon the specific imaging task. In this work,
based upon one of the optimization-based algorithms, we
conduct a study on determination of one of the key algorithm
parameters that perform optimally for three imaging tasks
that are relevant to clinical IGRT.

II. MATERIALS AND METHODS

A. CBCT data

We scanned a standardized calibration phantom, the Cat-
phan phantom, at three sections for characterizing different
image-quality properties. Schematic illustrations [1] of the
three sections, CTP515, CTP528, and CTP404, are displayed
in Fig. 1. The CBCT system for data acquisition was an on-
board imaging (OBI) system on a Trilogy linear accelerator
(Varian Medical Systems, Palo Alto, CA). The scan was
performed with a clinical imaging configuration, referred
to as “high-quality head”, in which projection data were
collected over a 200-degree range at about 360 views. At
each angular view an X-ray exposure was taken at 100 kVp,
80 mA and 25 ms.

B. Reconstruction-algorithm framework

We denote the measured data by an M -element vector
g, the reconstruction image by an N -element vector f,
and the system matrix by an M × N matrix H. The
reconstruction is formulated as a constrained total-variation
(TV)-minimization program

f∗= argmin||f ||TV s.t. D(f) ≤ ε and fj ≥ 0, (1)

where f is expanded as 512 × 512 × 70 voxels, each cor-
responding to a cuboid volume of 0.488× 0.488× 2.5mm3;
||f ||TV denotes the image total-variation (TV); fj the value
of the j-th voxel of f , j = 1, 2, ...,M ; ε the tolerance
parameter for D, which is the Euclidean data divergence
between model data and actual data, averaged per pixel
[2, 3]:

D(f) = (1/M)
√
(Hf − g)T (Hf − g). (2)
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Figure 1. Schematic illustrations [1] of the three sections of the Catphan
phantom CTP515 (top left), CTP528 (top right), and CTP404 (bottom),
which are used in the study.

We employ the adaptive-steepest-descent-POCS (ASD-
POCS) [2, 3] algorithm to numerically achieve the solution
to the reconstruction program in Eq. (1). As the basic
framework of the algorithm, two operations, a steepest-
descent step for lowering image TV, and a POCS step for
reducing data divergence, are performed in an alternating
manner. Details of the algorithm framework and workflow
can be found elsewhere [2–5].

C. Parameter determination

A number of parameters need to be selected for the ASD-
POCS algorithm when adapted to reconstructing images
from the acquired CBCT data. Among them, the parameter
ε in Eq. (1) is of particular importance to designing the
feasible set of solutions to the reconstruction program. Be-
cause inconsistencies inevitably exist between measured data
and the assumed linear model, ε prescribes an upper bound
of allowable D(f), which establishes a balance between
the enforcement of data constraint and the imposition of
image regularity. In principle, a lower ε pushes for a more
stringent agreement between data and model, which can help
revealing finer image details but can potentially also lead
to amplified noise. On the other hand, a higher ε seeks
to promote image smoothness, which can be effective in
suppressing image noise, at a potential cost of blurring high-
spatial-frequency details. Therefore, a universally “optimal”
choice of ε may not exist. Instead, ε needs to be tailored
to suit the specific imaging task. In this work, we first
obtained the lower bound for ε, Dmin(f), by using the POCS
algorithm, i.e., without imposing any image regularization.
Above this lower bound, a range of ε was selected for
formulating the reconstruction program. Characterization
studies were then conducted for images reconstructed with
each selected ε on their utilities for the specified imaging
task. The range of ε that performs optimally for each imaging

task was then identified from the characterization result,
which can be used as guidance for determining algorithm
parameters in similar imaging tasks.

Additional algorithm parameters, such as the expansion
of image vector f, can also have significant impact on
the reconstruction performance, whereas their determination
is beyond the scope of the work. In the following, we
focus on the determination of ε, and we simply selected
those additional parameters in accordance to common CBCT
imaging protocols in clinical IGRT practice.

III. RESULTS

We summarize in this section results of parameter deter-
mination for each of the three imaging tasks.

A. Task 1: Contrast-resolution study

We first conducted a contrast-resolution study on the
images of the CTP515 section. By applying the ASD-POCS
algorithm, we obtained the solutions to the reconstruction
program in Eq. (1) corresponding to a range of ε. On each
of these solution images, we calculated the contrast-to-noise
ratio (CNR) from the 7mm 1%-contrast insert, and plot it
as a function of ε in Fig. 2. A peak can be observed from
the curve around ε2, indicating that an image of “optimal”
CNR on this insert is achieved. The shape of this CNR
curve can be understood by examining the reconstructed
images. A reconstruction with a lower ε such as ε1 contains
a high level of noise, yielding a lower CNR. When ε
increases to a range near ε2, the contrast is preserved and
noise significantly suppressed. After that, the smoothness
of background continues to improve with larger ε, such
as ε3, albeit at a cost of reduced contrast as the “signal”
now visibly merges to the “background”. Furthermore, by
computing CNRs for other inserts, we have obtained curves
of similar shape. we show two of these curves in Fig.
2, which were computed for the 9mm 0.5%- and 15mm
0.3%-contrast inserts, after normalization to the maximum
of the CNR curve corresponding to the 7mm 1%-contrast
insert. It is worth of noting that all three CNR curves reach
their respective peaks at approximately the same value of
ε, suggesting that a range of ε may exist that can yield
“optimal” contrast resolution for all low-contrast inserts
under consideration. Therefore, for the imaging task at hand,
one can make selection of ε around ε2. Additional images
and analysis will be presented at the conference.

B. Task 2: Spatial-resolution study

Next, we investigated the impact of ε on the spatial-
resolution property by characterizing ASD-POCS recon-
structions of the CTP528 section with varying ε. We com-
puted the modulation transfer function (MTF) by using an
empirical technique [6] from images reconstructed with a
range of ε, and plot in Fig. 3 modulations at the spa-
tial frequency of 7 and 9 lp/cm as functions of ε. A
monotonically decreasing trend can be observed in both
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Figure 2. CNRs, calculated from ASD-POCS reconstruction of the CTP515
section on the 7mm 1.0%- (solid line), 9mm 0.5%- (dotted line), and
15mm 0.3%-contrast (dash-dotted line) inserts, plotted as functions of the
parameter ε used. The CNR computed from the FDK reconstruction on
the 7mm 1.0%-contrast insert is plotted as the horizontal dashed line as
reference.
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Figure 3. Modulations at spatial frequencies of 7 (solid curve) and 9 lp/cm
(dotted curve) computed from CTP528 images reconstructed by use of the
ASD-POCS algorithm as functions of ε. Solid and dotted horizontal lines
represent the counterparts computed from the FDK reference.
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Figure 4. ROI Images of the CTP528 section of the FDK reference (A) and
ASD-POCS reconstructions with ε=11.0, 11.4, and 12.2. Bar patterns with
spatial frequency of 7 – 13 lp/cm are enclosed within the ROI. Display
grayscale: [0.15, 0.6] cm−1. The background smoothness of the ASD-
POCS reconstruction displayed in panel C is matched to that of the FDK
reference in panel A.
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Figure 5. FWHMs of the wire ramp as a function of the CNR of
the acrylic insert, computed from the ASD-POCS reconstructions of the
CTP404 section with ε increasing from ε1 to ε4. Four images obtained
with ε1, ε2, ε3, and ε4 are represented by solid dots. The FDK reference
is represented by 4.

curves, indicating degraded spatial resolution when a higher
ε is used. Nevertheless, the ASD-POCS reconstruction has
modulations higher than those of the FDK reference, which
is plotted as baselines in the same figure, for the entire range
of ε under study. In particular, we identified the ASD-POCS
reconstruction with background noise magnitude, quantified
by calculating the standard deviation over a uniform back-
ground region-of-interest (ROI), matched with that of the
FDK reference. We indicate the ε that yields this reconstruc-
tion in Fig. 3 by a vertical, dash-dotted line. At this particular
operating point of ε, the ASD-POCS reconstruction has
background noise magnitude similar to that of the FDK
reference, while MTFs exhibit an approximately three-fold
improvement. This quantitative-metric-based observation is
also corroborated by visualization assessment shown in Fig.
4. Bar patterns at spatial frequency of up to 8 lp/cm can
be visually resolved in the FDK reference image, which
is consistent with clinical quality-assurance guidelines [7–
9] under comparable imaging conditions. As comparison,
bar patterns at spatial frequency of 11 lp/cm appear to be
resolved in the ASD-POCS reconstruction. Therefore, for the
imaging task under consideration, ε can be determined by
use of the above-mentioned method for yielding images of
optimal spatial resolution without incurring over-amplified
background noise.

C. Task 3: Combined contrast-resolution and spatial-
resolution study

Finally, we investigated image reconstruction of the
CTP404 section, where both high-spatial-frequency struc-
tures and low-contrast structures are present. Therefore,
contrast resolution and spatial resolution are simultane-
ously considered in this imaging task. From ASD-POCS
reconstructions obtained with a range of ε, we character-
ized contrast resolution and spatial resolution by technical-
efficacy metrics. The contrast resolution was quantified by
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Figure 6. ROI images within the middle transverse slice of the CTP404
section reconstructed by use of the ASD-POCS algorithm with ε1 (B), ε2
(C), ε3 (D), and ε4 (E), indicated in Fig. 5. The FDK reference is displayed
within the same ROI in panel (A). Display window: [0.26, 0.3] cm−1.

calculating CNRs of the acrylic insert over ROIs selected
within and immediately outside of the insert. On the other
hand, the spatial resolution was measured by computing the
lateral broadening of the tungsten wire ramp. Specifically,
we plot the profile across the wire, and fit the profile with a
Gaussian function. The full width at half maximum (FWHM)
of the fitted Gaussian function was then used as the metric
for quantifying spatial resolution. We show the result in Fig.
5 by plotting FWHM as a function of CNR. The curve
exhibits an initial sharp trade-off between spatial resolution
and contrast resolution when ε is small, followed by a rather
flat region as ε increases, where contrast resolution is quickly
gained at a slow degradation of spatial resolution, and
finally, a turning point after which contrast resolution and
spatial resolution both degrade. As a benchmark, the FDK
reference is represented in the same plot by a triangle, which
has the FWHM larger than the entire ASD-POCS curve,
and CNR smaller than almost all the points on the curve.
To corroborate the quantitative-metric-based observation,
we display ASD-POCS reconstructions with four ε values
marked in Fig. 5. One can observe that a larger ε helps
significantly in suppressing background noise, while the
sharpness of the wire suffers little appreciable loss, thereby
enhancing the contrast resolution while preserving the spatial
resolution. This trend continues until ε increases beyond the
turning point in Fig. 5, when the low-contrast structure starts
to visibly merge into the background and thus loses the
contrast. Therefore, for the imaging task under consideration,
one may select ε close to ε3, for a simultaneous gain of
contrast resolution and preservation of spatial resolution.

IV. DISCUSSION

We have investigated the determination of a parameter
in the ASD-POCS algorithm that is crucial to tailoring
the algorithm to three common imaging tasks, which are
frequently encountered in applications such as IGRT. For a
given imaging task, once the optimal range of the parameter
is identified by use of the techniques described above,
it can be applied to reconstruction problems involving a
class of subjects of similar sizes and structural components.
Therefore, a fully exploration of image-quality potential
from current CBCT systems may be performed by utilization
of this parameter-determination strategy.
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Abstract—  
We evaluated the Motion Artefact Metric Optimization 
(MAM) method [1] as a candidate for motion 
compensated reconstruction in cardiac CT and 
demonstrate its potential for clinical use.  The potential 
of MAM was investigated based on two simulation 
studies:  one  using  a  realistic  model  of  the  RCA  of
cylindrical shape with a realistic motion curve (A) and a 
second one using the 4D-XCAT [2] model at different 
heart-rates ranging from 60bpm to 80bpm (B). Different 
CT acquisition modes have been simulated (64 slice 
single source cardiac spiral, 64 slice dual source cardiac 
spiral at low and high pitch, respectively). It was shown, 
that in the experiment (A) MAM reconstructions are 
close to the ground truth at most cardiac phases. Also, 
in experiment (B) MAM improved the distal and 
proximal RCA segment even at high heart-rates. 
Motivated by these results, MAM reconstruction was 
evaluated on clinical data and proved to effectively 
reduce motion artifacts. However, both in simulation 
studies and clinical data the dual source acquisition with 
improved temporal resolution delivered superior 
cardiac image data compared to single source cardiac 
data, which have been processed with MAM. Moreover, 
the  benefit  of  MAM in Dual  Source  cardiac  CT can be  
to increase the range of valid heart-rates for the high-
pitch FLASH acquisition. This is demonstrated using 
4D-XCAT phantom and clinical dual source FLASH 
data, respectively. 

Index-Terms: Cardiac CT, ECG correlated 
reconstruction, temporal resolution, 4D-XCAT 
phantom, motion compensation, motion vector field, 
motion artifact metric. 
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Healthcare Division, Siemenstr. 1, 91301 Forchheim, Germany. E-mail: 
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I. INTRODUCTION 

The imaging of cardiac structures, in particular the coronary 
arteries in  (CT) is clinically important and at the same time 
technically challenging. Coronary arteries are small, rapidly 
moving vessels which require high temporal resolution of 
the reconstructed images. In a CT system, the temporal 
resolution is limited by hardware constraints, primarily by 
the fastest possible gantry rotation speed. Alternative 
system designs can improve temporal resolution. Currently, 
a  temporal  resolution  of  65  ms  can  be  achieved  with  the  
latest generation of dual source scanners. CT scanning of 
the heart is controlled by the patient’s ECG and usually 
performed  in  cardiac  phases  with  low  motion,  e.g.,  the
diastolic phase. The duration of the quiescent heart phases 
shortens with increasing heart rate, at the same time vessel 
velocities increase. Even though reconstruction is 
retrospectively correlated to the quiet heart phase, this may 
cause image quality degradation by motion artifacts in 
particular in less advanced CT systems and may even affect 
image quality in high-end CT systems. 
An alternative approach to improve temporal resolution is 
the development of reconstruction algorithms that account 
for  the  object  motion  during  data  acquisition.  There  are  a  
variety of different approaches to this problem. However, 
common to almost all of them, is that a motion vector field 
is computed in four dimensions, initially. This motion 
vector field is input to a motion-compensated 
reconstruction. Motion compensation is achieved by 
warping the voxel space either prior to backprojection or 
after backprojection. 
Three ways of estimating the motion vector field can be 
discerned. One way is to compute the motion vector field 
from 3D-3D registration of reconstructions at adjacent 
cardiac phases. Yet another approach is based on modeling 
the vessel. Partial images of reconstructions with 
subsequent portions of the measurement data are then 
matched to partial images of the vessel model. This match 
provides time-dependent motion fields [3]. 
Our approach is based on the definition of motion artifact 
metrics (MAM) which aim at the quantification of motion 
artifacts of the coronary arteries in a 3-D reconstructed 
image. Minimizing the metrics allows for iteratively 
estimating local motion vector fields. In section II we give a 
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short outline of the method. In addition, two simulation 
experiments are discussed, which are viable for evaluation 
of the MAM technique. 

II. METHOD

A. Basic idea of MAM reconstruction 
The proposed algorithm for motion estimation and 
compensation consists of several steps. A local parametric 
motion model M(t, x, s) is used to describe local 
deformable motion as a function of time. The parameters s 
are local motion vectors. An analytic reconstruction 
algorithm based on the FDK algorithm but incorporating 
the motion model is used to compute motion-compensated 
image data [4]. We restrict our algorithm to the coronary 
arteries and artifacts caused by their motion. Therefore, the 
first  step  of  the  algorithm  is  the  definition  of  a  region  of  
interest for motion estimation (M-ROI). It is determined by 
segmentation of the coronary arteries from the initial image 
data. The estimation of the motion parameters s is 
formulated as the minimization of a motion artifact metric 
L(s) inside the M-ROI. The minimization is iteratively 
performed by a gradient descent algorithm. Each iteration 
consists of the reconstruction of a motion compensated 
image using the momentary M(t, x, sk), the computation 
of the respective MAM value L(s)k and the computation of 
its derivative L(sk) sk to obtain an updated motion 
vector sk+1 for the next iteration. 

B. Simulation experiments 
Experiment A:  A  computer  simulation  was  designed  to
evaluate  the  MAM  approach.  It  is  based  on  a  simple  but  
realistic model of the right coronary artery (RCA) with 
regard to morphology and motion curve. The simulated CT 
system used a 64 ×0.6 mm detector in a sequential (axial) 
acquisition mode with 285 ms rotation time. 
Experiment B: Yet another simulation study was employed 
using the 4DXCAT [2] phantom and 64 ×0.6 mm detector 
in a helical acquisition mode with 285 ms rotation time. 
Two different scanner types were simulated: a single-source 
system and a dual source system with two source-detector 
pairs 900 ahead of each other [5]. Dual source data were 
also simulated in a high-pitch mode to cover the entire heart 
in a single heart-beat during the end-diastolic heart phase. 
In a clinically environment this so-called FLASH mode is 
limited to moderate heart-rates, because the time period to 
cover the entire heart extends to one rotation time. The 
question is: can this heart rate limitation be eased using 
MAM reconstruction? 

III. EVALUATION

In this section we evaluate the two simulation studies and 
check the potential of MAM in case of clinical data. 

A. Evaluation of simulation data  
In experiment A a heart-beat of 70bpm was simulated. 
Reconstructions were performed from 20% to 80 % cardiac 

phase with step width of 2 %. The MAM reconstructions 
were compared to standard FBP reconstruction without 
motion compensation and respectively, to motion 
compensated reconstruction with ground truth motion 
vector field. MAM reconstruction was performed with two 
different motion artifact metrics: the image entropy, 
respectively a non-negativity constraint for image artifacts. 
Using a normalized cross correlation measure, it was shown 
that MAM reconstruction results come close to the ground 
truth at most of the phases. However, if the motion 
direction points orthogonal the recon range, motion 
artefacts are quite severe, and it takes a lot more iterations 
to reduce artefacts to an acceptable level. 

In experiment B using the 4D-XCAT phantom, heart-rates 
from 60 bpm to 80 bpm have been simulated. The data were 
acquired both in single source and dual source helical 
acquisition mode. The MAM reconstruction was limited to 
the RCA. It proved to be efficient up to 80 bpm (Fig. 1). 
The reconstruction of dual source data with temporal 
resolution  of  75  ms  was  superior  at  any  heart  rate.  MAM  
also proved to be helpful to remove artefacts of dual source 
FLASH scans at high heart rates. 

B.  Evaluation of clinical data 
Similar results as in simulation experiment B were obtained 
with clinical data. Fig. 2 shows the evaluation of dual 
source helical acquisition data. The ECG-correlated 
reconstruction of this type of data can be done either in a 
Single-Source mode using only data from one detector or in 
a Dual-Source mode using data of both detectors. We 
evaluated two cardiac phases in the end-diastole of the 
cardiac cycle. Again MAM reconstruction proved to 
reliably reduce motion artefacts. However, dual source 
reconstruction proved to be superior. We also demonstrate 
the efficiency of MAM reconstruction in case of FLASH 
dual source data. A cardiac perfusion dataset acquired in the 
high pitch FLASH mode at a heart rate of 75 bpm was 
processed with MAM. It was shown that motion artifacts 
were largely reduced.  

Fig.1: Reconstructions of 4D-XCAT phantom (upper row) 
Reconstruction of Single Source data without motion 
compensation (middle row) MAM reconstruction of RCA of Single 
Source data. The heart-rate is increased from 60 bpm to 80 bpm 
from left to right. Please note, that the MAM volume was 
restricted to the RCA branch. 
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IV. CONCLUSION

In this work we tried to answer the question to what extend 
the Motion Artifact Metric Optimization (MAM) 
reconstruction is able to reduce motion artifacts in cardiac 
CT. If so, this would encourage to scan patients at higher 
heart rates. Consequently the administration of beta 
blockers could be reduced. Also, low-end CT systems with 
slower rotation of the gantry would benefit. Both, the 
evaluations of simulation data (e.g. with 4D-XCAT 
phantom) and clinical data, respectively, have shown, that 
motion compensation with MAM reconstruction can 
significantly enhance best phase reconstructions of single-
source data. This opens the way to scan patients with higher 
heart rates. Also, it could be conceived to extend cardiac 
CT  imaging  to  low-end  CT  systems  with  slow  gantry
rotation. It was also shown, that for Dual Source acquisition 
data motion compensation is not needed, because the 
intrinsic high temporal resolution of this acquisition 
technique is sufficient to robustly obtain motion artifact free 
image data in the diagnostic phases. The only exception is 
the cardiac FLASH acquisition that covers the entire heart 
in one cardiac cycle with maximum table feed. Today this 
acquisition mode is limited to moderate heart rates. Using 
MAM, it was shown, that this heart rate limitation could be 
eased. Thus the FLASH technique, which is extremely dose 
efficient, can be extended to a larger number of patients.  
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Experimental Investigation of Hybrid
Region-of-Interest SpectralCT Imaging with a

Photon-Counting Detector
Taly Gilat Schmidt1 and Kevin C. Zimmerman1

Abstract—This study experimentally investigated the perfor-
mance of a hybrid spectral CT acquisition method that acquires
truncated spectral CT data for a central region of interest (ROI)
while acquiring conventional energy-integrating data for the full
field of view (FOV). ROI imaging may be beneficial for reducing
pulse-pileup artifacts by reducing the dynamic range of the x-ray
projections. In the proposed method, the conventional CT image
is used as prior information to estimate spectral data outside of
the ROI. A cylindrical rod phantom was scanned on a bench-top
spectral CT system using a photon-counting detector with four
energy bins. The photon-counting data recorded above the lowest
energy threshold was used to approximate the prior conventional
CT image. Reconstructed PMMA and aluminum basis images
were compared for full FOV, truncated, and hybrid imaging
methods. Images reconstructed from the truncated sinograms
demonstrated cupping artifacts with increased error towards
the edge of the ROI. The truncation artifacts were reduced by
merging and blending the basis sinogram data inside the ROI
with data outside the ROI that was estimated from the prior
conventional image. For the blended data, the error in the PMMA
basis image was less than 10% for the central 2.5 cm of the 4.25-
cm-ROI, and less than 15% for the central 3 cm of the ROI.
Overall, the results suggest preliminary experimental feasibility
of a hybrid imaging method that acquires spectral data inside
an ROI and conventional CT data for the full FOV, which may
be beneficial for reducing pulse-pileup effects.

I. I NTRODUCTION

Spectral CT using photon-counting detectors has the poten-
tial for improved material decomposition compared to dual-
kV approaches. Photon-counting detectors with pulse-height
analysis can sort detected photons into discrete energy bins.
However, the recorded spectral information may be degraded
by non ideal effects, such as pulse pileup. Pulse pileup occurs
when multiple photons reach the detector within the counting
period, resulting in errors in the number and energy of detected
photons. Pulse-pileup artifacts are expected to be greater at
the periphery of the field of view (FOV) where the object
attenuation is low compared to the center of the FOV. Pulse
pileup may be avoided by imaging a region of interest (ROI)
where the dynamic range is expected to be limited [1].

This study experimentally investigated a hybrid spectral CT
acquisition method that acquires truncated spectral CT data
for a central ROI while acquiring conventional CT data for
the full FOV. The conventional CT image is used as prior
information for reconstructing basis images within the ROI.
This method was previously investigated through simulations

1 Department of Biomedical Engineering, Marquette University, Milwaukee
WI

Fig. 1. Proposed algorithm for reconstructing ROI basis images from
truncated spectral CT data with prior conventional CT image data.

modeling an ideal photon counting detector [2]. The current
study is the first to investigate this hybrid imaging method
on an experimental system with spectral degradations such as
pulse-pileup and charge sharing. Alternative approaches for
hybrid spectral CT imaging have also been investigated [3].

II. M ETHODS AND MATERIALS

A. Hybrid Spectral CT Imaging

We previously proposed an algorithm for performing ma-
terial decomposition and reconstructing basis images for an
ROI using prior energy-integrating data from the entire FOV
[2]. The steps of the proposed algorithm are illustrated in
Figure. 1. Conventional detectors image the full FOV, while
energy-resolving detectors withB energy bins image a smaller
ROI. Images of the full FOV are first reconstructed from the
energy-integrating data using a conventional reconstruction
technique. The resulting prior image is segmented based on
Hounsfield Unit (HU) values intoK materials. The previous
simulation study determined that a coarse segmentation into a
small number of materials (3 -6) provided sufficient accuracy
[2]. A polyenergetic forward projection is performed on the
segmented volume to estimate data in theB energy bins of
detectors outside the ROI.

Material decomposition is performed on a ray-by-ray basis
for both the measured projection data within the ROI and the
estimated spectral data outside the ROI.M basis sinograms
encompassing the entire FOV are then formed by merging
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Fig. 2. Bench-top spectral CT system with a photon-counting detector used
in experimental study.

the basis projections decomposed from the measured and
estimated spectral data. Blending the basis sinograms at the
boundaries of the truncated data may be performed to reduce
discontinuities. Finally,M basis images are reconstructed from
the decomposed sinograms using conventional techniques (i.e.,
filtered backprojection).

Because material decomposition is performed independently
for each ray, the error in the estimated spectral data outside the
ROI does not affect the decomposition into basis sinograms
within the ROI. However, the error in the estimated data
outside the ROI is expected to introduce errors into the ROI
during reconstruction of the ROI basis images.

B. Experimental Study

Experimental data were acquired on a bench-top spectral
CT system shown in Figure 2. The bench-top system consists
of a CdZnTe detector (NEXIS , Nova R & D, Riverside, CA)
with two pixel rows, each consisting of 128, 1 mm pixels, and
a maximum of five energy thresholds per pixel. The system
also contains a microfocal x-ray source (Fein-Focus-100.50,
YXLON Intl, Hamburg, Germany) with a 3 micron effective
focal spot.

A 6.35-cm-diameter cylindrical PMMA phantom was
scanned, as shown in Figure 2. The phantom contained 2-
cm-diameter cylindrical inserts of PMMA, Teflon, low-density
polyethylene (LDPE), and air. The system was operated at 100
kV and 40µA, and energy measurements were performed with
energy thresholds of 30, 40, 50, and 60 keV. The detector
recorded the number of detected photons with energy above
each threshold. Two hundred projections were acquired over
360 degrees, with a 1.9-second acquisition per view. The
source-to-detector distance was 72 cm. The source-to-isocenter
distance was 41 cm.

The recorded counts from successive energy measurements
were subtracted to calculate the number of photons detected in
energy bins of [30 - 40], [40 - 50],[50 - 60], and [60 - 100] keV.
The energy-bin data for each detector pixel at each view angle
were decomposed into basis materials of PMMA and alu-
minum using an empirical decomposition method previously
proposed by Alvarez [4]. The resulting PMMA and aluminum
basis sinograms encompass the complete phantom FOV and
are referred to as the full FOV data. The full FOV basis
sinograms were reconstructed into PMMA and aluminum basis
images using filtered backprojection. These full FOV basis

Fig. 3. PMMA phantom used in experimental study with Teflon, air, and
low-density polyethylene inserts.

images served as the gold-standard images for the investigated
hybrid method.

The proposed hybrid acquisition method was investigated by
extracting the central 7.5-cm of sinogram data for each energy
bin. These truncated energy-bin sinograms correspond to a
4.26-cm-diameter ROI within the phantom. A conventional
CT acquisition of the full FOV was approximated by using
the data detected above the lowest energy threshold, which
corresponds to a photon-counting acquisition without energy
selective information.

A full FOV photon-counting image was reconstructed from
the photon-counting sinogram. The resulting ‘conventional’
image was segmented into air, PMMA, and Teflon regions
using Hounsfield Unit ranges of [-2000 to -200], [-200 to
280] and [200 to 2000], respectively. A spectral forward
projection was performed through the segmented image to
generate estimated energy-bin data outside of the ROI. The
forward projection algorithm modeled the mean energy of
each energy bin. The estimated energy-bin sinograms were
decomposed into PMMA and aluminum basis sinograms using
a maximum likelihood method [5].

The basis sinogram data decomposed from the measured
energy-bin data within the ROI was combined with the basis
sinogram data estimated from the conventional CT image
outside of the ROI, resulting in merged hybrid basis sinograms.
The estimated basis sinograms outside of the ROI were
blended with the measured basis sinograms inside the ROI
using the previously proposed method [2].

PMMA and aluminum basis images were reconstructed
within the 4.26-cm-diameter ROI from the full FOV, truncated,
merged, and blended sinograms using filtered backprojection.

III. RESULTS

Figure 4 displays the ‘conventional’ photon-counting image
reconstructed from the data measured above the lowest energy
bin. Figure 4 also displays the resulting segmented image that
was forward projected to estimate the energy-bin data outside
of the ROI.

Figure 5 displays the PMMA and aluminum basis sinograms
decomposed from the full FOV energy-bin data, the truncated
ROI energy-bin data, and from the hybrid acquisition method
that estimated the energy-bin data outside the ROI from a prior
conventional image. The hybrid sinogram is displayed with
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Fig. 5. PMMA and aluminum basis sinograms decomposed from the full FOV energy-bin data, the truncated ROI energy-bin data, and from the hybrid
acquisition method with and without blending.

Fig. 4. (a)‘Conventional’ CT image reconstructed from the photon-counting
data measured above the lowest energy threshold. (b) Conventional CT image
segmented into air, PMMA, and Teflon regions.

and without blending. As seen in Figure 5, blending reduced
the discontinuities at the edge of the ROI.

Figure 6 displays the PMMA and aluminum basis images
reconstructed from the full FOV data, the truncated ROI data,
and the hybrid ROI data with and without blending. All im-
ages suffer from ring artifacts due to pixel-to-pixel variations
and instabilities within the detector. In order to demonstrate
preliminary feasibility of the hybrid imaging method, the goal
of this work is to demonstrate similar basis image values in
the hybrid ROI images compared to the full FOV images, even
though the full FOV images may contain decomposition errors.
Figures 7 and 8 plot horizontal profiles through PMMA and
Teflon regions of the reconstructed basis images.

As seen in Figures 6 - 8, images reconstructed from the
truncated sinograms contained cupping artifacts with increas-
ing error towards the edge of the ROI. The truncation artifacts
were reduced by merging the data within the ROI with data
outside the ROI that was estimated from the prior conventional
image. Blending the measured sinograms within the ROI with
the estimated sinograms outside the ROI further reduced the
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Fig. 7. Horizontal profile through the PMMA basis images reconstructed
from full FOV, truncated, and hybrid acquisitions, with and without blending.
The selected profile was through the PMMA background and Teflon rod insert.

truncation errors.

IV. D ISCUSSION ANDCONCLUSIONS

Reconstructing the ROI from truncated data resulted in
errors that ranged from 300% at the edge of the ROI and
30% at the center of the ROI for the PMMA basis image.
This error was reduced to 80% at the edge of the ROI to
10% at the center of the ROI by merging the basis sinograms
estimated from the prior conventional image with the measured
basis sinograms inside the ROI. Blending the estimated and
measured sinograms further reduced the error to 30% at the
edge of the ROI and 10% at the center of the ROI. For the
blended data, the error in the PMMA basis image was 10%
or less for central 2.5 cm of the 4.25-cm-ROI, and less than
15% for the central 3 cm of the ROI.

As seen in Figure 8, the truncated and blended aluminum
basis images had good agreement with the full FOV data.
This is because the aluminum basis image is generally sparse,
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Fig. 6. PMMA and aluminum basis images reconstructed from the full FOV energy-bin data, the truncated ROI energy-bin data, and from the hybrid
acquisition method with and without blending. The images on the left illustrate the ROI on the full FOV reconstructed image.
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Fig. 8. Horizontal profile through the aluminum basis images reconstructed
from full FOV, truncated, and hybrid acquisitions, with and without blending.
The selected profile was through the PMMA background and Teflon rod insert.

thus the error from the missing data outside the ROI is small.
Merging the hybrid sinogram data without blending increased
the error in the aluminum basis image. This is likely due to
differences in decomposition in the measured and estimated
data, due to nonidealities in the experimental data. The forward
projector used to estimated data outside of the ROI assumed
an ideal detector.

Future work is planned to investigate improved blending
and decomposition methods to reduce the errors in the recon-
structed basis images. Overall, the results suggest preliminary
experimental feasibility of a hybrid imaging method that
acquires spectral data inside an ROI and conventional CT data
for the full FOV, which may be beneficial for reducing pulse-
pileup effects.
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Dual-Energy-based Beam Hardening Correction in
Digital Volume Tomography (DVT)

Sören Schüller, Kai Stannigel, Markus Hülsbusch, Stefan Sawall, Johannes Ulrici, Erich Hell,
and Marc Kachelrieß

Abstract—Streak artifact reduction required by beam harden-
ing is a well known task in computed tomography (CT) image
reconstruction. Dual- or multi-energy CT provides additional
spectral information compared to a standard single-energy CT
scan, which can be used to solve this task. As a special kind of
a CT system, a digital volume tomograph (DVT) is used in the
dental field to deliver high contrast and highest spatial resolution.
In this work, we develop an algorithm which takes all these
important image quality features into account. The demonstrated
results show a reduction of beam hardening, while contrast, noise
and spatial resolution are preserved. To reach these goals we
perform linear weighting of dual-energy images and use different
mixed images as a basis of correction employing frequency-split
and non-linear blending.
Index Terms - DVT, beam hardening correction, dual-energy,
frequency split

I. INTRODUCTION

In digital volume tomography (DVT) the image quality
often suffers from beam hardening (BH) artifacts. The arti-
facts appear in the vicinity of strong attenuating objects like
bones, teeth or implants which are densely positioned in the
dentition. The polychromatic nature of x-ray radiation causes
the BH artifacts. Several publications [1]–[3] have shown that
suitable combinations of the low- and high-energy images of
a dual-energy scan can provide images with different image
characteristics like reduced BH and metal artifacts as well
as an improved contrast-to-noise ratio (CNR). However, the
solutions are mutually exclusive and only one parameter can
be optimized at the same time. For example metal artifact
reduced images always suffer from high noise [4] and need
post-processing by noise reduction techniques like adaptive
filtering, which might degrade spatial resolution.

In the dental field, a special need for high spatial resolution
and high contrasts exists [5], [6]. The evaluation of the peri-
odontium is a good example. This structure is the connection
between each tooth and the jaw bone and is, for this reason,
essential for a solid anchorage. State-of-the-art DVTs perform
at high spatial resolution (&100µm) [7] to visualize the
bounding layers correctly [6]. Each BH reduction technique
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leading to a blurring or a contrast reduction is not acceptable
especially for dental diagnostics. We therefore propose a new
method for the reduction of BH which maintains the high
contrast and spatial resolution provided by the DVT imaging
system.

The idea behind our algorithm is to decompose our initial
dual-energy reconstructions into a set of basis images, each
of them optimizing a certain image characteristic, i.e. best
contrast, lowest noise, and minimal BH. These images are
combined using frequency split (FS) (like used in [8]) and
non-linear blending (NB) (like used in [3]) to yield in a BH-
reduced reconstruction which meets dental demands.

The blending allows for a preservation of contrast and the
frequency split maintains spatial resolution. All benefits will
only be acceptable if the overall dose of the proposed dual-
energy scan and correction technique does not exceed the dose
of a state of the art DVT scan.

II. METHODS AND MATERIALS

To minimize BH artifacts we utilize the fact that BH occurs
with different strengths in the low- and high-energy images.
By using a linear weighting between these images, the artifacts
can be significantly reduced. This kind of weighting, however,
leads to increased image noise and a decrease of the CNR in
the resulting BH-reduced image. To overcome this issue we
propose a voxel-wise non-linear blending between the soft-
tissue regions of the previously generated BH-reduced image
and the strong attenuating regions, e.g. teeth, of the low-energy
image which shows a high contrast. After all, the combination
of the low frequencies of the non-linear blended image and the
high frequencies of a minimal noise image re-establishes fine
structures and low image noise. A schematic overview of the
algorithm is presented in figure 1. The proposed algorithm
performs in image domain because the angular sampling
between the two dual-energy scans might differ. If not noted
otherwise all reconstructions are performed using a filtered
back-projection, in our case the Feldkamp-Davis-Kress (FDK)
[9] reconstruction without any further post-processing.

A. Data Acquisition

Cadaver heads were scanned on a Galileos DVT (Sirona,
The Dental Company, Bensheim, Germany). Each scan was
performed over an angular range of 210◦ and the number
of projections was 200 per scan. The following scans were
performed:

• reference scan fRef: 98 kV, 12 mAs
• low energy fL: 65 kV, 36 mAs
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Fig. 1. Block diagram of the whole algorithm. Linear weighting of fL and fH generating fBH, fL, and fNoise. fNoise is used as a guide for the non-linear
blending of fL and fBH. The final image fFS is generated by a voxel-wise summation of the high pass of fNoise and the low pass of fNB.

• high energy fH: 120 kV, 18 mAs, 2 mm copper pre-filter
The performed reference scan is the gold standard of

the Galileos DVT and includes proprietary post-processing
steps. For a better comparison all images are without post-
processing. The dual-energy scan has the same dose as the
reference scan.

B. Linear Weighting to Minimize Noise

A simple way to obtain images with desired properties from
a low fL and high fH image, which were acquired at different
tube voltages, is by a linear combination with weight α:

fα = (1− α)fL + αfH. (1)

Linear weighting was used, because linear weighted images
are equivalent to pseudo monochromatic images.

If there are no correlations between the image noise in fL
and fH equation 2 describes the noise σ(fα) =

√
Var(fα) for

each linear combination α:

Var(fα) = (1− α)2Var(fL) + α2Var(fH). (2)

The optimal αNoise to achieve minimal noise can be obtained
by derivation of equation 2:

αNoise =
Var(fL)

Var(fL) + Var(fH)
. (3)

C. Linear Weighting to Maximize Contrast

To choose the image with the maximal contrast between
soft-tissue and bone, the energy dependent attenuation can be
taken into account. The relative distance (contrast) between
bone and soft-tissue is greater for low energies. The initial
low energy image is used as the maximal contrast image. It
would also be possible to use a linear combination with α < 0
which has an even better contrast but results in an increased
noise level (see equation 2).

In general the contrast C(A,B, α) between regions of
interest A and B of a linear mixed image fα is given as

C(A,B, α) = (1− α)(fL(A)− fL(B))

+α(fH(A)− fH(B)).
(4)

This equation is later used in section II-E and III.
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D. Linear Weighting to Minimize Beam Hardening

The linear weighting coefficient αBH for an image with min-
imal BH is determined by evaluating the entropy S concerning
the gray-value distribution kα(b), i.e. the histogram with B
Bins, inside the soft-tissue regions (figure 2) for different linear
combinations in the range of 1 ≤ α ≤ 4.

Sα = −
B∑
b=1

kα(b) log kα(b) (5)

The dependency between entropy and w is shown in figure
3. The impact of BH on the image quality decreases with

Fig. 2. Soft-tissue region which is used to estimate the BH. All homogeneous
gray voxels are not taken into account.
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Fig. 3. Entropy of different linear combination calculated over the soft-tissue
region, in which the streaks appear. The plot shows a well-defined minimum
at wBH = 1.7.

higher mean energies of the spectrum. So in fact an image
with less BH can only be achieved for combinations above
fH, i.e. α > 1. It would also be possible to use other cost
functions, like total variation, to detect BH streaks in the soft-
tissue. But our choice turned out to be less prone to noise and
sampling artifacts.

E. Non-linear Blending

Our main task is to obtain an image with reduced BH
artifacts. Equation 2 and 4 illustrate that by directly taking
the BH-reduced image fBH as the final image automatically
a reduced contrast and a higher noise level compared to the
initial dual-energy images appears. To recover the contrast we
combine the soft-tissue regions of the BH-reduced image fBH
with the high density regions (bone, teeth,...) of the maximum
contrast image fα=0 by a voxel-wise non-linear blending
which is guided by the minimal noise image fNoise. Because
of the low noise in fNoise all regions can be assigned correctly.

F. Frequency Split

Performing a FS on the low noise image fNoise and the
non-linear blended images fNB followed by a combination of
the results is the final step of the algorithm. The final image
consist of the high frequency information of fNoise, which
reestablish all edges, and the low frequency information of the
non-linear blended image fNB, which contains high contrast
and minimal BH in the soft-tissue regions. The FS performs in
the image domain by simply using a long range 3D binomial
filter. The low-pass (LP) image is simply the filtered image
itself. To obtain the high-pass (HP) image, the low-pass image
is subtracted from the unfiltered image. Finally, the voxel-wise
addition of the HP and LP yields the desired image fFS with
high spatial resolution, high contrast and low noise.

III. RESULTS

All results are compared to a standard DVT scan fRef which
has the same dose as the whole dual-energy scan. Figure 4 il-
lustrates the preserved spatial resolution. Fine structures in fFS
can be as good as in fRef and fL identified with the advantages
of lower noise and more homogeneity inside uniform regions.
Figure 5 illustrates the potential of the proposed BH artifact
reduction in DVT images. The reduction of the streaks can also
be seen in tiny spaces between the teeth, where a diagnosis
can be strongly affected by this kind of artifacts.

TABLE I
COMPARISON OF THE CNRS OF ALL INITIAL AND PRODUCED IMAGES
ALONG THE IMAGING CHAIN. THE ROIS ARE INDICATED IN FIGURE 5.

Soft Tissue A σ(A) Bone B σ(B) CNR

fRef 137 HU 170 HU 1085 HU 197 HU 2.83
fL 68 HU 97 HU 1459 HU 132 HU 5.98
fH 137 HU 170 HU 1085 HU 197 HU 2.58
fNoise 83 HU 86 HU 1376 HU 114 HU 6.41
fBH 185 HU 294 HU 823 HU 344 HU 1.00
fNB 175 HU 256 HU 1455 HU 134 HU 3.14
fFS 181 HU 84 HU 1446 HU 111 HU 6.45
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Fig. 4. Sagittal slices. Center and window are adapt for each image according the contrasts inside the ROIs. The windowing corresponds to C = 1500HU,
W = 3000HU of fRef. Voxel size 250µm3.

Fig. 5. The number and magnitude of the BH streaks has decreased in the
fFS in comparison to fL. C = 500HU, W = 3000HU. Voxel size 250µm3.
The ROIs for the CNR evaluations are presented in fL. Arrows pointing to
regions which benefit from the proposed BH reduction algorithm.

A short overview of noise, contrast and CNR for the basis
and final images are presented in table I. The proposed method
achieves the highest CNR compared to the reference scan
at 98 kV and the two single scans fL and fH of the dual-
energy scan. This is a consequence of the properties of the
non-linear blending, which retains the high contrast of fL and
the frequency split, which in an ideal case only contains the
low noise level of fNoise. This leads to a CNR outperforming
all 3 initial reconstructions.

IV. CONCLUSION

The herein proposed method can easily and automatically
reduce beam hardening artifacts in DVT routine and the
results indicate that it is superior to previously published BH-
correction [10] algorithms in terms of noise and dose usage.
The spatial resolution which plays an important role for the
dentist is not degraded by the new algorithm. It can also be
noticed that reduced noise and BH in the proximity of bone
and teeth structures clearly improve the capabilities for the
diagnostics. As a result of the higher CNR, a dose reduction
for some applications could also be possible and leads to a
increased patient safety.
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no. 6, pp. 434–444, Sep. 2005.

[6] Y. Doshi, A. Mani, P. Marawar, P. Mishra et al., “A clinical study
on mobility of teeth as assessed through their damping characteristics
and progress of periodontal disease using advanced diagnostic aids:
Mobilometer and florida probe,” Journal of the International Clinical
Dental Research Organization, vol. 2, no. 1, p. 12, Nov. 2011.

[7] Y. Kyriakou, D. Kolditz, O. Langner, J. Krause, and W. Kalender, “Dig-
ital volume tomography (DVT) and multislice spiral CT (MSCT): an
objective examination of dose and image quality,” in RöFo. Fortschritte
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Dictionary Learning and Low Rank based
Multi-energy CT Reconstruction

Yanbo Zhang, Hengyong Yu, Xuanqin Mou and Ge Wang

Abstract—Multi-energy CT promises much richer information.
How to fully use spectral datasets is a hot topic. Because images
in different energy channels are highly correlated, the low rank
regularization is well motivated. On the other hand, our previous
work has shown that the dictionary learning based reconstruction
method can suppress image noise remarkably. In this paper,
a novel multi-energy CT reconstruction method is developed
by combining dictionary learning and low rank regularization.
The proposed method is compared to two other algorithms
using a simulated mouse thorax phantom containing iodine. The
proposed method outperforms the competing methods in the
simulation.

I. INTRODUCTION

Multi-energy CT produces an attenuation map of an object
with a spectral dimension, commonly presented in multiple
energy channels simultaneously. This new information can
be used to discriminate materials in a chemically specific
fashion. Currently, multi-energy CT reconstruction attracts an
increasing attention. Xu et al. developed a statistical interior
tomography method with total variation (TV) regularization
for hybrid true-color micro-CT [1]. In that study, images in
each energy channel were reconstructed independently similar
to conventional CT. However, since the multi-energy datasets
are collected from the same object, attenuation coefficients
in different channels are highly correlated. Hence, the multi-
energy reconstruction can be improved if the relationships
among spectral component images are fully utilized. In 2011,
Gao et al. proposed a PRISM method to model a multi-
energy image as the superposition of a low-rank matrix and
a sparse matrix and formulate the reconstruction problem in
a coupled optimization via compressive sensing [2]. Recently,
Chu et al. [3] [4] and Semerci et al. [5] proposed multi-energy
CT reconstruction methods using low rank tensor and TV
regularization. These methods yielded promising numerical
results.

In our previous work, a dictionary learning based recon-
struction method has been applied to utilize image sparsity
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for low dose CT, whose performance is superior to that with
the TV constraint. In this paper, we propose a multi-energy
CT reconstruction method by combining dictionary learning
and low rank regularization.

II. RELATED WORK

A. Tensor Unfolding [3] [6]

A tensor is a multidimensional array. An n-way (or nth-
order) tensor is defined as X ∈ RI1×I2×...×In , whose
(i1, i2, · · · , in) element is denoted as xi1i2···in , and 1 6 ik 6
Ik, k = 1, 2, · · · , n.

A tensor can be transformed into a matrix using an unfolding
operator, which is an element reordering process. The mode-k
unfolding of X ∈ RI1×I2×...×In is denoted by X(k),

unfoldk (X ) , X(k) ∈ RIk×(I1...Ik−1Ik+1...In). (1)

B. Multi-energy CT with TV Regularization

A simple way to reconstruct multi-energy CT is to recon-
struct each component image independently, just like con-
ventional CT reconstruction [1]. An iterative reconstruction
method with TV regularization can be expressed as

min
xi

‖Axi − yi‖2 + λTV TV (xi) , (2)

where A is a system matrix, xi and yi are vectors correspond-
ing to the 2D image Xi and the projection dataset Yi in the
ith energy channel respectively.

C. Multi-energy CT with TV and Low Rank Regularization

In multi-energy CT, let X ∈ RI1×I2×I3 be a 3-way
tensor, where I1 and I2 are the width and height of a CT
image respectively, and I3 is the number of spectral channels.
X = {Xi}i=1,2,··· ,I3 and Y = {Yi}i=1,2,··· ,I3 , where Xi and
Yi are a CT image and an acquired sinogram corresponding
to the ith energy channel respectively. Similar to the method
proposed by Chu et al. [4], the reconstruction of spectrally
dependent attenuation coefficients is reduced to the following
optimization problem:

min
X

∥∥∥AXT
(3) − Y

T
(3)

∥∥∥2
F
+ λ∗ ‖X‖∗ + λTV TV (X ) , (3)

where the first term is the sum of errors in spectral channels,
and the superscript T denotes the transpose operator. The
tensor X can be turned into matrixes using the unfolding
operation as X(1) ∈ RI1×(I2×I3), X(2) ∈ RI2×(I1×I3) and
X(3) ∈ RI3×(I1×I2). ‖·‖F represents the Frobenius norm, and
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‖X‖∗ is the generalized tensor nuclear norm which is defined
as

‖X‖∗ =
3∑
k=1

γk
∥∥X(k)

∥∥
∗, (4)

where γk is a weighting factor. Tomioka et al. [6] proposed a
more general form in which γk can be different. In this work,
we only consider the correlation of images between different
energy channels. Therefore, we set γ1 and γ2 to be zero and γ3
to be one. TV (X ) indicates the TV regularization for channels
separately.

III. METHOD

In our previous work [7], it has been shown that the
dictionary learning based algorithm outperforms the TV min-
imization method for low-dose CT. A well trained dictionary
can sparsely represent a single image, while low rank tensors
are intended to encourage the correlation between images in
different channels. Hence, we are motivated to combine the
merits of dictionary learning and low rank tensor regulariza-
tion, and formulate the CT reconstruction as the following
optimization.

min
(X ,α)

∥∥∥AXT
(3) − Y

T
(3)

∥∥∥2
F
+ λ∗ ‖X‖∗

+ λD

(∑
s

‖Es (X )−Dαs‖22 +
∑
s

vs ‖αs‖0

)
,

(5)

where D ∈ RN×K is a dictionary matrix with K atoms, each
of which has

√
N×
√
N pixels. The dictionary can be obtained

via training from a given image, which is described in detail
in section V. αs ∈ RK×1 is the representation vector. The
operator Es = {eski} ∈ RN×(I1I2I3) extracts the sth patch
from a component image of the tensor, and eski ∈ {0, 1}.
‖·‖0 represents the l0-norm, namely, the number of nonzero
entries. The two variables X and α can be optimized using an
alternating minimization scheme. Thus, the objective function
becomes

Xn+1 = argmin
X

∥∥∥AXT
(3) − Y

T
(3)

∥∥∥2
F
+ λ∗ ‖X‖∗

+λD
∑
s

‖Es (X )−Dαns ‖
2
2 .

αn+1 = argmin
α

∑
s

∥∥Es

(
Xn+1

)
−Dαs

∥∥2
2
+
∑
s

vs ‖αs‖0
(6)

The first objective function in Eq. (6) is difficult to solve
directly. Inspired by the optimization method proposed in [8],
we implement the algorithm in Eq. (7). Specifically, the first
step in Eq. (7) uses OS-SART.


Xn+1/2 = argmin

X

∥∥∥AXT
(3) − Y

T
(3)

∥∥∥2
F

Xn+1 = argmin
X

∥∥∥X − Xn+1/2
∥∥∥2
F
+ λ∗ ‖X‖∗

+λD
∑
s

‖Es (X )−Dαns ‖
2
2 .

(7)

To solve the second step of Eq. (7), an intermediate variable
D = X and a difference variable V are introduced. Then,

Fig. 1. The mouse thorax phantom (left) and the iodine contrast agent (right).

the objective function is split into the three steps in Eq. (8).
The first step of Eq. (8) has an explicit solution given by Eq.
(9), where dnj and vnj are entries of Dn and Vn, respectively.
The second step is solved using the generalized singular value
thresholding (G-SVT) formula [2].



Xn+1 = argmin
X

∥∥∥X − Xn+1/2
∥∥∥2
F
+ µ∗ ‖Dn −X − Vn‖2F

+λD
∑
s

‖Es (X )−Dαns ‖
2
2

Dn+1 = argmin
D

µ∗
∥∥D −Xn+1 − Vn

∥∥2
F
+ λ∗ ‖D‖∗ .

Vn+1 = Vn + Xn+1 −Dn+1

(8)

xn+1
j =

x
n+1/2
j + µ∗(d

n
j − vnj ) + λD

∑
s

N∑
i=1

esij [Dα
n
s ]i

1 + µ∗ + λD
∑
s

N∑
i=1

esij
I1I2I3∑
l=1

esil

. (9)

The update of α in Eq. (6) is basically equivalent to solving
a constrained problem, which can be solved using an orthogo-
nal matching pursuit (OMP) algorithm [9]. The sparsity level
LS0 and the precision level ε control the sparse representation.
The OMP process will stop when either ‖αs‖0 > LS0 or∥∥Es

(
Xn+1

)
−Dαs

∥∥2
2
6 ε.

The workflow of the proposed algorithm can be summarized
as follows. In this work, we applied a simple stopping criteria
for the iterative algorithm, i.e., the algorithm should be stopped
after a fixed number of iterations.

Algorithm 1 Dictionary Learning and Low Rank based Multi-
energy CT Reconstruction.
Initialization:

Set parameters λD, λ∗, µ∗, LS0 and ε;
Initialize X 0 = D0 = V0 = 0.

Repeat until the stopping criteria is met:
Step 1: OS-SART;
Step 2: Eq. (9);
Step 3: Solving Dn+1 = argminD µ∗

∥∥D −Xn+1 − Vn
∥∥2
F

+λ∗ ‖D‖∗ using G-SVT;
Step 4: Vn+1 = Vn + Xn+1 −Dn+1;
Step 5: Updating α using OMP.
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IV. EXPERIMENT

A. Experimental Setup

In this study, an equi-spatial fan-beam geometry was as-
sumed. There were 512 detector elements of width 0.1 mm
per element. Totally, 640 projections were uniformly collected
over a full scan range. The distance from the source to the
system origin was 132 mm, and the distance from the source
to the detector was 180 mm. A 50 kVp X-ray spectrum was
used, which was generated from the SpectrumGUI software
[10]. The spectrum was divided into four spectral channels:
15-22 keV, 23-27 keV, 28-33 keV and 34-50 keV. In the
experiment, a realistic mouse thorax phantom [11] was used,
in which 1.2% by weight iodine contrast agent was introduced
into the blood circulation. Figure 1 shows the original mouse
thorax phantom and the added iodine contrast agent.

The reconstructed CT images were 512 × 512 × 4 tensors
with area 0.075 mm×0.075 mm per pixel. Both noise-free
and noisy (2× 104 photons in total emitted along each x-ray
path) projections were simulated. In the case of a blank scan,
the four energy channels received about 18.2%, 22.4%, 26.1%
and 32.6% of total photons respectively.

B. Parameter selection

The parameters were empirically selected to achieve satis-
factory performance. In this study, λD = λ∗ = 0.05, µ∗ = 0.5,
LS0 = 6, the maximum iteration number was 20, and each
projection dataset were divided into 40 subsets. The parameter
ε, which is crucial for denoising, depends on the noise level.
However, projection noise in different energy channels may be
different. Thus, we selected ε values separately for the energy
channels.

We employed a semi-empirical way to determine the param-
eter εi for each energy channel. Let γi be the median ratio of
the detected photon numbers in detector bins between the ith
energy channel and the sum over all the channels. Because the
variation is equal to the number of photons for Poisson noise,
γi reflects relative noise levels across the channels. After the
logarithm transform, εi can be defined as εi = ε0 log (1/γi),
where ε0 = 0.0013 in this paper.

V. RESULTS AND DISCUSSIONS

In order to have a dictionary, we first reconstructed an
image with TV regularization from a single channel projection
dataset. Then, image patches of 8 × 8 pixels were extracted
from the image for dictionary learning. The learned dictionary
has 256 atoms as shown in Fig. 2.

In this study, we compared the images reconstructed using
the conventional FBP, TV regularization method (correspond-
ing to Eq. 2), TV and low rank regularization (corresponding
to Eq. 3), and dictionary learning and low rank regularization
method. For fair comparison, we carefully adjusted the param-
eters so that all the methods would achieve optimal results.
The reconstructed images are shown in Fig. 3. It can be seen
from the 1st channel images in rows 3 and 4 that the results
in row 4 has fewer noise, which is attributed to low rank
regularization. By comparing the bottom two rows, it can be

Fig. 2. Learned dictionary.

observed that channels 3 and 4 lost substantial details in the
lung region in row 4, while the proposed method can keep
details well for all the channels and reduce noise effectively.
The superior performance of the proposed method must come
from two factors: dictionary is better than TV for denoising,
and the semi-empirically selected parameters can adapt to
various noise levels in different energy channels.

In conclusion, based on the dictionary learning and low
rank regularization, we have developed a novel reconstruction
method for multi-energy CT. The proposed algorithm can
reduce noise significantly and provide more details at the same
time. In the near future, we will systematically evaluate our
methodology using real datasets and optimize its preclinical
and clinical potential.
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Fig. 3. Reconstructed images in the four energy channels. The columns from the left to the right correspond to the 1-4 energy channels, respectively. The
images in the top two rows were reconstructed using FBP from the noise-free and noisy projection datasets, respectively. The images in rows 3-5 are iteratively
reconstructed from the noisy projection dataset using TV regularization, TV and low rank regularization, and dictionary learning and low rank regularization,
respectively. The display windows are [0.4, 1.4] cm−1, [0.2, 1.0] cm−1, [0.1, 0.8] cm−1 and [0.1, 0.6] cm−1 for channels 1-4, respectively.
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CNR Analysis of Dual Energy Technologies 
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Abstract—We present a comparative study of different dual 

energy techniques in X-ray computed tomography (CT), based 

on dual kVp, dual layer detectors and photon-counting detectors. 

A projection-based contrast-to-noise ratio (CNR) analysis tool 

was developed to evaluate the dual energy performance. The 

spectral power (CNR at maximum tube output) and spectral dose 

efficiency (dose-normalized CNR) were defined as the metrics in 

this study. The results indicated that the spectral dose efficiency 

of dual kVp was about 25%-45% higher than that of the dual 

layer, while the difference in spectral power between dual kVp 

and dual layer approaches were below 10%. Energy-

discriminating photon-counting technique had superior 

performance on both metrics if it could provide sufficient count 

rate capability of 100 Mcps/mm2. With currently available count 

rate of 20 Mcps/mm2, however, the practical application of this 

technique is limited by the spectral power. The validation results 

also demonstrated that the projection-based CNR analysis could 

achieve similar results compared to the full-blown simulation 

with image reconstruction. 

 
Index Terms—dual-energy, CNR Analysis, spectral power, 

spectral dose efficiency 

I. INTRODUCTION 

UAL-energy computed tomography (DECT) differentiates 

and classifies materials by utilizing attenuation values 

acquired using two different energy spectra. The idea of 

DECT dates back to the early 1970s when Hounsfield first 

proposed to use an image-based method to distinguish iodine 

and calcium [1]. Since then several CT configurations have 

been developed to realize the dual-energy technique. One of 

the first configurations used multi-layer detector [2] which 

was recently implemented into commercial product [3]. Other 

approaches such as the rotate-rotate acquisition, dual-source 

technology [4] and fast kV switching technique [5] also found 

their way to the products. Moreover, the direct-conversion 

energy-discriminating photon counting detector [6] is also 

deemed as a promising technique in the future. 

The main aim of this study is to perform a quantitative 

comparison of the major dual energy approaches. A 

projection-based screening tool was developed to evaluate two 

main figures of merit: the spectral power and spectral dose 

efficiency. A first class of approaches studied here is based on 

dual tube voltage (dual kVp) imaging, which is representative 

for fast kVp switching [5], for dual-source CT and for rotate-

rotate acquisitions. It is compared to dual energy based on 

dual layer [3] and photon-counting [6] detectors. 

Finally, we also provide a broader comparison of all dual 

energy approaches, highlighting specific system advantages 

and challenges associated with each technology. 

II. MATERIALS AND METHODS 

A. Systems and operating modes 

In this paper we simulated two CT systems: Discovery 

CT750 HD (GE Healthcare, Waukesha, WI) for the 

implementation of dual kVp and photon counting technique 

and Brilliance iCT system (Philips Healthcare, Best, The 

Netherlands) for the dual layer technique. The operating 

parameters of the corresponding CT systems were acquired 

from the CEP report [7] and vendor brochures [8].  

Table 1 shows the parameters used in the simulation, 

including the tube voltages at low and high energy, the 

maximum tube current and tube power, material and thickness 

of the added filtration, specifications of detector layers as well 

as the scanning time and gantry rotation speed. 

Table 1: Operating parameters used for dual energy comparison study. 

 

The two settings for the dual kVp approach correspond to 

equal mA and equal tube power at low and high energy. The 

duty ratio between the low and high energy represents the time 

percentage allocated to the low and high kVp during fast 

switching. 

For the dual layer system we used 1 mm ZnSe as the top 

scintillator and added 25 µm Sn inter-layer filter according to 

[3]. As shown in Table 1, tube voltages at 120 kV and 140 kV 

were included for comparison. Note that the duty ratio 

between low and high energy cannot be adjusted for the dual 

layer approach. 

For photon counting (PC) system, we studied CdTe detector 

with periodic count rate (N0) of 20 Mcps/mm
2
 and 100 

Mcps/mm
2
. The constraint on the maximum tube current was 

added to avoid complications of pile-up effect. The spectral 

response model of PC was implemented according to literature 

which was validated using synchrotron [9]. Note that we used 

0.5×0.5 mm
2
 detector pixel size which was different from 

what was used in [9]. The corresponding energy tail in the 

response function due to charge sharing, fluorescence and K-

escape was assumed to be 20% in this study. We did not 

consider losses due to rejection of photons that fall outside a 

dkVp 
const mA

dkVp       
const power

DL   
120kVp

DL   
140kVp

PC 
20Mcps

PC 
100Mcps

kV_LOW 80 80 120 120 140 140

kV_HIGH 140 140 120 140 140 140

Duty_LOW 60% 60% 100% 100% 100% 100%

Duty_HIGH 40% 40% 100% 100% 100% 100%

Power (kW) 100 100 120 120 100 100

mA_LOW 714 1250 1000 857 150 714

mA_HIGH 714 714 1000 857 150 714

Detector 

Absorption
100% 100% 100% 100%

top layer: 1mm ZnSe 

inter-layer: 25mm Sn 

bottom layer: 100%

D 
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certain energy range: certain photon-counting solutions have 

detector sub-pixels with varying energy thresholds, but 

rejecting a subset of the photons is not a desirable approach. 

B. Projection-based analysis tool 

The motivation of developing a projection-based analysis 

tool is to enable quick screening of various dual energy 

technologies, in terms of CNR or dose efficiency, without 

going through the time-consuming full dual-energy simulation 

and reconstruction.  

 

Figure 1: Framework of the developed dual energy analysis tool 

 

The framework of this analysis tool is illustrated in Figure 

1. The system spectra for LE & HE are first computed using 

the tube spectra under the selected kVp, mA, duty ratio, and 

rotation time, plus filtration by intrinsic/flat/bowtie/inter-layer 

filters (if any), as well as detector response. Two sizes of 

water phantoms were selected for two different purposes of 

analyses: “medium” (24 cm) for dose-normalized CNR and 

“large” (32 cm) for CNR at maximum power, respectively. To 

simulate the contrast agent we inserted 3 cm of 10 mg/cc 

iodine. The spectrum files used in this study are produced by 

the XSPECT package (v3.5), and then filtered with the 

nominal intrinsic filtration of a typical X-ray tube. With the 

system spectra and phantom defined, dose estimation, and 

projection generation followed by material decomposition 

were then conducted independently in the projection domain 

for the central ray. They were used together to compute the 

metrics (defined in the next section). Please refer to literature 

for the implementation details about projection generation 

[10], dose estimation [11] and material decomposition [12]. 

C. Evaluation criteria 

Spectrum-based energy separation/photon flux can be used 

as an indicator to estimate the noise level and its amplification 

after material decomposition. For more quantitative 

comparison, we need to take a closer look at the noise 

distribution after material decomposition.  

As shown in Figure 2, the area of the noise cloud in the 

basis material space represents the material separability which 

reflects the overall dual energy performance. Note that the 

direction of the red arrow is called „Optimal keV‟, along 

which the monochromatic image (mono) has the least noise; 

the direction of the light blue arrow is orthogonal to the red 

arrow, along which the mono has the worst noise and indeed 

represents the material separability.  

The mono projection is synthesized by linearly combining 

the decomposed water and iodine at a specific energy:  

    ( )     ( )       ( )   , 

where     and     are linear attenuation coefficients of 

water and iodine;    and     are the path length of water and 

iodine equivalent materials. If we normalize the  , the mono 

projection can be rewritten as the dot product of two vectors: 
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Similarly, the orthogonal mono projection can be 

synthesized by: 
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As discussed above, the area of the noise cloud reflects the 

material separability. Therefore the metric for evaluation is 

defined as:  
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The final metrics used in the evaluation are spectral power 

and spectral dose efficiency. The spectral power corresponds 

to CNR
2
 at the maximum tube power, which reflects the best 

performance a dual energy CT system could possibly achieve 

regardless of dose constraints. The spectral dose efficiency 

corresponds to CNR
2
 at normalized dose which indicates the 

material separability at a given dose level. We believe that 

these metrics best represent what really matters in the dual 

energy images. For comparison, others have published a 

spectral separability metric, which does not clearly account 

for misclassified voxels and may favor high power rather than 

dose-efficiency. 

 
 

Figure 2: Noise cloud of basis materials after projection-based material 

decomposition for dual kVp and dual layer technologies. 
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III. RESULTS 

A. Energy separation and photon flux 

As mentioned in section II.C, previous studies have used the 

energy separation and photon flux as good indicators for 

spectral dose efficiency and spectral power, respectively. The 

separation of effective energy for different DE technologies is 

listed in Table 2. All techniques have reasonable to good 

energy separation in air, except for dual layer operated at 120 

kVp. In a more realistic scenario, after passing through 24cm 

or 32cm water phantoms, the energy separation for dual kVp 

techniques improves dramatically, the energy separation of 

dual layer degrades significantly and the energy separation of 

photon counting detectors remains good. 

The photon flux corresponding to the maximum tube power 

output detected at each detector cell per view is shown in 

Figure 3. Dual kVp at constant mA has rather low flux at the 

low kVp, while the constant power version has a more 

balanced photon flux. Both dual layer techniques have a 

higher number of photons, especially at the low energy, 

however due to the limited energy separation the photons will 

be less useful in contributing to spectral information, as 

illustrated by the analysis in the next section. 

Table 2: Comparison of energy separations of dual energy technologies. 

 
 

 
 

Figure 3: Comparison of photon flux at maximum tube power for different 

dual energy technologies after attenuated by 24 cm water. 

 

B. Spectral power and spectral dose efficiency 

In this section, we provide the more quantitative evaluation 

of spectral power and spectral dose efficiency for 0.8 sec body 

scan from different dual energy modalities. The simulation of 

spectral dose efficiency and spectral power correspond to 24 

cm and 32 cm diameter phantoms, respectively. As shown in 

Table 3, the CNR results from all the dual energy technologies 

were normalized to dual kVp with constant mA which was the 

baseline in this study.  The spectral dose efficiency of dual 

kVp approach was about 25%-45% higher than that of the 

dual layer approach. The spectral power of dual kVp and dual 

layer approaches were comparable. The photon-counting 

approach has the highest spectral dose efficiency and spectral 

power capability if the system could be operated at 100 

Mcps/mm
2
 count rate. At the currently stage with 20 

Mcps/mm
2
 the spectral power of photon counting system was 

about 45%-60% lower than dual kVp or dual layer 

approaches.  

The energy levels of the monochromatic projection were 

optimized to maximize the CNR. 

 
Table 3: Comparison of DE performances of dual energy technologies. 

 
 

C. Validation of analysis tool 

To validate the projection-based tool (CatFiQ) developed in 

this study, we used image-based full-blown simulation in 

CatSim [10] to validate the results. Three sizes of phantoms 

(16/24/32 cm water cylinder) were used to compare the CNR
2
 

in monochromatic images normalized by the total dose 

(CNR
2
/D). The parameters of „dkVp const power‟ and „PC 

100 Mcps‟ specified in Table 1 were used for simulation. 

Both CatFiQ and CatSim simulation were conducted 20 

times and the mean value of the CNR
2
/D in the dose was 

compared. The error bar was the standard deviation of 

CNR
2
/D from these tests. The dose was calculated using the 

Monte Carlo-based function CatDose within the CatSim 

package. The results were normalized to dkVp. 

As shown in Figure 4, the results from CatFiQ and CatSim 

matched with each other. The result indicated that for all the 

object sizes the projection-based method was a good 

estimation of the dual energy performance. 

 
 

Figure 4: Validation of the dual energy evaluation tool (CatFiQ) with image-

based full-blown simulation (CatSim [10]) for small/medium/large phantoms 

using dual kVp and photon counting CT. 

Energy Separation (keV) In Air

Water 

(24 cm)

Water 

(32 cm)

dkVp  - const mA 23 29 32

dkVp - const P 23 29 32

dlayer - 120 kV 19 15 14

dlayer - 140 kV 24 20 19

PC - 20 Mcps 32 30 29

PC - 100 Mcps 32 30 29

Body scan

Spectral dose-

efficiency

Spectral 

power

dkVp - const mA 1.00 1.00

dkVp - const P 1.21 1.38

dlayer - 120 kV 0.71 1.00

dlayer - 140 kV 0.76 1.48

PC - 20 Mcps 1.31 0.56

PC - 100 Mcps 1.31 2.76
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IV. DISCUSSION 

It should be noted that Figure 3 shows the dual layer had 

more photon flux arriving at the detector than the dual kVp, 

but the results in Table 3 shows that the spectral power of dual 

layer was about the same as dual kVp. This discrepancy was 

due to the spectral overlap in the dual layer approach which 

amplified the noise in the material decomposition process and 

impaired the CNR even at the maximum power output. 

The dose efficiency and spectral power used in this paper is 

not necessarily the only metrics that should also be taken into 

account for dual energy techniques. Other considerations, such 

as temporal skew, adjustable duty ratio, full field-of-view 

capability as well as the impact of cross scatter are also 

important factors for a CT system. In Table 4 we tried to 

compare these features on different implementations of dual 

energy technologies. Note that the projection-based 

approaches grouped as „spectral CT‟ can provide beam 

hardening-free monochromatic images with the potential for 

quantitative analysis; in contrast, the image-based approaches 

grouped as „dual energy CT‟ are straightforward to implement 

but the beam hardening artifacts in the reconstructed datasets 

undermine the MD accuracy. 

The purpose of this study is to get a good understanding of 

the fundamental differences between dual energy systems, not 

including the entire correction/calibration, reconstruction and 

post-processing chain. Consequently this study does not 

include techniques such as iterative reconstruction or 

correlated noise reduction. We think the results are still highly 

relevant since better projection data should result in better 

images for a fixed reconstruction chain, although the relative 

importance of certain criteria may vary. 

V. SUMMARY 

In summary, a dual energy benefits study was conducted for 

a variety of dual energy technologies: dual kVp, dual-layer, 

and photon counting with realistic energy response. A 

projection-based evaluation tool was developed to fast screen 

different technologies without full CT simulation and 

reconstruction. The metrics for comparing different dual 

energy approaches were the scan-time-normalized CNR at 

maximum power and the optimal dose-normalized CNR. The 

results indicated that the spectral dose efficiency of dual kVp 

was about 25%-45% higher than that of the dual layer, while 

the spectral power of dual kVp and dual layer approaches 

were comparable. Specifically, the spectral power of dual kVp 

with constant power was about 38% higher than that of dual 

layer at 120kV. The Photon-counting technique had superior 

performance if it could provide sufficient count rate capability. 

With current count rate, however, this technique is still limited 

by the spectral power. The validation results also 

demonstrated that the projection-based CNR analysis used in 

this paper could achieve similar results compared to the full-

blown simulation with image reconstruction. 

Future works include modeling and investigation of the 

material decomposition for photon-counting CT with multiple 

energy bins; modeling and correction of the pileup effect in 

photon counting CT and analysis of the clinical implications 

using the realistic patient data.  
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Spectrum Binning Approach for Multi-Material
Beam Hardening Correction (MMBHC) in CT

Qiao Yang, Meng Wu, Nicole Maass, Andreas K. Maier, Joachim Hornegger, and Rebecca Fahrig

Abstract—In CT, the nonlinear attenuation characteristics of
polychromatic X-rays cause beam hardening artifacts in the
reconstructed images. When datasets contain multiple materials
in the field of scan, the performance of state-of-the-art beam
hardening correction approaches is limited by high computa-
tional load and reduced correction efficiency. An image based
multi-material beam hardening correction (MMBHC) method is
introduced by conserving original reconstruction attenuation in
a material density map, and obtaining beam harding artifacts
by polychromatic forward projecting of the original CT images.
By decomposing the attenuation coefficient into photoelectric
and Compton scattering components, the spectrum can be
parameterized and presented with several energy bins. In this
paper, the MMBHC algorithm is accelerated by using a proposed
spectrum binning (SB) method to reduce the required prior
knowledge from full spectrum to three energy bins. The approach
has a significant computational time reduction by use of mate-
rial number independent forward projection and parameterized
energy spectrum with fewer bins. Moreover, representing the
spectrum with a few parameters instead of optimizing full
spectrum increase the stability of the MMBHC process. The
algorithm has been evaluated with a simulated phantom on 3D
cone beam geometry. In comparison to correction results with
full spectrum information, the results with optimized three bins
spectrum shows comparable artifact reduction efficiency while
providing significant reduction on computational time.

Index Terms—Polychromatic X-ray, beam hardening correc-
tion, spectrum binning, CT reconstruction

I. INTRODUCTION

A. Purpose of this work

In computed tomography (CT), analytical reconstruction
techniques such as filtered backprojection (FBP) are based
on the assumption that X-ray radiation is monoenergetic, and
the total attenuation of incident X-rays is linearly related
to the thickness of the object along the ray. In reality, X-
ray beams consist of a continuous energy spectrum, and
material attenuation coefficients are energy dependent. When
a polychromatic X-ray passes through the substances, due to
the non-linearity, reconstruction images will contain cupping
and streaking artifacts, which are so-called beam hardening
artifacts.

Various beam hardening correction (BHC) algorithms have
been developed for X-ray CT, both analytically [1]–[3] and
iteratively [4]–[7]. However, when multiple materials appear
in a scanned dataset, such as contrast agent or metal implants
in clinical CT or most industrial CT cases, state-of-the-art

Q. Yang, A. K. Maier, and J. Hornegger are with the Pattern Recogni-
tion Lab, Department of Computer Science, Friedrich-Alexander-University
Erlangen-Nuremberg, Germany. E-mail: qiao.yang@cs.fau.de. M. Wu and R.
Fahrig are with the Department of Radiology, Stanford University, USA. N.
Maass is with the Siemens AG, Healthcare Sector, Erlangen, Germany

approaches have large computational complexity and limited
correction performance.

B. State of the art

In previous work [8], a practical multi-material BHC ap-
proach which employs a CT-value conserving material de-
composition technique was presented. The method separates
reconstructed images into density images and images con-
taining material information, which has the advantage that
segmentation errors, which result in invalid material properties
for a voxel, have only minor effects on the beam hardening
correction.

It has been presented that energy dependent attenuation
coefficients can be decomposed into a linear combination
of photoelectric and Compton scattering components [5].
Wu et al. have proposed a modified optimization problem
for polychromatic statistical reconstruction algorithms, and
simplified the algorithms with a spectrum binning method to
reduce the full spectrum [9]. An evaluation study to examine
the robustness of the method with mismatched spectra are
published in [10].

C. Outline

In this paper, a method that applies spectrum binning to ac-
celerate the MMBHC approach is presented. The original CT
value conserving density map is combined with photoelectric
and Compton scattering components which are calculated from
attenuation decomposition. By polychromatic forward project-
ing the two components separately, polychromaticity enhanced
images are obtained to calculate the beam hardening artifacts.
In the next section, a review of the MMBHC approach and
the spectrum binning method is given and the derivation of
the combined algorithm is discussed in detail. In Section III,
the results from the simulated phantom are illustrated and
quantitative evaluation is performed.

II. METHOD

A. Multi-material beam hardening correction (MMBHC)

When a monochromatic X-ray beam traverses a homo-
geneous object, according to Lambert-Beer’s law, the total
attenuation is linearly related to the intersection length of
the object and the ray. However, in practical setups, the
emitted X-ray photons have varying energies and the detector
response is also energy-dependent. The measured intensity of
a polychromatic beam Ypoly on detector pixel i can be written
as the sum of monochromatic contributions for each energy
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bin E in the X-ray spectrum (E ∈ [0, Emax]):

Ypoly,i =

∫ Emax

0

b0,i(E) · exp

(
−
∫
Li

µ (E, r) dl

)
dE, (1)

where b0,i(E) is the normalized source-detector energy spec-
trum, L is the path length of the corresponding ray direction.
Denote r as the spatial location on the reconstruction grid, and
µ (E, r) is the spatial distribution of the attenuation coefficient
which depends on spectrum energy E.

When a dataset consists of M materials, the mass at-
tenuation coefficient for material m at specific energy E0

can be written as κm(E0) = µm(E0)/ρm, with ρm being
the reference material density. In [8], a multi-material beam
hardening correction scheme is proposed, which separates
reconstructed images g(r) into images containing material
information κm(E) and spatial density images ρm(r). Thus,
(1) can be rewritten as

Ypoly,i =

∫ Emax

0

b0,i(E)·exp

(
−

M∑
m=1

κm(E)

∫
Li

ρm(r)dl

)
dE.

(2)
Instead of using the reference material density ρm, material
density at spatial location r is applied:

ρm(r) =
fm(r) · ginitial(r)

κm(E0)
, (3)

where fm(r) is the binary mask of material m that is obtained
from automatic k-means segmentation [11] at location r.
By polychromatically forward projecting the original beam
hardening affected volume ginitial, additional beam hardening
is introduced and added up onto the existing artifacts. The
difference between ginitial and the reconstruction image gcalc(r)
from recalculated polychromatic attenuation can be used to
estimate the beam hardening error:

ĝBH(r) = gcalc(r)− Gauss(0, σ) ∗ ginitial(r), (4)

with arg minσ ||ĝBH(r)||2. Note that a spatial resolution match-
ing Gaussian filtering is applied. Then the beam hardening
image ĝBH(r) is subtracted from the initial reconstruction to
obtain a beam hardening corrected image

gcorrected(r) = ginitial(r)− ĝBH(r). (5)

Since errors may occur during segmentation due to severe
artifacts, an iterative scheme can be used for more accurate
image updates.

B. Spectrum binning (SB)

De-Man et al. had decomposed the energy dependent attenu-
ation coefficients into linear combinations of photoelectric and
Compton scattering components [5]. Therefore, the attenuation
coefficients of a certain substance can be represented as:

µm(E) = φmΦ(E) + θmΘ(E), (6)

where Φ(E) and Θ(E) are base functions of energy dependent
photoelectric and Compton scattering components, and φm
and θm represent the mth material dependence of the two

components. For a multi-material case, from (6) the attenua-
tion coefficient can be decomposed to:

µ(E, r) =

(
Φ(E)

M∑
m=1

φmfm(r) + Θ(E)
M∑
m=1

θmfm(r)

)
= Φ(E)φ(r) + Θ(E)θ(r).

(7)
φ(r) and θ(r) are the amount of photoelectric and scattering
components from all materials at spatial location r.
Using this expression, the detector signal from full spectrum
information is

Ŷ full =

∫ Emax

0

b0(E)

· exp

(
−Φ(E)

∫
Li

φ(r)dl −Θ(E)

∫
Li

θ(r)dl

)
dE.

(8)

Wu et al. [9] developed an optimal spectrum binning strategy,
which uses a reduced number of energy bins instead of full
spectrum information. Define (φt, θt) as the pairs of line
integrals of photoelectric and Compton scatter components
over total distance t that are spaced over the equivalent range
of materials, t = [L1 L2 . . . LM]. The approximated expected
signals using spectrum binning can be expressed as

Ŷ SB(φt, θt;Bs,Φs,Θs) =

S∑
s=1

Bs · exp
(
−Φsφt −Θsθt

)
(9)

Φs and Θs are the corresponding values of each bin s. The
energy bin sizes Bs need to satisfy the constraints that the
sum of all bins is identical to the integral over the spectrum:
S∑
s=1

Bs =

∫ Emax

0

b(E)dE, Bs > 0 for s = 1, 2, 3, ...S.

(10)
The optimal bin sizes Bs, and the values of Φs and Θs are
determined by optimizing

argmin
Bs,Φs,Θs

‖ log(Ŷ full(φt, θt))− log(Ŷ SB(φt, θt,Bs,Φs,Θs))‖1.

(11)
Empirical results show that the L1 distance provides relatively
good BHC results.

C. MMBHC-SB
Define p̂i(E) =

∫
Li
µ (E, r) dl as the line integral through

the volume along ray i. From Eq. (2) and (3), p̂i(E) can be
written as

p̂i(E) =
M∑
m=1

∫
Li

κm(E) · fm(r) · ginitial(r)

κm(E0)
dl. (12)

From the MMBHC approach, the spatial density image cal-
culated from the original reconstruction is used instead of the
true material density. A ratio density map is calculated as

αm(r) =
fm(r) · ginitial(r)

ρm · κm(E0)
. (13)

The effective energy E0 should be material dependent. At
the segmentation step, the updated centroids from k-means
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clustering correspond to the effective attenuation coefficients
for each material [11]. The effective energy of each material
are then be determined.

Applying Eq. (7) and Eq. (13) to Eq. (12), the line integral
p̂S for each discrete energy bin can be formulated as

p̂S
i = Φs

M∑
m=1

∫
Li

φmαm(r)dl + Θs

M∑
m=1

∫
Li

θmαm(r)dl.

(14)
The polychromatically reprojected sinogram can be calculated
as

Ŷ MMBHC-SB
calc =

S∑
s=1

Bs · exp(−p̂Si ). (15)

D. Experiments
In order to evaluate the performance of the algorithm,

polychromatic cone–beam CT simulations with added Pois-
son noise were carried out. The digital phantom has a soft
tissue basis of 20 cm in diameter, two cortical bone columns
of 4 cm in diameter and two titanium columns of 3 cm
in diameter. Source-isocenter-distance is 80 cm and source-
detector-distance is 120 cm. Each dataset consists of 640
projection images over an angular range of 360◦, with a size
of 512×512 pixels at an isotropic resolution of 0.8×0.8 mm2.
The image reconstruction was performed on a 320×320×320
voxel grid with spacing of 0.8×0.8×0.8 mm3. Fig. 1 shows
the attenuation coefficients of the three simulated materials
and attenuation decomposition results for the case of cortical
bone.

(a) (b)

Fig. 1. (a) Attenuation coefficients of soft tissue, cortical bone and titanium.
(b) Decomposition of attenuation coefficient into photoelectric and Compton
scatter components for cortical bone (Eq. (6)).

III. RESULTS AND DISCUSSION

The original reconstruction and correction results including
line profiles are shown in Fig. 2. It can be seen that the FDK
reconstruction suffers from cupping and streaking artifacts.
The center image is obtained using the previous approach
[8] with full spectrum information (120 energy bins), while
the right image is calculated with a parameterized spectrum
of three energy bins. Both are the correction results after
the first iteration. The second row of Fig. 2 shows line
profiles corresponding to each reconstructed image. It can
be observed that the correction using three energy bins has
comparable overall performance, with little over-correction on
cortical bone. The material total lengths which are chosen
for spectrum parameter optimization will result in different
correction performance for each material.

As discussed before, since the polychromatic energy spec-
trum has different impact on different materials, the effective
energy for each material has to be chosen independently. Table
I shows effective energies of the three materials at each itera-
tion. The values are obtained from k-means clustering of the
reconstructed image, therefore segmentation errors which are
caused by artifacts will influence the results. The segmentation
improvement is illustrated in Fig. 3(a). The percentage of
missegmented voxels converges quickly at the first iteration,
further iterations only marginally improve the results. Fig. 3(b)
shows the error volume of attenuations log(Ŷ full) − log(Ŷ S)
corresponding to different materials’ thicknesses. Maximum
thickness values of different materials have been chosen ac-
cording to relations between material attenuation coefficients
at efficient energies.

Iterations Soft tissue (keV) Bone (keV) Titanium (keV)

Original Recon. 58 72 91
1st iteration 65 71 85
2nd iteration 70 77 84
3rd iteration 71 76 84

TABLE I
EFFECTIVE ENERGY FROM K-MEANS CLUSTERING FOR EACH MATERIAL

AT EACH ITERATION.

Regarding computation time, the proposed algorithm has a
large reduction of execution time for two reasons. Firstly, the
number of polychromatic forward projection increases with
the number of substances in the previous MMBHC approach.
In the current method, increasing the material number only
results in a marginal increase in computational time, because
it forward projects the two components from attenuation
decomposition. Moreover, the proposed approach only uses
three energy bins in the polychromatic model instead of a
full spectrum, which results in a significant reduction of
computation load.

IV. CONCLUSION

In this paper, we have derived an accelerated multi-material
beam hardening correction approach using only a few energy
bins instead of full spectrum information. As shown in the
results, using the optimized three energy bins can provide
effective beam hardening artifact reduction after the first iter-
ation. The main advantage of the algorithm is the significant
reduction of computation time. The number of forward and
back-projections is not influenced by the number of materials,
but depends on photoelectric and Compton scattering compo-
nents obtained from attenuation decomposition.
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Original reconstruction Correction with full spectrum Correction with 3 energy bins

Fig. 2. Results of original analytical reconstruction, correction from previous MMBHC approach, and proposed algorithm with three energy bins. Corresponding
line profiles are plotted. Correction images are results after the first iteration. Reconstructed images are displayed with window level [0.05; 0.09] mm−1.

(a) (b)

Fig. 3. (a) Percentage of incorrectly segmented voxels for three materials from original reconstruction and at each iteration step. (b) Attenuation error volume
at three materials’ various thicknesses using spectrum binning methods.
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Guided Noise Reduction for Spectral CT with
Energy-Selective Photon Counting Detectors

Michael Manhart, Rebecca Fahrig, Joachim Hornegger, Arnd Doerfler and Andreas Maier

Abstract—We investigate the use of joint bilateral filtering for
noise reduction in energy-selective photon counting detectors. A
guidance image from all energy channels is computed, which
steers a non-linear filter to denoise each energy bin individually.
Our novel approach is evaluated with cone beam data simulated
using a numerical cardiac phantom. Results indicate that the
method increases cross-talk between energy channels only at
a very slight level. In terms of noise reduction, the method is
successful. The rRMSE is reduced by about 60% and the SNR
is increased from 3.3 to 72.9 for the channel with the lowest
photon count.

I. I NTRODUCTION

Spectral CT (S-CT) facilitates the quantitative measurement
of material properties in X-ray computed tomography (CT).
Popular diagnostic applications are bone removal, measure-
ment of blood volume in the lung or quantification of contrast
agent concentrations (e.g., in the myocardium) [1]. S-CT
data can be acquired using energy-selective photon counting
detectors [2]. The energy-selective detectors assign incoming
X-ray photons to energy bins. Figure 1 visualizes an idealized
binning of an X-ray photon spectrum into 3 bins. The binned
data can be reconstructed separately to obtain volumes with
energy-selective attenuation coefficients. This can be utilized,
for instance, to reconstruct contrasted and non-contrasted
images from a single acquisition. Since iodine contrast agent
has a K-edge of 33.2 keV, it will not be visible in high energy
bins (e.g., bins around 140 keV) [3]. Because the full spectral
data is acquired in one shot, contrasted and non-contrasted
images will be perfectly aligned. This is particularly beneficial
for imaging of moving organs, e.g., cardiac and lung imaging.

However, by splitting the acquired photons into bins the
noise statistics of the corresponding projection images suffer.
Especially bins covering only the low energy portion of
the spectrum energy distribution are corrupted by noise. For
instance, Figure 2a shows a numerical projection image of the
spectral data corresponding to Bin 1 in Figure 1. Due to the
low energy of this bin with respect to the spectrum distribution,
the projection image is obviously noisy. Thus an expedient
noise reduction method is required to obtain appropriate image
quality at clinically acceptable dose levels.

Iterative reconstruction algorithms have shown superior
image quality [4], but suffer from high computational de-

A. Maier, J. Hornegger, and M. Manhart are with Pattern Recognition Lab,
Department of Computer Science, Friedrich-Alexander-Universität Erlangen-
Nürnberg, Germany. M. Manhart and A. Doerfler are with Department of
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is with Department of Radiology, Stanford University, CA, USA. J. Hornegger
is with Erlangen Graduate School in Advanced Optical Technologies (SAOT).

Email: andreas.maier@cs.fau.de

Figure 1: Binning of a X-ray spectrum into 3 bins.

mand. Alternative computationally faster methods have been
proposed, which apply adaptive, anisotropic filters in a pre-
processing step on the projection data [5] or in a post-
processing step on reconstructed images [6], [7]. The advan-
tage of projection space denoising is that for photon counting
detectors the noise can be modeled accurately and easily
using Poisson statistics. Up to now, projection space denoising
methods using noise adaptive filter kernels [5], [8], [9], as well
as methods using edge preserving filters [10] and combinations
of both methods [11] have been presented.

In this work we extend the idea of projection based de-
noising by edge preserving filtering to S-CT data of energy-
selective detectors. We guide the edge preserving filter using
information from the fully acquired spectrum. The novel
approach is evaluated using the CONRAD cone beam re-
construction and simulation framework [12] with data from
a numerical cardiac phantom.

II. M ETHODS

A. Energy-Selective Detector

The energy-selective photon counting detector assigns in-
coming photons intob = 1 . . . B bins. Each bin covers a
spectral bandwidth of∆E and the spectral bandwidth of the
first bin starts at energy levelE0. Let x = (u, v) be the spatial
location of the detector pixel with column indexu and row
indexv. The expected photon countIb(x) measured for binb
at locationx is given by

Ib(x) = I0
ˆ

E
0+b·∆E

E0+(b−1)∆E

S(E) exp

(

−

ˆ

L(x)

µ (E, l) dl

)

dE,

(1)
whereI0 denotes the number of photons per mm2 arriving at
the detector in the unattenuated case andS (E) denotes the
spectral distribution with the area under the curve normalized
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(a) Bin 1 (b) Bin 2 (c) Bin 3 (d) Guidance image

Figure 2: Energy-selective projection images and guidance image for joint bilateral filtering.

to one. The X-ray attenuation is defined byµ (E, l) and
depends on the photon energyE and the spatial positionl
on the lineL (x), which points from the X-ray source to
the detector pixelx. Accordingly, the log-transformed image
Pb (x) is given by

Pb (x) = − log
Ib(x)

I0
b

with I0
b
=

ˆ

E
0+b·∆E

E0+(b−1)∆E

I0S(E)dE.

(2)

B. Joint Bilateral Filtering

For guided edge preserving noise reduction we apply joint
bilateral filtering (JBF) [13]. The JBF is a variant of the
bilateral filter [14], where the edge preservation is controlled
by a guidance image. Each intensity of a filtered imageP ′ (x)
is computed as a weighted average of the intensities of the
original imageP (x) in a spatial neighborhoodNx

I ′(x) =

∑

o∈Nx

I(x+ o)W(x,o)

∑

o∈Nx

W(x,o)
, (3)

with W(x,o) = GσS(x− o) · GσR

(

IG(x) − IG(x+ o)
)

,

where Gσ(z) = exp
(

−0.5 · ‖z‖22 /σ
2
)

denotes a Gaussian
kernel. The weighting termW consists of the spatial closeness
termGσS controlled by the domain parameterσS and the range
similarity termGσR controlled by the range parameterσR and
by the guidance imageIG.

C. Guided Range Filtering

To exploit the complete spectral information for the edge
preservation, the guidance image is formed by the sum over
all spectral bins. Therefore the guidance image to filter the
binned projection imagesIb (x) , b = 1 . . . B is defined by

IG (x) =
B
∑

b=1

Ib (x) (4)

Note that the summation inherently includes an uncertainty
weighting as the signal-to-noise ratio is proportional to the
number of measured photons. The range parameterσR is set
to the minimal contrast differenceD in the guidance image,
which should be preserved.

D. Guided Filtering in Reconstruction Domain

The idea of JBF can also be applied after reconstruction of
the image. In this case, however, the guidance image cannot
be simply created by a sum of the individual reconstructed
volumes fb (y). Note thaty = (x, y, z) is used to index
the volume space. In order to create a suitable guidance
image, the image contributions have to be scaled according
to their reliability. In our case, we picked an inverse variance
weighting and denote the variance in binb with σ2

b
. This leads

to the following guidance image

fG (y) =

B
∑

b=1

fb (y)

σ2
b

. (5)

As this method operates in the image domain (ID), we refer
to it as ID-JBF.

E. Experimental Setup

We simulated a static instance of the human heart as
described in [15]. The contents of the heart chambers were
simulated as water with a density of 1.06. The heart muscle
was simulated as water with a density of 1.05. In addition,
the coronary arteries were filled with a solution of Iopromide
(C18H24I3N3O8) that contained0.76 g of contrast agent per
gram of water. The density of this solution was set to 1.40
g/cm3 which is typical for a clinical contrast agent (e.g.,
Ultravist c© 370). The simulated spectrum is shown in Fig. 1.
Its properties were adjusted such that its half-value-layer is
comparable to that of a clinical C-arm system. We set the tube
voltage to90 kVp and the time-current product to0.1mAs.
In this configuration, we haveI0

1 = 948, I0
2 = 28982, and

I0
3 = 10103 photons per mm2 arriving at each detector bin,

if no object is hit between source and detector. In the present
experiment, we did not simulate cross-talk between the energy
bins and the detection efficiency was 100% at all energies.
While this might not be the case in a real detector, it maximizes
the independence between the energy bins and allows us to
study correlations between the energy bins that are introduced
by the denoising method. We did not perform an optimization
of the energy thresholds in the present study to maximize
the iodine contrast, as the focus of the study is denoising
and not material separation. The bins were equally spaced
between 10 and 100 keV according to the sampling range
of the spectrum, i.e.,E0 = 10 keV and∆E = 30 keV. All
simulations and algorithms were created using our open-source
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flat panel simulation and reconstruction framework CONRAD
[12].

JBF filtering was performed in intensity space before con-
version to line-integral space. The intensity difference in
the contrast filled vesselsD was found to be 1000 in the
guidance image. We pickedσS = 9 and σR = 100 for the
projection-based filtering. Then a standard Feldkamp short-
scan reconstruction was performed using a Shepp-Logan filter
[16]. We simulated 495 projections over an angular range of
200 degrees, which is the short-scan range of our 620×480
detector. Detector element size was 0.6×0.6 mm2, the source
detector distance1200mm, and the source to center of rotation
distance was750mm. The heart fit all projections in all views,
thus no truncation correction had to be performed. After re-
construction onto an2563 image grid with 0.5×0.5×0.5 mm3

voxels, we investigated the use of ID-JBF. Here, we chose
the parametrization asσS = 5 and σR = D. The guidance
image weightingsσ2

b
where determined by estimating the noise

variance inside homogenous regions of the corresponding
reconstructed images. JBF filtering and back-projection was
implemented in OpenCL.

Errors were measured using structural similarity [17], linear
correlation coefficient, and the relative root means square error
(rRMSE), that is the RMSE scaled by the maximum intensity.

III. R ESULTS

Table I displays structural similarity and correlations be-
tween the different reconstruction approaches. All denoising
methods show improved results compared to the ground truth.
While correlations increase slightly, the structural similarity
between the three bins is preserved by all methods. Thus, we
can conclude that the JBF does not cause the three energy bins
to display identical information.

Figure 3 shows the center slices of the different reconstruc-
tions of Bin 1. All reconstructions are shown at the same
window and level [10, 110 HU]. The ground truth image
(Figure 3a) nicely differentiates between the heart chambers
and the heart muscle. The excessive noise in Bin 1 does
not permit differentiation of the two heart chambers (Figure
3b, rRMSE 3.10%, SNR 3.3). JBF filtering in the projection
domain allows visualization of a slight contrast between the
two heart chambers. Streaking from polychromatic effects is
emphasized (Figure 3c, rRMSE 1.33%, SNR 29.0). ID-JBF
only is not able to recover the separation between the heart
chambers and the muscle tissue (Figure 3d, rRMSE 1.20%,
SNR 47.6). Additional filtering in the image domain reduces
noise and streak artifacts further (Figure 3e, rRMSE 1.26 %,
SNR 72.3).

IV. D ISCUSSION

We applied the idea of joint bilateral filtering to energy-
resolving detectors. First results demonstrate that the method
is feasible. We were able to restore low-contrast image data
in a very noisy channel. The comparisons between the chan-
nels showed that the method introduces very little cross-talk
between the different energy bins, and their similarity is only
slightly increased.

An advantage of bilateral filters is that they are very easy to
configure. We require only two parameters which can be easily
obtained from the guidance image. The first one isσS which
controls the locality of desired smoothing. It can be chosen
in the same way as a normal Gaussian filter. The second
parameterσR describes the amount of edge preservation. A
good rule-of-thumb way of setting it is to measure the lowest
contrast from the image that needs to be preserved (D). In
case of projection-based filtering, however, we recommend
settingσR to 10% to 20% of this value, as the preservation
of very small signal changes at the edge of high contrast
contours is crucial. Otherwise, streaking artifacts can arise in
the reconstructed images. In our present study, we already
introduced such slight streaking.

At present, we only investigated JBF and did not include
further modifications such as ray-by-ray weighting [5], [9] or
projection stack filtering [8]. Integration of both techniques
into this method is straight-forward, as the filter kernel is
designed for each ray individually anyway. Thus, we would
expect only minor increases in terms of run time. However,
this will require a different object, as we did not observe strong
streak noise in our reconstructions. Another topic for future
work is the straight-forward extension of JBF in the image
domain to 3D.

V. CONCLUSIONS

We created a joint bilateral filter for energy-selective detec-
tors. First results are encouraging. We found that only little
cross-talk is introduced between the channels. The SNR was
improved from 3.3 to 72.3 while preserving a low rRMSE
error.
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Modified Noise Modeling for Robust Statistical
Reconstructions
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Abstract—Statistical, iterative reconstruction has become a
major topic for computed tomography (CT) in the last years
as computational efforts have become feasible. In comparison
to conventional filtered-backprojection methods the iterative
methods highly rely on a consistent model and consistent data.
Motion and inconsistencies can cause strong artifacts in the
resulting images. In statistical reconstructions side information
about the distribution of noise in the measured data is available.
A simple modification of this noise modeling is proposed,
which enables the down-weighting of systematic deviations in
the measured data, making the statistical reconstruction more
robust against inconsistencies.

I. INTRODUCTION

In recent years the increase in computation power has
enabled new iterative reconstruction methods in computed
tomography. Although the computation times for recon-
structing images are still beyond the ones for conventional,
analytic methods like filtered backprojection, the iterative
methods have been adopted to the clinical workflow. They
offer significant dose reductions while maintaining the diag-
nostic confidence in the images.

One major drawback of iterative, statistical methods is that
they rely on a consistent system model. The reconstruction
will try to “explain” the projection data by generating an
image that fits the measured data best. However, modeling
all possible effects that might have occurred during the
acquisition is almost impossible. Motion, beam-hardening,
or out-of-field-of-view data usually do not undergo a special
treatment but appear as artifacts in the final image. One
possible way to reduce some of the artifacts is an additional
weighting applied to the projections [1], [2]. A drawback of
these methods is that the weighting reduces the utilization
of measured data for the reconstruction, which implies a
suboptimal use of radiation dose.

In CT a valid model for the noise induced by the incoming
X-ray photons (ignoring the electronic detector noise) is
a Poisson distribution, i.e. the mean number of photons
equals the expected variance in the detector pixel. By using
this knowledge and error propagation one can obtain an
estimate for the noise in the line integral values or relative
attenuations for each detector pixel. This variance estimate
is then used, for instance, in a weighted least-squares (WLS)
cost function in a statistical reconstruction [3].

In this abstract a method is proposed which incorporates
the projection noise model in a modified way to make the

1 Philips Technologie GmbH, Innovative Technologies, Research Labo-
ratories, Hamburg, Germany

2 Department of Radiology, Technische Universität München, Germany

reconstruction more robust against systematic deviation and
outliers. From the projection data one can get estimates
about the actual noise level and implement outlier rejection
methods for the difference between the forward-projected
image and the raw data. If both deviate too much for a
detector pixel, e.g. by three times the assumed standard
deviation, then the impact of the pixel in the cost function
could be reduced. In the following sections a practical outlier
rejection is described and evaluated for clinical data.

II. METHOD

For the reconstruction we usually approximate the maxi-
mum likelihood (ML) cost function as a WLS problem, in
which the statistical weights are derived by error propagation
from the Poisson noise model. We also add a regularization
term in order to reduce noise in the image domain. For the
derivation of the mathematics in our proposed method we
focus in the following on the WLS term. The regularization
term will remain unchanged.

A. Algorithm
We use a WLS cost function of

L(µ) =
∑
i

wi
2

∑
j

aijµj − yi

2

and modify it to

LHuber(µ) =
∑
i

wi
2

Ψ

∑
j

aijµj − yi, δi


with Ψ being the Huber potential function and δi being the
individual Huber parameters for each pixel. The factors aij
are the entries of the system matrix and describe the linear
coupling of the attenuation value of the j-th voxel µj to the
i-th projection pixel. yi is the line integral value in this pixel.
The statistical weight wi for the pixel can be estimated from
the measured intensity values from an energy integrating
detector or directly from photon numbers in case of a photon
counting detector. From the statistical weights, which usually
have the property wi ∝ 1/σ2

i , one can derive the estimate of
the standard deviation σi of the individual pixels. For energy
integrating detectors, more accurate estimates including the
electronic noise can be used [4]. The Huber parameter δ
describes the transition point between the quadratic and the
linear part of the Huber potential function

Ψ(x, δ) =

{
0.5x2, if x ≤ δ
δ (x− 0.5δ) otherwise.

The third international conference on image formation in X-ray computed tomography Page 95



Values greater than δ are penalized in the Huber potential
less than in a quadratic potential. In order to iteratively solve
the above cost function a separable paraboloid surrogate
approach is used, which calculates a diagonal approximation
of the Hessian for the given problem at the point of the
current image µ(n) [5]. The corresponding modified cost
function of the nth iteration depending on the update ∆µj
and its tangent surrogate L̃Ψ(∆µ) above it are

LΨ(∆µ) =
∑
i

wi
2

Ψ

∑
j

aij(µ
(n)
j + ∆µj)− yi, δi


= 0.5

∑
i

wi
2

Ψ

∑
j

αij
aij
αij

∆µj + e
(n)
i , δi


≤ 0.5

∑
i

wi
2

∑
j

αijΨ

(
aij
αij

∆µj + e
(n)
i , δi

)
= L̃Ψ(∆µ)

with

αij =
aij∑
j aij

and e
(n)
i = aijµ

(n)
j − yi.

The values e(n)
i are the differences between the forward-

projected image in iteration n and the measured line integral
data. The inequality stems from Jensen’s inequality, and
the procedure is also known from literature as De Pierro’s
trick [5]. Taking the derivative twice for the mth voxel at the
current point ∆µj = 0 yields the Hessian diagonal elements

d2L̃(∆µ)Ψ

d∆µ2
j

∣∣∣∣∣
∆µj=0

=
∑
i

aij
wi
2

Ψ̈
(
e

(n)
i , δi

)∑
j

aij .

The result is almost the same as for the conventional method
with quadratic term, in which one performs a forward
projection of the volume with all voxels set to 1, does a
weighting of the projection and performs a backprojection
into a volume. For the quadratic part of the Huber penalty,
i.e. for |e(n)

i | ≤ δi, the diagonal approximation will be
exactly the same. For all other values in the linear part
of the function a paraboloid approximation of the Huber
function is used, which is also described in [5] and which
handles the vanishing second derivative in the linear part of
the potential. The larger the difference between the measured
values and the forward projected image are, the lower the
curvatures of the paraboloid will be, which are defined by
the diagonal Hessian. The cost function becomes less strict
for large differences compared to a purely quadratic cost
function.

B. Evaluation

For the evaluation of the method several patient datasets
with different inconsistencies are used. These include breath-
ing motion, heart motion, and metal artifacts. Each dataset
is reconstructed and compared to the conventional WLS
method. Furthermore, in order to evaluate the impact of
the given method on image resolution, a reconstruction

of a CatPhan phantom (The Phantom Laboratory, Salem,
NY, USA) dataset is performed with a fixed regularization
strength.

For the reconstructions, a GPU reconstruction framework
with spherical symmetric basis functions, so-called blobs,
is used [6], [7]. A start image is generated prior to each
iterative reconstruction to increase the speed of conver-
gence [8]. In order to further speed-up the reconstruction
the ordered subset heuristics is used, i.e. the dataset is
divided into sets of geometrically distant projections. The
subset sizes are chosen such that approximately 20 rays
contribute to the update of each blob in every sub-iteration.
We also add a Huber regularization term in the image
domain to the reconstruction in order to stabilize the recon-
struction and reduce the noise in the images. The scaling
of the regularization term in comparison to the data term
is performed automatically using a controlling mechanism
described in [9]. As the scaling factor might be slightly
different between the individual reconstructions, one will
possibly observe differences in the resolution.

III. RESULTS

The convergence speed of iterative reconstruction did not
change with the described modification of the cost function.
The reconstructed images shown here are the results from the
10th iteration, if not stated otherwise. An estimated Huber
delta of δi ≈ 3σi was used.

Fig. 1 shows the reconstruction of a dataset, in which
the patient was breathing during the helical acquisition. The
conventional reconstruction shows motion artifacts like du-
plicated structures at various positions e.g. near the ribcage
and also the heart. The blurring and the duplicated structures
are slightly reduced by the proposed method. Still some
artifacts remain because of the severity of the data inconsis-
tencies introduced by the patient motion. In the difference
image the motionless regions near the table and the spine of
the patient contain hardly any further anatomical structure.
Thus, one can assume that the majority of the cost function
terms belonging to those regions are not affected by the
modification.

Fig. 1. Reconstruction of a dataset affected by breathing motion. The left
image shows the conventional WLS result, the center image the one using
the proposed method, and the right one shows the difference between both
(Level/window = -200/1200 HU, 0/400 HU for the difference image)

A similar behavior can be found for concatenated cardiac
step-and-shoot scans. For these the scanner acquires data
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for several bed positions using a circular trajectory. In order
to reduce dose the scan is gated at a predicted state in the
cardiac cycle. The conventional reconstruction in Fig. 2 (left
images) shows the impact of an inaccurate prediction in the
gating. Both scans have a slight mismatch in the acquired
motion phases leading to bright and dark streaks and blurred
anatomy (yellow arrow) in the statistical reconstruction. In
this case, the artifacts can also be reduced by the proposed
method (center images). In an axial view through one of the
motion affected slices (top row) one can see that the artifacts
are reduced to a more convenient level. The motion artifacts
of the heart coronary indicated by the yellow rectangle are
not reduced by the method. The coronal view in the lower
row shows the reduction of artifacts in the region between
both scans. The difference image reveals that these even
spread into the lung and affect vessels there.

Fig. 2. Reconstruction of a cardiac image based on a prospectively gated
step-and-shoot protocol in a axial (top) and coronal view (bottom). The
columns show the conventional method (left), the proposed methods (cen-
ter), and the difference between both (right). (Level/window = 50/500 HU
and 0/100 HU for the difference image)

In Fig. 3 the reconstructions of a head dataset with
metal artifacts are shown for both a conventional statistical
approach (left image) and the proposed method (center
image). This time 1000 iterations were performed since
the metal region has a very slow convergence rate. The
difference image on the right shows that the Huber function
for the raw data mainly affects the region of the teeth, as
intended. Although the differences appear significant they
are barely visible in the reconstructions themselves. It cannot
be concluded whether the proposed method gives a better
result in this case.

In order to evaluate the impact of the modified raw
data penalty on the image resolution, reconstructions of
the resolution section of the CatPhan were performed. For
the CatPhan data the regularization strength was chosen
constant without regularization control in order to have
a numerically exact comparison. In this case a quadratic
regularization in the image space was chosen, which is does

Fig. 3. Reconstruction of a head with dental implants. The columns
show the conventional method (left), the proposed methods (center), and the
difference between both (right). (Level/window = 100/500 HU, 0/200 HU
for the difference image)

not have edge-preserving properties and is therefore better
suited to evaluate the impact on the image resolution and
noise. The results are shown in Fig. 4. The leftmost image
shows the conventional reconstruction, the center image
shows the proposed methods with δi ≈ 3σi and the right
image with δi ≈ σi. Around the high contrast inserts one
can see dark streaks, which become more apparent in the
difference images for smaller δi. This can be explained by
high-frequent content being blurred by the regularization
and leading to high differences in the projection domain.
Therefore, the streaks are getting stronger for δi ≈ σi as the
view-dependent loss of resolution is being penalized less in
the projections. Image noise is measured from the standard
deviation within the regions of interest (ROIs) indicated by
yellow circles. The noise is almost unchanged for δi ≈ 3σi
but drops for δi ≈ σi as noise in the projection domain is
penalized less strong due to the linear range of the Huber
potential. The same reconstruction but with edge-preserving

5.9 HU 5.8 HU 5.0 HU

Fig. 4. Reconstruction of the resolution pattern section of the CatPhan with
quadratic regularization. The columns show the conventional method (left),
the proposed method with δi ≈ 3σi (center), and the proposed method with
δi ≈ σi (right). The bottom row shows the corresponding difference images
with respect to the reference at the top left. (Level/window = 100/500 HU,
0/50 HU for the difference image)

Huber regularization on the image are shown in Fig. 5. Here
only a slight decrease in resolution can be observed at the
edges of the high-contrast objects for δi ≈ σi. Streaks are
not visible as the regularization does not blur the resolution
inserts. For δi ≈ 3σi only minor differences can be seen
at the border of the phantom but almost none at the high
contrast inserts, so the image resolution remains unchanged
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in comparison to the conventional WLS case. The overall
noise level is in the same order of magnitude as in the case
of quadratic regularization. The same drop in noise for low
δi values can be observed.

6.3 HU 6.3 HU 4.5 HU

Fig. 5. Reconstruction of the resolution pattern section of the CatPhan with
Huber regularization. The columns show the conventional method (left), the
proposed method with δi ≈ 3σi (center), and the proposed method with
δi ≈ σi (right). The bottom row shows the corresponding difference images
with respect to the reference at the top left. (Level/window = 100/500 HU,
0/50 HU for the difference image)

IV. DISCUSSION

The results demonstrate that the proposed modification of
the statistical reconstruction with an implicit outlier rejection
based on a Huber potential gives an advantage in most cases
over the conventional approach without reducing the spatial
resolution or introducing artifacts when the Huber parame-
ters δi are chosen moderately and an edge-preserving image
regularization is used. If the Huber parameters are chosen too
tightly the reduced influence of the raw data term of the cost
function paired with a non-edge-preserving regularization
impedes an accurate reconstruction of high-frequent image
content. In the case of the CatPhan the differences in the
projections led to a wrong view-dependent weighting of the
projection pixels which resulted in black streaks between
the high contrast resolution inserts of the phantom similar
to beam-harding artifacts. The introduced artifacts were less
severe for the image space Huber regularization, which is
known to preserve edges and high-contrast objects better. In
this case the differences to the conventional reconstruction
were negligible if δi ≈ 3σi was used. The image noise
dropped slightly for δi ≈ σi in the case of the edge-
preserving image regularization, but it remained almost the
same for δi ≈ 3σi. So one can assume that most raw-data
differences remained below the 3σi boundary.

In the case with dental implants the method did not show
improvements in this case. One possible explanation is the
already reduced impact of the projected metal in the cost
function as the statistical weights are very low for these
detector pixel. In these regions the noise estimation also
becomes problematic since only few photons are measured
in combination with the electronic noise of the detector.
Although the method does not appear to be well-suited for
inconsistencies from metal it at least does not introduce new

artifacts. In the cases with heart and breathing motion the
statistical pixel weight was on a normal scale compared to
the metal penumbra. Thus, the proposed method showed
more significant improvements on in these cases. It was not
able to improve the temporal resolution e.g. for one of the
moving coronary arteries. For these the inconsistencies are
not large enough to be affected by the Huber penalty in
projection domain.

One issue of the proposed method is that the estimation
of the pixel standard deviation stems from the noisy raw
data and is, therefore, a random variable itself. Although
the used estimates are rather coarse, the method seems
to be sufficiently robust. Nevertheless, more datasets have
to be evaluated in order to exclude systematic deviations
related to the noise estimation. A different, more accurate
solution could be the inclusion of an outlier rejection into
the noise model, i.e. into the probability density function, in
combination with an expectation maximization algorithm.
This would imply an adjustment of the estimated noise in
the projection values according to the current image but
on the other hand could reduce the convergence speed.
Alternatively, one could also try to estimate the variances
of the pixels from the forward projected volume, which
incorporates noise corrected values in the ideal case. This
procedure would be similar fast as the conventional WLS
approach. In this case one would have to check whether the
cost function remains convex and guarantees convergence.

V. CONCLUSION

The proposed extension of a statistical reconstruction has
been shown to reduce certain artifacts caused by inconsis-
tencies in the measured data. The algorithm parameters must
be chosen carefully when being combined with image space
regularization.
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 Abstract– CT-based attenuation correction (CTAC) in 
PET/CT and SPECT/CT can be performed with extremely low-
dose (high noise) acquisitions. These acquisitions, however, can 
suffer from photon starvation noise-induced artifacts. There have 
been numerous efforts to develop low-dose compensation 
methods to improve CT image quality. In this study, we 
investigated the application of improved first and second order 
statistical models in iterative CT reconstruction for extremely 
low-dose CT acquisitions. Three approaches of non-positivity 
correction prior to the log-conversion step were evaluated for 
estimating first order statistics. The three non-positivity 
correction methods used were fixed- and varying-thresholds and 
a mean-preserving filter (MPF). As expected, the MPF method 
yielded improved discrimination of lung regions, a higher signal-
to-noise ratio, and a lower RMSE compared with the two 
threshold approaches. We also evaluated the impact of different 
models of second order statistics used in weighted least-squares 
(WLS) reconstruction. These included previously proposed 
models based on simple approximations of (1) Poisson or (2) 
combined Poisson and Gaussian processes, as well as more 
accurate weighting based on sample estimates from 1000 
realizations. Using the directly estimated sample variance, the 
performance of the WLS reconstruction was enhanced over using 
the approximate weighting terms. We conclude that using 
improved first and second order statistical models can lead to 
improved reconstructions for extremely low-dose acquisitions. 

I. INTRODUCTION 

T has played a crucial role in attenuation correction for 
quantitative PET imaging, giving patient-specific 

attenuation information in hybrid PET/CT systems. While 
respiratory-gated PET images are widely applied to disease 
diagnosis and treatment monitoring, it has increased the 
importance of phase-matched attenuation correction for 
quantitative accuracy of PET images. However, the repeated 
CT acquisitions at multiple respiratory-gated phases lead to 
increased patient radiation doses [1]. 

Recently, there have been several efforts (e.g., down-
sampling of raw data sinogram, sinogram smoothing, or other 
denoising techniques [1]) to reduce excessive CT radiation 
dose. Iterative reconstruction is one approach that enables 
lower dose scans by incorporating data noise models that 
generally lead to improved SNR in reconstructed images.  

In this study, we investigated the application of improved 
models of the first and second order statistics in iterative CT 
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reconstruction for very high-noise CT data. We evaluated the 
impact of these models with realistic simulations of low-dose 
CT acquisitions.  

II. METHODS 
For CT iterative reconstruction, we considered the weighted 

least square (WLS) problem, which maximizes an 
approximation to the negative Poisson log-likelihood of the 
CT projection data. We apply iterative reconstruction to post-
log data, which enables use of the existing data processing 
steps used for the numerous pre-corrections. The log-
likelihood, 𝐿 𝛍  has a quadratic form given by a second-order 
Taylor series expansion [2]: 

     
(1)

 
In Eq. (1), 𝑝! is one measured projection value corresponding 
to sinogram element i, in the attenuation domain (i.e., post-log 
data) and the projection operator, 𝐃𝛍 , computes the mean 
projection through line integrals of given attenuation map, 𝛍, 
with a system matrix D for fan-beam CT geometry. In WLS, 
the measured projection (𝑝!) and the weight (𝑊!) in diagonal 
matrix correspond to first and second order statistical 
properties, respectively. We investigated first order statistic of 
non-positivity correction methods that enable the log-
conversion step from raw CT measurement to the attenuation 
domain, to reduce bias in reconstruction, as well as second 
order statistic models representing the projection variance in 
the diagonal matrix. By incorporating more accurate statistical 
properties into iterative reconstruction, we hope to improve 
image quality even for extremely low dose CT scans. 

A. First order statistic models 
A CT projection data (𝑝!) in the attenuation domain is 

calculated by computed the logarithm of the measured 
detector count (𝜆!): 

pi = log λT λi( ),                                  (2) 
where 𝜆! is the  x-ray intensity prior to body attenuation. The 
detector count is from quantum detection and electronics 
processes having probability density functions, 𝑓! 𝑚! ,𝜎!!  
and 𝑓! 𝑚! ,𝜎!! . The mean and variance of 𝜆! are 
mλ, i = E λi[ ] =mq, i +me, i

 
and σλ, i

2 =Var λi[ ] =σ q, i
2 +σ e, i

2 ,    (3)  

if the sources of noise are uncorrelated. 
Figure 1 demonstrates the processing steps of dark current 

offset correction and non-positivity correction (Eq. 4). 
!λ i = fNP λi −me, i( ).                              (4) 

µ̂ = argmax
µ

−L µ( ){ } ≈ argmax
µ

1
2

Wi pi − Dµ i( )
2

i
∑

$
%
&

'
(
)
.
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Fig. 1. Representative simulated sinograms from a 80 kVp, 0.5 mAs acquisition. Procedure of log-conversion from intensity to attenuation domain sinogram 

(left to right); (A) Raw sinogram in intensity domain, (B) offset subtracted sinogram, (C) non-positivity corrected sinogram by fixed threshold (FTH), and  (D) 
projection sinogram in attenuation domain after computing the logarithm (Eq. 2). 

The post-corrected measurement (𝜆!) will have a mean (𝑚!!) 
and variance (𝜎!!

! ) after offset subtraction and non-positivity 
correction. Offset subtraction of the electronic noise mean 
(𝑚!) of shifts the actual measurement mean in Eq. (3) to better 
represent the quantum mean (𝑚! ) while preserving the 
measurement variance. However, the offset subtraction can 
increase the number of non-positive values. The non-positive 
portion substantially increases at lower dose CT scans. 

Non-positivity correction replaces the negative and zero 
entries with a positive value prior to log conversion. Non-
positivity correction can affect the estimate of both mean and 
variance of the corrected measurement and can lead to a 
discrepancy with the statistical models. 

Here, we investigated three different non-positivity 
correction approaches based on thresholds (TH) and a mean-
preserving filter. Fixed threshold approach (FTH) uses a 
function,  

fTH λ;εθ( ) =
λ, x ≥ εθ
εθ , λ < εθ

"
#
$

%$
.                       (5) 

It is important to set the threshold value to minimize bias from 
the true mean.  

We also use a varying threshold (VTH) method that varies 
the thresholds (𝜀!) over rotation angles (𝜃) as shown in Fig. 
2(A). The path length (𝐿! ) is estimated from the current 
projection data through edge detection of the most extreme 
attenuated beams for each angle.  Then, we assume a uniform 
attenuating medium along this estimated path length having 
the linear attenuation coefficient for water (𝜇!) at 70 keV 
within the object boundary.  The variable threshold value, 𝜀!, 
was computed as follows 

εθ = λT exp −µw ⋅Lθ( ).                                  (6)  

The mean-preserving filter (MPF) method [3] uses a local 
smoothing filter that preserves the local means using a non-
linear function,  

fMPF λ;α( ) =α log exp λ
α

!

"
#

$

%
&+1

!

"
#

$

%
&  .                  (7) 

The difference between the input and result of this function is 
forward dispersed to neighboring sinogram bins.  

 
Fig. 2. (A) Varying path lengths (𝐿! ) and threshold values (𝜀! ) over 

rotation angle, (B) MPF function with different parameters, α=1, 10, and 20. 

Larger values of α will have a greater likelihood of ensuring 
positive values throughout the data but will lead to more bias 
as shown in Fig. 2(B).  

B. Second order statistic models 
WLS reconstruction requires a diagonal weight matrix, W 

(Eq. 1). When implemented as a minimum variance unbiased 
estimator for attenuation images, each element, 𝑊! , is the 
reciprocal of the variance (𝜎!!) of the CT projection in the 
attenuation domain. The attenuation domain (post-log) 
variance is related to statistical properties of the corrected, 
intensity domain measurements.  An approximate form of the 
post-log variance has been proposed using a first order Taylor 
series expansion of the logarithm function [3]: 

          
σ pi
2 = E m !pi − !pi( )2"
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%
&'= E log2
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Assuming only a Poisson noise for the CT imaging process, 
the conventional diagonal matrix for practical WLS 
reconstruction has been expressed by the real measurement of 
a random variable 𝜆! in intensity domain as follows  

1
σ pi
2 ≅

m !λi
2

σ !λi
2 ≅

mqi
2

σ qi
2 =mqi ∝ !λi =Wq,i.                     (9) 

Here, the projection variance is inversely proportional to the 
measured detector count [4]. 

One improvement beyond this model is to include the 
contribution of electronic noise, as proposed in [3]. In this 
model, the projection variance in Eq. (8) become 

m !λi
2

σ !λi
2 ≅

mqi
2

mqi +σ ei
2( )
∝

!λi
2

!λi +σ ei
2( )
=Wqe,i.

            
(10) 

In Eq. (9) and (10), 𝜆! is a corrected realization of the quantum 
mean of a Poisson in intensity domain.  

These second order statistical models do not account for 
several effects. Actual CT measurements are compound 
Poisson distributed. Furthermore, the processing steps of 
offset subtraction and non-positivity correction can have a 

variable influence on the data statistics depending on the 
number of non-positive entries. Finally, with the log-
conversion, the entire processing chain is non-linear, which 
makes it difficult to predict the final actual variance.  

C. Simulation and Evaluation 
CT simulations were performed of the NCAT phantom 

using the CatSim simulator [5], which generates poly-
energetic compound Poisson data with Gaussian electronic 
noise contributions. In the simulation, we set different noise 
levels corresponding to a tube current of 0.5 and 10 mA. From 
1000 realizations, the sample mean and variance of the 
corrected measurement were calculated as follows  

!mλ, i ≈
1
N

!λi,n
n=1

N

∑  and σ !λi
2 ≈

1
N −1

m !λi −
!λi( )

2

n=1

N

∑ .
         

(11) 

The image quality was evaluated in terms of root mean 
squared error (RMSE).  

III. RESULTS 

Figure 3 compares the FBP reconstructions with ramp filter 
of data corrected with different non-positivity correction 
approaches: fixed threshold (FTH), varying thresholds (VTH) 
over rotation angles, and MPF with α=20. The VTH method 
resulted in less RMSE than the FTH method (1.48 vs 1.11 
1/mm).  MPF (E and F) gave better discrimination of lung 
regions, visually higher signal to noise ratio, and lower RMSE 
compared with threshold approaches (A to D). 

 
Fig. 3. FBP results with ramp filter of noisy data from tube currents of 0.5 and 
10 mA; all noisy data were pre-corrected by offset subtraction and non-
positivity correction; (A) 0.5mA-fixed threshold (FTH, RMSE:1.48), (B) 
10mA-FTH (RMSE:0.38), (C) 0.5mA-varying thresholds (VTH, RMSE:1.11), 
(D) 10mA-VTH (RMSE:0.3), (E) 0.5mA-MPF (α= 20, RMSE:0.48), and (F) 
10mA-MPF (RMSE:0.18). 

 

 
Fig. 4. Scatter plots of post-log mean (top) and projection variance 

(bottom). Approximate projection variances from Eq. (8) are plotted versus 
actual sample projection variance computed from 1000 realizations, which 
were processed by FTH (green), VTH (blue), and MPF (red) corrections. 
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Figure 4 shows scatter plots of the mean estimated from 

corrected noisy data compared to the noise-free mean.  The 
MPF resulted in values more in keeping with the actual mean, 
although it is clear that all of the non-positivity correction 
techniques result in biased measurements.  Figure 4 also 
presents approximate and actual projection variances. The 
approximate variance (𝑊!"" ) of the post-log data was 
computed from the sample mean and variance of 1000 
corrected, pre-log sinograms as presented in Eq. (8). MPF 
compared to variable thresholding resulted in approximate 
variances more in keeping with the actual variance (𝑊!"#, 
sample variance of 1000 corrected, post-log sinograms). 

Figure 5 and 6 show WLS reconstructions with different 
weighting matrices for a low-dose scan of 0.5 mA. The 
measurements were corrected through offset subtraction and 
non-positivity corrections, VTH and MPF (α=20), as shown in 
Fig. 5 and 6 respectively. The weighting terms were 𝑊!, 𝑊!", 
𝑊!"", or 𝑊!"#, in which the variance was estimated from Eq. 
(9) or (10) or calculated from multiple realizations for Eq. (8) 
or directly calculated from post-log measurements from 
multiple realizations. 

In comparing the practical weighting matrices 𝑊! vs 𝑊!", 
there were no visual differences or significant differences in 
RMSE with the addition of the electronic noise component. If 
we had access to multiple realizations (not practical) or if 
better models can be developed for the post-log low-dose 
projection measurements, the results using 𝑊!""  and 𝑊!!" 
show that there are potential improvements with these better 
second order statistics. In the case of VTH in Fig. 5, 𝑊!"" and 
𝑊!"#  show improved visual image quality, but give higher 
RMSE than 𝑊!  and 𝑊!" , due to the increased background 
noise in the reconstructed image. 

IV. CONCLUSION AND FUTURE WORK 
We propose and evaluate correction techniques and 

variance estimation techniques for low-dose CT data. In 
effect, these steps improve our estimates of the first and 
second order statistics of the measurements. For models of the 
first order statistics, the MPF gave improved image quality in 
terms of visual signal-to-noise ratio and RMSE, compared 
with threshold approaches. Use of accurate variance measures 
yielded images with improved image quality compared to 
simple, practical models based on only Poisson or combined 
Poisson and Gaussian processes, demonstrating that there is 
potential value to developing methods to better estimate 
second order statistics.  The improved first and second order 
models can lead to improved image quality in iterative 
reconstruction of extremely low-dose scans. 
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Fig. 5. Iterative reconstructions of 0.5 mA data after non-positivity correction 
using the VTH method and using different estimates of variance. Variance 
estimates were: (A) 𝑊!  (RMSE:0.9), (B) 𝑊!"  (RMSE:0.9), (C)   𝑊!"" 
(RMSE:1.07), and (D)  𝑊!"# (RMSE:1.08).  

 
Fig. 6. Iterative reconstructions of 0.5 mA data after non-positivity correction 
using the MPF method and using different estimates of variance. Variance 
estimates were: (A) 𝑊!  (RMSE:0.68), (B) 𝑊!"  (RMSE:0.78), (C)   𝑊!"" 
(RMSE:0.58), and (D)  𝑊!"# (RMSE:0.57).  

Page 102 The third international conference on image formation in X-ray computed tomography



Optimized Momentum Steps for Accelerating

X-ray CT Ordered Subsets Image Reconstruction
Donghwan Kim and Jeffrey A. Fessler

Abstract—Recently, we accelerated ordered subsets (OS) meth-
ods for low-dose X-ray CT image reconstruction using momen-
tum techniques, particularly focusing on Nesterov’s momentum
method. This paper develops an “optimized” momentum method
that is faster than Nesterov’s method. Drori and Teboulle’s
original version requires substantial memory space and com-
putation time per iteration. Therefore, we design an efficient
implementation approach of the optimized momentum method
that uses storage and computation comparable to Nesterov’s
method. We also propose to combine it with OS methods. We
examine the acceleration of the proposed algorithm using 2D
X-ray CT simulation data.

I. INTRODUCTION

We consider low-dose X-ray CT image reconstruction solv-

ing the following optimization problem:

x̂ = argmin
x

Ψ(x), (1)

where a function Ψ(x) belongs to a set FL(R
Np) of convex

and continuously differentiable functions with L-Lipschitz

continuous gradient. Specifically in X-ray CT reconstruction,

we use a penalized weighted least squares (PWLS) cost

function [1]:

Ψ(x) =
1

2
||y −Ax||2W +R(x), (2)

where x ∈ R
Np is an unknown image, y ∈ R

Nd is a noisy

measured sinogram data, A ∈ R
Nd×Np is a projection oper-

ator [2], a diagonal matrix W ∈ R
Nd×Nd provides statistical

weighting [3], and R(x) is an edge-preserving regularization

function.

In X-ray CT, iteratively minimizing the cost function Ψ(x)
requires long computation times due to the computationally

expensive operators A and A′. Ordered subsets (OS) meth-

ods [4], [5], which use only submatrices of A and A′ per

iteration, have been used widely for computational efficiency.

However, traditional OS methods require many iterations to

be used practically, so we recently proposed to combine

them with Nesterov’s momentum method [6], yielding OS-

momentum methods [7] that have faster initial convergence.

Nesterov’s momentum method achieves the optimal con-

vergence rate O(1/n2) where n counts the number of iter-

ations [8]. But, the constant of the convergence rate can be

large in Nesterov’s method, motivating Drori and Teboulle

(hereafter “DT”)’s optimized momentum1 approach [9]. That

D. Kim and J. A. Fessler are with the Dept. of Electrical Engineering and
Computer Science, University of Michigan, Ann Arbor, MI 48109 USA (e-
mail:kimdongh@umich.edu, fessler@umich.edu).

Supported in part by NIH grant R01-HL-098686 and equipment donations
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1Momentum methods here refer to iterative algorithms that have access to
only the first-order information of the cost function such as the value and the
gradient of the objective as well as the Lipschitz constant L.

work constructs a momentum method that achieves the fastest

possible convergence. However, each iteration of the optimized

momentum method in [9] requires substantial memory space

and computational cost for storing and (weighted-)summing

all previous gradients. Here we propose a practical approach

to circumvent this burden.

Section II and III review Nesterov’s momentum method [6]

and DT’s optimized momentum method [9]. Section IV dis-

cusses the computational burden of the optimized momentum

method and provides a much more practical approach. We

combine this proposed computationally-efficient optimized

momentum method with OS methods, and examine the accel-

eration using 2D CT simulation data, compared to OS methods

with Nesterov’s method.

II. NESTEROV’S MOMENTUM METHOD

Table I summarizes Nesterov’s momentum method [6],

which reduces to a gradient descent (GD) method when

t(n) = 1 for all n ≥ 0. The difference between z(n+1) and z(n)

plays the role of momentum with carefully chosen coefficient

t(n), where (t(n) − 1)/t(n+1) increases from 0 to 1 as the

algorithm iterates. This algorithm requires only one extra

image storage and minimal additional computation in line 5
of Table I compared to GD, while significantly accelerating

convergence.

1: Initialize x(0) = z(0) and t(0) = 1.

2: for n = 0, 1, · · · , N − 1

3: t(n+1) = 1
2

(

1 +

√

1 + 4
[

t(n)
]2
)

4: z(n+1) = x(n) − 1
L
∇Ψ(x(n))

5: x(n+1) = z(n+1) + t(n)−1
t(n+1)

(

z(n+1) − z(n)
)

TABLE I
NESTEROV’S MOMENTUM METHOD [6]

Nesterov’s method in Table I satisfies the following conver-

gence rate inequality2 at any nth iteration [6]:

Ψ(z(n))−Ψ(x̂) ≤
2L||x(0) − x̂||2

(n+ 1)2
(3)

for all functions Ψ(x) in FL(R
Np). The right term of (3) is

the worst-case bound of Nesterov’s momentum method [6];

Section III reviews the optimized momentum method that

achieves the lowest worst-case bound.

In [7], we combined Nesterov’s method in Table I with OS

methods [4], [5] for X-ray CT reconstruction (2) by replacing

2DT [9] numerically showed that the sequence {x(n)} in Table I satisfies

the inequality (3) of {z(n)} for many choices of n.
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∇Ψ(x) by the following approximation:

∇Ψ(x) ≈MA′
mWm(Amx− ym) +∇R(x) (4)

for m = 1, · · · ,M , where Am, Wm and ym are submatrices

of A, W and y corresponding to mth subset of projection

views out of total M subsets, yielding M -times reduced

computational cost per update. So, we count one iteration after

we visit M subsets considering the use of A and A′ per update.

Combining OS and Nesterov’s momentum provided fast M2-

times initial acceleration [7], unlike M -times acceleration

from conventional OS methods.

III. OPTIMIZED MOMENTUM METHODS

A. Achievable convergence rate of momentum methods

Nesterov’s method [6] in Table I achieves the optimal rate

O(1/n2), since Nesterov [8] found one function in FL(R
Np)

that cannot be minimized faster than O(1/n2) by all mo-

mentum methods using only the gradient information and the

Lipschitz constant L [8]. In particular, any momentum method

generating {x(n)} satisfies the following lower bound:

3L||x(0) − x̂||2

32(n+ 1)2
≤ Ψ(x(n))−Ψ(x̂) (5)

for at least one function Ψ(x) in FL(R
Np). The constant in (3)

is 64
3 -times larger than that in (5), showing potential room for

improving Nesterov’s method in Table I.

B. Optimized momentum in N -iterations (OptMom-N )

DT [9] proposed an optimized momentum method that

minimizes the upper-bound of Ψ(x(N)) − Ψ(x̂) for a given

total number of iterations N among all possible momentum

methods, achieving a lower bound with a constant smaller than

2 in (3) (but larger than 3/32 in (5)). Our work was inspired

by [9].

All momentum algorithms using a Lipschitz constant L can

be written in the following general form [9]:

x(n+1) = x(n) −
1

L

n
∑

k=0

h
(n)
k ∇Ψ(x(k)) (6)

for n = 0, · · · , N−1, where each update is a weighted sum of

all previous gradients with (precomputed) coefficients {h
(n)
k }.

A constant-step GD has the form (6) with h
(n)
k = 1 for k = n,

and 0 otherwise. Nesterov’s method in Table I has this form (6)

with the following coefficients [9]:

h̄
(n)
k =











t(n)−1
t(n+1) h̄

(n−1)
k , 0 ≤ k ≤ n− 2

t(n)−1
t(n+1) (h̄

(n−1)
n−1 − 1), k = n− 1

1 + t(n)−1
t(n+1) , k = n

(7)

for n = 0, · · · , N − 1 and t(n) in Table I. These coefficients

{h̄
(n)
k } are independent of N , and Table II shows a few of

them. The analysis using (6) and (7) means that both Table I

and the algorithm (6) with {h̄
(n)
k } in (7) will generate the same

sequence of images. However, using (7) in (6) would require

storing all previous gradients and (weighted)-summing all of

them at each update, whereas Table I uses a computationally

efficient recursion.

Coefficients {h̄
(n)
k

} for Nesterov’s momentum method [6]
H

H
H
H

n
k

0 1 2 3 4

0 1.0000
1 0.0000 1.2818
2 0.0000 0.1223 1.4340
3 0.0000 0.0649 0.2305 1.5311
4 0.0000 0.0389 0.1380 0.3180 1.5988

Coefficients {ĥ
(n)
k

} of DT’s momentum method [9] for N = 5
H

H
H
Hn
k

0 1 2 3 4

0 1.6180
1 0.1741 2.0194
2 0.0756 0.4425 2.2317
3 0.0401 0.2350 0.6541 2.3656
4 0.0178 0.1040 0.2894 0.6043 2.0778

TABLE II
COEFFICIENTS OF NESTEROV’S {h̄

(n)
k

} (7) AND DT’S {ĥ
(n)
k

} (9)
MOMENTUM METHODS.

DT [9] consider measuring the worst-case bound for a given

number of iterations N , a given upper bound B of the distance

between x(0) and x̂, and a given candidate set of coefficients

{h
(n)
k }:

PN,B({h
(n)
k }) , max

Ψ(x)∈FL(RNp )

{

Ψ(x(N))−Ψ(x̂)
}

(8)

s.t. x(n+1) = x(n) −
1

L

n
∑

k=0

h
(n)
k ∇Ψ(x(k)), n = 0, · · · , N − 1,

||x(0) − x̂|| ≤ B.

Since this problem (8) is intractable due to the functional

constraint Ψ(x) ∈ FL(R
Np), DT relax (8) by replacing the

functional constraint on Ψ(x) by a basic property of the

FL(R
Np) functions [8, Theorem 2.1.5]:

1

2L
||∇Ψ(x)−∇Ψ(z)||2 ≤ Ψ(x)−Ψ(z)−∇Ψ(z)′(x− z)

for all x, z ∈ R
Np . Even then, the problem needs several

mathematical tricks to finally be transformed to a solvable

semidefinite programming (SDP) problem.3

DT [9] use (8) to find the “optimized” coefficients {ĥ
(n)
k }

that minimize the worst-case bound for a given N as:

{ĥ
(n)
k } = argmin

{h
(n)
k

}

PN,B({h
(n)
k }), (9)

and similarly, the problem (9) eventually becomes an SDP

problem in [9]. Here, a solution {ĥ
(n)
k } of (9) is independent

of B [9]. An update (6) using the optimized coefficients {ĥ
(n)
k }

computed from (9) for a given N becomes an optimized

momentum method in N -iterations (OptMom-N ) [9].

For example, Table II shows the optimized coefficients

{ĥ
(n)
k } for N = 5 computed from (9), achieving the following

inequality at the final N = 5th iteration:

Ψ(x(5))−Ψ(x̂) ≤ 0.67
L||x(0) − x̂||2

(5 + 1)2
. (10)

The constant here is less than half of that of Nesterov’s method

in (3) for n = 5. This (more than twice) acceleration has been

confirmed for multiple choices of N in [9].

3We used CVX [10] to solve SDP programs in our experiments.
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Similar to combining Nesterov’s momentum with OS meth-

ods [7], here we consider combining DT’s OptMom-N frame-

work with OS methods to achieve faster convergence than OS

methods with Nesterov’s momentum. However, the substantial

computational cost and storage requirements remain large

in (6) in general. The next section describes a practical

approach to reducing this burden while maintaining fast con-

vergence rate.

IV. PROPOSED EFFICIENT IMPLEMENTATION OF

OPTIMIZED MOMENTUM METHODS IN N -ITERATIONS

The general momentum methods in (6) require storing

all previous gradients and (weighted-)summing them at each

update. In contrast, Table I provides a clever method that

uses minimal extra memory and is computationally efficient,

implicitly using the coefficients in (7). In this paper, we pro-

pose an efficient version of DT’s OptMom-N framework [9]

in terms of memory and computation, instead of using the

general recursion (6), by constraining the coefficients {h
(n)
k }

so that the implementation is efficient while preserving the

fast convergence rate.

To transform the general momentum method (6) into a com-

putationally efficient algorithm, we consider two modifications

of (6). Firstly, we constrain the method to store at most nw+1
linear combinations of gradient vectors in {G0, · · · , Gnw

}, so

that the extra memory relative to GD is a fixed amount instead

of growing with each iteration. This restriction is essential for

a method to be practical in 3D CT. Secondly, we constrain the

coefficients {h
(n)
k } to satisfy the following condition:

h
(n)
k−1 = βkh

(n)
k , (11)

for all 1 ≤ k ≤ n−nw and 0 ≤ n < N , where {βk} is a set of

multiplicative factors that we will optimize. The condition (11)

enables the method to update recursively a weighted-sum of a

part of previous gradients {∇Ψ(x(0)), · · · ,∇Ψ(x(n−nw))} in

one image memory space G0 at the n(≥ nw)th iteration as:

G
(n)
0 ,

n−nw
∑

k=0

h
(n)
k

h
(n)
n−nw

∇Ψ(x(k)) =

n−nw
∑

k=0

(

n−nw
∏

l=k+1

βl

)

∇Ψ(x(k))

= βn−nw
G

(n−1)
0 +∇Ψ(x(n−nw)). (12)

We use the remaining memory space {G1, · · · , Gnw
} for

storing the nw most recent gradients {∇Ψ(x(n−nw+1)), · · · ,
∇Ψ(x(n))} separately. Table III describes the corresponding

efficient implementation of (6) for coefficients {h
(n)
k } that

satisfy the constraint (11).

1: Initialize x(0), N , nw, and Gl = 0 for l = 0, · · · , nw.

2: Choose {βk}
N−nw

k=1 and {{h
(n)
l }

n
l=n−nw

}N−1
n=0 .

3: for n = 0, 1, · · · , N − 1
4: if n ≤ nw − 1
5: Gn+1 ← ∇Ψ(x(n))
6: else

7: G0 ← βn−nw
G0 +G1

8: Gl ← Gl+1 for l = 1, · · · , nw − 1
9: Gnw

← ∇Ψ(x(n))
10: endif

11: x(n+1) = x(n) − 1
L

(

∑nw

l=1 h
(n)
n−nw+lGl + h

(n)
n−nw

G0

)

TABLE III
PROPOSED EFFICIENT IMPLEMENTATION OF OPTIMIZED MOMENTUM

METHODS IN N -ITERATIONS.

To optimize the factors {βk} in (11) and Table III, we

insert the condition (11) in (9) and solve a modified SDP

problem. Alternatively, as a simpler approach, we can project

the optimized coefficients computed from (9) onto the sub-

space of coefficients satisfying (11). Interestingly, we found

empirically that the optimized coefficients {ĥ
(n)
k } computed

from (9) satisfy the condition (11) for any4 nw ≥ 1. Thus,

we chose the smallest nw = 1, which requires same memory

space and computational cost as Nesterov’s method in Table I.

Finally, the momentum method in Table III with nw = 1,

{βk , ĥ
(N−1)
k−1 /ĥ

(N−1)
k }N−nw

k=1 and {{ĥ
(n)
l }

n
l=n−nw

}N−1
n=0 using

{ĥ
(n)
k } in (9) becomes our proposed efficient implementation

of an optimized momentum in N -iterations (EffOptMom-N ).

4We recently found an analytical solution for {ĥ
(n)
k

} of (9) that we will
submit to arXiv in near future.
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Fig. 1. Plots of RMSD [HU] versus (a) iteration and (b) run time (sec) for OS methods using 1 and 12 subsets with and without momentum techniques.
Each iteration of OS methods with 12 subsets performs 12 sub-iterations.
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(a) Initial FBP image x(0) (b) Converged image x̂
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(c) Reconstructed image x(5)

Fig. 2. 2D XCAT simulation: (a) an initial FBP image x(0), (b) a converged image x̂, and (c) a reconstructed image x(5) from 5 iterations of the proposed
OS(12)-EffOptMom-N = 240 algorithm using 12 subsets.

For further acceleration, we combine the efficient version

of the optimized momentum method in Table III with OS

methods, by replacing ∇Ψ(x) with (4). We expect this OS-

EffOptMom-N method to converge faster than OS methods

with Nesterov’s momentum method. We also replaced the

1/L factor in Table III with a diagonal matrix D−1 based

on separable quadratic surrogates [5], [11]; this D is easier to

compute than the (smallest) Lipschitz constant L.

V. RESULTS

We simulated 2D fan-beam CT 492 × 444 noisy sinogram

data from a 512 × 512 XCAT phantom image [12]. We

reconstructed a 256 × 256 image from the sinogram using

OS methods (1 and 12 subsets) with and without momentum

techniques for 20 iterations.

Fig. 1 illustrates the root mean square difference (RMSD)

between x(n) and the converged image x̂ in Hounsfield Units

(HU):

RMSD(n) =
||x(n) − x̂||
√

Np

[HU] (13)

versus both iteration and run time, to evaluate the convergence

rate. The results show that two momentum techniques provide

acceleration. Particularly, the proposed EffOptMom-N = 20
algorithm reaches the converged image faster than Nesterov’s

method in both iteration and run time, as expected. Even

though the (Eff)OptMom-N algorithm is known to achieve the

fast convergence only at the final N th iteration, the algorithm

shows acceleration within all N iterations in this experiment.

In Fig. 1, using 12 subsets in OS methods accelerated all

algorithms, even though it slightly increased the computation

time per iteration for executing 12 sub-iterations per each

iteration. The EffOptMom-N algorithm with OS(12) method

for 20 iterations requires N = 240 sub-iterations, leading to

solving a large SDP problem (9) with N = 240 to compute

the optimized coefficients {ĥ
(n)
k }. However, these coefficients

can be precomputed for a given N regardless of the data set,

so we can neglect the computation of SDP problem in practice

(and in Fig. 1). Considering a large N = 240, we note that an

(inefficient) OptMom-N = 240 framework would require 240
image space, while our proposed efficient implementation uses

only one extra image space for storing a linear combination

of previous gradients.

Fig. 2 shows an initial filtered back-projection (FBP) image

x(0), a converged image x̂, and a reconstructed image from

5 iterations of the proposed EffOptMom-N algorithm with

OS(12) method. The result indicates that we can reach nearby

the converged image within very few iterations using the

proposed algorithm.

VI. CONCLUSION

We proposed an efficient implementation of optimized mo-

mentum [9] in N -iterations for X-ray CT image reconstruction

and showed that it converges faster in both N -iterations and

run time than Nesterov’s method. We combined it with OS

methods for further acceleration, leading to faster convergence

than our previous combination of OS methods and Nesterov’s

momentum method [7]. We will next investigate this acceler-

ation in real 3D CT data.
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Adaptive Sparsifying Transforms for
Iterative TomographicReconstruction

Luke Pfister∗ and Yoram Bresler∗

Abstract—A major challenge in computed tomography imaging
is to obtain high-quality images from low-dose measurements.
Key to this goal are computationally efficient reconstruction
algorithms combined with detailed signal models. We show that
the recently introduced adaptive sparsifying transform (AST) sig-
nal model provides superior reconstructions from low-dose data
at significantly lower cost than competing dictionary learning
methods. We further accelerate this technique for tomography
by utilizing the Linearized Alternating Direction Method of
Multipliers (L-ADMM) to remove the need to solve an expensive
least-squares problem that requires computing multiple forward
and backward projections. Numerical experiments on data from
clinical CT images show that adaptive sparsifying transform reg-
ularization outperforms total-variation and dictionary learning
methods, and combining our regularizer with L-ADMM provides
for faster reconstructions than standard ADMM.

I. I NTRODUCTION

The increased use of x-ray computed tomography (CT) in
medical imaging has been accompanied by increased concerns
about the x-ray exposure to the patient population. The ability
to reconstruct high quality images from low-dose data has
therefore become a central problem in CT. Advances in image
reconstruction algorithms are key to achieving this goal. Un-
like the standard filtered backprojection (FBP) algorithm, iter-
ative reconstruction algorithms incorporate detailed models of
data acquisition, noise statistics, and the signal to reconstruct.
These algorithms are commonly developed as the solution to
the penalized weighted-least squares (PWLS) problem [1]

min
x

1

2
‖y −Ax‖2

W
+ λJ(x). (1)

The first term represents a statistically weighted fidelity mea-
sure between the data vectory ∈ R

M , containing the log of
recieved photon counts, and the reprojected imageAx. The
diagonal weighting matrixW consists of statistical weights
wi and can be motivated as a quadratic approximation to the
negative log-likelihood of the image given the photon counts.

The regularization functionalJ : R
N → R improves

the conditioning of (1) and encourages solutions that obey
a prescribed signal model. Signal models based on sparse
representations have shown to be effective for both low-dose
and limited data tomography. These models have classically
been instances ofanalysissparsity, in which the image be-
comes sparse when acted on by a fixed linear transformation
called an analysis operator. Many regularizers, such as total-
variation, promote images that are sparse under finite differ-
encing operators and are thus piecewise constant. This type

∗Dept. of Electrical and Computer Engineering, University of Illinois at
Urbana-Champaign

This work was supported in part by the National Science Foundation (NSF)
under grants CCF-1018660 and CCF-1320953.

of regularization can replace complex texture by flat, patchy
regions. Regularization with more sophisticated analysis op-
erators, such as shearlets, has been shown to better preserve
complex texture at the expense of performance on uniform
regions [2].

Recent years have shown the promise of signal models that
are directly adapted to the signal of interest. A popular ap-
proach is to represent small, overlapping patches of the image
as the linear combination of a few columns of a dictionary.
Many algorithms have been proposed to fit a dictionary to
a given set of data. Algorithms that jointly learn a dictionary
while reconstructing the image have been shown to outperform
traditional regularization techniques in both low-dose [3] and
limited-data tomography [4]. More recently, algorithms have
been developed to adaptively learn analysis operators based
on manifold methods [5], variable-splitting methods [6], and
modifications of dictionary learning algorithms [7].

Unfortunately, both synthesis and analysis learning algo-
rithms scale poorly with data size and are prohibitively expen-
sive for practical tomographic reconstruction. An alternative
signal model is to assume that our signal satisfiesΦx = z+e,
wherez is sparse ande is small. This is called thetransform
model and stipulates thatx should be approximately sparse
when acted on by the matrixΦ ∈ R

k×k, which we call a
sparsifying transform. Algorithms have been proposed to learn
sparsifying transforms directly from data [8], [9]. Allowing a
small deviation from exact sparsity facilitates transform learn-
ing algorithms that are much faster than competing synthesis
dictionary and analysis operator learning algorithms. Adaptive
sparsifying transforms have been shown to be effective in MRI
reconstruction from sparsely sampled data [10].

In this paper, we show that adaptive sparsifying transform
(AST) regularization outperforms both TV and synthesis dic-
tionary methods for low-dose CT imaging, while operating
at a speed rivaling that of TV [11]. Our algorithms use
the Alternating Direction Method of Multipliers (ADMM) to
provide a computationally efficient solution to the resulting op-
timization problem. The computational cost of the algorithms
is dominated by solving an unweighted least squares problem
that requires many applications ofA andAT . We propose the
use of the Linearized ADMM algorithm to circumvent this
least-squares problem and further accelerate AST-regularized
tomographic reconstruction. Numerical experiments are per-
formed using reprojected clinical images. The results show
that AST regularization outperforms dictionary learning and
total variation methods and that Linearized ADMM provides
an appreciable decrease in computation time.
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II. A LGORITHM

Our goal is to reconstruct our imagex ∈ R
N from noisy

projection data y ∈ R
M while simultaneously learning a

sparsifying transformΦ that acts on
√
k ×

√
k patches ofx.

We accomplish this by solving

min
x,z,Φ

1

2
‖y −Ax‖2

W
+

λ

2

∑

j

‖ΦEjx− zj‖
2
2

+ λ
(

γ‖zj‖0 + α(‖Φ‖2
F
− log detΦ)

)

,

(P1)

whereλ, γ andα are positive scalarparameters, and‖zj‖0 is
the ℓ0 quasinorm that counts the number of nonzero elements
in zj . The matrixEj ∈ R

k×N extracts thejth
√
k ×

√
k

vectorized patch and removes its mean.The second term in
(P1) penalizes the sparsification error of patches fromx, while
the third term encourages sparsity in thezj . The final two
terms ensure that the learned transform is both non-singular
and well conditioned. The minimization problem(P1) can be
viewed as a PWLS problem where the regularizer is itself the
solution of a minimization problem.

We solve (P1) using an alternating minimization algorithm.
With x and thezj fixed, we updateΦ by solving

Φk+1 = argmin
Φ

∑

j

‖ΦEjx− zj‖
2
2 + α(‖Φ‖2

F
+ log detΦ),

(2)
which can be solved in closed-form [12], requiring only three
products ofk × N and N × k matrices and one Cholesky
decomposition and one SVD ofk × k matrices. Typically
k << N and so the solution of (2) is cheap.

With x andΦ fixed, we update eachzj by solving

zk+1
j

= argmin
zj

γ‖zj‖0 +
1

2
‖ΦEjx− zj‖

2
2. (3)

The solution of (3) is givenin closed form by setting to
zero all entries with magnitude less than

√
γ, an operation

known ashard thresholding. We will write this update as
zj = Tγ (ΦEjx).

In practice, we ensure thatΦ is a good transform for the
current image by alternating between updatingΦ and thezj
a few times before proceeding to the image update phase.

The image update phase begins by fixingΦ and thezj .
Then, (P1) reduces to the weighted least squares problem

xk+1 = argmin
x

1

2
‖y −Ax‖2

W
+ λ

∑

j

‖ΦEjx− zj‖
2
2. (4)

Owing to the size ofA, direct inversion is impossible and
we must resort to iterative methods. The large dynamic range
in W causes the HessianATWA+ λ

∑

j
ET

j
ΦTΦEjW to be

poorly conditioned and many iterations are required, while the
placement ofW makes this problem highly shift-variant and
prohibits the use of efficient Fourier preconditioners [13].

Ramani & Fessler [14] proposed the use ADMM to mitigate
these problems by introducing an auxiliary variableu ∈ R

M .
The constraintu = Ax is used to split the data fidelity term
and separate the projection operatorA from the statistical
weighting matrixW . Applying ADMM to the new constrained

optimization problem results in an algorithm consisting of the
following update steps:

xk+1 = argmin
x

λ

2

∑

j

‖ΦEjx− zj‖
2
2 +

µ

2
‖uk − ηk −Ax‖22

(5)

uk+1 = argmin
u

1

2
‖y − u‖2

W
+

µ

2
‖uk − ηk −Ax‖22 (6)

ηk+1 = ηk − (uk+1 −Axk+1). (7)

These subproblems aresolved in an alternating fashion.
Subproblem (6) is solved as

uk+1 = (W + µI)−1(Wy + µ(Axk+1 + ηk)), (8)

which is computationally inexpensive asW + µI is diagonal.
Similarly, (7) requires only vector additions and is cheap.

The bulk of computation occurs during the solution of
subproblem (5). This is an unweighted least-squares problem
and is amenable to Fourier-based preconditioners. However,
even when an efficient preconditioner is used, the solution of
(5) requires many products withA andAT and thus remains
computationally expensive.

We propose to accelerate this step by using the Linearized
ADMM (L-ADMM) approach. This technique has been devel-
oped under many names and in multiple contexts; see [15] and
the references within. We begin by introducing a new inertia
term into thex-update subproblem (5):

xk+1 = argmin
x

λ

2

∑

j

‖ΦEjx−zj‖
2
2+

µ

2
‖uk−ηk−Ax‖22+‖x−xk‖2

Q

(9)
whereQ is a positive-definite matrixthat can be chosen to
improve the conditioning of this least squares problem. In
particular, we takeQ = δI − µATA and the updated image
is now given by the solution of

Gxk+1 = λ
∑

j

ET

j
ΦT zj + δxk + µAT (uk − ηk −Axk)

(10)
whereG , λ

∑

j
ET

j
ΦTΦEj + δI. We have used the matrix

Q to eliminate the influence ofATA from the HessianG.
The solution of (10) depends on the boundary conditions

present in the patch extraction operatorsEj . As the region of
interest in CT images is surrounded by air, which provides zero
attenuation, we are free to extract patches that wrap around
the image boundary without incurring distortion. In this case,
the quantity

∑

j
ET

j
ΦTΦEj + δI is circularly shift-invariant

and can be diagonalized using a 2D DFT. During the image
update phase,Φ is held constant, so this diagonalization can
be computed and stored. The solution of (10) can be computed
in closed form and only requires a product withA and AT

as well as a 2D FFT/IFFT pair. This represents a significant
improvement over the multiple products withATA that are
required to solve (5) using the conjugate gradient method. Note
that as we do not solve a least squares problem, we do not need
to preconditionATA. This may prove especially beneficial for
high angle cone beam CT and other geometries where circulant
preconditioners are less effective.
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Algorithm 1 L-AST-CT

INPUT: Initial transformΦ, observed datay
OUTPUT: Reconstructedimagex

1: Setγ by using power iteration onATA
2: x0

← FBP(y)
3: z0j ← Tγ

(

ΦEjx
0
)

∀j
4: repeat
5: repeat
6: UpdateΦ by solving (2)
7: zkj ← Tγ (ΦEjx) ∀j
8: until Halting condition
9: G̃← diagonalization ofλ

∑

j
ET

j ΦTΦEj + δI

10: i← 0, u0
← Axk, v0 ← ~0

11: repeat
12: ζ ← FFT2

[

λ
∑

j
ET

j Φ
T zj+

δxk + µAT (uk
− ηk

−Axk)
]

13: x̃i+1
← IFFT2

[

G̃−1ζ
]

14: ui+1
← (W + µI)−1 (Wy + µ(Ax̃i+1 + vi)

)

15: vi+1
← vi −

(

ui+1
−Ax̃i+1

)

16: i← i+ 1
17: until Halting condition
18: xk+1

← x̃i+1

19: until Halting condition

The parameterδ must be chosen to make δI − µATA
positive definite, so we require thatδ > µ‖ATA‖2. We
estimate this lower bound by performing power iteration on
ATA, and we takeδ to be slightly larger than this estimate.

Note that the update (10) can alternatively be derived by
linearizing the Augmented Lagrangian term in (5) about the
point xk and adding additional quadratic regularization. We
choose to use theQ-norm notation as it clearly shows the
required lower bound forδ. The overall algorithm, which we
call L-AST-CT, is presented as Algorithm 1. We initialize the
algorithm by takingx0 to be a Hamming-weighted FBP of
the datay. Our initial sparsifying transform is a separable
approximation of the 2D finite differencing matrix.

III. E XPERIMENTS

The algorithm was implemented using NumPy 1.8 and
SciPy 0.13 on a computer containing an Intel i5-2520m
processor with two cores and 6GB of RAM. The projection
operator A simulates the central slice of the GE Light-
speed geometry, with888 detector bins and984 projections
spaced between0 and 360◦. Forward and back projections
were performed using a multithreaded C implementation of
the distance-driven projector and backprojector to ensure a
matched projector and backprojector pair.

Our error metric is the root mean square error (RMSE),

defined forx ∈ R
N as RMSE =

√

∑

N

k=1(xk − x̄k)2/N ,
where xk is the k-th index of x and x̄ is the ground truth
image. We compare the performance of AST-CT to Hamming-
weighted FBP reconstruction and two iterative reconstruction
algorithms. The first uses total-variation regularization. We
use ADMM to split the non-differentiable regularization term
and refer to this algorithm as TV-CT. The second, which
we call DL-CT, uses a regularizer of the formJ(x) =
minD,aj

∑

j
‖Ejx − Daj‖

2
2 + γ‖aj‖0. The update fora is

solved using orthogonal matching pursuit from the efficient
SPAMS 1 toolbox, and the dictionary update is performed
using K-SVD. We use ADMM to separateW andA. In both
TV-CT and DL-CT, we do not linearize thex-update step, but
instead use a circulant preconditioner to improve the rate of
convergence.

The parametersλ and γ were determined empirically by
sweeping over a large range of values and choosing the
parameter that corresponded to the lowest RMSE. For L-AST-
CT and DL-CT, the ADMM parameterµ was chosen to ensure
that the Hessian is well-conditioned, and for TV-CT it was
chosen according to the strategy in [14]. The dictionary for
DL-CT is of size 64 × 121 and is initialized with a DCT
matrix, while in L-AST-CT the sparsifying transform is64×64
and initialized with a separable approximation to the finite
differencing matrix. Both algorithms use8 × 8 patches with
maximal overlap.

We evaluate the performance of the algorithm on data
formed by reprojecting a512 × 512 pixel clinical-dose CT
image of a human abdomen. The clinical data consists of
overlapping0.9mm slices with 0.45mm overlap. The slices
have noise standard deviation of 21 HU, as measured over a
flat region in the liver. We form a ground truth imagēx by
averaging together 5 consecutive slices of the clinical data.
This reduces streaking present in ourx̄. We form clinical
dose data by taking thek-th detector measurement to be
yk = −log(P(I0 exp−[Ax̄]k)/I0), whereP (t) represents a
Poisson random variable with meant. SettingI0 to 2.0× 106

results in a noise level that matches that of the original slices.
We synthesize low-dose data by takingI0 = 5 × 105 which
corresponds to dose reduction by a factor of4.

The TV-CT algorithm was run for300 iterations. For
DL-CT, each outer-loop iteration consists of five dictionary
and sparse code updates followed by updating the image by
performing10 ADMM iterations. For L-AST-CT, the outer-
loop consists of10 sparsifying transform and sparse code
updates followed by updating the image with a minimum of30
L-ADMM iterations. In both cases, we repeat the ADMM/L-
ADMM steps until the cost function has decreased. We use a
total of 30 outer-loop iterations for L-AST-CT and DL-CT.

Figure 1 show the images reconstructed with each al-
gorithm and the magnitude of the difference between the
reconstructed images and̄x. FBP suffers from the expected
streaking behavior due to the reduction in dose. The TV-CT
reconstruction shows no streaking artifacts, but has patchy
artifacts in textured areas such as the bone. Reconstructions
with adaptive regularization show low error in both the bone
and soft tissue. We see that L-AST-CT outperforms DL-CT in
the bone regions.

Table II illustrates the amount of time spent on updating
the signal models in single outer-loop iteration of DL-CT and
L-AST-CT. Even with the highly efficient multithreaded C
implementations provided by SPAMS, the dictionary learning
steps are significantly more expensive than the sparsifying
transform updates. As an alternative benchmark, the time to
perform 10 ADMM image update iterations in DL-CT is

1Available: http://spams-devel.gforge.inria.fr/
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Fig. 1: Left column: Reconstruction from low-dose projections.
Right column: Magnitude of error between reconstruction andx̄.
From top to bottom: FBP, TV-CT, DL-CT, L-AST-CT. All units in
HU

TABLE I: RMSE in HU of reconstructions from low-dose data.

Clinical Low
dose FBP dose FBP L-AST-CT DL-CT TV-CT

RMSE 19 33 16 18 18

85 seconds. This shows that the use of dictionary learning
regularization has nearly tripled the reconstruction time,while
the overhead incurred by AST regularization is negligible.

We next evaluate the influence of the linearizedx update
step. We initializedΦ to be a separable finite differencing
matrix and calculated the resultingzj . We then fixed these
variables and ran4000 iterations of the usual ADMM algo-
rithm to solve (4). The resulting image is denotedx∗. We
then solved (4) using ADMM and L-ADMM and evaluate
the distance from convergence as the RMSE betweenxk and
x∗. For ADMM, the least squares problem is solved by CG
with a circulant preconditioner to the Hessian to accelerate
convergence. Figure 2 shows the rate of convergence of both
ADMM and L-ADMM. The quantityǫ illustrates the RMSE
of the ADMM reconstruction after performing the minimum
10 iterations. These results show that while L-ADMM requires
more iterations to reach the valueǫ, it does so in roughly half
the time as ADMM.
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 Abstract—Previous investigations [1-3] have demonstrated 

that integrating specific knowledge of the structure and 

composition of components like surgical implants, devices, and 

tools into a model-based reconstruction framework can 

improve image quality and allow for potential exposure 

reductions in CT. Using device knowledge in practice is 

complicated by uncertainties in the exact shape of components 

and their particular material composition. Such unknowns in 

the morphology and attenuation properties lead to errors in 

the forward model that limit the utility of component 

integration. In this work, a methodology is presented to 

accommodate both uncertainties in shape as well as unknown 

energy-dependent attenuation properties of the surgical 

devices. This work leverages the so-called known-component 

reconstruction (KCR) framework [1] with a generalized 

deformable registration operator and modifications to 

accommodate a spectral transfer function in the component 

model. Moreover, since this framework decomposes the object 

into separate background anatomy and "known" component 

factors, a mixed fidelity forward model can be adopted so that 

measurements associated with projections through the 

surgical devices can be modeled with much greater accuracy. 

A deformable KCR (dKCR) approach using the mixed fidelity 

model is introduced and applied to a flexible wire component 

with unknown structure and composition. Image quality 

advantages of dKCR over traditional reconstruction methods 

are illustrated in cone-beam CT (CBCT) data acquired on a 

testbench emulating a 3D-guided needle biopsy procedure – 

i.e., a deformable component (needle) with strong energy-

dependent attenuation characteristics (steel) within a complex 

soft-tissue background.  

Index Terms—CT Reconstruction, Polyenergetic Beam 

Model, Metal Artifacts, Interventional cone-beam CT.  

I. INTRODUCTION 

Surgical devices including implants and tools are often 

present during imaging studies. This is particularly true for 

interventional imaging scenarios when such devices are 

delivered and placement of implants is assessed post-

procedure. The devices themselves are often responsible for 

decreased image quality due to beam hardening, photon 

starvation, and other artifacts associated with metal 

components. A plethora of metal artifact correction 

schemes exist to mitigate such artifacts - often through 

strategies that replace low-fidelity data or treat those data as 

missing. Alternate approaches that avoid eliminating data 

through incorporation of component prior knowledge have 

also been proposed. [1-3] These methods rely on a 

parameterization of the reconstruction problem where not 

only are traditional attenuation values estimated, but so are 

registration parameters associated with objects known to be 

in the imaging field - changing the traditional 

reconstruction problem into a joint registration and 

reconstruction. 

While such methods have demonstrated the potential to 

greatly improve image quality, especially in the vicinity of 

the device, approaches like known-component 

reconstruction (KCR) typically rely on precise knowledge 

of the device. For example, the shape of the surgical device 

is presumed to be known precisely (e.g., from a CAD 

model) and the material composition is known so that 

attenuation of x-rays passing through the device can be 

modeled. Unfortunately, such information is not always 

available and the structure of components may not be 

precisely known. 

Interventional imaging scenarios have the advantage that 

the surgical device is available pre-procedure allowing for a 

degree of calibration. This opportunity is leveraged in the 

following work that generalizes the KCR framework to 

allow for deformable registrations of a component whose 

composition is homogenous but unknown using an "in-air" 

calibration scan to characterize the energy-dependence of 

both the "known" component and the imaging system. The 

proposed deformable KCR (dKCR) approach incorporates a 

sophisticated forward model that integrates spectral effects, 

a nonlinear partial volume model, and detector blur. 

The proposed dKCR method is applied to cone-beam CT 

testbench data of a phantom containing a metal wire of 

unknown composition and structure (diameter, length, and 

curvature), and compared to traditional reconstructions.     

II. METHODS

A. Deformable Object Model and Forward Model 

The KCR framework previously introduced a modified 

object model for integration of component knowledge. This 

model for a single known component in the field of view is 

      * * ., C Cs       D W W  (1) 

where * denotes a vector of attenuation values representing 

the (unknown) background anatomy, C is a vector of 

attenuation values for the (partially known) component, sC 

is a mask that is zero for voxels inside the component and 

one outside, and D{·}  is an operator that converts a vector 

to a diagonal matrix. The operator W represents a 

transformation operator parameterized by the vector  
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which allows for registration of the component and the 

associated mask. 

In [1], a rigid transformation operator was used in (1); 

however, this form is general and provides the opportunity 

to accommodate additional uncertainty about components 

beyond position and pose. Consider a component with 

unknown morphology as in Figure 1. This class of 

deformed cylinder morphologies can be accommodated 

using the formulation in (1) with an appropriate selection of 

C (i.e., a cylinder) and a parameterization  comprised of 

control points along the deformed trajectory of the cylinder 

as well as the radius of the cylinder. In this work, a cubic b-

spline parameterization of the curvature of the central axis 

of the cylinder is adopted. Note that more general 

parameterizations such as deformable meshes that define 

the shape of the component also fit into this framework but 

entail higher dimensional parameter vectors. 

With the object model defined, a forward model may be 

adopted for use in model-based reconstruction. A traditional 

monoenergetic physical model is a convenient choice that 

leads to a relatively computationally efficient algorithm: 

       * *, exp ,y g     D A  (2) 

where A denotes the system matrix that applies the 

projection operation and the vector g contains ray-

dependent gain factors including detector sensitivities and 

x-ray beam intensity. 

B. A Refined Forward Model for Known Components 

The simple forward model in (2) is sufficient for many 

imaging applications; however, unmodeled beam 

hardening, nonlinear partial volume (NLPV), and 

source/detector blur effects for measurements that include 

metal components can contribute to significant degradations 

in image quality. A more sophisticated forward model has 

the potential to mitigate artifacts associated with metal 

components; however, such modifications of the forward 

model are typically coupled with increased computational 

complexity. 

Consider the two forward model choices in Figure 2: 

first, the standard forward model of (2); and second, a high-

fidelity model that seeks to mitigate partial volume effects 

through fine sampling of both the image volume and 

detector pixels using a "high-resolution" system matrix, 

AHR, and a summation over detector subsamples. This 

formulation also permits detector blur modeling through 

weighted sums. The computational complexity increases 

cubically as voxel size decreases and increases with the 

square as detector subsample size decreases. 

The object model in (1) provides an excellent opportunity 

to refine the object model for measurements associated with 

the component without adding a great deal of computation 

complexity. Consider the following decomposition of the 

forward model in (2) that leverages the object model in (1) 

         * *, exp C Cy g s        D W WD A

      * *, ,A Cg F F    D  (3) 

      * *, expA CsF      D WA  (4) 

     expC CF   AW  (5) 

where FA and FC represent functional forms for the survival 

probabilities of x-ray photons as they pass through the 

background anatomy and the component voxels, 

respectively. 

Thus, one can potentially refine the physical model for 

the component only (which is arguably where a 

sophisticated model is most important) which involves a 

smaller volume and smaller projection area than would be 

required for the entire image volume. The more compact 

support in both image and projection domains means that 

such high-fidelity component models can be applied 

efficiently in terms of storage and computation as compared 

with approaches that attempt a high-fidelity model for the 

entire image volume. 

Consider the following model that incorporates a high-

Fig. 2.  An illustration of two different forward models with varying data fidelity. A) A standard forward model versus B) a high-fidelity model that can 
better approximate real-world physics by modeling detector aperture and partial volume effects using a high-resolution projector (AHR) and an integration 

over the detector aperture (with subelements zin). Furthermore, with an additional weighting term, bin, one can also accommodate predetection blur (e.g., 

due to light spread in the scintillator of a flat-panel detector). In general there is significant computational cost associated with such high-fidelity models. 
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Fig. 1.  A deformable cylinder that could represent a variety of 

components including needles, guide wires, and fixation rods. The 
curvature along the long axis of the cylinder is parameterized using a 

cubic b-spline with control points spaced along the length while an 

additional parameter defines the radius. 
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resolution projector, detector subsampling, and detector 

blur: 

    exp
HR

HR

C HR CF      WB A . (6) 

A similar model (without detector blur effects) was 

leveraged in [4] and demonstrated superior control of 

nonlinear partial volume effects in simulated monoenergetic 

data. However, application of the KCR methodology to real 

data without spectral modeling yields significant beam 

hardening artifacts. Recognizing again that spectral effects 

are most pronounced for the measurements including a 

metal component suggests an additional refinement of the 

component model where the polyenergetic beam and 

attenuation are modeled as: 

        , exp
HR

HR

C HR CF I


       B A W  (7) 

where we have assumed that the energy dependent 

attenuation of the component, C
HR

(), and the combined 

effects of the spectral distribution of the x-ray beam and 

detector sensitivity I() are known. Somewhat analogous 

polyenergetic forward models have been used in [5]; 

however, material segmentation issues are automatically 

handled here by the explicit decoupling of the component 

and background anatomy models. One drawback of (7) is 

that the energy-dependence of the component and imaging 

system must be characterized and known (as presumed in 

[2]), which can be difficult for components of unknown 

composition. 

Note that for a component composed of a homogeneous 

material, we may replace the summation in (7) with the 

following relation 

     ,

HR

HR s

H CC R sF f  B WA  (8) 

where f (·) is a "spectral transfer function" relating path 

lengths through the component (represented by 

transformation and projection of the component mask 
HRCs ) 

to survival probabilities. Even for a homogeneous 

component, this function needs to incorporate deviations 

from a standard monoenergetic Beer's law model. For 

example, one possible model uses a polynomial expansion 

inside an exponential: 

    2 3

1 2 31
; exp

K K

k Kk
f l l l l l    


      

 (9) 

where the values of  k  are determined by the particular 

component and system characteristics. (A monoenergetic 

system would be represented with 1  = -C and  k  = 0 for 

k >1.) Estimation of  k  is addressed in the following 

section. 

C. Spectral Calibration 

When the composition of a component is unknown, but a 

sample component is available prior to imaging (as in 

interventional scenarios), the unknown  values in (9) may 

be estimated by performing a scan of the component alone 

(in air) using the same x-ray technique that will be used in 

the interventional scan. In this case, there is no background 

anatomy and the forward model (3) reduces to 

        ,

1 1
, , , ,

K KHR s

C b k C b kk k
y g F     

 
 D  (10) 

where the mean measurement model is a function of the 

unknowns, including the morphology (given by ), system 

blur (here, presumed Gaussian with parameter b), and 

spectral parameters (). Using (10) as a forward model, we 

may construct a maximum likelihood estimator for the 

unknown parameters that characterize the system and 

component:  

      1 1

ˆ ˆˆ, , arg max , , ;
K K

b k b kk k
L y     

 
  (11) 

where y denotes the noisy measurement vector. In this 

work, a Poisson noise distribution is presumed and a 

Nelder-Mead optimization algorithm is used to solve (11). 

Note that the ̂  estimated in this calibration are only 

important for proper estimation of ˆ
B  and ̂ . These ̂  are 

not used in subsequent reconstructions when background 

anatomy is present and component is in a different position 

and/or shape. 

D. Deformable Known-Component Recon. (dKCR) 

 For subsequent reconstructions, the following dKCR 

forward model is adopted where the measurements are a 

function of * and  with additional fixed characterization 

parameters as estimated from in-air scans: 

         ,

* * 1
ˆˆ, , ; ,

KHR s

A C b k k
y g F F      


 D  (12) 

Again, there is no requirement that the shape or pose of the 

known component be maintained between the calibration 

and patient scans. We note that (12) models spectral effects 

associated with the component but not the anatomy. While 

beam hardening is expected with the anatomy it is typically 

less severe than the component, though one could similarly 

modify FA to accommodate spectral effects as well (e.g., 

using a water-based beam hardening model). As with 

previous implementations of KCR, (12) is used to form a 

penalized-likelihood objective function: 

      ˆˆ , arg max , ;L y R        (13) 

which is solved using an alternating maximization scheme, 

as in [1], using separable paraboloidal surrogates image 

updates [6] and Nelder-Mead updates for the registration 

estimates. 

III. RESULTS/DISCUSSION 

The dKCR methodology with a simple prescan 

calibration for components of unknown material 

Fig. 3. (A) Experimental setup for imaging and calibration scans. In-air 

calibration measurements are conducted using a thin foam holder that is 

essentially radiolucent. (B) Two stainless steel wire components are used 
in the experiments: Wire #1 is straight and used for calibration scans, while 

wire #2 has an (unknown) curve applied before it is placed in the test 

phantom. 
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composition was applied to the scenario of tomographic 

imaging of a wire component within patient anatomy. 

These investigations were conducted on a cone-beam CT 

(CBCT) testbench (see Figure 3). The testbench used a 

55 cm source-to-detector distance, 43 cm source-to-axis 

distance, projection data of 600x116 pixels with 0.278 mm 

pitch and 360 angles over 360°. Nominal image volumes 

for reconstruction were 512x512x150 with 0.18 mm voxels. 

For NLPV modeling, a factor of two decrease in voxel and 

pixel size were used (corresponding to 0.139 mm pixels and 

0.09 mm voxels). All acquisitions used 80 kVp and 115 

mAs. Gain scans were used to estimate an effective number 

of photons for the Poisson models equal to 10
5
 photons per 

detector element in the unattenuated beam. 

A. System and Component Calibration 

To investigate a scenario of CBCT-guided needle 

intervention, in-air calibration of a straight wire (wire #1) 

was performed on the testbench. A radiolucent foam holder 

was used to position the wire at an incline and thereby 

achieve a wide range of material path lengths over which 

the calibration would be accurate. The system blur and 

spectral calibrations used the estimator in (11) with K=7 

and eight control points for  (although the wire was 

straight in the calibration scan). 

Results of this calibration using different fidelity 

component models (i.e., by setting b=0 or using A instead 

of AHR) are illustrated in Figure 4. To compare the 

goodness-of-fit for various models, the measurements (y) 

versus the estimated model ( Cy ) from (10) are plotted for a 

subset of projection data with material path lengths greater 

than zero. The best agreement is found using the full model, 

with decreased goodness-of-fit when system blur and/or 

NLPV effects are not included in the system model. In 

relative terms, the system blur estimation appears 

significantly more important than NLPV modeling, 

suggesting that detector (and perhaps source) blur play an 

important role for this flat-panel-based CBCT system. The 

blur was estimated to be ˆ
B = 0.72 pixels, equal to 0.47 mm 

full-width half-maximum. 

 Using the spectral calibration results from the full 

system model, the calibrated attenuation transfer function in 

(9) could then be evaluated. This function is shown in 

Figure 4D. As compared with a monoenergetic Beer's law 

model, one observes the typical increase in survival 

probability at longer material path lengths due to beam 

hardening. 

B. Calibrated dKCR on CBCT Testbench Data 

The dKCR approach outlined in (12) and (13) was 

applied to a test phantom (Figure 5A) approximately 80 

mm in diameter and composed of water and a mixture of 

acrylic spheres ranging from 3.2 to 9.5 mm in diameter. A 

medium-contrast line pair phantom (9 lp/cm constructed 

from polycarbonate and acetal) was placed among the 

spheres along with the curved stainless steel wire #2 

(Figure 3B) which served as the (partially) known 

component.  

These studies used the same acquisition protocol and x-

ray technique as for the pre-scan spectral calibration. 

System and component calibration estimates from the 

previous subsection were incorporated in (12). Raw data 

were scatter-corrected by simple subtraction of a single 

scalar from all measurements equal to 2.4% of the 

unattenuated beam. 

Three reconstruction approaches were investigated: 1) 

Traditional filtered-backprojection (FBP), 2) penalized-

likelihood estimation (PLE), and 3) the proposed calibrated 

dKCR approach. The latter two methods used quadratic 

regularization, and all three methods were qualitatively 

matched in terms of spatial resolution in the background 

anatomy. Both FBP and PLE performed somewhat 

comparably in this scenario with significant artifacts 

associated with the metal wire. Because of the inherent 

decoupling of the background anatomy and the component 

wire, the dKCR reconstruction allows for creation of an 

overlay image (from  ˆ
HRCsW ) from which the estimated 

component shape can be shown in red. The dKCR approach 

was able to accurately estimate the curvature of the wire 

within the phantom. Moreover, the higher fidelity model 

Fig. 4. In-air spectral calibration results using wire #1. Goodness-of-fit plots (e.g. measured vs. modeled projection values) show the relative importance 
of different aspects of high-fidelity forward models in spectral calibration including the following cases: (A) a no-blur model with 2x upsampling for both 

projections and the volume; (B) a no upsampling model with blur estimation; and (C) both blur estimation and 2x upsampling. (D) The component 

material attenuation model for the estimated from case (C) as compared with a standard monoenergetic model. These plots show the classic increase in the 
number of counts seen for longer material path lengths due to beam hardening as compared with a monoenergetic model. 
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associated with projections through the wire component 

provided a reconstruction with reduced artifacts in the 

vicinity of the wire. Some residual artifacts remain at the 

transition between the component and background, as well 

as at the ends of the wire. These residual errors may be due 

to slight mismatches between the class of shapes allowed 

by the deformation model and the actual physical 

morphology. 

C. Conclusion 

Application of the dKCR approach using components 

with both morphological and spectral uncertainties has been 

applied in real CBCT data on a testbench emulating an 

image-guided needle insertion. The results suggest a 

promising way to mitigate artifacts associated with 

homogeneous metal components without a sophisticated 

physical model of the component, using instead a simple 

pre-scan spectral calibration and a deformable model in 

joint registration and reconstruction. Potential applications 

include a range of interventional imaging scenarios, 

including procedures with guide wires, catheters, implants, 

and fixation hardware. 
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Fig. 5.  Illustration of various reconstruction methods using (A) Test phantom comprised of acrylic spheres and water, medium-contrast line pairs, and 
wire #2. Axial and sagittal reconstructions of CBCT testbench data of the test phantom using (B)(E) FBP, (C)(F) penalized-likelihood, and (D)(G) dKCR. 

All images above use a window/level of 450 HU/225HU and 0.18 mm voxels in-plane with slice thicknesses of 1.8 mm for axial slices and 3.6 mm for 
sagittal slices. 
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Explosive Detection in Aviation Applications Using CT 

Laura Parker 

Abstract— CT scanners are deployed world-wide to detect 
explosives in checked and carry-on baggage. While similar to 
single- and dual-energy multi-slice CT scanners used today in 
medical imaging, some recently developed explosives 
detection scanners employ multiple sources and detector 
arrays to eliminate the mechanical rotation of a gantry, 
provide photon counting detectors for spectral imaging, and 
produce limited number of views to reduce cost. For each bag 
scan, the resulting reconstructed images are processed by 
threat detection algorithms to screen for explosives and other 
threats. Human operators review the images only when these 
automated algorithms report the presence of possible threats. 
The US Department of Homeland Security (DHS) has 
requirements for future scanners that include dealing with a 
larger number of threats, higher probability of detection, lower 
false alarm rates and lower operating costs.  One tactic that 
DHS is pursuing to achieve these requirements is to augment 
the capabilities of the established security vendors with third-
party algorithm developers.  A third-party in this context 
refers to academics, national laboratories, and companies 
other than the established vendors.  DHS is particularly 
interested in exploring the model that has been used very 
successfully by the medical imaging industry, in which 
university researchers develop algorithms that are eventually 
deployed in commercial medical imaging equipment.  The 
purpose of this presentation is to review the presently 
deployed scanners and their concept of operations, and to 
discuss opportunities for third-parties to develop advanced 
reconstruction and threat detection algorithms. 
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Threat Liquid Identification in Hand-Held Baggage
Sebastian Faby, Marcus Brehm, Michael Knaup, Keith Powell, Mohammed Ayoub,

Benjamin Cantwell, Ian Radley, Mihai Iovea, and Marc Kachelrieß

Abstract—We present an approach for threat liquid identi-
fication in bottles transported on a belt extracted from hand-
held baggage using a scan configuration that allows to acquire
at least two projections from different view angles along with
spectral information for each projection. The main difficulty with
this scenario is obtaining a reconstruction of the bottle from
few projections only. To achieve this, a parameterized bottle
shape model is fitted to the projection data to fully describe
the bottle and its filling. This step, together with a material
decomposition carried out in projection space, makes it possible
to determine material-characteristic parameters of the liquid.
These parameters finally allow for a threat/benign classification
of the respective liquid. Simulations were carried out to assess
the performance of the proposed method using energy-selective
photon counting detectors. The results show the high potential
of this method.

Index Terms—Threat detection, liquid identification, bottle
scanner, multi energy, material classification, few view CT.

I. INTRODUCTION

With the plans to permit passengers to take liquids aboard
an airplane in their hand baggage comes the need for reliable
threat liquid detection at the security check at the airport. The
main requirements on those threat liquid detection devices are
a high probability of detection and a low probability of false
alarm along with a high throughput and all this at reasonable
costs. Especially the latter puts constraints on the design of
such devices, leading to the elimination of rotating gantry-
based approaches or other methods with a high number of
acquired projections, which is as a consequence impairing a
simple tomographic reconstruction of scanned objects. This
demands for a method for accurate object reconstruction from
a very low number of projections, e.g. from two projections
from different view angles in a dual view system. To allow for
liquid identification, at least two material-specific quantities
have to be derived from the projection data. This is requiring
the system to be multi energy capable, e.g. by employing
an energy-selective photon counting detector. In this work
we present a method for threat liquid identification that is
capable of operating under the above-mentioned minimal
requirements, i.e. a dual view multi energy system using a belt
for bottle transportation. This allows to acquire projection data
from many slices of the bottle during its transportation through
the scanner. The two pillars of our method are a tomographic
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reconstruction procedure that is fitting a parameterized bottle
shape model to the acquired projection data, i.e. the recon-
struction, and a material decomposition for the determination
of material characteristic parameters, which will allow liquid
identification.

II. MATERIALS AND METHODS

In a system configuration that restricts the number of
available projections to only a very few, all conventional
reconstruction approaches like the filtered backprojection fail
to give usable results. A possible scan configuration is shown
in figure 2, which illustrates a classical dual view system
consisting two source-detector pairs, where the bottles are
lying on a belt. Some sort of reconstruction, however, is
necessary to be able to separate the contribution of the bottle
wall from the liquid in the measured projections and to
determine the density. This is crucial to be able to determine
the liquid’s attenuation coefficient. Therefore, a central part
of our work presented here will be a special reconstruction
approach that allows to reconstruct the scanned bottle using a
parameterized bottle shape model. The next important step is
to derive material-specific information. The concept of using
the effective atomic number Zeff and the electron density
ρe to describe a material’s or material mixture’s attenuation
behavior is well known and used in many applications. A
comprehensive discussion on this topic is given for example
in reference [1]. We chose to determine these quantities based
on a decomposition into two materials. This will be motivated
in the following.

All materials that will have to be dealt with in the context
of threat liquid identification are either organic compounds or
other materials containing mostly the elements C, H, O and N.
Certain threat materials may also contain K, Cl, or S. All these
elements have a relatively low atomic number Z. The element
with the highest atomic number to be found in significant
amounts is probably Fe with Z = 26, e.g. in steel bottle walls.
Its K-edge at 7.1 keV is situated at such a low energy that it
does not play a role in the x-ray imaging process. We therefore
assume the absence of K-edge discontinuities. This means
that all relevant materials can be approximately described by
two parameters since the x-ray absorption is governed by
two basic physical effects in the energy range considered
here, i.e. the photoelectric effect and Compton scattering.
This motivates the application of a projection-based material
decomposition into two basis materials. Every material is then
approximated by the respective contributions of the two basis
materials. To obtain the coefficients of the basis materials for
the scanned liquid from the material-decomposed projection
data the reconstruction is necessary. These coefficients allow
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Fig. 1. Workflow of the proposed threat liquid identification method.

in the end to calculate Zeff and ρe. The procedure of our
proposed workflow is therefore as follows: First a minimum
of two projections of the bottle from different view angles
with each providing spectral information are acquired. These
projections are then independently decomposed into two basis
materials. The decomposed projection data are then used to
fit the parameterized bottle shape model. This reconstruction
step gives two coefficients from the two sets of basis material
projection data. With these two coefficients Zeff and ρe are
calculated. The last step will then be a decision algorithm that
compares these material-characteristic quantities to a database
of reference materials to come up with a threat/benign decision
for the scanned bottle. The single parts of the workflow
summarized in figure 1 will be described now in more detail.

A. Scan geometry

For optimal results the single projections should be acquired
at favorable angles that allow to identify important features
of the scanned bottle, like its fill level. The case of two
projections, which will be studied here, is defined in figure 2. It
makes sense to acquire a horizontal projection, showing the fill
level, the vertical bottle position and dimension, and a vertical
projection, which defines the horizontal bottle position and
dimension (see also figure 4). The two projections should be
acquired at an angle of 90◦ for maximum information. Precise
knowledge of the scan geometry is important to obtain correct
material-characteristic parameters since the density scales with
object size.

B. Material decomposition

The material decomposition of the projection data is based
on a maximum likelihood approach [2], [3], which is able
to deal with B ≥ 2 energy information and decompose into
M ≤ B basis materials. The spectral information is provided
by an energy-selective photon counting detector with B ≥ 2
energy bins.

With the definition of an analytical spectral forward model
the expected number of photons, i.e. the expected intensity λb

Fig. 2. Scan geometry for an orthogonal dual view system. The two source-
detector distances are denoted RFD and the iso-center-detector distances RD.

in energy bin b can be computed:

λb(p1, . . . , pM ) =

∫
dE I0,b(E)e−

∑
m

pmµm(E). (1)

The expectation value depends on the basis material in-
tersection lengths pm, which are the quantities of interest
here: p1, . . . , pM . The detected air spectra I0,b(E) need to
be known and the energy dependency of the attenuation
coefficients µm(E) of the basis materials is required as
well. These spectra have to be calibrated for the specific
scan system. Under the assumption of measuring independent
Poisson-distributed random variables nb, the likelihood func-
tion P (n1, . . . , nB |p1, . . . , pM ) is given by:

P =
B∏

b=1

(λb(p1, . . . , pM ))nb

nb!
e−λb(p1,...,pM ). (2)

The log-likelihood function L(n1, . . . , nB |p1, . . . , pM ) is:

L ≈
B∑

b=1

nb lnλb(p1, . . . , pM )− λb(p1, . . . , pM ). (3)

The simplex method of Nelder and Mead [4] is used to solve
this. An estimation of the basis material intersection lengths
p̂m is obtained in the end.

C. Bottle shape model

The parameterized bottle shape model that is used to re-
construct the material-decomposed projection data is shown
in figure 3. The model is essentially a box with rounded
corners and a constant wall thickness w. This model is
able to reproduce any shape from a rectangle, a box with
rounded corners, an ellipse to a circle. With this flexibility
every regular bottle shape can be represented. Highly irregular
bottles can probably nevertheless be correctly handled since
the optimization procedure will find a good average solution.
The parameters of interest are the attenuation coefficient of
the wall µw,b and the liquid µl,b for every energy bin b.
Since we do not carry out the parameter optimization on
the spectral projection data but on the material-decomposed
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Fig. 3. Parameterized bottle shape model. The model is a box with rounded
corners and wall thickness w, consisting of a wall and a liquid part. To the
wall is assigned the attenuation coefficient µw and to the liquid µl.

projection data containing intersection lengths, we actually
estimate material concentrations cwall,m and cliquid,m for the
wall and the liquid for the two basis materials m = 1, 2. The
material concentrations signify the relative density of the liquid
compared to the one of the two basis materials. Please note
that these coefficients are globally assigned to the liquid and
the wall. Spatial variations can therefore not be resolved.

All the parameters of the bottle shape model have to be
determined in a fitting procedure. This bottle shape model can
be described completely analytically, making the intersection
length calculation through the object fast.

D. Bottle shape reconstruction

The bottle shape reconstruction is the central part of our
method. Its basic concept is to find all bottle shape parameters
such that the intersection lengths through the estimated bottle
shape model pest are as similar as possible to the intersection
lengths obtained by the material decomposition from the
measured projection data pmeas (figure 4). This is done slice
by slice since the detectors are line arrays. The cost function
to be optimized is mainly defined as the difference of pmeas
and pest. To minimize this cost function the simplex method of
Nelder and Mead [4] is used. Since the Nelder-Mead algorithm
can only supply local a solution here, good starting points for
the parameter optimization are required. We found this initial
estimation to be crucial for a correct and fast convergence. We
use an initial estimation based on information extracted from
the unprocessed projection data. Line profiles of the projection
data provide good estimates for many of the open parameters
(see the projections in figure 4). The Nelder-Mead algorithm
is re-initialized several times after its convergence during the
optimization procedure to avoid local minima. The optimiza-
tion is stopped if no further improvement of the cost function
value is achieved compared to the previous initialization of
the Nelder-Mead algorithm. The result of interest of the bottle
shape reconstruction are the material concentrations of the
liquid for the basis materials BM1 cliquid,1 and BM2 cliquid,2.
They will be used to calculate the corresponding Zeff and ρe.

E. Liquid identification and decision

After the material concentrations of the liquid for the basis
materials BM1 and BM2 have been determined, now named

Fig. 4. Reconstruction of a bottle cross-section using the model shown in
figure 3 from a horizontal and a vertical projection acquired in the geometry
of figure 2. The projections are shown here for only one energy bin. Noise
was added to the projections during the simulation process.

cBM1 and cBM2, Zeff and ρe can be calculated using reference
values for the two basis materials [1]. The electron density
relative to the one of water can then be determined as a
function of the material concentrations:

ρe(cBM1, cBM2). (4)

The same applies for the effective atomic number:

Zeff(cBM1, cBM2, k). (5)

The free parameter k was adapted to represent liquids well.
Zeff and ρe are calculated for each slice of the bottle separately
and have then to be post-processed to obtain a final result for
the whole bottle.

Having finally obtained these sought material-characteristic
parameters, their values can now be compared to a database
containing Zeff and ρe of various threat and benign materials to
come to a decision whether the respective liquid is dangerous
or not. This could be realized e.g. by simply looking at the
distances to all the other materials in Zeff-ρe-space.

F. Simulations

The threat liquid identification method described above
was validated with simulations of an energy-selective photon
counting detector with five energy bins based on directly con-
verting semiconductor material. Extensive simulations were
carried out testing the method in various scenarios. Amongst
others the following parameters were varied: Bottle size and
shape, fill level, wall material and thickness, and noise level.
All this was done each for a total of twelve threat and benign
liquids in the bottle. These simulations serve as an error
propagation using the Monte Carlo technique: A single slice
is evaluated 50 times in a row, with each single repetition
having a different noise realization. For the resulting Zeff and
ρe the mean of all repetitions is taken. The expected error
of Zeff and ρe is then given by one standard deviation ∆
determined from the 50 independent repetitions. The standard
scenario “normal size” is based on an elliptical bottle with the
two half axes being 50mm and 30mm, a glass wall of 3mm
thickness and a relative fill level of 75%. The noise level is
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TABLE I
SIMULATION RESULTS OF WATER FOR DIFFERENT SCENARIOS BASED ON

PHOTON COUNTING DETECTOR TECHNOLOGY.

Scenario ρe Zeff ∆ρe ∆Zeff

Normal size 0.99962 7.48910 0.00285 0.02591

Half size 0.99754 7.54164 0.00470 0.03855

Double size 0.99829 7.48219 0.00573 0.04558

Decreased # photons 0.99823 7.53671 0.00620 0.06711

Al wall 0.99937 7.49172 0.00250 0.02116

Rectangular bottle 1.00004 7.47307 0.00299 0.03124

Almost empty bottle 1.00162 7.43038 0.02237 0.11739

defined by 105 photons per ray, using an 80 kVp spectrum.
The detector consists of 512 pixels with 0.5mm pixel size
in the iso-center. For the “half size” and the “double size”
scenarios the half axes and the wall thickness were halved
and doubled. The photon number per ray was reduced by one
order of magnitude to 104 in the “decreased # photons” case.
The “Al wall” case features a 0.1mm aluminium wall instead
of a 3mm glass wall. The elliptical bottle shape is changed to
a rectangular one with 100mm and 60mm side length for the
“rectangular bottle” scenario. For the “almost empty bottle”
case the relative fill level was reduced from 75% to 10%.

III. RESULTS AND DISCUSSION

The results of the simulations for the different scenarios are
shown in table I. Generally, the error of the electron density is
smaller than the one of the effective atomic number. The error
is always well below 0.01 for the electron density and 0.075
for the effective atomic number, i.e. a relative error of 1%,
even for the “decreased # photons” case, disregarding however
the “almost empty bottle” scenario. In this scenario the bottle
shape reconstruction suffers from a reduced amount of avail-
able data on the liquid. The results for Zeff sometimes show
a bias, which is often due to local minima close to the true
solution. The “double size” case is a scenario with increased
noise as well since the large bottle is highly absorbing. The
photon counting detector was simulated assuming an energy
resolution of FWHM = 7 keV, but no additional degrading
detector effects were taken into account.

The results for the other eleven liquids are quite similar
to the results shown here for water. In all cases the different
liquids could be separated from all the others using the average
of all slices. Only for very few liquids with very similar
properties and in a case with high standard deviation could
a confusion for a single slice alone become possible. This
confusion, however, would never lead to a wrong threat/benign
decision, it would only lead to mistaking one threat for another
threat or one benign for another benign liquid.

After having proved the method’s fitness in simulations,
the construction of a dual view prototype system is now
ongoing. Adaptation of the bottle shape reconstruction and
especially of the inital estimation to this specific system
together with a calibration of the scan geometry and the
material decomposition are expected to yield a comparable
standard deviation of the material-specific parameters over the

different slices as in the simulations. Improvements will also
come from making use of the available slice data, e.g. using the
result of the previous slice as initialization for the following
slice. So far each slice was always processed independently.

IV. CONCLUSION

A threat liquid identification method was presented that
is able to work with different numbers of projections, as
long as a minimum of two views from different angles are
available and the detectors are providing spectral information.
The simulation results obtained with this method are very
promising. The method might not just be able to classify
a liquid as threat or benign, it might even be capable of
identifying the liquid.
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Algorithmic Improvements to SIRT with
Application to X-Ray CT of Luggage

Jens Gregor

Abstract—In this paper we discuss algorithmic improvements
to SIRT including near-optimal relaxation, scalar precondition-
ing, minimum norm based Tikhonov regularization, data driven
weighting of the residual errors associated with the least squares
problem being solved, and a conjugate gradient implementation.
The showcase application is X-ray CT imaging of luggage for
aviation security.

I. INTRODUCTION

As part of the standard security measures for safe air travel,
passenger luggage is typically screened by an X-ray CT based
system prior to being loaded onto the air plane to determine
if explosives are present. Imaging challenges to be dealt with
include beam hardening and metal artifacts such as streaking
and shading. The Department of Homeland Security recently
sponsored a project which had as its goal to investigate the use
of iterative reconstruction in connection with X-ray CT based
screening of luggage. This paper reports on the algorithmic
developments carried out for the SIRT (Simultaneous Iterative
Reconstruction Technique) algorithm [1].

Having been applied to a wide range of inverse problems
in medicine, biology and engineering. SIRT is an example of
a Richardson Iteration which is a classical numerical method
for solving a linear system of equations. We have previously
shown that near-optimal relaxation can be achieved by means
of eigenvalue analysis and introduced a scalar-preconditioned
version called PSIRT [2]. That work established a closed-
form expression for the largest eigenvalue and argued for
the smallest eigenvalue being negligible but left it undefined.
More recently, we reported a simple way to compute an upper
bound on the smallest eigenvalue based on trace analysis of
the system matrix and added Tikhonov regularization in the
form of a minimum norm constraint within the relaxed PSIRT
framework [3]. Following a summary of these results, we
here show that data driven weighting of the residual errors
associated with the least squares problem being solved can
be incorporated in a manner consistent with our previous
work. We also remind the reader that SIRT can be embedded
within a conjugate gradient algorithm and show that such an
implementation eliminates the need for the heuristic method
of ordered subsets which which often is used to make SIRT
be fast enough for practical use.

II. ALGORITHMIC DEVELOPMENTS

Let x and b denote image and log-normalized projection
data, A the system matrix that connects the two, and R and
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C two diagonal matrices of inverse row and column sums of
A. Then SIRT solves the weighted least squares problem

x∗ = argmin ‖Ax− b‖2R. (1)

The solution is computed using the relaxed iteration

x(k+1) = x(k) + α CATR(b−Ax(k)). (2)

In practice, updating takes place using an ordered subsets
approach. Also, we use x(0)=0. See [2], [4] for details.

A. Near-Optimal Relaxation

SIRT is a Richardson Iteration [5]. Convergence is guaran-
teed if 0 < α < 2/λmax with the fastest rate of convergence
obtained for α∗=2/(λmax+λmin). Here λmax and λmin refer
to the largest and smallest eigenvalues of matrix CATRA.
Assuming A has full column rank, both eigenvalues are strictly
positive.

Stemming from the fact that non-negative matrices CAT and
RA are both stochastic, it follows that λmax=1. This implies
1≤α∗=2/(1 + λmin)<2. Empirical comparisons of residual
norms have consistently found α=1.99 to converge twice as
fast as α=1.00 in terms of requiring half as many iterations
to achieve the same residual error. This indicates λmin � 1.
We here detail a straightforward pathway for quantifying this
finding.

The trace of an N×N matrix is equal to the sum of the
eigenvalues of that matrix [6]. Clearly, the smallest eigenvalue
must be less than or equal to the average of all eigenvalues.
For SIRT, we can establish an even tighter bound, namely,

λmin ≤
tr(CATRA)− 1

N− 1
(3)

where we have subtracted off the value of the largest eigen-
value and computed the average of the remaining eigenvalues.
We will use λ∗min to refer to this bound below.

B. Scalar Preconditioning

Matrix C serves to precondition the normal equations as-
sociated with (1). We have introduced an alternative scalar
preconditioning scheme [2]. The resulting PSIRT algorithm is
given by

x(k+1) = x(k) + α p ATR(b−Ax(k)) (4a)
p = 1/‖A‖1 (4b)

where ‖A‖1 = maxj
∑

iaij denotes the maximum column
sum of the system matrix. The advantage of PSIRT over
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SIRT is best seen when solving a large problem using ordered
subsets and the code is executed in a distributed environment.
Each ordered subset requires its own image-sized matrix C.
When memory limitations preclude storage of these, SIRT is
forced to recompute them on a per-iteration basis. This is
costly in itself, but in a distributed computing environment
a global reduction is needed to create a complete local copy
on each node. In contrast, PSIRT can compute and store the
scalars that replace the C matrices during the first iteration.
This eliminates the need for computation and communication
thereof during the subsequent iterations.

C. Tikhonov Regularization

The condition number of matrix A is given by the ratio of
its largest and smallest singular values [6]. A small condition
number indicates that the linear system Ax=b can be solved
with great precision. A large condition number conversely
indicates that no algorithm can guarantee to find a solution
with any provable accuracy.

Tikhonov regularization is a widely used technique for
improving the numerical stability of an algorithm for solving
a poorly conditioned linear system [7]. In our case, it leads to
the weighted least squares problem

x∗ = argmin ‖Ax− b‖2R + β ‖Qx‖22 (5)

where matrix Q is chosen to emphasize structural characteris-
tics of x that are undesirable. Hyperparameter β establishes a
trade-off between the data term (left norm) and the model term
(right norm). A small value of β places more emphasis on the
data term. We show that this is needed to maintain the rate
of convergence achievable when regularization is not used. A
large value of β places more emphasis on the model term. We
show that this is needed to achieve the regularization.

We obtain a SIRT-like update scheme by preconditioning the
normal equations associated with (5) by matrix C followed by
matrix splitting

x(k+1) = (I− αβ CQ)x(k) + α CATR(b−Ax(k)). (6)

We consider the special case where Q = I for which prefer-
ence is given to a minimum norm solution. Combined with
the scalar preconditioning used by PSIRT, a simplified update
scheme can be derived. That is,

x(k+1) = (1− αβ p)x(k) + α p ATR(b−Ax(k)). (7)

Near-optimal relaxation results when α∗=2/(1+λ∗min+2β p).
This in turn implies that α∗>1.99 results if β p<0.0025 under
the assumption that λ∗min is negligible.

The condition number for the underlying linear system is
given by

κ =

√
σ2
max + β p

σ2
min + β p

(8)

where σmax and σmin denote the largest and smallest singular
values of matrix pATRA. Regularization is thus needed when
σmin is close to zero. This occurs when λ∗min is close to
zero since σmin ≤ λmin. In this case, the approximation
κ = σmax/

√
β p implies that even a relatively small value

of β p has the potential to greatly improve the conditioning
and thus the numerical stability of a PSIRT reconstruction.
Case in point, β p = 0.0025 yields κ = 20σmax which is
a substantial improvement over the unregularized case. In
practice, a smaller value of β p may be needed to prevent
the data term from being dominated by the model term which
could lead to excessive smoothing. This increases the condition
number but the end result is still better than not regularizing
at all.

D. Data Driven Weighting

Regularization addresses the fact that the imaging geometry
may lead to a poorly conditioned system matrix. Another
problem that needs to be addressed is that of heavily attenuated
data being less trustworthy than lightly attenuated data. This
is an important problem because the log-normalization applied
to the projection data causes a least squares solver like SIRT
to place more emphasis on the former than on the latter.
The solution is to weight the residual errors in a data driven
manner.

Define b = − log{λ/λT } where λ and λT denote the beam
intensity at the detector and the source, respectively. In a
seminal paper, Sauer and Bouman [8] showed that a Poisson
likelihood model of X-ray attention can be approximated by
a weighted least squares problem, namely,

L(λ|x) = 0.5‖Ax− b‖2D + f(λ) (9)

where D = diag{λ}. Function f represents terms that are
constant with respect to x. These can be discarded when
seeking to determine the x that maximizes the data likelihood.
We here show that this and other weighting schemes can be
incorporated into the developed SIRT framework.

Let A = [aij ] and b = [bi] and define w = [wi] to be the
diagonal of weight matrix W. The residual error for the ith

equation of the associated weighted least squares problem can
then be expressed as

ε2i = wi(
∑
j

aijxj − bi)2. (10)

The transformations Ã= [
√
wi aij ] and b̃= [

√
wi bi] allow us

to write ‖Ax−b‖2W = ‖Ãx−b̃‖22. By furthermore introducing
R̃= [1/

∑
j ãij ] and C̃= [1/

∑
i ãij ], we can express a SIRT-

like W-weighted least squares problem indirectly, namely,

x∗ = argmin ‖Ãx− b̃‖2
R̃
. (11)

We note that the normal equations for the standard version
of SIRT can be expressed as

PTR(b−Ax) = 0 (12)

where P= [aij/
∑

h ahj ]. Using the equality R̃ ( b̃ − Ãx ) =
R(b−Ax), the normal equations for the W-weighted version
of SIRT can similarly be expressed as

QTR(b−Ax) = 0 (13)

where Q=[
√
wi aij/

∑
h

√
wh ahj ].

We have thus shown that, when incorporated as proposed
here, data driven weighting is equivalent to modifying the back
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projector. We note that matrix Q is stochastic like matrix P
regardless of the choice of weight vector w. This guarantees
SIRT and PSIRT remain convergent and that near-optimal
relaxation and minimum norm regularization can be achieved
as described above.

In the experimental results section we compare unweighted
reconstruction with two exponential weighting schemes. Let
w = [ exp{−kbi} ]. Then k = 0 yields the unweighted case,
k = 1 corresponds to the Poisson likelihood weighting apart
from a scaling factor, and k = 2 is a quadratically boosted
version of the latter. We refer to these three cases as W0, W1,
and W2. Different values of k are possible as are functionally
different weighting schemes. Neither is pursued here.

E. Conjugate Gradient Implementation

SIRT quickly establishes the low-frequency content of an
image but then enters into a long and slow process during
which the high-frequency content is recovered. As an alterna-
tive to ordered subsets, a SIRT-like problem can be formulated
which is then solved using a conjugate gradient algorithm
[9] Specifically, let M = [aij/

√
ricj ], u = [xj/

√
cj ] and

v = [bi/
√
ri], where ri =

∑
j aij and cj =

∑
i aij . Then

apply a conjugate gradient algorithm to the following least
squares problem

u∗ = argmin‖Mu− v‖22 + β‖u‖22. (14)

The regularization term can be dropped if we fold it into the
linear system of equations being solved. That is,

M̂ =

[
M
βI

]
and v̂ =

[
v
0

]
.

The reconstructed image is obtained from u∗ through a simple
transformation, namely, x∗ = [

√
cj uj ]. Even without use

of preconditioning, we have found this CGSIRT approach to
converge as fast as ordered subsets versions of PSIRT.

III. EXPERIMENTAL RESULTS

We have applied the above variants of SIRT to fan-beam
data of luggage obtained using an Imatron C300 which is
a fifth generation CT scanner from the 1990s. Data was
acquired for 864 view angles covering 216 degrees. The fan-
beam angle was 41.3 degrees and 864 equiangular rays were
sampled. Polynomial beam hardening correction was applied.
A 512x512 image was reconstructed for each data set. PSIRT
was executed for 64 iterations using α=1.99 and 32 ordered
subsets. This corresponds approximately to 4,096 iterations of
a standard SIRT implementation. CGSIRT was executed for
64 iterations.

The geometry of the Imatron C300 was modeled using a
system matrix based on area intersection. The system matrix
contained 950 million non-zero elements. We determined that
λ∗min =0.00089 which supported using a relaxation factor of
1.99 for PSIRT and emphasized the need to regularize both
PSIRT and CGSIRT. This was in turn carried out using β =
0.04 which was found to provide a good trade-off between
improving the condition number of the iteration matrix and
not causing excessive smoothing of the reconstructed image.

Figure 1 illustrates the log-normalized projection data for
the unweighted and weighted cases described above. Notice
that bright pixels in W0 (max 9.40) are mapped to become
dark in W1 and even darker in W2. Conversely, dark pixels
in W0 are mapped to become bright in W1 (max 0.75) and
W2 (max 0.37). This mapping corresponds to a change in
influence of the projection data on the reconstruction: larger
values correspond to more influence, smaller values to less.

Figure 2 shows the CGSIRT reconstructions without reg-
ularization as well as with regularization. Notice how metal
artifacts seen in the W0 reconstructions are suppressed in the
regularized W1 and W2 reconstructions. One example is the
broad valley that runs horizontally through the large water
container in the middle of the image and continues through
the box shaped object to the right of it. Another example is the
Gibbs ringing seen for the two circular metal enclosed objects
toward the top and the right of the image. The overall level
of background noise is also reduced.

We cannot show the comparable PSIRT images due to space
limitations. Generally speaking, we found them to be visually
similar to the CGSIRT images although many edges were not
quite as well defined indicating slower convergence. This was
reflected also when comparing the least square residual errors.

We make no claims that these are the best reconstructions
possible. The goal has been to illustrate that near-optimal
relaxation, minimum norm regularization and data driven
weighting can be achieved simultaneously.

We close by commenting in the computational cost of the
proposed algorithms. Using a single Dell Precision PC with
dual, quad-core 2.26 GHz Xeon CPUs and and 10 GB of
memory, it took 20 seconds to initialize the system matrix, and
approximately 2 seconds for a multi-threaded implementation
to compute each PSIRT and CGSIRT iteration. These times
include computation and printing of miscellaneous types of
log information to file. The cost to weight the projection data
and the system matrix and subsequently map the problem to
the form solved by CGSIRT was approximately equal to the
cost of two iterations.
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Sinogram Sparsified Metal Artifact Reduction
Technology (SSMART)

Synho Do1 PhD and W. Clem Karl2 PhD

Abstract—The use of Computed Tomography (CT) scans is an
essential component of a wide variety of fields in our world today,
most notably in security and medicine. However, the presence of
metal in an object that needs to be scanned causes significant
artifacts which considerably detracts from the quality of the
image produced. This presents a major concern, especially when
used in security to scan baggage for their contents, as they
frequently contain metal objects in them. The most popular
technique used to combat this problem has been taking the
specific data sets that are affected by the metal and replacing
them with data sets estimated using the unaffected data. However,
this technique renders it impossible to get the true value leading
to not only inaccurate estimations, but also inaccurate images.
In this paper, we present the Sinogram Sparsified Metal Artifact
Reduction Technique (SSMART) for Electron Beam Computed
Tomography (EBCT) data. We hypothesize that rather than
replacing the affected data sets with estimations, simply removing
and reconstructing the images without them can lead to images
of increased quality and accuracy.

Index Terms—Metal artifact reduction, Iterative reconstruc-
tion technique, Electron Beam CT, compressed sensing

I. INTRODUCTION

In recent years, there have been significant improvements
made in two different techniques to combat the problem of
metal artifacts in CT imaging improving the algorithm in
itself, and adding spectral information to improve the quality
of the image. While in the medical field, Metal Artifact
Reduction (MAR) is used only when dealing with patients
who have metallic implants in their bodies, it is a constant
necessity for scanning baggage in the security field, where
the presence and amount of metal is much more frequent and
severe.

The fundamental problem of MAR is the nonlinear effects
of measurements by the corruption or shifting of the energy
spectra [1] [2] [3]. It has been speculated that MAR is
a problem without a simple, generalized solution, and the
solutions [4] [5] [6] [7] [8] [9] [10] currently used are limited
to the correction of mild artifacts and local artifacts.

We present a novel metal artifact reduction algorithm using
Electron Beam Computed Tomography (EBCT) scanner data
(i.e., IMATRON C300). Our algorithm takes advantage of
accurate forward system modeling and Iterative Reconstruc-
tion Technique (IRT) using the compressed sensing theory to

This research was funded by the center of Awareness and Localization
of Explosives Related Threats (ALERT) at Northeastern University and the
Department of Homeland Security (DHS). 1Massachusetts General Hospital
and Harvard Medical School, Dept. of Radiology, Boston, MA, email:
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reconstruct images from incomplete data sets (i.e., Sparse ray-
sums).

Fig. 1. A configuration of Electron Beam Computed Tomography (EBCT)

In this paper, we propose that rather than to replace the
identified corrupted measurements with inaccurate ones, we
simply exclude them in the fidelity term of the energy func-
tional so that the corrupted measurements are not included in
the image formation process. In doing so, we would effectively
change the MAR problem from being about inaccurate data
correction to sparse data image reconstruciton.

The proposed algorithm, called the Sinogram Sparsified
Metal Artifact Reduction Technique (SSMART), has shown
robust and effective metal artifacts (i.e., streaking artifacts,
low frequency shadowing artifacts etc.) reduction results with
sparse sinogram data in even high clutters cases. The SS-
MART results were compared to Xrec (i.e., FBP) results by
visual inspections and segmentation algorithms (i.e., CCL and
Tumbler[11]).

II. METHODS

A. System Models
EBCT have multiple formats of sinogram in the pre-

processing stages. To achieve an image of the highest quality,
we used the native geometry model of EBCT. It requires the
accurate system modeling of EBCT as shown in Figure 2. Of
the two concentric half circles, and the bigger circle depicts
an electron beam target (source ring), while the smaller is
for detector modules. The radius of the source ring is 900.0
mm. The 864 channel detector modules that measure over 216
degree has a 676.0 mm radius. The reconstruction field of view
is a 475.0 mm circle. The system can collect full sinogram
data within 116.16 ms (total sweep time) without any gantry
motion.
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B. Image Reconstruction Algorithm

The FBP type image reconstruction algorithm (Xrec) is
implemented on the system and is used as the conventional
method for the comparison. The main idea of SSMART is to
remove and simply not use less reliable ray-sums that passed
metal components in the fidelity term. The metal passed ray-
sums go through beam hardening, spectral shifting, intensity
clipping etc. effects and it is very hard to correct all of these
with the measurements from an energy integration detector.

As shown in Figures 3, 4, 5, and 6, when there are artifacts,
we focused on the measurements which didn’t pass through
the metal objects. In order to use only reliable data, we had
to develop a decision rule to determine metal passed ray-sums
on the image domain and an image reconstruction method to
reconstruct an image without metal component and additional
artifacts. In this reconstruction, the number of measurements
became smaller than the number of unknowns, making it
an under-determined problem. Therefore, we developed a
Sinogram Sparsified Reconstruction to solve this problem.

As shown in Algorithm 1, SSMART consists of pre-
correction steps (2-5) and post compensation steps (9-11) with
Sinogram Sparsified Iterative Reconstruction (SSIR). The two
pre and post-image reconstruction steps can be replaced by a
conventional FBP algorithm.

Algorithm 1 SSMART
1: procedure Xss = argminE(Yss, X) + αE(X)
2: X̂ = H−1Y (FBP or IRT)
3: XM ← X̂[0, Th] (Metal Image Mask)
4: XS ← X̂ − (XM [i]− Th) (Soft Image Mask)
5: YM ← HXM (Metal Sinogram Mask)
6: for each integer k in L do (SSIR)
7: X̂S ← H−1[Ψ,Φ]YS

8: end for
9: XE ← (X − X̂S)×X

′

M

10: YE ← HXE

11: Yss ← Y − YE

12: Xss ← H−1Yss (FBP or IRT)
13: end procedure

III. RESULTS

A. Clouds

In the clouds plot, SSMART reduced clouds sizes a sign of
better image reconstruction. The clouds plot was on metrics
we used to evaluate the image quality of SSMART compared
to Xrec. The automatic segmentation algorithm was applied to
both SSMART and Xrec images. As shown in Figure 7, three
class clouds (i.e., water, doped water, and rubber sheet) were
displayed in the plots by mean (X-axis) and standard deviation
(Y-axis). Each class is composed of multiple small dots, and
each dot represents the segmentation results of a single object.
To form a cloud, the distribution of multiple measurements
(=dots) was calculated for each class from multiple slides for
Xrec and SSMART independently.

Firstly, the clouds areas were calculated and plotted to show
significant area reductions in SSMART from all three classes.

(a)

(b)

Fig. 2. A diagram of EBCT: (a) A descriptive diagram of EBCT, (b)
An accurate modeling of EBCT for every image pixels and source/detector
elements locations

The cloud area of water class in the Xrec image was 18473, as
compared to the 11552 in SSMART, a significant reduction.
The cloud area of Doped water in the Xrec image was
3916, while in SSMART it was 1741. The cloud area of the
Rubber sheet area in Xrec image was 23539, reduced to 8365
by SSMART. Secondly, the first Principal Component (PC)
values were also calculated to measure the longer diameters
of ellipsoids in the clouds. As shown in the plot in Figure 7,
the PC-1 was increased a little in SSMART for Water class
from 12469 to 12553, but all other PC-1s were decreased
significantly for both the Doped water class (from 8959 to
1527) and the Rubber sheet class (from 20957 to 5156).
Thirdly, the outliers in the Xrec clouds plot were absent in
the those of SSMART. A few dos were plotted near 600 (Y-
axis) in Xrec plot but those went down to 300 in the SSMART
plot to make the clouds compact.

B. Image Comparison

It is important to observe images visually as radiologists do.
In this study, metal artifatcs in Xrec are noticeably suppressed
in SSMART. In Figures 3 and 4, we compared SSMART with
Xrec displaying in the same contrast window. As we marked
with arrows in Figure 3, the streaking artifacts in Xrec images
were significantly reduced in SSMART images. The low
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(a)

(b)

Fig. 3. Image comparison for streaking artifacts reduction: (a) Xrec images
with severe streaking metal artifacts, (b) SSMART image with streaking
artifacts suppression.

frequency shading artifact in the Figure 4 was also suppressed
in the SSMART image. The boundaries of metal components
were clearly defined in SSMART images as compared to
fuzzy boundaries in Xrec images. However, SSMART images
looked more blurry than those of Xrec because of strong
regularization.

Even though the strong regularization in SSMART caused
images smooth, the segmenation results from SSMART are
superior to those from Xrec as shown in Figure 5 and 6.

IV. CONCLUSION

The proposed SSMART suppressed metal artifacts effec-
tively, improving the accuracy in the following segmentation.
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(a)

(b)

Fig. 5. Automatic segmentation results (water bottle) comparison: (a) Xrec
image, (b) SSMART shows a significant improvement in accuracy.

(a)

(b)

Fig. 6. Automatic segmentation results (water bottle) comparison: (a) Xrec
image with automatic target detection algorithm, (b) SSMART shows better
result in boundary segmentation.

(a)

(b)

Fig. 7. Performance comparison by cloud metrics: The cloud plots show
scatter dots for targets by the means (X-axis) and the standard deviation or
targets (Y-axis) for (a) Xrec and (b) SSMART. SSMART shows significant
improvements by the smaller size clouds positioned in the bottom of plot.
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Sinogram restoration for security  
screening CT applications 

Phillip Vargas and Patrick La Riviere  
 
 

Abstract—In this work, we apply metal artifact reduction and 
sinogram restoration algorithms to security screening luggage 
datasets that were acquired using an Imatron medical CT 
scanner. The goal is to reduce noise and especially artifacts that 
can impede the automatic threat recognition algorithms that are 
routinely applied to CT images of checked luggage.  We couple 
the sinogram restoration with metal artifact reduction 
algorithms and demonstrate a clear reduction in certain kinds of 
streak artifacts, leading to improved segmentation and 
classification accuracy in a wide range of cases. However, 
secondary artifacts were occasionally observed that produced 
significant bias in CT values. This leads to a spreading of the 
mean-value clouds and a reduced level of segmentation precision.  

Keywords—security screening, explosive detection, computed 
tomography, sinogram restoration 

I. INTRODUCTION  
The goal of this work was to implement sinogram domain 
preprocessing coupled with standard analytic reconstructions 
such as filtered backprojection (FBP) in order to reduce noise 
and artifacts in reconstructed baggage screening images.  

Computed tomography (CT) measurement data, whether 
in the medical or security fields, are degraded by a number of 
physical factors that cause the data to deviate from the ideal 
model assumed by all analytic image reconstruction 
algorithms. These factors include off-focal radiation, detector 
afterglow, detector crosstalk, scatter, beam hardening, and 
metal-induced photon starvation, and they will generally 
produce artifacts and degradations in reconstructed images 
unless corrected or otherwise massaged (some compensation 
schemes for detector crosstalk simply add crosstalk across 
detector module boundaries, where the sudden lack of 
crosstalk would yield a ring artifact in the image). In current 
practice, many such effects are addressed by a sequence of 
independent sinogram-preprocessing steps, including 
recursive corrections for detector afterglow and deconvolution 
for off-focal radiation, that have the potential to amplify data 
noise.  

The noise level in measured CT transmission data is also 
a major determinant of the ultimate visual quality and 
diagnostic utility of the reconstructed images. Noise arises 
from two principal sources in CT: quantum noise, which is a 
consequence of photon-counting statistics, and electronic 
noise, which arises in the photodiode and other components of 
the detector electronics. 

We have previously developed methods in the medical 
context in which we formulate CT sinogram preprocessing as 
a statistical restoration problem in which the goal is to obtain 
the best possible estimate of the line integrals needed for 
reconstruction from the set of noisy, degraded detector 
measurements [1].  We developed a general imaging model 
relating the degraded measurements to the ideal sinogram of 
line integrals and propose to estimate the ideal line integrals 
by iteratively maximizing an appropriate penalized statistical 
likelihood function. The maximization algorithm is based on 
the separable parabaloidal surrogates strategy developed by 
Fessler [2].  

The essential idea is to approximate a difficult 
optimization problems by a series of simpler ones 
(“surrogates”), especially quadratic ones (hence 
“paraboloidal”) and ones in which each pixel can be acted on 
independently at each iteration (hence “separable”). Image 
reconstruction can then proceed by use of existing, non-
iterative approaches or even iterative approaches since many 
iterative algorithms being considered for CT do not try to 
model the effects that are corrected by sinogram restoration. 
We have demonstrated that the approach can successfully 
correct for sinogram degradations, effectively eliminating the 
image artifacts caused by beam hardening and off-focal 
radiation. We also demonstrate that the proposed approach can 
achieve lower noise levels at a given resolution than can many 
existing approaches. 

Here we couple this approach with a metal artifact 
reduction (MAR) algorithm. The goal is to see whether this 
combination of very computationally efficient algorithms can 
achieve some of the benefits of fully iterative image 
reconstruction algorithms at a fraction of their computational 
cost.  
 

II. METHODS 

A. Metal artifact reduction 
For metal artifact reduction, we implemented the most 
promising algorithm from the literature on medical CT 
medical artifact reduction. Called frequency-splitting metal 
artifact reduction (FSMAR) [3], the approach seeks to address 
two principal problems with many previous metal artifact 
reduction algorithms: their potential to introduce additional, 
secondary artifacts when estimating metal-corrupted 
projection data, and their tendency to obscure important 

The authors are with the Department of Radiology, The University of 
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details near the metal inclusion. A flow chart of the algorithm 
is shown in Fig 1.  

The algorithm starts with a raw-data inpainting method 
called normalized metal artifact reduction (NMAR) previously 
developed by the same group [4] and depicted in Fig 2. This 
approach improves on previous inpainting approaches through 
a normalization and denormalization of the data before and 
after the interpolation of the data in the metal shadow. This 
mitigates inconsistencies between the inpainted and existing 
data, reducing the chance of introducing secondary artifacts, 
streaks that can arise when the inpainted data is not a 
consistent projection of any plausible object. The 
normalization is based on forward projection of a  metal-free 
prior image that is obtained by multithreshold segmentation of 
the initial uncorrected image. The metal shadow itself is 
identified through the forward projection of the metal 
component of the segmentation. The measured sinogram is 
divided by the normalization sinogram, interpolation is 
performed across the metal gaps, and then the interpolated 
sinogram is multiplied by the normalization sinogram to return 
to the correct scaling.  

The FSMAR step of the algorithm attempts to restore 
some high frequency information near the metal structures that 
may have been lost during the NMAR process. Both the 
original and MAR corrected images are then low- and high-

pass filtered. The high-pass filtered original image is then 
added back to the corrected image with a spatially varying 
weight that is maximum at the center of metal objects and falls 
off rapidly as you move away from the metal. This seeks to 
balance resolution recovery with noise and streak control. 
 

B. Sinogram restoration 
We employ a model for raw CT data that incorporates the 
statistical and deterministic effects discussed above. The 
model applies equally well to single-slice, multi-slice, and 
cone-beam scanners and to both conventional and helical 
modes of operation. We assume that the CT scan produces a 
set of measurements that are organized into a one-dimensional 

(1D) vector ymeas, with elements yi
meas, i = 1, . . ., NY , 

where NY is the total number of measurements in the scan, 
given by the product of the number of detector elements and 
the number of projection views acquired. 

We assume that each yi
meas is a realization of a random 

variable Ymeas whose statistics are compound Poisson, as 
described by the following model: 

 

 
In the first term, which represents the effects of photon-
counting statistics, Ij is the incident X-ray intensity along the 

j
th measurement line. These Ij are, of course, polychromatic, 

and so we further assume they are grouped into discrete 

energy bins Em, m = 1,...,M, with probabilities λm
(j) 

satisfying 

 

The superscript j on λm
(j) 

reflects the fact that the energy 
distributions of photons emerging from an X-ray tube can be 
spatially varying due to the use of bow-tie filters as well as to 
the heel effect. The function µ(x,E) is the energy-dependent 
attenuation map, which we would ideally like to reconstruct , 
although from single-energy data we typically seek to 
reconstruct µ(x,Er), the attenuation map at some reference 

energy. The term sm
(i) 

is the number of scattered photons of 
energy Em contributing to measurement Yi.  In this model, the 
ith measurement is seen to receive contributions not just from 
the ith attenuation line but from other attenuation lines j not 
equal to i with weight bij. This could model, for example, the 
effects of off-focal radiation, which results in contributions 
from other points in the sinogram lying on a locus that can be 
determined by the geometry of the X-ray tube’s off-focal halo, 

the X-ray collimation, and the detector geometry. The weights 
bij could also model the source and detector response 
functions as well as crosstalk and detector lag, although if 
these effects are significant they introduce noise correlations 
that should be accounted for by a different model. 

Each detected photon contributes to the measured detector 
signal in proportion to its energy Em, which accounts for the 
factor of Em in this expression; the constant of proportionality 
(the gain) is denoted Gi. The detected signal is read out 
through detector electronics having dark current di and 
electronic readout noise assumed to be normally distributed 

with variance σi
2
.  

We assume that I , G , d , σ2, the average energy of the 
incident beam, and an energy-averaged and normalized 
estimated scatter term are all known or measurable. While it 
would naturally be useful to be able to reconstruct µ(x,E) for 
all energies E, this is generally not possible without the use of 
fully iterative reconstruction methods and fairly strong 
assumptions about the material composition of the object 
being imaged, such as assuming that the density of a given 
material fully determines its spectral properties (very dense 
objects are assumed to be bone-like, unit density assumed to 
water like). Such assumptions are somewhat unrealistic for 
medical imaging and highly inappropriate in the security 
context. In single-energy CT, the goal is generally the more 
modest one of reconstructing the attenuation map µ(x,Er) at 
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some reference energy Er. To achieve this, one needs first to 
estimate a set of “monochromatic” attenuation line at the 

reference energy, from the set of measurements ymeas, i = 
1,...,NY . These estimated line integrals can then be input to a 
standard analytic reconstruction algorithm. 

In the present work, we focused solely on the effects of 
Poisson noise, often the source of distracting streaks in images 
and did not attempt to model the other non-idealities of the 
Imatron scanner, but many of these effects could readily be 
accommodated with this framework.  

III. RESULTS 
A. Visual results showing improved uniformity and 
reduced streaks 
Fig. 1 shows improvement in uniformity and circularity of the 
beads in the left hand panel and of the water in the center of 
the right hand panel. There is perhaps some evidence of 
overcompensation in the water cylinder.  

 

 
Figure	  1:	  Demonstration	  of	  improved	  uniformity.	  

 
Fig. 2 shows a reduction in streak artifacts without loss of 
resolution for fine lines and small objects.  

 
Figure	  2:	  Demonstration	  of	  resolution	  retention.	  

Fig. 3 shows mitigation of object splitting, with a strong dark 
streak splitting the water bottle being greatly reduced in 
magnitude. Some mild new hyperintense streaks are observed, 
however.  

 

 
Figure	  3:	  Demonstration	  of	  reduced	  streaks..	  

B. Result showing improved segmentation performance 
 

Figure 4 shows a situation where the sinogram processing 
algorithm has mitigated a streak artifact yielding improved 
segmentation relative to that achieved from the xrec image. 
The segmentation was performed using connected-component 
labeling. The segmentation is still not perfect, with a portion 
of the arc still missing, but it demonstrates that improved 
image quality can lead to improved segmentation 
performance.  

 
 

 
Figure	  4:	  Illustration	  of	  CCL	  segmentation	  improvement.	  

 
C. Quantitative results 
Quantitative results were generated by study participant 
Stratovan Inc. in which known objects were segmented 
manually and the various reconstruction approaches could be 
judged on their ability to support manual segmentation and 
also quantitative accuracy of CT number within the object 
boundaries. An example of such a plot is shown in Fig. 5. 
 

The third international conference on image formation in X-ray computed tomography Page 131



 
Figure	  5:	  Mean	  vs	  CCL	  cloud	  plots.	  

D. Results showing limitations of the approach 
In Fig 6, we show an image that produced one of the two 
outlier dots in the water cloud. It can be seen to suffer from 
substantial “blooming” artifacts and hyperintense streaks. This 
could be caused by failure of the MAR algorithm, leading to 
introduction of secondary artifacts.  This issue needs to be 
investigated further.  

 
Figure	  7:	  Reconstructed	  image	  producing	  one	  of	  the	  outlier	  
dots	  in	  water	  cloud.	  The	  application	  of	  MAR	  has	  apparently	  
introduced	  secondary	  artifacts	  leading	  to	  bright	  shading	  in	  
the	  water	  cylinders.	  This	  gives	  rise	  to	  an	  artificially	  high	  HU	  

value	  for	  the	  water.	  	  

 
Figure	  8:	  (Left)	  Our	  result.	  (right)	  Xrec	  result.	  Our	  result	  
mitigates	  the	  main	  dark	  streak	  artifact	  diving	  the	  xrec	  
segmentation,	  but	  the	  hyperintense	  swath	  in	  the	  lower	  left	  of	  
the	  cylinder	  causes	  its	  omission	  from	  the	  segmentation.	  

IV. CONCLUSIONS 
The sinogram processing demonstrated mixed success. There 
was a clear reduction in certain kinds of streak artifacts, 
leading to improved segmentation accuracy in a wide range of 
cases. However, secondary artifacts were occasionally 
observed that produced significant bias in HU values. This 
lead to a spreading of the mean clouds and a reduced level of 
segmentation precision.  
  One of the great strengths of the sinogram processing 
approach is the very low computational cost. The MAR 
algorithm involves a single segmentation and reprojection step 
and the sinogram restoration algorithm a small number of 
sinogram-domain iterations with the overall computational 
burden being on the order of the analytic reconstruction or a 
single iteration of an iterative reconstruction algorithm. It is 
possible that further parameter optimization in the sinogram 
processing could limit the outlier cases observed and yield 
performance comparable to the fully iterative approaches at a 
very low computational cost.   

Alternatively, the sinogram processed data could be input 
to one of the fully iterative approaches, which might speed 
convergence while benefiting from the ability of fully iterative 
approaches to enforce edge preserving more naturally than can 
be done in the sinogram domain.  
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Artifact reduction in dual-energy CT reconstruction
for security applications
Limor Martin, W. Clem Karl and Prakash Ishwar

Abstract—In this paper we present a structure-preserving
dual-energy (SPDE) CT reconstruction method for security,
which provides enhanced estimates of material-dependent basis
coefficient images. In security applications many different ma-
terials may be scanned in various degrees of clutter and metal
objects are common. Image noise and metal artifacts are often
severe and can lower the accuracy of material identification.
The proposed approach aims at mitigating metal artifacts and
improving material parameter accuracy. The basis coefficient
images are generated jointly as the solution of a single model-
based optimization problem. An auxiliary variable corresponding
to a mutual boundary-field is estimated as well and applied to the
basis coefficient images to reduce object splitting and material
variability. In addition, metal aware data weighting is included to
reduce streaks. We evaluate the performance of the method both
visually and quantitatively using simulated dual-energy data. We
demonstrate a significant reduction in noise and metal artifacts
compared to a baseline filtered back projection (FBP) method.

I. INTRODUCTION

Dual-energy X-ray computed tomography (DECT) is a
powerful tool for non-destructive evaluation, used for security
and medical purposes. With DECT two energy-selective sets
of tomographic measurements are acquired, allowing enhanced
material discrimination relative to conventional single-energy
computed tomography (CT). Several DECT techniques have
been suggested since the 1970s [1], [2], [3]. In general, the
goal is to reconstruct a small number of material-specific basis
coefficient images, such as the photoelectric and Compton
coefficients, from the energy-selective measurements. Usually
filtered back-projection (FBP) is used for image formation and
there is no unified treatment of metal artifacts. In the secu-
rity application, where DECT is used for scanning checked
luggage, many different materials may be scanned in various
degrees of clutter and metal objects are common. In this
application, image noise and metal artifacts can be severe
and lead to less reliable image estimates. Therefore, different
reconstruction techniques may be appropriate.

In this paper we describe a structure-preserving dual-energy
(SPDE) reconstruction method for the formation of enhanced
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basis coefficient images. We form the images as the solution of
an optimization problem which explicitly models the physical
tomographic projection process. Metal induced streaking is
reduced by appropriately down-weighting unreliable data. A
boundary-preserving prior based on [4] is incorporated to
improve object localization. In particular, we estimate a mutual
boundary-field along with the material-parameter images. The
boundary-field provides accurate object localization and helps
to suppress the splitting and streaking effects of metal artifacts.
This method extends our work in [5]. Here we incorporate an
additional parameter in the problem formulation, which allows
a more reliable boundary-field estimate.

We test our method on simulated dual-energy measurements
of a suitcase phantom containing water bottles and metal.
We show that with SPDE both noise and metal artifacts in
the reconstructed basis coefficient images are greatly reduced,
which can lead to more accurate material identification.

II. DUAL-ENERGY CT RECONSTRUCTION

In DECT two sets of measurements are acquired with dif-
ferent energy spectra by either changing the source spectrum
or using energy-sensitive detectors. Typically these measure-
ments are acquired at a “high” energy and a “low” energy,
corresponding to emphasis on high or low energies respec-
tively, which we denote here with an “H” or “L” subscript.
The measured photon counts are modeled as follows [6]:

IL(θ, t) =

∫
wL(E)e

−
∫
Lθ,t

µ(~r,E)dl
dE

IH(θ, t) =

∫
wH(E)e

−
∫
Lθ,t

µ(~r,E)dl
dE (1)

where θ is the projection angle, t is the projection displace-
ment, E is the energy level, ~r is the spatial location, wL(E)
and wH(E) are the low and high spectral weighting functions
at energy E, µ(~r,E) is the linear attenuation coefficient (LAC)
at location ~r and energy E, and

∫
Lθ,t µ(~r,E)dl is the line

integral of µ(~r,E) over the ray path defined by θ and t.
Typically, the LAC µ(~r,E) is decomposed with respect to

some known basis and the following model is assumed [2]:

µ(~r,E) = a1(~r)f1(E) + a2(~r)f2(E) (2)

where a1(~r) and a2(~r) are the basis coefficients of the material
at location ~r and f1(E) and f1(E) are the basis functions.

Using decomposition (2), the measurements (1) become:

IL(θ, t) =

∫
wL(E)e−(A1(θ,t)f1(E)+A2(θ,t)f2(E))dE

IH(θ, t) =

∫
wH(E)e−(A1(θ,t)f1(E)+A2(θ,t)f2(E))dE (3)
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where A1(θ, t) =
∫
Lθ,t a1(~r)dl and A2(θ, t) =

∫
Lθ,t a2(~r)dl.

The quantities A1(θ, t) and A2(θ, t) for a set of θ and t points
are called the coefficient sinograms.

In many DECT methods the goal is to reconstruct the
coefficient images, a1(~r) and a2(~r) given the dual energy
measurements IL(θ, t) and IH(θ, t). Since the problem is
nonlinear and high-dimensional, a well-known solution ap-
proach is to separate it into two sub-problems [1]. In the
first sub-problem, the nonlinear set of equations (3) is solved
for A1(θ, t) and A2(θ, t) given IL(θ, t) and IH(θ, t). This
is implemented, for example, by polynomial fitting [1] or
least squares [3]. The second sub-problem is reconstruction of
the basis coefficient images a1(~r) and a2(~r). This is usually
modeled as a linear problem and solved by applying FBP
individually to A1(θ, t) and A2(θ, t).

III. PROPOSED APPROACH

Our focus in this work is on improving the solution of the
second sub-problem in DECT, i.e., reconstruction of the basis
coefficient images from the basis coefficient sinograms. This
problem is related to the field of multi-sensor image fusion.
Each basis coefficient sinogram may be regarded as observa-
tions obtained from a different measurement channel/modality.
In [7], Weisenseel et al. proposed a shared boundary fusion
formulation as part of a framework for fusion of medical
imaging modalities. We incorporate the main principles from
this work in our approach. We utilize the mutual structure
information and reconstruct the coefficient images jointly. In
this way, object localization may be improved in both images.
An illustration contrasting the similarities and differences
between the typical DECT and the proposed approaches is
shown in Figure 1.

Fig. 1. Typical approach (left) and proposed approach (right).

A. General formulation

We consider the discretized problem, where IL and IH
denote vectors containing dual-energy measurements for a set
of θ and t points, and A1 and A2 are vectors containing
the photoelectric and Compton sinograms at the same points.
Similarly, a1 and a2 are stacked basis coefficient images at a
set of spatial locations ~r.

We introduce an auxiliary variable s corresponding to the
mutual edge field of a1 and a2. Given A1 and A2, we jointly
estimate a1, a2, and s by solving the following problem:

minimize
(a1≥0,a2≥0,s)

{
||A1 − Ta1||2WI

+ ||A2 − Ta2||2WI

+ λ21||Da1||2W1(s)
+ λ22||Da2||2W2(s)

+ λ23||a1||22 + λ24||a2||22
+λ25||Ds||22 + λ26||s||22

}
(4)

where λi, i = 1, ..., 6, are non-negative regularization pa-
rameters, WI is a nonnegative diagonal data weighting ma-
trix, W1(s) and W2(s) are nonnegative diagonal weighting
matrices which depend on s and control the smoothing of
the photoelectric image and Compton image respectively, T
is the tomographic system forward projection operator, and
D is a derivative operator. The weighted norm is defined as
||v||2M = vTMv. The weights WI , W1(s), and W2(s) are
described in Sections III-B and III-C below.

Three effects are explicitly captured in the formulation (4).
First, the tomographic model T is explicitly used. Second,
explicit use is made of an object boundary-field s to mitigate
and limit the propagation of artifacts. Third, the sinogram data
are weighted through WI to reduce the effect of unreliable rays
due to the presence of low count rays caused by metal.

B. Streak mitigation by a mutual boundary-field

The matrices W1(s) and W2(s) control the smoothing
of basis coefficient images a1 and a2 respectively, and are
used to ameliorate metal induced streaks and splits. They are
formulated as follows:

Wi(s) = diag
(
(1− εi)(1− s)2 + εi

)
, i ∈ {1, 2} (5)

where s is the boundary-field and εi ∈ [0, 1].
The contribution of a1 and a2 to the boundary-field estimate

s and the effect of s on the smoothing of a1 and a2 are
controlled by W1(s) and W2(s). The parameters ε1 and ε2
allow the inclusion of different boundary-field contributions
from the coefficient images. This flexibility is useful when one
of the coefficients has more reliable structure information than
the other. Further, these parameters are useful as annealing
parameters to aid in convergence of the solution iterations.

C. Data weighting to mitigate metal artifacts

In the presence of metal and high clutter some rays are
significantly attenuated and the measured values for these rays
are very small. Since few photons are measured, these data
points are less reliable. We apply explicit data weighting to
account for this phenomenon. The weighting matrix WI is
given by

WI = diag
((
I2H + c

)−1)
(6)

where c is a constant and the square is element-wise. This
weighting reduces the contribution of the unreliable, low
count, rays which go through dense metal objects. The weight-
ing is based on the high-energy sinogram because it is more
reliable.
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D. Optimization approach

The cost function in (4) depends on three coupled variables
- a1, a2, and s - and the resulting optimization problem is
non-quadratic. In the absence of the non-negativity constraint,
the following equations must hold at the optimum:

(TTWIT + λ21D
TW1(s)D + λ23)a1 = TTWIA1 (7)

(TTWIT + λ22D
TW2(s)D + λ24)a2 = TTWIA2 (8)

(B + λ25D
TD)s = Bu (9)

where

B = diag
(
λ21(1− ε1)[Da1]2j + λ22(1− ε2)[Da2]2j + λ26

)
[u]j =

λ21(1− ε1)[Da1]2j + λ22(1− ε2)[Da2]2j
λ21(1− ε1)[Da1]2j + λ22(1− ε2)[Da2]2j + λ26

We iteratively solve (7) and (8) for a1 and a2 while keeping
s fixed, and solve (9) for s while keeping a1 and a2 fixed. We
enforce the non-negativity constraint in (4) by projecting the
solution onto the constraint set at every iteration.

In practice we use ε1 and ε2 as annealing parameters in
the optimization process. We adaptively vary their values at
each iteration of the numerical solution. This approach allows
us to gradually progress from a more blurred solution to a
sharper solution. In addition, we can control the individual
contributions of the coefficient images a1 and a2 to the
estimation of the mutual boundary-field. More details are
provided in the experiments section.

IV. EXPERIMENTAL RESULTS

A. Experimental setup

We tested our method on simulated dual-energy data. The
simulations were performed using analytical ray tracing soft-
ware and were based on the properties of the Imatron C300
electron-beam medical scanner. Dual-energy measurements
were simulated with estimates of the 95kVp and 130kVp
Imatron spectra (kVp denotes the maximum voltage applied
to the X-ray tube). The spectra are shown in Figure 2c. The
simulations included scatter and electronic noise.

In security applications a common choice of basis functions
for the LAC decomposition (2) is the photoelectric and Comp-
ton basis functions shown in Figures 2a and 2b [3]. We used
these basis functions in our formulation and reconstructed the
photoelectric and Compton coefficient images.

We processed two-dimensional scan slices. We used re-
binned parallel measurements with 720 angles and 1024 bins.
The reconstructed images are 512×512 with pixel spacing of
0.928 mm. The photoelectric and Compton sinograms were
estimated from the dual-energy measurements using Matlab’s
‘lsqnonlin’ least-square function and equation (3). We assumed
that the spectral functions were known. As a baseline method
we applied the Imatron FBP inversion algorithm to the pho-
toelectric and Compton sinograms individually. We label this
method FBP in results to come.

In the implementation of SPDE we initialized the photo-
electric image a1 and the Compton image a2 as the results
of one iteration of the image-based decomposition method
proposed in [8]. We initialized the boundary-field s with

(a) Photoelectric function f1(E) (b) Compton function f2(E)
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Fig. 2. Top: Photoelectric and Compton basis functions. Bottom: estimates
of the Imatron system spectra used in the simulations normalized to unit sum.

all zeros. The data weighting parameter c in (6) was set to
5, based on sinogram values of rays going through metal
(around 6-8). The regularization parameters λi in (4) were
chosen empirically as the following: λ1 = 5, λ2 = 3, λ3 =
0.2, λ4 = 0.01, λ5 = 0.5, λ6 = 0.5. A relative iteration error
stopping criterion was used, and a total of five iterations were
performed. We calculated the intermediate linear inversions
using Matlab’s ‘lsqr’ function and an estimate of the Imatron
forward projection matrix. With the current implementation
SPDE is more computationally intensive than FBP, but it is
comparable to other model-based iterative approaches.

We made use of the parameters ε1 and ε2 to guide the SPDE
solution to a globally acceptable answer. We exploited the
fact that the Compton sinogram is more informative on object
structure than the photoelectric sinogram. In the first iteration
we set ε1 to 1 and ε2 to 0.5. In the second iteration we set ε1 to
1 and ε2 to 0. After that we set both parameters to 0. With this
choice of parameters only the Compton component contributed
to the boundary-field estimate in the first two iterations. In this
manner we obtained a more reliable boundary-field s early on.

B. Reconstruction results

We show the results for a slice with different benign objects
in a plastic suitcase. The suitcase contains an oval object of
water, a round object of water in a Teflon container, a square
object of water in a steel container and a round object of
water in an aluminum container. There is also a rubber sheet
and two small steel balls. The remainder of the suitcase is
filled with styrofoam to simulate clothing. Figure 3 shows
the reconstructed photoelectric and Compton images with
FBP and SPDE, as well as the ground truth images. Ground
truth values were obtained by finding the least-squares fit of
the LAC curve of each material and the photoelectric and
Compton basis functions. The mutual boundary-field estimated
with SPDE is shown in Figure 3g. It can be seen that noise
and streaking are significantly less visible in the SPDE results
relative to FBP in both the photoelectric and Compton images.
In addition, the artifacts caused by the metal in the suitcase
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(a) Ground Truth: Photoelectric (b) Ground Truth: Compton

(c) FBP: Photoelectric (d) FBP: Compton

(e) SPDE: Photoelectric (f) SPDE: Compton

(g) SPDE: boundary-field

Fig. 3. Top row: ground truth photoelectric and Compton coefficient images.
Second row: FBP reconstructions. Third row: SPDE reconstructions. Fourth
row: estimated mutual boundary-field by SPDE. Photoelectric units are
keV3/cm and the gray scale range is [0, 7E4]. Compton units are 1/cm and
the gray scale range is [0, 0.4].

(steel balls) are greatly reduced by SPDE. For example, in
Figure 3d there is a thick black streak at the bottom of the
oval water object and it is much less visible in Figure 3d.

C. Quantitative evaluation

For each of the four water objects in the suitcase phantom
we calculated the mean percent error (MPE) of the estimated
photoelectric and Compton values relative to the ground truth.
We also calculated the signal to noise ratio (SNR) of the
photoelectric and Compton values, where SNR was defined

as the mean divided by the standard deviation. The results
are shown in Figure 4. It can be seen that the mean errors
are significantly lower for SPDE than for FBP. For the oval
water object with no container, for example, with SPDE the
mean error of the photoelectric coefficient is reduced by 90%
and the mean error of the Compton coefficient is reduced by
80% relative to FBP. In addition, the SNR values for SPDE
are much higher than for FBP, indicating that the noise is
greatly reduced. For example, for the water object with no
container, with SPDE the SNR of the photoelectric coefficient
is increased by over 20,000% and the SNR of the Compton
coefficient is increased by almost 400% relative to FBP.
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Fig. 4. Metrics calculated for Photoelectric values (left) and Compton values
(right) in water objects for FBP and SPDE. Top: Mean percent error (lower
is better). Bottom: SNR (higher is better).

V. CONCLUDING REMARKS

In this paper we presented and tested a structure-preserving
dual-energy reconstruction method, SPDE. We demonstrated
that it reduces noise and metal artifacts in basis coefficient im-
ages while keeping boundary localization. This may increase
the accuracy of material identification in security applications.
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Simultaneous segmentation and reconstruction for

dual-energy CT: Experimental results
Brian H. Tracey and Eric L. Miller

Abstract—Dual- or multi-energy computed tomography sys-
tems that can provide improved material identification are of
great interest in airport luggage screening. While dual-energy
luggage scanning systems are commercially available, dual-energy
reconstruction remains challenging because data sensitivity varies
greatly depending on the material parameter being estimated,
and because prior information about materials of interest is
imprecise. Here we extend earlier work [1] that uses a variational
framework to perform simultaneous segmentation and recon-
struction focusing on materials of interest, by introducing novel
regularization terms and by developing a more computationally
tractable variation of the previous approach. Experimental re-
sults with realistic luggage show that material property estimates
can be stabilized by estimating foreground values, which can be
expected to make material identification more robust.

1. INTRODUCTION

There is growing interest in exploiting dual- or multi-energy

Computed Tomography (CT) systems that provide information

on material properties as well as geometry by exploiting the

energy dependence of X-ray absorption [2], [3]. Previously

[1], our group developed an approach to geometric image

formation for dual-energy CT reconstruction that exploited

prior knowledge of the Compton and photoelectric coefficients

of materials of interest. This approach is designed specifi-

cally for airport luggage screening application. Because the

materials being scanned may vary greatly (as opposed to

medical CT, where the tissue properties in the human body are

relatively constrained) it is appropriate to represent the scene

using Compton and photoelectric coefficient images, which

capture the relevant X-ray physics. We further separate these

images into background and foreground regions, with objects

of interest captured in the foreground. Because we employ a

variational framework, regularization terms can be designed to

help stabilize reconstruction of the photoelectric image, which

is typically much more difficult to reliably estimate than the

Compton image [4], [1].

In this paper we describe extensions of this earlier work and

apply the method to experimental data. A high-level descrip-

tion of the overall processing flow, with both ‘background’

and ‘’foreground’ image formation, is shown in Fig. 1. In

the first stage of processing, iterative reconstruction is applied

to the dual energy data to form Compton and photoelectric

coefficient images for the entire scene (denoted ‘background’).

Here, we use patch-based regularization terms to stabilize

the background photoelectric image, described in detail else-

where [5]. In this paper we focus on the second stage of

B. Tracey and E. Miller are with Tufts University, Electrical and Computer
Engineering Dept., Medford MA, USA 02155.

Fig. 1. Flowchart showing concept of background and foreground image
formation. Low- and high-energy scans are processed using iterative recon-
struction to form background images of the full scene. Further processing is
used to reprocess data corresponding to a user-specified region of interest,
with the goal of localizing foreground materials of interest whose nominal
material properties are known.

processing (‘Foreground’ box in Fig. 1). In this stage, further

processing is carried out within a user-specified region of

interest (ROI), with the goal of producing improved shape

and material property estimates of any objects in the ROI

that correspond to materials of interest (such as contraband).

During this step, the background image is assumed to be

correct outside the ROI, and the location and exact material

properties of the foreground object (i.e. material of interest)

is iteratively estimated using the sinogram data. This two-

stage approach differs from [1], in which foreground and

background are jointly estimated. While computational speed

was not a primary focus of our work, separating the two

stages was important as otherwise the time needed to process

experimental data would have been prohibitive.

2. ITERATIVE RECONSTRUCTION APPROACH

Typical X-ray sources used in CT applications generate an

energy spectra roughly between 20 KeV and 140 KeV [6].

In this energy range the X-ray attenuation is dominated by

Compton scatter and photoelectric absorption. The energy- and

spatial-dependent attenuation can be modeled as [4].

µ(x, y, E) = c(x, y)fKN (E) + p(x, y)fp(E) (2.1)

where µ(x, y, E) is the total attenuation and c(x, x) and

p(x, y) are the material dependent Compton scatter and photo-
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electric absorption coefficients respectively. The quantity fKN

is the Klein-Nishina cross section for Compton scattering [4].

We seek to solve for Compton and photoelectric coefficients

and use these as ‘fingerprints’ allowing material identification.

As noted above, we further separate the region being imaged

into foreground and background. The foreground is mod-

eled as piece-wise constant objects of interest with Compton

coefficient cf and photoelectric coefficient pf , although the

approach could be extended to textured objects. For a domain

Ω ⊂ D which represents the support of the foreground objects,

a characteristic function χ(x, y) is defined as

χ(x, y) =

{

1, if (x, y) ∈ Ω
0, if (x, y) ∈ D\Ω.

(2.2)

Then, the Compton image can be written as

c(x, y) = χ(x, y)cf + [1− χ(x, y)] cb(x, y). (2.3)

In discretized form, the Compton and photoelectric images are

c = χ cf + (I− diag (χ)) cb (2.4)

p = χ pf + (I− diag (χ)) pb

where cb(x, y), pb(x, y) and χ(x, y) have been unwrapped

lexicographically into vectors cb, pb, and χ,where diag (χ)
is a diagonal matrix whose entries are the values of the

unwrapped characteristic function χ. We next assume the

dual-energy CT system acquires low-energy and high-energy

sinograms. These are modeled as vectors of additive Poisson-

Gaussian random variables, with ith raypath of the the low-

energy sinogram YL given by

[YL(θ)]i = Poisson
{

[YL(θ)]i
}

+ Normal(0, σe,L) (2.5)

and the high-energy sinogram [YH(θ)]i being similar. The

Poisson variables account for the X-ray counting statistics,

while the Gaussian terms captures detector electronics noise.

The corresponding mean values are given as

[YL]i =

∫

SL(E)exp
(

−fKN (E)Ai∗c(θ) (2.6)

−fp(E)Ai∗p(θ)
)

dE.

Here, Ai∗ is the ith row of A, where A is the system matrix

capturing the mapping from image pixels to raypaths, calcu-

lated for example using ray-trace methods [7], [8], and SL(E)
is the low X-ray spectra. The high-energy sinogram [YH ]i is

similar but with an integration over the high-energy spectrum

SH(E). Note that scatter contributions are neglected here, as

we assume that scatter corrections are applied to measured data

in pre-processing [9]. To complete our model of the acquired

data, we assume that the data have been normalized and

transformed logarithmically, giving a low-energy measurement

of [mL(θ)]i = − ln [YL(θ)]i
Y0,L

with analogous expression for the

modeled high-energy sinogram.

We denote the measured (normalized, logarithmic-

transformed) as yL and yH and stack them into a vector

yT = [yT

L
,yT

H
]. We then seek a solution that minimizes a

sum of data fidelity and regularization terms:

arg min
θ

F (θ) =
1

2
(y −m(θ))Σ (y −m(θ))

T
+ (2.7)

RBG(θ) +RFG(θ)

where Σ is the noise covariance matrix [1], and RBG and RFG

are background and foreground regularization terms, which are

discussed in the next section.

In solving this problem, we are simultaneously segmenting

(by estimating the foreground region χ) and reconstructing the

image (by estimating the background Compton and photoelec-

tric coefficients cb(x, y) and pb(x, y) and foreground material

properties cf and pf ). Here we briefly review our approach,

but refer the reader to [1] for details. In estimating χ, we

make use of level set concepts, which are widely used in image

processing [10] as well as image formation [11]. We define

the characteristic function χ(x, y) as the zero level set of a

Lipschitz continuous object function O : D −→ R such that

O(x, y) > 0 in Ω, O(x, y) < 0 in Ω\D and O(x, y) = 0 in

∂Ω. The characterstic function is then defined as

χ(x, y) = H(O(x, y)) (2.8)

where H is the step function. In practice, smoothed approx-

imations of Hǫ and its derivative δǫ are used [12]. In our

particular level set approach, we simplify the problem using a

parametric level set (PaLS) approach [13] which represents the

object function O(x, y) parametrically using a predefined basis

set. Here we chose that basis set to be a family of exponential

radial basis functions (RBF’s), which as described in [1] allow

a flexible description of object shape.

A. Regularization terms for iterative solver

In solving the iterative problem above, we introduce regu-

larization terms (different from those in [1]) which encour-

age stable recovery of the photoelectric coefficient, which

as noted above is challenging to estimate. For background

regularization, we regularize the PE image based on patch-

wise similarities found from the Compton image. Here we

are adapting a regularization approach originally proposed

by Buades et al [14] and recently applied to iterative PET

inversion [15]. The concept behind this regularization is that

in some applications, a stable ’reference’ image is available

to guide the inversion of a less stably estimated image with

similar geometry. For multi-energy CT we can exploit the

relative stability of the inverted Compton image and use it as

a reference image to guide photoelectric coefficient inversion.

The geometry from the reference image is captured by cal-

culating patch-wise similarity weights from the reference, as

found in the non-local means (NLM) denoising algorithm [14],

and using these weights to smooth the noisier image. We

therefore define a regularization term:

RBG = λNLM

∫

(

pb(x, y)−NL(C)pb(x, y)
)2

dx dy (2.9)

where NL(C) represents non-local smoothing using weights

calculated using the Compton image as a reference. For details

on this regularization approach see [5], [16].

To regularize the foreground, we define several terms:

RFG(θFG) = Rs(a) +Rprop(cf , pf ) +Rballoon(a) (2.10)

The first term is the commonly used penalty term [10], [17]

that encourages objects of interest to have a small area:.

Rs(a) = λ1‖H(O)‖1. (2.11)
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where ‖ ‖1 indicates cardinality, i.e. the number of pixels

where χ(x, y) = 1. The second term captures our prior knowl-

edge about the expected physical properties of the objects

of interest, and specifies a subset Γ of allowable values for

the object values in the (pf , cf ) parameter space. In general,

many chemical compounds of interest may exist, so the set of

allowable parameter values could be comprised of a number

of disconnected regions. However, for simplicity here we

consider the case where the constraint set is elliptical in shape.

We define Γ ∈ R2 as an ellipse with the center (c0, p0) major

axis σp and minor axis σc. Then, we can write a non-linear

inequality constraint as

(cf − c0)
2

σ2
c

+
(pf − p0)

2

σ2
p

< 1 (2.12)

We transform this inequality constraint into a penalty term:

Rprop(cf , pf ) = λ2 max

(

g1(pf , cf ), 0

)

(2.13)

where

g1(pf , cf ) =
(cf − c0)

2

σ2
c

+
(pf − p0)

2

σ2
p

− 1 (2.14)

thus penalizing solutions that violate Eq. 2.12.

The foreground penalties above were used in previous

work by our group [1], and showed good performance on

simulated data examples, where the objects being imaged

were perfectly homogeneous and there was minimal mismatch

between the data and model. In processing experimental data,

we found it necessary to include an additional regularization

term. This term was motivated by success of the widely

used Total Variation (TV) penalty [18] in stabilizing image

reconstruction. In principle, we could seek to minimize TV

for the overall (background + foreground) Compton and pho-

toelectric images.However, it is clear (if the background image

is held constant) that minimizing the overall Total Variation

is equivalent to maximizing the area of the foreground object.

We can then define a ‘balloon force’ term as a rough surrogate

for a TV penalty:

Rballoon(a) = λ3 (‖D‖ − ‖H(O)‖1) . (2.15)

where ‖D‖1 is the cardinality of the image domain. This

penalty is clearly very closely connected to the size penalty

Rs. For experimental data, we found best results by includ-

ing the balloon force but disabling the size penalty (setting

λ1 = 0). The balloon force provides a means for rewarding

solutions that find homogeneous foregound objects.

B. Implementation considerations

In [1], the PALS approach was used to find foreground

objects located anywhere in the image. In addition, foreground

and background estimates were improved iteratively using a

cyclic descent approach until both converged. The problems

examined in [1] were however much smaller than those

considered in this report, both spatially (images were 100×100
pixels, instead of 512 × 512 as examined here) and in terms

of the number of rays ( 3000, vs. 737,280 for the data shown

below). We therefore make the following simplifications:

• Restrict foreground search region: While the background

estimate is found over the full image, the foreground

region is restricted to a region of interest (ROI) is

specified by the user (see Fig. 1 ). A set of basis functions

is then defined to cover only this grid region, and the

search for foreground objects is restricted to this region.

In future work, the ROI could be automatically identified.

• Keep background constant: Rather than iteratively esti-

mating background and foreground, for the results below

we hold the background image constant. Thus the esti-

mate outside the ROI is fixed, and the estimate inside the

ROI is equal to the background estimate except where

the object characteristic function χ(x, y) is nonzero.

Much of the computational load in minimizing Eq. 2.7

comes from the need to recompute forward projections during

each iteration. These projections are expressed in Eq. 2.6 as

the terms Ai∗c (with similar terms Ai∗p for photoelectric).

As most of the scene is fixed, we can split the projection into

non-ROI and ROI parts, so that for the Compton image

Ai∗c = Ai∗cbkg +AROI

i∗ cROI (2.16)

where cROI is the Compton estimate in the ROI, AROI is the

portion of the system matrix containing rays which interesect

the ROI, and cbkg is the background image with the ROI

zeroed out. Ai∗cbkg (and analogous photoelectric terms) are

pre-computed and used on each iteration.
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Fig. 2. Estimated background Compton (a) and photoelectric(b) images, with
overlaid Region of Interest (ROI) covering part of the sheet.

3. EXPERIMENTAL RESULTS

We generated processing results from a set of dual-energy

scans performed on the Imatron C300 scanner. This commer-

cial single-energy scanner was re-purposed for dual-energy
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studies by performing sequential scans of the object, with

X-ray source voltage adjusted between scans and registration

controlled by a precise belt drive system. Figure 2 shows

a representative suitcase scan which contains beads inside

a bottle, folded clothes, and a rubber sheet object. Because

the sheet object should be relatively homogeneous, it is an

interesting test case for foreground recovery. Figure 2 shows

the estimated background Compton and photoelectric scenes.

To restrict computation, we consider an ROI that covers one

end of the sheet, as shown.

The results of background and foreground estimation for

the Compton image in the ROI are shown in Fig. 3. While

the sheet appears generally homogeneous in the background

estimate, some variation is clearly seen. A very similar image

is seen for photoelectric coefficients.
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Fig. 3. Top: background Compton image for selected ROI. Bottom: estimated
foreground object in ROI.

Fig. 4 shows the histogram of Compton and photoelectric

background estimates in the segmented region, as compared

to the single-valued foreground estimate. For this example,

significant scatter was seen in the Compton background im-

age as well as the photoelectric background. This scatter is

eliminated in the single-valued foreground estimates.
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Fig. 4. Histograms of background estimate in segmented level set region,
along with single-valued estimate resulting from level set estimation.

4. CONCLUSIONS AND FUTURE WORK

In this paper we developed a computationally lower-cost

implementation of the simultaneous segmentation and re-

construction method introduced in [1], and demonstrated on

experimental data that the method can lead to potentially

useful segmentations of homogenous objects such as sheets

and liquids. The variation in estimated material properties,

in particular estimated photoelectric coefficients, is greatly

reduced compared to previous approaches. An important future

extension of this work is to consider extensions that will allow

us to segment and reconstruct textured objects, building on

related work in the image processing domain [19], [20].
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Compressed Sensing as a tool for Scanning
Very Large Objects with High Energy X-ray

Computed Tomography
Tobias Schön1, Markus Firsching2, Nils Reims2, Frank Sukowski2, Jonas Dittmann3

Abstract—We propose a novel high-energy X-ray Computed
Tomography system for inspecting very large objects like auto-
mobiles and sea freight containers. In this context we discuss
appropriate strategies for efficient scanning and reconstruction
methods. Due to scattering radiation the system uses a line
detector which leads to longer acquisition times compared to
planar detectors. In order to reach adequate scanning times
the number of projections is reduced and Compressed Sensing
techniques are used for the reconstruction. The image quality is
discussed with respect to its suitability for applications in the
field of industrial non-destructive testing as well as security.
We present an experimental evaluation with real data of a
sea freight container scanned at the high-energy testing facility
of the Fraunhofer Development Center for X-ray Technology.
The image quality is quantitatively assessed by a separate test
specimen. We can show that Computed Tomography of very
large, complex objects is technologically feasible.

I. INTRODUCTION

TODAY, X-ray Computed Tomography (CT) is widely
used as a tool for industrial non-destructive testing (NDT)

and security. However, conventional CT devices pose limita-
tions regarding specimen dimensions and material thicknesses.
Nowadays, there are several fields of technology requiring
inspection of objects or components which are too large
in diameter or size to be covered by conventional X-ray
imaging technology: wings of airplanes, wind power plants,
automobiles and sea freight containers [1]. Therefore, there is
need of a high energy CT system capable of inspecting very
large objects (VLO) in 3D.

During the last 5 years, the Fraunhofer Development Center
for X-ray Technology (Fraunhofer EZRT) in Fürth, Ger-
many, has evaluated appropriate technologies and several
construction designs for building a high-energy test facility
for scanning VLOs. In particular, the efforts focused on the
following: high-energy X-ray physics, 3D image processing
for inspection of large objects, material-selective CT as well as
the development of radiation-resistant X-ray sensors and high-
intensity X-ray sources. [2] describes the complete overview
of planning, design, construction and installation of the high-
energy test facility in detail. Fig. 1 shows the CT system which
is installed at the Fraunhofer EZRT.

1Process Integrated Inspection Systems, A Dept. of the Development Center
for X-ray Technology (Fraunhofer-EZRT), division of Fraunhofer Institute for
Integrated Circuits IIS in cooperation with Fraunhofer IZFP, Fürth, Germany
2Application Specific Methodology and Systems, A Dept. of the Fraunhofer-
EZRT 3Chair for X-ray Microscopy, Julius-Maximilians-University, Würzburg
Contact: tobias.schoen@iis.fraunhofer.de

In this paper we mainly focus on the reconstruction and
image quality with respect to an efficient scanning time which
is an important point in the field of NDT and security.

Fig. 1. The high-energy test facility is installed at the Fraunhofer EZRT,
Fürth, Germany, and allows for reconstruction volumes of 3.2 meters in
diameter and 5 meters in height.

First we outline the components of the CT system and
compare it with state of the art X-ray systems. Due to
scattering radiation the system uses a line detector which leads
to longer scanning times compared to planar detectors. In order
to realize shorter acquisition time which is an important factor
in the field of NDT and security the number of projections are
gradually reduced. For the reconstruction, compressed sensing
(CS) techniques [3] were used to reach an adequate image
quality compared to the standard reconstruction method, i.e.
filtered backprojection (FBP) [4]. We outline the test specimen
which we used for the quantitative evaluation of the image
quality. The next section shows real data results using a sea
freight container. The image quality is discussed depending
on the different number of projections as well as on the
reconstruction algorithm. Finally, we give an outlook to future
work.
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II. MATERIAL AND METHODS

This novel CT system utilizes a 9 MeV linear accelerator
(LINAC) from Siemens to achieve high penetration lengths
in both dense and high-Z materials. In contrast to standard
industrial CT systems, flat panel detectors are not a practical
option to scan VLO effectively due to technological limitations
and X-ray attenuation physics at high energies. The X-ray
attenuation is mainly determined by Compton scattering and
a line detector provides a significantly better image quality
which is mainly due to masking of the vertical plane scattering.
The implemented line detector array (LDA) has an overall
length of about 4 meters with a pixel size of 400 µm. The
system allows for reconstruction volumes of 3.2 meters in
diameter and 5 meters in height. The maximum capacity of
the turn table is 10000 kg. Table I shows the acquisition
parameters used for the reconstruction in the result section.

Fig. 2. The LINAC which is mounted on the source tower (1) and the LDA
which horizontally aligned mounted on the tower at the opposite side (3)
are translated synchronously in vertical direction in order to scan the VLO
resulting in large images with a maximum size of 4 by 5 meters.

TABLE I
THE GEOMETRY AND RECONSTRUCTION PARAMETERS FOR THE

SCANNING OF THE 10” ISO SEA FREIGHT CONTAINER:

parameter value
projection pixel count 2048 × 841
projection pixel size 1.95 mm × 3 mm
distance source to rotation center 9913 mm
distance source to detector 11858 mm
angular scan range 180◦

reconstructed matrix 2048 × 2048 × 841
voxel size 1.5 mm × 1.5 mm × 3 mm

Currently, two different scanning modes are implemented.
If only few layers of the objects have to be reconstructed a
classical sinogram mode is possible where a variable angular
range (typically 180◦ up to 360◦) is acquired and a single
slice is reconstructed. Subsequently, the LDA and LINAC
are moved in vertical direction for the next vertical scanning
position of the object. In the case of high vertical sampling
rates which typically occurs by the inspection of large objects,
the sinogram mode is inefficient particularly with regard to
the scanning times. Therefore, in the second mode the linear
axes of the detector and of the high energy source can move

synchronously while the detector is exposed. After the object
has been completely scanned vertically the turn table is rotated
with the angular increment and the next vertical scan starts,
as indicated in Fig 2. Due to the imaging geometry, the
reconstruction algorithm has to cope with uncommon 2D-
projections, this means fan beam geometry in lateral direction,
but parallel beam in vertical dimension. This is the stan-
dard scanning mode for inspection of VLO and the relevant
acquisition geometry concerning this paper. A conventional
single row helical scanning as known in medical CT is not
implemented yet due to technical limits of the currently used
frame grabber. Thus, the usage of this powerful sampling mode
and a direct comparison with this set up is not possible for
the moment.

Compared to standard industrial CT systems which gen-
erally use flat panel detectors this setup generates higher
scanning times due to the usage of a LDA. So, in order to reach
an adequate acquisition time which is an important factor in
the field of NDT and security the number of projections are
reduced. But, reducing the number of projections considerably
causes image artifacts with standard reconstruction methods
like FBP. To avoid this, CS-based reconstruction algorithms
are employed to reach a sufficient image quality for typical
testing situations in NDT and security. The result section
shows reconstruction by CS-algorithm using gradually reduced
numbers of projections. This means, reconstructions with
250, 125, 50 and 25 projections all with the angular scan
range of 180◦. The algorithm was adapted to this acqui-
sition geometry, so that this uncommon 2D-projections can
be directly processed. The time-consuming steps, i.e. mainly
forward and backprojection step, were implemented via GPU
parallelization in order to reach an adequate reconstruction
time.

Fig. 3. The developed test specimen (right) can be interpreted as a 3D
extension of the Siemens star (left).

For the quantitative evaluation of the image quality we
developed a test specimen. The specimen is called ”EZRT
star” and can be interpreted as a 3D extension of the Siemens
star which is often used to test the resolution of optical
instruments and printers or displays, see Fig 3. The EZRT
star consists of three patterns of ”spokes” in direction of the
three principal axes. The spokes radiate from a common center
and become wider with increasing distance to the center. The
actual specimen was placed inside the container and used to
evaluate the spatial resolution in the real scans.

Real data was acquired by the high energy test facility using
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Fig. 4. Test container which was prepared with typical house moving cargo
with a variety of different objects (left: photography, right: radiography).

a 10” iso sea freight container which was prepared to represent
typical house moving cargo with a variety of different objects,
see Fig. 4. The geometry and reconstruction parameters are
listed in Table I. In order to scan the complete height of the
container 841 detector lines with a size of 3 mm per line were
acquired for each 2D-projection. The exposure time per 2D-
projection was 26,880 s and 250 projections were acquired
with a scan range of 180◦. The complete measurement took
about 3h. A detector binning in horizontal direction was used
to achieve 2048 pixels and 1.95 mm pixel size. Therefore, this
data-set possesses a non-isotropic resolution.

The CS-based algorithm is an iterative alternating gradient
descent method inspired by the work of Sidky et al. [5], [6].
Instead of the classical algebraic reconstruction techniques
(ART) [7] the simultaneous ART (SART) [8] is chosen and
a new stepsize heuristic is used in the Total-Variation (TV)
minimization step. A variant of this method was presented in
[9].

In all reconstructions 25 global iterations were used, each
consisting of 3 SART iterations and 30 TV gradient descent
steps. As a final step 3 more SART iterations were applied.
All reconstruction images are displayed with the identical gray
value contrast [0.0; 0.1].

III. RESULTS

Fig. 5 shows reconstructions of a central horizontal slice
through the container using varying number of projections:
250, 125, 50, 25 (from top to bottom). The container could
not be placed on the center of the turn table to avoid a collision
with the detector. Therefore, artifacts at the bottom of the
reconstructed slices can clearly be identified due to limited
angle problems in that regions. Especially, the image quality
of the outer shape of the container differs because of this.

The EZRT star was placed inside of the container as
depicted on the left side in Fig. 6. The grey values of the
EZRT star were evaluated by line profiles with two different
radii: 36mm and 24mm (Fig. 6, right). Figure 7 depicts the
line profiles for both radii using the reconstructions with 250,
125, 50 and 25 number of projections.

Fig. 5 as well as the line profiles in Fig. 7 demonstrate
that an image quality with comparatively high quality can be
obtained with 250 projections (green line in Fig. 7) and also
with 125 projections (yellow line in Fig. 7). However, the
image quality decreases significantly by reducing the number
of projections to 50 (blue line in Fig. 7) and, especially, to 25

Fig. 5. A central horizontal slice of the container using varying number of
projections for the reconstruction: 250, 125, 50, 25 (from top to bottom).
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Fig. 6. The EZRT star was placed inside of the container and a vertical
slice was used for the evaluation (left). The grey values of the EZRT star are
evaluated by line profiles with two different radii: 36mm and 24mm (right).

Fig. 7. The line profiles of the EZRT star with two different radii 36mm
(top) and 24mm (bottom) using the reconstructions with 250, 125, 50 and 25
number of projections.

projections (red line in Fig. 7). In this case the outer shape of
the container as well as the structures of the different objects
inside the container appear to be more and more blurred (see
bottom of Fig. 5).

IV. CONCLUSION AND FUTURE WORK

We proposed a new high-energy X-ray CT system for very
large objects. In order to reach an adequate scanning time the
number of projections were gradually reduced and CS-based
reconstruction techniques were deployed. The image quality
was analyzed by a test specimen. We could demonstrate
that CT of very large, complex objects is technologically
feasible by scanning a sea freight container. The complete
measurement period of the container took about 3h. Using
CS-techniques allows a significant reduction in scanning time
for scanning VLO by high-energy X-ray CT which increases
the desirability in the field of NDT and security. However, the
best possible choice for the reduction of the number of the
projections strongly depends on the particular application.

Future efforts will be made in investigating our approach
by further real data and in improving the quality by exploring
several ways:

- The image quality is going to be analyzed more thor-
oughly in terms of verifying the isotrop spatial resolution
by using the EZRT star and compared with results of FBP.

- A verification by scanning additional VLOs, e.g. com-
plete cars, well be done particularly with regard to higher
horizontal and vertical resolutions.

- Evaluation of CS-methods to reduce the reconstruction
time as well as the number of projections subject to the
testing situation.

- Comparison with a helical scanning mode especially in
respect to the scanning time at high-energy X-ray CT
system.
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Investigation of Simulation Software for
Explosive-Detection CTImaging

Taly Gilat Schmidt1

Abstract—This study investigated the feasibility of simulating
CT data for explosive-detection applications by quantifying the
agreement between simulated and experimental data. Simulated
data has the potential to impact the development of explosive-
detection imaging systems and algorithms, by providing a test
data with known ground truth and by enabling testing of a
wide variety of design parameters. In this work, simulations were
performed that modeled x-ray transmission, scatter, polyenergetic
spectra, Poisson noise, electronic noise, finite focal spot and
detector aperture effects. The following metrics were compared
between simulated and experimental data: the reconstructed
Hounsfield Unit (HU) values, reconstructed noise standard de-
viation, scatter-to-primary ratio (SPR), cupping due to beam
hardening and scatter, and the visual similarity of streaks due to
beam hardening and metal. The results demonstrated that the
simulated data matched the experimental mean values to within
1% to 9.6% percent, depending on the object and spectrum. The
noise standard deviation of the simulated data was within 10%
of the experimental data for five of the reconstructed objects
and within 20%-30% for three of the objects. The SPR of the
simulated and experimental data matched to within 13%, while
the scatter cupping artifact matched to within 1 HU. The artifacts
due to metal and beam hardening were visually similar in the
experimental and simulated images.

I. I NTRODUCTION

Simulated data has the potential to impact the development
of explosive-detection imaging systems and algorithms, by
providing a large library of test data with known ground truth.
Simulations may reduce the time to market and development
cost for new CT scanners, as a wide variety of design
parameters can be tested without the expense of physical
implementation. Furthermore, simulations may be used to
predict scanner performance.

Numerous simulation tools are available for X-ray and
CT simulation and have been applied to medical imaging
applications. X-ray-based imaging for explosive detection is
challenging, due to the wide range of materials and objects
that may be present in the field of view. In security imaging,
shading and streak artifacts due to beam hardening, scatter, and
photon starvation are particularly problematic, as they increase
the feature clouds associated with threats and confuser objects.
When the feature clouds of a threat and a confuser overlap, the
probability of detection decreases while the probability of false
alarm increases. In order for simulations to be beneficial for
development of explosive-detection systems, simulated data
must present the same artifacts and challenges as experimental
data.

1 Department of Biomedical Engineering, Marquette University, Milwaukee
WI

Fig. 1. Flow chart of simulation methods

In this work, simulated datasets were generated and vali-
dated by quantitatively comparing images reconstructed from
simulated and experimental data. A secondary goal of this
work was to define mathematical suitcase phantoms that can be
used for reconstruction, segmentation, and threat recognition
algorithm development.

II. M ETHODS AND MATERIALS

A. Simulation Methods

Figure 1 displays a flow chart of the simulation methods.
The simulations modeled the geometry and scanning param-
eters of the Imatron C300 CT scanner, for which raw data
of objects relevant to security imaging were available. Data
was simulated assuming both 95 kV and 130 kV spectra,
which were modeled using the SPEC78 software [1]. The raw
spectrum output by SPEC78 was attenuated by modeling the
0.381-mm 304 stainless steel window of the Imatron source
and the energy-absorption effects of the 2.3-mm cadmium
tungstate detector. The x-ray fluence (180,000 photons per ray
in the sinogram for the 95 kV spectrum, and 170,000 photons
per ray for the 130 kV spectrum) was estimated by calculating
the signal-to-noise ratio in raw air-scan data.

Bag phantoms (i.e., bag models) were defined as a com-
bination of primitive 3D shapes: ellipsoids, cylinders, cones
and boxes. The dimensions, orientation and positions of the
primitive objects were specified in a text file. The primitive
shapes can be further defined as the portion of a primitive
shape on one side a defined plane. The material composition
of primitive shapes was defined by specifying the linear atten-
uation coefficient as modeled with the NIST XCOM database
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[2]. Intersections of objects were handled by assigning each
object a precedence level.

The g3dsimulation software was used to analytically calcu-
late the path-length (i.e., ray tracing) of defined rays through
the software phantoms. The g3d software models the scanner
geometry, including the source focal spot dimensions and
location, the detector dimensions and location, and gantry
rotation [3].

The Geant4 Monte Carlo tool kit was used to model scatter
in this work [4]. Geant4 models and tracks the stochastic
trajectory of individual x-ray photons through the defined
phantom. In this work, 10 billion photons were tracked for
each of the 2588 view angles in the native Imatron geometry
assuming the 95 kV and 130 kV spectra. The Monte Carlo
simulation software used in this work output two sinograms:
the detected scatter signal and the detected primary signal.

The simulated scatter signal was noisy, as the number of
simulated photons was kept low to reduce computation time.
The scatter signal generally contains low frequencies [5].
Therefore, the mean scatter signal was estimated by denoising
the Monte Carlo output with the Richardson-Lucy algorithm
[6], [7]. The mean scatter signal was normalized by the photon
fluence modeled in Geant4, and then multiplied by the photon
fluence of the Imatron scanner.

The ray-tracing and Monte Carlo simulation outputs were
combined, followed by the modeling of Poisson and electronic
noise as described in Figure 1.

B. Validation Study

The purpose of this work was to quantity the agreement
between simulated and experimental data with respect to
reconstructed values, noise, scatter-to-primary ratio (SPR) and
artifacts.

The 95 kV and 130 kV spectra models were validated
by comparing the experimental transmission through an alu-
minum step phantom as measured on the Imatron scanner with
the transmission estimated using the spectral models.

CT data of graphite (2.54-cm-radius, 3.81-cm-radius),
magnesium (1.27-cm-radius), and aluminum (2.63-cm-radius)
cylinders were experimentally acquired and simulated. The
raw experimental data and the simulated data were processed
and reconstructed using the same algorithms. The mean and
standard deviation of the reconstructed Hounsfield Unit (HU)
values were calculated in regions of interest (ROIs) and
compared for the experimental and simulated data.

The simulated scatter signal was validated by comparing
the simulated SPR in projections of a 2000-ml water phantom
to the SPR estimated in the experimental images. For the
experimental data, SPR was estimated as the difference be-
tween sinograms with and without scatter correction, divided
by the scatter-corrected sinogram. For simulated data, SPR
was calculated as the ratio of the detected scatter signal to the
detected primary signal.

The scatter simulation methods were further validated by
comparing images of the water phantom reconstructed from
simulated data and experimental data without scatter cor-
rection. The difference between images reconstructed with

Fig. 2. Transmission through aluminum step phantom as measured through
experiments and simulations.

Fig. 5. A comparison of reconstructed Hounsfield Unit (HU) values in regions
of interestwithin the cylinder objects reconstructed from experimental and
simulated data. The error bars represent one standard deviation.

scatter and images reconstructed after scatter correction was
calculated for both experimental and simulated data in order
to evaluate the level of cupping artifact.

III. RESULTS

The plot in Figure 2 compares the transmission through an
aluminum wedge phantom as estimated by experiments and
simulations. The transmission estimated through simulations
was within 2% of the transmission measured through experi-
ments.

Figure 3 compares the reconstructed images and the central
horizontal profile through the phantom for the graphite and
magnesium cylinders reconstructed from experimental and
simulated data. Figure 4 displays the comparison for graphite
and aluminum cylinders. Figure 5 compares the mean and
standard deviation of the Hounsfield Unit values in the images
reconstructed from experimental and simulated data.

The results demonstrated that the simulated data matched
the mean values to within 1% to 9.6% percent, depending
on the object and spectrum. In the case of the 9.6% error
(aluminum at 95 kV), the mean of the simulated data was
within one standard deviation of the HU values reconstructed
from experimental data. Comparing the size of the error bars
in Figure 5 demonstrates that the simulated and experimental
data resulted in similar noise standard deviation. The noise
standard deviation of the simulated data was within 10% of
the experimental data for five of the reconstructed objects
and within 20%-30% for three of the objects. The horizontal
profiles plotted in Figures 3 and 4 demonstrate similar cupping
artifacts within the cylinders for simulated and experimental
data.

Figure 6 plots the simulated and experimental SPR at 130
kV. The mean simulated SPR was within 13% of the SPR in
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Fig. 3. Comparison of graphite and magnesium cylinders reconstructed from Imatron and simulated data at 95 kV and and 130 kV. All images are displayed
at the same window/level. The central horizontal profile through the objects is also plotted.

Fig. 4. Comparison of graphite and aluminum cylinders reconstructed from Imatron and simulated data at 95 kV and and 130 kV. All images are displayed
at the same window/level. The central horizontal profile through the objects is also plotted.

the experimental data for both the 95 kV and 130 kV data.
The simulated SPR was noisier, as the number of simulated
photons was reduced because Monte Carlo simulation time is
proportional to the number of simulated photons. The noisy
signal did not affect the final simulated data, as the simulated
scatter data were denoised prior to combination with the ray-
tracing data.

Figure 7 compares the scatter cupping artifact for simulated
and experimental data, which was calculated as the difference
between images reconstructed with scatter and images recon-
structed after scatter correction. The cupping artifact due to
scatter in the simulated images was within 1 HU of the artifact
seen in the experimental images.

A library of simulated data was generated using the devel-
oped software tools. Figure 8 displays a slice of one simulated
suitcase phantom that may be a useful tool for comparing
reconstruction, segmentation, and automatic threat recognition
algorithms. The suitcase contains four water objects in four
different containers: steel, aluminum, Teflon, and no container.

Fig. 6. The scatter-to-primary ratio for one projection of a water cylinder
phantom as estimated by simulations and by experiments at 130 kV.

These water objects could be used to generate feature clouds
for comparing algorithms. The suitcase also contains a Teflon
sheet, as well as two stainless steel spheres. Figure 8 demon-
strates that the simulated data contains realistic streak artifacts
due to scatter and metal. The metal objects were positioned
such that the resulting metal artifacts make it challenging to
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Fig. 7. Comparison of the scatter artifact in the simulated and scanned water cylinder at 95 kVand 130 kV. All images are displayed at the same window/level.
The central horizontal profile through the water cylinder is also plotted. The scatter artifact images were generated by subtracting the images with scatter
from the scatter corrected images.

Fig. 8. Image reconstructed from simulated data of a suitcase phantom.

segment the water and sheet objects.

IV. D ISCUSSION ANDCONCLUSIONS

The results demonstrated that the simulated data matched
the experimental reconstructed HU values to within 9%, noise
within 10% for five of eight objects (and within 20-30% for
three objects), SPR within 13%, and scatter artifact within
1 HU. One limitation of this work was the small number
of objects used to validate the simulation software. Another
limitation was that spatial resolution was not used as a metric
to evaluate the match between the simulated and experimental
data. A comparison of spatial resolution metrics such as Mod-
ulation Transfer Function (MTF) is recommended for future
work. Another limitation is that the work flow for performing
simulations (Figure 1) was not streamlined, as it requires two
different simulators, bash scripts, and Matlab code. Modifying
the code for new geometries may be challenging. Additional
work is required to improve the flexibility and usability of
the simulation tool and to quantify the level of agreement
between experimental and simulated data for artifacts such as
streaks. Overall, the results present the preliminary feasibility
of simulation tools to model CT-based explosive detection
systems.
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Efficient and Accurate Correction of Beam
Hardening Artifacts

Kyle Champley and Timo Bremer

Abstract—The polychromatic energy-spectra of X-ray tubes
used in Computed Tomography (CT) produce so-called beam
hardening artifacts in the reconstructed images. These artifacts
diminish the quantitative accuracy and qualitative appearance of
the CT images. Modern model-based beam hardening correction
(BHC) algorithms are effective at removing these artifacts,
but are extremely computationally expensive. In this paper we
develop a new model-based BHC algorithm that is both effective
and computationally efficient. The method consists of two nested
loops. The outer loop estimates the energy dependence on the
measured ray-sums of the attenuation map and the inner loop
determines the sinogram data that fits the energy-weighted
forward model of CT data.

I. INTRODUCTION

X-ray Computed Tomography (CT) allows one to non-
destructively obtain images of the structural makeup of an
object of interest. A number of physical effects in the measured
data may diminish the qualitative and quantitative accuracy of
the image. This paper deals with the correction of so-called
beam-hardening artifacts.

The attenuation of a monochromatic X-ray beam through a
uniform object is given by − log(I/I0) = µl, where I0 and
I are the intensity of the beam before and after the beam
travels through the object, µ is the attenuation coefficient (at
the given energy of the beam), and l is the path-length through
the object.

The relationship between the attenuation of a polychro-
matic X-ray beam through an object and the attenuation map
is highly nonlinear. The rate of absorption and scattering
of X-rays depends on the X-ray energy and the material
composition. Lower energy X-rays are absorbed at a higher
rate which causes the beam to harden. The violation of the
assumed linear relationship between the measurements and the
object attenuation map by the polychromatic X-ray CT spectra
introduces beam hardening artifacts into the reconstructed CT
images.

Methods for beam hardening correction (BHC) have been
developed over the past several decades[1], [2], [3], [4], [5],
[6], [7], [8] to mitigate beam hardening artifacts. Earlier
approaches [1], [2], [3], [4] may be categorized as post-
reconstruction techniques. These methods are computationally
efficient, but not as accurate as state-of-theart model based
iterative methods [5], [6], [8] which are computationally
intensive.

In this paper we introduce a new computationally-efficient
and quantitatively accurate model-based BHC algorithm. We

The authors are with Lawrence Livermore National Laboratory, Livermore,
CA. Corresponding author: Kyle Champley (champley1@llnl.gov)

test our algorithm with simulated and measured data and
compare its performance with a BHC algorithm developed by
Fuchs [3].

II. X-RAY CT MODEL

Let γ be the X-ray energy (keV), d(γ) be the energy-
dependent detector response, and s(γ, L) be the source spectra
that depends on a particular ray-path, L. Assuming that no
scattered radiation is measured by the detectors, the expecta-
tion of a radiograph can be modeled by

I(L) :=

∫
d(γ)s(γ, L)e−

∫
L
µ(γ,x) dx dγ,

where µ(γ, x) cm−1 is the energy-dependent attenuation map
of the object being scanned and x ∈ R3 is a location in space.
Define the air scan as the radiograph with the object removed
from the field of view. Then its expectation is given by

I0(L) :=

∫
d(γ)s(γ, L) dγ.

The normalized radiograph is given by

I(L)

I0(L)
=

∫
m̂(γ, L)e−

∫
L
µ(γ,x) dx dγ,

m̂(γ, L) :=
d(γ)s(γ, L)∫
d(γ)s(γ, L) dγ

.

The attenuation map can be reconstructed (with beam-
hardening artifacts) from a sinogram which is given by

p(L) := − log

(
I(L)

I0(L)

)
≈ Pµ(γ, L) (1)

Pµ(γ, L) :=

∫
L

µ(γ, x) dx, (2)

where P is the forward projection operator and γ =∫
γm̂(γ) dγ is the mean effective energy of the system.

Equation (2) is only exact for m̂(γ, L) = δ(γ − γ), where
δ(·) is the dirac delta functional.

A. Energy-Dependent Attenuation of Compounds

The attenuation coefficient of a material can be broken up in
components of electron density (electrons mol / cm3) and cross
section (cm2 mol−1/electrons). The absorption and scattering
cross section of a material depends on its effective atomic
number (also called effective-Z), i.e.,

µ(γ, x) = σ(γ, Z(x))ρ(x),
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where σ is the cross section, ρ is the density, and Z(x)
is the spatially-variant effective-Z map. The photon energy-
dependent absorption and scattering cross section for the
elements can be found in tables [9]. We shall denote these
quantities by σ(γ, Z) where Z ∈ Z is the atomic number
of the element. The cross sections of the elements can be
extended to non-integer Z by linear interpolation.

These energy-dependent attenuation coefficients can be ap-
proximated by the Compton-Photoelectric basis given by

µ(γ, x) ≈ bc(γ)fc(x) + bp(γ)fp(x)
bc(γ) := 2πr20NA

×
{
1 + α

α2

[
2(1 + α)

1 + 2α
− 1

α
log(1 + 2α)

]
+

1

2α
log(1 + 2α)− 1 + 3α

(1 + 2α)2

}
mol−1cm2

electron
bp(γ) := γ−3,

where r0 is the classical electron radius and NA is Avogadro’s
number.

Now consider the attenuation maps f1 and f2 at the two
energies γ1 and γ2. Then there exists fp and fc such that

f1 = bc(γ1)fc + bp(γ1)fp

f2 = bc(γ2)fc + bp(γ2)fp

and conversely

fc = b1(γ1)f1 + b2(γ1)f2

fp = b1(γ2)f1 + b2(γ2)f2,

where

b1(γ) :=
bp(γ2)bc(γ)− bc(γ2)bp(γ)
bp(γ2)bc(γ1)− bc(γ2)bp(γ1)

(3)

b2(γ) :=
bc(γ1)bp(γ)− bp(γ1)bc(γ)
bc(γ1)bp(γ2)− bp(γ1)bc(γ2)

(4)

and thus

µ(γ, x) ≈ b1(γ)f1(x) + b2(γ)f2(x).

III. DEVELOPMENT OF BEAM HARDENING CORRECTION
ALGORITHM

We wish to determine p := Pf , where f is the attenuation
map at energy γ. Assume that the energy-dependent attenua-
tion map, µ, can be broken up into a finite number of material
components by

µ(γ, x) =
M∑
i=1

σ̂i(γ)ai(x),

where σ̂i(γ) = σ(γ,Zi)
σ(γ,Zi)

is the normalized cross section (unit
less) of the materials with effective-Z of Zi and ai(x) are
spatially-dependent attenuation maps (at γ) for each material.
Note that this model allows the attenuation map to fluctuate
(by variable density) for a given material. The choice of
{Zi}Mi=1 should be such that different materials can be rea-
sonably determined by either a priori knowledge of the object

being scanned or by applying a set of parametric transfer
functions to f such as ai(x) := Ti(f)(x), where

Ti(f)(x) :=



f(x), f(x) < µ1,
µi−f(x)
µi−µi−1

µi−1, µi−1 ≤ f(x) < µi,
f(x)−µi

µi+1−µi
µi, µi ≤ f(x) < µi+1,

f(x), µM < f(x),
0, otherwise.

(5)

Note that f =
∑
i ai and µi are the attenuation coefficients of

our basis elements at the mean effective energy. Other transfer
functions may be used, but are not discussed in this paper.

Using the above we can separate the spectra effects of
Pµ(γ, L) from its value at the mean energy by

Pµ(γ, L) =
Pµ(γ, L)

Pµ(γ, L)
Pµ(γ, L)

=

∑M
i=1 σ̂i(γ)Pai(L)∑M
i=1 σ̂i(γ)Pai(L)

Pf(L)

=
M∑
i=1

σ̂i(γ)
Pai(L)∑M
j=1 Paj(L)

Pf(L)

=: c(γ, L)p(L). (6)

This method requires M forward projections to estimate
c(γ, L). We now show how one can estimate c(γ, L) with only
one forward projection using equations (3, 4). Now consider
the two energies γ and γpeak, where γpeak is the peak energy
of the spectra. Then using equations (3, 4), we may define
basis functions bmean(γ) and bpeak(γ) such that

µ(γ, x) ≈ bmean(γ)f(x) + bpeak(γ)fpeak(x).

Then using a similar argument as above we find

Pµ(γ, L) ≈
[
bmean(γ) + bpeak(γ)

Pfpeak(L)

Pf(L)

]
Pf(L)

=: c(γ, L)Pf(L), (7)

where fpeak(x) :=
∑M
i=1 σ̂i(γpeak)ai(x).

IV. ITERATIVE ESTIMATION OF MODEL PARAMETERS

In this section we describe how to iteratively determine the
beam hardening model parameters, c(γ, L) and in turn the
beam hardening corrected sonogram data, p(L).

Suppose that the effective atomic number of the material
with the lowest effective atomic number in the model is
given by Z1. For example, in medical CT Z1 = 7.42, the
effective atomic number of water. Also let A be the filtered
backprojection (FBP) operator. Then our algorithm is given by

1) Initialize n = 0 and p0,0 := − log
(
I
I0

)
2) Set cn(γ):

cn(γ) :=

{
σ̂1(γ), n = 0,

bmean(γ) + bpeak(γ)
Pfn,peak

pn,0
, n ≥ 1

fn := Apn,0, n ≥ 1

fn,peak :=
M∑
i=1

σ̂i(γpeak)Ti(fn), n ≥ 1
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3) Use Newton’s Method to find sinogram data that
matches polychromatic model (for k = 0, 1, . . . ,K−1):

pn,k+1 := pn,k +

∫
m̂(γ)e−pn,kcn(γ) dγ∫

cn(γ)m̂(γ)e−pn,kcn(γ) dγ

×
[
log

(∫
m̂(γ)e−pn,kcn(γ) dγ

)
+ p0,0

]
4) Update beam corrected sinogram: pn+1,0 := pn,K−1

5) Increment n and repeat steps 2 through 4
For notational simplicity we have dropped the arguments of
L from the above equations.

Thus the inner loop (in k) uses Newton’s method to de-
termine the best match between the measured data and the
polychromatic forward model of the data. This model requires
knowledge of c(γ, L) which is iteratively estimated in the outer
loop (in n) of the algorithm.

Note that the first iteration (in n) of the algorithm does not
require a reconstruction and the first image reconstructed has
already been partially corrected for beam hardening artifacts.

V. METHODS

We tested our algorithm on both simulated and measured
data from an Imatron electron-beam CT (EBCT) scanner.
The spectra and detector response of the measured data are
unknown; we only know that the spectra has a peak energy
of 130 keV. We modeled this spectra using the techniques
proposed in [10]. Using this spectra model and uniform
detector response, i.e., d(γ) = 1, the mean effective energy
of the system is estimated to be γ = 61.27. We partitioned
our BHC model into three components: water, aluminum, and
titanium.

To provide a basis for comparison, we also implemented a
BHC method developed by Fuchs [3]. The method is given by

p0 := − log(I/I0)

p1 := 2p0 + log

(∫
m̂(γ)e−σ̂i(γ)p0 dγ

)
gn,i := PTi(fn)

pn+1 := p0 +
M∑
i=1

gn,i

+ log

(∫
m̂(γ)e−

∑M
i=1 σ̂i(γ)gn,i dγ

)
.

The Fuchs algorithm shares some similarities with our algo-
rithm. In our algorithm, the forward model of the corrected
data essentially matches the measured data. This is not true
for the Fuchs algorithm.

A list of attenuation coefficients and effective-Z of the
materials used in our simulations is shown in Table I. The
FBP reconstruction of the phantoms used in our simulations
are shown in Figure 1. We simulated 500 views (over 180◦)
of parallel-beam data with 512 rays per view using analytic
ray-tracing techniques and a polychromatic spectra with peak
energy of 130 keV. Noise was not included in the simulation
so we could isolate the beam hardening artifact and correction.

The Imatron CT data is comprised of a single-row of fan
beam projections with 888 views (over 222◦) and 864 rays per
view. Multiple axial slices were taken in step-and-shoot mode.

TABLE I
MATERIAL PROPERTIES

material electron density Z attenuation HU
graphite 0.9012 electrons mol

cm3 6 0.3140 cm−1 1542
water 0.554 electrons mol

cm3 7.42 0.2040 cm−1 1000
magnesium 0.8610 electrons mol

cm3 12 0.4370 cm−1 2147
aluminum 1.3009 electrons mol

cm3 13 0.7290 cm−1 3581
silicon 1.1580 electrons mol

cm3 14 0.7210 cm−1 3543
titanium 2.0710 electrons mol

cm3 22 3.2820 cm−1 16121

3-Material Phantom 6-Material Phantom

Al Ti

H2O Si

AlTi

C Mg

H2O

Fig. 1. FBP Reconstructions. Window: [900 1100] HU.

VI. RESULTS

Results are shown in Figures 2, 3, 4, and 5.
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Fig. 2. Reconstructed images are the 3-material phantom. Window: [900,
1100] HU.

VII. DISCUSSION AND CONCLUSION

In this paper we have developed and tested an efficient and
accurate model-based beam hardening correction algorithm for
X-ray CT. Experiments show that the algorithm effectively
converged in five iterations, removing streaks and improving
quantification. Our algorithm seemed to converge significantly
faster than the algorithm developed by Fuchs et al. and the
image quality of our algorithm is shown to be superior for the
same number of iterations.
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Fuchs Algorithm Our Method

Fig. 3. Reconstructed images of the 6-material phantom after 2 iterations of
each BHC algorithm. Window: [900, 1100] HU.

Fuchs Algorithm Our Method

Ti

H2O
Al

Ti

H2O
Al

Fig. 4. Cross sectional plots through the reconstructed image of the 6-material
phantom after two iterations of each BHC method. The numbers on the cross
section plots represent the number of iterations of the BHC algorithm. The
dashed line is the true cross section.

The inner loop of the BHC algorithm (the iteration in k)
converges rapidly and can be computed in parallel because
each measurement is processed independently. In our experi-
ments nearly all data samples converged to within ten decimal
places in three iterations or less. The computational complexity
of our algorithm and the Fuchs algorithm is primarily driven
by the number of forward and backprojection operations
that are required per iteration. Our algorithm requires one
forward projection and one backprojection per iteration while
the Fuchs algorithm requires M (the number of materials in
the model) forward projections and one backprojection per
iteration. No forward or back projections are required for
the first iteration of either algorithm, but one must perform
an extra backprojection at the conclusion of both algorithms
to produce an output image. Thus the number of forward
and back projections required for N iterations is given by
2(N − 1)+ 1 and (M +1)(N − 1)+ 1 for our algorithm and
the Fuchs algorithm, respectively.

The main novel aspect of our algorithm is in the separation
of the beam hardening model parameters, c(γ, L), and the de-
sired monochromatic sinogram, p(L), described by equations
(6, 7). This allows one to exactly determine the data that fits
the given material model by computation of the inner loop in
our algorithm. The outer loop updates the material model.
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Abstract— Purpose: To study low contrast detectability 
(LCD) performance in CT phantom images using two model 
observers and compare it with human observers results in a 2-
alternative forced choice (2-AFC) experiment. 

Introduction: Low contrast sensitivity of CT scanners is 
regularly assessed by subjective scoring of low contrast 
detectability within CT phantom images. These studies might 
be biased since low contrast objects are in general arranged in 
fixed patterns known by the observers beforehand.  

Methods and Materials: Images of the low contrast module 
of the Catphan 500 phantom were used for the evaluations. 
The phantom contains three series of low contrast disk 
patterns (diameter 2 -15 mm; contrast 0.3, 0.5, and 1.0%). The 
images were acquired at different dose levels, varying the CT 
mAs. Two model observers (non-prewhitening matched filter 
with an eye filter and Hotelling) were implemented in a 
software program to automatically measure LCD using the 
images as inputs. To validate the results, human observers 
scored images in a 2-AFC experiment.  

Results: The expected improvement in LCD with increasing 
mAs was reproduced by both, the models and the human 
observers. Both models were more efficient than the humans 
in these tasks. The efficiency of NPWE compared to humans 
was between 0.5 and 0.65 for 1% and 0.5% contrast objects. 
The internal noise added to Hotelling to match human results 
was  2HU. 

Conclusion: We have developed an automated method to 
investigate LCD in CT based on different model observers. 
The observers reproduced the trends showed by the human 
observer and showed similar LCD values than the human 
after corrections by efficiency and internal noise addition. 
This method can be a useful tool to predict human in CT 
detection tasks and also be used to evaluate image 
reconstruction algorithms or dose reduction strategies, among 
others, in an objective way. 

I. INTRODUCTION 

 The number of CT scans performed worldwide per year 
has continually grown in the past decades. Nowadays it is 
one of the most used radiologic imaging techniques. In 
parallel, the concern about the radiation dose related to 
these examinations has increased. Protocol optimization is 
essential to obtain images containing the relevant diagnostic 
information acquired at the lowest achievable dose 
following the ALARA criteria. Several improvements have 
been incorporated in CT to achieve this goal and to extend 
the medical indications of this technique. Different studies 
have shown that a significant variation in image quality and 
  
 

 
 

dose can exist between the different CT manufacturers for 
equivalent diagnostic indications. 
Different parameters are used to assess image quality, 
among them, low contrast detectability (LCD), which 
consists in determining the smallest object visible for 
certain contrast value at a given dose level. It can be 
subjectively assessed by several observers scoring the 
detectability of objects on CT phantom images. These 
studies are time consuming and expensive due to the high 
number of observers and observations required.  Besides, 
the results might be biased if the observers know 
beforehand the spatial distribution of the objects in the 
phantom, and a great inter and intra-observer variability 
may appear.  
 As an objective alternative, computer model observers 
intend to predict the performance of human observers in 
the image analysis. They can be a useful tool when 
investigating the influence of acquisition and 
reconstruction parameters in image quality or the effect of 
object size, shape and contrast in detection tasks.  
 In a previous work, we presented and validated an 
objective statistical method, implemented in Matlab, with 
a model observer (non-prewhitening matched filter with 
an eye filter, NPWE) to investigate the influence of 
different CT acquisition parameters on LCD and dose 
applied to a different CT scanner [1]. An improved 
version of the method has been developed and 
additionally, a channelized Hotelling (CHO) model 
observer with internal noise has been implemented. Both 
models were applied to CT phantom images acquired at 
different dose levels. Their results were compared with 
those obtained by human observers scoring the same 
images in a 2-alternative forced choice (2-AFC) 
experiment. The goal of this work is to study the LCD 
performance of both model observers and study their 
capability to predict human observer results. 

II. MATERIALS AND METHODS 

 For this study, images of the Catphan 500 phantom were 
acquired with a 320-detector row CT scanner (Aquilion 
ONE, Toshiba, Japan) selecting 64x0.5 mm as beam 
collimation, FOV of 240 mm, helical acquisition (pitch 
0.828) and 120 kV, for 50-100-200-400 mAs, 
respectively. Image reconstruction was performed with 5 
mm slice thickness selecting a soft body FC12 kernel. 
 
 
 
 

Human and model observers performance in 
low contrast detection tasks with CT phantom 

images acquired at different dose levels  
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The phantom contains three groups of 9 low contrast 
cylindrical objects each (with diameters 2-15 mm and 0.3, 
0.5 and 1.0% contrast, respectively, Fig. 1) and it was 
scanned 20 times. After discarding the images with artifacts 
and nearby the borders, sets of 80 images were obtained. 
 

 
Fig.1. Catphan phantom low contrast module 

 The software uses a predefined pattern of templates of the 
distribution and sizes of the objects in the phantom, which 
is rescaled and rotated to fit the CT images. Low contrast 
detectability values for all the objects in the images are 
automatically calculated using two model observers: 
 
NPWE observer: The eye filter used in the model was        
E(f) = fe-bf, with b chosen such that E(f) peaked at 4 cycles 
per degree [2] and assuming a fixed viewing distance of 50 
cm from the monitor. Templates of the low contrast objects 
(previously blurred with the measured PSF) were correlated 
with the acquired images of the phantom and from the 
distribution of test statistics, a discrimination index d’ was 
calculated (Eq. (1)); where <•> is the mean and σ(•) is the 
standard deviation of the respective distributions [1, 3]. 
This index can be used as a measure of detection 
performance and related to object diameter and contrast. 
Proportion correct (PC) values can be determined according 
to Eq. (2). As, just by chance, in a 2-AFC experiment a 
PC=50% may be obtained, we propose a threshold of 
PC=75% to decide whether objects were visible or not. 
Psychometric fits were performed for each mAs and 
contrast applying Eq.  (3), where  tallies with the 
detectability threshold (PC=75%). 
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Hotelling observer (CHO): This model uses channels to 
emulate neuronal response in the visual cortex. Gabor 
channels were used for this task, following Eq. (4) [4, 5]: 

, exp 4 2 /
					cos	 2 						 (4) 
 

where s is the channel width, fc is the central frequency 
and   is a phase factor [4]. As first approach we 
implemented the proposed conditions by Yu et al [5] and 
Leng et al [6] as their studies were also based on CT 
phantom images. The parameters were selected as follows: 
6 channel passbands: [1/1281/64], [1/641/32], 
[1/321/16], [1/161/8], [1/81/4] and [1/41/2] 
cycles/pixel; central frequencies fc : 3/256, 3/128, 3/64, 
3/32, 3/16 and 3/8 cycles/pixel; 5 orientations  (0, 2/5, 
4/5, 6/5 and 8/5); 2 phase factors  (0 and /2). This 
configuration led to 60 channels in total. After applying the 
model to the CT images, SNR (equivalent to d’) and PC 
were obtained for all the series. 
 
Human observer 2-AFC study: To validate the trends 
shown by the models, a 2-AFC pilot human observer study 
was carried out with two observers, each of them scoring 
pairs of crops (object/background samples) extracted from 
the different sets of images for the 1% and 0.5% contrast 
groups. These crops (55x55 pixels) were obtained after 
applying a correction to wipe-out the nearby objects in the 
phantom, as shown in Fig. 2. For each mAs, reconstruction 
technique, and object size each observer scored 80 pairs of 
images (the same used for the models). This was done 
twice, to assess intra-observer variability. In total, for each 
mAs and contrast value 2880 pairs of images were 
analyzed. The scoring was performed in an i-MAC 27” 
DICOM calibrated monitor according to recommended 
visualization conditions, with fixed values window 
level/width (the latter taken as 3, being  the average STD 
of the background samples of each series).  
 A routine was developed in Matlab to perform the 2-AFC 
study: two images were displayed together with the 
template; the one which is supposed to contain the object 
must be clicked on and scoring results are automatically 
stored in an output file. The images with/without signal 
were displayed randomly at left or right and also shuffled 
from the original image folders. 
 

 
Fig.2. Background correction to wipe-out nearby objects in 
Catphan images. Inside the yellow square in this figure, a Z-
projection of all the images in the series is shown before 
applying the correction.  
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The analysis of the intra and inter-observer consistency in 
both sessions was performed using the Wilcoxon signed 
rank test for matched-pair samples (consistent results for p-
value ≥ 0.05) by separately comparing the scores for each 
object size and mAs. Using the depurated scoring results, 
detectability profiles (PC curves as a function of object 
diameter) were obtained for each observer and image series. 
Psychometric fits were calculated as in Eq. (3) to obtain the 
detectability threshold for the human observer. PC fitted 
values were transformed back into d’ values. 
 
Correlation between human and models: For NPWE, an 
efficiency  was estimated (Eq. (5)) for 1% and 0.5% 
contrast: 

′
′

			 5  

For channelized Hotelling model, internal noise, , was 
added to the decision variables in the model to try to mimic 
the human results, in the range (0-20 HU). 

III.  RESULTS 

Detectability increased with object diameter and contrast 
and with increasing mAs, as expected, for the human 
observer and both models. 
In Fig. 3, d’NPWE values are shown as a function of object 
diameter and mAs for 0.5% contrast objects. The 
detectability thresholds as a function of mAs were in the 
range (2.91.6mm) for 0.5% and (1.81.4mm) for 1% 
contrast. 
 

 
Fig. 3. Detectability index d’ as a function of object diameter for 
the NPWE model observer and all mAs for 0.5% contrast objects. 

In Fig. 4. the psychometric fits obtained for the average 
human observer and 0.5% contrast are shown. The 
detectability thresholds were (4 2.2mm) for 0.5% and (1.9 
1.6mm) for 1% contrast. 
 

In Fig. 5, d’ for the average human is plotted as a function 
of PC. Due to the shape of the curve (Fig. 5)  it is difficult 
to measure d’ when its value is above 3, approximately, (i. 
e. PC  0.98) in a 2-AFC experiment. Only the values 
below this threshold were used to determine the efficiency 
of the NPWE model observer.  
 

The efficiency values between the average human and 
NPWE were 0.5 and 0.67 for 1% and 0.5% contrast, 
respectively. 

 
Fig. 4. Psychometric fits of the average human observer PC 
values as a function of object diameter and mAs for 0.5% 
contrast. 

 
Fig. 5. Detectability index d’ as a function of PC for the human 
observers and 0.5% contrast objects and all mAs 

 

The CHO model gave much higher d’ values than 
NPWE when no internal noise was applied. In Fig.6, d’ 
values for  the channelized Hotelling observer are 
shown for different values of internal noise () and the 
1% contrast group. It depicts how the LCD of the CHO 
model is degraded as the internal noise increases. 
 

 
Fig. 6. Detectability  index d’ as a function of object diameter for 

the CHO model observer for different  levels of  internal noise () 
and 1% contrast objects. 
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In Fig. 7, the PC values as a function of the added internal 
noise for the CHO model is plotted together with the PC 
value for the average human for one of the analyzed 
conditions (2mm, 200 mAs). The point where both curves 
cross gives the internal noise that has to be added to the 
model to match the human (=4). 

 

 
Fig.  7.  Channelized  Hotelling  model  observer  PC  values  as  a 
function of added internal noise for 200mAs and the 1% contrast 
2mm object 

This analysis was carried out for all the object sizes and mAs 
which showed significant differences between the human and 
the CHO model performance. The calculated internal noise 
was higher for the 0.5% contrast group and, in general, it also 
varied for the different mAs.  
 
As a proof of concept, an intermediate value (4mm, 100mAs) 
was selected for both contrasts as reference to normalize the 
rest of the values using the related internal noise . Thus, this 
parameter was fixed at 2.2 and 2.5 HU, for 1% and 0.5% 
contrast series respectively. 
 
In Fig. 8 the psychometric fits of the PC corrected values for 
the NPWE model (normalized by the efficiency) and CHO 
model (corrected by the related internal noise factor) are 
shown together with the average human observer results. The 
figure shows the results related to 100 mAs and 0.5% 
contrast.  
 

 
Fig. 8. Psychometric fits of PC as a function of object diameter for 

the  human  observer,  CHO with  internal  noise  (  =  2.5  HU)  and 
NPWE normalized by the efficiency ( =0.67) for 100mAs and 0.5% 
contrast. 

IV. CONCLUSIONS 

 Two model observers (NPWE and CHO) were 
implemented in a software program to automatically 
calculate low contrast detectability in Catphan phantom 
images. Images of the phantom were acquired at different 
dose levels and analyzed in this study.  
 
 Both models (CHO and NPWE), reproduced the trends 
obtained by human observers, showing an improvement of 
LCD with increasing object size, contrast and mAs and had 
better LCD performance than humans.  
 
 NPWE results were corrected by an efficiency factor, 
dependant on contrast, and the CHO was modified to add 
internal noise. Then, both models gave results much closer 
to the human observer. 
 
 There is still some leeway for tuning the models to 
reproduce more accurately human performance. For this 
task, an extended human observer study, including more 
observers is to be made in the near future. Further 
investigation in CHO channels and options will be made. 
 
 The method could be adapted to analyze images obtained 
with other phantoms and applied to specialties like 
mammography or tomosynthesis, amongst others. It can 
be a useful tool to objectively analyze the influence in 
LCD of different acquisition or reconstruction parameters 
and help in protocol optimization. 
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X-ray Tube Potential Modulation in Spectral CT 
Xin Li, Xiaolan Wang, Yu Zou 

 Abstract–A constant x-ray tube potential over all imaging 
views has long been used in CT; however, it may not be dose 
efficient for a non-isotropic object, e.g., human patients. 
Studies have shown different optimal tube potential should be 
used for different size patient to reduce the CT dose if the 
target contrast is highly energy dependent. This work is to 
study the image quality improvement and dose reduction 
benefit of x-ray tube potential modulation for photon counting 
based spectral CT. Algorithms are developed to determine the 
optimal tube potential and tube current for phantoms with 
clinical relevant dimensions. Several tube potential and/or 
current modulation protocols, taking into consideration tube 
power limitation, tube potential switching frequency, and 
available tube potential options, are studied and compared. 
Simulation results showed that tube potential modulation 
protocols achieve better contrast-to-noise ratio compared with 
non-modulation protocols at the same dose level. 

I. INTRODUCTION 

T dose is of great concern due to the significant 
increase in the use of CT nowadays. Different 

strategies have been developed to reduce the radiation dose 
without compromising image quality: Reducing tube 
current, using low tube voltage when the patient size is 
small and the target contrast is highly energy dependent, 
individualized scanning parameters such as automatic 
exposure control, advanced imaging reconstruction or 
processing methods or parameters, etc. [1]  

Selecting optimal tube potential for a particular size 
patient has been of interest to reduce CT dose [2, 3]. These 
studies have found when the target contrast is highly energy 
dependent, smaller tube potential is preferred for a smaller 
size patient, while larger tube potential is preferred for a 
bigger size patient. However, the tube potential is fixed for 
the patient during the scan in those studies.  

Since patient shape is often elliptical, i.e. the pathway 
through the patient is thicker for some views and thinner for 
other views, we are interested in modulating tube potential 
for different views. In this study we studied the image 
quality improvement and dose benefit of tube potential 
modulation for photon counting based spectral CT imaging. 
Photon counting spectral CT is suitable of performing tube 
potential modulation due to two reasons: On one hand, 
existing commercial x-ray tube is capable of tube potential 
modulation, at least slow modulation with a switching 
frequency limit; More importantly, the projection-domain 
decomposition enables straightforward image interpretation 
of projections at different tube potentials, whereas it is 

Xin Li is with Department of Electrical and Computer Engineering, 
Johns Hopkins University, Baltimore, MD 21218 USA. 

Xiaolan Wang and Yu Zou are with Toshiba Medical Research Institute 
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challenging for non-spectral CT reconstruction due to the 
change of spectrum during a scan.  

II. METHODS 
In this study, monochromatic images at selected energy 

are generated as the final image to be evaluated, which is 
comparable to conventional CT reconstructed image at 
effective energy. There are three main parameters of interest 
to be optimized for a specific object:  
• During the acquisition of spectral CT data, two 

parameters: X-ray tube potential and current for each 
view. Once determined, the spectral CT measurements 
can be decomposed into basis material projections by 
an iterative projection-domain decomposition method 
[4]. 

• Basis material images can then be reconstructed and 
monochromatic images at any energy can be derived by 
the method proposed by Lehmann [5]. The energy of 
the monochromatic image is the third parameter to be 
determined. 

We propose the following 3-step method to determine 
these parameters: X-ray tube potential kVp, x-ray tube 
current mA, and the monochromatic energy E. For 
simplicity, we will denote the three parameters using kVp, 
mA and E in the following content. 

A. Optimize x-ray tube potential kVp 
We determined kVp by maximizing dose efficiency of 

each view with x-ray tube power constraint. The dose 
efficiency is defined as below ([2]): 

CNRDose Efficiency
dose

=               (1) 

where CNR is the contrast to noise ratio and dose is the 
total energy deposited in the object. The contrast is 
calculated as the attenuation coefficient difference of target 
and background at the effective energy for each view. Since 
the definition of dose efficiency is mA independent, we can 
use it to optimize kVp before determine mA. 

B. Optimize x-ray tube current mA 
The x-ray tube current mA is determined by equalizing 

count level for each view and then the whole mA pattern 
will be scaled to a predetermined dose level. This requires 
knowledge of the outer dimension of the patient/phantom. 
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C. Optimize monochromatic image energy E 
We determined E after material decomposition which 

achieves the best image quality of the final image in terms 
of CNR. 

D. Phantoms and simulations 
We studied two elliptical water phantoms: 

350mm*250mm (phantom 1), and 450mm*250mm 
(phantom 2), as shown in Fig. 1.  Both water phantoms have 
a 7mm radius of calcium insert at the center. Noisy spectral 
CT projections are generated with the following energy 
bins: 20-40keV, 40-60keV, 60-80keV, 80-120keV, 120-
140keV with 1200 views over 360 degree. 

 

 
Fig. 1. Elliptical water phantoms with main axis size 350mm*250mm 

(phantom 1) and 450mm*250mm (phantom 2) with a 7mm radius calcium 
insert at the center. 

E. Imaging protocols  
We studied six imaging protocols summarized in Table I.  

For protocol 1 and 2, there will be no kVp modulation 
(120kVp), with fixed and modulated mA, two protocols 
currently used in CT. For protocol 3, we obtain the kVp and 
mA modulation pattern with our proposed method. 
Available kVps are 40 -120 in 10 kVp increment, and 135 
kVp. We consider protocol 3 to be the best kVp and mA 
modulation protocol. Protocols 4-6 are kVp modulation 
protocols with more constraints. For protocol 4, we add a 20 
ms kVp switching speed constraint. For protocol 5,6, we are 
only using 80 kVp and 120 kVp as the optional tube 
potential, which are available in commercial CT x-ray tubes 
and with modulated and fixed mA. All protocols are under 
current x-ray tube power limit of 75 kW.  

F. Image evaluations 
To evaluate the image quality of the final monochromatic 

image, we use the contrast-to-noise-ratio (CNR) as a figure 
of merit. The contrast is measured as the difference of the 
mean in the calcium ROI and the mean of the two nearby 
water ROIs. Noise is the averaged noise of the two water 
ROIs. 

 
 
 
 
 
 

 
TABLE I. IMAGING PROTOCOLS 

 
Protocol kVp mA kVp 

switching 
frequency 
20 Hz 

1 120 255(phantom 1) 
135(phantom 2) 

Yes 

2 120 Modulated Yes 
3 Modulated Modulated No 
4 Modulated Modulated Yes 
5 80, 120 Modulated Yes 
6 80, 120 No modulation 

within each kVp 
Yes 

III. RESULTS 

A. Modulation pattern 
The kVp and mA modulation pattern for the two 

phantoms are shown in Figs. 2-5. The discrete choices of 
kVp are to simplify the simulation. And more realistic and 
better kVp modulation pattern can be considered in the 
future studies. The abrupt jump of mA is due to the abrupt 
change of kVp when count level at each view is matched. 

 
Fig. 2. kVp modulation pattern for phantom 1 for the six imaging 

protocols. 

 

 
Fig. 3. kVp modulation pattern for phantom 2 for the six imaging 

protocols. 
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Fig. 4. mA modulation pattern for phantom 1 for the six imaging 

protocols. 

 
Fig. 5. mA modulation pattern for phantom 2 for the six imaging 

protocols. 

B. Image contrast 
The plot of image contrast for the two phantoms at 

different monochromatic energy E for the six protocols is 
shown in Figs. 6-7. The contrast of the monochromatic 
image largely depends on its energy E, as predicted by [5]: 
The attenuation coefficient of an object is determined by an 
energy independent, and an energy dependent part. For 
certain target and background, the contrast between the two 
only depend on energy.  

C. Image noise 
The plot of image noise for the six protocols at different 

monochromatic energy E for the two phantoms is shown in 
Figs. 8-9. The noise is affected by all three parameters: 
kVp, mA and E. The kVp modulation protocol decreases 
the noise of the monochromatic images with lower E. This 
is intuitively true: For lower energy images, noise is 
lowered by using measurement from lower energy. 

 

 
Fig. 6. Contrast plot for phantom 1 for the six imaging protocols at 

different E: 30, 40, 45, 50, 55, 60, 75, 90 keV. 

 
Fig. 7. Contrast plot for phantom 2 for the six imaging protocols at 

different E: 30, 40, 45, 50, 55, 60, 75, 90 keV. 

D.  
 

 
Fig. 8. Noise plot for phantom 1 at different E for the six imaging 

protocols. 

 
Fig. 9. Noise plot for phantom 2 at different E for the six imaging 

protocols. 

E. Image CNR 
The plot of CNR at the optimal monochromatic energy E 

is shown in Figs. 10-11. And the optimal images for the six 
imaging protocols are shown in Figs. 12-13. Visibly 
protocol 3 achieves the best image quality in terms of CNR 
at the same dose level. This is especially apparent for 
phantom 2, which have a larger aspect ratio so the benefit of 
kVp modulation is more significant. 

The optimal monochromatic energy and corresponding 
optimal CNR for phantoms 1 and 2 are summarized in 
Tables II and III. Protocol 3 achieves the best CNR, which 
can be traded for lowest dose at the same CNR. Protocols 4 
and 5 also have satisfactory CNR or dose benefit. 
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Fig. 10. CNR plot for phantom 1 at the optimal monochromatic energy 

for the six imaging protocols. 

 
Fig. 11. CNR plot for phantom 2 at the optimal monochromatic energy 

for the six imaging protocols. 

 
Fig. 12. Optimal images for the six imaging protocols for phantom 1. 

 
Fig. 13. Optimal images for the six imaging protocols for phantom 2. 

 
 
 

TABLE II. OPTIMAL MONOCHROMATIC ENERGY AND CNR AND DOSE 
BENEFIT FOR PHANTOM 1 

 
Protocol # Optimal 

keV 
Optimal 
CNR 

CNR*  
(wrt #3) 

Dose** 
(wrt #3) 

1 60 13.34 0.77 1.67 
2 60 14.52 0.84 1.42 
3 50 17.27 1.00 1.00 
4 55 15.15 0.88 1.30 
5 55 14.87 0.86 1.35 
6 55 12.32 0.71 1.97 

 
TABLE III. OPTIMAL MONOCHROMATIC ENERGY AND CNR AND DOSE 

BENEFIT FOR PHANTOM 2. 
 

Protocol # Optimal 
keV 

Optimal 
CNR 

CNR*  
(wrt #3) 

Dose** 
(wrt #3) 

1 60 4.27 0.76 1.72 
2 60 4.61 0.82 1.48 
3 45 5.60 1.00 1.00 
4 45 5.32 0.95 1.10 
5 55 5.10 0.96 1.07 
6 60 (55) 3.06 0.55 3.36 
(For Table II and III, CNR* is the CNR with respect to CNR of 

protocol 3 at the same dose level; Dose** is the estimated dose 
level with respect to dose level of protocol 3 at the same CNR. The 
numbers in the Dose column is a simple calculation from numbers 
in CNR column assuming the same contrast and CNR.) 

IV. CONCLUSIONS 
We developed a 3-step parameter optimization method to 

optimize the tube potential, tube current and monochromatic 
energy for kV-modulated spectral CT. Results demonstrated 
the dose benefit of kV modulation in photon counting based 
spectral CT, in terms of improved CNR in human-size 
objects. More realistic kVp and mA modulation patterns can 
be considered in the future study and the benefit of kV 
modulation are expected to retain. 
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Abstract—We investigate using a larger projection data range for 

cardiac CT compared to the conventional halfscan and combine it 

with motion estimation and motion-compensated reconstruction. 

Radiation dose concerns can be addressed by proper tube current 

modulation. The larger data range helps to reduce halfscan 

artifacts and motion compensation helps to reduce motion 

artifacts. We studied the potential benefits of this approach for 

coronary CT angiography (CTA) by measuring the accuracy of 

the stenosis grade from soft plaque in the right coronary artery. 

Synthesized patient data were used to provide realistic images 

while at the same time having access to the true motion vectors 

and stenosis grade. The motion-estimation combined with motion-

compensated reconstruction significantly improved the image 

quality at rapid cardiac phases. The relative accuracy of the 

measured stenosis grade at mid-diastole decreased by only 4% 

when the dose was reduced by 75%, however, the difference was 

statistically not significant (t-statistics=0). The results indicated 

that a larger projection data range may be used to improve the 

accuracy of diagnostic tasks or to reduce the dose while 

maintaining measurement accuracies. 
 

 

Index Terms—cardiac CT, motion estimation, motion 

compensation, atherosclerosis, soft plaque, CTA 

 

I. INTRODUCTION 

ardiac CT imaging provides high contrast, high quality, 

non-invasive imaging of the heart and coronary tree to 

help with the detection of heart diseases. However, 

despite continuing technological improvements, there are 

limitations in spatial and temporal resolution resulting in 

image artifacts. Further artifacts stem from the halfscan 

reconstruction algorithm used in all commercial scanners and 

lead to fluctuating pixel values for the same tissue type 

depending on the projection angle. These limitations reduce 

the accuracy and precision of diagnostic tasks. The relatively 

high dose of cardiac CT exams is also a concern. 

We propose to address some of these problems by using a 

wider projection data range for reconstruction with appropriate 

tube current modulation. Since a larger data range is more 
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sensitive to motion we estimate the motion and use the motion 

information during reconstruction. 

The proposed method was evaluated for coronary CT 

angiography (CTA). CTA is an established, non-invasive 

method to detect coronary stenosis from soft or calcified 

plaques [1], [2]. It has a large negative predictive value but 

currently suffers from a relatively large fraction of false 

positives [3]. Therefore, improving the accuracy of the 

stenosis measurement by reducing motion and halfscan 

artifacts has direct clinical relevance. 

Furthermore, we used synthesized patient data with a 

manually implanted stenosis and known motion for evaluation. 

This approach combines the advantages of using clinically 

realistic data but also knowing the true values of the stenosis 

grade and motion. 

A. Halfscan reconstruction 

The current halfscan reconstruction algorithm uses a data 

range wR corresponding to 0.5 gantry rotations [4], [5] (Fig. 

1b). The range has to be small because motion during the 

reconstruction window is not compensated for. Data acquired 

outside this range is neglected but contributes to the radiation 

dose. Despite the minimum data range used for reconstruction, 

motion artifacts can be severe for rapid cardiac phases. 

Therefore, images are typically reconstructed only for a 

quiescent phase (usually at mid-diastole). 

The halfscan reconstruction also leads to streak artifacts  

that rotate with the location of the center of the reconstruction 

wR [6]. For CTA, however, it is expected that motion artifacts 

are the dominating limitation. 

B. Increased projection data range with tube current 

modulation 

Halfscan artifacts can be reduced by using a larger 

projection data range wR. In order to limit the total radiation 

dose, the tube current will be set to a fraction c1 (compared to 

the tube current for conventional protocols) for the range wA 

around the phase of interest and to a smaller fraction c2 outside 

of wA (see Fig. 1b).  

Using a larger data range, however, requires compensating 

for the cardiac motion to avoid or reduce motion artifacts. We 

have already developed an image-based motion estimation 

algorithm for CT and demonstrated that motion artifacts in 

cardiac CT can be reduced when the algorithm is combined 

with motion-compensated reconstruction [7]. 
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Motion-compensated cardiac CT with extended 

projection data range 
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Fig. 1: The current and the proposed tube current modulation for 

ECG-gated cardiac CT. 

II. MATERIALS AND METHODS 

A. Synthesized patient data with coronary soft plaque 

In order to have access to the true location and magnitude 

of the coronary stenosis but to also use realistic data, we 

implemented a soft plaque into clinically acquired patient data.  

A patient was selected from a data base of 68 patients who 

underwent ECG-gated, contrast-enhanced cardiac CT at the 

Johns Hopkins Hospital. The selected patient had an average 

heart rate of (52  3) bpm and no visible plaque. Images were 

reconstructed using filtered back-projection at 20 cardiac 

phases. 

The soft plaque was implemented manually in the image 

volume reconstructed at mid-diastole (image f 
0
(75%RR)). The 

soft plaque was located in the right coronary artery (RCA) as 

shown in Fig. 2. 

 

Fig. 2: Soft plaque implemented in the RCA of the original patient 

image at mid-diastole. 

B. Cardiac motion estimation and motion ground truth 

The 4-dimensional (4D) cardiac motion was estimated on 

the original 20 phase images (without synthesized plaque) 

using our previously developed image-based motion 

estimation algorithm iME [7]. Briefly, the cardiac motion is 

estimated by non-rigid, 4D registration of a quiescent 

reference phase to all other phases. The motion model is based 

on b-splines and the cost function is the weighted squared 

difference of pixel values between reference and target volume 

with regularization in both space and time. The optimization 

algorithm is a nested conjugate gradient method. 

The obtained 4D motion vector field (MVF) was then 

altered with known disturbances to avoid presenting the same 

motion to iME again when estimating the motion on the 

synthesized patient images. The altered MVF, tv , provides the 

ground truth of the cardiac motion. 

C. Projection data and tube current modulation 

Projection data was obtained by forward projecting the 

synthesized patient image f 
0 

(75%RR). Heart rates of 60 bpm 

and 90 bpm were simulated and the image was warped to the 

corresponding cardiac phase for each projection angle using 

the ground truth MVF tv . Noise was added to the projection 

data corresponding to the tube current at each projection angle. 

Seven scenarios of tube current modulations were simulated as 

shown in Table 1. Each scan was repeated 10 times. Note that 

scenarios #5 and #6 were designed to yield the same total dose 

as the conventional half scan with c1=100%, c2=0% (scenario 

#1). 

 
Table 1: Tube current modulations and scan conditions. wA=0.37-

0.40. The tube current was 875 mA for c1=100%. 

# c1 c2 condition Noise 

(HU) 

1 100% 0% 60 bpm, wR=0.50 16.7 

2 100% 20% 60 bpm, wR=0.75 14.0 

3 50% 10% 60 bpm, wR=0.75 20.8 

4 25% 5% 60 bpm, wR=0.75 30.7 

5 70% 16% 60 bpm, wR=0.75 17.6 

6 70% 16% 60 bpm, wR=1.00 15.3 

7 70% 16% 90 bpm, wR=0.75 16.3 

D. Image reconstruction 

Images were reconstructed using our iterative approach of 

motion-estimation and motion-compensated reconstruction 

(MCR) as reported previously [7] with five iterations of iME-

MCR. The MCR algorithm is based on Schäfers motion-

tracking cone-beam backprojection [8]. The projection data 

windows wR used for reconstruction are listed in Table 1. The 

size of the reconstructed image volume was 512x512x332 

voxels with size 0.43x0.43x0.50 mm
3
. 

E. Evaluations 

The areal stenosis grade d was calculated in one slice 

within a region-of-interest (ROI) containing the RCA as 

90 HU 0 HU1 /d N N  , where N90 HU  is the number of pixels 

a) 
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with pixel value > 90 HU and N0 HU is the number of pixels 

with pixel value > 0 HU. The measured stenosis grade was 

compared to the true stenosis grade which was obtained from 

the reconstructed image at 75% RR simulated without cardiac 

motion and without noise. 

The accuracy of the MVF was calculated as the 3D 

Euclidian distance between the estimated MVF and the “ideal” 

MVF obtained from noise-free images with c1=c2=100% and 

wR=0.75. 

 

III. RESULTS  

no ME-MCR with ME-MCR

a)
15%RR

b)
15%RR

d)
75%RR

c)
75%RR

 
Fig. 3: Reconstructed image around the RCA at a rapid phase 

(15%RR) and a quiescent phase (75%RR) a)+c) halfscan without 

motion compensation and b)+d) proposed method with motion 

compensation. 

The results for CTA can be summarized as follows: 

1. The motion artifacts at rapid cardiac phases were 

visibly reduced with iME-MCR (Fig. 3a and b). 

2. At mid-diastole (a quiescent phase), the sharpness of 

the RCA was similar for the halfscan with wR = 0.5 

and iME-MCR with wR = 1.0 but the noise was slightly 

lower (Fig. 3c and d) and last column in Table 1).  

3. The accuracies of the estimated motion vector fields 

near the RCA, averaged over all 20 cardiac phases, are 

listed in Table 2 for a subset of all generated scenarios. 

The accuracies were 1 mm for the halfscan method and 

0.6 mm or better for the cases with increased data 

range wR=0.75. 

4. Reducing the dose to 50% or 25% did not affect the 

accuracy of the stenosis grade in a statistically 

significant way (t-statistics was zero), see Fig. 4. 

However, in all cases the measured stenosis grade 

showed large variations over different noise 

realizations (error bars in the figure). 

5. The average accuracy of the stenosis grade at a heart 

rate of 90 bpm was comparable to the accuracy at a 

heart rate of 60 bpm, but the standard deviation was 

slightly increased. 

Table 2: Accuracies of the estimated motion vector fields. 

# c1 c2 condition Accuracy 

(mm) 

1 100% 0% 60 bpm, wR=0.50 1.00 

2 100% 20% 60 bpm, wR=0.75 0.10 

3 50% 10% 60 bpm, wR=0.75 0.59 

4 25% 5% 60 bpm, wR=0.75 0.65 

5 70% 16% 60 bpm, wR=0.75 0.58 
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Fig. 4: Accuracy of the stenosis grade. The numbers #1 to #7 

correspond to the settings for tube current modulations and 

reconstruction data range listed in Table 1. 

 

IV. CONCLUSION 

We investigated extending the data range used for image 

reconstruction in cardiac CT. Motion artifacts were limited 

with iterated motion estimation and motion-compensated 

reconstruction. The methods were evaluated on synthesized 

patient data with a stenosis from soft plaque in the RCA. 

The accuracy of the estimated motion vector fields in the 

RCA region was 1 mm or better and showed only weak 

dependence on the total dose. 

The accuracy of the measured stenosis grade was 

unaffected by different tube current modulation schemes even 

when the radiation dose was reduced to one fourth (although 

the noise increased). The accuracy at an increased heart rate of 

90 bpm was statistically not different than the accuracy at a 

heart rate of 60 bpm. 
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Texturization: A Generalized Image Quality
Comparison Method

Synho Do PhD∗, Sarvenaz Pourjabbar MD, Ranish Khawaja MD, Atul Padole MD, Sarabjeet Singh MD, and
Mannudeep Kalra MD

Abstract—In this paper, we present the texturization method,
which compares the quality of multiple scanners and algorithms
without the need of phantom scans. It removes the high-principal
components of an image, leaving just the texture information.
This information is then converted into a quantitative Texture
Spectral Density (TSD) plot.

The TSD plots provide a simple quantitative means for
cross-vendor and cross-algorithm comparison by comparing the
texture spectral power per unit of frequency bandwidth over
multiple image reconstruction algorithms. The results of TSD
were found to be very easy and useful to compare multiple image
reconstruction algorithms for low dose imaging experiments for
multiple venders and multiple image reconstruction algorithms.
As further research is done with this method, there are multiple
potential applications for it in the clinical field.

Index Terms—Computed Tomography, Low Dose Imaging,
Iterative Reconstruction Technique, Image Quality, Texturization

I. INTRODUCTION

X-ray Computed Tomography (CT) imaging is the fastest,
most efficient, and most practical imaging modality in the
clinical setup today. Its uniqueness comes from its ability to
provide a quantitative value (the attenuation coefficient) of
each pixel value, a higher resolution image, and micro-second
level temporal resolution. However, in order to minimize
potential health risks that can be caused by the radiation
exposure CT scans entail, the current trend in the field is
to reduce radiation dose As Low As Reasonably Achievable
(ALARA) [1] [2].

As a result, various CT scanner vendors have proposed
several algorithms to sustain image quality even in low dose
radiation (i.e., < 1 mSv), including image-based Iterative
Reconstruction (IR) algorithms [3] [4] [5] [6] [7] [8] and
raw-data (i.e., Sinogram) based algorithms [9] [10] [11]. This
presents various problems for different situations.

They are limited to the use of standard phantoms to measure
conventional image quality metrics [12] [13].

• The current method for comparison requires co-
registration, which is only possible when using either
phantoms or cadavers with repeated scans (no motion is
involved).

• Since phantoms are homogenous and comprised of in-
serts for specific purposes, they result in a different
imaging physics (i.e., scattering, diffraction, nonlinear

Massachusetts General Hospital and Harvard Medical School, Department
of Radiology, Boston, MA, email: sdo@mgh.harvard.edu

polychromatic effect etc.) than if actual patients were
used, rendering them an unideal comparison platform.

Cross-vendor and cross-algorithm comparison is not easy.

• Each algorithm has multiple parameter settings to control
the strength of regularization, and the details of the
internal functions are usually either published without
specifics or not disclosed to the public at all.

• In larger hospitals where there may be scanners from
different vendors, there is no simple way for medical
doctors to know the differences between them, making
them unable to optimize scanning protocol for individual
cases.

• A larger hospital would need to scan their phantoms in
each different scanner to compare them, which is both
time-consuming and inefficient.

In this paper, we propose a novel approach for the compari-
son of multiple algorithms from different companies. Using the
concept of singular value decomposition (SVD), we remove
the common components of all the images, leaving just the
texture information, a better platform for comparison.

In Section II, we describe our texturization algorithm in
detail. In Section III, we describe data collection and image
comparison. Finally, we discuss potential applications in Sec-
tion IV.

II. METHODS

We hypothesize that an image (I) is composed of contrast
(C), edge (E), texture (T ), and noise (ϵ):

I = C + E + T + ϵ (1)

Each component is unique and important in medical imaging
for the diagnosis of disease except for noise. While most IR
algorithms produce high quality images, small but noticeable
variations in texture exist between them. When we visually
compared IR images, clinicians were quick to notice the
difference in texture of the images.

A. Co-registered images

To formulate this difference in texture, we first define two
co-registered images Ia and I

′

a:

Ia = Ca + Ea + Ta + ϵa

I
′

a = C
′

a + E
′

a + T
′

a + ϵ
′

a (2)
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Therefore, when we subtract one co-registered image from the
other:

Ia − I
′

a = (Ca + Ea + Ta + ϵa)

−(C
′

a + E
′

a + T
′

a + ϵ
′

a)

= (Ta − T
′

a) + (Na − ϵ
′

a) (3)

where, Ca ≈ C
′

a and Ea ≈ E
′

a. In this case, we can easily
distinguish the differences in texture between the two co-
registered images.

B. Two different images

In the same way, when we compare two different images Ia
and Ib:

Ia = Ca + Ea + Ta + ϵa

Ib = Cb + Eb + Tb + ϵb (4)

So by subtracting both contrast (C) and edge (E) from each
image by using f(I) = C + E, we get:

Ia − f(Ia) = (Ca + Ea + Ta + ϵa)− (Ca + Ea)

= Ta + ϵa

Ib − f(Ib) = (Cb + Eb + Tb + ϵb)− (Cb + Eb)

= Tb + ϵb (5)

This allows us to easily compare two different images even
though they are not co-registered. We subtracted two high-
principal components from each image for detailed compari-
son, an idea similar to Principal Component Analysis (PCA),
which is frequently used to distinguish differences for face
recognition algorithms in the image processing field. We rank
the PCs and remove the primary ones from each image,
allowing us to observe the differences in texture (and noise)
maps. Another novelty of texturization is that we use Total
Variation (TV) as a simple and direct method to compute the
contrast (C) and edge (E) of an image. The TV of an image
is:

TV (I) =

∫ 1

0

∫ 1

0

|∇I|dxdy (6)

where ∇I = ( ∂I∂x ,
∂I
∂y ) denotes the gradient and |(x, y)| =√

(x2 + y2) denotes the Euclidean norm, to ensure TV (I) =
C + E with a stopping criteria.

Next, we compute the conventional Noise Spectral Density
(NSD) [14], which calculates the noise power per unit of
bandwidth in 2D polar coordinate Fourier domain. In this
paper, we call this Texture Spectral Density (TSD).

III. RESULTS

We followed the IRB protocol of MGH to collect two
consecutive patient scans: one normal routine clinical dose
scan and one low dose scan (< 1 mSv). We reconstructed im-
ages from three different scanners (GE, Siemens, and Philips)
and also used a post-processing software (SafeCT). We then
implemented texturization on the three groups of images for
the three vendors. The image reconstruction algorithms tested
were:

• GE: High (normal) dose FBP, Low dose FBP, and Low
dose ASIR (30%, 50%, 70%, and 90% blending)

• Siemens: High (normal) dose FBP, Low dose FBP, and
Low dose SAFIRE (S1, S2, and S3)

• Philips: High (normal) dose FBP, Low dose FBP, iDose
(L2 and L4), and IMR (L1 Body-SP, L1 Body-R, L1
Body-S, L2 Body-R, and L2 Body-S)

• Medic Vision: SafeCT (Chest-4, Lung-1 and Lung-2)
We generated texturization results, shown in Figure 1, 2,

and 3.
As can be seen in Figures 1, 2, and 3, by removing the

common components of all the images, we were able to see
just the texture information, which provides a more quantita-
tive and re-produceable metric for image quality comparison.
Because the texturization of images doesn’t necessarily require
co-registration, we were able to use patient data to extract a
spectral signature of each image for comparison. Also, as can
be seen in Figures 4, 5, 6, 7, 8, and 9, TSD provides a simple
way to compare different scanners and algorithms, allowing
medical doctors to easily see the differences between them
and optimize scanning protocol for different situations. The
results of TSD were not only easy to generate, but also easy
to compare and make cross-comparisons.

IV. DISCUSSIONS AND CONCLUSION

In this paper, we propose a novel approach for the compar-
ison of multiple algorithms from different companies. Most
notably, it doesn’t exclusively require the use of phantoms, as
texturization of images doesn’t require a homogenous region,
sharp steps, or specific inserts to provide a standard. Also,
rather than depending on scheduled calibrations of scanners
to ensure optimal image quality, texturization would allow us
to use the patient data to continuously monitor deviations in
the parameters.

Fig. 4: Texture spectral density comparison plot for GE images (FBP, ASIR and Veo) in
Figure 1

Fig. 5: Texture spectral density comparison plot for GE FBP and SafeCT in Figure 1
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Fig. 1: Texturization method applied on GE Scanner images and SafeCT images: (a) From left to right, FBP (normal dose and low dose), ASIR Images (Parameters: 30%, 50%,
70%, and 90% blending), Veo, and SafeCT images (Parameters: Chest4, Lung1, and Lung2), (b) Zoomed images, (c) Texture maps
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(c)
Fig. 2: Texturization method applied on Siemens scanner images: (a) From left to right, FBP(normal dose and low dose), SAFIRE images (Parameters: S1, S2, and S3), and SafeCT
images (Parameters: Chest 4, Lung1, and Lung2), (b) Zoomed images, (c) Texture maps
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Fig. 3: Texturization method applied on Philips scanner images: (a) From left to right, FBP (normal dose and low dose), iDose (Parameters: L2 and L4), and IMR images (Parameters:
L1 Body-SP, L1 Body-R, L1 Body-S, L2 Body-R, and L2 Body-S), (b) Zoomed images, (c) Texture maps
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Motion Compensated Backprojection versus

Backproject-then-Warp for Motion Compensated

Reconstruction
Bernhard Brendela, Rolf Bippusa, Sven Kabusa and Michael Grassa

Abstract—Motion Compensated Backprojection (MCBP)
and Backproject-then-Warp (BPW) are two methods described
in literature to incorporate motion vector fields (MVF) into
motion compensated reconstruction. However, a comparison of
the two methods is not available so far. Here, both methods are
compared based on simulated data. It is analyzed how many
warping-operations of the BPW method are needed to achieve
comparable image quality as the MCBP method. This is of
interest, since the computational demand for the BPW method
increases with the number of warping operations, while the
dependency of the computational demand on the number of
given MVFs for the MCBP method is negligible.

I. INTRODUCTION

Conventional CT reconstruction is based on the assump-

tion that the scanned object is static during data acquisition.

This assumption is a good approximation for most regions

of the human body, since scanners provide today a high

data acquisition speed such that many scans take only a few

seconds or less. For the heart, which is a fast moving organ,

this assumption is not valid, even with modern CT hardware.

The consequence is a blurring of anatomical structures in the

reconstructed images, prohibiting in some cases a reliable

diagnosis of small structures. This is especially true for

coronary artery vessels, which are small (a few mm in

diameter) and move quite fast [1].

To improve image quality in these cases, approaches

for motion compensated reconstruction have been devel-

oped [2]–[9]. One important group of these approaches

comprises two steps: In the first step, the motion of the

anatomical structure of interest is estimated. In the second

step, the reconstruction is performed using the estimated mo-

tion to obtain an improved representation of the anatomical

structure of interest in the image [2]–[7].

In most cases the estimation of motion is based on the

reconstruction of images without motion compensation for

different time points (i.e., for different motion states) [2]–

[7]. Image registration is performed between these images

to extract the motion, represented by a motion vector field

(MVF). This MVF has to be incorporated into the recon-

struction in the second step.

Two possible methods to incorporate the MVF into the

reconstruction are discussed here. One method is introduced

a Philips Technologie GmbH, Innovative Technologies, Research Labo-
ratories, Hamburg, Germany

in [3]. It is a FBP based method, which incorporates the

MVF into the backprojection step of the FBP. Consequently,

this method is called motion compensated backprojection

(MCBP) in the following. The second method is introduced

in [6], [7]. It utilizes the linearity of the FBP to incorporate

the MVF. Different portions of the projection data are re-

constructed separately, resulting in a set of partial images. A

FBP reconstruction from all projections and the summation

of the partial images deliver the same image result. The

portions are chosen such that they belong to different motion

states of the anatomical structure of interest. Each partial

image is warped by the corresponding MVF to achieve the

same motion state for all images in the set. Finally, the

warped partial images are summed up to obtain the motion

compensated image. In the following this method will be

called backproject-then-warp (BPW).

The aim of the work presented here is to compare MCBP

and BPW with respect to their reconstruction performance

and resulting image quality for moving objects. The motion

estimation step (i.e., the generation of the MVFs) is not

discussed. Consequently, simulated data is used and ideal

MVFs are generated to exclude influences of the motion

estimation step from this comparison.

II. METHOD

In motion compensated reconstruction, a reference motion

state has to be chosen. When imaging the heart, the motion

state corresponds to a heart phase, which reoccurs in each

heart beat. Thus, the reference motion state is determined

by choosing a reference heart phase.

Since an ECG is recorded during the data acquisition, each

projection is related to a heart phase. For the reconstruction,

intervals of projections placed symmetrically around the

reference heart phase are used. These intervals are chosen as

narrow as possible, but such that the completeness condition

for reconstruction is fulfilled. Each interval of projections

is acquired within a finite time interval, which directly

translates to a corresponding interval of heart phases (see

Fig. 1). For motion compensated reconstruction, MVFs have

to be available which describe the displacements of the

anatomical structure of interest between the heart phases

within this interval and the reference heart phase.

Due to practical reasons, MVFs are only determined for

a discrete set of heart phases. Thus, for most projections
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67.5 ms / 66%202.5 ms / 84%

acquisition trajectory
X-ray tube

135 ms / 75%

67.5 ms / 66%202.5 ms / 84%

interval of projections

used for reconstruction

Fig. 1. Visualization of the projection interval selected for an axial
reconstruction. The reference heart phase is chosen to be 75%. To fulfill
the completeness condition, the projection interval has to comprise 180◦

of the rotation. In this example (270 ms rotation time, 80 bpm heart rate)
this corresponds to a time interval of 135 ms (67.5 ms to 202.5 ms) / a
heart rate interval of 18% (66% to 84%). Thus, MVFs have to be available
to describe the motion between the reference phase of 75% and the heart
phases within the interval of 66% to 84%.

MVFs have to be interpolated from this given set of MVFs.

The way of handling the given MVFs is different for MCBP

and BPW as described in the following.

A. MCBP

The first step of the MCBP method is the projection

filtering as it is done in FBP. Then, the backprojection of

each filtered projection is performed as follows: The MVF

for the currently considered projection is interpolated along

the temporal axis (e.g., linearly) from the set of given MVFs.

Then, the interpolated MVF is applied to the location of each

voxel within the image to determined where it would have

been in the heart phase of the current projection. After that,

the ray of the current projection is determined which runs

through this (moved) location. The contribution of this ray

is added to the voxel. Since in most cases no ray exactly hits

a given location, linear interpolation is involved in the last

step. In the general case of mutlicycle helical acquisition, the

moved location has to be considered to correctly determine

aperture and pi-partner weighting. A detailed description is

given in [2], [3], [10].

B. BPW

For the sake of brevity, BPW is explained here for an

axial acquisition trajectory, but an extension to multicycle

helical acquisitions is straight forward. As for the MCBP, the

first step of the BPW method is the conventional projection

filtering. Then, the set of projections is divided into subinter-

vals. Each subinterval corresponds to a narrower interval of

heart phases as compared to the complete set of projections

(see Fig. 2). For each subinterval a separate “sub-image”

is reconstructed, but the weighting in the backprojection is

chosen such that the sum of all sub-images is identical to

the reconstruction of the complete interval of projections. In

the next step, for each subinterval a MVF corresponding to

the mean heart phase of this subinterval is interpolated from

the given MVFs. The interpolated MVF is then applied to

warp the corresponding sub-image. After the warping of all

sub-images they are summed up to get the final image. The

method is illustrated in Fig. 3. A detailed description is given

in [6].

67.5 ms / 66%202.5 ms / 84%

acquisition trajectory
X-ray tube

subintervals

180 ms / 81%

157.5 ms / 78%

90 ms / 81%

112.5 ms / 78%
135 ms / 75%

67.5 ms / 66%202.5 ms / 84% subintervals

of projections

Fig. 2. Visualization of the partitioning of the complete set of projections
into subintervals based on the example given in Fig. 1. Each subinterval
corresponds here to a time interval of 22.5 ms / heart phase interval of 3%.

projection interval for reconstruction

acquisition 

time
subinterv.

sub-images
Apply 

sub-images

warped 

sub-images

sum up for

final image

Apply 

MVF

Fig. 3. Illustration of the BPW method.

It turns out that a partitioning of the projections into non-

overlapping subintervals (as illustrated in Fig. 2 and Fig. 3)

leads to streak artifacts in the final image. To avoid these

artifacts, overlapping subintervals can be used [6], [7].

C. MCBP versus BPW

There are some notable differences between MCBP and

BPW. One quite important aspect is that MCBP interpolates

for each projection an individual MVF, while for BPW the

same (interpolated) MVF is used for all projections within

one subinterval.

Regarding the computation time, two differences are re-

markable. The computational demand of MCBP does not

depend on the number of given MVFs. For BPW this is

theoretically also true, but to fully use the information of the

given MVFs, the number of subintervals should be at least

equal to the number of given MVFs. Since the warping of

the sub-images generates additional computational demand

for BPW, there is an indirect relation between the number

of given MVFs and computational demand of BPW.

On the other hand, the backprojection method has to be

modified significantly for MCBP and has a substantially

higher computational demand as compared to the conven-

tional backprojection method. For BPW, the backprojection

method has to be changed only slightly. The computational

demand for the backprojection of all subintervals is roughly

equal to the computational demand for the backprojection of

the complete interval of projections as long as the subinter-

vals do not overlap. If the subintervals overlap, there is an

additional computational demand, which linearly increases

with the amount of overlap.

Page 170 The third international conference on image formation in X-ray computed tomography



D. Simulations

Simulated data is used to compare both methods. The

phantom consists of 27 spheres with a diameter of 4 mm

and attenuation value of 1000 HU. The spheres are placed

on a 3x3x3 grid in space with a distance of 20 mm in

each direction. A 200 mm long cylinder with a diameter

of 200 mm and an attenuation value of 0 HU is used

as background. An axial and a “sagittal” view through

the phantom are shown in Fig 4. The central sphere is

moving along a line with a sinusoidal velocity profile with

a peak-to-peak deflection of 14 mm and a frequency of

80 cycles/minute. The motion line is tilted by 45◦ with

respect to the rotation axis of the simulated CT system (see

Fig 4). All other spheres are not moving.

Fig. 4. Axial (left) and sagittal (right) slice through the phantom used for
simulations. The black arrow illustrates the motion direction of the central
sphere. All other spheres do not move.

The simulated CT system has a source-detector distance of

1040 mm and a isocenter-detector distance of 470 mm. Data

is simulated in wedge rebinned geometry. The simulated

projections have 648x256 values and a size of 256x80 mm2

(projected to the center of rotation). 1200 views are acquired

within one rotation. The rotation time is 270 ms. A helical

trajectory is simulated with a pitch of 14.4 mm.

Reconstructions are performed for the time point of max-

imal motion (i.e., the reference motion state is the central

position). Ideal MVFs representing exactly the motion of

the central sphere are generated based on the knowledge

of the phantom. For BPW reconstructions with different

numbers of equally wide subintervals are performed. For all

of these reconstructions ideal MVFs are generated for the

center of each subinterval, thus an interpolation of MVFs

is not necessary. For MCBP, reconstructions with different

numbers of given (ideal) MVFs are performed. These given

MVFs are equally distributed over the relevant interval of

heart phases. In the MCBP processing, a linear interpolation

of the given MVFs is applied, to get individual MVFs for

each projection.

III. RESULTS

In Fig. 5 sagittal slices through reconstructions for a

simulation without motion and for a simulation with motion

as described in the preceding section are shown. Both re-

constructions are done conventionally without motion com-

pensation. As can be seen, severe motion artifacts occur for

the motion case. Here and in the following only the central

sphere and its surrounding are shown to illustrate artifacts

more clearly.

Fig. 5. Sagittal slice through the central sphere of the phantom shown
in Fig. 4. Left: Reconstruction of a simulation without motion. Right:
Reconstruction of a simulation with motion. Both reconstructions are done
without motion compensation. (Window/Level: 2000/0HU)

In Fig. 6 reconstruction results are shown for motion

compensated reconstructions using the MCBP approach.

As mentioned above MCBP based reconstructions were

performed for different numbers of given MVFs. The illus-

tration shows that the quality of the reconstruction does not

depend on the number of given MVFs in this case, which

is due to the fact that the motion in the interval around the

time point of maximal motion is nearly linear for a sinusoidal

motion, corresponding well to the linear interpolation of the

given MVFs in the MCBP processing.

3 95

13 4117

3 95

13 4117

Fig. 6. Sagittal slice through the central sphere of the phantom shown
in Fig. 4. Left: 6 images reconstructed with the MCBP approach for
different number of given MVFs, as indicated by the numbers in the images
(Window/Level: 2000/0HU) Right: Differences of the reconstructions on the
left to the reconstruction shown in Fig. 5 on the left (Window: 500HU).

In Fig. 7 reconstruction results are shown for motion com-

pensated reconstructions using the BPW approach with non-

overlapping subintervals. As mentioned above BPW based

reconstructions were performed for different numbers of

subintervals. As can be seen, the quality of the reconstruction

depends significantly on the number of subintervals here. Up

to a number to 13 subintervals significant improvements in

the sharpness of the moving sphere can be achieved. Be-

yond 13 subintervals only marginal additional improvements

can be achieved. This dependence is due to the fact that

BPW uses the same MVF for all projections within one

subinterval. Thus, if the subintervals are too large there is

a significant deviation between the assumed motion of the

sphere for a certain projection and the real motion, leading

to the remaining blurring in the reconstruction.

Fig. 8 illustrates the same results for the BPW approach

with overlapping subintervals. The results with respect to

sharpness of the sphere are especially for low numbers
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Fig. 7. Same illustrations as in Fig. 6, this time for the BPW method with
non-overlapping subintervals. The numbers in the images indicate here how
many subintervals were used.

of subintervals inferior as compared to BPW with non-

overlapping subintervals. For 13 and more subintervals the

results of BPW with and without overlapping are very

similar.

3 95

13 4117

3 95

13 4117

Fig. 8. Same illustrations as in Fig. 7, this time for the BPW method with
overlapping subintervals.

Another difference of BPW with and without overlapping

is illustrated in Fig. 9. Here, axial difference images for 5

and 13 subintervals / given MVFs are shown for all three

approaches. For 5 subintervals, there is are significant differ-

ences between all three methods. BPW without overlapping

shows significant additional streak artifacts as compared to

BPW with overlapping. Both BPW approaches show much

higher differences as compared to the MCBP approach.

For 13 subintervals, these differences are not significant

anymore, and the results for both BPW approaches are very

similar to the result achieved with the MCBP approach.

Fig. 9. Axial difference images showing the central sphere of the phantom.
Again differences of the motion compensated reconstruction with respect to
the reconstruction shown in Fig. 5 on the left are taken. Top: 5 subintervals
/ given MVFs. Bottom: 13 subintervals / given MVFs. Left: BPW with
non-overlapping subinterval. Middle: BPW with overlapping subintervals.
Right: MCBP (Window: 500HU).

IV. DISCUSSION

Three methods to integrate MVFs in motion compensated

reconstruction were compared in this work based on images.

First of all it should be noted that a prerequisite for all

methods for motion compensated reconstruction is that the

given MVFs represent the motion of the structure of interest

with an adequate precision. Nevertheless, for BPW in many

cases it makes sense to choose the number of subintervals

higher than the number of given MVFs and to interpolate

MVFs for certain subintervals to get results comparable to

the MCBP approach. This is illustrated here by the fact that

MCBP achieves good results already for 3 given MVFs,

while for the BPW approaches about 13 subintervals are

necessary to achieve comparable results. This is due to

the fact that MCBP uses in the implementation applied

here linear interpolation to get MVFs for each projection,

while the application of the MVFs in the BPW approaches

corresponds to a nearest-neighbor interpolation of the MVFs

between the centers of the subintervals, which is an inferior

approach for inartificial, continuous motion.

Since roughly comparable results are achievable for

MCBP and BPW, a decision which approach is the method

of choice depends mainly on implementation effort and com-

putational demand. Here two questions have to be answered,

which mainly depend on available software framework and

thus cannot be answered generally:

• Is the implementation of a modified backprojection for

MCBP more or less effort than the implementation of

subinterval-reconstruction and warping for BPW?

• Is the additional computational demand of the mod-

ified backprojection in MCBP higher or lower than

the additional computational effort of backprojecting

overlapping subintervals and warping and in BPW?

It should be noted that for the results shown here, the

difference between overlapping and non-overlapping subin-

tervals for BPW becomes marginal once the number of

subintervals increases to the point where BPW can compete

with MCBP in terms of image quality.
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Abstract— Computed Tomography (CT) has been in clinical 

use for several decades. The number of CT scans has increased 

significantly worldwide, which results in increased radiation dose 

delivered to the general population. Many technologies have been 

developed to minimize the dose from CT scans, including scanner 

hardware improvements, task-specific protocol design and 

advanced reconstruction algorithms. In this study, we focused on 

selection of X-ray tube voltage and filtration to achieve optimal 

dose efficiency given required image quality, more specifically 

the contrast to noise ratio. Our approach differs from previous 

studies in two aspects. Typically, Monte-Carlo simulation is used 

to estimate dose in simulations, but this is computationally costly. 

We instead use a projection-domain dose estimation method. No 

image reconstruction is required for the projection-domain 

method, which further simplifies the analysis. This study also 

includes tantalum, a new contrast agent, in addition to soft tissue 

(water), bone and iodine contrast. Optimal tube voltages and 

filtration are identified as a function of phantom size.  The 

simulation analysis is confirmed with a limited phantom study.  

Keywords—Computed Tomography, Contrast Imaging, Optimal 

Spectrum. 

I. INTRODUCTION  

CT is widely used in various clinical applications, such as 
cardiac imaging, colonography, angiography and urology  [1]–
[3] . The number of CT scans performed every year has 
dramatically increased, resulting in an increase in radiation 
dose delivered to the population. This dose increase has led to 
great concern within the medical community In 2010, the Food 
and Drug Administration announced the regulation towards the 
CT manufacturers to avoid unnecessary radiation exposures 
during scans [4] to lower the radiation risk to patients 
especially for those exposed to multiple CT scans.  

Many technologies have been developed to optimize 
components of image quality and minimize patient dose, 
through improved hardware, scanning protocol design and 
reconstruction algorithms. Dose reduction techniques such as 
tube-current modulation and low- voltage protocols have been 
developed [5]. Iterative reconstruction algorithms show a great 
advantage in providing high quality images with much lower 
dose [6]–[8]. A computer assisted scan protocol and 
reconstruction method has been proposed to achieve the best 
tradeoff between radiation dose and image quality for task- and 
patient-specific cases [9].  With the combination of the all 
these advanced techniques, it is expected to see the averaged 

effective dose decrease by 2 to 3 fold compared to the current 
value of about 10 mSv [10].  

In this study, we focus on the selection of optimal X-ray 
tube voltage considering the dose efficiency of different 
contrast materials. Typically, contrast to noise ratio (CNR) is 
chosen to represent the required image quality. The dose-
normalized CNR (CNRD) therefore can be used to evaluate the 
dose efficiency given the desired CNR [11].  To accurately 
calculate the CNR and dose in the analysis usually requires 
image reconstruction and Monte Carlo dose simulation, which 
are both time-consuming. A projection-domain dose estimation 
method has been proposed and compared with Monte Carlo 
dose simulation [12]. In this paper, we use the projection-
domain screening method which uses relatively simple 
analytical estimates of contrast, noise and dose. Contrasting 
material such as iodine is often injected into the patient to 
enhance the vasculature. Recently, tantalum has been evaluated 
as a contrast agent. Tantalum has several potential performance 
advantages over iodine as a contrast agent, and is hoped to 
offer an alternative to avoid known issues associated with 
iodine [13]–[15]. We used our projection-domain screening 
method to estimate the optimal X-ray tube voltage for the 
highest CNRD within soft tissue, and between soft tissue and 
bone, iodine and tantalum. The simulations included electronic 
noise and quantum noise. The simulation results were 
confirmed with measurements on a clinical CT scanner. 

II. METHOD: PROJECTION DOMAIN ANALYSIS  

A. Analytical Representation for the Noise in the Projection 

Measurement 

We first consider a projection ray passing through the 
object with a path length of   and attenuation coefficient of  . 
Assming the incoming photon counts is a Poisson random 
variable    with the mean of   , then the transmitted photon 
count is a Poisson random variable   with mean and variance 
of       

   .  

For an energy-integrating detector, the variance of the noise 
in the transmitted projection ray     prior to the log operation is  

   
           

    

where   is the system gain and represents the conversion 
factor from energy to the number of electrons,   is the energy 
of X-ray photons detected by the detector, and   

  is the 
variance of the electronic noise associated with the detector 
cell.    
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For a polychromatic beam, the noise in the projection can 
be obtained by viewing the polychromatic spectrum as a 
summation over finite energy bins,  

   ∑  
 

 ∑    
    

 

   

where for energy bin   ,     is the incoming photon count 
with mean and variance of    ,    is the transmitted photon 
count with mean an variance of   , and    is the attenuation 
coefficient of the object. 

The noise in the pre-log data can therefore be written as 

       
  ∑    

   
 

   
    

For a polychromatic beam, the signal detected for the 
transmitted X-ray photons is a summation across all the energy 
bins. Therefore, the projection value   after the logarithm 
operation is 

     
     
      

   

Using the Taylor expansion, the variance of   can be 
derived from the variance of the pre-log data based on 
approximately linearizing the logarithm operation.  

     
  (

     
       

 

(       ) 
)   

B. Analytical Representation of the Contrast for Different 

Materials 

The contrast used in this analysis is also obtained from the 
projection domain. It is defined as the difference in attenuation 
coefficients between the object of interest and background. In 
the simulation, along the path of the projection ray, a small 
amount of the contrast material is inserted in place of the 
background material (typically, water is used as a background 
material in this simulation). Water and iodine contrast is 
analyzed as an example.  

We used water contrast as a representative contrast for soft-
tissue to soft-tissue contrast. By applying a small perturbation 
of the normal background water density, the water contrast is 
computed as: 

      ( )  (   )      ( )        ( )  

where   is a small constant (we used 0.05). 

The iodine contrast is defined as: 

       ( )         ( )        ( )  

Bone and tantalum contrast mechanisms are defined the 
same way as iodine. For a polychromatic beam, the contrast is 
defined as the flux-weighted average of the monochromatic 
contrast,  

  
      

    

  

C. Dose Estimation 

An accurate estimation of dose such as can be achieved 
with Monte Carlo simulation is always computationally costly. 
In our method, to simplify the calculation but still provide a 
reasonable estimate of the dose, we calculate the energy of the 
X-ray photons absorbed by the subject. In our previous 
publication, this method was demonstrated to be a reasonable 
approximation of the dose absorbed in the subject [12].  

For a monochromatic beam with energy  , the deposited 
energy of the projection ray is 

       (   
    )             

where    is the attenuation coefficient of the object.  

The dose for polychromatic beam is simply calculated as a 

summation of the energy for absorbed X-ray photons in all 

energy bins.  

   ∑   
 

   

D. Overall evaluation 

The figure-of-merit used in the study is dose weighted 
contrast-to-noise ratio (CNRD): 

     
 

 √ 
   

where   is the contrast,   represents the noise in the 
measurement, and   is the dose delivered to the patient. 

III. SIMULATION CONDITIONS AND PHANTOM 

MEASUREMENT 

A. Simulation Conditions 

We chose a circular water cylinder as our simulation object. 
For the contrast analysis, the center pixel is replaced by the 
contrasting material to introduce a small change in the 
projection value. Three sizes of the water cylinder were used, 
with diameters of 20 cm, 24 cm and 35 cm chosen to 
respectively represent pediatric, small adult and large adult 
abdomen scans.  

Four different types of contrast were evaluated in the 
simulation, including water, bone, iodine and tantalum. We 
also evaluated the effect of extra filtration of the spectrum on 
the dose efficiency curve. Since the mA level does not affect 
the shape of the dose efficiency curve, we only simulated at 
one mA level.  

The spectrum files used in this study are produced by the 
XSPECT package (v3.5), and then filtered with the nominal 
intrinsic filtration of a typical X-ray tube. We evaluated spectra 
with X-ray tube voltages ranging from 60 kVp to 160 kVp, 
which is a slightly broader range than the typically-used 
clinical X-ray tube voltages, which range from 80 kVp to 140 
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kVp. Each spectrum is represented in 0.5 keV increments. In 
this study, we applied a 0.5mm Cu filter to the X-ray spectrum 
and compared its performance with the original spectrum.  

B. Phantom Measurements 

To verify the simulation results, we measured a 24 cm 
CTDI phantom (fabricated in-house from a commercial 32 cm 
CTDI phantom, made of PMMA (Plexiglas)) with contrast 
material inserted at the center using a GE Healthcare 
Lightspeed VCT scanner. The concentrations of iodine and 
tantalum contrast were both 20 mg/cc. The contrast agent was 
installed in a custom-made vial, which was inserted in the 
modified CTDI phantom. The vial provided a 13 mm diameter 
cross-section of contrast agent, of which a 10 mm diameter 
region of interest (ROI) was used. For the background, an 
annular ROI was used, with a 20 mm inside diameter and a 24 
mm diameter outside diameter. For the water contrast we 
inserted a vial with water and measured the contrast relative to 
the PMMA. This is not quite the same as the simulated water 
contrast with only a density perturbation. The contrast was 
determined as the difference in the average CT number in the 
contrast agent ROI and the background ROI; the noise was 
determined as the standard deviation in the background ROI. 
We measured the water, iodine, and tantalum contrast material 
at four tube voltages: 80, 100, 120, and 140 kVp; the tube 
current (mA) was selected to achieve approximately the same 
dose level, represented by CTDI as measured in that phantom. 
The scanning parameters are included in Table 1. We did not 
explore the effect of electronic noise at very low tube current 
[16].  

TABLE I.  PHANTOM MEASUREMENT PARAMETERS 

Voltage (kVp) Current (mA) CTDI (mGy) 

80 300 1.536 

100 165 1.553 

120 105 1.558 

140 75 1.561 

 

IV. RESULTS AND DISCUSSION 

A. Simulation Results 

The simulated dose efficiency curves for water (soft tissue), 
bone, iodine and tantalum are plotted in Figure 1 for the three 
different phantom sizes. The CNRD curves are normalized to 
1.0 at their maximum values for all cases (i.e. with and without 
filtration). 

For the simulation based on the 20 cm phantom, low kVp 
produces the highest dose efficiency for bone and iodine 
imaging. For tantalum, the optimal voltage is around 100 kVp. 
The CNRD curve for water is rather flat, with a decrease below 
80kVp.   

 
(a) 

 
(b) 

 
(c) 

Figure 1.The simulation results for the Dose efficiency (CNRD) curves at 

different phantom sizes: (a) 20 cm, (b) 24 cm, and (c) 35 cm phantoms 

respectively. Four contrast mechanisms (water, bone, iodine, and tantalum) 

show distinctive dose efficiency curves. An optional 0.5 mm Cu filter is used 
to harden the spectra. 

When the phantom size becomes larger, soft tissue imaging 
is more dose efficient at higher kVp compared with the smaller 
phantom size. For the 24 cm phantom, the optimal voltage for 
soft tissue is around 140 kVp. For bone and iodine contrast, 
lower kVp is still more dose efficient. The optimal value for 
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tantalum is between 100 to 120 kVp. For the 35 cm phantom, 
the soft tissue requires higher tube voltage for better dose 
efficiency. Iodine contrast still requires low kVp. The optimal 
tube voltage for bone contrast is around 80 kVp. For tantalum, 
the most dose-efficient voltage increased to 120 kVp. With the 
0.5 mm Cu filter added, the dose efficiency at a given tube 
voltage is improved for soft tissue and tantalum imaging. For 
the 20 cm phantom, the dose efficiency for bone and iodine 
decreases with the Cu filter, since the lower energy photons are 
filtered out from the spectrum. 

B. Phantom Measurements 

The 24 cm CTDI phantom measurement results from the 
clinical scanner are shown in Figure 2.  At the same dose, 
iodine has the highest CNR at 80 kVp, water has the highest 
CNR at 140 kVp, and tantalum has the highest CNR at 100 
kVp. These equal dose CNR curves match our simulation 
screening method (Figure 1) reasonably well: the iodine CNR 
curve drops by about 50% in the 80-140kVp range, the 
tantalum CNR curve peaks at 100-120kVp and the water CNR 
curve monotonically increases. As expected, the latter shows a 
significantly higher increase in the measurements since they 
actually reflect PMMA to water contrast. 

 
Figure 2. The CNR curves for iodine, tantalum and water contrast for equal 

dose measurement, using a 24 cm CTDI phantom.  

V. CONCLUSION  

In this study, we used a projection-domain screening 
method to evaluate the dose efficiency over a range of X-ray 
tube voltages for different contrast materials, including soft 
tissue, bone, iodine and tantalum at different phantom sizes.For 
bone and iodine contrast, low kVp is always more dose 
efficient (as has been previously shown), and some filtration 
will improve dose-efficiency at that low kVp, for larger 
phantoms only. For soft tissue imaging, with small phantom 
sizes, the optimal value of the tube voltage is around 100~120 
kVp, but the curve is very flat, so there is no clear preference. 
With increasing phantom size, this optimal tube voltage 
increases. Filtration can improve dose-efficiency by 5-10%. 
The most dose efficient tube voltage for tantalum contrast 
imaging is between 100~120 kVp, depending on the phantom 
size. This value is closer to that of soft tissue contrast, thus 
making it easier to develop scanning protocols considering 
both materials. 

To verify our simulation results, CTDI phantom 
measurements were performed on a GE Lightspeed VCT 
scanner to determine CNRD for water, iodine and tantalum. 
The measurements (Figure 2) confirmed that the project-
domain analysis (Figure 1) gave a very good prediction of the 
relative performance of various spectra for all contrast 
mechanisms and phantom sizes. The projection domain 
method provides a quick screening method for selection of the 
spectrum, with much less computational cost compared to full 
image reconstruction and Monte-Carlo dose simulation.  The 
study did not include very low tube currents where electronic 
noise would start to dominate, hence the conclusions should 
not be extrapolated to very low signal scenarios. Similarly, the 
study did not take into account practical upper limits on tube 
current: the most dose-efficient spectrum may not always 
achieve the desired image quality. Finally, this study did not 
take into account algorithmic noise reduction techniques. To 
first order, we expect that those will not change our 
conclusions, although it is conceivable that they might favor 
low kVp protocols, combining high iodine and bone contrast 
with good noise suppression. 
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A Cone-beam Reconstruction Algorithm for
Dose-minimized Short Scan and Super Short Scan

Yan Xia, Frank Dennerlein, Sebastian Bauer, Martin Berger, Joachim Hornegger, and Andreas Maier

Abstract—Recently, we proposed an approach that deploys
dynamic collimation to shield unnecessary redundant data in
circular cone-beam data acquisition, enabling a dose-minimized
short scan and super short scan. In this paper, we suggest a
new reconstruction algorithm that produces images from these
acquisitions that are superior to those restored by traditional
short scan FDK-type algorithms. The method involves two stages:
First, an initial volume was reconstructed by using a truncation
correction method. However, this reconstruction suffers from
the streaking artifacts in slices away from the mid-plane due
to implicit sharp binary weighting to the cone-beam data.
Then, we forward project this initial volume to fill the original
projection areas that were shielded by collimation, so that a
second reconstruction with a smooth Parker-weighting scheme
can be applied to reduce the streaking effects. The evaluation is
performed on clinical data with the simulated dose-minimized
acquisition scans. The results demonstrate that the proposed
algorithm achieves image quality that is comparable to non-
collimated FDK short scan reconstruction, with minimized dose
to the patient.

I. INTRODUCTION

Today, clinicians typically rely on 3D C-arm CT imaging for
interventional procedures in neuroradiology since 3D images
offer more detailed anatomical information and higher low-
contrast resolution than 2D angiography. 3D scans, however,
cause a considerable amount of effective dose for a low-
contrast scan of the patient’s head [1]. Under such circum-
stances, it is the practical significance to reduce the radiation
dose to the patient without compromising image quality.

There are many practical C-arm CT reconstruction algo-
rithms that employ a weighting scheme (e.g., Parker weights
[2]) to approximately compensate for the fact that during a
partial circle scan some data are measured once, while other
measurements are observed twice. In [3], we investigated
the possibility to block redundant rays during the short scan
acquisition by successively moving the collimator into the
ray path at the beginning or end of the scan. We calculated
that using this method the dose reduction for a C-arm CT
with a fan angle of 20◦ is 10 %, while for a diagnostic CT
with a fan angle of 50◦ the reduction reaches 23 %. Using
dynamic collimation to shield redundant data is equivalent to
applying a sharp binary weight. Direct use of this weight

Y. Xia, M. Berger, J. Hornegger and A. Maier are with the Pattern
Recognition Lab, Friedrich-Alexander-University Erlangen-Nuremberg, 91058
Erlangen, Germany. Y. Xia and J. Hornegger are also with the Erlangen Grad-
uate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-
University Erlangen-Nuremberg, 91052 Erlangen, Germany. F. Dennerlein and
S. Bauer are with Siemens AG, Healthcare Sector, Germany.

Disclaimer: The concepts and information presented in this paper are based
on research and are not commercially available.

leads to large numerical errors due to its discontinuities,
which was already demonstrated in [4]. To compensate these
artifacts, we apply a robust truncation correction algorithm
- Approximated Truncation Robust Algorithm for Computed
Tomography (ATRACT) [5]. As shown in [3], ATRACT recon-
structions from binary-weighted minimal complete data yields
satisfying reconstruction results in mid-plane. But for slices
away from the mid-plane, unacceptable streaking artifacts
appear in the constructions due to the missing information
in the cone-beam geometry.

In this paper, we present an approach that provides improved
image quality even if only the binary-weighted minimal com-
plete data is acquired. The basic idea of the algorithm is to
forward project an initial reconstruction (with streaking arti-
facts for slices away from mid-plane) to fill the shielded areas
in the original projection data, so that a second reconstruction
with a smooth Parker-weighting scheme can be applied to
reduce the streaking effects. Related work which deals with
reducing streaking-like cone-beam artifacts proposed to blend
the artifact-free parts of two initial volumes [6]. However,
this blending is performed in frequency domain and the two
initial volumes should fulfill some requirements. There also
have been attempts involving an additional line, arc or helical
scan [7], [8] to reduce streaking artifacts in cone-beam CT.
But such an additional scan may complicate data acquisition
and increase both the scan time and radiation dose.

II. MATERIALS AND METHODS

A. Dose-Minimized Data Acquisition

The proposed algorithm deals with the reconstruction prob-
lem in recently suggested dose-minimized acquisition scans.
Below, we briefly describe these scans.

1) Dose Saving in Short Scan : Let us first consider data
redundancy in a short scan. As shown in Fig. 1b, the data in the
triangle area ABC are redundant to the data in A′B′C ′, which
means only one triangle area must be acquired to reconstruct
the object. In [3] we investigated the possibility to block
redundant rays during short scan acquisition by successively
moving the collimator into the ray path at the beginning
or end of the scan. The angular interval of short scan is
Λs = [0, π + 2δ], where δ = arcsin (R/D). The resulting
dose reduction γs can be theoretically estimated as the ratio
between the short scan area and the collimated redundant area:

γs =
1
22δ · 4δ

2δ (π + 2δ)
=

2 arcsin (R/D)

π + 2 arcsin (R/D)
. (1)
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Figure 1. Illustration of the short scan and super short scan acquisition and the
corresponding sinograms. a) and b): short scan with an angular interval Λs =
[0, π+2δ]. c) and d): super short scan with an angular interval Λss = [0, π−
2ϑ]. e): potentially reduced angular range in a super short scan (2δ + 2ϑ) as
well as the angular range to acquire the area 1 (2λ− 2ϑ).

2) Dose Saving in Super Short Scan : A short scan acqui-
sition is used when the entire object is to be reconstructed.
However, the angular interval can be further reduced when
only an ROI is required to be irradiated and reconstructed.
Here we consider the off-center ROI shown in Fig. 1c. The
centered ROI is just a special case when p = 0. When using
collimation to get the truncated projections to reconstruct the
specific ROI, we will only obtain the curved band in the
sinogram (see Fig. 1d). However, the dashed curve band lies in
the redundant region. Thus, the short scan angular range can be
even further reduced and the acquisition can start at the point
where the line AC intersects the ROI sinogram boundary since
the scan segment below the intersect will be measured again
at the area A′B′C ′. We can apply an asymmetric collimation
with changeable distance to acquire the area 1, followed by

using an asymmetric collimation with fixed distance (shown
in Fig. 1d) to acquire the area 2.

Figure 1e shows that the angular interval for super short
scan is Λss = [0, π − 2ϑ], where ϑ can be determined by the
radius r and location p of the ROI:

ϑ = arcsin

(
p− r
D

)
. (2)

With increasing distance from the iso-center and decreasing
ROI radius, the angular interval decreases. Note that when the
ROI is located at the iso-center (p = 0) and the radius of the
ROI is equal to the object support (r = R), the interval above
extends to the short scan range Λs. The dose reduction can be
approximated by computing the ratio between the short scan
range π+ 2δ and the difference of short scan and super short
scan range 2 (δ + ϑ) plus half of the angular range to acquire
the area 1 (λ− ϑ) (see Fig. 1e):

γss =
2 arcsin

(
R
D

)
+ arcsin

(
p−r
D

)
+ arcsin

(
p+r
D

)
π + 2 arcsin

(
R
D

) . (3)

This gives the relationship between the radius r, location p
of the ROI and potential dose reduction in a super short scan.
For instance, for an off-centered ROI with radius r = 20 mm
and location p = 40 mm acquired from a C-arm CT system
with standard configuration D = 750 mm, arcsin (R/D) =
10◦, the potential dose reduction is γss = 13 % .

B. New Streaking Reduction Algorithm

We present an approach that provides superior results with
the minimal complete data acquired from a short scan or
super short scan. The approach involves three steps. First, an
initial volume is reconstructed using the ATRACT algorithm.
However, this reconstruction suffers from streaking-like cone-
beam artifacts in the slices away from mid-plane. Thus, we
forward project the initially reconstructed volume and use the
forward projections to fill the shielded areas in the original
measured data. By doing so, we obtain artificial short scan data
but at a lower radiation dose compared to an ordinary short
scan. The last step in this pipeline is the FDK or ATRACT
reconstruction with the standard Parker weights that will lead
to the final reconstructed image with improved image quality,
exhibiting substantially less streaking artifacts compared to the
initially reconstructed volume. The flowchart of the algorithm
is depicted in Fig. 2. Further details are elaborated in the
following sections.

1) Initial Reconstruction : Blocking the redundant rays or
acquiring ROI projections will result in truncated projection
data, which is not compatible with conventional reconstruction
algorithms. Here we apply a truncation robust algorithm
(ATRACT) to deal with the truncation problem. The idea be-
hind ATRACT is to adopt the FDK algorithm by decomposing
the 1D ramp filter into two successive filter steps so that the
filtering procedure is less sensitive to data truncation [5]. In
this work we use a 1D version of ATRACT , in which the
filtering step was adapted to a 1D Laplace filtering of the
pre-weighted data and a 1D convolution-based filtering with
a kernel ln|u| to get the filtered projection data [9]. It should
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Figure 2. Flowchart of the proposed cone-beam reconstruction algorithm.
First, an initial volume is reconstructed using the ATRACT algorithm. Then,
we forward project the initially reconstructed volume and use the forward
projections to fill the shielded areas in the original measured data. The last
step involves the standard FDK algorithm or the ATRACT method, depending
on complete projections or truncated ROI projections are processed.

be pointed out that the ATRACT algorithm yields accurate
reconstructions in terms of truncation correction. However, as
discussed before, streaking artifacts appear in off-center planes
degrading image quality. That is why we propose a second
reconstruction here, to compensate the streaking artifacts.

2) Forward projection: To perform the second reconstruc-
tion with improved image quality, it is necessary to complete
the measured projections (truncated) with the information from
the initial volume, so that a smooth weighting function (e.g,
Parker weights) rather than the binary weighting, can be ap-
plied in the reconstruction to reduce the streaking effects. This
requires the initial volume be forward projected in the original
projection domain with the same detector size. In practice,
the forward projection is only necessary to be performed on
the redundant areas where original projections are shielded
by collimation. These projections correspond to the triangle
area ABC in Fig. 1b for a short scan and the dashed band in
Fig. 1d for a super short scan.

3) Adaptive combination: The original dynamically-
collimated data and the forward projected data are combined
in the projection domain. Here an adjustment is needed to
handle the incorrect forward projection values. To do so, an
additional small overlapping region on the side of the original
projection is also forward projected. Values are compared to
the corresponding column of measured data in row-wise and a
constant bias is added to the corresponding row in the forward
projected data. Finally, the measured projections are filled by
the transformed forward-projected data and the final image is
reconstructed by the standard FDK algorithm or the ATRACT
method, depending on the complete projections or truncated
projections are processed.

C. Experimental Setup
To validate and evaluate the new method, two configurations

were considered on a clinical human head dataset (data cour-
tesy of St. Luke’s Episcopal Hospital, Houston, TX, USA).

The dataset was acquired on a C-arm CT system with 496
projections (1240×960 px) at the resolution of 0.308 mm / px.

In the first configuration, the short scan dataset was virtually
cropped to mimic the removal of redundant area. The removed
data correspond to the triangle area ABC in Fig. 1b. In con-
figuration 2, we assume an off-centered ROI is reconstructed
and the original short scan dataset was virtually collimated to
the super short scan area that corresponds to area 1 and 2 in
Fig. 1d. Note that the angular range in configuration 2 is 179◦,
which is much less than the standard short scan range of 200◦.

The virtually collimated projections of both configurations
were reconstructed onto a volume of 512 × 512 × 350 vox-
els with an isotropic size of 0.45 mm3. The standard FDK
reconstruction of the original short scan was used as the
reference in each case. The data from configuration 1 and
2 were reconstructed by the proposed algorithm.

To quantify the improved accuracy obtained by the proposed
algorithm, two quantitative metrics were used: the Root Mean
Square Error (RMSE) and the Structural Similarity Index
Measurement (SSIM) [10]. The SSIM measures the similarity
of two volumes fx and fRef and is calculated as follows:

SSIM(fx, fRef) =
(2µxµRef + c1)(2σx,Ref + c2)

(µ2
x + µ2

Ref + c1)(σ2
x + σ2

Ref + c2)
, (4)

where µx and µRef indicate the mean values of fx and fRef,
σ2

x and σ2
Ref indicate the variances of fx and fRef and σx,Ref

indicates their covariance. c1 and c2 are two constants to
stabilize the results in case the denominator is too small (in
our case, c1 = c2 = 0).

III. RESULTS

The reconstruction results of the clinical dataset with config-
uration 1 are presented in Fig. 3. As expected, slight streaking
artifacts are observed in the initial volume where ATRACT al-
gorithm is applied. These streaking artifacts are oriented along
a fixed direction associating with the truncated edge of the
sinogram. In contrast, we found that the new algorithm yields
almost identical image quality to the short scan FDK. The
quantitative analysis in Table I also confirms the improvement
of the proposed method: an RMSE of 28.3 HU is achieved
compared to a larger error in the initial reconstruction (RMSE
of 95.2 HU). It seems that the streaking artifacts do less impact
on the structural similarity: both reconstructions yield similar
SSIM results. Figure 4 shows two off-mid planes as well as
a mid-plane of the ROI reconstructions with a super short
scan. We can see that ATRACT (second column) is able to
obtain high image quality in terms of truncation correction.
No truncated-related bright ring or cupping artifacts are found
within the FOV. Quantitative analysis with a SSIM of 0.93 also
demonstrates this visual inspection. Note that reconstructing
severely truncated data is an under-determined problem and
the reconstructions will be biased by a constant. This explains
the larger values in RMSE. Again, the streaking effect appears
in slices that are away from the mid-plane. In contrast, no
significant difference within the FOV is found between the
proposed method and the reference, even in the off mid-planes.
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Reference Initial volume Final volume

Figure 3. Reconstruction results of the binary-weighted short scan data by
the proposed algorithm, in the gray scale window [-1000 HU, 1000HU]. Top
row: z = 21.6 mm; bottom row: z = -21.6 mm.

Reference Initial volume Final volume

Figure 4. ROI reconstruction results of the binary-weighted super short
scan data by the proposed algorithm, in the gray scale window [-1000 HU,
1000HU]. Top row: z = 26 mm; middle row: z = 0 mm; bottom row: z = -26
mm.

IV. DISCUSSION

The experimental results show that our newly proposed al-
gorithm yields improved image quality for the dose-minimized
short scan and super short scan data. The amount of dose
reduction in short scan depends on the fan-beam angle, with
up to 10 % for C-arm CT and up to 23 % for diagnostic CT.
In super short scan, dose saving additionally depends on the
position and radius of the ROIs. When the ROI in Fig. 1c is

Stage RMSE (HU) SSIM

Config 1 Initial volume 95.2 0.98
Final volume 28.3 0.99

Config 2 Initial volume 160 0.93
Final volume 155 0.94

Table I
SUMMARY OF QUANTITATIVE EVALUATION IN TWO EXPERIMENTAL

CONFIGURATIONS.

located at the right side of the patient, the dose saving potential
could also be kept by either shifting the scan trajectory to the
right side of the patient or laterally moving the table to left
direction so that the right ROI is repositioned in the left side.
For a standard C-arm CT system, the latter seems to be more
feasible than the former.

Future work involves to further reduce computational com-
plexity. It would be interesting to adapt the method proposed
in [11]: since both measured minimal complete data and
forward projected data are 2D entities, suggesting an approach
that calculates the missing data directly from the original
measured projections using 2D image processing steps, rather
than explicitly performing reconstruction and forward projec-
tion. The computational complexity to estimate the missing
data is considerably decreased, which will further deliver the
algorithm to practical use.
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Fast and Accurate Stratification of Tomographic
Scans for Motion Artifacts

Holly Ho1, Brian E. Nett1, and Jed D. Pack2

Abstract—In computed tomography there are several scenarios
in which motion that occurs during an axial scan will manifest as
artifacts in the full-scan (360◦ of projection data) reconstructed
image. These artifacts are due to inconsistent projection data
used in the reconstruction. The aim of this work is to introduce
a fast, robust algorithm which calculates a metric that accurately
approximates how prominent motion artifacts will be in a full-
scan reconstructed image from an axial scan in CT. The method
was validated using projection and image data from scans of a
dynamic phantom. There was a strong correlation demonstrated
between the intensity of motion artifacts in the image space
and the projection space motion metric (Pearson correlation
coefficient of 0.90 and a P-value of 8.8× 10−7).

I. INTRODUCTION

In diagnostic computed tomography (CT) there are clinical
scenarios where patient motion is not anticipated, but invol-
untary patient motion can lead to artifacts in the reconstructed
images. Examples of this include imaging of the abdomen
under breath-hold conditions; where involuntary respiratory
motion or peristaltic motion can lead to motion artifacts in
the reconstructed images. There are a variety of methods to
modify the image reconstruction algorithm in order to reduce
these motion artifacts. In this work we develop a metric to
identify cases where significant artifacts would be noticeable
if the standard non-gated full-scan filtered back-projection
reconstruction is used. The aim of this work was to enable
rapid stratification of scan data based on the likelihood of
image artifacts in a standard reconstruction. Therefore, we
have selected a projection based metric which does not require
image reconstruction in order to assess the likelihood of
motion artifacts.

The context of this work is diagnostic CT scanning under
breath-hold conditions. Thus, motion may occur during the
scan but it is not the expected norm. In comparison there are
other slowly rotating projection acquisitions, such as on C-
arm systems or on-board imaging devices on radiation therapy
systems, which acquire data during periods of known motion
such as during the respiratory cycle. In that context projection
based methods have been developed to estimate the respiratory
motion[1] or to determine the portion of the projection data
which is influenced by patient motion[2] so as to provide gated
reconstruction of the moving regions.

II. METHODS

The core of this algorithm is built on the theory that
motion artifacts in axial full-scans manifest due to inconsistent

1GE Healthcare, 3000 N. Grandview Blvd., Waukesha, WI USA
2GE Global Research Center, One Research Circle, Niskayuna, NY USA

projection data. In an axial full-scan, projections are acquired
at the same spatial location but at different times in the
scan. To approximate how prominent the motion artifact will
be in the reconstructed image, we assume that there will
be more structure in the difference between the first and
last projection than in the difference between neighboring
projections (e.g.the first and second projection). This algorithm
isolates the structures which have moved during the scan in
order to quantify the amount of motion that occurred during
the scan. The hypothesis is that by constructing a metric based
on the amount of object motion in the projection domain,
one may predict the likelihood of the scan data to generate
image artifacts upon reconstruction. In this section we provide
a thorough description of the algorithm.

Fig. 1. Schematic diagram of the algorithm for data domain motion
estimation, where the description of each step is given in the main text.
Parentheses denote an optional operation.
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A. Algorithm Description

The general flow for the algorithm is depicted in Figure 1.
In this implementation of the algorithm, we use five different
projections for processing: y1, y2, y3, yN , and y(N−1), where
yi refers to the index of the projection data corresponding to
the ith view, and N is the total number of views in one axial
rotation. This algorithm can be broken down into the steps
below:

Step 1 - Take the difference of adjacent views.
Step 2 - Apply a noise reduction filter.
Step 3 - Mask out reoccurring features.
Step 4 - Apply threshold.
Step 5 - Calculate mean.
Step 6 - Stratify.

The threshold level may be determined empirically by
studying a variety of clinical cases with different levels of
motion. In an ideal case where there is no projection noise
Step 2 may be removed.

We begin by explaining Step 1, where we take the difference
of adjacent views. In this implementation, we use the absolute
value of the element-by-element difference. For every five
projections of interest, we take the difference of each adjacent
pair of views. This results in four difference projections: y′1−2,
y′2−3, y′1−N , and y′N−(N−1), where

y′i−j = |yi − yj |

In the rest of the algorithm, we aim to isolate unique
structures that are present in y′1−N which indicate that motion
occurred during the scan. We use y′1−2 as a basis of compari-
son. The remaining difference projections are used for masking
out similar structures that are present in y′1−2 and y′1−N . These
structures will not be included in the calculation of the metric.
The masking process is described in Step 3.

Next, we apply a noise reduction filter. In order to reduce
noise in projections while still preserving structure. In this im-
plementation we choose to apply a Non-Local Means filter[3]
with a 5x5 search window. In order to calculate an appropriate
noise level to use for the Non-Local Means filter, we calculate
the standard deviation of the projection excluding air. To do
this, we first calculate the Gonzalez-Woods threshold[4] for
projections 1, 2, and N, resulting in GW1, GW2, and GWN .
The standard deviation, σi, is then calculated only on the pixels
whose values are greater than GWi. The resulting filtered
difference projections are yNR

1−2, yNR
2−3, yNR

1−N , and yNR
N−(N−1),

where NR denotes an image that has been filtered by a noise
reduction filter.

In Step 3, we aim to remove the reoccurring features that
are present in both y′1−2 and y′1−N . These structures show
up in each projection difference because the object is present
in each projection, but are essentially shifted slightly due
to the change in view angle. The table is an example of a
reoccurring structure (i.e. the edge of the table will be present
in multiple difference images even though it is not moving).
These structures will not be included in the calculation of the
motion estimation metric. In the case displayed in Figure 2, the

Fig. 2. Step-by-step results from a clinical case processed with the motion
estimation algorithm. Motion occurred during scanning in this particular case
and results in a high metric (522.93). Note that implanted hardware in the
spine was removed during Step 3 of the process. The corresponding full-scan
reconstruction is shown in Figure 3.

reoccurring structures are projections of implanted hardware
located in the patient’s spine. To remove these structures, we
create two masks using (y′2−3 and y′N−(N−1)), which will be
applied separately to (y′1−2 and y′1−N ).

First, we calculate an auto threshold based on the maxi-
mum value of y1. Then we apply the threshold to y′2−3 and
y′N−(N−1), resulting in a binary image. Each binary image
is then dilated to account for the change in view angle. The
resulting binary masks are mask2−3 and maskN−(N−1). To
apply the mask, we calculate an element-by-element product
of the filtered difference projection and the complement of the
mask:

ymasked
1−2 = yNR

1−2 ∗mask2−3

ymasked
1−N = yNR

1−N ∗maskN−(N−1)

Step 4 is the final step in isolating any structure of interest
in y′1−N that shows evidence of motion during the scan. In
this step, an auto threshold is calculated based on ymasked

1−2 . In
this implementation, we use the Gonzalez-Woods threshold[4].
This threshold is applied to both ymasked

1−2 and ymasked
1−N . Each

pixel that is below the threshold is set to 0, and every
pixel above the threshold maintains its value. The resulting
projections are yAT

1−2 and yAT
1−N , where AT denotes an image

that has been filtered by the auto threshold.
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Fig. 3. (Left) Full-scan reconstruction of a clinical chest scan. Prominent
motion artifacts in the liver and heart resulting from heart motion during the
acquisition. The motion metric for this case is 522.93 (Figure 2). (Right)
Improved reconstruction with motion artifacts noticeably reduced. Note that
this patient has implanted hardware in his/her spine which is present in other
slices of the volume.

In Step 5 we calculate the motion metric first by mea-
suring the mean of yAT

1−2 and yAT
1−N , denoted as mean1−2

and mean1−N , respectively. Our final metric of motion is
the difference between the resulting mean of each processed
projection:

metric = mean1−2 −mean1−N

Other motion metrics can also be applied such as the ratio of
mean1−N and mean1−2, or some other function of these two
values.

A final optional step is to stratify the acquired scan data
into a given category based on the level of motion which
occurred during the scan. For instance the most basic stratifi-
cation would be no/minimal motion cases and motion artifact
corrupted cases. The stratification may be performed by com-
paring the motion metric for each case to the thresholds for
the given categories, which are based on applying the method
to many cases.

Figure 2 shows the flow of the algorithm with step-by-step
images from a clinical case of a chest scan. Figure 3 shows the
full-scan reconstructed image of the same clinical case. In this
specific scan, motion artifacts are prominent in the heart and
liver due to heart motion. Note that this patient had implanted
hardware in his/her spine, and one can appreciate the need for
the additional steps in the algorithm to remove the contribution
of these regions from the motion metric. Additionally, Figure
4 shows the full-scan reconstructed images of two cases: (1)
a chest scan with no motion artifacts and (2) a pelvis scan
of a patient with implanted hardware in his/her spine with
no motion. Both of these cases result in low (i.e. 2.81 and
6.79, respectively) projection motion metrics. Note that the
input data has been pre-processed, which includes a projection
scaling.

III. RESULTS

Projection scan data was acquired using a prototype CT
system at 120 kVp, 400 mA, and a rotation time of 0.35 s. To
simulate motion, we used the Quantitative Standard Pulsating

Fig. 4. (Left) Full-scan reconstructed image of a clinical chest scan. No
motion artifacts in the liver and heart. The projection motion metric for this
case is very low (i.e. 2.81). (Right) Full-scan reconstructed image of a clinical
pelvis scan. Note that this patient has hardware implanted in his/her spine.
There are no motion artifacts present in this reconstructed image, and the
projection motion metric is also very low (i.e. 6.79).

Fig. 5. (Left) Axial slice of Quantitative Standard Pulsating Phantom (FYC
Fuyo Corporation), each cylinder labeled with its CT number. (Right) Axial
slice showing where the ROI was placed to measure σmotion.

Fig. 6. Full-scan reconstruction of Kyoto Dynamic Phantom. (1) Static
phantom. (2) Phantom moving at 20 bpm with 2 mm amplitude. (3) Moving
at 20 bpm with 5 mm amplitude. (4) Moving at 20 bpm with 8 mm
amplitude. The greater the amplitude of movement, the more prominent the
motion artifact. Labels in the bottom left corner of each image correspond to
annotations in Figure 7.
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Phantom (FYC Fuyo Corporation). The phantom is a cylinder
made of polymer that contains nine cylinders that are filled
with different materials, of various attenuations. The layout of
the phantom is shown in Figure 5. The phantom was moved
up and down (AP direction) with a repeatable sinusoidal
profile. The motion profile was specified by the frequency
(measured in beats per minute, bpm) and the amplitude (mm).
We acquired data of the phantom for four motion profiles:

(1) static (0 bpm) [5 realizations]
(2) 20 bpm, amplitude 2 mm [5 realizations]
(3) 20 bpm, amplitude 5 mm [5 realizations]
(4) 20 bpm, amplitude 8 mm [4 realizations]

Multiple realizations of each profile were acquired as the
central view angle in each acquisition varied. The images were
reconstructed using the a standard full-scan reconstruction
(Figure 6) and analysis was performed in the central slice. The
reconstruction was performed off-line and is not representative
of any given production CT. The images were reconstructed
at the same relative phase in the motion cycle, 75% of
the cycle. As the amplitude of the motion increased, more
motion artifacts were observed in the reconstructed images,
as exhibited in Figure 6.

To evaluate the motion estimation algorithm, we are in-
terested in comparing the motion metric to the amount of
motion artifact present in the full-scan reconstructed image. To
measure motion artifact in image space we first measure the
standard deviation of an ROI in the full-scan reconstruction
of the static phantom, σstatic. We then use σstatic as a
baseline for the standard deviation due to quantum noise in the
reconstructed image. To calculate σmotion, we subtract σstatic
from the measured standard deviation, σmeas, of an image:

σmotion = σmeas − σstatic
In Figure 7, we compare σmotion and the calculated motion

metric for each case. The data shown in Figure 7 demonstrates
a high degree of correlation, where the Pearson correlation
coefficient is 0.90 with a P-value of 8.8 × 10−7. Thus, there
is a strong correlation between the motion measured in image
space and the calculated motion metric in projection space. For
cases where no motion artifacts are present in image space,
the corresponding motion metric is very low (i.e. less than
20). For cases where strong motion artifacts were present in
image space, the corresponding motion metric is very high (i.e.
greater than 100). The annotations on the graph in Figure 7
correspond to the labels in the bottom left corner of each image
in Figure 6. The results show that it is possible to completely
separate data sets corrupted by motion artifacts from the non-
motion cases in this study using a threshold of 50. Further
study on clinical data is planned to validate the utility of the
metric for stratification of motion in clinical exams.

IV. CONCLUSION

In this work we developed a fast and robust method for
estimating motion that occurs during a full-scan axial CT
acquisition. Multiple image volumes, with and without motion,
were acquired and tested with the motion estimation algorithm.

Fig. 7. Results comparing standard deviation due to motion (σmotion) and
calculated motion metric using the motion estimation algorithm. There is a
strong correlation demonstrated between the intensity of motion artifacts in
the image space and the projection space motion metric (Pearson correlation
coefficient of 0.90 and a P-value of 8.8×10−7). When stronger artifacts are
exhibited in image space the corresponding motion metric will be high. Points
on the plot with annotations correspond to reconstructed images in Figure 6.

The resulting motion metric is strongly correlated with the in-
tensity of motion artifacts present in full-scan reconstructions.
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Constrained TV-minimization Image Reconstruction
for Dynamic Micro-CT Data with Reduced Angular
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Abstract—Micro-CT is a useful tool for preclinical research.
Dynamic micro-CT with gating has been used for in-vivo imaging
of small animals. Meanwhile, imaging time and radiation dose
can be lowered by reducing the angular sampling in the dynamic
scan. In this work, we investigated the applicability of constrained
TV-minimization reconstruction for dynamic sparse-view data
from micro-CT. Data from a single synchronized phase of an in-
vivo pulmonary-gated scan were formed into a short-scan from
which sparse-view data subsets were extracted. Results suggest
that the constrained TV-minimization reconstruction, together
with the ASD-POCS algorithm, is robust to the reduction of
angular sampling. Images show improved contrast for features
of interests under full-view data and sustaining the high contrast
under sparse-view data.

I. INTRODUCTION

M ICRO-computed tomography (micro-CT) is useful for
in-vivo imaging of small animals [1], [2]. Its advan-

tages include high resolution and high efficiency of radiation
detection. However, imaging time, motion blurring, and photon
statistics are three particularly challenging factors for micro-
CT in-vivo scans. Cardiac and pulmonary gating have been
proposed to reduce motion blurring by rebinning data from
a single synchronized phase together [3], [4]. Meanwhile,
reducing the number of angular views reduces imaging time
and radiation dose, while maintaining the photon statistics for
each projection view.

Total-variation (TV)-minimization based reconstruction has
been proposed [5], [6] for sparse-view reconstruction and
investigated for micro-CT specimen imaging [7]. In this
work, we focus on applying constrained TV-minimization
reconstruction program to dynamic in-vivo data with reduced
number of angular views. The adaptive-steepest-descent-
projection-onto-convex-sets (ASD-POCS) algorithm is used to
solve the program. The evaluation tasks are mainly visually
based, involving the delineation of the pulmonary region and
visualization of the blood vessels.

B. Chen, Z. Zhang, A. Davis, X. Han, and E. Sidky are with the Department
of Radiology, The University of Chicago, Chicago, IL 60637 USA.

X. Liu is with Bruker microCT, Kartuizersweg 3B, B-2550 Kontich,
Belgium.
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II. MATERIALS AND METHODS

A. Imaging System and Data Collection

A mouse was scanned in-vivo using the SkyScan1076
micro-CT system from Bruker microCT. The detector was
placed 165 mm away from the X-ray source, and the object
125 mm away. The detector has 4000 × 2096 pixels, binned
by a factor of 4 into 1000 × 524 during acquisition to keep
exposure time short for dynamic scans, yielding pixel size of
45×45µm2. The tube voltage and current were set to 59 kVp
and 167µA. The step-and-shoot rotation mode was used.

Dynamic data were acquired via respiratory gating. Projec-
tions from a single synchronized phase were extracted and
rebinned to form a short-scan. As a result, there were in total
245 views with a 0.8-degree step size, covering 195 degree
angular range. The exposure time for each of the views was
158 ms.

We focus on the central row of the detector, which forms a
sinogram of 1000 bins × 245 views, referred to as the ”full-
view” data. Further, subsets with reduced number of views
were extracted and referred to as the ”sparse-view” data. We
use one half (123), one quarter (62), and one eighth (31) views,
all uniformly distributed over the angular range, from the full-
view data, in an effort to reduce imaging time and radiation
dose, and reconstruct images from these sparse-view data.

B. Reconstruction Methods

A linear, discrete-to-discrete (D-D) model for the CT imag-
ing process is considered here as

g0 = Hf, (1)

where g0 denotes the model-data vector, f the image vector,
and H the projection matrix.

We design a constrained TV-minimization reconstruction
program, explicitly specifying a set of solutions (i.e., recon-
structed images), as below

f∗ = argmin||f||TV s.t. |Hf− g| ≤ ε and fj ≥ 0, (2)

where ε is a positive parameter accounting for the inconsis-
tencies between the model-data g0 and measured data g. Note
that any physical factors that are not modeled into the system
matrix H, including noise, contribute to the inconsistencies.

The ASD-POCS algorithm [6] is used to solve the recon-
struction program in Eqn. (2). It is the vehicle that takes
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the image into the designed solution set specified by the
reconstruction program. The FBP algorithm, with Parker’s
weighting, is also used to reconstruct images from the data. It
serves here as a reference for benchmarking purpose. Central
slice images are reconstructed on 740 × 590 arrays, with
34× 34µm2 pixel size.

For sparse-view data, linear interpolation can be used to
increase the data quantity in the angular direction. For any
detector bin, a ”view” is created by linearly interpolating the
data from two adjacent views, doubling the number of views
in the data set. Such method is tried on the one-half data in
the sparse-view study and the reconsutrction results using both
ASD-POCS and FBP algorithms are shown with data before
and after the angular interpolation.

III. RESULTS

We present images reconstructed from full-view data,
sparse-view data, and sparse-view data after angular inter-
polation, using ASD-POCS and FBP algorithms, referred to
as ASD-POCS images and FBP images, respectively. The
reference image refers to the full-view (245) FBP image. The
evaluation is done via visual inspection of the image quality,
especially in areas of the lung and blood vessels. Figures show
full-size images of the pulmonary region along with zoomed-
in region-of-interest (ROI) images indicated by the white box
in Fig. 1a for the blood vessels. For studies A and B below,
FBP and ASD-POCS images are shown side-by-side for image
quality comparison under the same data condition.

A. Full-view Study

Figs. 1a and 1b show that images reconstructed from full-
view data are comparable between FBP and ASD-POCS. The
pulmonary region is easily outlined in both images. However,
the full-view FBP image displays a slightly higher noise level,
especially in the pulmonary region, and some low-level streak
artifacts in the peripheral skin tissues. In Figs. 1c and 1d,
both ROI images show blood vessels clearly, though the ASD-
POCS image, on the right, exhibits higher contrast due to the
suppressed background noise.

B. Sparse-view Study

Sparse-view data reconstruction results are divided into
three groups in Figs. 2, 4 and 5. The number of views
decreases from one-half, to one-quarter, and to one-eighth the
original number of views. For each group, full-size and ROI
images are presented and placed in the same way as in the
full-view study. For the first group using the one-half data, an
additional figure showing full-size and ROI images from data
after angular interpolation is also shown to illustrate the effect
of the angular interpolation method.

1) One Half, 123 Views: In Fig. 2, the top row shows
half-view FBP and ASD-POCS images. Compared to the
corresponding full-view images, the streak artifacts and noise
level are elevated in the half-view FBP image (Fig. 2a). The
delineation of the pulmonary region can be compromised
at the lung-heart boundary, where the noise makes it less

(a) (b)

(c) (d)

Fig. 1: Full-view data reconstruction images using FBP ((a) &
(c)) and ASD-POCS ((b) & (d)). Both full size (top row) and
ROI (bottom row) images are shown in a narrow displaying
window of [0.02, 0.20] mm−1.

sharp. The ASD-POCS image (Fig. 2b) in general does not
degrade much. The sharp edge of the pulmonary region and
the contrast remain, as the number of views is reduced to half.
On the bottom row of ROI images, streak artifacts and elevated
noise level obscure the blood vessels in the FBP image ROI
(Fig. 2c), especially the feature at the top right corner. The
ASD-POCS image (Fig. 2d) displays clearly the blood vessels,
and is very close to the full-view one (Fig. 1d).

In Fig. 3, angular interpolation seems to help reduce the
streak artifacts in the FBP image (Fig. 3a) to some degree,
such as, in the soft tissue region below the vertebrae, when
compared to Fig. 2a. However, the noise level is not alleviated
at all. Zooming in to the ROI image in Fig. 3c, we can make
the same observation that the streak artifacts are less pro-
nounced, but the noise level are as high. Moreover, tangential
resolution degrades greatly along the radial direction, blurring
the vasucular features of interest, especially their boundaries.
The ASD-POCS image (Fig. 3b) suffers the same tangential
resolution loss, while demonstrating no clear improvement
over the original half-view ASD-POCS image (Fig. 2b). For
the ASD-POCS ROI (Fig. 3d), a noticeably elevated noise
level, compared to Fig. 2d, is observed due to the extra
inconsistencies introduced in the interpolated views.

2) One Quarter, 62 Views: When the number of views
is reduced to one-quarter, the FBP image (Fig. 4a) displays
conspicuous streak artifacts and high noise level. The de-
lineation of the pulmonary region is subject to likely errors
from the noise, especially at the lung-heart boundary. On the
contrary, the ASD-POCS image (Fig. 4b) shows sharp outline
of the pulmonary region. While there are streaks present, the
overall contrast remains high and comparable to that in Fig. 1b.
Zooming in to the FBP ROI image in Figs. 4c, we find that
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(a) (b)

(c) (d)

Fig. 2: Half-view data reconstruction images using FBP ((a) &
(c)) and ASD-POCS ((b) & (d)). Both full-size (top row) and
ROI (bottom row) images are shown in a narrow displaying
window of [0.02, 0.20] mm−1.

(a) (b)

(c) (d)

Fig. 3: Reconstruction images from half-view data after angu-
lar interpolation. FBP ((a) & (c)) and ASD-POCS ((b) & (d))
algorithms are used. Both full-size (top row) and ROI (bottom
row) images are shown in a narrow displaying window of
[0.02, 0.20] mm−1.

high-level noise severely obscures the blood vessels. As a
result, the ROI image exhibits degraded image quality, with
only the biggest feature barely discernible. Nevertheless, the
ASD-POCS ROI (Fig. 4d) is less impacted by the reduction
in angular sampling and maintains high contrast of the blood
vessel features.

(a) (b)

(c) (d)

Fig. 4: Quarter-view data reconstruction images using FBP
((a) & (c)) and ASD-POCS ((b) & (d)). Both full-size (top
row) and ROI (bottom row) images are shown in a narrow
displaying window of [0.02, 0.20] mm−1.

3) One Eighth, 31 Views: When the number of views is
further reduced to one-eighth, the FBP image (Fig. 5a) is
filled with streak artifacts and high noise level. The lung-heart
boundary is blurred and smeared out by the noise, making the
delineation of the pulmonary region very difficult. On the other
side, the ASD-POCS image (Fig. 5b) still clearly shows the
pulmonary region with relatively sharp boundary and stable
contrast. For the ROI images on the bottom row, it is clear
that the blood vessels can not be distinguished in the noise-
filled FBP ROI image (Fig. 5c), while the ASD-POCS one
(Fig. 5d), although suffering patchy artifacts, preserves almost
all the features that are present in the full-view ROI (Fig. 1d).

C. Intermediate Iteration Results of ASD-POCS

A necessary optimality condition for the reconstruction
program in Eqn. (2) has been derived as cα = −1 [6]. For
practical applications, it has been suggested that iterations after
cα reaches below −0.5 do not change the reconstructed images
significantly. [6], [7] In this work of real data studies, for the
ASD-POCS images presented above, cα’s have all reached
−0.9 or lower. Meanwhile, we also study the evolution of
the ASD-POCS image over iterations. For the full-view data,
we show images at iterations 10, 20, 30, 40, 120, and 300 in
Fig. 6. These images at intermediate iterations suggest that, at
early iterations, such as the one in Fig. 6a, most blood vessls
are reconstructed and the pulmonary outline is clearly defined.
Further reduction of artifacts and increase of edge sharpness
may require more iterations.

IV. DISCUSSION

In this work, we have investigated the applicability of
constrained TV-minimization reconstruction for sparse-view
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(a) (b)

(c) (d)

Fig. 5: One-eighth-view data reconstruction images using FBP
((a) & (c)) and ASD-POCS ((b) & (d)). Both full-size (top
row) and ROI (bottom row) images are shown in a narrow
displaying window of [0.02, 0.20] mm−1.

(a) (b)

(c) (d)

(e) (f)

Fig. 6: Full-view data reconstruction images using ASD-
POCS, at iterations (a) 10, (b) 20, (c) 30, (d) 40, (e) 120,
and (f) 300.

data from micro-CT dynamic scans. As simulation studies
and real data specimen studies have been reported on the
ASD-POCS algorithm with micro-CT system, we focus on
applying the algorithm to dynamic scans for live animals,

and reducing the radiation dose and total scanning time by
using reduced number of views. The challenges here exist
in the reduced angular sampling and the high noise level
from the low radiation dose used. The results suggest that the
ASD-POCS algorithm is overall insensitive to the reduction of
angular sampling studied here. Under the low dose condition,
the ASD-POCS images demonstrated improved contrast for
features of interest, such as the pulmonary blood vessels, under
full-view data, and sustained the high contrast under sparse-
view data.

The angular interpolation showed some effectiveness in
reducing the streak artifacts in both FBP and ASD-POCS
images from sparse-view data. However, the reduction was
trivial compared to the noise level and came at a cost of
resolution degradation in the tangential direction, especially
for the FBP images. As for the ASD-POCS images, angular
interpolation introduced extra inconsistencies in the linear
model in Eqn. (1), resulting in elevated noise level, as well
as resolution loss. It is further suggested that ASD-POCS
images at early iterations appear useful in terms of defining
the pulmonary outline and visualizing the main blood vessels.

We stress that the utility of the reconstruction method is
very much related to the task. It is worth pointing out that,
if our focus is drawn to the vey high contrast bone structures
and the visualization of them, the sparse-view FBP images
(Figs. 2a, 4a, and 5a), although plagued by streak artifacts and
elevated noise level, display the bones with better resolution
and higher fidelity to those in the reference image than
their ASD-POCS conterparts. However, in this work under
investigation, the task is focused on the pulmonary region
outlines and the blood vessels, whose visualization can be
compromised by the high noise level and streak artifacts.
It is under this evaluation ground that the constrained TV-
minimization program together with the ASD-POCS algorithm
renders robust reconstruction for sparse-view dynamic data.
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A modified 4D ROOSTER method using the
Chambolle-Pock algorithm

Cyril Mory1 and Laurent Jacques2

Abstract—The 4D RecOnstructiOn using Spatial and TEmpo-
ral Regularization method is a recent 4D cone beam computed
tomography algorithm. 4D ROOSTER has not been rigorously
proved to converge. This paper aims to reformulate it using
the Chambolle & Pock primal-dual optimization scheme. The
convergence of this reformulated 4D ROOSTER is therefore
guaranteed.

I. INTRODUCTION

Four dimensional cone beam computed tomography (4D
CBCT) of the free breathing thorax is important for image-
guided radiation therapy (IGRT). Mainly two families of meth-
ods have been proposed to handle the problem: respiratory
motion compensation, in which the motion of organs during
breathing is estimated and used to deform the volume during
reconstruction, and respiration-correlated reconstruction, in
which several volumes are computed, each one from a subset
of the projections that has been acquired during the correct
respiratory phase. Advances in compressed sensing have been
used to improve respiration-correlated reconstruction by en-
forcing spatial regularity constraints [1]–[4], but only a few
recent methods exploit the strong correlation between succes-
sive respiratory phases [5]–[8]. 4D ROOSTER [8], which was
recently proposed for 4D cardiac CBCT, is one such method.
However, it came without a rigorous proof of convergence.
In this paper, we propose a reformulation of 4D ROOSTER
using the Chambolle & Pock primal-dual optimization scheme
[9]. The convergence of this reformulated 4D ROOSTER is
therefore guaranteed.

II. THE ORIGINAL 4D ROOSTER METHOD

This algorithm assumes that a rough segmentation of the
patient’s heart is available, and that movement is expected to
occur only inside this segmented region. The method consists
in iteratively enforcing five different constraints in an alternat-
ing manner. It starts by minimizing a quadratic data-attachment
term

∑
α
‖RαSαx− pα‖22, with α the projection angle, x a 4D

sequence of volumes, Rα the forward projection operator at
angle α, Sα a linear interpolator, and pα the measured pro-
jection at angle α. This data-attachment term is minimized by
conjugate gradient. Then the following regularization steps are
applied sequentially: positivity enforcement, averaging along

1iMagX project, ICTEAM Institute, Université catholique de Louvain,
Louvain-la-Neuve, Belgium and Université de Lyon, CREATIS ; CNRS
UMR5220 ; Inserm U1044 ; INSA-Lyon ; Université Lyon 1 ; Centre Léon
Bérard, France

2ISP GROUP, ICTEAM/ELEN, Université catholique de Louvain, Louvain-
la-Neuve, Belgium

time outside the heart region, spatial total-variation denoising,
and temporal total-variation denoising. This constitutes one
iteration of the main loop, the output of which is fed back
to the conjugate gradient minimizer for the next iteration.
This algorithm offers no convergence guarantees. In [10], [11],
using the theory of non-expansive mappings, it is only proved
that if the main iteration has at least one fixed point, the
algorithm converges to one of them. However, we show in
this paper that each step of this method can be interpreted as
a proximal operator [8], thus little effort is required to make it
fit into the Chambolle & Pock framework. We remind that for
f : RN → R a closed convex function, the proximal operator
of f is defined as proxf (v) = argmin

x∈RN
1
2‖x− v‖

2
2 + f(x).

III. CHAMBOLLE & POCK 4D ROOSTER

Setting R =

 Rα1Sα1

...
RαmSαm

 and p =

 pα1

...
pαm

, with m

the number of projections, the data-attachment term becomes
a single L2 norm

∑
α
‖RαSαx− pα‖22 = ‖Rx− p‖22. The 4D

ROOSTER optimization problem can then be expressed as the
search for

argmin
x∈RN

1

2
‖Rx− p‖22 + λ2‖x‖TVspace

+ λ3‖x‖TVtime + iRN+(x) + iROI(x)

(1)

with x the 3D+t sequence of volumes, with in total N vox-
els, p the set of measured projections, with in total P pixels,
R : RN → RP the forward projection operator, ‖.‖TVspace
the spatial total-variation norm, ‖.‖TVtime the temporal total-
variation norm, RN+ the set of sequences of volumes in which
all voxels have non-negative values, ROI the set of sequences
of volumes in which all voxels outside the heart have equal
values, iRN+(x) and iROI(x) their respective convex indicator
functions, and λ2, λ3 > 0 two parameters weighing the relative
importance of the terms. We adopt the same formalism as in
[12], and therefore use the following notations:

F1 : RP → R, t→ 1

2
‖t− p‖22

F2 : RN → R, t→ λ2‖t‖TVspace
F3 : RN → R, t→ λ3‖t‖TVtime
H : RN → R ∪ {+∞}, t→ iRN+(t) + iROI(t)

Because the cost function has more than two terms, we
have to reformulate the problem into a search in R3N by
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defining x′ =

 x1
x2
x3

, with x1, x2 and x3 ∈ RN , and∏
1,i

= {x′ ∈ R3N | x1 = xi} for i = 2, 3. The 4D ROOSTER

optimization problem becomes

argmin
x∈R3N

F1(Rx1) + F2(x2) + F3(x3)

+ iRN+(x1) + iROI(x1) + i∏
1,2

(x′) + i∏
1,3

(x′)
(2)

We define the total dimension W = P + 2N , the convex
functions F and G and the linear operator K:

F : RW → R, s =

 s1
s2
s3

→ ∑
j=1..3

Fj(sj)

with s1 ∈ RP , s2 ∈ RN , s3 ∈ RN

K : R3N → RW ,K =

 R 0 0
0 IN 0
0 0 IN


G : R3N → R, x′ → i∏

1,2

(x′) + i∏
1,3

(x′) +H(x1)

With these new notations, we can write the cost function
as a sum of two functions argmin

x∈R3N

F (Kx′) + G(x′) on

which the Chambolle-Pock algorithm applies. In compact
form, the Chambolle-Pock algorithm is as follows: let v′(0) ∈
RW , x′(0) ∈ R3N , y′(0) ∈ R3N , the update step is

v′(k+1) = proxγF∗

(
v′(k) + γKy′(k)

)
x′(k+1) = proxµG

(
x′(k) − µK∗v′(k+1)

)
y′(k+1) = 2x′(k+1) − x′(k)

If we expand this for our problem and simplify it since
x1 = x2 = x3 and y1 = y2 = y3, we obtain:

v
(k+1)
1 = proxγF∗

1

(
v
(k)
1 + γRy

(k)
1

)
→ Data fidelity

v
(k+1)
2 = proxγF∗

2

(
v
(k)
2 + γy

(k)
2

)
→ TV in space

v
(k+1)
3 = proxγF∗

3

(
v
(k)
3 + γy

(k)
3

)
→ TV in time

x(k+1) = proxµ
3H

(
3x

(k)
1 − µ

(
R∗v

(k+1)
1

+v
(k+1)
2 + v

(k+1)
3

))
→ Positivity and ROI

y(k+1) = 2x(k+1) − x(k) → Update step

Four new operators appear in this formulation.
R∗ : RP → RN is the back projection operator. To express
the other ones, we use the relation between the proximal
operator of a function and the proximal operator of its adjoint:

proxγF∗ (x) = x− γ prox 1
γ F

(
1

γ
x

)
Therefore

proxγF∗
1
(x) = x− γ

(
x+ p

γ + 1

)
=
x− γp
γ + 1

The proximal operator for the spatial and temporal TV
norms can be computed iteratively using the Chambolle algo-
rithm [13], simply by using either the spatial or the temporal
gradient and divergence operators

prox 1
γ TV

(x) = x− 1
γ div p,where p = lim

n→+∞
p(n)

p(0) = 0 and for every voxel i,

p
(n+1)
i =

pni +h(∇(div p
(n)−γx))

i

1+h(∇(div p(n)−γx))
i

,with h > 0

And the proximal operator of γF ∗2 (and similarly γF ∗3 ) can
be obtained from the same relationship as previously

proxγF∗
2

(
v
(k)
2 + γy

(k)
2

)
= v

(k)
2 + γy

(k)
2 − γ prox 1

γ F2

(
1

γ

(
v
(k)
2 + γy

(k)
2

))
= v

(k)
2 + γ

(
y
(k)
2 − prox 1

γ F2

(
1

γ
v
(k)
2 + y

(k)
2

))
With this new formulation, the modified 4D ROOSTER is

guaranteed to converge. The theory of proximal algorithms
also helps find the suitable parameters based on the norm of R,
while they can only be determined empirically in the original
method.

IV. PERSPECTIVES

4D ROOSTER can be applied to respiration-correlated 4D
CBCT in order to reduce the level of streak artifacts in the re-
constructions. Preliminary results are provided in Figure 1 and
2. They have been obtained using the original 4D ROOSTER
method, and are compared with a standard ECG-gated FDK
reconstruction. The modified 4D ROOSTER method presented
in this paper will be implemented in the near future using the
RTK framework [14].
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Regularised GMRES-type Methods for
X-Ray Computed Tomography

Sophia B. Coban and William R.B. Lionheart

Abstract—Slowly converging iterative methods such as
Landweber or ART, have long been preferred for reconstructing
a tomographic image from a set of CT data. In the recent years, a
fast-converging method named CGLS has received attention for
reconstructing tomographic data. However, there is a large class
of methods that give more reliable solutions, when compared
to CGLS. In this paper, we are going to consider the merits
of the GMRES-type methods when applied to the CT problem,
introduce various strategies, and compare the results with CGLS.

In computed tomography, we deal with an over-determined

system of linear equations of the form

Ax = b, (1)

where A ∈ R
m×n is a large and sparse geometry matrix,

b ∈ R
m×1 is the logarithm of the ratio of initial and final

intensities, and x ∈ R
n×1 is the linear attenuation coefficient

in voxels. For computational efficiency and mathematical

flexibility, iterative methods are preferred for solving problems

of this type. Additionally, since the CT problem is very large,

it cannot be solved with a direct method because that would

require more matrices of the same size to be stored. This em-

phasises the need for iterative methods. In the CT community,

when iterative reconstruction methods are discussed, one is

accustomed to think of slowly converging algebraic iterative

methods such as Landweber or ART. These methods have been

around for a long time and are widely used because the user

has the advantage of stopping the algorithm before the data

is over-fit, even though the problem is mathematically not yet

minimized. However, it is understood in the recent years that

by reconstructing CT data with a fast-converging method, we

also avoid over-fitting the data and are able to obtain a better

solution. So in theory, to obtain an exact solution with these

complex, fast-converging methods, we would have memory

requirements that grow with the number of iterations but in

practice, we require only a fraction of this number so our

memory requirements stay low. These are just a few reasons

why there has been a growing interest in fast-converging

methods, with the most popular one being the Conjugate

Gradient method for Least Squares (CGLS). This method is

mathematically equivalent to applying the original Conjugate

Gradient to the normal equation, i.e.

ATAx = AT b. (2)

School of Mathematics, The University of Manchester, Manchester, M13
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The performance of the CG method depends on the fact that

the geometry matrix is symmetric, which automatically works

well with (2) since the product of any matrix with its transpose

will always be symmetric. However, it is not always ideal to

calculate the exact transpose in CT problems, and it is much

more efficient to implement an inexact transpose (also known

as an unmatched back projection): A certain ̂AT that is close,

but not equal to AT . Of course this means that the product

of ̂ATA is no longer a symmetric matrix, which causes some

issues on the convergence and computational inefficiency with

the CGLS method. This is an important point (to which we

return to later on in the paper), and our main motivation for

wanting to adapt alternative iterative methods in the same class

as a well-established problem.

CGLS is a member of a large class of methods named the

Krylov subspace (KS-)methods [8]. Those belonging to this

class converge very quickly, which gives us the possibility of

applying them directly to the Tikhonov system,

(ATA+ λ2LTL)x = AT b. (3)

For the readers’ convenience, we now give the definition of

a Krylov subspace: An order k Krylov subspace, Kk(A, b),
is the linear subspace spanned by the image of b under the

linear transformation matrix Ap, p = 0, 1, . . . , k − 1 (where

A0 = In),

Kk(A, b) = span{b, Ab,A2b, . . . , Ak−1b}. (4)

KS-methods are derived from (4) and are popularly used for

their convergence properties, robustness and efficiency. These

methods are particularly preferred for when A is large and

sparse since the product of Ab is a vector, and A2b = A(Ab)
is another matrix-vector operation1. This avoids filling in the

zero elements in the matrix and preserves the sparsity of A.

Also, as k → ∞, Akb → A−1b, thus avoiding the inversion of

a large and sparse matrix. Krylov subspace methods are also

row (or column) action methods. This is important because

in CT, the geometry matrix A is often too big to store, and

the matrix-vector operations are required to be performed with

one row (or column) of A at a time. So KS-methods are easily

(and efficiently) adaptable for the CT problem.

Another popular method from the KS-methods class is

GMRES. In the next section, we highlight the advantages

and disadvantages of this method but we first give a quick

introduction to GMRES and state the algorithm. We should

1Note here that this definition is valid for square matrices. For non-square
matrices, we deal with forward and back projection, rather than the powers
of matrices.
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note that a more detailed derivation of this method is given in

[9], [5] as well as an extensive literature review. Here, we will

mention only some of these references and briefly explain the

GMRES variations.

GMRES-TYPE METHODS

The Generalised Minimum Residual (GMRES), is a KS-

method that approximates a solution to (1) by evaluating

xk = x0 + Vky. (5)

Here, Vk ∈ R
k×k is the orthonormal columns of basis for

Kk(A, r0), and y ∈ R
k×1 is the solution to (what we refer

to as) an inner problem, where ‖rk‖2 is minimized over

the Krylov subspace, Kk(A, r0). The matrix Vk is obtained

during what is called an Arnoldi process, which also returns

a rectangular upper Hessenberg matrix, Hk ∈ R
(k+1)×k. This

matrix mimics the characteristics of the coefficient matrix A
and thus, it is used to obtain a solution to the inner problem,

y, that minimizes the residual over Kk(A, r0).
GMRES was first introduced by Saad and Schultz in 1986

[9], for solving nonsymmetric square matrices. Its convergence

properties were studied by van der Horst, in 1993 [11], and its

behaviour for singular and nearly singular matrices by Brown

and Walker, in 1994 [1]. In the following years, there has been

a great interest in the theory and applications of GMRES-type2

methods: Complementing Brown and Walker’s work, Calvetti

proposed a GMRES-type method for singular matrices, called

Range Restricted GMRES (RRGMRES) [2]. The idea, with

which we experiment, was to shift Kk(A, r0) by the coefficient

matrix A prior to the Arnoldi process. The GMRES algorithm

is given below:

ALGORITHM 1: GMRES
1. Start: Choose x0. Let r0 = b−Ax0, β = ‖r0‖2 and

V1 = r0/β.

2. Arnoldi Process:

for j = 1, 2, . . . until convergence do
h(i,j) = V T

i AVj , i = 1, 2, . . . , j,

ω = AVj −
∑j

i=1 h(i,j)Vi,

h(j+1,j = ‖ω‖2,

Vj+1 = ω/h(j+1,j).

end for
3. Solve: ‖βe1 − Hk+1,ky‖2 for y, where e1 =
[1, 0, . . . , 0]T .

4. Form the approximated solution: xk = x0 + Vky.

Step 3 can be done with the help of QR factorization

coupled with Givens rotation. For the RRGMRES algorithm,

we only have to replace V1 = r0/‖r0‖2 by V1 = Ar0/‖Ar0‖2
in Step 1.

GMRES is popularly used as a deblurring technique and

often compared with other iterative methods [3]. It is also

used as part of new hybrid methods [4] or coupled with

preconditioners [13]. In recent years, GMRES is adapted to

2Throughout the paper, we use this term to mean GMRES and its variations.

solve various other applied problems, e.g. inverse blackbody

radiation problem [12], or non-rotational CT [10]. However

most of these works are limited to square matrices and are

concluded using simulated data.

CG is arguably the most popular KS-method because it is

easy to implement, computationally inexpensive and numeri-

cally stable when applied to square, symmetric and positive-

definite systems. As we mentioned earlier, CGLS is the

equivalent of CG applied to ATAx = AT b, where ATA is

clearly symmetric but when an unmatched back projection,
̂AT , is used (where ̂AT �= AT ), ̂ATA is not symmetric.

So CGLS has difficulties giving reliable results, whereas

GMRES encounters no problems. This is because GMRES

is designed to work with nonsymmetric systems as opposed

to CG. Another advantage of GMRES is that, in case of a

well-conditioned coefficient matrix in a square system (that is,

m = n in (1)), GMRES works as a direct solver and returns

the exact solution in n steps. When compared to CGLS [3],

examples show that the residual is much smaller and GMRES

requires less computational work.

One disadvantage of GMRES is its large memory require-

ments. To avoid this, Saad and Schultz suggested to restart

the method after a certain number of iterations (parameter

m, chosen by user), clear the memory, and use the mth

iterate xm as the new initial vector x0, before the next

cycle of iterations. In our experiments, we found that for

normal matrices, restarted GMRES (or GMRES(m)) does not

converge at all. Our results are omitted here but can be found

in [5]. However, as we have already said, the applications to

CT with typical accuracies of data, we do not need that many

iterations before we are over-fitting. So the disadvantage of

GMRES is not an issue for us when solving the CT problem.

In our strategies, we combine GMRES and RRGMRES

with other useful tools (e.g. Tikhonov regularisation). Var-

ious test matrices from MATLAB’s gallery, Hansen’s

Regularization Tools and AIRTools [6], [7] are

used, but we include only two test cases with 1% and 10%

Gaussian noise in this paper. The computations are carried out

using MATLAB 2013a with a personal laptop of specifications

1.7 GHz Intel Core i7.

NUMERICAL EXPERIMENTS

In this section, we test the accuracy and speed of GMRES,

RRGMRES and regularised GMRES methods. We have 8

strategies to compare and give results for two simulated

cases: Parallel 2D and FanBeam 2D. The strategies are listed

in Table I.

Test Case 1: Parallel 2D

This test case is generated using the tomo(N,f) function

from Hansen‘s Regularization Tools [6]. N is chosen

to be 50, i.e. matrix A has dimensions N2 ×N2. The images

below are obtained for when b contains 1% noise, and the

dataset is complete. For this and the next case, we assume we

have no prior information about the object, so for the strategies

involving Tikhonov, we take L = I (and λ = 10−4).
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Strategy Description

1) GMRES
full–GMRES algorithm,
as stated in ALGORITHM 1.

2) GMRES+Tikhonov
(outer)

GMRES algorithm applied to
solve the Tikhonov system (3).

3) GMRES+Tikhonov
(double)

GMRES algorithm applied to
solve the Tikhonov system (3),
and the inner problem in Step 3
is replaced by its Tikhonov
alternative.

4) GMRES+Tikhonov
+TV

GMRES algorithm applied to
solve the Tikhonov system (3).
The system is then plugged
in TV to be solved (where the
GMRES solution is used as the
starting point).

5) RRGMRES
GMRES algorithm where
V1 = r0/‖r0‖ is replaced by
V1 = Ar0/‖Ar0‖ in Step 1.

6) RRGMRES+Tikhonov
(outer)

RRGMRES algorithm applied to
solve the Tikhonov system (3).

7) RRGMRES+Tikhonov
(double)

RRGMRES algorithm applied to
solve both the ‘outer’ Tikhonov
system (3) and the Tikhonov
alternative of the inner problem
in Step 3.

8) CGLS
The popular CGLS algorithm,
run until the same tolerance
value is satisfied.

TABLE I
THE STRATEGIES USED IN THE TEST CASES, FOLLOWED BY THEIR

DESCRIPTIONS.

(a) Exact image

(b) GMRES (c) GMRES+Tikhonov
(outer)

(d) GMRES+Tikhonov
(double)

(e) GMRES+Tikhonov+TV

(f) RRGMRES (g) RRGMRES+Tikhonov
(outer)

(h) RRGMRES+Tikhonov
(double)

(i) CGLS (104 iterations)

Fig. 1. Results for Parallel 2D test problem with 1% noise.

We see that the features of the exact image are distinguish-

able in the GMRES runs. GMRES gives much better results

when we start with a problem where Tikhonov regularisation

is already added. The results seem to improve further when a

TV solution is computed following GMRES+Tikhonov.

RRGMRES gives similar results to GMRES, but when cou-

pled with Tikhonov, it fails to give any reasonable solutions.

This is because RRGMRES is designed for singular or nearly

singular systems, so it is not stable when the problem becomes

‘less’lill-posed. We will not include RRGMRES in the future

experiments in our work.

Finally, we note that all the GMRES runs took less than

N2 iterations whereas CGLS reached the maximum iteration

number, which was set by us as 104.

Test Case 2: FanBeam 2D

The second test case is generated by using the func-

tion fanbeamtomo(N,angles,projections) from

Hansen’s AIRTools Toolbox [7]. This time, N is chosen

to be 200 (i.e. the image size is 200×200), the number of

angles to be 180 (going from 0 to 179), and the number of

projections to be 360. This means that the size of the geometry

matrix, A, is (180 × 360) × (200 × 200) = 64800 × 40000.

Additionally, we have added 10% Gaussian noise to the data

vector to account for the experimental noise.

In the previous case we obtained some promising results

with GMRES+Tikhonov (outer). However, for the strategies

involving Tikhonov regularisation, the prior information was

taken as L = I , and the regularisation parameter as λ =
10−4. This means that starting GMRES with (3) is very close

to starting GMRES with (2). So this time we run GMRES

started with (2), and thus make a fairer comparison to CGLS

(which is mathematically equivalent to CG started with (2)).

We also compare these KS-methods to the popular iterative

methods, Landweber and ART (the details of Landweber and

ART algorithms can be found in [7]).

Fig. 2. Phantom image used for Test Case 2.
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We run each method for 2000 iterations except for ART,

which is not designed for large number of iterations. Compar-

ing the solution norms with Landweber (at 2000th iteration),

we believe that running 40 iterations of ART is a fair compar-

ison to running 2000 iterations of GMRES. The reconstructed

images are presented in Fig. 3.

(a) GMRES (LS, 2000 iter-
ations)

(b) CGLS (2000 iterations)

(c) Landweber (2000 itera-
tions)

(d) ART (40 iterations)

Fig. 3. Results for FanBeam 2D test problem with 10% noise.

Since both GMRES and CGLS are members of the KS-

methods class, it is not surprising to see both reconstructions

with the same features: Both Fig. 3(a) and 3(b) have converged

to the phantom image well, except for the second half. This

is simply because we have not iterated enough. Interestingly,

after iterating for a long time, Landweber or ART are still

not as close to the phantom image as GMRES or CGLS

are. In fact, the image reconstructed with Landweber at 2000

iterations can be obtained with 39 iterations of GMRES, and

51 iterations of CGLS. This highlights the benefits of fast-

converging methods.

When compared to CGLS, although it is difficult to see from

the images, the noise is somewhat less in Fig. 3(a), and the

lines on the second half of the image are less pronounced.

CONCLUSION AND FUTURE WORK

This paper briefly introduced the theory and algorithm of

GMRES-type methods, as well as investigating the effects of

combining GMRES and its variations with regularisation tools.

A number of strategies were tested with simulated tomography

data. The results achieved are promising and motivates a great

number of possibilities, with which our implementation and

reconstructions can be improved. They also provoke different

ideas, which are all summarised and listed as future tasks

below.

1) In our test cases, we have simulated a 2D parallel and

fan beam experiments where 1% and 10% Gaussian

noise was added to the tomographic data. However,

to understand the benefits of regularised-GMRES, it is

necessary that our strategies are tried with real datasets.

2) It is also necessary to apply these strategies to cases

where some prior information is known and used in the

Tikhonov system. It is important to see how this would

affect the reconstructed images.

3) Our test cases showed GMRES + Tikhonov (outer) or

GMRES (LS) can be used as alternatives to CGLS. An

important next step could be testing these algorithms

when an unmatched back projection is used.

4) In addition to that, one must apply these strategies to

limited data problems, were the data is obtained with

fewer angles.

5) The algorithms we discussed can also be further opti-

mised and parallelised for the reconstruction of larger

datasets or 3D and 4D (space + time) tomography.

6) We must also test these ideas against the popular re-

construction methods such as CGLS and FDK to high-

light the advantages and disadvantages of our strategies.

CGLS and FDK are available to users at our facilities

in the University of Manchester.

7) More detailed investigation into GMRES with nor-

mal equations (rather than applying the algorithm to

ATAx = AT b) is needed. We need a clearer picture

of how that can affect the convergence when there is

noise in data.

8) Finally, one more task we can do is to make use of

appropriate preconditioners in the GMRES strategies to

improve the convergence properties (especially for the

real data case).
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Performance evaluation of OS-SPS and CG
for differential phase-contrast X-ray tomography
Andreas Fehringer, Bernhard Brendel, Dieter Hahn, Peter B. Noël, Franz Pfeiffer, and Thomas Koehler

Abstract—Grating-based phase-contrast computed tomogra-
phy (PCCT) is a promising new imaging approach perfectly
suited for revealing details of low absorption contrast at high
resolution. The acquisition method provides apart from the
usual absorption image a differential image of the phase
shift and an ultra-small-angle scatter signal, called darkfield.
Previously we presented a statistical iterative reconstruction
framework to work with differential projections. We found
that not only the object function has to be modified but also
the solver needs to be optimized for optimal convergence. We
illustrate that, in contrast to absorption imaging, the non-
linear Conjugate Gradient algorithm (CG) clearly outperforms
the commonly used ordered-subset Separable Paraboloidal
Surrogates (OS-SPS). Even without any special adaptations,
the CG converges two orders of magnitude faster for both
maximum likelihood and penalized likelihood maximization.
Our fast iterative approches allow accessing new fields of
application for PCCT.

I. INTRODUCTION

X-ray PCCT is a recent technique combining standard
X-ray imaging with a Talbot-Lau interferometer. It allows
accessing phase [1]–[4] and darkfield [5]–[8] information.
The differential phase image unveils great insights into soft-
tissue [9], [10] making PCCT a highly sensitive alternative
to classical X-ray imaging. Clinical relevance is expected
soon [11]–[15]. The high sensitivity is mainly due to the
fact that the phase shift increases linearly with the thickness
of the sample in contrast to the exponential increase for
attenuation-based imaging. Previously we have shown that
this circumstance delivers great results, e. g. for biological
samples, but also introduces phase-wrapping artifacts at
interfaces between materials with a big gradient of the index
of refraction. In contrast to absorption CT, where saturation
effects usually only occur for highly dense materials like
metal [16], phase-wrapping artifacts can already be seen
between soft-tissue and bone. Hahn et al. [17] demonstrated
that iterative reconstruction techniques are able to success-
fully address this problem.

The convergence speed of an optimization algorithm de-
pends strongly on the features of the problem that needs
to be solved. It has also been observed that algorithms

A. Fehringer, D. Hahn and F. Pfeiffer are with the Chair of Biomedical
Physics, Technische Universität München, Munich, Germany.

B. Brendel and T. Koehler are with Philips Technologie GmbH, Inno-
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Institute for Advanced Study, Technische Universität München, Munich,
Germany.

P. B. Noël is with the Department of Radiology, Technische Universität
München, Munich, Germany.

which perform well for transmission tomography do not
automatically perform well for on differential data [18]–
[20]. Thus, there is a need to compare different optimization
algorithms with respect to their convergence speed, which
is the goal of this work.

We will first state the problem introducing the objec-
tive function for differential phase contrast tomography,
the solvers investigated and a mathematical test phantom.
Second, we will compare the performance and image quality
of ordered-subset Separable Paraboloidal Surrogates (OS-
SPS), which is widely used for iterative reconstruction in
absorption computed tomography [21], [22], with those of
the non-linear Conjugate Gradient (CG).

II. THE PROBLEM

On the contrary to attenuation CT, the phase-shift infor-
mation in PCCT is only available in differential form. Con-
sequently, the objective function and the whole optimization
have to be adapted [23].

A. The objective function

Maximum likelihood reconstruction requires an objective
function L consisting of a data term and a penalty term R.
The data term ensures the consistency with the measured
projections li by using a forward model A on the current
guess of the reconstructed volume δ. The regularization
enforces additional constraints in order to receive a unique
solution to the ill-posed problem, especially for noisy data.

The objective function for PCCT with a Gaussian noise
model can be written as [23]

L = −1

2

∑
i

1

σ2
i

(li − [∂A δ]i)
2 − β R(δ) (1)

where σi are optional weights for the measured data and β
is the strength of the regularization. Note, the differential
operator ∂ enables the reconstruction framework to work
with differential data.

The penalties R(δ) used in the experimental evaluation
below are the quadratic potential function

RQ(δ) =
∑
i

∑
j∈Ni

wij (δi − δj)2

for homogeneous smoothing and the Huber potential func-
tion [24]

RH(δ, γ) =
∑
i

∑
j∈Ni

wij

{
(δi−δj)2

2γ2 for |δi − δj | ≤ γ
|δi−δj |
γ − 1

2 else
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Figure 1. The Root Mean Square error (RMS ∆) after different number of iterations OS-SPS and CG for differential phase data. RMS ∆ is
a measure for how well the reconstruction fits the ideal phantom values and thus for the convergence of the algorithm. Subfigure a shows the progress
for an unpenalized differential-phase log-likelihood, b for quadratic and c for non-quadratic Huber regularization.
With respect to RMS ∆, the CG clearly outperforms OS-SPS for all three cases in preciseness and speed of convergence. In contrast to the behavior of
OS-SPS which is about equal for a, b, and c, quadratic regularization further decreases the number of iterations required for CG. The Huber regularization
in the last test makes the log-likelihood function non-quadratic and thus the convergence more unsteady as well as the overall result a little less precise.

for edge-preserving smoothing. Both compute the gradient
for each voxel i to all of its neighbors Ni weighted with the
corresponding spacial distance wij . The threshold γ in the
Huber potential marks the transition from quadratic to linear
behavior.

B. The investigated solvers

1) CG: is a general-purpose optimization method based
on conjugate search directions with a variable step-size.
For non-linear problems—the penalized likelihood with the
Huber function in our case—CG can be extended with a
line search [25]. Furthermore, it has been shown that CG
can be optimized for standard iterative tomography by using
appropriate preconditioning [26]. The drawback of the non-
linear CG is that for each iteration the line search requires
an additional forward projection of the whole dataset. We
always use the non-linear CG which behaves exactly like
the linear CG for purely quadratic objective functions.

2) OS-SPS : was developed and optimized especially for
log-likelihood maximization. It operates on a paraboloidal
surrogate function which tangentially touches L in each iter-
ation. A full iteration of OS-SPS is about as computationally
expensive as one iteration of linear CG involving a forward
and a back projection. However, SPS can be divided into
fast subiterations executing on very sparsely sampled subsets
making the convergence significantly faster but also at the
cost that the convergence is longer guaranteed. One iteration
always denotes a complete set of subiterations in this paper.
[21]

C. Experimental evaluation

The test sample is a cylindrical mathematical phantom,
10 cm in diameter, with a refractive index according to the
material breast mammary adult 1 defined in [27]. It contains
10 inhomogenities with a diameter of 5 mm each and values
in the rage of ±6.5 % the background value. The differential

phase line integrals were simulated for 600 views in parallel-
beam geometry and a detector of 256 elements with a total
width of 11 cm. Noise was not included in the simulation.

The weights σi in equation (1) were chosen to be one and
the regularization parameter β was optimized for suppressing
aliasing artifacts in the mathematical phantom. We used 30
subsets for OS-SPS, i. e. 20 views per subset.

III. THE PERFORMANCE OF OS-SPS AND CG

In order to measure the performance of OS-SPS and CG,
we reconstructed the test phantom described above in several
ways. There are two purely quadratic cases for both solvers,
one involving no and the other quadratic regularization. The
third case is non-quadratic with Huber regularization. We
always recorded the root mean square error (RMS ∆) shown
in figure 1 and the reconstructed image after each iteration
shown in figures 2 and 3 on page 4.

A. Results for phase data

For all three PCCT test cases, we recognized a drastically
slower convergence for OS-SPS than for CG. The number
of iterations required for a comparable image quality is two
orders of magnitude higher. We stopped the reconstruction
after 2000 iterations, although OS-SPS had not converged
to a satisfying image quality.

1) Without regularization: figure 2 shows the reconstruc-
tion results for CG and OS-SPS after different numbers
of iterations. The images after 10 and 20 iterations of CG
nicely point out the character of the differential input data.
The position of sharp edges, i. e. high-frequency features,
can be extracted immediately. As shown in figure 1a, the
low-frequency information can only be retrieved after ∼ 50
iterations. Additional iterations do not significantly decrease
the error. The overall high RMS ∆ can be explained by the
incorrect low frequencies appearing in early iterations.
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2) With quadratic regularization: The quadratic regu-
larization in the second fully quadratic test case helped
both algorithms to recover the low frequencies faster. The
CG reconstruction perfectly converged after 30 iterations as
depicted by the error plot in 1b. After about 1000 iterations
the OS-SPS manages to recover the border of the cylinder
which was not the case in the previous two tests. However,
even the 2000th iteration suffers also here from low a contrast
and incorrect absolute values.

3) With Huber regularization: The last performance test
was carried out for the penalized log-likelihood function
with Huber regularization. This is also the configuration
which is most suitable for reconstructions on naturally noise-
affected data. As figure 3 shows, both algorithms require
more time to obtain image results comparable to the two
earlier cases. CG is about two times slower and has difficul-
ties to recover the absolute values which can also be seen in
the large tail of the error plot in figure 3. The visual image
quality does not further improve after the first 100 iterations.

B. Results for attenuation data

We provide this section for completeness, but do not show
visual results, since reconstruction with CS and OS-SPS was
already investigated for attenuation data [22], [26]. In the
quadratic case CG results in smaller RMS ∆ after about 20
iterations, but the results suffer from overshooting effects at
the border of the cylinder. OS-SPS provides visually good
results already after 10 iterations. In the non-quadratic case,
the OS-SPS constantly provides smaller errors. We got the
first visually pleasing result after about 50 iterations.

IV. CONCLUSION

Iterative approaches for PCCT have to deal with the
differential character of the phase signal. In this work we
investigated the maximization of the corresponding objective
function. We analyzed three test cases with a mathemati-
cal phantom: the unpenalized log-likelihood, log-likelihood
with quadratic regularization and with Huber regularization,
whereas the latter has a non-quadratic objective function.
The convergence measured as the root mean square error
over the iterations clearly illustrated that for one of the
most common solver in attenuation CT, the OS-SPS, the
likelihood function for differential phase contrast is an
adverse problem. Non-linear CG, in contrast, converges over
two orders of magnitude faster and returns a significantly
improved visual result if the iterations are stoped early.
We successfully showed that fast iterative reconstruction is
possible for differential PCCT.
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Figure 2. The reconstruction results for differential phase data after different numbers of iterations CG and OS-SPS without penalty. The
sample shown is a mathematical test phantom consisting of different cylinders. The results in the upper row show that CG converges more than two
orders of magnitude faster than OS-SPS in the lower row. CG converged after about 50 iterations whereas OS-SPS was aborted after 2000 iterations.

20 it 50 it 100 it 200 it 400 it

100 it 200 it 500 it 1000 it 2000 it

CG

OS-SPS

Figure 3. The reconstruction results for differential phase data CG and OS-SPS with Huber penalty. The additional Huber penalty does not
change the general trend of CG (upper row) converging much faster as OS-SPS (lower row). The overall convergence is slower compared to figure 2
because the Huber term makes the likelihood function non-quadratic.
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Estimation of Missing Fan-Beam Projections using
Frequency Consistency Conditions

Marcel Pohlmann, Martin Berger, Andreas Maier, Joachim Hornegger and Rebecca Fahrig

Abstract—Reducing radiation dose is a crucial problem in
computed tomography. One approach is to undersample the pro-
jections and compensate for the missing ones using an estimation
method. In this paper, we introduce a novel method to estimate
missing projections in fan-beam geometry. The estimation is done
by iteratively enforcing consistency conditions of the sinogram’s
Fourier-Transform. The completed sinogram can be used for
reconstruction using filtered backprojection algorithm to obtain
images with less artifact. A comparison of our method to other
state-of-the art compensation techniques shows promising results.

Index Terms—Computed Tomography, Sparse Image Recon-
struction, Projection Estimation, Spectral Analysis

I. INTRODUCTION

In X-ray computed tomography projections are sampled
along a trajectory around the patient. The detector read-out
of each view is written row-wise as a set of 1-D projection
images, also referred to as sinogram.
In order to reduce the radiation exposure of a patient during a
CT scan, the projections can be undersampled by measuring,
only a subset of projections. Using filtered backprojection on
a undersampled sinogram might produce streak artifacts in the
resulting image. To avoid those artifacts a compensation for
the missing projections is needed.
Depending on the different imaging geometry every sino-
gram underlies data consistency conditions, e.g. the well
known Ludwig-Helgason consistency condition of the two-
dimensional Radon transform. These conditions have already
been utilized in the field of image reconstruction from a limited
number of view angles [1].
But there are also consistency conditions in the sinogram’s
Fourier Space, as Edholm et al. showed by their derivation
of the frequency-distance relationship for the parallel-beam
sinogram [2]. This relationship attributes contributions in
sinogram-frequency space to points in the object at fixed
distances along the projections. Mazin et al. performed a
similar derivation to arrive at corresponding properties of a
fan-beam sinogram [3]. In the parallel-beam case as well as the
fan- beam case, the derived property is a zero-energy region
in the Fourier transform of the full scan sinogram.
In this paper, we present a method that estimates missing pro-
jection data of undersampled fan-beam sinograms by utilizing
the frequency condition mentioned above.

Rebecca Fahrig is with the Department of Radiology, Stanford University,
Stanford, CA, USA. Marcel Pohlmann, Martin Berger, Andreas Maier and
Joachim Hornegger are with the Pattern Recognition Lab, Department of Com-
puter Science, Friedrich Alexander Universität Erlangen-Nürnberg. This work
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Figure 1. Fan-beam CT geometry with equally-spaced detector used for the
estimation of unknown projections

II. METHOD

A. Background

Our method for the estimation of the missing data is
iterative and based on the consistency-conditions of the two-
dimensional Fourier transform of the fan-beam sinogram.
Iterative methods similar to ours have previously been applied
in a variety of other applications where a complete set of data
is not available in measurement space but prior knowledge
is available in a second space that is related to the first
by a simple transformation, in this case the two-dimensional
Fourier transformation. This type of iterative algorithm has
successfully been implemented in image restoration problems
such as band- limited spectral analysis [4], [5] and spectral
deconvolution [6], [7]. Another estimation method for SPECT
based on the consistency-condition of the two-dimensional
Fourier transform of the parallel-beam sinogram is discussed
in [8].

B. Theory

Using the geometry shown in Fig. 1 we denote the distance
from the origin of a point of interest as rp and its angle
from the x-axis as φp, the source-to-isocenter distance as L
and the isocenter-to-detector distance as D. We can model
the object function f(x, y) as a set of many delta function
points. Forward projecting each of them we get sinograms
each with a single sinusoidal curve. Adding all obtained
sinograms of the single points up to one image will give
us the observed sinogram. The derivations in [2] and [3] use
this decomposition of the sinogram to obtain properties from
its Fourier transform. Applying the two-dimensional Fourier
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(a) (b)

Figure 2. (a) Appearance of the Fourier transform of a fan-beam sinogram
and (b) the corresponding double-wedge filter

transform on a sinogram of an arbitrary delta function will
give us

P (ζ, k) ≈ e−jk(φp+
π
2 )Jk

(
(k − (L+D)ζ)

rp
L

)
, (1)

where Jk denotes a Bessel function of the first kind of order
k. Because Bessel functions of order k rapidly tend to zero if
the argument is less than k, Eq. (1) implies that the Fourier
transform is approximately zero for all frequencies (ζ, k) such
that ∣∣∣∣ k

k − ζ(L+D)

∣∣∣∣ > rp
L

. (2)

The Bessel function in Eq. (1) is an approximation which
was determined intuitively but validated empirically in [3].
Eq. (2) parametrizes a double-wedge region in the frequency
domain of the sinogram, containing negligible coefficients.
The boundary of this region is described by the equation
ζ = (k/(L+D))(1± L/rp). The single points of the object
within a smaller radius have a larger double-wedge region than
single points located at the maximum radius of our object.
Since we are interested in restoring the complete sinogram
and not only a region of interest, we interpret rp as the
maximum radius of the object. We can now design a fan-beam
double-wedge filter for the estimation of the missing lines
in our algorithm. Fig. 2 (a) shows the Fourier transform of
a sinogram of an object with rp = 200 mm, the double-
wedge region can already be identified and (b) shows the
corresponding double-wedge filter.
Modeling the observed sinogram p(u, β) as a point-wise multi-
plication of the non-undersampled sinogram pideal(u, β) with
a missing projection mask w(u, β), which contains zero-rows
if the projection is not measured and ones otherwise, will
initially violate the condition of the zero-energy double-wedge
region. We can use the designed double-wedge filter to enforce
the condition iteratively in the estimation algorithm by cutting
of the high frequencies corresponding to the missing projec-
tions.
Eq. (1) describes the double wedge region in a continu-
ous manner without respecting discretization problems. For
this reason we applied a morphological erosion operation
in the direction of ζ on the double-wedge filter. After this
pre-processing we can be sure that we will not affect any
frequencies that do not correspond to the frequency condition.

Figure 3. Flow diagram of the iterative double-wedge filtering

C. Algorithm

The main idea of the estimation algorithm is to alternate
between the frequency domain to apply the double-wedge filter
and the spatial domain to insert the current estimation of the
missing projections.
In an initialization step, the observed sinogram has to be
extended by the missing projections. Filling the missing rows
with the mean value of the observed sinogram turned out to
be the best choice. In that way the energy loss caused by
the filtering is compensated. It is important to choose the
initial values in a way that the Fourier coefficients outside the
double-wedge region are not affected, because the algorithm
does not perform on these coefficients.
In one iteration step p(i)(u, β), the current estimate of the
complete sinogram data is zero-padded to the image size of
the next power of two and Fourier transformed in order to get
the Fourier coefficients P (i)(ζ, k) with an increased resolution
of the frequencies. At this point the eroded double-wedge
filter is applied to enforce the condition of zero-energy and
eliminate high frequencies referring to the missing projections.
The double-wedge filtered Fourier coefficients P̂ (i)(ζ, k) are
inverse Fourier transformed to receive a updated version of
the complete sinogram p̂(i)(u, β) which holds new estimates
of the missing projections.
Since the double-wedge filter affects the complete sinogram,
we insert only the estimation of the missing projections from
p̂(i)(u, β) into the sinogram of the next iteration step instead
of using the complete data set of the inverse Fourier transform.
The iteration procedure, where i represents the current itera-
tion step is repeated until a specific convergence criterion is
reached or a fixed number of iterations are performed. The
iterative procedure of the algorithm is illustrated in the flow
digram shown in Fig. 3.

Source-to-isocenter distance, L 598.5 mm
Detector-to-isocenter distance, D 598.5 mm
# of views over 2π 67, 134
# of detector channels 500
Detector channel spacing 1.0 mm
Maximum radius of object, rp 200 mm
Kernel width for erosion 7
Resampling factor 2

Table I
SIMULATION PARAMETERS
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III. RESULTS

We evaluated the algorithm on simulated data, with a
phantom size of 512×512 px, which is shown in Fig. 4 (a). The
maximum radius of the overall object extend is rp = 200 mm.
In a first experiment, 67 projections, over a full-scan trajectory
of 2π, are measured and resampled by the factor of two
in order to achieve 134 views for the reconstruction. The
results related to this parametrization are shown in Fig. 4. In a
second experiment, 134 projections, over the same trajectory,
are measured and resampled up to 268 views. The results
are shown in Fig. 5. The wedge filter was pre-processed by
an morphological erosion operation with a kernel width of 7
px, in the direction of ζ, before applying it on the Fourier
coefficients. Additional simulation parameters related to the
geometry are listed in Tab. I.
In both experiments, we applied our method on the sparse
data with a fixed number of 50 iterations. The result of the
iterative double-wedge filter performing on an input number
of 67 views is shown in Fig. 4 (c) and performing on an input
number of 134 views in Fig. 5 (c). We compared the results to
the reconstructions without any compensation and three other
estimation techniques: Linear interpolation in the direction of
β, Iterative Reconstruction-Reprojection (IRR) [9], where we
achieved the best image quality with 3 iterations in the case of
67 projections and 4 iterations in the case of 134 projections,
and Spectral Deconvolution [6] with a maximum number of
100 iterations. In all reconstruction results negative values
resulting from the FBP have been set to zero, furthermore
all pixel values outside of a region of interest corresponding
to the detector length have been set to zero as well. We used a
Shepp-Logan kernel within the algorithm of IRR and a Ram-
Lak kernel for FBP of all final reconstructions. The intensity
window for displaying the reconstruction results was chosen
to be in the range of 0 to 1 for all images.
In addition to the images of the reconstructions, we calculated
the error of the reconstruction with respect to the phantom
using normalized root mean square error (NMSRE):

NRMSE =
1

xmax − xmin

√∑N−1
t=0 (x1,t − x2,t)2

n
, (3)

where xmin and xmax denote the minimum and maximum
intensity value of the phantom. The pixels belonging to the
image of the phantom are represented by x1 and the pixels
belonging to the reconstruction are represented by x2. The
NRMSE for the different estimation methods is listed in
Tab. II. We implemented the methods using CONRAD [10], a
software framework for cone-beam imaging in radiology. To
get a picture of the run-time complexity for the methods used
in this evaluation, we added the run-time of the estimation
methods in Tab. II. Note that the computation of the results
for all methods was CPU driven (Intel Xeon X5450, 16 GB
RAM).

Compensation Method NRMSE Runtime
Number of views: 64 134 67 134
Without Compensation 8.02% 4.79% - -
Double-Wedge filter 5.60% 3.29% 4.68 s 8.8 s
Linear Interpolation 6.36% 3.61% - -
Spectral Deconvolution 6.89% 4.14% 16.55 s 34.12 s
Iterative Reprojection 7.08% 3.69% 234.49 s 467.54 s

Table II
NORMALIZED ROOT MEAN SQUARE ERROR (NRMSE) AND RUN-TIME OF

EVALUATED METHODS FOR DATA COMPLETION

(a) (b)

(c) (d)

(e) (f)

Figure 4. FBP Reconstruction results using different estimation methods
for missing projections (a) phantom, (b) reconstruction of the undersampled
sinogram with 67 views, (c) reconstruction of the double-wedge filtered
sinogram (50 iterations), (d) reconstruction of the linear interpolated sino-
gram, (e) reconstruction of the sinogram filtered with spectral deconvolution
(100 iterations), (f) reconstruction of the completed sinogram using IRR (3
iterations)

IV. DISCUSSION

We presented a new method to estimate missing projections
in undersampled sinograms based on the principles of data
consistency. In our simulation, the new method performs well
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(a) (b)

(c) (d)

(e) (f)

Figure 5. FBP Reconstruction results using different estimation methods
for missing projections (a) phantom, (b) reconstruction of the undersampled
sinogram with 134 views, (c) reconstruction of the double-wedge filtered
sinogram (50 iterations), (d) reconstruction of the linear interpolated sino-
gram, (e) reconstruction of the sinogram filtered with spectral deconvolution
(100 iterations), (f) reconstruction of the completed sinogram using IRR (4
iterations)

even on very sparse projection data. We showed that the esti-
mated projections are consistent with the observed projections
and thus result in a reconstruction with a low error. This
becomes noticeable in the images of the reconstructions and
the values of the NRMSE. In both results of the experiments, it
can be seen that the double-wedge filter reduces streak artifacts
while preserving the edges of the objects and the their intensity
values.
The frequency condition requires a projection set sampled
along a full-scan trajectory of 2π in order to satisfy Eq. (1).
Usually a projection set from, e.g. a C-arm system, is sampled
with 133 projections along a trajectory of 200◦. Re-binning
this data set to a full-scan data set using data redundancy will
provide about 240 projections as input before applying our
method. The experiment with an initial number of 134 views,
shown in Fig. 5, corresponds to an undersampling of such a

C-arm scan and shows promising results. The first experiments
with 67 given projections shows that our method also performs
good on extremely sparse data sets and its stability does not
depend on the input number of projections. Our algorithm is
easy to implement and might be embedded as an additional
process step in other methods in order to fulfill the data
consistency and therefore improve the image quality.
The parameter rp corresponding to the object extend can
directly be measured from the observed sinogram, if the
geometry of the scanner is known, using trigonometry.
One limitation of the presented method is that the double-
wedge filter estimates parts of the projections in a nearby
neighborhood of the periphery of the object more precisely
than those referring to the inner part of the object. The
inner part can be seen as an object with a smaller extent
and therefore requires a larger shape of the double-wedge
region. This problem might be solved by iteratively decreasing
the parameter rp that corresponds to a circular region of
interest and insert the resulting estimates at the corresponding
positions in u-direction into the sinogram. This method will
be implemented and evaluated in the future.
In upcoming experiments we are going to investigate the
performance of the designed method on real data in order to
evaluate the influence of complex structures, noise [11] and
scattering [12]. Furthermore, the comparison with regularized
iterative methods and additional non-linear filters seems benef-
ical [13].
The presented method to estimate missing projections in
undersampled works well on simulated data. Assuming that
the future evaluation using real data shows as promising re-
sults as using simulated data, iteratively enforcing consistency
condition might be a good approach to reduce the radiation
exposure.
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Experimental investigation of multi-energy CT
material decomposition using artificial neural

networks
Kevin C. Zimmerman and Taly Gilat Schmidt

Abstract—This study investigated the use of artificial neural
networks (ANN) for material decomposition of multi-energy x-
ray projections. The proposed empirical neural network de-
composition technique may be advantageous for spectral CT
applications, as it does not require explicit prior knowledge of
source or detector parameters. The neural network estimator
was trained using a set of calibration scans through varying
thicknesses of basis materials. In this study, the bias and standard
deviation of the neural network estimator was compared to
the empirical estimator previously proposed by Alvarez. Bone,
soft tissue and adipose tissue were simulated and decomposed
into polystyrene and polyvinyl chloride (PVC) basis material
thicknesses. X-ray projections through varying thicknesses of
Teflon were acquired experimentally on a bench-top spectral CT
system with a photon-counting detector and decomposed into
acrylic and aluminum basis material thicknesses. In addition,
multi-energy CT scans of a rod phantom consisting of polymethyl
methacrylate (PMMA), Teflon, low-density polyethylene (LDPE),
and air were acquired experimentally and decomposed into
acrylic and aluminum basis material images. The neural network
decomposed Teflon into acrylic with less than 11% bias and 1.8
mm standard deviation and aluminum with less than 14% bias
and 0.4 mm standard deviation. The Alvarez method decomposed
Teflon into acrylic with less than 9% bias and 0.5 mm standard
deviation and aluminum with less than 19% bias and 0.2
mm standard deviation. Overall, the results suggest preliminary
experimental feasibility of empirical decomposition methods for
multi-energy CT.

I. INTRODUCTION

Energy information from x-ray projections can be extracted
by using photon-counting detectors with pulse height analy-
sis. This multi-energy information can be used for material
decomposition. Maximum likelihood estimation (MLE) can
be used to accurately decompose multi-energy information,
however this method requires prior knowledge of the source
spectrum, energy-bin thresholds, count-rate independent spec-
tral response effects, and pulse-pileup effects [1]. Obtaining
accurate models of these effects may be challenging. Empirical
methods have the advantage of requiring only system data
rather than specific system parameters. This study evaluated
the use of artificial neural networks to decompose multi-
energy x-ray projections into basis material thicknesses. This
empirical method uses a calibration data set to train the neural
network. The neural network estimator bias and standard devi-
ation was quantified through simulations and experiments and
compared to an empirical decomposition method previously
proposed by Alvarez[2].

K.C. Zimmerman and T.G. Schmidt are with Marquette University, Biomed-
ical Engineering Department.

II. METHODS

A. Empirical Methods for Material Decomposition

The number of photons detected in the ith energy bin, Ni

can be expressed as a function of a vector of M basis materials
thicknesses, A.

Ni(A) =

∫ ∞
0

Si(E)exp

− M∑
j=1

ajµj(E)

 dE (1)

where aj , the components of A, are the path lengths through
the M basis materials with attenuation coefficient µj , and Si is
the effective spectrum detected by the ith bin, i.e., the number
of photons at each energy detected by that bin. The effective
spectrum depends on the source spectrum and detector effects
such as charge charing and pulse pileup. The inversion of this
equation is nonlinear and requires knowledge of the effective
spectrum for each bin.

B. Training Set

Both empirical estimators investigated in this work (Neu-
ral Network and Alvarez) require a calibration training set.
The training set consists of multi-energy x-ray projection
measurements at varying combinations of thicknesses of the
basis materials. The calibration basis material thicknesses are
assumed to be known, while the multi-energy x-ray projections
are measured. Each of the studied empirical methods used
the known calibration thicknesses and the measured x-ray
projection data to approximate the relationship between basis
material thicknesses and x-ray projection measurements.

C. Neural Network Decomposition

The projection integral, L is equal to L = −log(N/No)
where the components of No are the number of counts
detected in each bin without an object in the beam. We propose
an artificial neural network to approximate the relationship
between the projection integral L and the basis material thick-
nesses A. Unlike previously proposed maximum likelihood
estimators [1], the proposed neural network method does not
require a priori information about the system, such as the
effective spectrum for each energy bin, Si(E).

The calibration x-ray projection measurements and known
basis material thicknesses were used to train a two-layer
feed-forward network with sigmoid hidden neurons and linear
output neurons. The size of the input was the number of
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energy bins and the size of the output was the number of
basis materials. For this study, five energy bins were used
for two material decomposition. The weights and the biases
of the neural network were calculated from the training set
using a variation of the Levenberg-Marquardt backpropogation
algorithm.

After training the neural network to map multi-energy data
to basis material thicknesses, calculation of basis material
thicknesses given multi-energy data was performed using the
neural network. The neural network performs the calculation
using a series of multiplication and addition operators involv-
ing the weights and biases of the network and the multi-energy
data. The Neural Network Toolbox in MATLAB was used to
train the network and perform the decomposition.

D. Alvarez Decomposition
The model relating the projection integral L, to the basis

material thicknesses A, can be approximated as,

L(A) ≈ MA+ w (2)

where w is a zero mean multivariate normal random variable
whose covariance depends on A and the effective linear
attenuation coefficient matrix, M, is the least squares approx-
imate solution[2]. The maximum likelihood estimator of the
linearized equation in Eq. 2 is

AMLE = (MTR−1L|AM)−1MTR−1L|ALwith noise (3)

where RL|A is the covariance of the data, L. In the Alvarez
method, both M and RL|A are estimated from the calibration
training data. The errors in the linearized model are found by
calculating AMLE for every calibration, L, and subtracting
them from the known calibration basis material thicknesses,
A. The errors in the initial linear estimate are interpolated
across the basis material thicknesses to create two look-up
tables, one for each basis material. The accuracy of the look-
up table is expected to increase with the number of calibration
measurements.

E. Simulation Study
The simulation study used PVC and polystyrene as the

basis materials. For the calibration training set, for both the
neural network and Alvarez method, x-ray projections of
combinations of polystyrene (0 to 18 slabs, 2.54 cm each) and
polyvinyl chloride (PVC) (0 to 18 slabs, 1.27 cm each) were
simulated, producing a 324-point training set. The simulations
assumed an ideal multi-energy detector with 5 bins at energies
[25-40], [40-50], [50-60], [60-70], and [70-100] keV. The
simulations modeled a 100 kV spectrum, Poisson noise, and
2x106 photons per measurement, which is comparable to the
number of photons detected through air in the experimental
study. Thicknesses of bone (1 to 8 cm; increments of 1 cm),
soft tissue (5 to 40 cm; increments of 5 cm), and adipose tissue
(5 to 40 cm; increments of 5 cm) were used in order to test the
performance of the estimators on materials that were not part
of the calibration dataset. The material attenuation coefficients
were obtained from the NIST attenuation coefficient database.

F. Experimental Setup

In the simulation study, the detector was modeled with ideal
energy response. In practice, photon-counting detectors suffer
from numerous non-ideal effects that degrade the energy res-
olution. An experimental study was performed to investigate
the performance of the empirical estimators on experimental
data with non-ideal spectral response. In this study, x-ray pro-
jections were acquired using a bench top energy-resolved CT
system with a photon-counting detector. The system consisted
of a cadmium zinc telluride (CZT) detector (NEXIS, Nova
R&D, Riverside, CA), with two pixel rows, each consisting
of 128 1x1 mm pixels. The detector pixel array is read out
by the XENA chip (Nova R&D, Riverside, CA), which can
sort detected photons into bins above user-selected thresholds.
The energy thresholds for each bin were set to [25-40], [40-
50], [50-60], [60-70], and [70-100] keV. Acquisitions were
performed at 100 kV and 0.44 mAs. Acrylic and aluminum
were used as basis materials.

For the calibration training set, x-ray projections through
combinations of acrylic (0 to 4 slabs, 2.54 cm each) and alu-
minum (0 to 4 slabs, 0.635 cm each) were acquired, producing
a 25-point training dataset. The calibration dataset was used
to train a neural network for each pixel in the detector. For
the Alvarez method, the calibration dataset created a separate
lookup table for each pixel in the detector.

To quantify the bias and standard deviation of the neural
network and Alvarez estimators, x-ray projections through
varying thickness of Teflon slabs (1 to 4 slabs, 1.72 cm
each; 5 trials) were acquired. For each Teflon thickness, the
acquired energy-bin data was decomposed into thicknesses of
the acrylic and aluminum basis materials using the trained
neural networks and the Alvarez look up tables for each pixel.

To investigate the performance of the neural network es-
timator for multi-energy CT imaging, a CT dataset was ac-
quired of a 6.35 cm diameter cylindrical phantom consisting
of polymethyl methacrylate (PMMA), Teflon, low-density
polyethylene (LDPE), and air as seen in Fig. 1. The phantom
was rotated and 200 equally spaced projections were acquired
over 360◦ with 0.076 mAs per projection angle.

For the CT dataset, aluminum and acrylic basis sinograms
were estimated using both the trained neural networks and the
Alvarez look up tables.The basis sinograms were reconstructed
using filtered back projection to produce acrylic and aluminum
basis images.

G. Performance Evaluation

For both the simulation and the experimental studies, the
performance of the neural network and Alvarez estimators was
evaluated by calculating the bias, as a percentage of the basis
material thickness, and standard deviation in the estimated
basis material thicknesses.

III. RESULTS

A. Simulation Study

Fig. 2 plots the polystyrene and PVC basis material thick-
nesses estimated by the neural network and Alvarez methods
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Fig. 1. Rod phantom used for CT investigation. The phantom consists of
rods of PMMA, Teflon, LDPE, and air.
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Fig. 2. Decomposition of bone, soft tissue and adipose tissue using the neural
network and Alvarez method on simulated data (n = 10)

for the simulated bone, soft tissue and adipose tissue. All
trials, materials, and thicknesses are displayed. The bias and
the standard deviation of the estimates for both methods
increased as the test material thicknesses increased with a
greater increase for thicknesses greater than 30 cm. The bias
and standard deviation of each basis material is plotted in Fig.
3.

B. Experimental Study

Fig. 4 plots the acrylic and aluminum material thicknesses
estimated by the neural network and Alvarez methods from
the experimental measurements through Teflon. Similar to the
simulation results, the bias and the standard deviation of the
estimates for both empirical methods increased with increasing
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Fig. 3. The bias and standard deviation of the polystyrene (top) and PVC
(bottom) basis thickness estimates for the experimental simulated data through
bone, soft tissue, and adipose tissue.(n = 10)
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Fig. 4. Decomposition of Teflon (1 to 4 slabs; 1.27 cm each) using the
neural network and the Alvarez method on experimental data. (n = 5)

Teflon thickness. The bias and the standard deviation of each
basis material is plotted in Fig. 5.

Fig. 6 displays the acrylic and aluminum basis images
reconstructed from the basis sinograms decomposed by the
neural network and Alvarez estimators. As expected, the
aluminum basis image contains contributions from primarily
the Teflon rod, as the other phantom materials are closer
in atomic number and density to acrylic. The LDPE rod
decomposes into a negative value in the aluminum basis
image because its effective number is not in the range of
spanned by the acrylic and aluminum basis materials. The
Alvarez method has slightly fewer and more stable rings
in the reconstructed images than does the neural networks,
suggesting that the Alvarez method may be more robust to
pixel-to-pixel variations..
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Fig. 5. The bias and standard deviation of the acrylic (top) and aluminum
(bottom) basis thickness estimates for the experimental measurements through
Teflon. (n = 5)

Fig. 6. Material decomposition of a rod phantom into acrylic and aluminum
basis materials using both neural network and Alvarez methods. (a) Acrylic
basis image using ANN. (b) Acrylic basis image using the Alvarez method.
(c) Aluminum basis image using ANN. (d) Aluminum basis image using the
Alvarez method.

IV. DISCUSSION

In the future, three material decomposition using K-edge
materials will be desired. The training set then becomes
combinations of three basis materials. The use of neural net-
works for three material decomposition requires the addition
of weights and biases which are calculated in the training
algorithm. For two material decomposition with the Alvarez
method, two 2-dimensional lookup tables are required for each
detector pixel. When three material decomposition is desired,
three 3-dimensional lookup tables will be needed for each

detector pixel. Which is expected to have a large memory
requirements as compared to the neural network.

V. CONCLUSIONS

The neural network decomposed Teflon into acrylic with
less than 11% bias and 1.8 mm standard deviation and
aluminum with less than 14% bias and 0.4 mm standard
deviation. The Alvarez method decomposed Teflon into acrylic
with less than 9% bias and 0.5 mm standard deviation and
aluminum with less than 19% bias and 0.2 mm standard
deviation. Overall, the neural network had a lower bias in
the decomposition of Teflon into the aluminum basis material
however had a higher standard deviation in the decomposition
of Teflon into the acrylic basis material than the Alvarez
method. Future work will investigate the performance of these
estimators in the presence of higher photon flux resulting
in a greater presence of pulse pileup. Also, three material
decomposition of k-edge materials will be investigated using
artificial neural networks. Overall, the results suggest pre-
liminary experimental feasibility of empirical decomposition
methods for multi-energy CT.
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T., Bäumer, C., Herrmann, C., Steadman, R., Zeitler, G., Livne, A., and
Proksa, R., “Experimental feasibility of multi-energy photon-counting K-
edge imaging in pre-clinical computed tomography,” Physics in Medicine
and Biology 53(15), 4031–4047 (2008).

[2] Alvarez, R., “Estimator for photon counting energy selective x-ray
imaging with multibin pulse height analysis,” Medical Physics 38, 2324
(2011).

The third international conference on image formation in X-ray computed tomography Page 211



A simple and efficient super-short-scan algorithm of
Fan-beam reconstruction for multiple circular

trajectories: solution towards the truncated data
Long Chen, Thomas Rodet, and Nicolas Gac

Abstract—The sufficiency condition of the accurate
reconstruction of the region of interest (ROI) in fan-
beam tomography with non-truncated data was intro-
duced by F. Noo([1]). When the detector does not
cover the whole objet, R. Clackdoyle extended this
condition of the accurate reconstruction of ROI in
presence of the truncated data using virtual fan-beam
method (VFB) [2]. In this paper, we are interested
in the image reconstruction of the whole object from
truncated data, since the whole object reconstruction
is always preferred even with small detector, instead
of the accurate reconstruction of only a region. We
propose a simple and efficient super-short-scan algo-
rithm for multiple circular trajectories to reconstruct
the whole object from truncated fan-beam projections.
This algorithm is validated by simulation studies.

I. Introduction
In fan-beam tomography, the short-scan (180◦ plus the

fan angle) is a minimal complet data set to reconstruct
the whole object [3]. This had been also hold even for the
reconstruction of only a ROI [4]. A new sufficient condition
of the accurate reconstruction of ROI was introduced in
[1]. The ROI can be exactly reconstructed only and if only
all the lines through the ROI are known. All the fan-beam
projections should be non-truncated as the short scan.

When the detector is too small to cover all the object,
the projection data is inevitably truncated. The accurate
reconstruction of ROI is still able to be achieved in
some cases with VFB in [2]. An optimal virtual fan-beam
circular trajectory is found by rebinning the truncated
projections to non-truncated projections. Additionally, the
whole object reconstruction from the truncated data has
been interesting, as in dental imaging, the panoramic view
of the whole jaw from a medium detector. In this paper,
we propose a simple and efficient super-short-scan (SS-
scan) algorithm on twice and triple circular trajectories
to achiev the reconstruction of the whole object. ’Simple’
means the movement of the scanner is not complexe,
and ’efficient’ stands for as less fan-beam projections as

Long Chen is with the Laboratory of Signals and Sys-
tems, UMR8506, Université Paris-Sud-CNRS-Supélec, Gif-sur-
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Yvette cedex, F-91192, France

possible to reconstruct the whole object. The super-short-
scan projections here are not necessarily non-truncated,
which are different from those in [5].

The rest of this paper is organized as follows: the
proposed super-short-scans on twice and triple circular
trajectories are described in section 2, we use a standard
iterative least-squares method for image reconstruction
in section 3. the proposed super-short-scan algorithm is
evaluated by the simulation studis in section 4, and we
draw the conclusion in the final section.

II. Super-short-scans on multiple circle
trajectories

In CT tomography, how to reconstruct a whole object
from the truncated data is a challenge, when the detector
is too small to cover all the object. Obviously, a single
circular scan is able to reconstruct only a region, not the
whole object. More scans are needed to achieve the whole
object reconstruction. We present the proposed super-
short-scans on two and three circular trajectories below.

A. Twice super-short-scans
Usually, the object support is known a priori. Without

loss of generality, let the object support Ω be an ellipse
depicted by tow semi-axis parametres (a and b, a > b),
which is centered at origine in figure 1.(a). Two iso-centers
O1 and O2 of scans are located symetrically to the axis
Y, with distance c to the origine. The system geometry
is decribed in the figure 1.(a) with distance from the X-
ray source to the iso-center R, and from the source to
the detector D. The length of detector is L. We have r =
L ∗R/D, where r is the radius of the field of view (FOV).
Obviously, r should be greater than c for the whole object
reconstruction.

Intuitively, the first choice of the whole object recon-
struction is to reconstruct a half ellipse from each scan.
In presence of the truncated data, an optimum virtual
trajectory of the X-ray is found in red solid circle using
VFB ([2]), in the figure 2.(a). According to the sufficient
condition in [1], two reasonable trajectories are drawn in
the figure 2.(a), the scanning angle of each scan Q1 or
Q2 is π + 2 ∗ γ1, where γ1 = arcsin(c/R). As c < r,
the angle is smaller than half of the fan angle γm with
γm = arcsin(r/R). These tracjectories are refered to the
reduced scan (R-scan). When we look at the two reduced
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scans, a random pixel M in the left half of object is
mesured twice in one line in the figure 2.(a). The fan-
beam projections of the whole object are double from the
scanning range between the lines t1 and t2 and between t3
and t4, which are the shared tangents of the object support
Ω and two fileds of view (FOV) of the twice scans.

(a) Twice scans (b) Triple scans

Fig. 1: System geometries of twice scans (Q1 and Q2) with
ellipse support of the object (a). and triple scans (Q0, Q1
and Q2) for the triangular object support (b). Oi denotes
the iso-center, i = 0, 1, 2, In (b), V0, V1, and V2 are the
three vertexes, their three iso-centers, O0, O1 and O2, are
located on the middle of the segments between the triangle
gravity G and each vertex, respectively. The phantoms of
Shepp-Logan (a) and simlulated jaw (b) inside Ω are given
here only as exemple.

(a) R-scan (b) SS-scan

Fig. 2: Illustration of the reduced scan (a) and super-short-
scan (b).

In order to reduce the data redundancy above, we
propose two shorter scans refered to super-short-scans
(SS-scan) in the figure 2.(b). The scanning ranges of
the two super-short-scans Π1 et Π2 are [λ1s λ1e] and
[λ2s λ2e] respectively. The start positions of the X-ray
source a(λ1s) and a(λ2s) are on the tangent to the object
support. In the figure 2.(b), the angle is defined positive
in counterclockwise direction. ζ1 = ζ2 = arcsin(b/R),
τ1 = arcsin(h/R) = arcsin( r−2∗c∗sinξ

R ), and κ1 = κ2,

λ1s = π + ζ1, λ1e = κ1 = ξ + τ1 (1)
λ2s = −ζ2, λ2e = π − κ2 = π − (ξ + τ1) (2)

where the tangent angle ξ is given by

tanξ = 1/

√
(
r ∗ c+

√
(a2 − b2) ∗ (r2 − b2) + b2 ∗ c2

r2 − b2
)2 − 1,

which is derived from the solution of the tangent to
the FOV of Q1 or Q2 and the object support function.
Compared to the reduced scan, the SS scan requires less
fan-beam projections. Quantitively, the reduced projection
angle is given below :

∆Π = π + 2 ∗ γ1 − |λ1e − λ1s| = 2 ∗ γ1 + ξ + τ1 − ζ1 (3)

A numerical result will be given in the simulation studies,
∆Π = 30◦.

B. Triple super-short-scans

When the object is much larger than the field of view of
the scanner, triple scans are required for the whole object
reconstruction from the truncated data. For simplification,
let the object support Ω be an equilateral triangle, as in the
figure 1.(b). The other parameters are defined as above.

As the object takes a great part of the FOV of each
scan, no less than short-scan is able to reconstruct the
part of the object inside the FOV, seperately, according to
Noo’s sufficient condition. A good choice is short-scan. The
scanning angle of short-scan is π plus the fan angle 2∗γm.
The data redundancy here is larger than in case of twice
scans. We propose a triple super-short-scans to decrease

Fig. 3: Illustration of the triple super-short-scans. M is
an arbitrary pixel in the object. The scanning ranges
Π0(M), Π1(M) and Π2(M) are sufficient for the accurate
reconstruction of M.

the data redundancy in the figure 3. The scanning ranges
of the triple super-short-scans are Π0, Π1, and Π2, where
Π0 = [λ0s λ0e], Π1 = [λ1s λ1e], and Π2 = [λ2s λ2e]. In
the figure 3, we have the angles ∠O0V0a(λ0s)=∠V2V0O0=π/6
in the equilateral triangle Ω, the start and end angular
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positions of Π0, Π1, and Π2 are obtained as follows:

λ0s = π + κ1, λ0e = 2 ∗ π − κ2 (4)

λ1s = π

2 + ∠O2O1a(λ1s), λ1e = 3π
2 − κ3 (5)

λ2s = −π2 + ∠O1O2a(λ2s), λ2e = π

2 + ζ3 (6)

where h = r ∗ sin (∠O0V0a(λ0s)) = 1/2 ∗ r, ζ1 = ζ2 =
ζ3 = ∠O2O1a(λ1s) = arcsin(h/R) = arcsin( r

2∗R ), κ1 =
∠O0V0a(λ0s)+ζ1, κ2 = ∠V2V0O0−ζ2, κ3 = π/3−arcsin( r

2∗R ),
and ∠O1O2a(λ2s) = π/3 + arcsin( r

2∗R ). All the three scan-
ning angles |λie−λis| of Πi are 2/3π, with i=0,1,2. For the
whole object reconstruction, our triple super-short scans
only needs 2π fan-beam projections, which are π + 6 ∗ γm
less than those of the triple short-scans, since each short-
scan needs π + 2 ∗ γm fan-beam projections.

We verify the sufficient condition where every lines
through the object support should be known in the figure
3: Let M be an arbitrary pixel inside the object. All the
lines passing M are intersected with the three colorful solid
arcs (black, red, and blue). Therefore, M is able to be
reconstructed exactly. This will be validated in the results
of image reconstruction from the simulated data.

III. Image reconstruction
In this paper, we consider the image reconstruction

as an optimisation problem. A standard iterative least-
squares (ILS) method is used for image reconstruction.
The analytic methods suitable for the multiple scans are
beyond this topic.

In fan-beam tomography, a forward model of data ac-
quisition is given as follows:

g = Hf + ε (7)

where g is the mesurement vector, H represents the system
matrix, whose element hij means the contribution of jth
pixel of the object on the ith mesurement unit, the vector f
describes the unknown object, and ε contains the detector
noise and modelling errors. f is estimated by minimizing
the criteria function J(f) defined below:

J(f) = 1/2‖g−Hf‖2 (8)
f̂ = arg min

f
J(f) (9)

where ‖.‖2 is L2 norm. In the case of the twice scans or
triple scans, H is rewritten as

H=
[
H1
H2

]
, or H=

H0
H1
H2


respectively, where H0, H1, and H2 are the system matri-
ces of the scans Q0, Q1, and Q2, separately. In case of the
twice, the gradient ∇J(f) and the optimal step α̂ of ILS
are deducted as follows:

∇J(f) = HT
1 (H1f − g1) + HT

2 (H2f − g2) (10)

α̂ = ‖∇J(f)‖2

∇J(f)T (HT
1 H1 + HT

2 H2)∇J(f)
(11)

where HT
i are the backprojections, i = 1, 2, g1 and g2 are

the mesurements of the scans Q1 and Q2.

IV. Simulation studies

The proposed methods of image reconstruction of the
whole object from the truncated data are evaluated by the
noise-free and noisy simulated data. The geometry config-
uration of our CT scanner fits for dental imaging, R and D
are 440 and 690 mms, there are 680 units of the detector
with size of 120 µm, as a result, the achievable image size
by a single circular scan is 52 × 52 mm2. However, in
our simulation, the support size of the standard modified
Shepp-Logan (MSL) phantom (Figure 5) is 72× 24 mm2,
whose attenuation coefficients are defined in matlab, and a
larger simulated jaw (Figure 6) is included in an equilateral
triangle support with side length 90 mm. Twice or triple
circular scans are required to reconstruct the whole object.
Our jaw contains 3 materials to simulate the tissu, teeth
and high attenuated implants with attenuation coefficient
of 0.02, 0.06 and 0.3 mm−1. The fan-beam data was
acquired using our ray-driven projector. To verify a stable
recontruction with the proposed method, the noisy data
was generated with addition of a gaussian noise in the
noise-free fan-beam projections.

The images are reconstructed in 384 × 384 with pixel
size 200 µm. The reconstructed images from the noise-free
fan-beam data of MSL are presented in the left column of
Figure 5. Each half of MSL is accurately reconstructed,
even more the pixels inside the FOV (red dashed arc in
5.(a) and .(c)) from the reduced scan. The ILS method
is able to reconstruct the MSL inside the FOV not only
half of MSL from the reduced scan, as OSEM in [2]. Both
twice reduced scans and twice super-short scans allow to
reconstruct the whole object exactly, in the figure 5.(e) and
.(g). Moreover, the scanning angle of the proposed super-
short-scan decreases by 16.3%, from 184◦ of the reduced
scan (π+2∗γ1) to 154◦ (equations (1) and (2)). To assure
the efficacy of our proposed super-short-scan, we reduce a
bit of its scanning rangs, which is refered to the SS−-scan,
[λ1s − ε λ1e + ε] (clockwise) and [λ1s + ε λ1e − ε], with a
small angle ε (one or two angular steps), in the figure 2.(b).
The reconstruction result is given in the figure 5.(i). The
upper and centre edge of the MSL is contaminated, clearly
in the profil curves of the figure 4.(a). The reconstructed
images from the noisy fan-beam data are demonstrated
in the right column of Figure 5. We achieve the stable
restructions from all the noisy data. The image of SS−-
scan (Figure 5.(j)) and the profile (Figure 4.(b)) show
again that the upper and center edge of MSL is not able to
be reconstructed accurately decreasing the scanning range
of our SS-scans.

The reconstructed images from the noise-free data and
the noisy data of the simulated jaw are given in the left
column of the figure 6.(a)-.(c) and in the right column
6.(d)-.(f). The accurate reconstructions of the whole jaw
are achieved both on the triple short-scans (Figure 6.(a)
and .(c)) and the proposed SS-scans (Figure 6.(b) and
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(a) Noise-free data (b) Noisy data

Fig. 4: Profiles of the reconstructed images of the whole
MSL from SS−-scan (a) noise-free data and (b) noisy data.
The profiles are drawn along the yellow solid line in 5.(a).

(a) Q1 (b) Q1

(c) Q2 (d) Q2

(e) R-scan (f) R-scan

(g) SS-scan (h) SS-scan

(i) SS−-scan (j) SS−-scan

Fig. 5: Reconstructed images from the nois-free fan-beam
data (left column)and the noisy fan-beam data of MSL
(right column). The display window is [0.1 0.3].

.(e)). However the proposed SS-scan requires only the fan-
beam projections of 120◦, which is much less than 187◦

(π+the fan-beam angle 2 ∗ γm) of the short-scan. The
scanning rang using SS-scan decreases by 35.8% compared
to the short-scan. Moreover, the proposed SS-scan is the
minimal scan for the whole jaw reconstruction. If we
reduce a few of fan-beam projections (SS−-scan) with the
scanning ranges [λis+ε λie−ε], i = 0, 1, 2 (Figure 3), some
artifacts appear in the figure 6.(c) and .(f).

V. Conclusion
We propose a simple and efficient super-short-scan al-

gorithm on twice and triple circular trajectories for the
whole object image reconstruction from the truncated
data. The scanning angle decreases by 16.3% in the case

(a) Short-scan (b) SS-scan (c) SS−-scan

(d) Short-scan (e) SS-scan (f) SS−-scan

Fig. 6: Reconstructed images from the noise-free fan-beam
data of the simulated jaw of the different acquisitions (a)
short-scan, (b) SS-scan and (c) SS−-scan. and from the
noisy data (d) short-scan, (e) SS-scan and (f) SS−-scan.
The display window is [0.01 0.07].

of twice super-short scans compared to the reduced scans,
and by 35.8% in the case of the proposed triple super-
short scans compared to the short-scans. Our proposed
super-short scans algorithms could be applied in dental
imaging for a panoramic view of the whole jaw with a small
detector, as well as for a fast scan and reduction of dose in
other applications of CT tomography. Furthermore, these
super-short scans will be easily extended in cone-beam CT
tomography.
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Sampling Analysis of a Dual Source and Dual
Detector CT System

Guangzhi Cao and Jiang Hsieh

Abstract—Dual source and dual detector CT system has
advantage of improved temporal resolution and fast coverage
by sampling an object simultaneously with two source/detector
pairs that are 90 degree apart at high helical pitches. However,
this scan mode can also result in insufficient sampling and hence
image artifacts when helical pitch is very high. In this work,
a detailed analysis on the sampling of a dual source and dual
detector CT system is provided. The sampling efficiency of the
system as a function of helical pitch is discussed. The results
show that the sampling efficiency of the dual source and dual
detector system decreases as the helical pitch increases. There
are regions within the scan FOV that are under-sampled, which
may lead to image artifacts in clinical scans.

I. INTRODUCTION

Helical scanning is a popular scan mode in computed to-
mography (CT) clinical applications due to its fast volumetric
coverage capability. In the past decades, both the detector size
and helical pitch that are used in CT scans have increased
significantly. This continuing progress could enable thoracic
scanning without breath holds. This is of particular importance
for trauma and pediatric cases.

More recently, dual source and dual detector CT systems
have been developed to further improve the temporal resolu-
tion of CT imaging [1]. The improved temporal resolution
is realized by scanning an object simultaneously with two
source/detector pairs that are roughly 90 degree apart at high
helical pitches, and the reconstruction is performed using the
combined projections data. The dual source and dual detector
system reduces the temporal resolution to a quarter (plus
fan angle) of gantry rotation time. The improved temporal
resolution is important to mitigate the motion artifacts which
is challenging to deal with in cardiac applications. However,
the fast helical scan of dual source and dual detector CT
systems can also lead to a significant amount of image artifacts
(other than motion artifacts) as observed in clinical scans when
helical pitch is high. Therefore, it is important to analyze the
sampling pattern of dual source and dual detector CT systems
and understand what is the cause of these image artifacts that
are typical in dual source and dual detector CTs.

In this work, a detailed analysis on the sampling of dual
source and dual detector CT systems is provided. The sampling
efficiency of the system as a function of helical pitch is also
discussed. The analysis shows as helical pitch increases, there
are under-sampled regions in the scan field of view (FOV),
which can lead to image artifacts that are generally observed

G. Cao and J. Hsieh are with GE Healthcare, Waukesha, WI USA. Send
correspondence to guangzhi.cao@ge.com.

Fig. 1. Scan geometry of a dual source and dual detector CT system. The x−y
coordinates correspond to an object’s axial plane, and the z-axis corresponds
to the object moving direction.

in high pitch helical scans of dual source and dual detector
CT systems.

II. METHODS

A. Notation

The two source trajectories in a helical scan of a dual source
and dual detector CT system can be expressed as

s1(β) = (R sinβ,R cosβ,
H

2π
β), β ∈ [βs, βe] (1)

s2(β′) = (R sinβ′, R cosβ′,
H

2π
β′), β′ = β +

π

2
, (2)

where R is the radius of the helical source trajectory, βs and
βe correspond to the starting and ending view angles of the
helical trajectory of the first source/detector pair, denoted as
A, and H is the distance traveled by each source per rotation
along z-axis. The normalized helical pitch, denoted as h, is
defined as the ratio of H over detector height at ISO, denoted
as D, i.e.

h =
H

D
. (3)

Figure 1 shows an illustration of the source trajectories of a
dual source and dual detector system. In practice, the second
source/detector pair, denoted as B, has a smaller scan field of
view (FOV) due to space and other design constraints.
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B. Fan-To-Parallel Rebinning

It is common for reconstruction algorithms to implement
the reconstruction in the so-called cone-parallel geometry that
can be obtained through row-wise fan-to-parallel rebinning
in the native cone-beam geometry [2]. In the rebinned cone-
parallel geometry, any projection data p can be specified by
the cone angle α, view angle β and orthogonal distance t from
the ISO-ray. Therefore, we can re-parameterize the projection
data as p(α, β, t) in the cone-parallel geometry. Note that
after row-wise cone-parallel rebinning, the curvature of the
resultant virtual detector is inverted and the 1D ramp filtering
in reconstruction is applied along the tangential direction of
the helical source trajectory, which can significantly improve
reconstruction accuracy.

In the dual source and dual detector CT system, the rebin-
ning process is performed separately for each source/detector
pair as in a single source and single detector system. In the
following section, the sampling pattern of dual source and
dual detector systems is analyzed in the rebinned cone-parallel
geometry.

C. Sampling Pattern and Image Artifacts

First, let us look at the sampling pattern at one view angle.
In Fig. 2, the measurement from two neighboring half turns
at one view angle is shown for three different pitch values.
All the measurement data are projected on to a flat plane that
passes the ISO center. Here we assume that detector A has
a scan FOV of 500mm, and detector B has a scan FOV of
350mm. The height of the detectors is normalized to helical
pitches in the figure to generalize the sampling analysis. The
blue region represents the measurement of detector A in the
current half turn, the brown region represents the measurement
of detector B after 90 degree rotation in the current half turn;
and the green region represents the measurement of detector
A in the next half turn which is labeled as Ā. We use the
pitches h = 1.2, 2.2 and 3.2 as examples of low, middle and
high pitches.

1) Pitch 1.2: From Fig. 2(a), it can be seen that at pitch 1.2
there is no region of missing measurement within the 500mm
FOV. Even without the small detector B, the sampling is still
complete. Actually there is a significant overlap between these
three views, which means the measurement is over-complete.
In this case, as long as an object is completely within the
large scan FOV, any standard reconstruction algorithm, such
as FDK, with an appropriate view weighting, would result in
good image quality.

2) Pitch 2.2: From Fig. 2(b), it can be seen that at pitch 2.2
there is an area of missing measurement within the 500mm
FOV, but the measurement is complete within the 350mm
FOV of detector B after combining all these three views. In
this case, if an object is completely within the small scan
FOV, any standard reconstruction algorithm would result in
good image quality. However, if an object contains any region
that is outside the small scan FOV, these regions may not be
correctly reconstructed due to missing measurement. Since this
is resultant from the limited detector size in channel direction
(i.e. x-axis), the corresponding artifacts is called x-truncation

(a)

(b)

(c)

Fig. 2. Projection data from two neighboring half turns at one view angle in
cone-parallel geometry in a dual source and dual detector system: (a) Pitch
1.2; (b) Pitch 2.2; (c) Pitch 3.2.

artifacts. The x-truncation artifacts would even be extended
further into the neighboring regions within the small FOV due
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to the ramp filter that is used in reconstruction. See [3], [4]
for detailed analysis and possible mitigation for this type of
truncation artifacts.

3) Pitch 3.2: From Fig. 2(c), it can be seen that at pitch
3.2 even within the 350mm FOV there is a wedge that is
not measured by any of the three views. This means that
the measurement at this view angle is incomplete for the
small FOV. These wedges of missing measurement have to
be extrapolated along the detector row direction (i.e. z-axis)
in reconstruction. This generally introduces the z-truncation
artifacts. The size of the wedges increases as the helical
pitch increases, and it rotates from view to view along the
helical scan trajectory. See [5] for similar analysis and possible
mitigation for this type of truncation artifacts.

The fact that measurement is not complete within the small
FOV at pitch 3.2 in a dual source and dual detector system
can also been visualized in image space. Figure 3 shows the
sampling pattern of a single image slice at different z locations.
The intensity of the image represents the view angle range of
project measurement in radian that covers the given pixels.
Therefore, if a pixel is covered by less than one π of views
(i.e. 180 degree) , it is under-sampled and truncation artifacts
would be expected in reconstruction. The radius of the circle
corresponds to the small FOV of detector B. Within the small
FOV, most of the pixels get sufficient sampling. However, there
are pixels within the small FOV get under-sampled, i.e. they
are measured by less than 180 degree of views. These missing
measurements correspond to the wedges of incomplete data
in Fig. 2(c). As it can be seen, the under-sampled region
rotates along the z-axis. Figure 4 shows the sampling pattern
in the reformatted slice. Only the pixels that are completely
sampled (i.e. ≥ 180 degree of views) within the small FOV
is visualized.

III. EXPERIMENTAL RESULTS

Experiments were performed to demonstrate the effective-
ness of the sampling analysis of dual source and dual detector
systems as discussed above. Two phantoms were scanned at
pitch 1.2 and 3.2 on a commercial dual source and dual
detector system, respectively. Figure. 5(a) (b) and (c) are
the image results at pitch 1.2 reconstructed in the FOV of
the large detector (500mm). Figure. 5(d) (e) and (f) are the
image results of the same slices at pitch 3.2 reconstructed
in the FOV of the small detector (332mm). Comparing the
results at the two pitches, it can be seen that there is a
significant amount of image artifacts introduced at pitch 3.2.
The increased artifacts confirm our analysis of under-sampled
regions in the projection when the helical pitch is high.

IV. CONCLUSION

In this work, a detailed analysis on the sampling of a
dual source and dual detector CT system is provided. The
sampling efficiency of the system as a function of helical pitch
is derived. Results show that the sampling efficiency of a dual
source and dual detector system decreases as the helical pitch
exceeds a threshold. In such cases, there are region within
the scan FOV of the smaller detector that gets incomplete

Fig. 3. Sampling pattern of a dual source and dual detector system in axial
slices at different z locations at pitch 3.2. The z locations of the images
correspond to: (a) β = β0. (a) β = β0 + π/2. (a) β = β0 + π. (a) β =
β0 + 3π/2. The intensity of the image represents the view angle range of
project measurement in radian that covers the given pixels. The pixels in dark
are under-sampled. The radius of the circle is equal to the small FOV of
detector B.

Fig. 4. Sampling pattern of a dual source and dual detector system at pitch
3.2 in 3D view. Only the pixels that are completely sampled within the small
FOV is visualized.

sampling, which usually leads to increased image artifacts in
clinical scans.
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Fig. 5. Image acquired in a dual source and dual detector CT system: (a)(b)(c) Image acquired at pitch 1.2 with a FOV of 500mm; (d)(e)(f) Image acquired
at pitch 3.2 with a FOV of 332mm. (W/L = 400/40)
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Quantitative Uniformity of Iodinated Contrast
Across the Z-Coverage of Large Cone-Angle CT

Hewei Gao, Adam Cohen, and Yasuhiro Imai

Abstract—For multi-detector computed tomography (CT) with
a Z-coverage as wide as 160 mm in axial scan, a large cone angle
is required. The increased heel effect in the X-ray source present
a new challenge, which may significantly affect CT number
uniformity across the Z-coverage if not appropriately overcome.
A native spectral solution has been developed to address the heel
effect as well as other spectral issues. It is able to significantly im-
prove the quantitative uniformity of iodinated contrast across the
Z-coverage, and reduce other common physics-induced artifacts.
In this paper, a comparative study is conducted to analyze the
CT number uniformity on GE Revolution CT scanner operated
at 80, 100, 120, and 140 kV, using a custom water phantom
inserted with three tubes that are filled with three levels of
iodine concentrations. Based on this phantom study, thanks to the
advanced spectral solution, Revolution CT system is capable of
improving quantitative uniformity of iodinated contrast down to
within 7 Hounsfield Units across the whole 160 mm Z-coverage
for scanning kV’s and iodine contrast concentrations that are
commonly used in clinical applications. Good uniformity is also
achieved in a clinical cardiac CT angiography study.

Index Terms—CT number uniformity, heel effect, spectral
correction

I. INTRODUCTION

THE polychromatic X-ray spectrum is a fundamental issue
for conventional computed tomography (CT) as beam

hardening occurs when the lower energy X-ray photons are
attenuated more than those with higher energies, thus in-
creasing the mean energy of the remaining X-ray photons.
Different materials usually have different spectral response.
So the conventional single-material beam hardening correction
methods (e.g., water correction) that are commonly employed
in clinical CT are not enough to handle dense materials such as
iodine and bone [1]–[4], resulting in residual artifacts between
high density objects.

For large cone angle CT system, the increased heel effect
becomes a new challenge as well due to the fact that X-rays at
smaller incident angles are attenuated more by the anode target
itself than those at larger angles. As a result, the X-rays coming
out of the target are harder at one detector side than the other.
Due to the way the X-ray tube is placed in clinical CT system,
the heel effect usually affects the imaging performance in the
Z direction. It could easily cause more than 20 Hounsfield
Units (HU) CT number shift across the Z-coverage with a
moderate iodine concentration if no appropriately corrected,
degrading the CT quantitative uniformity that is critical in
perfusion applications.

GE Revolution CT scannercan acquire patient data in axial
mode over 160 mm collimation in the Z direction. To achieve

All authors are with the GE Healthcare, Waukesha, WI 53188 (E-mail:
gaoh@ge.com).
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Fig. 1. Challenges in X-ray physics for a wide cone CT system.

such a wide coverage, a large cone angle is required. The
Revolution CT system includes a native advanced spectral
solution to address the heel effect as well as other spectral
issues. It can significantly improve the quantitative uniformity
of iodinated contrast across the Z-coverage, and reduces
common artifacts caused by beam hardening. This paper is
to present the performance of the CT number uniformity by
the Revolution CT spectral solution.

II. REVOLUTION CT SPECTRAL SOLUTION

Large cone angles present the following two challenges in
X-ray physics: 1) more scattered photons traveling toward the
detector, 2) a larger variation in the X-ray spectra due to the
increased heel effect, as illustrated in Fig. 1. Both the scatter
and the spectral issues could significantly affect CT image
quality [1], [5]–[7], leading to shading, cupping and ghosting
artifacts in reconstructed images, as well as CT number shift
and low contrast-to-noise ratio.

In Revolution CT system, a three-dimensional (3D) anti-
scatter grid has been developed to provide a powerful na-
tive hardware-based solution for scattered radiation [8]. With
respect to the heel effect, there is no good hardware-based
solution without a severe sacrifice in X-ray photon flux [9].
A native spectral solution therefore has been developed to
address not only the heel effect but also other spectral artifacts
caused by patient attenuation and the non-uniformity of detec-
tor spectral response. In conjunction with 3D collimator, this
significantly reduces artifacts in high atomic number materials
such as iodinated contrast, bone, or other dense objects.

The spectral solution works in a straightforward way as
illustrated in Fig. 2. First, a set of intermediate CT images
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Fig. 2. The flow diagram of the Revolution CT spectral solution.
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Fig. 3. Iodine-rod phantom used for quantitative uniformity study. Left:
photograph; middle: dimension; right: CT image reconstructed in-plane.

are reconstructed from measured projection and then used for
material characterization that follows. Once beam hardening is
estimated and removed, by using the spectral model that comes
from sophisticated calibration and physics modeling, final CT
images will be reconstructed. Iterative corrections for multiple
materials can also be applied if needed.

III. EVALUATION METHOD

To evaluate the HU uniformity across the 160 mm Z-
coverage in axial scan mode, a custom phantom (as shown
in Fig. 3 was scanned on Revolution CT system. It has 196
mm in height and 245 mm in diameter. There are 3 tubes
symmetrically inserted in the phantom that can be filled with
liquid. In our evaluation, we filled water in the tank and three
different iodine concentrations (corresponding to about 230,
290 and 330 HU at 120 kV) in the tubes. Thanks to its
appropriate size and structure, the phantom could generate
apparent shading and cupping artifacts, as well as HU non-
uniformity in the Z direction. It was scanned at four kV’s that
are commonly used in diagnostic mode: 80, 100, 120 and 140
kV.

All images were reconstructed using a standard kernel. As
the heel effect changes monotonically from one detector side
to another, the HU values of the same dense material , in
general, vary monotonically along the Z direction as well. To
measure the HU uniformity quantitatively, three positions in
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Fig. 4. The three Z-positions selected for evaluation.

the Z direction (“CENTER” and two “EDGES”) are selected ,
among which the maximum difference are computed and used
as our figure of merit, i.e.,

∆ = max (HUA, HUB , HUC) − min (HUA, HUB , HUC)

where HUA, HUB and HUC represent the averaged CT
numbers (over 5 mm thickness) in the three Z-positions as
shown in Fig. 4. The smaller the ∆ value is, the better the
HU uniformity is.

It is worth noting that in order for a side-by-side com-
parison, a patch to the Revolution Reconstruction console
is temporally added to allow disabling the spectral solution
that otherwise runs natively on Revolution CT scanner in
diagnostic mode.

IV. RESULTS

A. A Phantom Study

For the three iodine rods inserted into the water phantom,
three regions of interest (ROIs) are evaluated, respectively,
without and with the Revolution spectral solution. The refor-
matted images in Fig. 5 show the improvement of the iodine
HU uniformity with the Revolution spectral solution turned
on. Good HU uniformity also comes with removal of shading
and cupping artifacts, as presented in Fig. 5 as well.

The quantitative uniformity measured by the CT number
different across the whole 160 mm Z-coverage for the three io-
dine rods at 80, 100, 120 and 140 kV is plotted in Fig. 6, which
demonstrates that, thanks to the advanced spectral solution,
Revolution CT system is capable of improving quantitative
HU uniformity of iodinated contrast down to within 7 HU
across the whole 160 mm Z-coverage for scanning kV’s and
iodine contrast concentrations commonly used.

B. A CCTA Study

A clinical cardiac CT angiography (CCTA) study on Rev-
olution CT scanner are also taken as an example to show
the quantitative uniformity of the system in reality. Figure 7
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Fig. 5. Coronal/sagittal images of the iodine rods (left), axial images of the
phantom (right), with the Revolution spectral solution turned OFF (top) and
ON (bottom).

Fig. 6. CT number difference across the whole 160 mm Z-coverage.

shows clinical CCTA images on Revolution CT scanner by a
single axial scan. ROIs were selected in both top and bottom
regions of descending aorta (top images), and the chamber
to ascending aorta (bottom images). In the top images, the
averaged CT numbers of the ROIs show CT number shit across
the Z-coverage are reduced from 24 HU to 1 HU with the
Revolution CT spectral solution turned on. While they are
reduced from 41 HU to 2 HU in the bottom images. This
clearly demonstrates the capability of Revolution CT system
in maintaining good quantitative uniformity across the whole
Z-coverage in practical applications.

V. CONCLUSION AND DISCUSSION

The increased heel effect for wide Z-coverage CT system
presents a new challenge in CT correction and reconstruction.
The unique image chain on GE Revolution CT scanner features
an advanced spectral solution to improve quantitative unifor-

mity of iodinated contrast. It can reduce common physics-
induced artifacts from iodinated contrast, bone, and other
dense objects as well. In tests performed on this evaluation the
results were within 7 HU across the whole 160 mm Z-coverage
for scanning kV’s and contrast concentrations commonly used
in diagnostics.
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Quantifying Hotelling Observer Performance for
Detection of Small Signals in CT Images Produced

by Linear Reconstruction Algorithms
Adrian A Sanchez1, Emil Y Sidky1, and Xiaochuan Pan1,2

Abstract—We present a formalism for computing Hotelling
observer (HO) task performance metrics for detection of small
signals in CT. The approach put forward is based on the
restriction of the reconstruction to a region-of-interest containing
the signal, wherein the HO metrics can be computed exactly.
The method is illustrated for the detection of microcalcifi-
cations of varying size in dedicated breast CT. The results
are compared to channelized Hotelling observer (CHO) results
employing Laguerre-Gauss channels, as well as the results of a
single human observer for reference. The proposed methodology
slightly outperforms the CHO approach and has advantages
in terms of computational efficiency. Both the HO and CHO
methods substantially overestimate human performance, however
both model observers investigated are capable of predicting the
general shape of a human’s performance curve as a function of
microcalcification size.

I. INTRODUCTION

The most meaningful metrics of image quality are predictive
of the utility of an image with respect to a certain task. In
some cases, one can make direct measurements of humans’
performance of the relevant task, thereby obtaining a measure
of the quality of the images used. However, human observer
experiments can be time consuming and expensive, making
them unsuited to many applications, such as the optimization
of multiple imaging system parameters. Further, human ob-
server experiments have an inherent degree of variability, both
between observers and even for a single observer.

In order to address some of the shortcomings of human
observer experiments, many researchers have employed math-
ematical model observers instead. One such observer is the
Hotelling Observer (HO), which is the optimal linear observer,
meaning that it employs an optimal linear combination of
the available measurements to perform a given task [1], [2].
The HO often constitutes a useful upper-bound on human
performance[3], [4], [5], however its use in CT is limited by
the nature of the CT image covariance matrix. Specifically,
the image covariance matrix must be inverted to calculate
HO metrics, and in the case of CT, this matrix can be large
(∼ 106 × 106), highly non-diagonal, and non-circulant.

In order to address the dimensionality issue of the image
covariance matrix, some authors have proposed the use of
efficient channels. Here, we present an alternative approach for
small signals, wherein only a region of interest (ROI) around

1The University of Chicago, Department of Radiology, Chicago, IL 60637
2The University of Chicago, Department of Radiation and Cellular Oncol-

ogy, Chicago IL 60637

the signal is considered, and the resulting image covariance
can be stored in computer memory and directly inverted. By
fully accounting for inter-pixel covariances within the ROI, we
hypothesize that HO metrics for detection of small signals can
be more accurately approximated and can be obtained more
efficiently than with the use of efficient channels. We demon-
strate the use of this approach for assessing the detectability
of microcalcifications in dedicated breast CT. A quantitative
comparison to the performance of a single human observer is
included for reference.

II. THE CLASSIFICATION TASK

The task of microcalcification detection can be seen as
a two-class classification task. Given a noisy CT image y,
an observer must classify the image as belonging to either
a “microcalcification-present” class or a “microcalcification-
absent” class. We shall refer to these two classes as H1 and
H0, respectively.

The performance of an observer in a two-class classification
task, such as signal detection, can be quantified by means
of a two-alternative forced choice (2AFC) experiment. In a
2AFC experiment, an observer is presented with two images
y0, which belongs to the class H0, and y1, which corresponds
to H1 [6]. The observer then computes a scalar test statistic
t(y), commonly referred to as the decision variable, for each of
the two images. The observer then assigns the signal-present
decision to the image that produces the higher value of the
decision variable. For each decision made, the trial is assigned
a score of either 1, signifying a correct decision has been made,
or 0 for an incorrect decision. The ensemble average of the
scores is then the observer’s proportion of correct decisions,
PC for the detection task. For any decision variable, PC is
equal to the area under the ROC curve (AUC) for that observer
and task. In practice, since we cannot access the full statistical
ensemble of scores, the sample average of scores across many
trials is used as an efficient, unbiased estimator of the true PC .

III. THE HOTELLING OBSERVER

The HO’s test statistic used for classification, t(y), is
computed as a linear combination of image pixel values:

t = wTy y, (1)

where wy is the optimal set of weights for the image pixels,
known as the Hotelling template. The Hotelling template is in
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Fig. 1. In order to classify an image as corresponding to a single hypothesis,
the HO computes the inner product of a noisy image with the Hotelling
template. The resulting scalar test statistic t is then compared to a threshold
value and assigned to a class accordingly. This is the approach of any linear
observer performing a classification task, and the HO is the optimal linear
observer.

turn defined as
K̄ywy = ∆ȳ, (2)

where K̄y is the average of the image covariance matrix
under the two hypotheses, and ∆ȳ is the mean difference
between images from the two hypotheses. Since we assume a
signal-known-exactly, background-known-exactly (SKE/BKE)
paradigm, ∆ȳ can be obtained simply through simulation
of noiseless images. The process of HO classification is
outlined schematically in Fig. 1. Note that noise in the images
introduces statistical variability in the outcome of the test
statistic for each hypothesis. The task of the HO can then
be seen as the construction of a linear test statistic which
has maximally separated statistical distributions under the two
hypotheses.

In this work, we considered the data vector g, which
represents the line-integral data obtained after applying the
negative logarithm to the original projection data. Since we are
restricting our discussion to CT images resulting from linear
reconstruction algorithms, the action of these algorithms on g
is fully captured through multiplication with a reconstruction
matrix A, so that the image y is given by

y = Ag (3)

Ref. [6] then provides the useful result that the image covari-
ance matrix Ky is related to the covariance of the projection
data vector Kg by

Ky = AKgA
†, (4)

where the superscript † denotes the Hermitian conjugate, and
reduces to a matrix transpose since we consider the matrix A
to be real.

In order to address the issue of large dimensionality of
Ky , we restrict the image to a smaller circular ROI within
a 31 × 31 pixel2 image containing the signal of interest.
Given that there are 128 projection views simulated, along
with 1590 detector bins, this implies that the matrix A has
dimension 312× 203,520. This matrix can be stored directly
in computer memory on most systems, as can the resulting Ky

matrix with dimension 312×312. The image covariance matrix
can then be inverted via a Moore-Penrose pseudo-inversion or
by any direct matrix inversion method in that event that it
is full rank. In practice, one can construct the transpose of
the reconstruction matrix, AT , column-wise, which requires
O
(
n2

pix

)
operations, where npix is the number of pixels in

the ROI (the matrix AT has npix columns, the determination
of each of which requires the equivalent of a single back-
projection).

The noise model we assumed in this work is independent,
zero-mean Gaussian noise added to the line-integral data
vector g. The variance of the data was based on the CT data
noise model put forward by Barrett and Swindell [7]. This
noise model approximates the variance in the line integral data
g (after applying the negative logarithm) as:

Var {gi} =
1

N̄i
+

1

N̄0
(5)

where N̄0 is a constant representing the mean number of
photons incident on and absorbed by the detector in an air
scan, and N̄i is the mean number of photons incident on the
ith detector pixel transmitted through the numerical phantom.
The data covariance matrix Kg is then given by

(Kg)i,j =

{
eḡi+1
N̄0

: i = j

0 : else.
(6)

where (Kg)i,j = Cov {gi, gj} and ḡi is the mean value of
gi. N0 was set to approximately 140,000 per detector pixel
per view, based on the mean flux of photons from an 80kVp
setting necessary to produce the same dose in a 14cm diameter
breast as two-view mammography [8].

Equipped with this noise model, we can then compute all
of the relevant quantities for the HO. Specifically, since the
data we consider are Gaussian-distributed, the HO’s PC can
be computed as

PC =
1

2
+

1

2
erf
(

SNRy
2

)
, (7)

where
SNR2

y = wTy ∆ȳ (8)

is the HO’s SNR.

IV. EFFICIENT CHANNELS

One potentially effective means of reducing the dimension-
ality of the covariance term is a judicious selection of efficient
channels. With prior knowledge of the nature of the signal to
be detected and the background statistics, one can select a new
basis in which to express the reconstructed image which re-
quires relatively few basis functions (channels) and still largely
preserves the separability of the two distributions t (y0) and
t (y1). Since the microcalcifications we model are circularly
symmetric, we employ Laguerre-Gauss channels, which have
been demonstrated to efficiently and accurately approximate
the HO performance for various circularly symmetric signals
[6], [9].
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The resulting observer is termed the channelized Hotelling
observer (CHO), and its template is defined in channel space
as

K̄vwv = ∆v̄, (9)

where ∆v̄ is the mean difference in the channel outputs from
the two classes, ∆v̄ = UT∆ȳ, and U is a matrix whose
columns are discretized versions of the channel functions. The
corresponding covariance matrix and CHO SNR are then given
by

Kv = UTKyU (10)

and
SNR2

v = wTv ∆v̄, (11)

respectively. The CHO PC is then computed as in Eqn. 7.
Direct computation of Kv requires O (Npix ×NC) opera-

tions, where Npix is the number of pixels in the full image,
and NC is the number of channels used. In our case, we
found maximal CHO performance with at least 20 channels.
However, given the computational requirements of comput-
ing HO performance within an ROI given above, this still
corresponds to a roughly 75-fold increase in computational
demands relative to the ROI HO outlined above.

V. HUMAN OBSERVER STUDY

In order to provide a reference for the model observer
results, a human volunteer performed a 2AFC experiment for
detection of microcalcifications using images simulated with
the same system, noise, and phantom parameters used in the
model observer studies. The human observer performed 300
2AFC trials for each of five microcalcification sizes ranging
from 100µm to 200µm. Three signal locations were consid-
ered, as discussed below for the HO and CHO experiments.
In addition to the two image choices, y0 and y1, presented
to the observer, the reconstructed signal was also shown
accompanying each pair of images. Ten trials were performed
preceding the 300 recorded trials for each microcalcification
size as training for the observer. The images were windowed
and leveled so that the level was roughly centered on the
mean pixel value and the window width roughly corresponded
to two-thirds of the full range of pixel values. The specific
window used was [0.0213, 0.024]mm−1.

In order to compute a confidence interval (CI) for the true
PC , we used Papoulis’s [10] expression for estimating the
CI of a Gaussian-distributed estimator when the variance of
the estimator is unknown. Namely, we use the fact that the
probability

P

{
P̂C −

s√
n
z1−δ/2 < PC < P̂C +

s√
n
z1−δ/2

}
> 1− δ = γ

(12)

where δ is the confidence level, γ is the confidence coeffi-
cient, s is the sample standard deviation, zu denotes the uth
percentile of the standard normal density, and n is the number
of trials (300). 95% confidence intervals for PC were then
found by setting γ = 0.95 and evaluating Eqn. 12.

Fig. 2. The proportion of correct decisions for the HO, CHO, and human
observer are shown as a function of the microcalcification size simulated.
Error bars on the human performance denote 95% confidence intervals.

VI. SIMULATION PARAMETERS

The specific CT system simulated in this work is based on
the system simulated in Ref. [11]. We model a flat-panel fan-
beam system with a source-to-detector distance of 80cm, and
a source-to-axis distance of 60cm. We consider 128 projection
views equally spaced over 2π degrees and an array of 1590
detector pixels spaced over a detector width of approximately
31.8cm, for a detector pixel width of 0.2mm. For image
reconstruction, the circular field-of-view is then inscribed in a
(1659 pixel)2 image array, with square pixels of width 0.1mm.
Finally, a 0.4mm x-ray focal spot was modeled by convolving
the projection data with a rect function. FBP reconstruction
was used, along with a 2D Butterworth filter applied to the
reconstructed images. The Butterworth filter was of order 5.0,
with a cutoff of 0.25mm−1.

Although only an ROI was considered for computation of
∆ȳ, for accurate noise modeling, a full breast phantom was
considered in the calculation of the data covariance matrix
Kg . The breast phantom used was a uniform circle with a
7.0cm radius. The background was uniform with an attenua-
tion value midway between adipose and fibro-glandular breast
tissue [12]. The microcalcifications were circularly symmetric
Gaussian functions with full widths at half-maximum defined
by the microcalcification size and peak attenuation values
equal to that of calcium. The attenuation was scaled with the
inverse of the microcalcification diameter for diameters less
than 1.0mm to account for linear partial volume averaging
within the 1.0mm thick slice. Finally, the location of the
microcalcification was set to the center of the field of view,
2.0cm from the center, and 4.0cm from the center, and the
corresponding HO and CHO results were averaged across
signal locations. This is equivalent to a signal-known-exactly-
but-variable (SKEV) paradigm.
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Fig. 3. Left: The reconstructed image of a 100µm microcalcification at the
center of the FOV. Middle: The HO template for detection of the signal shown
in the top row, when the reconstruction is restricted to a 31×31 pixel ROI.
Right: The CHO template for detection of the microcalcification. The area of
the images shown is the same in all three cases.

VII. RESULTS

The performance of the HO, CHO, and human observer
are shown in Fig. 2 in terms of PC for a range of microcal-
cification sizes. Error bars corresponding to 95% confidence
intervals are shown for the human observer. Clearly, both the
HO and CHO establish upper bounds on the human observer,
but are not quantitatively predictive of human performance
in this case. Although the significance of the disagreement
is lessened somewhat by the fact that only a single human
observer was used, it is worth noting that the human observer
agreed closely with the detection performance predicted by
Ref. [11]. More importantly, the HO was qualitatively pre-
dictive of the human’s performance, suggesting that both the
HO and CHO could potentially be used for rank ordering of
tasks, system parameters, or reconstruction options in terms
of human performance.

The fact that the ROI HO outperformed the CHO (which
was based on the full reconstructed field-of-view) implies that
the HO acting on the small ROI performed more closely to the
true HO for the full image than did the CHO. The improved
accuracy of the ROI method relative to efficient channels,
taken together with the improvements in computational ef-
ficiency, imply that the ROI approach is likely preferable for
detection performance evaluation for small signals. Further, the
formulation put forward in this work is entirely general in that
it makes no assumptions regarding the structure of the signal
to be detected or of the Hotelling template. Finally, there is a
further benefit to the ROI approach, which is that the efficient
channels used here employ a scaling factor which must be
determined through an optimization of the CHO performance
for a given signal, and the CHO must also be optimized in
terms of the number of channels used.

Fig. 3 shows the mean difference image between classes,
∆ȳ (left), along with the templates for the HO (middle) and
CHO (right). Inspection of the templates for the HO and CHO
reveal one limitation of the CHO, which is that it assumes that
not only the signal, but also the template, is circularly symmet-
ric and therefore expressible through the radial Laguerre-Gauss
functions. In our case, the reconstructed signal was circularly
symmetric, but based on the template results shown in Fig.
3, this clearly isn’t a guarantee that the optimal template also
possesses equivalent symmetry properties.

VIII. SUMMARY

We have demonstrated the use of the Hotelling Observer for
assessment of microcalcification detection performance in a
dedicated breast CT system. For small signals, the calculation
of image covariance can be restricted to an ROI, and in
the case investigated here, this is sufficient to outperform
the use of Laguerre-Gauss channels in terms of accuracy for
determining HO performance metrics. Taken with the fact that
there is a substantial improvement in terms of computational
efficiency when using the ROI method, this suggests that the
HO performing in an ROI could be used effectively for rank
ordering of imaging parameters in a task-based framework,
and could potentially be used for system optimization.
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Optimization-based Reconstruction Exploiting
Spectral Information in CT

Xiaochuan Pan, Buxin Chen, Zheng Zhang, Erik Pearson, Emil Sidky, and Xiao Han

Abstract—Interest exists in the development and applications
of new CT systems that can collect multiple sets of data, includ-
ing energy-integrating and/or photon-counting data. Practical
utilities of such systems include improving image quality and,
more importantly, exploiting spectral information for enabling
imaging systems and configurations of clinical significance. In
the work, instead of using data-based decomposition combined
with standard analytic-based reconstruction, we propose an
optimization-based reconstruction method for CT systems with
multiple data sets. The method consists of a linearized data
model, optimization program, and associated algorithm specifi-
cally designed for images resulting from data collected in such CT
systems. Simulation studies using two distinct diagnostic range
kV spectra show the robustness and effectiveness of the proposed
method in correcting for non-linear beam hardening artifacts in
CT images.

I. INTRODUCTION

Spectral CT refers to CT systems that explore and attempt
to recover the underlying spectral properties of materials. As
a result, materials can be differentiated by not only electron
density, but also their energy dependence, leading to enhanced
material contrast and benefiting radiological applications in-
cluding vascular, cardiac, and abdominal imaging [1]–[4].
In addition, by incorporating the spectral properties of the
materials, we can reduce the beam hardening artifacts from
high contrast structures or metal objects [5], [6]. Recent
interests and efforts in developing spectral CT systems that
can collect multiple sets of data, including energy-integrating
and/or photon-counting data, rely mostly on image- or data-
based decomposition combined with standard analytic-based
reconstruction [7]–[12]. While either decomposition method
has certain constraints, the analytic-based reconstruction pos-
sesses additional limitations, especially on sampling condi-
tion [13]. In the work, we propose an optimization-based
reconstruction method that integrates the decomposition into
the reconstruction for CT systems with multiple data sets.
The method consists of a linearized data model, optimization
program, and associated algorithm specifically designed for
images resulting from data collected with such systems. Po-
tential utilities of the developed reconstruction method include
designing, enabling, and optimizing spectral CT systems and
their practical applications. Preliminary simulation studies
using two distinct diagnostic range kV spectra are conducted to
demonstrate the robustness and effectiveness of the proposed
method in correcting for non-linear beam hardening artifacts.

X. Pan is with the Departments of Radiology & Radiation and Cellular
Oncology, The University of Chicago, Chicago, IL 60637 USA.

B. Chen, Z. Zhang, E. Pearson, E. Sidky, X. Han are with the Department
of Radiology, The University of Chicago, Chicago, IL 60637 USA.

II. STANDARD IMAGING MODEL

When the energy spectrum of the X-ray source and detector
response is considered, one can express mathematically the
natural logarithmic of the intensity measured in CT as

gm = −ln

∫
S(E) exp

[
−
∫
L

µ(E,~r)dl

]
dE, (1)

where S(E) denotes the normalized energy spectrum, µ(E,~r)
the linear attenuation coefficient at energy E and spatial
location ~r, and L indicates X-ray path L. It is a well-
known practice to decompose µ(E,~r) into contributions from
relevant basis materials. While µ is in general the summation
of contributions from different physical interactions (e.g.,
photoelectric and Compton interactions for a diagnostic X-
ray energy range), each of the physical interactions can be
predominant in certain basis materials. As a result, we consider
in the work a decomposition of µ(E,~r) into T types of basis
materials as

µ(E,~r) ≈
T∑
t=1

µt(E)ct(~r), (2)

where t indexes basis material with µt(E), and ct(~r) is
the contribution from the tth basis material at location ~r.
In practical applications, the number of basis materials is
typically 2 or 3, depending on if the K-edge effect is of interest
in the energy spectrum studied. When additional contrast
materials are considered, the number of basis materials can
be larger than 3 [10].

Further, we can separate µt(E) into a constant plus a
perturbation term [11], as µt(E) as

µt(E) = µ̄t + ∆µt(E), (3)

where

µ̄t ≡
∫
S(E)µt(E)dE and ∆µt(E) = µt(E)− µ̄t.

(4)
Using system spectrum S(E) and knowledge of µt(E) ob-
tained from, e.g., NIST data base, for a given material type,
one can readily calculate the spectrum-averaged term µ̄t and
thus the pertubative, beam-hardening term ∆µt(E).

Substitution of Eqs. (2) and (3) into Eq. (1) yields

gm =
T∑
t=1

µ̄t

∫
L

ct(~r)dl + gBH , (5)
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where the non-linear, perturbation term gBH is defined as

gBH≡−ln

∫
S(E) exp

[
−

T∑
t=1

∆µt(E)

∫
L

ct(~r)dl

]
dE. (6)

Note that, 1) for the sake of convenience and not causing
confusion, we use an equal sign in Eq. (5) even though
the decomposition in Eq. (2) is an approximation; and 2)
gBH can be estimated from knowledge of ct(~r) using the
above Eq. (6). This observation is particularly important, as
discussed in Sec. VI, for the generalization of the optimization-
based reconstruction developed below to correct for the beam
hardening artifacts.

We define g as the contribution from the linear term, i.e.,

g = gm − gBH =
T∑
t=1

µ̄t

∫
L

ct(~r)dl. (7)

The task of image reconstruction is to, from the knowledge of
measurements gm, µt(E) of basis material types, and energy
spectra S(E), determine the basis images ct(~r).

III. OPTIMIZATION-BASED RECONSTRUCTION

Using Eq. (7) as a guide, we develop below an optimization-
based method for image reconstruction from multiple CT data
sets collected. The method consists of a discrete-to-discrete
model, optimization program, and reconstruction algorithm. In
the formulation, we assume that we have S sets of measure-
ments, with typically S ≥ T . The S sets can be obtained in
different ways: (1) dual or multiple X-ray source; (2) single
X-ray source, dual or multiple layer detector; (3) single X-
ray source, dual or multiple kVp switching; (4) single X-ray
source, dual or multiple kVp spin; (5) single X-ray source,
single X-ray photon counting detector with multiple energy
bins; (6) a combination of the above.

A. Discrete-to-discrete Data Model

For a total of S sets of measurements, we use (column)
vector ~g sm of size Ms to denote the sth set of measurements,
each entry of which depicts the measurement of a particular
X-ray. Let vector ~g s of size Ms denote the sth data set, which,
according to Eq. (7), is related to the measurements through

~g s = ~g sm − ~g sBH , (8)

where vector ~g sBH of size Ms denotes the beam hardening
term. For the purpose of developing the data model, we assume
for now that ~g sBH is known, and its estimation and effect on
the reconstruction will be discussed in Sec. VI below. Next, let
(column) vector ~ct of size N denote the tth basis image, each
entry of which represents the image value of a pixel in 2D (or a
voxel in 3D) grid. For a given imaging condition that collects
the sth data set, we use As to denote the system-geometry
matrix, i.e., As is a discrete form of a fan- or cone-beam
projection process:∫

L

ct(~r)dl → As ~ct. (9)

Based on Eqs. (8) and (9), we can develop a discrete-
to-discrete (DD) data model for spectral CT imaging with
multiple data sets:

~G = H ~C, (10)

where ~Gᵀ = (~g 1 ᵀ, ~g 2 ᵀ, · · · , ~g S ᵀ), ~Cᵀ = (~c ᵀ1 ,~c
ᵀ
2 , · · · ,~c

ᵀ
T )

(ᵀ indicates transpose),

H =


µ̄1

1d
1
1A

1 µ̄1
2d

1
2A

1 · · · µ̄1
T d

1
TA

1

µ̄2
1d

2
1A

2 µ̄2
2d

2
2A

2 · · · µ̄2
T d

2
TA

2

...
...

. . .
...

µ̄S1 d
S
1A

S µ̄S2 d
S
2A

S · · · µ̄ST d
S
TA

S

 , (11)

and
µ̄st ≡

∫
Ss(E)µt(E)dE. (12)

Ss(E) is the energy spectrum used to collect the sth set
of measurements, and dst a scalar designed to control the
contribution of basis image ~ct to the sth data set. For example,
it is 1 for conventional energy integrating measurements, while
it can be set to 0 or 1

µ̄s
t

for energy-decomposed data. Here s
runs from 1 to S, and t from 1 to T .

B. Reconstruction Program

Optimization programs can be devised by use of Eqs. (10)
and (11) for reconstruction of the basis images. In this work,
we formulate a constrained total variation (TV)-minimization
program as below

(~c ᵀ1 ,~c
ᵀ
2 , · · · ,~c

ᵀ
T ) = argmin

T∑
t=1

‖~ct‖TV

s.t. Dw(~G) < ε and cti > 0,

(13)

where cti denotes the image value on the ith pixel/voxel of
the tth basis image,

Dw(~G) =
∥∥∥H ~C − ~G

∥∥∥2

w

=
S∑
s=1

∥∥∥∥∥W s

(
As ·

T∑
t=1

µ̄std
s
t~ct − ~g s

)∥∥∥∥∥
2

2

,

is a L2-norm of weighted data difference, W s is a diagonal
weighting matrix of size Ms×Ms, and ε a positive parameter
accounting for the inconsistencies between data vectors and
model. The weighting matrices can be designed for balancing
the contributions to the data distance not only among data
within a set of measurements but also among data from
different sets of measurements.

C. Reconstruction Algorithm

Based upon the ASD-POCS algorithm that was designed for
solving a constrained TV-minimization optimization program
[14], we develop an algorithm to solve the optimization
program in Eq. (13) for ~ct. Specifically, the algorithm uses
a modified projection-onto-convex-sets (POCS) for lowering
the weighted data distance and the steepest descend (SD) for
reducing basis-image TV. We define a composite image vector
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as

~f =
T∑
t=1

µ̄std
s
t~ct. (14)

In the modified POCS portion, the algorithm reconstructs the
composite and basis images as

~f (p,q+1) =~f (p,q) + βwsj ~A
sᵀ
j

gsj − ~A s
j · ~f (p,q)

~A s
j · ~A

sᵀ
j

, (15)

and

~c
(p,s+1)
t − ~c (p,s)

t =
µ̄std

s
t

T∑
t=1

(µ̄std
s
t )

2

(
~f (p,s+1) − ~f (p,s)

)
, (16)

where gsj denotes datum on the jth detector bin in data set
s, and wsj the jth diagonal element of weight matrix W s.
~f (p,q) and ~c (p,q)

t are the qth updates at the pth iteration of
the composite and basis images, while ~f (p,s) and ~c (p,s)

t are
the composite and basis images after all updates from sth data
set at the pth iteration. In general, q increments as (s, j) is
followed by next update (s′, j′). As j loops from 1 to Ms

and s from 1 to S, one completes an iteration and increment
p.

After the modified POCS portion described above, the basis
images ~ct take TV gradient descent steps, with independent
adaptive step size. Upon finishing the calculation of image
TVs, we use these new images as the input in Eqs. (15) and
(16) to repeat the iteration. Therefore, we alternate POCS
and TV-descent update in each iteration. The pseudocode for
the algorithm is present below. The balancing between the
POCS update and TV-descent update and the definitions of
parameters β and αt below can be followd in Ref. [14].

Algorithm 1 reconstruction algorithm for ~ct’s

1: repeat {iteration}
2: for s=1,S do {POCS update}
3: ~f :=

∑T
t=1 µ̄

s
td
s
t~ct

4: ~f0 := ~f
5: for j=1,Ms do

6: ~f := ~f + βwsj
~A sᵀ
j

gsj − ~A s
j · ~f

~A s
j · ~A

sᵀ
j

7: end for
8: for t=1,T do
9: ~ct := ~ct +

µ̄s
td

s
t∑T

t=1(µ̄s
td

s
t )2

(
~f − ~f0

)
10: end for
11: end for
12: for n=1,ngrad do {TV-descent update}
13: for t=1,T do
14: ~ct := ~ct − αt ∗ ∇~ct‖~ct‖TV
15: end for
16: end for
17: until stop

In addition, Eq. (10) can be viewed as a simple linear
system and standard POCS updating formula can be used
in combination with optimized updating order among the

S sets of measurements within one iteration. One of such
is to alternate the update from different data sets to help
accelerate convergence speed. The images shown in Sec. IV
are reconstructed using such alternating POCS algorithm.

D. Necessary Optimality Condition

Even though the developed algorithm have not been shown
to be a mathematical solver of the optimization program in
(13), we have demonstrated, however, in extensive quantitative
studies that the algorithm appears to solve numerically the
program, in the absence of the non-linear term ~g sBH . More im-
portantly, under this consideration, we can derive a necessary
condition on the optimality of the algorithm . This condition,
referred to as the KKT condition [14], can be obtained by
considering the Lagrangian,

L =
T∑
t=1

‖~ct‖TV + λ0

(∥∥∥H ~C − ~G
∥∥∥2

w
− ε
)
− ~λ · ~C, (17)

where λ0 and ~λ are the multipliers. The optimality condition
can be obtained by letting ∇~CL = 0, and expressed as

cα =
~dTV · ~ddata
|~dTV ||~ddata|

→ −1, (18)

where

~dTV = diag(~Cindicator)(∇~C

T∑
t=1

‖~ct‖TV ), (19)

~ddata = diag(~Cindicator)(2HᵀW̄ ᵀW̄ (H ~C − ~G)). (20)

The definition of indicator image ~Cindicator is identical to
that in Ref. [14], and W̄ is a diagonal weighting matrix of
size SMs×SMs in which the diagonal elements are formed
with those of the S diagonal weighting matrices W s. From
knowledge of reconstructed basis images at each iterations,
~ddata and ~dTV can readily be calculated. This necessary
condition requires that two vectors ~dTV and ~ddata are pointing
to opposite directions when the program is mathematically
solved. In addition to information on the reduction of the
weighted data distance and image TV, this condition also
provides a useful check on the numerical convergence of the
algorithm.

IV. RESULTS

Employing the optimization-based reconstruction method
described above, we have conducted numerical phantom stud-
ies with different configurations to acquire multiple data sets.
Here, we show an example of a phantom study for beam
hardening correction using two distinct diagnostic spectra with
100 and 140 kVp. Two basis materials (i.e., T = 2) were used
to represent one water-like, Compton-dominant material and
the other bone-like, photoelectric-dominant material. Two sets
of sinogram (i.e., S = 2) were simulated as the low (100kVp)
and high (140kVp) X-ray spectra travel through the basis
images and stop on conventional energy integrating detectors.
For simplicity, the two sinogram sets have the exactly same
2D fan-beam geometry (i.e. A1 = A2) with a magnification
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(a) (b)

(c) (d)

Fig. 1: Top row: basis image phantoms for the water-
like, Compton-dominant material (a) and the bone-like,
photoelectric-dominant material (b). The display windows are
[0.60, 1.10] and [0.35, 0.55] for (a) and (b), respectively.
Bottom row: composite images composed from basis images
and µ̄’s averaged over the 100kVp spectrum (c) and the
140kVp spectrum (d). The display windows are [0.18, 0.28]
and [0.15, 0.25] for (c) and (d), respectively.

factor of 1.83, a fan angle of 49◦, 1200 sampling angles over
2π, and 800 detector bins. The reconstructed images, as well
as the basis image phantom, are on 2D arrays of 350 × 410.
Following Eq. (12), we can calculate 4 spectrum-averaged µ̄st
and compose two composite image as defined in Eq. (14)
corresponding to the two spectra. The two true composite
images, equivalent to monoenergetic images composed from
basis images, and two true basis images are shown in Fig. 1.

We first reconstructed basis images directly from the beam
hardened sinograms. In other words, ~g sm was used to replace
~g s in the reconstruction program in Eq. (13). It is clearly an
inconsistent linear system and the results are filled with beam
hardening (BH) artifacts surrounding the high constrast bony
structures, as shown in Fig. 2. In addition, a decreased intensity
level in the reconstructed images can be observed with tight
display window settings.

Next, we applied a beam hardening correciton method de-
rived based upon the reconstruction method and reconstructed
basis images free of BH. In specific, Eq. (8) was plugged into
Eq. (13) and the BH term ~g sBH was estimated using Eq. (6)
and subtracted from the measured sinogram. In effect, the BH
perturbation was gradually eliminated from the measurements.
Details abou the BH correction method will be discussed in
Sec. VI. The reconstructed basis images and corresponding
composite images with BH correction are shown in Fig. 3.
Displayed in tight window settings, all images are visually
indistinguishable with the truth. In addition, we report the
normalized image distance to truth, for the combined basis
image vector ~C, as 2×10−1 and 1×10−6 in the reconstructions
without BH correction and with BH correciton, respectively.

(a) (b)

(c) (d)

Fig. 2: Top row: reconstructed basis images without BH
correction. Bottom row: composite images composed from re-
constructed basis images without BH correction. Same display
windows are used as in Fig. 1. Severe BH artifacts and DC
shifts are noticeable in all basis images and composite images.

(a) (b)

(c) (d)

Fig. 3: Top row: reconstructed basis iamges with BH cor-
rection. Bottom row: composite images composed from re-
constructed basis images with BH correciton. Same display
windows are used as in Fig. 1. All images are visually very
close to the truth.

V. CONCLUSION

In the work, we have developed an optimization-based
method for image reconstruction from multiple data sets with
spectral CT systems. Simulation studies using two diagnostic
range kV spectra suggest that the developed method is robust
in adapting to exisiting spectral CT systems. This reconstruc-
tion method does not depend on pre- or post-reconstruction
decompostion, while correcting for the non-linear beam hard-
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ening artifacts, as demonstrated. Further, the method can be
used for assessing the performance upper bound of a variety
of spectral CT systems and their applications. It is thus of use
for exploring and enabling the design and optimization of CT
systems with multiple data sets that aim to explore and attempt
to recover the underlying spectral properties of the objects.

VI. DISCUSSION

An interesting point arises as we draw a close inspection of
the effect of the non-linear BH term ~g sBH . The investigation
of the proposed reconstruction program and algorithm, and
the necessary optimality condition, is made available in the
absence of ~g sBH . However, if we take the non-linear effect
into account, the weighted data distance becomes

Dw(~G) =
S∑
s=1

∥∥∥∥∥W s

(
As ·

T∑
t=1

µ̄std
s
t~ct − ~g sm + ~g sBH

)∥∥∥∥∥
2

2

.

(21)

where

~g sBH = −ln

∫
Ss(E) exp

[
−As

T∑
t=1

∆µst (E)~ct

]
dE, (22)

and
∆µst (E) = µt(E)−

∫
Ss(E)µt(E)dE. (23)

When Eq. (22) is used in Eq. (13), the optimization program
can become non-convex. We have investigated approaches to
solving the non-convex optimization program. One of such
approaches can be summarized to three steps: 1) at an iteration,
~g sBH can be calculated by using Eq. (22) with basis images
reconstructed at the previous iteration, 2) substitution of the
estimated ~g sBH into Eq. (21) makes the optimization program
convex, and 3) the developed algorithm can then be applied
to numerically solving the program by replacing gsj with
(gsmj−gsBHj). Such approach can help to handle the non-linear
effect and generalize the readily developed algorithms that are
mathematically solvers for a convex optimization program in
the absence of the non-linear effect, such as the one in Eq. (13).
Images shown in Fig. 3 are examples of results following this
approach.

In addition, other optimization programs can be devised
to reconstruct the basis images as well. For example, a
constrained TpV-minimization program can be formulated, and
algorithms for numerically solving the program can also be
developed. We are investigating how developed optimization
programs and algorithms respond to the non-linear effect in the
context of evaluation of performance of spectral CT systems
with multiple data sets and plan to report the results at the
conference, along with the analysis of the impact of data noise
on the study.
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C. Bäumer, C. Herrmann, R. Steadman, G. Zeitler et al., “Experimental
feasibility of multi-energy photon-counting k-edge imaging in pre-
clinical computed tomography,” PMB, vol. 53, no. 15, p. 4031, 2008.

[11] Y. Zou and M. D. Silver, “Analysis of fast kv-switching in dual energy
ct using a pre-reconstruction decomposition technique,” in Medical
Imaging. International Society for Optics and Photonics, 2008, pp.
691 313–691 313.

[12] C. Maaß, M. Baer, and M. Kachelrieß, “Image-based dual energy ct
using optimized precorrection functions: A practical new approach of
material decomposition in image domain,” Medical physics, vol. 36,
no. 8, pp. 3818–3829, 2009.

[13] X. Pan, E. Y. Sidky, and M. Vannier, “Why do commercial CT scanners
still employ traditional, filtered back-projection for image reconstruc-
tion?” Inverse Probl., vol. 25, p. 123009, 2009.

[14] E. Y. Sidky and X. Pan, “Image reconstruction in circular cone-beam
computed tomography by constrained, total-variation minimization,”
Phys. Med. Biol., vol. 53, pp. 4777–4807, 2008.

Page 232 The third international conference on image formation in X-ray computed tomography



Tomosynthesis Image Quality Assessment
Based on Micro-CT

Aileen Cordes, Yulia M. Levakhina and Thorsten M. Buzug

Abstract—Digital tomosynthesis (DT) is an X-ray based limited
angle imaging modality. A high in-plane resolution, a low
radiation dose and three-dimensionality make DT a clinically
attractive technology. However, due to incomplete data sampling
image artifacts are unavoidable. The quality of the reconstructed
images is greatly affected by the choice of acquisition parameters
such as the number of projections, the angular sampling distance
and the total angular range. Each of them needs to be optimized
to ensure optimal diagnostic information. This work presents a
novel method to investigate the tomosynthesis performance in
dependence of numerous acquisition and reconstruction parame-
ters. The idea is to use a micro-CT projection data set to simulate
tomosynthesis projections. Because the simulated projections are
based on measured data, they are realistic and include physical
effects such as scatter, noise and beam hardening. At the same
time, the micro-CT reconstruction provides reference images that
allow for a qualitative and quantitative image quality assessment.
An experimental evaluation based on a human finger bone
demonstrates that our method is a valid, easy and flexible tool
for developing optimization rules for tomosynthesis imaging.

I. INTRODUCTION

Digital tomosynthesis is a tomographic technique for gen-
erating a stack of cross-sectional images based on a limited
number of low dose two-dimensional projections taken on
an arc trajectory. This modality overcomes the limitations of
conventional X-ray imaging which suffers from the drawback
of overlapping structures. DT is therefore considered to be
of great potential in a wide range of applications to vari-
ous clinical tasks [1]. It allows for better visualization of
complex anatomic structures and may allow for important
improvements in the accuracy of screening and diagnosis
[2]. But although the benefits of such technology are clear,
tomosynthesis is not without drawbacks. The limited angle
condition of tomosynthesis is associated with a low depth reso-
lution of the reconstructed volume and remaining out-of-plane
artifacts [3]. A successful generation of high quality images
requires a selection of multiple parameters for acquisition and
reconstruction. Each of them needs to be optimized to produce
images with the maximum diagnostic information and a mini-
mum visibility of potential artifacts. Although much effort has
been spent identifying optimal parameter settings in the last
decade, the ideal choice is still unknown. The optimization of
acquisition and reconstruction parameters continues to be an
active area of research. The practical problem is the generation
of suitable datasets with ground truth that reflect the actual

A. Cordes, Y. M. Levakhina and T. M. Buzug are with the Institute
of Medical Engineering, Universität zu Lübeck, Lübeck, Germany (email:
cordes@imt.uni-luebeck.de, levakhina@imt.uni-luebeck.de, buzug@imt.uni-
luebeck.de).

structures within the object to be examined. So far, an image
quality assessment of DT imaging systems is usually based on
physical or anthropomorphic phantoms with known ground
truth. However, the phantom preparation is often difficult
and time consuming. Moreover, the phantoms are typically
composed of simple geometric objects and do not represent
realistic anatomical structures. It is not straightforward to
apply the results to imaging of clinically relevant objects.
Brunner et al. for instance demonstrated that currently used
breast phantoms are no adequate image quality evaluation
phantoms for DT [4]. The use of a simulation software and
digital phantoms provides more flexibility and allows for an
image quality assessment based on full-reference metrics.
But since the simulated tomosynthesis projections are not
based on measured data, it is more difficult to include all
physical side effects such as scatter, noise and beam hardening
[5]. This work presents a novel approach for an evaluation
of tomosynthesis image quality. The method uses micro-CT
projections to simulate tomosynthesis projections. Since the
simulation is based on real measurements, all physical effects
are included. Moreover, the micro-CT reconstruction provides
a realistic image of the structures inside the object and makes
a ground truth reference image available. This way, an analysis
of numerous acquisition and reconstruction parameters can be
performed with both qualitative and quantitative methods.
A detailed description of the transformation between the
micro-CT and the tomosynthesis geometry is given in sec-
tion 2. Experimental results based on a dried human finger
bone are presented in section 3. Finally, the benefits and lim-
itations of the presented method are summarized in section 4.

II. MATERIALS AND METHODS

A. Micro-CT Imaging Geometry

The micro-CT projection images have been obtained using
the micro-CT system SkyScan 1172. The imaging geometry
is illustrated schematically in figure 1. The micro-CT system
basically consists of a cone-beam X-ray source and a two-
dimensional 1.3 MP flat-panel detector. The geometry gives
a focus-detector distance (FDD) of 345.16 mm. The distance
between the source and the isocenter depends on the chosen
magnification factor. For this study, a focus-center distance
(FCD) of 257.6 mm is applied. The image acquisition involves
collection of two-dimensional projection images of the object
under examination which is placed on a rotating specimen
disk. The X-rayed measuring field is approximately 2 cm3 in
volume. During the acquisition, the object rotates over 360◦

with a fixed rotation step of 0.7◦ or 0.9◦.
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Fig. 1. Left: Micro-CT imaging geometry. The object is placed on a rotating specimen disc between a digital flat-panel detector and an X-ray source. Right:
Tomosynthesis imaging geometry. The X-ray tube is moved on an arc trajectory above a stationary flat-panel detector.

B. Simulation of Tomosynthesis Projections

Similar to micro-CT, DT is performed with a flat-panel
detector and uses cone-beam projections taken at varying ori-
entations of the X-ray tube as input for the generation of cross-
sectional images. But while the micro-CT image acquisition
is based on a full 360◦ scan, the angular range is limited in
tomosynthesis. During a tomosynthesis data acquisition, the
X-ray tube is moved on an arc trajectory above a stationary
detector [7]. A simulation of this modality can therefore be
realized by selecting a subset of the micro-CT projection
dataset. Subsequently, these micro-CT shadow images have
to be reprojected onto a virtual tomosynthesis detector. By
a suitable selection of the micro-CT projections, the angular
increment between two projections, the total number of pro-
jections and the orientation of the reconstructed slices can be
varied. The transformation necessary to convert the micro-CT
data into tomosynthesis projections is illustrated graphically
in figure 2. Here, a conversion between the micro-CT detector
and the dark area of the virtual stationary detector located at
distance k from the isocenter is required. A column of the
micro-CT projection image at distance c from the origin of
the image receptor plane is projected onto the virtual detector
according to the following equation

s =
k (c cos(γ) + FDD sin(γ) + cFCD)

FDD cos(γ)− c sin(γ)
, (1)

where s represents the distance from the origin in the horizon-
tal detector plane and γ is the angle at which the projection
image is acquired. Due to the symmetry of the tomosynthesis
acquisition procedure, γ can take values from −α/2 to +α/2,
where α specifies the total angular range of tube motion.
The transformation (1) represents a stretching of the data
in x-direction. Additionally, the individual columns must be
appropriately magnified in y-direction to account for varying
distances from the spot of the tube to the virtual tomosynthe-
sis detector. The scaling factor to account for magnification
differences can be calculated as follows

scale (c) = 1 +
c sin(γ) + k − cos(γ) (FDD − FCD)

cos(γ + θ)
√
FDD2 + c2

, (2)

where
θ = tan−1

( c

FDD

)
. (3)

After performing the transformations (1) and (2) for a total
number of N micro-CT projections, the resulting data repre-
sent a simulated tomosynthesis projection dataset.

C. Experimental Evaluation

Once the tomosynthesis projections are calculated, cross-
sectional images can be reconstructed. Objective full-reference
metrics can then be applied in order to quantify the accuracy
of the tomosynthesis reconstruction. For our study, we
used micro-CT projections of a dried human finger bone1,
a reconstruction algorithm based on the traditional shift-
and-add method and the mutual information as figure of merit.

1) Bone Phantom: The bone phantom represents an
anatomy of fine trabecular structures that are of great interest
in the field of skeletal tomosynthesis imaging. The potential
of DT to assess different pathologies of hands has been
recently demonstrated in [8].

2) Tomosynthesis Image Reconstructions: The traditional
shift-and-add reconstruction algorithm involves shifting and
adding each of the projection images taken at varying X-
ray source positions to produce cross-sectional images at any
height above the detector [9]. By controlling the amount
of shift, planes at an arbitrary depth can be reconstructed
with little computational effort. The amount of shift to bring
structures at distance a from the isocenter into focus is given
by

shift(a) = FCD sin (γ)
k + a

FCD cos(γ)− a. (4)

To improve the visibility of objects within in the plane
of interest, the remaining out-of-focus blurring has to be

1The human cadavers -respectively bodies/heads/arms/legs feet etc. as parts
of cadavers- were used and dissected in this examination under permission
of the ”Gesetz über das Leichen-, Bestattungs- und Friedhofswesen (Bestat-
tungsgesetz) des Landes Schleswig-Holstein vom 04.02.2005, Abschnitt II, 9
(Leichenöffnung, anatomisch)”. In this case it is allowed to dissect the bodies
of the donators (Körperspender/in) for scientific and/or educational purposes.
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reduced. This can for instance be achieved by filtering all
projections with a ramp filter along each row.

3) Figure of Merit: A comparison of the tomosynthesis and
the micro-CT reconstructions can be performed by a quantita-
tive analysis based on full reference methods. A suitable metric
for observing the agreement between the reconstructions is
given by the mutual information [10]. It is defined in terms of
entropy and does not require any prior knowledge about the
relationship between the pixel intensities in both sets of image
data.

III. RESULTS AND DISCUSSION

In order to demonstrate that the proposed method is a
valuable tool to investigate the tomosynthsis performance,
the image quality has been evaluted in dependence of the
angular range, the angular sampling distance and the number
of projections. This has been done qualitatively by means of
a visual inspection and quantitatively by the use of a full
reference metric.

A. Qualitative Visual-Based Evaluation

1) The impact of the angular range α: Figure 3 shows a
micro-CT reference image and corresponding tomosynthesis
reconstructions obtained with a constant rotation step of 0.7◦

and varying tomographic angle α. The tube movement is from
left to right with respect to all images. The reconstructions
demonstrate an improvement in the agreement between the
tomosynthesis and the micro-CT reconstructions with an
increase of α. At small angles, the visibility of structures in
the plane of interest is clearly reduced since structures outside
the plane of interest are less blurred and appear as unwanted
out-of-plane artifacts. This result corresponds to studies
performed using physical phantoms or anthropomorphic
software phantoms [11], [12], [13].

2) The Influence of the Angular Sampling Distance ∆α:
Figure 4 demonstrates the appearance of ripple artifacts in
dependence of the angular sampling distance ∆α. Figures

γ

FCD

k

s

c

virtual detector

µCT detector

x

z
y

Fig. 2. Transformation between micro-CT projections and tomosynthesis
projections.

Micro-CT 

Reference 

Tomosynthesis 

𝛼 = 21°             𝛼 = 42°             𝛼 = 63° 

Fig. 3. Left: Micro-CT reconstruction of a human finger bone. Right:
Tomosynthesis reconstructions using a constant rotation step ∆α = 0.7◦

and varying tomographic angles α.

4(b)-(c) represent a section of the slice highlighted as a white
line in figure 4(a). Figures 4(e)-(f) show the cross-sectional
image marked in figure 4(d). Both slices demonstrate an
increasing impact of ripple artifacts with decreasing sampling
density. However, the artifacts are more prominent in the
second case, since the object size in the direction perpendicular
to the reconstructed slice is larger. As a consequence, the
object orientation should be chosen by taking into account
the thickness of the measured object and the tube direction.
Similar results are presented in [13], [14]. Machida et al. and
Deller et al. demonstrated that ripple artifacts may be reduced
by decreasing the angular step size.

B. Quantitative Evaluation

Figure 5 demonstrates the mutual information in depen-
dence of the total angular range α and the number of pro-
jections N . The two analyzed slices differ from each other
in the maximal distance of structures to the plane of interest.
In figure 5(a) the object size in z-direction is limited by 5.6
mm and in figure 5(b) by 10.6 mm. Both graphs demonstrate
the same tendency. At a constant number of projections,
the mutual information increases first, reaches a maximum
and finally decreases continuously. This result indicates that
with a constant number of projections an enlargement of the
tomographic angle does not necessarily lead to an improved
image quality. This is directly attributed to the fact that
an increase of the tomographic angle is associated with an

(a) (b) Δ𝛼 = 0.7° (c) Δ𝛼 = 3.5° 

(d) (e) Δ𝛼 = 0.9° (f) Δ𝛼 = 2.7° 

Fig. 4. Occurence of ripple artifacts in dependence of the sampling distance
∆α. (b)-(c) show a section of the slice highlighted as a white line in (a),
(e)-(f) show the the slice highlighted in (d).
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Fig. 5. Mutual Information between a micro-CT reference image and tomosynthesis reconstructions in dependence of the number of projections N and the
tomographic angle α. Object sizes in z-direction: (a) 5.6 mm, (b) 10.6 mm

increasing angular step size ∆α. As discussed above, the lower
sampling density is favorable for occurring of ripple artifacts.
Consequently, the tomographic angle with the maximal value
of the mutual information can be understood as a compro-
mise between a greatest possible tomographic angle and an
acceptable sampling density. Furthermore, the graphs reveal a
correlation between the accessible image quality and the object
size in z-direction. With a constant number of projections, the
maximum value is reached at smaller angles as the object size
increases. The greater influence of ripple artifacts for larger
objects results in a shift of the optimal tomographic angle
towards smaller angles.

IV. CONCLUSION

We have presented a novel approach for an evaluation and
optimization of the tomosynthesis image quality. This method
involves a simulation of tomosynthesis projections based on
a micro-CT projection data set. It offers the great advantage
that the simulated tomosynthesis projections are realistic and
include all physical side effects. Slight inaccuracies may only
occur due to the application of interpolation methods. At the
same time, the micro-CT and the tomosynthesis reconstruc-
tions represent identical structures within the object to be
examined. This way, ground truth reference images are directly
available. A qualitative and quantitative analysis of numerous
acquisition and reconstruction parameters can be performed in
order to develop optimization rules for tomosynthesis imaging.
The tomosynthesis image acquisition parameters including the
number of projections, the angular increment between two
projections and the orientation of the reconstructed cross-
sectional image can simply be varied by selecting an appro-
priate subset of the micro-CT projection data set. No further
micro-CT acquisition is required. Furthermore, provided that
the size restriction according to the micro-CT manufacture
specification is taken into account, the test object can be
selected freely according to the requirements and goals of
each specific study. Consequently, an examination of very fine
structures is possible without a difficult and time consuming
preparation of anthropomorphic phantoms. In our experiments,
we used a micro-CT acquisition of a dried human finger
bone. The results demonstrate a huge impact of the number
of projections N , the angular range α, the angular sampling

distance ∆α. In particular, it could be shown that the optimal
parameter selection largely depends on the orientation and the
thickness of the investigated object. This finding corresponds
to results of studies performed with physical or software phan-
toms indicating that the proposed method is a valuable tool for
developing optimization rules for tomosynthesis imaging. At
the same time, the method is easy, flexible and straightforward
to implement.
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Effect of Reconstruction Method on Optimal

Acquisition Parameters for Lesion

Detection-Localization in Digital Breast

Tomosynthesis

Zhihua Liang1,2, Howard C. Gifford2, and Mini Das1

Abstract—Previous work [1] has suggested that the optimal
scan arc and number of projections for lesion detection in
DBT are not greatly affected by the choice of reconstruction
algorithm. We are investigating whether the same can be said
for the task of lesion detection and localization. Our assessment
methodology involves realistic computer simulations with digital
breast phantoms and both human and model-observer LROC
studies. The latter have been carried out with a visual-search (VS)
model that uses gradient-template matching to guide an initial
holistic search. This VS observer is intended as a human-observer
model. Observer results from 2D test images reconstructed with
Feldkamp FBP and iterative, maximum-likelihood methods have
been obtained. Results for the FBP images are discussed in this
abstract.

I. INTRODUCTION

Early detection is important to reduce breast-cancer mortal-

ity. Digital breast tomosynthesis (DBT) has recently gained

FDA approval for clinical use and its potential utility as

an adjunct or replacement for screening mammography is

under investigation. Two-dimensional (2D) digital mammog-

raphy (DM), while relatively simple in acquisition and image

evaluation, suffers from problems with tissue overlap that

reduce lesion conspicuity in dense breasts. DBT overcomes

this issue, but presents other complications related to partial-

angle tomography. Thus, it is critical to carefully assess the

DBT aquisition parameters for a given diagnostic task (mass or

microcalcification targets; detection or detection-localization)

to help ensure optimal detection-to-dose benefits.

Several researchers have investigated the effects of scan arc

β and number of projections P for DBT acquisitions. Among

the evaluation methods that have been applied are artifact

spread functions and modulation transfer functions. Both Zeng

[1] and Chawla [2] have used Bayesian ideal observers for

location-known mass-detection tasks in reconstructed images

as a means of investigating optimal β and P . In [1], the authors

suggest that the optimal β is fairly insensitive to the choice

of reconstruction algorithm. Our objective was to examine the

interplay between reconstruction algorithm and the optimal

parameters when the observer task included mass localization.

Our LROC study involved simulated FBP and penalized

maximum-likelihood (PML) images. Results were obtained

1Department of Physics, University of Houston; 2Department of Biomed-
ical Engineering, University of Houston

with human observers, a visual-search (VS) model observer

[3], and a scanning channelized nonprewhitening (CNPW)

observer. The FBP results are discussed herein.

II. METHODS

A. Breast and Mass Models

The breast phantoms using in this study are anthropomor-

phic volumes designed by Bakic et al. [4] at the University

of Pennsylvania. We have nine unique phantoms in total,

three with approximately 25% volumetric glandular fraction

(VGF), three with approximately 50% VGF, and the remaining

three with approximately 75% VGF. The VGFs for the latter

six phantoms may be physically unrealistic, but do serve to

broaden the range of detection accuracies in our studies.

Each phantom was used to create eight single-lesion (or

abnormal) cases and eight lesion-absent (or normal) cases,

for a total of 9 × 16 = 144 cases. The lesion targets were

homogeneous spheres with an 8.0-mm diameter. The abnormal

cases were created by adding the lesion to the Bakic phantom

prior to the projection imaging. Lesions were randomly posi-

tioned within the fibroglandular compartment of the phantom.

The attenuation coefficients for the masses modeled infiltrating

ductal carcinoma as a function of energy and were based on

empirical measurements.

B. Image Generation

A rigorous computer simulation [5] was used to generate the

DBT imaging data. The projector used Siddon’s ray-tracing

method [6] to model x-ray transmission through the breast.

The subsequent propagation of signals and noise through a

CsI-based amorphous silicon flat-panel detector was based

on a serial cascade model. Both focal-spot blur and scin-

tillator blur were accounted for. Each of the 144 phantom

cases was imaged 33 times, covering the parameters P ∈
{3, 7, 11, 15, 19, 21, 25, 31, 35, 41, 45, 51} for β = 60◦ and P
∈ {3, 7, 11, 15, 19, 25, 35} for β ∈ {15◦, 30◦, 45◦}. Poisson

noise in the projections was consistent with a total dose of

1.5 mGy for each acquisition. The dose was evenly distributed

over the P projections.

The third international conference on image formation in X-ray computed tomography Page 237



C. Reconstruction Method

We analyzed detection task performance for the widely used

Feldkamp FBP method [7] and a penalized ML algorithm [8].

This abstract discusses FBP results only. The 3D reconstruc-

tions are postsmoothed with a 3D Butterworth filter having

a 0.25-pixel−1 cut-off frequency. The 2D test images for the

observer study were produced by extracting image slices that

contained the lesion centers. The neighboring four slices (two

above and two below) were also extracted. These 5 slices were

combined using boxcar smoothing to form the final test image

with a one-mm slice thickness, a process which is also used

in clinic practice. The corresponding slices for normal images

were extracted and combined in the same way.

D. Model Observers

1) Scanning CNPW observer: An observer’s LROC data

for a given 2D test image f consists of a localization r and a

confidence rating λ. The scanning CNPW observer determines

these quantities by first computing a perception measurement

at each location in a given region of interest (ROI). With Ω
representing the set of indices of the pixels in this ROI, the

measurement for voxel j ∈ Ω is

zj = w
t
j [f − b] . (1)

Here, b is the noise-free background corresponding to f and

wj is the jth CNPW observer template. The subtraction of b in

Eq. 1 sets the observer’s relative operating points for assessing

malignancy at the various locations in Ω. Figure 1 shows an

illustrative example of the image processing prescribed by

Eq. 1.

For a given f , the ROI included all breast tissue areas

except for the breast edges. The observer template wj is

shift invariant, composed from the average reconstructed mass

s as computed from a set of 2D training images. Image

sj represents this average mass centered on pixel j. The

template is formed by applying Butterworth filtering to sj and

modulating the result by a set of frequency selective channels.

As with our previous CNPW work [9], three difference-of-

Gaussian channels were used.

The confidence rating and localization for a test image

are respectively drawn from the arg max and max of the zj
measurements:

λ = max
j∈Ω

zj (2)

r = arg max
j∈Ω

zj . (3)

2) VS observer: The VS observer performs the detection-

localization task as two steps, first conducting an initial search

that identifies suspicious locations within Ω, followed by

application of a scanning observer at only those locations. The

CNPW template was used for the scanning. The initial search

can be thought of as a mechanism for adding uncertainty to

the scanning observer, but can actually make the scanning

observer more robust computationally when the mean back-

ground b is not known exactly [10].

The locations of interest in the search were determined with

a gradient template-matching process. The 2D gradient field

of sj is

∇sj = (
∂sj
∂x

,
∂sj
∂y

). (4)

Both field components on the right-hand side of this equation

can be viewed as images having the same dimensions as wj

and f . The gradient vector at the ith pixel is

∇sj(i) = (
∂sj
∂x

(i),
∂sj
∂y

(i)). (5)

Similarly, the gradient vector for location i in f is denoted as

∇f(i) = (
∂f

∂x
(i),

∂f

∂y
(i)). (6)

The VS observer searches for local maxima in the cross-

correlation

vj =

N
∑

i=1

[∇f(i)]
t
[∇sj(i)] (7)

of these two gradient fields. Integer N is the number of pixels

in f . Pixels j which satisfy the inequality vj ≥ α max(vj)
for a fixed threshold α are taken as candidate locations for the

scanning stage. Our results were obtained with the value of α
= 0.95.

Although this VS-observer framework for DBT studies has

been presented previously [3], the exact form of the model

has been changed for this study. The previous version used

normalized-gradient matching and relied on two thresholds.

The results of the current study offer the first detailed valida-

tion of the revised VS observer against human observers.

E. Observer Studies

Three nonradiologists took part in the LROC study, reading

images obtained for a subset of P values and β = 60◦. With

each (P , β) parameter pair, these observers read the 144 cases

as two sets of 18 training images and 54 test images. The

model observers read the same cases for the full parameter

space. Observer performance was assessed on the basis of

Wilcoxon (or empirical) estimates of area under the LROC

curve (AL). Human-observer performances are reported in

terms of the averages over the individual observers.

III. RESULTS

Figure 2 compares the observer performances obtained for

β = 60◦ as a function of P . The highest performance for

each P was obtained with the scanning observer, which is not

affected by anatomical noise. This observer only accounts for

the effects of quantum noise in the images and thus achieves

its highest performances at lower values of P , for which

the counts per projection is greatest. By comparison, the VS

observer demonstrated quantitative agreement with the human

observer. This was partly by design, as the threshold value α
was empirically set based on the observer data. Nonetheless,

the VS and human observers exhibit similar performance

trends for small values of P . Also, changes in P beyond 11

angles had little effect on the VS and human observers.
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(a)

(b)

(c)

Fig. 1: Background subtraction for the model observers. (a) A noisy test image with mass; (b) the corresponding mean

background; and (c) the difference image.
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Fig. 2: Comparison of average human and model-observer

performances for scan arc 60◦ as a function of P . The error

bars represent ± one standard deviation. The uncertainties for

the VS observer (not shown) are approximately the same as

those for the scanning CNPW observer.

Figure 3 presents a subanalysis of the VS and human-

observer data from Fig. 2 in terms of background breast

density (VGF). The lines in the plot denote VS observer per-

formance as a function of P with the 25% (green), 50% (blue),

and 75% (yellow) breast densities. Human performances are

shown as discrete points. Although there are some outliers,

this subanalysis indicates that these observers demonstrated

very similar responses to changes in VGF.

Fig. 3: Comparison of average human and VS observer perfor-

mances with the 60◦ scan arc as a function of P and phantom

VGF. The three VGF levels (or “percent densities” (PDs)) are

25%, 50%, and 75%.

An assessment of VS observer performance as a function

of P and β is given in Fig. 4. Each line in this plot represents

a fixed scan arc. Nominally, performance improved with

increasing scan arc, although the lines for β = 45◦ and 60◦

intersect at low P . The uncertainties in AL are fairly high

(around ± 0.08, as indicated in Fig. 2). These results also

suggest a slight decrease in performance with increased P ,

primarily with smaller scan arcs.
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Fig. 4: VS observer performance as a function of P and β.

IV. CONCLUSION

DBT scan arcs between 45◦ and 60◦ produced the highest

performances for the detection-localization task treated in this

study. Performance was relatively insensitive to the number

of projections. Future work will consider the effects for task

variations involving different mass sizes and imaging doses.
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Optimization of Prior Parameter forNoise Control
in Iterative Computed Tomography Reconstruction

Keisuke Yamakawa and Shinichi Kojima

Abstract—In iterative reconstruction, computed tomography
(CT) image noise is reduced by using a prior term that reduces
the difference between the CT value of the updated pixel and
that of neighboring pixels. A serious problem with this term
is that applying unoptimized parameters blurs the object or
decreases the noise reduction rate. In this paper, we propose
a method to control the noise reduction rate by optimizing
the prior parameter δ in the prior term when applying the
generalized Geman prior (GGP) for maintaining the spatial
resolution. This parameter was calculated from the measured
noise at each image pixel. First, the noise was measured by using
image subtraction without depending on the object. Second, the
parameter δ for deciding the inflection point of the prior function
was calculated from the measured noiseσ. The effectiveness of
the optimized δ method (proposed method) compared with that
of constant δ method (conventional method) was evaluated in
terms of simulated CT values by using a circle phantom and
an abdomen phantom. The noise reduction rate with standard
deviation (SD) was used as the evaluation index. The average
absolute error compared with the desired noise reduction rate
was reduced from 10.8% to 2.3%. As a result, applying a suitable
value for parameter δ on the basis of image noise made it possible
to effectively control noise reduction in a CT image.

I. I NTRODUCTION

Iterative reconstruction has been attracting attention in
recent years as a method for X-ray computed tomography
(CT) from the viewpoints of reducing irradiation doses while
maintaining image quality [1, 2]. The reduction of irradiation
doses results in increasing noise in a CT image. This method
has to control noise reduction exactly to reduce the increased
noise due to reduced irradiation doses to usual noise due
to standard doses. In iterative reconstruction, image noise is
reduced by using a prior term that reduces the difference
between the CT value of the updated pixel and that of the
neighboring pixels. A serious problem with this term is that
applying unoptimized parameters blurs the object or decreases
the noise reduction rate. Applying the constant parameter to
the CT image with different noise distribution has the po-
tential to cause non-uniform noise reduction. In conventional
methods [3, 4], the prior parameters are optimized based on
the measured noise in the region of interest (ROI) of every
iteration. In these methods, setting the ROI to a uniform area
on the object is required to measure the noise. In this paper,
we propose a method to control the noise reduction rate by
optimizing the prior parameterδ in a prior term when applying
generalized Geman prior (GGP) [5, 6] for maintaining the
spatial resolution. This parameter was calculated from the

K. Yamakawa, and S. Kojima are with Hitachi Central Research Lab-
oratory. 1-280, Higashi-Koigakubo, Kokubunji-shi, Tokyo, Japan. (e-mail :
keisuke.yamakawa.fd@hitachi.com).

measured noise at each image pixel. First, the noise was
measured by using image subtraction [7, 8] without depending
on the object. Second, the parameterδ for deciding the
inflection point of the prior function was calculated from the
measured noiseσ. The effectiveness of the optimizedδ method
(proposed method) compared with that of constantδ method
(conventional method) was evaluated in terms of simulated CT
values by using a circle phantom and an abdomen phantom.
The noise reduction rate with standard deviation (SD) was
used as the evaluation index.

II. METHODS

A. Iterative reconstruction with OS-SPS

The method for iterative reconstruction is expressed as
follows. In one study [9], the method used for the paper was
based on ordered subsets separable paraboloidal surrogates
(OS-SPS) algorithm expressed as
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is the probability that the irradiated X-rays pass image pixell
between the X-ray tube and detectori. Here,wi is a constant
value or the weight proportional to the detected X-ray photons,
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are the prior functions that helped to reduce the random noise
unrelated to the neighboring pixelk in the image, andβ and
d are weights in the prior functions. The iterative method
consists of two terms that have different effects such as the
likelihood term and the prior term. The likelihood term is used
to reduce error between the measured data and the projected
data from the CT image when updating the image. The prior
term that reduces the difference between the CT value of the
updated pixel and that of the neighboring pixels is used to
reduce image noise. The derivativeψ̇ of the GGP functionψ
is used in the prior term for maintaining spatial resolution and
is expressed as [5, 6].
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The parameterδ is used for deciding theinflection point of

the prior function, which consisted of two different functions,
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(a) GGP functionψ (b) Derivativeψ̇ of GGP func-
tion ψ

Fig. 1. Comparison between GGP functionψ and its derivativeψ̇

and p is the prior function order. The GGP functionψ and
its derivativeψ̇ are shown in Fig. 1(a) and (b) respectively. In
these figures,δ = 30 andp = 0.94.

In the prior term, the image noise is treated as the difference
∆µ between the CT value of the updated pixel and that
of neighboring pixels and is reduced. The prior intensity
P increased approximately in proportion to increasing∆µ
when ∆µ was less thanδ [Fig. 1(b)]. The image noise is
reduced in proportion to the increasing prior intensityP by the
smoothing effect. As a result, the noise reduction rate results
were uniform regardless of any noise. In contrast, the prior
intensity P was equivalent toψ̇

(
δ
)

regardless of increasing
∆µ when ∆µ is larger thanδ. The image noise was not
reduced sufficiently for a constant prior intensityP , though
the spatial resolution in the CT image was maintained by
the low smoothing effect. As a result, the noise reduction
rate decreased, and the spatial resolution was maintained very
effectively. In the simulation [Fig. 2(a), (b)],δ = σmiddle and
p = 0.94. The noiseσsmall at the peripheral position was
reduced excessively by the high prior intensityPsmall when
∆µ was much less thanδ. In contrast, the prior intensityPlarge

at the center was equivalent toPmiddle at the middle regardless
of σlarge being much more thanσmiddle. The noiseσlarge was
not reduced sufficiently by the constant prior intensityPlarge

when∆µ was much more thanδ. For this reason, applying the
constant parameterδ reduced non-uniform noise in accordance
with the noise at each image pixel.

B. Optimization of Prior Parameter for Noise Control

We propose a method that optimizes the prior parameterδ
by applying the measured noiseσj at the pixelj of the CT
image to acquire a uniform noise reduction rate.

δj = σjδw (3)

The constant parameterδw was used to determine the image
quality taking into account factors such as graininess of the
image. For example, about 68% of the total noise was included
below δj when δw was 1.0. The optimized parameterδj was
applied in proportion to the noiseσj in each area. [Fig. 3].
In Fig. 3, δw = 1.0 and p = 0.94. The image noise was

(a) Measured noise in each area (b) Derivativeψ̇ of GGP func-
tion ψ

Fig. 2. Measured noise in each area and derivativeψ̇ of GGP functionψ
by applying constant parameterδ

Fig. 3. Derivativeψ̇ of GGP functionby applying optimized parameterδj

reduced in proportion to the increased prior intensityP by the
smoothing effect. As a result, the noise reduction rate results
were uniform regardless of the different noise in each area.

A serious problem is that setting wide ROI made it difficult
to measure the noise on the non-uniform object of CT image.
In our proposed method, the image subtraction method [7, 8]
was applied to measure the noise accurately without depending
on the object [Fig. 4]. First, the measured data was divided
evenly into non-correlated pairs such as odd and even views.
Second, the SDσ of the random noise was calculated from
the subtracted image, which was created from the difference
between reconstructed odd and even CT image.

III. MATERIALS

The effectiveness of the proposed method was evaluated
through phantom simulations. The geometry of a multi-slice
scanner (Scenaria, Hitachi) was assumed. In particular, a multi-
slice scanner that scanned non-helically without generating
electronic noise was used for estimating the noise reduction
rate. A mid-plane slice was selected for the evaluation. The
slice was 0.625 mm wide, the detector was 1.0 mm wide,
and the dimensions of the image pixels were 512× 512 in
the x and y directions. The method was evaluated by using a
circle phantom (Fig. 5(a)) and an abdomen phantom (Fig. 5(b))
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Fig. 4. Flowchart of imagesubtraction method

(a) Circle phantom and ROI (b) Abdomen phantom

Fig. 5. Simulation phantomsand ROI for measuring noise

under mono-energy X-rays (100 [mAs]). The circle phantom
mimicked the human abdomen, and the attenuation coefficient
that mimicked water was uniformly set at zero [HU]. The
diameter of the phantom was 400 mm and the field of view
(FOV) for reconstructing the CT image was 550 mm. The
abdomen phantom that mimicked the human abdomen was set
as shown in Fig. 5(b). The long axis was 380 mm, the short
axis was 270 mm, and the FOV was 400 mm. The number of
iterations was set to 100, and the number of subsets was set
to 24. Theδw = 0.5 andδw = 1.0. Seven ROI were placed at
the center and off-center to measure the SDσ of the random
noise as shown in Fig. 5(a). The SD reduction rate calculated
from the measured SDσ was used as the evaluated value for
comparison between the conventional and proposed methods.

SD reduction rate [%] = 100 ·
(

1.0 − SD(n=100)

SD(n=0)

)
(4)

TheSD(n) wasmeasured in the CT image when the iteration
number wasn. In this paper, the weightwi in the iterative
algorithm was a constant value of 1. In the conventional
method, the constant parameterδ was determined by using
the measured SDσ inside the ROI placed at the center and
x = 150 mm at the off-center in the circle phantom. In the
abdomen phantom, the constant parameterδ was determined
by using the measured SDσ inside the ROI at the center, and
y = 120 mm at the off-center. Theδw = 0.5 and δw = 1.0
were multiplied by the measured SDσ. In this paper, the prior
weight β was determined to acquire the desired SD reduction
rate when applying each parameterδw. The values ofβδw=0.5

andβδw=1.0 were acquired when the desired SD reduction rate
was 50%.

IV. RESULTS AND DISCUSSION

The images obtained with the conventional and proposed
methods are shown in Fig. 6(a) and (b) for the circle phantom
when applyingδw = 0.5. The constant parameterδ that was
determined from the measured noise when x = 150 mm (off-
center) was applied in the conventional method [Fig. 6(a)]. In
this method, the noise at the center of the CT image, such as
salt and pepper noise, was much larger than that at the off-
center compared with the proposed method. In the proposed
method, the noise at the center was approximately equivalent
to that at the off-center. The SD reduction rate and absolute
error for the two methods in the ROI are shown in Fig. 7(a)
δw = 0.5 and (b)δw = 1.0. The absolute error is expressed
as

Absolute error = |SD reduction rate − True value|
(5)

The true value was the desired SD reduction rate 50%. In
particular, the average absolute error of the proposed method
was reduced from 10.8% to 2.3% compared with the con-
ventional method in Fig. 7(a)δw = 0.5. The absolute error
calculated from the conventional and proposed methods was
less in Fig. 7(b) whenδw = 1.0. The reason is that the
total noise was filled sufficiently belowδ = σ in common
with the conventional and proposed methods compared with
whenδw = 0.5. The error of the proposed method is reduced
remarkably compared with the conventional method when the
δw is less.

The images obtained with the conventional and proposed
methods are shown in Fig. 8(a) and (b) for the abdomen
phantom when applyingδw = 0.5. The constant parameter
δ determined by the measured noise when y = 120 mm
(off-center) was applied in the conventional method. In this
method, the noise at the center of the CT image was much
larger than that at the off-center compared with the proposed
method. In the proposed method, the noise at the center was
approximately equivalent to that at the off-center. Applying a
suitable value for the parameterδj on the basis of the image
noise made it possible to effectively control the uniform noise
reduction in a CT image.

V. CONCLUSION

In this paper, we proposed a method to control the noise
reduction rate by optimizing the prior parameterδ in the
prior term when applying generalized Geman prior (GGP) for
maintaining the spatial resolution. Applying a suitable value
for the parameterδ on the basis of the image noise made
it possible to effectively control the noise reduction in a CT
image.
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Synchrotron-Based Microtomography: Exploiting
Tunable, Monochromatic, Parallel X-rays for
Non-Destructive Materials Characterization
Trevor M. Willey, Tony van Buuren, Lisa Lauderbach, Franco Gagliardi, and George Overturf

Abstract—Monochromatic, energy-tunable, and parallel x-rays
generate quantitative reconstructed images in situations not
amenable to conventional cone-beam microtomography. Com-
plicated data treatment (for example, ray weighting or beam
hardening correction) are largely unnecessary in situations where
the unique aspects of synchrotron radiation are appropriately
exploited. Two representative cases are presented here: First,
an ultra-low density foam, embedded in a higher density foam
and adjacent to a highly attenuating bromine-containing layer is
imaged much more readily with parallel beam rays that traverse
the foams but not the bromine layer in the set of images used for
reconstruction. Also, the highly monochromatic beam requires
little or no beam hardening correction. In the second case, multi-
energy monochromatic acquisitions lead directly to quantitative
compositional three dimensional microstructure in mixtures of
triaminotrinitrobenzene and a chlorinated fluoropolymer binder.

I. INTRODUCTION

Synchrotron storage rings generate high-flux, monochro-
matic, and essentially parallel beams of x-rays. We present
two examples where the capabilities of synchrotron microto-
mography quantitatively characterize density and composition
of materials not easily investigated with laboratory-based,
polychromatic cone-beam microtomography.

The first object, a few mm in diameter and less than 1 mm
tall, is an ultra-low density (10 mg/cc) silica layer embedded
within a higher density carbon foam (400 mg/cc), and adjacent
to a highly attenuating, bromine doped layer. In order to image
the silica layer, careful alignment within the x-ray beam, such
that x-rays used to reconstruct this layer were only traversing
carbon and silica, and careful choice of x-ray energy are
required.

In the second class of objects, multiple acquisitions using
monochromatic x-rays at multiple carefully chosen energies
generate three dimensional composition maps of triaminotrini-
trobenzene mixed with a chlorinated polymer binder. The
reconstructed images show a subtle spatial concentration vari-
ation.

II. EXAMPLE USE CASES FOR SYNCHROTRON-BASED
MICROTOMOGRAPHY

A. Imaging of Ultra-low Density, Embedded Materials

The first example is the use of relatively low-energy (10
keV) and parallel-beam to non-destructively determine mor-
phology and density uniformity in embedded, ultra-low density

The authors are with Lawrence Livermore National Laboratory.

foams in targets used to investigate materials under extreme
conditions at the National Ignition Facility (NIF) at Lawrence
Livermore National Laboratory (LLNL). NIF is the worlds
largest laser facility; the laser beams are used to heat and
compress materials to extreme temperatures and pressures.
One application of NIF is research into inertial confinement
nuclear fusion.

Nuclear fusion promises carbon-free nuclear energy with-
out the proliferation risks of current nuclear fission reactor
designs. Although enormous technical challenges over the
last few decades have plagued both magnetic and inertial
confinement fusion, both possibilities are moving forward.
NIF is the premier inertial confinement fusion research center;
recent breakthroughs resulted in record yields of over 5 · 1015
neutrons during one laser shot sequence, an improvement by
nearly a factor of 4 within the past year [1] [2]. These shots,
using the so called “high foot” laser profile, and diamond
capsules, have neutron yields estimated to be well within
a factor of 5 of the alpha heating regime, a threshold for
“ignition” [3] along the path to generating more energy from
nuclear fusion than is consumed.

One overarching challenge is to create targets to enable
effective use of the enormous laser energy generated with the
unique experimental capability at NIF. Successful target design
places considerable demands upon the underlying materials
synthesis; materials often tune the pressure profile of the
initial laser shock, or emit radiation as they are heated and/or
compressed. The uniformity of these materials plays a critical
role, and often, ultra-low density materials are needed for these
tasks.

As an example of the use of synchrotron microtomography
to image embedded low-density foams, Fig. 1 presents a small
sub-volume of a class of target used on NIF that uses 10
mg/cc SiO2 aerogel, mounted within a 400 mg/cc carbon
foam, atop a heavily bromine-doped layer with orders of
magnitude difference in x-ray opacity. The top pane presents
a CT slice acquired at 10 keV through a uniform area of the
aerogel. The bottom pane presents a reconstructed volume of a
similar aerogel layer along with its unintended defects. Prior
to synchrotron-based tomography, our Xradia MicroCT was
unable to image, let alone discern defects or density variation
in this embedded, ultra-low density foam. At least using stan-
dard filtered backprojection, accurate morphology and density
measurements of the SiO2 aerogel, that has only 0.5% of the
density of the bulk solid required the following: 1) A well-
aligned sample in a parallel beam is the best geometry, with
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Fig. 1. CT slice (top) and 3D view of ultra-low density SiO2 aerogel
embedded in higher density carbon. Conventional, cone-beam, polychromatic
microCT failed to image or even detect the SiO2 that has 0.5% of the density
of bulk material. This sample was rejected due to its defects.

the x-rays used to image the SiO2 traversing only low density
foams and not bromine layers. The higher-z bromine layer
results in orders of magnitude more attenuation and thus rays
that traverse any part of this layer are essentially useless for
reconstructing the 10 mg/cc aerogel layer. With conventional
point-source x-rays, one would either need a high source-
object to object-detector distance ratio, which can reduce x-ray
flux through the sample and onto the detector to unacceptably
low levels, or use algorithms to address experimental errors
introduced by radically different attenuation through aerogel
vs. the bromine layer. 2) Monochromatic x-rays can be tuned
to optimize the attenuation through these low density foams, in
this case, relatively low energy, at or less than 10 keV. Higher
energy x-rays do not have sufficient attenuation to image the
central foam layer. Further, polychromatic conventional x-
ray sources complicate analysis of density variation due to
beam hardening. 3) The synchrotron source gives sufficiently
high flux at relatively low energies. These three characteristics
above are either impossible or non-trivial using conventional
x-ray sources. These three aspects of synchrotron radiation
enable measurement of the morphology and to a lesser degree,
density variation in the ultra-low density SiO2 foam layer.
In this case, the foam had several rips, but otherwise had
relatively uniform density. The data gave valuable feedback
to enable appropriate changes in synthesis to obtain uniform
embedded low-density foams. Another capsule under devel-
opment requires an 100 µm, 30 mg/cc carbon aerogel layer
within a 2 mm diameter, 50 µm thick spherical diamond
shell [4]. This interior foam layer scaffolds deuterium-tritium
ice growth. Synthetic challenges fall beyond the scope of
studies reported to date, particularly when one considers that
formation of the nanoporous scaffold and any subsequent
doping must be achieved through a hole in the wall of the
capsule that is, at most, only tens of microns in diameter.
Synchrotron-based tomography with high-intensity, parallel

beam, and monochromatic and tunable x-rays is a viable
technique that can verify intended morphology of embedded
low-density materials at micron-scale resolution.

B. Mapping Subtle Compositional Variation

The second example of the use of synchrotron tomog-
raphy uses multiple acquisitions at multiple energies using
monochromatic x-rays to map subtle concentration variation
in low-z composites.

TATB (1,3,5-triamino-2,4,6-trinitrobenzene) is a highly in-
sensitive energetic material often mixed with polymer binders
to improve mechanical properties and enable pressing to
high density. Two common formulations, named LX-17 and
PBX-9502, use Kel-F 800 (poly chlorotrifluoroethylene-co-
vinylidene fluoride) as a binder with nominal concentrations
of 7.5% and 5%, respectively. The resultant polymer-bound
explosive has higher density and better mechanical properties
compared to the pure explosive alone. Samples investigated
with tomography were previously observed to have a variation
in binder concentration of about 1.5% on mm length scales
[5] [6] with binder-rich regions surrounding binder poor re-
gions. Figure 2 presents a three dimensional rendering of the
binder concentration variation. The so-called prill structure is
consistent with the formulation of these explosives where mm-
sized spheres, or prills, form during the mixing of binder and
explosive prior to consolidation and pressing.

This observation motivates several questions: What is the
cause of this variation? Does it result purely from the formu-
lation step where raw pure TATB is mixed with the Kel-F 800
binder? How does the production lot of TATB or Kel-F 800
contribute to the degree of heterogeneity? Can homogeneous
LX-17 and/or PBX-9502 be reliably synthesized? And ulti-
mately, what are the possible impacts of heterogeneity, if any,
on mechanical and detonation properties? These questions can-
not be addressed or answered without first understanding the
degree of microstructural variation. To this end, synchrotron-
based tomography was performed on a series of samples of
LX-17 and PBX-9502 with different origins as a starting point
towards answering the above questions.

Synchrotron-based x-ray computed microtomography en-
ables quantitative determination of constituent volume frac-

Fig. 2. A three-dimensional rendering of relatively high concentrations of the
constituent Kel-F 800 binder within an LX-17 sample.
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tions, voxel by voxel, in three-dimensional volumes of LX-
17 and PBX-9502. Using monochromatic incident x-rays, the
well-defined, well-known, and energy dependent attenuation
coefficients µ [7] can be directly compared to resultant mea-
sured µ from reconstructed slices. As an example, at 20 keV,
TATB and Kel-F 800 have attenuation coefficients of 1.1 and
4.1 cm−1 respectively; at 30 keV, these are 0.5 and 1.4 cm−1.
In the simple case of a mixture of two materials (e.g. TATB
and Kel-F 800) these differences and nonlinearity in µ as
a function of energy enable volume fraction determination
through the linear relationships

VTATB · µTATB + VKelF · µKelF = µmeasured (1)

at two unique energies, and

VTATB + VKelF + Vvoid = 1 (2)

where V is the respective volume fraction of constituents
TATB, Kel-F 800 binder (KelF ) and void, and µ are the
respective linear attenuation coefficients.

This framework can be extended to N materials, requiring
N−1 acquisitions, each at a unique energy. Generally at length
scales presented, void volume generally is less than a few
percent and varies little with a slight increase with decreasing
binder concentration [4, 5]. The Kel-F 800 concentration can
also be estimated from a single energy acquisition by assuming
a void distribution as a function of µ. Figure 3 presents
slices of the approximate Kel-F 800 concentration from within
the interior of LX-17 and PBX-9502 samples of different
manufacturing lots, labeled a through p. Figure 2 is a three
dimensional rendering of the volume concentration of the con-
stituent binder and its variation in concentration. The variation
in Kel-F 800 concentration is only dependent upon lot: Several
samples from within single batches possess similar binder
inhomogeneity irrespective of conditioning (i.e. temperature
cycling [8], age, or mechanical creep). LX-17 lots a and b are

most homogeneous, c and g are moderately homogeneous, and
d, e, f, and h are heterogeneous. PBX-9502 lots are moderately
homogeneous, with lots m and n being most heterogeneous.
Having established the heterogeneity is purely lot dependent,
the most apparent predictor of inhomogeneity to date is the
type of TATB, whether the so-called dry-aminated, or wet-
aminated was used to make the composite. Brown letters in
Fig. 3 (e.g. LX-17 lots a and b) indicate formulations using
dry-aminated TATB, while black (e.g. PBX-9502 lots m and n)
are made with wet-aminated TATB. The dry-aminated lots lead
to slices that are qualitatively more homogeneous than wet-
aminated from inspection of the slices in Fig. 3. Conversely,
lots made with wet-aminated TATB have prill boundaries.
Although the use of wet- vs. dry-aminated TATB is the most
apparent factor influencing degree of inhomogeneity, the TATB
type is not the only parameter, and may even be coincidental
with other process changes: the variation observed within
the lots formulated with wet-aminated TATB indicates other
factors affect the binder/TATB mixing. The microstructure
from wet-aminated TATB varies from grossly heterogeneous
in e to relatively homogeneous in g. Thus, these CT datasets
are crucial starting point as empirical experimental input
to high fidelity computational models, and in understanding
how microstructure affects subtle detonation and mechanical
property differences in TATB-based explosives.

In summary, two examples using advantages of synchrotron
microtomography have been presented. The parallel beam and
relatively low monochromatic energy are able to image ultra-
low density materials, and the monochromaticity and tunability
have been used to map subtle polymer concentration variation
in polymer bound explosives.
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2D filtered backprojection for fan-beam CT with
independent rotations of the source and the detector

Simon Rit and Rolf Clackdoyle

Abstract—A cone-beam CT scanner has recently been devel-
oped for radiotherapy imaging where the source and the flat
detector can rotate independently along concentric circular tra-
jectories. This paper investigates the reconstruction of the central
slice of this system. A new filtered-backprojection algorithm has
been derived that only modifies the weighting schemes of the
projections and the backprojections of the standard fan-beam
algorithm. The accuracy of the algorithm is demonstrated on
simulated projections of a numerical phantom with source and
detector trajectories that image an offset field-of-view.

I. INTRODUCTION

Cone-beam computed tomography (CT) scanners have been
introduced in radiotherapy rooms to acquire three-dimensional
(3D) CTs of patients prior to treatment and guide their delivery
accordingly. Existing cone-beam CT scanners are generally
fixed to the gantry of the linear accelerator with an x-ray
source dedicated to imaging that is orthogonal to the treatment
beam [1].

MedPhoton, a spin-off company of Paracelsus Medical
University (Salzburg, Austria), is developing a new Patient
Alignment system with an integrated x-ray Imaging Ring
(PAIR, Figure 1). The system has been designed to provide
greater flexibility in the positioning of the patients and to
enable re-positioning of the patient based on 3D images
acquired during radiotherapy. A robotic couch is mounted
to the ceiling along which an imaging ring surrounding the
patient table can translate in the cranio-caudal direction. The
x-ray source and the flat panel detector are mounted on the
ring and can rotate independently to acquire x-ray projections
of any part of the patient with various incidences. The x-
ray source is collimated with four motorized jaws that can
dynamically adapt the dimension of the x-ray beam. The
device allows, for example, the acquisition of x-ray projections
for CT reconstruction with an offset field-of-view, i.e., a field-
of-view that is not centered on the mechanical center-of-
rotation.

By default, the source follows a conventional circular tra-
jectory with respect to the patient and it is known that for
this geometry, only the plane containing the source trajectory
can be reconstructed exactly [2]. We limit our study to this
plane. Two-dimensional (2D) filtered-backprojection (FBP)

S. Rit is with the Université de Lyon, CREATIS; CNRS UMR5220; Inserm
U1044; INSA-Lyon; Université Lyon 1; Centre Léon Bérard, France (e-mail:
simon.rit@creatis.insa-lyon.fr). R. Clackdoyle is with the laboratoire Hubert
Curien, CNRS and Université Jean Monnet (UMR 5516), Saint Étienne,
France. This work was partially supported by grants ANR-12-BS01-0018
(DROITE project) and ANR-13-IS03-0002-01 (DEXTER project) from the
Agence Nationale de la Recherche (France).

Fig. 1. Photography of a prototype of the Patient Alignment system with an
Integrated x-ray imaging Ring (PAIR).

algorithms are known for the conventional situation where
the flat detector is orthogonal to the line connecting the
source to the center-of-rotation [3]. FBP formulas have also
been derived for displaced centers-of-rotation [4] and for
noncircular trajectories [5], [6] but these situations do not
cover the geometry of PAIR’s central slice.

In this article, we derive a 2D FBP formula for circular
trajectories with independent rotations of the source and the
detector. The resulting algorithm is tested on simulated data
in which the center of the field-of-view is not at the center-
of-rotation.

II. RECONSTRUCTION ALGORITHM

The geometry is described in Figure 2 with the origin at
the center-of-rotation. The fan-beam source follows a circular
trajectory parameterized by angle β and at fixed radius R from
the center-of-rotation. The source motion is therefore given by
v = (−R sinβ,R cosβ). The flat detector lies at fixed radius
RD from the center-of-rotation and is tilted at an angle α
with respect to the usual position, which would be directly
opposite the x-ray source. The detector and the source can
rotate independently so the tilt angle may also vary with β,
and α is understood to have a β dependence. The origin of
the detector is at the point closest to the center-of-rotation as
shown in Figure 2.

The aim is to reconstruct the unknown two-dimensional
(2D) function f(x, y) from the measured line integrals

g(β, u) =

∫ ∞
0

f(v + tγ) dt (1)
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Fig. 2. Geometry of the central slice of the PAIR.

where γ is the unit vector pointing from source v to point u
on the detector.

One method of reconstruction is to resample (or ”rebin”)
the detector data to an equivalent virtual detector placed at
the origin and oriented directly opposite the source to obtain
projections g(β, s). This virtual detector corresponds to α = 0
and RD = 0, and is illustrated as the s-axis in Figure 2. From
this geometry, the standard fan-beam reconstruction algorithm
described as the equispaced fan-beam in [3] is

f(x, y) =
1

2

∫ 2π

0

bβ(x, y) dβ (2)

with

bβ(x, y) =
1

U2

∫ ∞
−∞

cosσ g(β, s)h(s∗ − s) ds. (3)

bβ(x, y) is the image obtained after filtering and backproject-
ing one projection g(β, .). The quantity cosσ = R/

√
s2 +R2

is the cosine of angle between the central ray and the ray
intercepting point s on the detector. The function h is the
usual ramp filter h(s) =

∫
|σ|exp(2πisσ) dσ. The point s∗ is

where the point (x, y) projects onto the detector, as shown
in Figure 2. The ratio U = [R− (x, y) · (− sinβ, cosβ)] /R
is the distance between the source and the line parallel to
the detector at point (x, y), divided by the source to detector
distance R.

Rebinning from measured g to virtual g has the usual
problems of resolution loss which are compounded by the fact
that even spacing in s does not correspond to even spacing
in u. Therefore, we derive the mathematical expression of
bβ(x, y) using the measured projections g with a change of
variable from s to u. The variables are linked by the following
relation

u =
s(R+RD/ cosα)

R cosα+ s sinα
−RD tanα. (4)

The change of variable invokes the Jacobian term

du = |J |ds =
R2 cosα+RDR

(R cosα+ s sinα)2
ds. (5)

The absolute value has been dropped because the condition
cosα > −RD/R is always met assuming α ∈ (−π/2, π/2).
We also find from Equation 4 that

u∗ − u =
R2 cosα+RDR

(R cosα+ s∗ sinα)(R cosα+ s sinα)
(s∗ − s).

(6)
Combining the well-known result h(at) =

1

a2
h(t) (see, e.g.,

[3]) with the last two equations, we obtain

h(s∗ − s) ds =
R2 cosα+RDR

(R cosα+ s∗ sinα)2
h(u∗ − u) du (7)

=
R

Dα

D2
α

(R cosα+ s∗ sinα)2
h(u∗ − u) du (8)

where we have introduced the source to detector distance
Dα = RD + R cosα. Note that Dα varies with α, unlike
the source to center-of-rotation and the center-of-rotation to
detector distances R and RD which are fixed.

When u satisfies Equation 4, the measured and the rebinned
projections are equal, i.e., g(β, u) = g(β, s), and the change
of variables in Equation 3 gives

bβ(x, y) =
1

V 2

∫ ∞
−∞

cosσ
R

Dα
g(β, u)h(u∗ − u) du (9)

where

V =
R cosα+ s∗ sinα

Dα
U (10)

is to the real detector what U is to the virtual detector, i.e., the
distance between the source and the line parallel to the detector
at point (x, y) divided by the source to detector distance Dα.
For more readability, we have not replaced the term cosσ but
it may be expressed in terms of u by

cosσ = cos (α+ (σ − α)) =
Dα cosα− (u−R sinα) sinα√

D2
α + (u−R sinα)2

.

(11)
It is interesting to consider Equation 9 for the particular

case of a virtual tilted detector passing through the center-of-
rotation (RD = 0). In this case, Equation 9 becomes

bβ(x, y) =
1

V 2

∫ ∞
−∞

cosσ

cosα
g(β, u)h(u∗ − u) du (12)

and we note that the reconstruction algorithm is the same as
the reconstruction algorithm for the untilted case with three
modifications: (1) the backprojection weighting 1/V 2 is with
respect to the tilted detector, (2) the cosσ weighting is with
respect to the non-tilted detector and (3) there is an additional
1/ cosα term in the weighting of the projections.
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III. EXPERIMENTS

The reconstruction algorithm has been validated on simu-
lated projections. The fixed geometric parameters were chosen
to be close to those of the PAIR: the radii of the source
and the detector were R = 700 mm and RD = 400 mm
and the detector measured 1024 samples in the interval u ∈
[−175.3, 233.9] mm. As in the PAIR, the center of the detector
has been intentionnally shifted by 29.3 mm to enlarge the
field-of-view when it is centered.

x

y

Fig. 3. Scale drawing of the experiment for the positions corresponding
to projection #0 and projection #181. The phantom image is the reference
slice in Figure 5. The red cross is the center of the offset field-of-view. The
two red lines correspond to the source to center-of-detector lines of the two
positions of the detector. The pair of angles (α, β) were about (−4◦, 0◦) and
(42◦, 73◦) for projections #0 and #181, respectively. Corresponding vertical
lines have been drawn in Figure 4. Note that the detector is not horizontal
when the source to center-of-rotation line is vertical for projection #0 because
the center of the detector that we align with this line is at u = 29.3mm.

The angles α and β are two degrees of freedom of the
scanner set by the user to acquire one projection g(β, .). We
centered the offset field-of-view on point (0, 200) mm of the
y-axis (Figure 3). The source position β was set to enforce an
equiangular spacing at the center of the offset field-of-view of
the 720 projections. The variation of the speed of the source
rotation (Figure 4) has been accounted for in the discretization
of Equation 2 with a variable ∆β-weight between projections.
The tilt angle α was set to align the source, the center of the
offset field-of-view and the center of the detector for every
projection. Figure 4 illustrates the β and β+α values according
to projection number where β is the angle of the source to
center-of-rotation line with the y-axis and α + β is the angle
of the detector with the x-axis (Figure 2). These curves would
have been parallel lines if the offset field-of-view had been
centered on the center-of-rotation but we varied the speed of
the rotation of the source and the detector in order to focus
on the chosen offset field-of-view.
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Fig. 4. Variations of β and α + β according to the projection number in
the simulated projections of the phantom. Note that the source rotates more
slowly (lower slope) when near the center of the offset field-of-view at the
begin and the end of the scan. Similarly for the detector which is close to the
offset field-of-view at the middle of the scan. The two vertical dashed lines
correspond to the two positions that have been represented in Figure 3.

The phantom was slice z = −0.25 of the 3D version of
the Shepp Logan phantom described in [3], centered on point
(0, 200) mm and scaled to 69 by 92 mm to fill the offset field-
of-view. The reconstruction lattice was also centered on this
point and made of 400× 500 pixels of 0.4× 0.4 mm2.

IV. RESULTS

Several images of the phantom are shown in Figure 5: (1)
the reference image illustrates the original phantom, (2) a naive
modification of the existing equispaced FBP described in the
following, and (3) the image obtained using the proposed fan-
beam FBP algorithm. The naive modification of the existing
equispaced FBP consisted in assuming that the source to
center-of-rotation line was orthogonal to the detector during
the weighting of projection images which comes down to
weighting the projection by cos(σ − α) instead of cos(σ) in
Equation 9 while filtering and backprojecting the weighted
projections in a similar manner. Images are displayed with
two different gray scales, one to illustrate the large discrep-
ancy between the naive reconstruction and the reference, and
another narrow one to illustrate the accuracy of the new FBP
algorithm.

Profiles along the lines drawn in Figure 5 are plotted in
Figure 6. Accurate values have been reconstructed with small
fluctuations (' 0.1%) around the expected values.

V. DISCUSSION AND CONCLUSIONS

A 2D FBP algorithm has been derived and validated for
the reconstruction of the central slice of a cone-beam CT
system, the PAIR, where the source and the detector can rotate
independently. The new FBP algorithm is very similar to the
conventional one [3]: only the weights of the projections and
the backprojections need to be modified.

Other equispaced fan-beam geometries have been proposed
but they did not cover this geometry. Gullberg et al derived
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Fig. 6. Vertical profiles along the lines drawn on the reference and the
reconstructed images of Figure 5.

a reconstruction formula for a fixed offset τ of the detector
[4] which is covered by the new formula. Their formula may
be obtained from Equation 9 by linking the parameterizations
with τ = R sinα. Other formulas are for non-circular source
trajectories [5], [6].

Independent rotations of the source and the detector enable
offset field-of-views. Offset field-of-views are essential in
PAIR to image areas which could not be imaged otherwise
due to the limited size of the detector. A side effect of moving
the center of the offset field-of-view is the reduction of its
maximum size with increasing distances between the center-
of-rotation and the center of the offset field-of-view.

The formula is inaccurate if projections are truncated which
is expected in many practical situations. One solution is to use
a short scan with a source arc that is opposite the center of the
offset field-of-view with respect to the center-of-rotation. Short
scan acquisitions can be reconstructed with an appropriate
weighting scheme as proposed for the conventional FBP
algorithm [7], provided that the arc is greater than π+ 2σmax

where σmax is the maximum value taken by |σ|. An alternative
is to use an appropriate weighting scheme that accounts for
redundant acquisition lines to truncate projections on one side

only [8]. If it is insufficient, the derivation of other algorithms
for region-of-interest reconstruction [9] will be required.

Three-dimensional reconstruction is beyond the scope of
this article. Exact reconstruction is only possible in the central
plane but the FDK algorithm is commonly used [10]. Future
work includes the derivation of a practical algorithm for the
geometry of the PAIR.
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A GPU-Accelerated Katsevich Algorithm with
CUDA for Fast, Scalable, Helical Cone-Beam CT

William C. Ward, Brandon M. Lattimore, James F. Hunter

Abstract—A very fast implementation of the Katsevich exact
helical reconstruction algorithm has been coded and demon-
strated using CUDA on a variety of GPUs. The performance
demonstrates good scalability and the algorithm was designed
for large volumes that cannot be held in core memory during
processing. This implementation differs from previous work in
that the entire computation chain is performed on the GPU(s)
as soon as raw projection files are loaded. CPU processing tasks
after setup are limited to the retrieval and scaling of projection
data, storage of completed reconstructions, and the scheduling of
GPU tasks. CPU and GPU processing are made fully concurrent
so that the latency of both CPU—GPU transfers and CPU—disk
I/O are masked from the sustained processing throughput while
backprojecting. An interleaved slice scheme is used to effectively
utilize resources in multi-GPU configurations. This algorithm
is three orders-of-magnitude faster than the serial implemen-
tation it replaced and compares favorably to both our GPU-
accelerated Feldkamp algorithms and to other known accelerated
helical reconstructors. Overall performance approaches real-time
processing, with reconstruction rates that meet or exceed the
available I/O bandwidth in most cases. Performance comparisons,
centering solutions, and example reconstructions are presented.

I. INTRODUCTION

A. Background and Motivation

For the routine cone-beam reconstruction of 3-D tomo-
graphic datasets, the approximation proposed by Feldkamp
et. al. [1] (FDK) has long been the gold standard, particularly
for Non-Destructive Evaluation (NDE) applications that make
liberal use of large format flat panel detectors or lens-coupled
digital camera systems. Recently, cone-beam FDK and paral-
lel Filtered BackProjection (FBP) implementations based on
CUDA across multiple GPUs have been implemented under
MPI, OpenMP, and also a hybrid (MPI with local OpenMP)
mode to help manage a large reconstruction workload that
includes volume sizes up to (4k)3. To overcome some lim-
itations of FDK reconstructions, the exact helical algorithm
developed by Katsevich[2] and in particular the work on the
method by Noo et. al.[3] to implement native geometries
stimulated strong interest from the NDE community. NDE
applications are often driven toward large cone angle, tall
detectors, high magnification, and long objects. All of these
challenges can potentially be addressed by helical scans.
However, scan geometry is also highly variable in the practice
of NDE inspection; seldom are two scans identical. Post-scan
isocenter correction is frequently needed, regardless of the
nominal system alignment.

A version of the Noo/Katsevich algorithm has been incor-
porated in LANL reconstruction codes since 2006. Regardless,

Los Alamos National Laboratory, Los Alamos, NM USA 87545; Corre-
sponding author: ww@lanl.gov LA-UR-14-20971

helical reconstructions with experimental datasets had not been
performed until 2013 because of two limitations: 1) compu-
tation time was prohibitive for large problem size, and 2)
no isocenter corrections were implemented to compensate for
small panel-to-rotary axis misalignments. This work exploits
the latest GPU hardware to address both of these weaknesses
in an effort to make helical CT as commonplace as FDK
imaging for NDE tomographic studies.

B. Related Work

The time-line for acceleration efforts of helical CT re-
construction has a natural dependence on the evolution of
computer hardware and software of the last decade. Paral-
lelization of the Katsevich algorithm was implemented on a
Linux cluster by Deng et. al. [4] who achieved basically linear
speedup across 32 compute nodes for volumes up to 5123.
Fontaine and Lee [5] employed OpenMp on a single server
of 8 cores and exploited SIMD instructions available on the
system to achieve an impressive speedup ratio. They also make
the interesting observation, foreshadowing GPU computation
considerations, that frontside bus bandwidth created an upper
limit on usable thread count. OpenMP and maximization of
the resources on a single server will generally scale better
than MPI on a local computing model because threads under
OpenMP need not subdivide the local memory space.

Yan et. al. [6] used a different approach to achieve good
GPU acceleration of the FBP operation only; filtering oper-
ations were performed on the multicore CPUs of the host
system. The FBP step was performed in OpenGL under the
Cg framework by rendering the projections directly to an
imaging space bound to a floating point texture (cyclic render-
to-texture) and employing the graphics pipeline to effectively
turn the FBP calculation into a true drawing process. Yan
observed greater than a factor of 20 speedup on this single
GPU platform over the 32-processor cluster of earlier work
(only FBP times were compared).

Steckmann, Knaup, and Kachelrieß [7] developed a voxel-
weighting scheme that allows highly optimized backprojection
with vectorization enabled by symmetry. Their method is
applied to approximate spiral cone-beam reconstruction with
rebinning in all dimensions and pre-computed storage of
all required detector coordinates and voxel weightings. The
resulting reduction in complexity allows for FBP performance
approaching that of optimized parallel backprojection and
yields good image quality demonstrated with up to 256-row
detectors. While limited π/4 symmetry has been exploited be-
fore in a Katsevich-type method ([5]), the Steckmann approach
has not yet been extended to the exact methods and the size
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of problems targeted by this work would add to the difficulty.
The pre-computation cost of weights and coordinates for each
new (volatile) geometry and the restrictions of fixed isocenter
and cylindrical FOV are further disincentives to pursue this
optimization in place of the more direct approach.

C. Defining and Achieving Real-Time Performance
All of the referenced authors presenting accelerated methods

base their timing on data that is already fully loaded to
CPU memory. The goal of this work is to achieve an end-
to-end real-time throughput of exact Katsevich-based helical
reconstructions including all I/O operations. Conveniently, the
concept of “real-time” is application-specific, so a precise
definition is elusive. Scientific industrial CT applications are
by nature much slower than medical applications: resolution is
primary, dose management is not. A single scan may last for
hours and offline storage (and retrospective reconstruction) is
essential. “Real-world real-time” performance of the end-to-
end process of loading projections, reconstruction, and storing
a completed volume back to a permanent repository is the
bounding metric. By this definition an optimal system design,
hardware and software, will provide enough processing power
to complete the reconstruction tasks as quickly as it can
move the necessary data through the file system. Still, early
information about the progress of a scan is useful in all
applications and the best implementation will start producing
output slices as soon as useable subset of projections is
available from the source. In other terms, this method is
designed to facilitate temporal locality of intial projections
and the first reconstructed slices.

II. ALGORITHMIC APPROACH AND IMPLEMENTATION

An adaptation of the cone beam cover method (Yang[8])
is adopted and optimized for single-board systems with one
or more suitable GPUs and a strong compliment of CPU
cores. Coarse-grained parallelism is pursued on the CPU,
(e.g. disk transfers). Most every image-related task exhibits
‘embarrassing parallelism’ and is handled effectively by the
GPU.

OpenMP scheduling is used to feed all the image process-
ing steps—differentiation, filtering and back projection—to
the GPU. Asynchronous scheduling for CPU⇔GPU memory
copies and GPU Kernel launches frees the CPU to perform
file I/O tasks asynchronously and thereby mask the latency as
completely as possible.

Algorithm 1 presents pseudo-code for the algorithm de-
sign optimizing concurrent CPU/GPU use. Coordinates and
dimensions relevant to the implementation sections below are
summarized in Figure 1.

1) Filtering Steps 1&2: Differentiation: The Katsevich al-
gorithm requires the first derivative of each projection, taken
at constant line direction θc,

g′(λ, θc) = lim
ε→0

g(λ+ ε, θc)− g(λ− ε, θc)
2ε

(1)

where coordinate transformation of θc provides the projection
value in the flat detector plane coordinates u,w :

g1(λ, u, w) = g(λ, θc) (2)

Algorithm 1: GPU Filtering & Back Projection With
Concurrent I/O (per GPU)

// vertical extent of VOI block

Data: Chunk size NC
// Batch size is F(#cores, GPU memory, max

texture length)

Data: Batch size Nb
while slices remain do

Find range of projections influencing slices
Zero slices in chunk (MemSet)
while batch(g) ∈ range do // Inner Loops are

Concurrent!

1 foreach g ∈ batch do // Preload

2 Load g (disk⇒CPU⇒GPU)
Wait(Compute Idle?) ⇓

3 Copy batch to texture
4 next batch (g[i+Nb − 2])
5 for i in [1..Nb − 1] do // Compute

Wait(Preload Complete?) ⇑
6 Filter g[i] to gF

7 Copy gF ⇒ FBP texutre
8 BackProject gF over chunk (all valid z)

9 MemCpy chunk GPU⇒CPU
10 foreach slice S in chunk do Store S // no-wait

11 next chunk (S[n+NC ])

u

w
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z
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Fig. 1. Helical geometry and variables. Tam-Danielsson window is shaded.

Noo et. al.[3] propose two practical alternatives for efficient
estimation of the derivative, but this work uses a direct
computation of equation (1) that is well-suited to the GPU
architecture. With a stack of N + 2 projections loaded to a
layered 2-D texture representing {g(λ−1), g(λ0), . . . , g(λN )},
the GPU is used to compute in hardware (‘fetch’) bilinear
interpolations at points g(λi−1, u, v), g(λi, u, v), g(λi+1, u, v)
without any computational cost. The 2-D texture also alters
the locality of the projections for better 2-D access to reduce
cache hits. The [λ+ ε, λ− ε] interpolates are generated in the
conventional way from the three points centered at g(λi, u, v).
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This process generates N filtered projections.
Kernel is the designation given to a GPU function executed

by every thread of a parallel Kernel Launch (This usage
is unrelated to the mathematical kernel employed during a
convolution.) Within the same GPU differentiation Kernel it
is convenient to implement length-correction weighting:

g2(λ, u, w) =
D√

D2 + w2
g1(λ, u, w). (3)

2) Centering (Misalignment Correction): The hardware-
based interpolation in the implementation of Filtering Step
1 provides an opportunity to inexpensively correct for mis-
alignment of the acquisition system. If the transverse plane
of the rotational axis is misaligned by a horizontal shift a0
and an angle γ to the vertical axis of the detector (see Fig. 1)
then more accurate reconstruction can be obtained by rotating
each raw projection about its center by the γ. If (um, wm) are
the uncorrected coordinates, then the corrected coordinates are
given by

u = um cos γ + wm sin γ + a0,

v = − um sin γ + wm cos γ. (4)

(The shift of u coordinate must also be replicated while
indexing the boundaries of the Tam-Danielsson window.)

3) Filtering Steps 3–5: Convolution with Hilbert kernel:
The 1-D Hilbert transform in u can be implemented as a
convolution of g3(λ, u, ψ) = g2(λ, u, wκ(u, ψ)) with the
Hilbert kernel hH , where wκ defines a κ-line of angle ψ
across the Tam-Danielsson window in the detector plane.
The interpolation of (u,w) points to (u, ψ) space is termed
Forward Rebinning. With the Hilbert kernel

hH(s) = −
∫ +∞

−∞
dσ i sgn(σ)ei2πσs =

1

πs
, (5)

the convolution theorem is used to efficiently perform the
convolution by FFT/IFFT; therefore, the Fourier transform of
hH is required:

ĥH(ξ) = −i sgn(ξ) (6)

and the filtered result along each κ-line is computed by

g4(λ, u, ψ) = IFFT
(
FFT (g3(λ,u, ψ)) · ĥH

)
. (7)

In the final filtering step, gF (λ, u, w) = g4(λ, u, ψ̂(u,w)
applies a coordinate transformation, designated Backward Re-
binning, to invert step 3. These three GPU Kernels (forward
rebin, Hilbert transform, backward rebin) work in sequence
with NVIDIA cuFFT API calls to complete the filtering.

4) Back Projection: Each filtered projection gF is copied to
a texture buffer and projected by a single Kernel launch over
the applicable slices of the VOI chunk in memory (see Fig. 1
for geometry and upper/lower limits of the Tam-Danielsson
window). Each voxel rod [xi, yj , ∗] is assigned to a thread
which loops over the applicable Z-strip where the projection
crosses those voxels. Pre-calculated upper and lower limits
(blue and green curves in Fig. 1) of the w coordinate are

read from two 1-D textures for easy interpolation. Transition
regions near the boundaries are progressively weighted as
recommended by Noo et. al.[3]. All projections pertaining to
slices in the loaded VOI are completed before it is released.

A. GPU Memory Management

All projections and and VOI segements are held, at some
point, in global GPU memory. The scheme outlined below
is flexible and minimizes required memory allocation so that
reconstructions of any practical size will perform well without
altering the approach. If most of the latency of I/O transac-
tions is successfully masked, performance is nearly constant
regardless of how many chunks the VOI is divided into.

1) Volume Of Interest Blocking: The reconstructed volume
is divided into NC chunks, as necessary. Every projection
which contains lines required by the chunk is read in, differ-
entiated, filtered, back-projected across the resident volume,
and then discarded. With pre-fetch and the speed of the
GPU, the cost of reprocessing reused projections is less than
the bidirectional I/O needed to store and retrieve previously
filtered projections. In practice the chunk size will consume
the majority of the GPU memory, however, a smaller chunk
size may be optimal overall in order to distribute writes so
that the write cache of the file system is not overrun.

2) Raw Projections Input Buffer: Two buffers in global
GPU memory of size (Nb×Nrows×Ncol) are used to facilitate
asynchronicity in the projection filtering and I/O processes.
The first buffer is filled with raw projections as soon as they
are available. [Algorithm 1: line 2] Once complete, this buffer
is copied to a bound texture area of equal size and thereafter
the CPU is free to fill the space with a new set of projections.
[Algorithm 1: line 4] For asynchronous copy/compute overlap,
it is a prerequisite that the host memory used in CPU ↔
GPU transfers be pinned (aligned and non-pageable) under
the CUDA API. For the Fermi or Kepler generations of GPUs
(Compute Capability ≥ 2.0), maximum texture length implies
Nb × Nrows < 216, hence the maximum useful size of both
buffer and texture is limited to 256–512 MB each in practice.

3) Filtering Space: Filtering and differentiation stages in
the Katsevich algorithm involve multiple bilinear interpola-
tions so several steps are configured to exploit the hardware-
based interpolation available with an image loaded to a
cudaArray and bound to a texture. Floating point ‘fetches’
from a point [x, y] near [i, j] in a texture map P [] then simply
take the form of floating point indexing: p = P [x, y]. GPU
workspace is also required to perform the 1-D ×Nκ−lines
convolution that embodies the Hilbert transform across κ-lines.

4) Current Projection Texture: The completed filtered pro-
jection gF is copied to an additional texture (a bound
cudaArray, Nrows × Ncol) from which it can be back
projected exploiting hardware interpolation. [Algorithm 1: line
7] This also permits filtering on the next projection to start as
soon as resources are available.

B. Asynchronicity and CPU/GPU Task Overlap

Two types of asynchronous operations improve throughput.
Asynchronous GPU operations permit data transfers from
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Host-to-Device (HtoD or DtoH) to occur concurrently with
computation. These concurrencies improve performance by 3–
5%. More important is asynchronicity between CPU opera-
tions and GPU computation which can nearly double overall
performance.

C. Multi-GPU Task Partioning and Synchronization

Many workstations and servers now have adequate power
and slot space for 2 or more high performance GPUs. The
performance of 2- and 4-GPU servers is discussed in the next
section. Each additional GPU offers a potential linear increase
in total memory and processing power, but it is not obvious
at first glance how to best subdivide the workload. The most
effective scheme, to first order, is also the easiest to configure.
Instead of dividing VOI chunks sequentially, the slices can
be interleaved in much the same way as a striped RAID
array is formed from multiple disks. Each GPU is assigned 3
CPU threads (input, output, and computation) and dispatched
asynchronously to complete its slices independently. Each
GPU utlizes the same range of projections so disk I/O is
minimized.

III. PERFORMANCE ANALYSIS

Giga-Updates is the standard metric for problem size,
defined for parallel projection as voxel count × total
projections/230. Helical reconstructions are more complicated
to quantify so the code sums actual updates as it progresses.
Table 1 gives a summary of results for previous Katsevich-
type parallelizations in the literature. The Hyperfast algorithm
of Steckmann et. al. is also provided for comparison purposes.
Figure 2 shows multiple GPU scaling along with an indication
of the dependence on problem size (negligible. with a doubling
of projection count). In both summaries, raw data represents
the execution time of the FBP only (since I/O latency is buried,
this is somewhat realistic, and is the most valid metric to
compare with other memory-resident FBP times). The ‘SS’
data refers to the sustainable, steady-state rate that should be
achievable for any problem size, including concurrent disk I/O.
This is measured from the start of first upload to the GPU until
the end of the last download of VOI slices. This net rate is
within 70–80% of the raw performance in most cases. Multi-
GPU scaling is also quite acceptable. Deviations from a linear
speedup are not fully understood, but the primary culprits are
latencies due to simultaneous demands on CPU resources.

A sample reconstruction visualization is provided for a long
object: a AAA battery. Fig. 3 is produced from a helical CT
with at 5:1 magnification and 1000 projections over 3 turns.
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1Abstract--The   norm minimization has been widely used 

to recover sparse signals/images inspired by the 

compressive sensing (CS) theory. In order to obtain 

sparser solution, the    (0<p<1) regularization method has 

attracted an increasing interest, which is a generalized 

version of the well-known    regularization. In this paper, 

we report an approximate general analytical thresholding 

representation for the            regularization. Our 

formula can be reduced to the well-known soft-threshold 

filtering for    regularization and the hard-threshold 

filtering for    regularization. We integrate the general 

threshold representation formulas into an iterative 

thresholding framework for computed tomography (CT) 

reconstruction with    regularization. Numerical 

simulations are performed to demonstrate application and 

evaluate the performance of the algorithms. Our results 

show that the proposed algorithms outperforms the state-

of-the-art reweighted algorithm in terms of the sparsity 

enhancement, convergence speed, reconstruction accuracy, 

image quality and parameters sensitivity. The generalized 

threshold representation for    regularization has a great 

potential for all the CS inspired applications with    

regularization. 

1. Introduction 

The well-known    regularization has been widely used to 

relax the    regularization problem, which can also produce 

sparse solutions for the sparsity problems. Nevertheless, the    

regularization may yield inconsistent results and fails to 

recover the optimal original signal with the least measurement. 

Naturally, a promising direction towards            norm 

(   regularization) has attracted a great attention, which can 

generate a sparser solution. The    regularization is a 

nonconvex, nonsmooth, and non-Lipschitz optimization 

problem. It is nontrivial to perform a thorough theoretical 

analysis and efficient algorithms for solutions. By conducting 

a phase diagram study [1], Xu et al demonstrated that: (1) the 

   regularizations can generate sparser solutions than    

regularization. As the value of   decreases, the    
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regularization generates sparser solution; (2) the      

regularization somehow plays a representative role among all 

   regularizations. When          , the      regularization 

always yields the best sparse solution and when          , 
the performance of     has no significant difference.  

Similar to the    regularization, there are two approaches 

to solve the large-scale    regularization. One is the 

reweighted norm algorithm, and the other is the thresholding 

algorithm. The reweighted norm algorithm converts the    

regularization into a format of    regularization by employing 

a weighting function. Then the algorithms for solving    

regularization can be applied immediately, i.e.,   -reweighed 

[2] and generalized   -greedy algorithms [3]. The thresholding 

algorithm is a simple iterative process followed by a 

thresholding operation. Recently, Xu et al discovered that the 

solution of the      regularization can be analytically 

expressed in a thresholding form, distinguishing it from other 

           regularizations [1]. Besides the iterative 

thresholding algorithms for   ,      and    regularizations, we 

are also interested in finding an iterative thresholding 

algorithm for other           regularizations. Recently, 

we derived a recursive solution for any            

regularization in a thresholding form [4]. Here, we will 

optimize the initialization scheme to obtain a quasic-analytic 

form and demonstrate its application for CT reconstruction in 

terms of a general iterative thresholding algorithm. The 

general iterative threshold filtering algorithms are adequate 

and efficient for large-scale problems in CS-based applications, 

and the regularization parameters have specific meanings and 

are easy to choose.  

The rest of this paper is organized as follows: in Section 

II, we will summarize the recursive general thresholding 

expression and derive the quasic-exact analytical formula for 

any    regularization with      ; in Section III, we will 

apply the proposed general thresholding algorithm to CT 

image reconstruction with numerical simulations and evaluate 

its the performance. Finally, in Section IV, we will make a 

conclusion. 

2. Method 

2.1. Problem Description 

We consider the following linear system 

      ,                                                                    (1) 

where         is a given     matrix,   
         

     is the observation or measurement, and 

     is the measurement noise. When the system is ill-

The third international conference on image formation in X-ray computed tomography Page 257



posed, our goal is to recover             
     from the 

observation   such that   has the sparsest structure (  has the 

fewest nonzero components). This sparsity problem can be 

modeled as 

              s.t.       ,                                         (2) 

where       and      is called    norm in    defined as 

           
  

       .                                                  (3) 

The sparsity problem can be frequently transformed into the 

following    regularization problem: 

                     
 
 ,                                     (4) 

where      denotes the    norm defined by Eq. (3), and     

is a regularization parameter to balance the least square term 

and the penalty term.  

2.2. Threshold Filtering Algorithm for    Regularization 

Any solution of    regularization problem defined by Eq. (4) is 

a    solution. A    problem permits a thresholding 

representation, that is, there is a thresholding function   such 

that an iterative threshold filtering algorithm can be defined 

for any of its    solution. A thresholding function   is 

characterized by its threshold value   and defining function  , 

      
                                
                         

 .                                (5) 

A diagonally nonlinear mapping   can be deduced from  , 

                          
 
 .                              (6) 

Hence, any of its    solution can be obtained by the iterative 

thresholding algorithm  

                                                                        (7)  

where   is an affine transform from    to   , and can be 

defined as 

                                                              (8) 

where   is a small positive parameter to control the step of 

each iteration. Once the thresholding function   is well 

defined, the iterative thresholding algorithm for any    

regularization can be obtained.  

2.3. General Thresholding Representation for         

   Regularization 

To develop the general thresholding representation for any 

           solution, we need to find the thresholding 

function      which is characterized by its threshold value      

and the defining function     . Following the same derivation 

in [1], it is easy to verify that the threshold value      and the 

defining function      can be obtained by considering the 

following problem. Given any fixed               
  

  , let us consider 

                      
       

                   (9) 

Because all the components share the same thresholding 

function, let us omit the sub-index   for abbreviation. The 

general format of the problem can be written as 

                                 .   (10) 

It equals to 

 
                                 

                                    
   (11) 

Because the threshold function is symmetric, we only consider 

the case     in the following derivations and the results can 

be directly extended to the case    . 

2.3.1 Threshold Value      

Let   denotes the objective function 

            .                                                    (12) 

The solution of Eq.(9) implies that   should achieve its 

minimum value. When       , the first order optimality 

condition of   implies  

                .                                             (13) 

From Eq.(12), we have              and substitute it 

into Eq. (13), we arrive 
                                          (14) 

Because      when   =0,   should also be equal to    at 

the critique point      we are interested. Substitute      into 

Eq.(14), we have the non-zero solution 

  
       

   
.                                                                   (15) 

Substitute Eq. (15) into Eq. (12) and let     , we arrive at  

      
       

   
 
 

   
       

   
 
 

,                       (16) 

which yield the threshold value      by solving    

     
   

 
     

   

    
 

    .                                          (17) 

2.3.2 General Recursive Thresholding Representation 

By reformatting Eq. (13), we have  

    
  

 
    ,                                                   (18) 

which is a typical fixed-point problem. From Eq. (18), let 

       
  

 
     we immediately have the following 

recursive formula, 

                       ,                              (19) 

Combining Eqs. (19) and (17), we immediately obtain the 

final thresholding function in a general formula 

        

          
  

 
         

   
            

   

 
     

   

    
 

   

                         

   

   (20) 

Denoting      , Eq. (18) can be simplified to,  

  
  

 
         ,                        (21)  

which implies an recursive solution for   

 
        

  

 
         

            
                                    (22) 

Combining Eqs. (22) and (17), we immediately obtain an 

alternative final thresholding function in a general formula 

        

                             
   

 
     

   

    
 

   

                         

    (23) 

Because t usually is very small, a small iterative number   can 

results in very good approximation.  

2.3.3. Quasic-exact Analytical Representation 

Since we are interested in developing an accurate yet 

analytical thresholding representation, we realize that the 

proposed recursive general thresholding solution can be 

simplified to approximate the solution very well in a few 

iteration numbers by choosing appropriate initial values, 

which results in quasic-exact and analytic representation. By 

investigating the initial value and select the iteration number 

carefully, we can derive several concise candidates for the 
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analytical thresholding expression. This will lead to the 

general threshold filtering algorithm directly. Here we show 

some possible choices of initial values and the iteration 

number and give the corresponding approximate analytical 

thresholding expressions. For convenience, we employ the 

alternative iterative thresholding solution in Eqs. (22) and 

(23).    and    are input and output values at the critical 

points. 

i.           and the iteration number     
       

           
  

 
     

  

 
       

   

         
   

 
     

   
    

 
   

                                                           

  

(24) 

ii.                and     
        

 
         

  

 
     

 

 
     

   

    
 

    
   

            
   

 
     

   

    
 

   

                                                                        

     

(25) 

iii.               and     
        

 
         

  

 
     

  

 
     

 

 
     

   

    
 

        
   

       
   

 
     

   

    
 

   

                                                                                       

   

(26) 

iv.                 and     

Because         pass through           , we have   
  

    
 
   

   
 
   

 and         
  

    
 
   

   
 
   

      . The final 

approximate analytical thresholding expression is 
       

           
  

 
     

  

    
 
   

   
 
   

       

   

         
   

 
     

   
    

 
   

                                                                       

  

(27) 
v.                  

    and     

Similarly,         pass through           , we have 

    
 

 
 
   

         and           
 

 
 
   

   

             
   . The final approximate analytical 

thresholding expression is 
        

 
         

  

 
       

 

 
 
   

                  
 

    
 

    
   

 

   

      
   

 
     

   

    
 

   

                                                                                                     

  

(28) 

3. Results 

It has been shown that smaller p has stronger sparsity 

enhancement than a larger one [3]. In order to verify the 

sparsity enhancement property of our derived analytic 

thresholding representation, we implemented and incorporated 

the developed formulas into the classical SART reconstruction 

framework. A numerical modified Shepp-Logan phantom was 

used to perform simulations. We assumed a representative 

circular scanning locus of radius 538.5    and fan-beam 

geometry.  Over a 360° range, 984 projections were uniformly 

acquired. For each projection, 222 detector cells were 

equiangularly distributed, which defines a field of view of 

249.2    in radius and an iso-center spatial resolution of 2.3 

  . Using the simulated sinogram and discrete gradient 

transform, the SART-type general thresholding algorithm was 

implemented by employing the same algorithm in [5] except 

different thresholding formula was used. All the reconstructed 

image sizes are         with the pixel size comparable to 

the detector cell size. We selected the second quasic-exact 

analytic formula in Eq. (25) as the approximate thresholding 

formula. In order to compare the performance of different 

value of p fairly, we developed a parameter selecting scheme. 

A good regularization parameter   should balance the weight 

of the least square term and the penality term in Eq. (4). By 

assuming the least square term (residual error) as a constant, 

we derived a relationship of the regularization parameters 

between different p for fair comparison as follows, 

       
          

  ,                                                      (29) 

where   represents the ground truth,    and    are two 

different p values. We vary p in (0, 1] and the number of 

views range from 5 to 15. To overcome the local minimum 

problem, the initialization is selected as follow: for each view 

number, we fixed the iteration number as 10000 and the 

images are reconstructed with p=1.0 and   range from 

       to       . The reconstruction with the smallest 

root-mean-square-error (RMSE) is selected as the 

initialization for different p. The corresponding optimal   for 

p=1.0 is used to calculate the optimal   for other p by Eq. (29). 

With this initialization strategy, for each p, we run the 

reconstruction algorithm 5000 iterations where we found that 

either the reconstruction is accurate (i.e. RMSE<    ) or the 

RMSE curve levels off. As shown in Fig. 1, the accurate 

reconstruction (i.e. RMSE<    ) is occured at 14 views for 

p=1.0. When p is reduced a little bit (i.e. p=0.9), it yields a 

dramatic drop in the number of views to obtain accurate image 

reconstruction. While the accurate reconstruction for all     

is occurred at 9 views, the smaller p can reach a smaller 

RMSE. 

For a fair comparison, in the same SART framework, we 

implemented the reweighted algorithm proposed in [3] using 

the discrete gradient transform with the weighting function 

selected as   
 

        
, where    is the gradient magnitude 

image and   is a small number to avoid singularity. We 

selected        for all the experiments. The view number is 

selected as 9 where the proposed general threshold filtering 

algorithm can reconstruct images accurately when      . 

In order to select the best initialization from the reconstruction 

with p=1.0, we vary   from      to      and fixed the 

iteration number as 20000 where we observed the RMSE 

either level off or too slow to convergence (i.e.       ). 

Because        yields the smallest RMSE, the 

corresponding reconstructed image is selected as the 

initialization. 

With the optimal initializations for the general threshold 

filtering algorithm and the reweighted algorithm, we 

reconstructed images with p=0.1, 0.9 and 1.0. For the general 

threshold filtering algorithm, the regularization parameter   

was selected according to Eq. (29) and the iteration number 

was fixed as 5000. For the reweighted algorithm, the 

parameter   was selected by cross-validation by varying   in 

             and the iteration number was fixed as 200000 

for p=0.1 and 0.9 where the RMSE either level off or too slow 

to convergence. When       , the reweighted algorithm 

crashes. The reconstructed images and the RMSE curves are 

shown in Figs. 2 & 3, respectively. For both of the algorithms, 
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p=1 cannot accurately reconstruct the image. While the 

general threshold filtering algorithm can accurately 

reconstruct  images with p=0.1 and 0.9 from 9 views, the 

reweighted algorithm failed to accurately reconstruct the 

images. For both of the algorithms, p=0.1 has smaller RMSEs 

compare to p=0.9.   

 
Figure 1. Image recovery plots for the general threshold filtering 

algorithm.  

 

 
Figure 2. Reconstructed images from 9 views. The top and bottom 

rows are reconstructed by the general-threshold filtering and 

reweighted algorithms, respectively. From the left to right column, 

the images correspond to p=1.0, 0.9 and 0.1, respectively. For the 

general-threshold filtering algorithm, the iteration numbers are 5x103 

for p=0.1, p=0.9 and p=1. For the reweighted algorithm, the iteration 

numbers for p=1.0, p=0.9 and p=0.1 are 2x104, 6x104 and 1.3x105, 

respectively. 

  
(a) 

 
(b) 

Figure 3. RMSE curves for (a) the general threshold filtering 

algorithm and (b) the reweighted algorithm from 9 views with 

optimal regularization parameters. For the general threshold filtering  

algorithm, the iteration number for p=1.0, 0.9 and 0.1 are 5x103. For 

the reweighted algorithm, the iteration numbers for p=1.0, 0.9 and 0.1 

are 2x104, 2x105 and 2x105, respectively. 

 

4. Conclusions 

In this paper, we derived several quasic-exact and analytic 

thresholding formulas for general            nonconvex 

regularization problem and obtained the corresponding general 

threshold filtering algorithm. Comparing to the reweighted 

algorithm, our proposed general threshold filtering algorithm 

achieves a substantial reduction in the necessary number of 

views for accurate reconstruction of the Shepp-Logan 

phantom. In addition, the proposed general threshold filtering 

algorithm has advantages in terms of image quality, 

reconstruction accuracy, convergence speed and parameters 

sensitivity. Due to the limited space, we did not show details 

of the correctness of the numerical experiments, the 

convergence properties of the iterative thresholding 

representation, the error bounds and the accuracy of different 

approximate analytical thresholding formulas (Formula 2 in 

Eq. (25) is actually the least accurate one). In the near future, 

we will perform more experiments with realistic data to 

compare the performance of each algorithm. We believe this 

work can provide a better tool for the sparse solution of CS 

based regularization problems. 
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1 Abstract— Narrowing the x-ray beam to focus on a specific 

region of interest (ROI) can reduce potential radiation dose and 

result in the so-called interior problem. It has been proved that 

the interior problem can be uniquely and stably solved by 

minimizing the ROI's total variation (TV) if the imaging object is 

piecewise constant or polynomial, which is called interior 

tomography. To implement the interior tomography, the soft 

threshold filtering (STF) method was applied with a pseudo 

inverse of discrete gradient transform (GDT) for TV 

minimization. However, the iterative nature of interior 

reconstruction algorithm is slow in sequential implementation. In 

this work, we combine the interior reconstruction and GPU 

based acceleration technique for practical applications with fan-

beam and cone-beam geometry.  

Keywords—Computed Tomography (CT);Interior Tomography;  

Compressed Sensing (CS); GPU; Interior Reconstruction 

1. INTRODUCTION  

One of the common methods to reduce the radiation risk is to 
narrow the x-ray beam to focus on particular lesion region 

(interior scan). Interior scan is commonly desirable for cardiac 

CT
[1]

 and nano-CT
[2]

, which results in the interior problem. In 

the compressive sensing (CS) framework, it has been proved 

that the interior problem can be uniquely and stably solved 

regularized by  prior knowledge of certain sub-region of 

interest
[3]–[5]

. Inspired by the CS theory, images subjected to 

sparsity constraints are able to be accurately reconstructed 

from a few projections, which can be implemented in the 

simultaneous algebraic reconstruction technique (SART) 

framework with soft-threshold filtering (STF) methods
[6]–[8]

. 

Because the discrete gradient transform (DGT) is non-

invertible, the SFT method cannot be directly applied for total 

variation (TV) minimization. This problem can be addressed 

by adopting an alternative invertible sparse transforms or 

constructing a pseudo inverse of DGT
[6]

. To minimize the TV, 

one can use the steepest descent method or the STF with a 
pseudo inverse of DGT. In order to speepup the reconstruction 

speed, parallel computing is usually adopted to accelerate 

these algorithms. Modern graphic processing unit (GPU) is 

suitable for single instruction multiple data (SIMD) computing 

model and compute unified device architecture (CUDA)
[9]

 is 

rapidly exploited in many research fields including medical 

imaging. In this paper, we will apply the ordered subset SART 
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Sciences, Wake Forest University Health Sciences, Winston-Salem, 

NC, 27157. This work was partially supported by the NSF 

CAREER Award CBET-1149679. Corresponding author email: 

hengyong-yu@ieee.org.        

(OS-SART) reconstruction framework with STF and the 

parallel computing
[10]

 to make the CS-based interior 

tomography practical. 

2. ALGORITHM DESIGN 

The image (volume) to be reconstructed is labeled as      

and the projection is denoted as      . The projection 
process in a discrete form can be modeled as        , 

where        is the system matrix and      represents 
the measurement noise. Various projection models (such as 
linear interpolation method, grid method, Siddons’ method

[11]
, 

area based method
[12]

, distance driven method
[13]

 and footprint 
method

[14]
) have been developed to compute the elements of  . 

We adopt a modified Siddons’ method as projection model and 
pixel driven as back-projection model.  

    Inspired by CS theory, a regularization item is introduced 
into the OS-SART framework for accurate interior 
reconstruction when the projection is insufficient. Due to the 
non-sparse property of the most medical images, an appropriate 
sparse transform is necessary before the regularization. Taking 
  as the sparse transform, the objective function can be 
rewritten as  

                             
   .          (1) 

The optimization problem (1) can be directly applied for CT 

image reconstruction. When   represents DGT,      can be 

defined as        which is the    norm of DGT of  . To solve 

(1), we usually minimize       and         
   alternatively. 

       
  can be minimized by the OS-SART algorithm. 

      minimization can be achieved by the STF. The image   

is first transformed into the DGT domain to  . Given the prior 

knowledge of its TV value  , a binary search is performed to 

find an optimal threshold   for SFT. Then the filtered   is 

inversely transformed with   according to the formula in [6]  

   The OS-SART divides the projection data into several 

subsets for a faster convergence rate. These subsets participate 
the reconstruction process in an alternating fashion. 

Theoretically speaking, the larger the number of subsets is, the 

faster the convergence rate is. However, the image quality 

may be decreased with the increase of subset number. To 

further accelerate the convergence, the fast weighting in the 

FISTA is also adopted in our implementation.  

3. GPU ACCELERATION 

The STF requires high computational cost. We choose CUDA 
based GPU implementation to accelerate the reconstruction 
algorithms.  

GPU-based Implementation for Interior 
Tomography 

 

Rui Liu and Hengyong Yu 
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Projection Number 17  21 72 180 360  

OS-SART 

     
OS-SART+ 

Steepest Descent 

based TV 

minimization 

     
OS-SART + 

STF based 

TV minimization 

     
Figure 1 Comparison of OS-SART and the corresponding TV minimization versions with different projection numbers; it is found that both 

the steepest descent and STF based TV minimization perform well compared with OS-SART for interior reconstruction. 

 

      Considering a circular trajectory, the geometrical symmetry 
is applied in our implementation. The projection weightings in 
all angles can be calculated from the first     scanning range. 
The cosine and sine values, source positions, the detector 
elements coordinates in initial position and object elements 
coordinates are all loaded into constant memory for higher 
efficiency. Meanwhile, configuring the threads number being 
multiple of 32 in one block is a good choice. We choose 
      as one block size for back projection. The OS-SART 
is implemented with each subset as one projection in one angle, 
and the threads block is configured as (256, 1, 1). In cone-
beam geometry, the projection thread block is configured as 
(32, 32) for one angle. The Siddons’ algorithm is adopted in 
our projection model. The pre-allocated array element number 
should be no less than the largest intersects with the object 
element edges. We adopt a modified Siddons’ algorithm to 
avoid pre-assigning memory 

[15]
. This algorithm first calculates 

the intersections of the compact support of the 2D/3D image 
and the current x-ray path. Beginning with the incident point, 
the algorithm applies the same clipping algorithm to individual 
pixel/voxel bounding box to calculate the image index   and its 

weight     . Considering the direction of the x-ray path, the exit 

point of the current pixel/voxel is set as the incident point of its 
neighbor pixel/voxel and this process will be repeated until the 
current incident point is the exit point of the compact support.  
Pixel-driven backprojection is adopted in our implementation. 
Projection matrix can be applied to accelerate the process 
mapping the point in world coordinate to detector indices. On 
the other hand, single object point back projection usually 
needs interpolation on the detector. As suggested by the peers, 
texture fetching can be applied to accelerate the interpolation 
process in hardware, and we adopted the method similar to Li 
et al.

[16]
. For every voxel, the bounding convex polygon is 

calculated, and only the detector elements inside the polygon 
need to be considered.  

   The DGT is a key process to calculate the TV of an image. 

For an individual DGT value           at the position       , it 

involves four values (                           and       ) which 

are not continuously stored in GPU memory. The DGT is not 
intensive in arithmetic computation but memory bandwidth. To 
reduce the data latency, we divide the volume into        
sub volumes that overlapped on the boundary and loaded into 
the shared memory in cone-beam case. In fan-beam case, the 
image is divided into       sized overlapped sub-image 
with the same strategy. Because the value in last index of the 
sub image is the first index of its adjoining sub image, if the 
threads in each block is allocated as         and the image size 

is        . The block number for DGT calculation is       
                              . Similarly, the block 

number for 3D DGT can be calculated with the same formula.  

    Finding an optimal threshold after the DGT is indispensable 
to accelerate the convergence of STF. It is a dichotomy process 
which is also applicable in GPU. The Thrust library is applied 
for common algorithms such as sorting and linear transform. 
The prior knowledge of the intermediate discrete gradient 
image can be estimated from the roughly reconstructed image 
by the FBP method in 2D case or FDK method in 3D case. The 
pseudo inverse transform will be applied to recover the image 
from the DGT domain. It is implemented in GPU according to 
equations (3.8) to (3.11) in [6]. The memory bandwidth 
problem can also be solved by shared memory.  

    When both of the projection data and image volume are 
large, it is impossible to load these two data sets into one 
device memory simultaneously. Although pinned memory 
technique and zero-copy technique in CUDA can be used to 
partly solve this problem by exposing the CPU memory 
address to the GPU device, it is inappropriate for iterative 
reconstruction which updates the imaging object frequently. 
This is a high burden for PCI bus and large data latency will 
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Table 1 GPU based STF reconstruction time (seconds) for 50 

iterations with 2D fan-beam geometry, different projection 

numbers and image resolutions. 

 17 21 72 180 360 

256 1.1318 1.2775 3.6525 8.7095 17.1106 
512 2.5505 3.0415 9.3782 22.7653 45.1335 

1024 7.0190 8.4435 26.8415 65.6050 130.6528 
2048 23.4480 28.3035 90.2208 220.8985 439.1520 

 

occur. To solve this problem, two Tesla GPUs are used. Both 
the image volume and the projection data are divided in two 
sub-parts without data redundancy. When more than two Tesla 
GPUs are available, dedicated scheme should be designed to 
split the image volume and projection data accordingly. 

    

4. NUMERICAL EXPERIMENTS 

To minimize TV for interior reconstruction, the steepest 
descent and STF methods were integrated into the OS-SART. 
A flat panel detector was assumed. The source to object 
distances and source to detector distances were 50cm and 
100cm, respectively. The detector length was 45cm, the object 
was compactly supported in a disk with radius 10cm, and the 
scanning range was from 0 to   . The sinogram was truncated 
with 25% on both sides to simulate an interior scan with GPU. 
The fan-beam reconstruction was tested with resolution 
                and      ; correspondingly, the detector 
resolutions are 300, 600, 1200 and 2400, respectively. This CS-
based interior reconstruction was tested with 17, 21, 72, 180 
and 360 projections. The iteration number was 50. Some 
representative results were in Figure 1.             

    The computational cost of the STF for 2D fan-beam 
reconstruction in different image resolutions and projection 
numbers are listed in Table 1. We could see that the 
computational cost was proportional to the projection number 
and it also exponentially grew with the image resolution 
doubling. We also tested the STF method on CPU with image 
resolutions      and        under projection number 17 to 
360. The reconstruction time and speedup are both listed in 
Figure 2. We can observe that the speedup was more 
significant when the image was with larger resolutions, and the 
speedup would be larger when the projection was less 
sufficient. Our analysis also showed that most of the 
computational cost was used for projection and backprojection 
operations for image sizes       and      . We also found 
that the STF method could slightly save computational cost 
especially when the image resolution was high.  

     For cone-beam geometry, the system parameters were the 
same with additional detector height 45cm and the object 
height 20cm. The single GPU acceleration for the OS-SART 
plus STF-based TV minimization was tested with the      
sized modified Shepp-Logan phantom. The projection number 

was 100 with detector resolution      and the iteration number 
was 50. Comparing the OS-SART plus STF-based TV 
minimization and conventional OS-SART algorithm, the 
computational costs are 505.834 seconds and 475.906 seconds. 
The time difference mainly comes from the STF operation 
which occupies 19.328 seconds. The computational cost is 

relative small to find the optimal threshold    
. The SD-based 

TV minimization spent 567.841 seconds. Analyzing by a 
CUDA profile software, the projection process occupied 56.3% 
of the time and backprojection occupied 37.6% of the time in 
one iteration. On average, the backprojection from 100 
projection views to      sized volume in one iteration costs 
3.58s, in this case the GUPS is 17.88. It can be seen that the 
STF-based TV minimization method can reconstruct promising 
volume in cone-beam and most of the aliasing comes from the 
divergence of the x-ray. The SD-based method can reconstruct 
the volume better when the image is piecewise constant with 
more computational cost compared to the STF-based TV 
minimization.  

The CS-based interior reconstruction was also tested on 
real clinical dataset from 180 projections. The SD-based TV 
minimization and STF-based TV minimization were tested 
with the real patient interior scan. We can see that the 

          Image reconstruction time from 50 iterations with CPU 
vs. GPU and the speed up curve 

 
          Image reconstruction time from 50 iterations with CPU 

vs. GPU and the speed up curve 

 

 
Figure 2: The red bars and green bars represent CPU based and 

GPU based reconstruction cost (in seconds, marked on left vertical 
axis) with 50 iterations, respectively.  The purple curves are the speed 

up ratio of GPU implementation to CPU implementation metric on 

right vertical axis.  
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reconstruction results are comparable (see Figure 3). The 
RMSE (Root-mean-square deviation) is measured in the region 
inside the red circle of Figure 3 (a). The RMSE of Figure 3(b) 
is 36.25HU, while the RMSE of Figure 3(c) is 35.05HU. It 
indicates that the STF-based TV minimization outperforms 
than SD-based TV minimization in CS-based interior 
reconstruction.  

    The OS-SART is also tested for the multiple GPUs 
acceleration. We reconstructed a 3D             image 
with single floating precision. The detector size was      
   , the projection number was 72, and the iterative number 
was 30. The computational cost was 658.46 seconds in single 
GPU device, the cost was reduced to 189.85 seconds with two 
GPU devices, and it can be further reduced to 130.63 seconds 
with 3 devices.       

5. CONCLUSION 

The x-ray CT is the broadly applied imaging modality for 
non-destructive diagnosis and image-guided intervention. The 
CS theory and interior reconstruction have been investigated to 
reduce the potential of x-ray exposure hazard. The DGT is 
usually used as the sparse transform. To overcome the non-
invertible problem of the DGT for TV minimization, pseudo-
inverse was constructed for the STF-based method for CS-
based interior tomography.  

The GPU boosts the CS-based interior tomography for 
practical applications. Our experimental results show that the 
OS-SART plus STF-based TV minimization method runs 
slightly faster than the SD-based TV minimization and 
reconstruct promising results in fan-beam geometry using one 
GPU for acceleration. In the cone-beam geometry experiments, 
the STF-based method outperforms a little bit than the SD-
based method for few-view projections. Comparing with the 
CPU-based implementation in fan-beam geometry, the speedup 
is higher when the projection number is smaller or the image 
size is larger. Therefore, the GPU parallelization is suitable for 
CS-based interior tomography especially for large-scale 
volume reconstruction. By analyzing the timeline in cone-beam 
reconstruction, it is found that the projection and 
backprojection operations dominate the reconstruction cost in 
the STF-based method. In the near future, we will investigate 
other projection and backprojection models for possible high-

efficient GPU implementation to further reduce the 
reconstruction time.  
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Figure 3: Comparison of SD-based TV minimization reconstruction (b) and STF-based TV minimization reconstruction 

with respect to the reference image (a).  
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Abstract—Measuring the volume of solid pulmonary nodules 

on thoracic CT is a key task for staging cancer and measuring 

therapy response.  Dose reductions and different reconstruction 

algorithms could change reader performance in this task, but 

their effects are still not well understood.  More quantitative 

studies are needed to demonstrate the effects of dose and 

reconstruction algorithm on nodule volumetry.  We devised an 

experiment using simulated reduced-dose CT scans, based on the 

raw sinogram data from clinical patient scans, to compare semi-

automated volumetry at clinical dose with volumetry at 25%, 

10%, and 3% of our clinical dose protocols.  We also compared 

volumetry on images reconstructed with B45f and I50f strength 3 

kernels on a Siemens Definition Flash workstation.  For lesions > 

1 cm in effective diameter, the readers’ repeatability at clinical 

dose was similar to the inter-dose reproducibility at all dose levels 

(+/-15%).  Reproducibility also seemed to be unaffected by 

changing reconstruction kernels.  However, it remains a 

challenge to isolate the effects of dose and reconstruction 

algorithm from other sources of reader variability in the clinical 

setting. 

 
Index Terms—Lung nodules, volumetry, thoracic CT, dose 

reduction, reconstruction algorithms, repeatability, inter-dose 

reproducibility. 

 

I. INTRODUCTION 

here is great interest in reducing the dose in thoracic CT 

protocols, particularly with the potential reimbursement of 

lung cancer screening in the near future.  With more 

patients potentially receiving CT scans, it becomes more 

important to ensure that thoracic CT protocols provide high-

quality information to the physician with a minimum of 

radiation dose.  However, it is not obvious how far to reduce 

the dose in chest CT without increasing image noise to the 

point of sacrificing the high standard of care that we have 

come to expect from CT.   

To reduce thoracic CT dose without sacrificing standard of 

care, an important prerequisite is to demonstrate that our dose 

reductions do not degrade the quality of quantitative 

measurements in the lung.  In particular, estimating the 

volume of solid pulmonary nodules is a critical measurement, 

both for staging lung cancer and for measuring progression or 

stability of disease.  It is so important that various societies 

Stefano Young is with the University of California Los Angeles, Los 
Angeles, CA 90024 USA (e-mail: stefanoyoung@mednet.ucla.edu).  

Michael F. McNitt-Gray is with the University of California Los Angeles, 
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have published guidelines on how to manage these findings 

when they appear on thoracic CT exams [1,2].  Although lung 

nodule volumetry is critical to patient management and 

various guidelines exist in the literature, there remains a great 

deal of variability in the execution of this quantitative 

measurement.   

Gavrielides et al. illustrated that scan dose and 

reconstruction algorithm are factors which could potentially 

affect the variability in lung nodule volumetry, though there is 

not yet consensus on the effects of these factors [3].  Only a 

few published studies have attempted to quantify how dose 

affects readers’ measurement variability when measuring 

clinical lesions.  In one study, investigators performed two 

consecutive low-dose and two consecutive standard-dose 

scans for each patient [4].  An observer then clicked each 

nodule, and volumes were automatically calculated by a 

commercial algorithm.  For the consecutive low-dose scans, 

they found inter-scan relative volume differences between -

38% and 60% (95% confidence limits).  For the standard-dose 

scans, confidence limits were between -27% and 40%.  The 

authors acknowledged, however, that they could not directly 

compare performance at the two dose levels due to protocol 

differences; in particular the slice thickness.  In another study, 

investigators scanned each patient twice; once at standard dose 

and once at ultra-low dose.  Two readers measured nodule 

volumes at both dose levels.  Inter-dose relative volume 

differences ranged from -23.4% to 26.2% for reader 1 and -

25.1% to 28.9% for reader 2 [5].  In the same study, they 

found intra-dose, inter-reader differences ranging from -9.7% 

to 8.3% at standard dose and -12.6% to 12.4% at ultra-low 

dose.  The difference between inter- and intra-dose results 

illustrates the importance of inter-scan patient factors like 

positioning and breath hold.  The difference between intra-

dose results at standard and ultra-low dose suggests that one or 

both readers became slightly less precise at ultra-low dose.  

The authors concluded, however, that dose did not affect 

reader performance, based on comparing their inter-dose 

results with other studies’ inter-scan results at standard dose. 

We devised novel experiments to investigate the effects of 

scan dose and reconstruction algorithm on lung nodule 

volumetry.  These experiments involved simulated reduced-

dose scans based on the raw data from a single clinical CT 

scan for each patient.  This document explains the 

experimental design and the results of those experiments, as 

well as discusses some example scenarios for relating the 

results to dose reduction in the clinical setting. 

Solid lung nodule volumetry: effects of dose 

reduction and reconstruction algorithms 

Stefano Young and Michael F. McNitt-Gray 

T 
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II. MATERIALS AND METHODS 

Our experiments involved three main steps: simulating 

reduced-dose scans (Section II.A), validating our simulations 

on phantom data (Section II.B), and designing a reader study 

for evaluating reader variability in lung nodule volumetry 

(Section II.C). 

A. Simulating reduced-dose scans 

Repeat scanning patients for research purposes can lead to 

unnecessary radiation dose, so these types of studies have 

typically been limited to two dose levels per patient.  

Recently, researchers demonstrated that it is possible to 

simulate multiple reduced-dose CT scans by exporting the raw 

sinogram data from a single clinical CT scan and applying an 

appropriate noise model.  A variety of noise models have been 

summarized by Zabic et al [6].  The simulation approach has 

various benefits, including being able to explore the dose 

space efficiently without unnecessary radiation exposure and 

isolate dose effects from motion effects, which are clinically 

unavoidable even if the patient stays on the table between 

scans. 

We adapted Zabic’s approach and used concepts from 

Massmouzadeh et al. [7] to simulate reduced-dose sinograms 

from a series of thoracic CT scans acquired from our Siemens 

Definition Flash scanner under IRB approval.  Through a 

research agreement with Siemens, we have the tools to extract 

individual readings from the raw sinogram files.  All scans 

were adult patients acquired with the following technical 

parameters: 120 kV, 0.5 sec rotation time, 250-285 ref mAs, 

B45f kernel, 1-mm slice thickness, and CareDose 4D (tube-

current modulation).  In our simulations, we modeled dose 

reduction by scaling the tube-current modulation function by a 

constant factor.  The raw CT data were exported from the 

scanner, and then we simulated reduced-dose sinograms in 

parallel on a multi-CPU computing cluster for speed.  After 

simulating reduced-dose sinograms, we imported the 

sinograms back to the scanner workstation and reconstructed 

using the same kernel and slice thickness as we used 

clinically.  The reconstructed images were then loaded into 

our group’s quantitative imaging workstation software to take 

advantage of the semi-automated contouring tools available. 

 

B. Validation of reduced-dose simulations 

To validate our reduced-dose simulations, we performed a 

comparison between water phantom scans at various dose 

levels and phantom simulations at the same dose levels.  We 

compared mean and standard deviations of the Hounsfeld-unit 

values at different locations within one slice, and we found 

good agreement at all dose levels.  While this is not a 

definitive demonstration of agreement between clinical and 

simulated scans, it gave us confidence that we could generate 

reduced-dose image series across the range of dose levels 

supported by our scanner model. 

 

C. Reader study design  

Under IRB approval, we exported the raw sinogram data for 

68 patients with at least one suspicious nodule.  From these, 

we selected a subset of 35 “measurable” lesions based on 

language in the Quantitative Imaging Biomarkers Alliance 

(QIBA) profile document on nodule volume change 

measurement, namely: “tumor margins are sufficiently 

conspicuous and geometrically simple enough to be 

recognized on all images”.  The QIBA profile also specified a 

minimum effective diameter of 1 cm.  Thus, we ruled out the 

smallest lesions and lesions which were attached to vessels or 

pleural walls.  We selected only one lesion per patient to avoid 

potential bias due to a large number of lesions coming from 

the same scan.  For each of the patients with a lesion meeting 

the QIBA criteria, we used the clinical scan to simulate 

reduced-dose sinograms at 25%, 10%, and 3% of the clinical 

dose.  We started at just 25% of clinical dose because lung 

nodules are known to be high-contrast.  In terms of CTDIvol, 

our clinical protocol corresponded to 20.9 mGy in the 32-cm 

CTDI phantom, so the 3% dose level would be less than 1 

mGy. 

After simulating reduced-dose sinograms for all 35 scans, 

we imported them back to the scanner workstation and 

reconstructed with two different kernels:  B45f and I50f 

strength 3.  All images were reconstructed at 1-mm slice 

thickness.  We then imported the DICOM images to our 

group’s quantitative imaging workstation software for semi-

automated contouring [8].  All image series were anonymized 

to hide the patient and dose information.  We asked three 

trained lab technologists to contour the lesions using a divide-

and-conquer approach.  Starting at the lowest dose (3%), each 

reader received a list of the 35 lesions in random order, where 

the reconstruction algorithm for each lesion was also assigned 

randomly (without replacement).  Due to the difference in 

appearance between the reconstruction kernels, we felt this 

would reduce bias, and the readers would have difficulty 

distinguishing a change in recon kernel from a change in dose.  

The readers repeated this process at 10% and 25% dose, but 

clinical dose followed a slightly different design.  At clinical 

dose, the image series were duplicated and randomly inserted 

into the reading list to get an estimate of the readers’ intra-

dose repeatability. 

 For statistical analysis, there are various options for 

displaying and analyzing volumetry data.  One of the 

difficulties that arises is isolating the dose dependence and 

algorithm dependence from other factors.  Our research 

question was really a question of agreement or reproducibility 

of nodule volumetry across doses and reconstruction 

algorithms, so we used analyses inspired by Bland and Altman 

[9].  For the clinical repeatability data, we calculated relative 

differences between two volume measurements made on the 

identical image series.  For comparing volumetry across dose 

levels, we calculated relative differences between clinical and 

reduced-dose volumes (i.e. inter-dose reproducibility) as 

follows: 

                          100 ×
𝑉clinical−𝑉reduced

1

2
(𝑉clinical+𝑉reduced)

 (1) 

 

An analogous form was used to calculate the inter-dose, inter-

algorithm reproducibility. 
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III. RESULTS 

Nodule effective diameters ranged from approximately 7-35 

mm, with the majority of the nodules less than 20 mm in 

effective diameter and a few larger nodules (Figure 1).  

Because the QIBA criteria were applied visually before 

contouring, there were a number of sub-cm nodules in the 

final dataset. 

 
Figure 1 - Nodule sizes ranged from approximately 7-35 mm effective 

diameter, with the majority of nodules < 20 mm.  Results are for reader 1 at 
clinical dose (B45f kernel). 

 

A. Clinical (intra-dose) repeatability and inter-dose 

reproducibility with B45f kernel 

 

Clinical (~20.9 mGy) 

 
 

25% (~5.2 mGy) 

 

 

10% (~2.1 mGy) 

 
 

3% (~0.6 mGy) 

 
 

In the following results, we pooled the measurements from all 

three readers.  In the clinical repeatability (intra-dose) 

experiment, the 95% confidence interval (CI95) was -9.1% to 

11.3% relative differences. At 25% dose, CI95 was -14.6% to 

12.1%.  At 10% dose, CI95 was -20.3% to 14.4%.  At 3% dose, 

CI95 was -15.5% to 17.4%.  For effective diameters > 1 cm, 

most of the relative differences were between +/-15% at all 

dose levels.  One suspicious outlier at 3% dose is marked (*) 

for discussion. 

 

B. Inter-dose reproducibility with I50f kernel strength 3 

 

We repeated the inter-dose reproducibility experiments in 

Section III.A using images reconstructed with the SAFIRE 

I50f kernel, strength 3.  Relative volume differences were 

measured with respect to the same B45f clinical reference 

volumes as in the previous section. 
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25% (~5.2 mGy)  

 
 

10% (~2.1 mGy)  

 
3% (~0.6 mGy)  

 
 

At 25% dose, CI95 was -20.0% to 20.8% relative difference.  

At 10% dose, CI95 was -20.5% to 13.8%.  At 3% dose, CI95 

was -23.7% to 21.9%.  As in Section III.A, for effective 

diameters > 1 cm, most of the relative differences were 

between +/-15%. 

IV. DISCUSSION 

Considering nodule effective diameters > 1 cm, all but one 

of the volume differences fell within the range of +/-15% 

across all dose-reconstruction combinations in this study.  

Inter-dose reproducibility seemed to agree with the clinical 

repeatability for larger nodules.  Most of the nodules with 

|volume differences| > 15% corresponded to smaller nodules, 

which would not be considered to meet the QIBA criteria. 

 In the one case in Section III.A where a larger nodule had 

an inter-dose volume difference > 30% (below), it was still 

difficult to isolate the effects of dose from reader variability 

effects. 

 

3% (B45f) 

 
 

Clinical (B45f) 

 
 

Since the readers started with the 3% dose lesions and ended 

with the clinical lesions, we concluded that the differences 

above were most likely due to a change in the reader’s 

decision-making process as the reader became comfortable 

with the task over time, rather than a change due to perceiving 

additional contrast or reduced noise at the clinical dose level. 

V. CONCLUSIONS 

For solid nodules satisfying the QIBA criteria for 

“measurable” lesions, volumetry seemed to be independent of 

dose and reconstruction algorithm across the range of dose 

levels and algorithms that we simulated in this study.   
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Considerations on an Advanced Adaptive Filter
Harald Schöndube, Rainer Raupach and Karl Stierstorfer

I. INTRODUCTION

The photon statistics of CT projection measurements can be
modeled quite accurately as a Poisson or compound Poisson
distribution. In many cases, the simplifying assumption of
modeling CT projection noise as an attenuation-dependent
Gaussian distribution can be made. In other words, the noise
associated with a given measured value depends on the atten-
uation of this particular ray. This means that for non-isotropic
objects (i.e., objects that are not “round” with respect to
their CT attenuation) the noise in the CT projections depends
on the projection direction and as a result pixel noise in
the reconstructed image will be anisotropic. This so-called
“directionality” of the image pixel noise depends on the extend
of the non-isotropy (or “eccentricity”) of the object.

The so-called adaptive filter is an established method to
reduce the directionality of image noise in CT images [1],
[2]. By applying an attenuation-dependent filtering to the raw
fan-beam data it attempts to equalize the quantum statistics of
all projections that contribute to a given image. The adaptive
filter can be realized by first applying a 2D linear low-
pass filter to each projection and then performing a ray-wise
attenuation-dependent mixing of the filtered data with the
original unfiltered data. The mixing factor therefore determines
the adaptive filter strength of each element; it is chosen with
the aim to equalize the projection noise of the projection data,
i.e., the projection featuring the minimal maximum attenuation
value stays entirely unfiltered.

However, every linear filtering operation comes with a
corresponding loss of resolution at high-contrast edges in the
object. To mitigate this effect combining the adaptive filter
with edge-restoring algorithms has been considered [3]. In this
case, a second image would be reconstructed from unfiltered
data and then mixed with the original image according to the
strength of edges as detected in the image by an edge detection
algorithm. However, while effectively restoring high-contrast
edges this approach removes the effectiveness of the adaptive
filter in regions close to the edge.

In this work, the results of an investigation of an edge-
preserving, rather than edge-restoring approach are presented.
While the performance of edge preservation is not influenced
compared to the edge-restoration described above, the effec-
tiveness of the adaptive filters along edges in the object is at
least partially retained with our approach.

II. ALGORITHM DESCRIPTION

A. Notation

We denote 2D parallel CT projection data as g(p, ϑ), where
p is the distance of a particular ray from the iso-center and

The authors are with Siemens AG, Healthcare Sector, Siemensstr. 1, 91301
Forchheim, Germany. Contact: harald.schoendube@siemens.com
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Fig. 1. Flow chart of our proposed algorithm.

ϑ denotes the projection angle; in this notation the Radon
transform of an object f(x) is expressed as

g(p, ϑ) =

∫ ∞
−∞

f(pθ + tθ⊥) dt,

for 0 ≤ ϑ ≤ π with θ = [cos(ϑ), sin(ϑ)]T and θ⊥ =
[− sin(ϑ), cos(ϑ)]T . We furthermore denote ramp-filtered par-
allel CT data as ǧ(p, ϑ), such that the filtered backprojection
of g(p, ϑ) can be written as

f(x) =

∫ π

0

ǧ(x · θ, ϑ) dϑ.

B. An advanced adaptive filter

Our proposed algorithm, dubbed “advanced adaptive fil-
ter reconstruction” (AAFR), is based on applying the edge-
dependent mixing on the filtered raw data during the backpro-
jection step rather than in image domain. A flow-chart of the
procedure is shown in figure 1. It comprises of two main steps
(marked 1© and 2© in the flowchart, respectively):

In the first step, an image volume V1 is reconstructed from
the original unfiltered data by means of applying a filtered
backprojection (marked as a sequence of rebinning, ramp filter
and backprojector BP in the flow chart). V1 is then fed into
an edge detector ED, resulting in an edge volume Vedge. Note
that for each pixel, Vedge should not only contain information
about edge strength but also about the direction of a potentially
detected edge at the given pixel’s location.

In a second step, the data is first filtered using the “filter
A”, which is best chosen as being equivalent to the adaptive
filter described above. Both the filtered and the non-filtered
data are rebinned, ramp filtered, and then fed into a modified
backprojector BPmix. Here, the backprojected data component
for target pixel x and projection angle ϑ is computed as a linear
combination of the filtered and non-filtered data:

ǧBP (x · θ, ϑ) = α(x, ϑ)ǧ(x · θ, ϑ) + (1− α(x, ϑ))ǧA(x · θ, ϑ),

where ǧA(p, ϑ) denotes (after ramp-filtering and rebinning)
the data filtered by filter “A”, while ǧ(p, ϑ) stands for the
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respective unfiltered data. The mixing factor α(x, ϑ) depends
both on x and ϑ and is determined from Vedge in dependence
of the edge significance at x along the direction θ⊥:

α(x, ϑ) = h

(
|cos(ϑ)Sx(x) + sin(ϑ)Sy(x)|

N(x)

)
,

where Sx(x), Sy(x) and N(x) respectively denote the gradient
along x- and y-directions and the noise level at location x as
determined from Vedge. The edge significance function h(λ)
is a smooth function that maps the edge SNR to a scalar
significance value with h(0) = 0, h(λ) = 1 if λ is larger
than a threshold value λmax, and 0 ≤ h(λ) ≤ 1 for all
values of λ. In other words, if the edge SNR along θ at
x is large, the algorithm considers the edge component at
x parallel to the backprojected ray as not being negligible
and α(x, ϑ) is set to a value such that the non-filtered data
ǧ(x · θ, ϑ) is the predominant component in the backprojected
value ǧBP (x · θ, ϑ).

C. Linear filter variant
A second variant of our method, which is included here

for completeness, would be to apply a linear filter instead of
the adaptive filter for the “filter A” step. Additionally to the
edge-dependent factor, an adaptive weight according to the
eccentricity of the object would then be applied in the mixing
step of the backprojector BPmix. However, this approach
introduces additional image artifacts and is therefore not a
preferred solution.

An example is shown in figure 2, which shows images
reconstructed from the same simulated CT data set: On the
left side, a “classical” adaptive filter followed by an FBP
reconstruction was applied. On the right side, the “linear filter”
variant of our proposed method was applied (with the mixing
in the BPmix step limited to the adaptive weight without
applying an edge-dependent factor). It can clearly be seen
from this figure, that additional artifacts are introduced by this
approach.

The reason for this lies in the non-commutativity of adaptive
weighting and ramp filtering: If we denote the filtered and
the non-filtered dataset with g1(p, ϑ) and g2(p, ϑ), respectively
and the (channel-dependent) adaptive weights as w(p, ϑ) we
have the following expression for the “classical” adaptive
mixing:

gadfil(p, ϑ) = w(p, ϑ)g1(p, ϑ) + (1− w(p, ϑ))g2(p, ϑ).

Applying the convolution kernel K(p) we obtain

ǧadfil(p, ϑ) = K(p) ∗ gadfil(p, ϑ)

= K(p) ∗ (w(p, ϑ)g1(p, ϑ) + (1− w(p, ϑ))g2(p, ϑ)) .

On the other hand, applying the adaptive mixing in the back-
projection step means commuting convolution with K(p) and
weighting with w(p, ϑ), which is not identical to ǧadfil(p, ϑ),
since

K(p) ∗ (w(p, ϑ)g1(p, ϑ) + (1− w(p, ϑ))g2(p, ϑ))

= K(p) ∗ w(p, ϑ)g1(p, ϑ) +K(p) ∗ (1− w(p, ϑ))g2(p, ϑ)

6= w(p, ϑ)K(p) ∗ g1(p, ϑ) + (1− w(p, ϑ))K(p) ∗ g2(p, ϑ)

holds.

Fig. 2. Images from simulated CT data: (left) reconstructed using the
“classical” adaptive filter followed by FBP; (right) applying a linear filter to
the data and applying an adaptive mixing between the filtered and non-filtered
data during the backprojection step.

Parameter Data set 1 Data set 2
Acquisition mode Single-Source Spiral Single-Source Spiral
Collimation 32 x 1.2mm 64 x 0.6mm
Pitch factor 1.2 0.55
Tube voltage 100 kV 140 kV
Q. ref. mAs 180 600
Reconstructed FOV 300mm 300mm
Slice width 1.5mm 0.6mm
Kernel B40f B40s

TABLE I
OVERVIEW OF THE ACQUISITION AND RECONSTRUCTION PARAMETERS OF

DATA SET 1 AND DATA SET 2.

III. RESULTS

In the following, some results obtained with a prototype im-
plementation will be shown and discussed. The images shown
here were obtained from two different data sets, designated as
“data set 1” and “data set 2”, respectively, in the remainder
of this report; see table I for details about acquisition and
reconstruction parameters.

A. Algorithm performance

Tested with data set 1, the AAFR algorithm delivers good
results. Figure 3 shows a comparison with a standard WFBP
reconstruction with classical adaptive filter. The reduction of
directed noise while maintaining edge sharpness is clearly
recognizable. In figure 4 the adaptive filter in the WFBP recon-
struction was parameterized for a stronger noise reduction such
that it corresponds to the setting of “filter A” for the AAFR
reconstruction. In this case, the resulting level of directed noise
and streak artifacts is quite comparable to the one obtained
with AAFR, albeit at the cost of a loss of edge sharpness which
does not incur when applying our proposed AAFR method.

The eccentricity of the scan object of data set 2 is markedly
stronger than the one of data set 1. Therefore, the level of
directed noise and streak artifacts is much higher and the data
set is more challenging for our proposed AAFR method. From
figure 5 it can be seen that careful parameter optimization is
necessary, as otherwise two types of artifacts are prone to
appear:
• “ghost structures” along high-contrast edges, especially

manifesting themselves as fine lines along bones;
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2014-01-29Page 2 H. Schöndube, H IM CR R&D PA CTP

WFBP „Advanced Adaptive Filter“ WFBP „classic“ Difference

Concept works in principle

Fig. 3. Images reconstructed from data set 1: AAFR (left), reference WFBP
with classical adaptive filter (right), c/w: 40/300.
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2014-01-29Page 3 H. Schöndube, H IM CR R&D PA CTP

WFBP „Advanced Adaptive Filter“ WFBP with AdFil strength as AFR Difference

Concept works in principle

Fig. 4. Images reconstructed from data set 1: AAFR (left), reference WFBP
with classical adaptive filter and stronger parameterization (right), c/w: 40/300.

• regions along soft tissue boundaries, in which the noise
level is visibly higher than in homogeneous regions in
the interior of the organ.

The arrows in figure 5 each point to one example of these two
kinds of artifacts.

An analysis shows that the first artifact is caused by an
imbalance between the adaptive filter applied to the data and
the image-based edge detection: Consider a pixel close to, but
not directly adjacent to a high-contrast edge. If the distance
from the edge is large enough, it will be not marked as being
in the neighborhood of the edge. Consequently, the filtered

data will be used for backprojection. If, however, the distance
from the edge is smaller than the maximum extent of the
adaptive filter in projection domain, the filtered CT value
will still have a different expectation value than the unfiltered
one due to the edge blurring caused by the filter. Thus, the
ghost structures appear. In other words, the artifact generation
process is comparable as if the image had been filtered by
a low-pass filter and then mixed with the original unfiltered
image according to the result of the edge detector, with the
edge detection parameters not matched to the extent of the
low-pass filter.

A somewhat higher noise around detected edges is actually
inherent to our method due to the edge-dependent mixing
between filtered and non-filtered data. The second artifact can
therefore not fully be prevented; it can however be mitigated
by ensuring a smooth transition between using filtered and
non-filtered data.

In consequence, it is necessary to parameterize the edge
detector such that its result matches the extent of the adaptive
filter in projection domain and such that a smooth transition
between the use of filtered and non-filtered data in the back-
projector is ensured. In practice, we have realized this behavior
by applying a spatial filter to α(x, ϑ). In this way, we enlarge
the area of regions with high edge significance (i.e, regions
in which edges are assumed to be close by) at the one hand
and smoothen the transition between regions with high and low
edge significance at the other hand. The result of this technique
with using a 7× 7 pixel boxcar filter is shown in figure 6. It
can be seen that the ghost structures along bone edges are
eliminated completely, while the impact of the unequal noise
distribution along soft tissue edges on image perception is
also visibly reduced. On close inspection one might perceive
a somewhat degraded image sharpness compared to the default
parameterization of the AAFR and the reference WFBP. We
have thus also applied a modified filtering where a maximum
filter of size 3 × 3 pixel was applied, followed by a 5 × 5
boxcar filter. The result is shown in figure 7; image sharpness
is maintained better than with the simple 7 × 7 boxcar, this
comes, however, at the cost of the non-uniform noise at tissue

Confidential © Siemens AG 2014 All rights reserved.
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WFBP AFR WFBP „classic“ WFBP with AdFil strength as AFR

Shoulder case with stronger anisotropy

Fig. 5. Images reconstructed from data set 2: AAFR (left), reference WFBP with classical adaptive filter (center), WFBP with classical adaptive filter and
stronger parameterization (right), c/w: 50/500.
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Default 7x7 boxcar (adapted to AdFil size) WFBP

Smoothen EdgeSignificance with boxcar

-> more effective, but loss of resolutionFig. 6. Images reconstructed from data set 2: AAFR with 7x7 boxcar filter
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Default MaxFilt 3x3, then Boxcar 5x5 WFBP

Combine maximum and boxcar filters

-> effective against artifacts, but streak artifacts from noise remainFig. 7. Images reconstructed from data set 2: AAFR with 3x3 maximum and
5x5 boxcar filter on edge significance matrix (left), AAFR “default” (right),
c/w: 50/500.

boundaries being more visible again (cf. figure 6).

B. Comparison to image-domain mixing

As a simpler approach for an edge-preserving reconstruction
involving filtered and non-filtered data, backprojecting both
data sets separately and then applying an edge-dependent
mixing in image space has previously been proposed [3].
Compared with our proposed method, this setup does not allow
for a choice between non-filtered and filtered data depending
on projection direction and edge orientation, instead the non-
filtered data will be used for all projection directions in
the neighborhood of a given edge. Hence, data contributions
that belong to a projection direction perpendicular to the
edge can not be smoothed in this case. However, those
contributions are exactly the ones that are “responsible” for
streak artifacts perpendicular to the edge. The resulting effect
can be recognized in figures 8 and 9: In the first figure, a
comparison of our proposed AAFR method vs. the described
edge-dependent image mixing approach is shown for data set
1. Since the object shown in this data set features a relatively
low eccentricity, the difference between the two methods is
more or less negligible. However, for data set 2, which shows a
stronger level of eccentricity, the situation is different: Figure 9
displays the comparison for the same AAFR configuration as
in figure 6.1 Here, remaining streak artifacts perpendicular to

1Note that to ensure a fair comparison, the same processing was applied
to the edge detection input for the image-domain mixing approach as used in
the corresponding AAFR configuration.
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WFBP „Advanced Adaptive Filter“ WFBP with image domain mixing Difference

Difference to direct mixing in image domain
Relatively minor?

Fig. 8. Comparison AAFR (left) vs. edge-dependent image mixing (right)
for data set 1, c/w: 40/300.
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AFR Image domain mixing Difference

Comparison AFR vs image mixing
Boxcar of size 7 (same as previous slide)

-> Advantages of AFR recon in streak reduction perpendicular to edgesFig. 9. Comparison AAFR (left) vs. edge-dependent image mixing (right)
for data set 2, AAFR configuration as in figure 6, c/w: 50/500.

edges present in the object can clearly be recognized in the
image reconstructed with the simpler image-domain mixing,
while these artifacts are not present in the image reconstructed
with our AAFR method.

IV. CONCLUSION

We have presented a new approach for extending the well-
known adaptive filter with an edge-dependent backprojection
step to allow for a stronger filter parameterization while
maintaining image sharpness. An evaluation shows that ob-
taining good image quality in terms of edge preservation
while effectively reducing directed noise and streak artifacts is
possible. Careful parameter optimization is necessary to adapt
the result of the edge detection routine to the extent of the filter
applied in projection domain. Compared to a simpler image-
domain mixing approach the AAFR method yields a superior
reduction of streak artifacts, especially perpendicular to edges
present in the imaged object.
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Improved Trajectories in C-Arm Computed
Tomography for Non-Circular Fields of View

Magdalena Herbst, Frank Schebesch, Martin Berger, Rebecca Fahrig, Joachim Hornegger and Andreas Maier

Abstract—In C-arm computed tomography, the field of view
(FOV) is often not sufficient to acquire certain anatomical
structures, e.g. a full hip or thorax. Recently proposed methods
to extend the FOV use a fixed detector displacement and a 360◦

scan range to double the radius of the FOV. These trajectories are
designed for circular FOVs. However, there are cases in which the
required FOV is not circular but rather an ellipsoid. In this work,
we show that the use of a dynamically adjusting detector offset
can reduce the required scan range when using a non-circular
FOV. Furthermore, we present an algorithmic approach which
determines the minimal required scan ranges for arbitrary FOVs
given a certain detector size. Our results indicate a promising
reduction of the necessary scan range especially for ellipsoidal
objects. Additionally initial reconstruction results of our method
yielded comparable results as when using a fixed detector offset
with a full 360◦ rotation.

I. INTRODUCTION

In computed tomography (CT), the maximum size of the
reconstructable field of view (FOV) is a relevant factor. The
diameter of a C-arm CT’s FOV is typically determined by its
detector size and might therefore be limited. Thus, it might be
too small to cover certain anatomical areas of interest as for
example the hip, the chest or both knees simultaneously.

One solution to increase the FOV is to displace the detector
array and adjust the scan range accordingly [1], [2], [3]. The
maximal radius of the FOV can be doubled if a displacement
of half the detector range is used. Consequently, only half of
the extended FOV is acquired with a single projection. Prior
to reconstruction these truncated projections are then rebinned
to a complete data set which covers the fully extended FOV.
One drawback of these methods is, that a full 360◦ scan
range is required to sample the extended FOV completely.
Conventional C-arm CT scanners typically do not allow for
such high scan ranges and even state-of-the-art robot-mounted
systems might not be able to use a 360◦ scan range in certain
angulations. This might be due to an irregular patient position
as for example when scanning knees under weight-bearing
conditions [4], [5].

Currently these trajectories and their reconstruction methods
are designed for circular FOVs, but many anatomical structures
may be better described by a non-circular boundary, for ex-
ample by using ellipses. In this work, we propose a numerical
approach that determines the minimally required scan range
for arbitrary shaped FOVs, given a certain detector size.

Magdalena Herbst, Frank Schebesch, Martin Berger, Joachim Hornegger,
and Andreas Maier are with the Pattern Recognition Lab, Department of Com-
puter Science, Friedrich-Alexander-Universität Erlangen-Nürnberg. Joachim
Hornegger and Andreas Maier are with Erlangen Graduate School in Ad-
vanced Optical Technologies (SAOT). Rebecca Fahrig is with the Department
of Radiology, Stanford University, Stanford, CA, USA.
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Fig. 1: Rotation of detector around source equals shift of the
detector in the sinogram

II. MATERIALS AND METHODS

A. Correspondences in the Sinogram

In a sinogram of a complete rotation, i.e. a scan range
of 360◦, every ray is detected twice [6]. These rays are
also known as complementary rays. The corresponding line
integrals resulting of the complementary rays are equal and
their position in the sinogram can be described by the relation

f(α, β) = f(−α, β + π + 2α) . (1)

B. Proposed Algorithm

Subsequently, we consider simple objects that are used
to represent various shapes of possible FOVs. For example
ellipsoids could be used to represent an outline of a hip
slice, or two circles that are positioned off-center could be
a suitable FOV for a cross-section of two knees. Now we
define a virtual detector that is large enough to cover the whole
object such that none of the acquired projections suffer from
data truncation. Then a ground truth sinogram is generated
using the defined FOV model and an arbitrary but non-zero
density distribution within the FOV. For simplicity we assume
a constant density over the entire FOV and use the mean
density value of water. If the object has non-uniform diameters,
e.g. like an ellipse, it is visible in the sinogram that there are
line integrals that do not intersect the object, i.e. their sum is
zero (cf. Fig. 1, right side). That means that this data is not
necessary for reconstruction. Consequently, the idea is to move
the detector in such a way that only non-zero line integrals are
collected in each projection.

This motion of the detector is illustrated in Fig. 1. The
projection of a single angle taken with the virtual detector
is depicted by the blue line and represents a single line of
the sinogram. The red line represents the real detector and
its corresponding data in the sinogram. Moving the red line
in the sinogram to the left and right is equivalent to rotating
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Fig. 2: Shape of the knees, sinogram of the knees and example
for data acquired with a smaller detector with dynamic offset

the real detector while performing the rotation of the whole
C-arm system. The rotational movement of the detector can
be described with the angle between the central ray of the
virtual detector and the central ray of the real detector. It will
change while rotating the whole C-arm and can be described
as a function of β. In this way, only segments of interest are
acquired in the sinogram. The most intuitive way of rotating
the detector is to follow the contour of the object in the
sinogram (cf. Fig. 2). Hence, a minimal amount of background
is scanned. If this movement is performed and a full data
set should be acquired, the following constraints have to be
fulfilled:

• First, the detector has to be large enough to cover the data
for a rotation angle where the object outline is narrowest.

• Second, the detector has to be at least as wide as half
of the object outline’s widest position in the sinogram.
Otherwise the object can not be covered with an off-
center acquisition.

If the detector size given by the first requirement is equal to the
detector size given by the second requirement, we would have
a circular FOV and could use a static off-centered detector
with a 360◦ scan range. In case the first requirement leads to
a smaller detector size than the second requirement, we can
use the proposed dynamic detector offset to reduce the scan
range necessary for a full data acquisition.

In Fig. 2, we visualize the proposed detector motion by a
simple example. Fig. 2(a) shows an object that represents the
cross section of the shape of two knees by using two uniform
circles. Fig. 2(b) depicts the full virtual sinogram of the object
and Fig. 2(c) shows the data that is acquired if the proposed
movement of the detector is realized. The superimposed lines
represent the sinogram boundaries of the rotated detector.

C. Determining the Minimally Required Scan Range

In order to check whether the acquired data is sufficient for
reconstruction, at first the truncated sinogram is completed
by using the approach described in Algorithm 1. First, the
actually acquired projection data is written into the sinogram.
Positions in the sinogram which have a value of zero are
assumed to be missing rays. Next, these are filled by their
corresponding rays given by the redundancy condition Eq. (1).
After this completion step, the sinogram is compared to
the ground truth. If some data is still missing, the acquired
data set is not complete. If there are no differences between
the completed sinogram and the ground truth, the acquired

Algorithm 1 Sinogram Completion

for all (α, β) do
if f(α, β) was acquired with the trajectory then

f(α, β) = f(α, β)
else

f(α, β) = f(−α, β + π + 2α)
interpolation is required in this step

end if
end for

data set is complete and therefore sufficient to perform the
reconstruction.

We now focus on the derivation of a numerical approach
to determine the minimal scan range such that the virtually
extended sinogram is still complete. The proposed algorithm
to solve this problem is presented in Algorithm 2. To determine
the minimally required scan range ∆βmin for an arbitrary
FOV and a given detector size, we perform a grid search over
all possible starting angles βStart ∈ [0◦, 360◦] and over all
possible scan ranges ∆β ∈ [180◦, 360◦]. First, the minimally
required rotation for every starting point is determined by
starting with a small ∆β. Then we increase it until the
data set is complete. Next, the overall minimal ∆β and the
corresponding βStart is chosen as a final result. For the step
size in angular direction, the angular spacing between the
generated projections is used, which also limits the accuracy
of the determined minimum scan range.

Subsequently, we present a selection of scanning config-
urations for the example depicted in Fig. 2. Fig. 3 shows
an incomplete configuration with β ∈ [53◦, 299◦]. Fig. 3(a)
shows the acquired sinogram, Fig. 3(b) shows the sinogram
after the completion step using Algorithm 1 and the white
areas in Fig. 3(c) depict the detected missing rays. The two
missing areas correspond to each other by Eq. (1), thus, to fill
the missing areas it is sufficient to acquire only one of them.

Algorithm 2 Find the minimal complete set for given object
and detector size

∆βmin =∞
βStart,min = 0
for all βStart do

∆β = 180◦

while data set is not complete do
Acquire data with βStart and ∆β
Complete sinogram with Algorithm 1
if data set is complete then

if ∆β < ∆βmin then
Save the values for the new minimal set:
∆βmin = ∆β and βStart,min = βStart

end if
else

Increase ∆β
end if

end while
end for
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Fig. 3: Acquired data is not sufficient for a complete data set.

(a) (b) (c)

Fig. 4: More data acquired than the minimal complete data
set.

In this configuration, the detector follows the left boundary
in the sinogram. Because of this the range of β has to be
extended towards the bottom of the sinogram until the lower
of the two missing areas is covered completely.

Fig. 4 shows a scanning configuration with β ∈ [10◦, 357◦].
Here, more than the minimal complete data set is acquired.
Fig. 4(a) shows the acquired sinogram, Fig. 4(b) shows the
sinogram after completion and the gray areas in Fig. 4(c)
depict the redundantly acquired data. The range of β could
be reduced in the upper part of the sinogram.

In Fig. 5 a minimal complete data set with a scan range
of β ∈ [53◦, 357◦] is shown. Fig. 5(a) shows the acquired
sinogram, Fig. 5(b) shows the resulting completed sinogram
and Fig. 5(c) shows the acquired redundant areas. With this
configuration, there are no missing parts and no redundant
areas that can be left out without loosing data that is required
for the complete data set.

All algorithms were implemented using CONRAD, an open
source software for simulation and reconstruction of CT data
(see [7]).

(a) (b) (c)

Fig. 5: Exactly the minimal complete data set is acquired.

(a) (b) (c) (d) (e)

Fig. 6: Different shapes

Object Diameter in x-direction Diameter in y-direction

Two circles 358.4 mm 153.6 mm

Ellipse 1 358.4 mm 153.6 mm

Ellipse 2 358.4 mm 204.8 mm

Ellipse 3 358.4 mm 256 mm

Circle 358.4 mm 358.4 mm

TABLE I: Dimensions of the different objects
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Fig. 7: Required rotation for different objects and detector
sizes. Two Circles ( ), Ellipse 1 ( ), Ellipse 2 ( ),
Ellipse 3 ( ), Circle ( )

III. EVALUATION AND RESULTS

A. Evaluation

In Fig. 6 we show the different FOVs that were used for
evaluation of the minimally required scan range for different
detector sizes. Fig. 6 shows the off-center circles introduced
above, Fig. 6(b) to Fig. 6(d) depict ellipses with varying
diameter in y-direction and Fig. 6(d) shows a uniform circle.
For detailed parameters of the shapes we refer to TABLE I.
For our simulations we generated 360 projections for the full
scan using an angular increment of 1◦. The focal length was
set to 574 mm and the virtual detector had 501 elements
with a spacing of 1 mm leading to a virtual fan angle of
approximately 47◦.

B. Results

Fig. 7 shows the required rotation depending on the detector
size for the different objects. For non-circular objects the
graphs clearly depict the connection between detector size
used and the minimally required scan range. Further we can
see that a reduction of the FOV in one direction also reduces
the minimally required scan range when the detector size is
fixed. At the point where the detector size is greater than
the large diameter of the FOV, the trajectory degenerates to
a normal short scan approach. For the uniform circle only two
possibilities exist. In case the detector is big enough to cover
the circle, then a normal short scan [8] is sufficient. If the
detector is too small for the circle, a full 360◦ scan range needs
to be acquired. For objects that have different dimensions in
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Fig. 8: Reconstruction results, top: reconstruction of the orig-
inal sinogram, middle: reconstruction of the trajectory result,
bottom: difference images. The gray scale window for the
reconstruction results is [0, 1.05] and for the difference images
[0, 0.05]. The maximal difference for the ellipse is 0.232, for
the two circles 0.256 and for the modified two circles 0.125.

x- and y-direction, a smaller rotation range is sufficient for a
complete data set compared to a circumscribed circular object.

As a proof of concept of our approach, we conducted image
reconstructions. First we reconstructed the sinogram using
a full 360◦ scan range, then the rebinned sinogram for the
minimally determined scan-range is reconstructed. A visual
comparison of both reconstruction results is shown in Fig. 8
for an ellipse and for the object containing two circles. To
show that our method is indeed independent of the intensity
distributions withing the FOVs we also adjusted the two circles
with additional high-density objects in their center. The images
show the reconstruction result for the full virtual sinogram
(top row), for the minimally complete sinogram (middle row)
and the difference image between both of them (bottom row).
The reconstruction results of the full virtual sinogram as well
as the completed sinogram are in good agreement with each
other, showing only minor deviations at the object boundaries.
For a quantitative evaluation we also computed the relative
root-mean-square-error (rRMSE) for the reconstruction results.
We determined an rRMSE of 1.11 %, 1.15 % and 0.66 %
for the ellipse, the two circle and the modified two circles,
respectively.

IV. DISCUSSION

In this work we present a method that is capable to
determine the minimally required scan range for extended and
arbitrary shaped FOVs given a certain detector size. FOV ex-
tensions using a fixed detector displacement produce a circular

FOV with the double radius compared to a centered detector
[1], [2]. This comes with the cost that projections need to be
acquired over a scan range of 360◦. Due to space restrictions
or limitations given by the scanner geometry, these large scan
ranges are sometimes not feasible in an interventional suite.
The presented approach, however, enables FOV shapes that
are tailored to the actual object and automatically determines
the minimally required scan-range to allow for an automatic
trajectory planning. We show in Fig. 7 that this can result in
a substantial reduction of the required scan range, especially
for FOVs that are similar to ellipsoids with different semi-axis
lengths.

We assume that the detector is movable throughout the C-
arm’s global rotation movement, which is already feasible with
state-of-the-art C-arm CT scanners. The reconstruction results
show that our minimally acquired sinogram achieves an almost
identical reconstruction when compared to the reconstruction
from the 360◦ reference sinogram. The difference images in
the bottom row of Fig. 8 reveal that most of the deviations
are located at the objects’ boundaries. We related this to
the data completion step where the incomplete sinogram is
filled by simple bi-linear interpolation. Thus, inaccuracies are
introduced in the sinograms which subsequently leads to the
observable loss of spatial resolution in the reconstruction do-
main. In a yet to be developed online filtered back-projection
algorithm, we expect less resolution loss.

In terms of noise we expect the method to be as robust as
any filtered back-projection-type reconstruction method. We
expect that common noise reduction methods will be appli-
cable with minor modifications [9]. Furthermore, truncation
correction can be applied as in any C-arm scan [10].

For future work, we plan to analytically derive a formula
that gives the relation between detector size and minimally
required scan range. Furthermore, we will investigate the
extension to three dimensional FOV shapes.

V. SUMMARY

In C-arm computed tomography, the detector is often too
small for the region of interest. Recent trajectories are designed
for circular field of views (FOVs). This configuration allows
two minimal sets: the short scan and the large volume scan.

For imaging of certain parts of the human body, the required
FOV may be non-circular, e.g. for imaging of the thorax,
abdomen, or knees. In this paper, we presented a numerical
method to investigate scan length vs. detector size in arbitrary
objects for fan-beam geometry. We further showed that there
exists a continuum of solutions for some non-circular objects
and that reconstruction from such trajectories yields image
qualities comparable to a full scan acquisition.
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Reduction of Dose by Focusing the X-Ray Beam to
a Specific Region of Interest: Monte Carlo

Assessment
M. Buğrahan Oktay and Frederic Noo

Abstract—We investigate the reduction in dose out of the region
of interest by filtering the X-ray beam to focus on the specific
region of interest by means of Monte Carlo simulations. We
use the Geant4 simulation toolkit that describes the interactions
of the particles with matter. We created a simple mathematical
phantom that includes kidneys, heart, spine, rib-cage and lungs.
All organs and bones are describes by simple mathematical
shapes by using Geant4. We performed simulations concentrating
on two different region-of-interest (ROI) : kidneys and heart
and for two different body sizes. The effect of a bow-tie filter
was approximated by a Gaussian attenuation profile. Our results
showed that when the X-ray source is filtered to focus on the
specific organ, the energy deposited in outside of the ROI was
dramatically reduced.

I. INTRODUCTION

The importance of the diagnostic CT is evidenced by the
annual increase in the number of CT scans performed which
is currently about 85 million annually. It has the tremendous
impact on cancer and emergency medicine and remains an
invaluable diagnostic technique. CT the largest contributor
to medical radiation exposure among the US population can
expose patients to cumulative radiation doses that may increase
patient’s likelihood of developing cancer and other health
problems.

A CT examination with effective dose of 10 mSv may
be associated with an increase in the possibility of fatal
carcinogenics. In addition a radiation exposure in childhood
(5-10% if all CT scans in US are pediatric) may result in
very small but increased risks of leukemia and brain tumors
[1]. This becomes a large public health problem when large
number of the population goes under a CT scans. Therefore,
research focusing on methods to reduce the radiation dose
from CT could shift benefit/risk balance further to benefit side.

In this paper, we investigate the reduction in the dose (en-
ergy deposit) by using a specific region focused X-Ray beam
by means of Monte Carlo simulations. In section II, we discuss
the simulation parameters, phantom and the software used. We
concentrate on scanning two different regions, kidneys and
heart for two different body sizes. We investigate the reduction
in energy deposits by means of delivering the required dose to
the region of interest, while preserving the surrounding areas.
To different body sizes were used in simulations. These are

M. B. Oktay and F. Noo and are with the Utah Center for Ad-
vanced Imaging Research, Radiology Department, University of Utah,
Salt Lake City, UT 84018 USA (e-mail:noo@ucair.med.utah.edu and bok-
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referred to as “Slim” and “Fat” and created by only changing
the trunk size while the organ and bones sizes are kept fixed.
The kidney scans are discussed in section III and the heart
scans are discussed in section IV. We present our conclusions
and future work in section V.

II. SIMULATION

A. Software

We use Geant4 software. Geant4 is a Monte Carlo simula-
tion Toolkit, describing the interaction of particles with matter.
It is widely used from High Energy Physics to medical physics.
It provides sophisticated physics packages and an advanced
geometry component. Further details can be found in [2].

B. Geometry

We created a simple mathematical phantom by using simple
geometrical shapes provided in Geant4. We created objects
representing the kidneys, lungs, heart, spine and rib cage. The
kidneys, lungs and spine are represented by elliptical tubes
which satisfies the equation(

x− xoff

a

)2

+

(
y − yoff

b

)2

≤ 1; zmin ≤ z ≤ zmax (1)

The heart is represented by a 5 cm radius sphere centered
at (x, y, z) = (1.5,−2.0, 20.15) cm. The rib cage is made
of 12 elliptical rings centered at the origin. Each ring is 1.4
cm in height and thickness of 0.5 cm. They are separated
by 1.4 cm starting from z = 0.1 cm to z = 35 cm.
The left lung is set to be smaller than the right lung and
the heart is shifted to the left. All geometrical objects were
defined in G4VUserDetectorConstruction class of Geant4. The
dimensions and offsets of the objects are summarized in
Table I. The frontal view of the phantom is shown in Figure 1
and a cross sectional view of the phantom is shown in Figure 5.

The kidneys and heart are made of soft tissue. The spine
and ribs are made of bone material and the lungs are made of
lung tissue. All objects are placed in an elliptical tube (trunk)
made of water. All the materials can be defined by using
“G4Material” class of Geant4. The materials and densities
used are summarized in Table II.

C. Beam

We used a fan beam for all simulations. The X-Ray source
is located 57 cm away from the origin and rotated around the
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Fig. 1. Frontal view of the phantom created with Geant4.

Object a b xoff yoff zoff zmin zmax

Trunk - Slim 20 10 0 0 0 -35 35
Trunk - Fat 25 15 0 0 0 -35 35
Left Kidney 3.75 1.5 6.0 6.0 -2.5 -8.0 2.5

Right Kidney 3.75 1.5 -6.0 6.0 -2.5 -8.0 2.5
Spine 2.0 2.5 0 5.5 11 -13 35

Left Lung 2.75 6.0 10.75 0 0 -20.5 20.5
Right Lung 4.05 6.0 -9.45 0 0 -20.5 20.5

Heart 5.0 5.0 1.5 -2.0 20.15 - -

TABLE I
PARAMETERS USED IN PHANTOM. ALL UNITS ARE IN CENTIMETERS. TWO
DIFFERENT TRUNK SIZES WERE USED WHILE ALL THE ORGAN AND BONE

SIZES KEPT FIXED.

isocenter of the phantom. Each scan is done at 360 degrees in
1 degree intervals, Nλ = 360. At each rotation angle, λ, the
beam is uniformly sampled by N∆φ = 400 directions between
the tangent points of the object (see Figure 2) and Nin = 300
photons were sent at each direction. We define the total beam
energy per scan can as

Total Beam Energy = Eγ ×N∆φ ×Nin ×Nλ (2)

where Eγ is the photon energy. Mono-energetic X-ray beam
energy was used between 10 and 120keV in 5 keV intervals.

We estimated the bow tie filter attenuation profile. The bow
tie filter reduces the X-ray fluence as a function of increasing
fan angle θ from the central ray. In our simulations, this
effect is approximated by a Gaussian profile factor p(θ) =
exp(−ηθ2) resulting in Nin × p(θ) photons in each direction.
The factor η is calculated for the maximum fan angle θ = 26o

and set to be 11.18.

Object Material Density [g/cm3]
Kidneys and Heart Soft Tissue 0.9896

Lungs Lung Tissue 1.4862
Ribs and Spine Bone Material 0.2958

Trunk Water 1.0

TABLE II
MATERIALS USED IN PHANTOM.

Scan 1 Scan 2 Scan 3

P

P Q

P Q Q

beam

beam

beam

X-Ray
Source

X-Ray
Source

X-Ray
Source

Fig. 2. Three different beams for kidney scans. Only kidneys are shown for
illustration. Third scan is repeated for both kidneys and results are combined.

D. Errors

Since performing Monte Carlo simulations is a timely
process, we estimated errors for 40, 60, 80 and 100 keV cases.
In each case the simulation is repeated 10 times with different
initial conditions.

III. KIDNEY SCANS

We performed three different scans concentrated on three
different focused area. In the first scan, “Scan 1” in Figure 2,
The X-Ray beam was focused on the entire trunk. In the
second case, “Scan 2”, the beam is concentrated on a smaller
elliptical region that contains both kidneys. The radii for
the small elliptical region are a = 10.0 cm and b = 2.5
cm. The third scan, “Scan 3”, was focused on an individual
kidney. In this case, the kidneys were scanned separately
and the results from both scans were combined. The points
P and Q in Figure 2 represent the tangent points of the
shape being scanned, therefore the fan angle changed with
changing rotation angle λ. The beam’s z-coordinate was set
to be z = −2.5 cm which corresponds to the middle of the
kidneys. Each simulation is repeated for two different trunk
sizes.

In order to understand the effect of the focused beams, the
fractional energy deposited for each object were calculated
according to

fj(E) =
Energy Deposited in the Region

Total Beam Energy
(3)

where the “Total Beam Energy” is given in Eq. (2) and
j = {1, 2, 3} corresponds to the first, second and third scans,
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Fig. 3. The fractional energy deposited f(E) for Phantom, Kidneys and the
Rest for both slim and fat trunk sizes. Errors are estimated for 40, 60, 80
and 100 keV cases. Solid (black) = f1(E), dashed (red) = f2(E) and dotted
(blue) = f3(E). Top row corresponds to Slim, and bottom row corresponds
to Fat trunk sizes.

The fractional energy deposited for each scan is shown in
Figure 3 for the “Phantom”, “Kidneys” and the “Rest” for
both slim and fat trunk sizes. In Figure 3, “Phantom” refers
to entire phantom while “Rest” refers to the Phantom where
the kidneys are excluded (e.g., entire volume surrounding the
kidneys). Since the beam is focused to a smaller region for
each scan, the fractional energy deposited is also smaller as
one expects.

Further information can be gathered by plotting the ratios of
f(E)’s relative to the first scan. This is illustrated in Figure 4.
When the X-Ray beam is focused on the smaller elliptical area
(Scan 2) rather than the entire trunk, energy deposited in the
entire phantom and in the phantom without the kidneys (Rest)
reduce approximately by a factor of 2 both in the Slim and
Fat body types. The energy deposited in the kidneys reduces
by approximately 10 percent. On the other hand, in Scan 3
where each kidney is scanned separately and the results are
combined, the energy deposited in the Phantom and Rest is
roughly reduced by a factor of 5 in both sizes while the
reduction in the kidneys is roughly 2.5 relative to the Scan
1.

IV. HEART SCANS

The heart was the other region of interest where we investi-
gated the effects of the focused beam. We followed the same
strategy used for the kidneys scans. We performed two differ-
ent scans. In the first scan (Scan 1), the beam was directed
between the tangent points of the trunk (exactly the first scan
of previous section) while in the second case (Scan 2), the
beam was focused on the heart only (see Figure 5). Because
the heart is located in between the lungs and surrounded by
the rib cage, we varied the z-coordinate of our fan beam.
We repeated the simulations for each scan at two different
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Fig. 4. The ratios of f(E)’s relative to the first case. f2(E)/f1(E)
(black solid lines) is the energy deposit ratio of second case to the first one.
f3(E)/f1(E) (red dashed lines) is the ratio of the third case to the first one.
First row is for the Slim and the second row is for the Fat trunk size.
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Fig. 5. Cross sectional view of the mathematical phantom. Solid lines
represents the full beam while dashed lines represent the focused beam.

z positions (z = 20.15 and z = 19.0 cm) and averaged our
results.

The fractional energy deposited f(E) in the heart, phantom
and the area outside of the heart (Rest) for each scan is shown
in Figure 6. When the beam is focused on the heart only, the
energy deposited in the heart and other areas decreased as
expected.

Savings in energy deposited in each area can be seen better
by plotting the ratios of the fractional energy deposits as
illustrated in Figure 7. In the case of the slim body size,
f2(E)/f1(E) ratio for the heart is approximately between 0.8
to 0.9 while this ratio goes below 0.8 in the case of fat body
size. Similarly, f2(E)/f1(E) ratio for the Phantom and the
Rest is approximately 0.5 for slim body size and slightly lower
than 0.5 for fat body size.

V. CONCLUSIONS AND FUTURE WORK

We have studied the savings in energy deposited both in
the ROI and outside of the ROI with a simple mathematical
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Fig. 6. Fractional Energy Deposits f(E) for the entire phantom, heart and
the rest. Solid lines = Scan 1 (black) and dashed lines = Scan 2 (red). Top
row is for the slim and bottom row is for the fat body sizes.
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Fig. 7. Ratios of the fractional energy deposits in Phantom, Heart and Rest
for both Slim (left) and Fat (right) body sizes. Solid lines = Heart (red), dashed
lines = Phantom (blue) and dotted lines = Rest (black).

phantom created by the Geant4 simulation toolkit. We used
a fan beam and performed 360 degree scans on the kidneys
and heart. Our results clearly show that when the beam was
filtered to focus on the specific region (ROI) rather than the
entire phantom, the energy deposited in the areas outside of the
region of interest dramatically reduced which demonstrates the
potential of these studies. We currently perform these studies
on anatomically correct voxelized phantoms and investigate
the effect on the image quality.
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Grating Based Differential Phase Contrast CT
Imaging without Mechanical Phase Stepping

Yongshuai Ge, Ke Li, John Garrett, and Guang-Hong Chen

Abstract—Grating-based x-ray differential phase contrast CT
(DPC-CT) often uses a phase stepping procedure that involves
sequential grating stepping and sequential x-ray exposures to
achieve phase measurement. This means that the otherwise
continuous CT data acquisition has to be divided into several
interleaved time sequences, between which the system waits
for the grating to be translated into the next phase stepping
position. This also implies that the grating position can not
be fixed. Considering that the grating would be potentially
mounted in a fast-rotating gantry, this would add a potential
source of mechanical instability. To accelerate the data acquisition
speed and improve the mechanical stability of of DPC-CT, a
new interferometer setup was developed and integrated into an
experimental DPC-CT system. In this method, one of the gratings
used in DPC-CT was divided into separate rows, each with a
specially-designed offset with respect to the neighboring row. This
design allows any four neighboring detector rows to achieve an
effective phase stepping routine within a single x-ray exposure
and at a fixed grating position. Initial phantom experiments have
demonstrated that the new interferometer design can generate
highly accurate DPC-CT images at the same data acquisition
speed of conventional absorption CT.

I. INTRODUCTION

Grating-based x-ray differential phase contrast CT (DPC-
CT) has shown promise for use in medical imaging. One
potential limitation of the current implementation method is
the speed of the data acquisition: a so-called phase stepping
technique has been used as the standard approach to help
extract x-ray phase information [1], [2]. In this method, the
acquisition of each DPC projection at each projection angle
is divided into several sub-acquisitions; each sub-acquisition
requires one of the gratings to be moved by a fraction of
the period of the x-ray diffraction pattern before an x-ray
intensity measurement is performed. In the end, a total of 4
to 8 x-ray measurements are needed at each projection angle.
The requirement of multiple-exposure and stop-and-move of
the grating significantly decrease the data acquisition speed of
DPC-CT. Further, considering the gratings must be mounted
into a gantry that rotates together with the tube-detector
assembly with the image object, the phase stepping routine
adds a potential source of mechanical instability because the
grating position can not be fixed with respect to the gantry.

To speed up the data acquisition speed of DPC-CT and
improve its mechanical stability, a new DPC-CT setup with a
novel grating design was developed in this work. The method
enables a continuous single-shot DPC-CT data acquisition

Y. Ge, and J. Garrett are with Department of Medical Physics, University
of Wisconsin-Madison, Madison, WI

K. Li and G.-H. Chen are with Department of Medical Physics and
Department of Radiology, University of Wisconsin-Madison, Madison, WI

without the need to translate the grating position and/or
multiple x-ray intensity measurements. A grating interferom-
eter system based on this new design has been fabricated
and integrated into an experimental DPC-CT system at our
institution, and initial physical phantom experiments have been
performed for validation and performance assessment.

II. METHODS

The phase stepping procedure has been used in DPC-CT
to help capture the lateral shift of the periodic interference
pattern, the dimension of which is on the order of a few
microns thus is much smaller than the pixel size of most x-ray
detectors used in medical imaging. A partially (usually 50%)
transmissive analyzer grating, commonly referred to as the G2
grating, is moved sequentially a fraction (1/M ) of the period
of the interference pattern for M times. The x-ray intensity
modulations behind the G2 grating is thus low-pass filtered
without loss of phase information. The result can be modeled
as the following sinusoidal function with high enough accuracy
to describe this intensity modulation:[1], [2]

I(k)(x, y) = I0(x, y) + I1(x, y) cos

[
2π

k

M
+ ϕ(x, y)

]
, (1)

where I0 denotes the DC value of the sinusoidal curve and
represents the conventional absorption contrast signal, while
ϕ denotes the DPC signal and can be extracted from I(k) via

ϕ(x, y) = tan−1

[
−
∑M

k=1 I
(k)(x, y) sin(2πk/M)∑M

k=1 I
(k)(x, y) cos(2πk/M)

]
. (2)

Since there are three unknowns in Eq. (1), at least three
x-ray exposures acquired at three distinct phase step positions
are needed to extract the phase signal. Most often, the phase
stepping technique requires a relatively long time to acquire
a complete dataset to perform the phase retrieval. This long
time process has become one major bottleneck for the DPC-
CT applications in medical imaging. Moreover, due to the
movement during the data acquisition procedures, it also
degrades the mechanical stability of the grating interferometer.
Such instability is especially problematic for tomographic
imaging systems which require the gratings to be mounted
onto rotating gantries.

In this work, we report a novel interferometer design that is
able to achieve single-shot data acquisition like a standard CT
imaging modality. In this new design, the only modification is
for the G2 grating. Figure 1 shows the schematic illustration
of the new design. The idea behinds such design is to split the
M phase stepping data points registered in one given detector
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Fig. 1. Schematic illustration of the new G2 grating design. Each row has a
height of H , and equal to the detector pixel width, i.e., 48 µm in our design.
At the same time, each row is laterally shifted by a distance of P2/4 with
respect to adjacent rows, where P2 denotes the period of the x-ray interference
pattern.

pixel into M different neighboring detector pixels along the
vertical direction. In other words, by using this new G2 design,
we will be able to incorporate different detector rows with
different phase step k.

As indicated on Figure 1, the conventional parallel-
structured G2 grating was modified into a staircase structure.
For our new G2 grating, we set the total number of phase steps
to four, i.e., M = 4. Thus, each row owns a horizontal offset
from one another and the lateral shift is equal to a quarter of
the period of the x-ray interference fringe pattern. This design
allows x-ray intensity at four neighboring detector rows to
correspond to four distinct phase stepping positions. What’s
more, the height of every single row has the same dimension of
a detector pixel, i.e., 48 µm in our design. Such small enough
pixel size, in fact, would not make too much influence on the
image quality.

I(1)(u, v) = I(u, v − 1), (3)
I(2)(u, v) = I(u, v),

I(3)(u, v) = I(u, v + 1),

I(4)(u, v) = I(u, v + 2).

By using of this new G2 grating design, now we have to make
a combination on any four adjacent detector pixels to generate
a complete effective phase stepping dataset. This can be done
with the help of equations in Eq. (3). Once obtained this
interpolated dataset, the phase signal can be retrieved through
Eq. (1). The I0 and I1 can all be extracted in the similar way.

A new G2 grating based on this design was fabricated and
installed on our experimental DPC-CT benchtop system. The
specifications of this grating are presented in Table I. The
benchtop incorporates a CMOS flat panel detector with 48
µm isotropic pixel size across a 2048× 1024 array (Rad-icon
Shad-o-Box 2048, Sunnyvale, CA) and a microfocus x-ray

Fig. 2. DPC-CT system setup with the new G2 grating.

TABLE I
GRATING SPECIFICATIONS.

G1 G2

Pitch (µm) 8.0 4.8
Duty cycle (%) 50 50

Depth (µm) 40 60
Size (cm2) 7×7 5×5

tube (Hamamatsu L13021, Japan). The tube was operated at
40 kVp and 175 µA. The arrangement of the experimental
setups is illustrated in Fig. 2.

TABLE II
SETUP ARRANGEMENTS.

Distance (cm)
Source to G1, d1 108.4

G1 to G2, d2 21.7
Source to isocenter 95.4
Source to detector 131.6

The new grating design and DPC data acquisition method
was firstly validated by acquiring a DPC projection image of
a physical phantom. The phantom is a polytetrafluoroethylene
(PTFE) tube with an inner diameter of 9.2 mm and a wall
thickness of 1.9 mm.

The second phantom we used in this verification is shown
in Fig. 3. The container is made from a acrylic tube, whose
outer diameter is 9.55 mm and has a wall of 1.50 mm thick.
Balls with various diameters (denoted as D) are arranged into
the tube which is filled with ordinary vegetable oil. From the
top to the bottom, there are 10 layers:

• One Polyoxymethylene (POM) ball, D=6.34 mm
• Seven Polystyrene (PS) balls, D=1.99 mm
• one POM ball, D=6.34 mm
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Fig. 4. Results from the PTFE tube phantom. (a) is the conventional x-ray absorption image, (b) is the differential phase contrast image, and (c) is the dark
field image; (d)-(f) are measured line profiles corresponding to each image.

Fig. 3. Photo of the physical phantom scanned during the experiment. There
are 28 spheres soaked in oil.

• Four PS balls, D=3.18 mm
• One acrylic ball, D=6.34 mm
• Seven PS balls, D=1.99 mm
• One POM ball, D=6.34 mm
• Four POM balls, D=3.18 mm
• One POM, D=6.34 mm
• One acrylic ball, D=6.34 mm

Visually, the POM material is most opaque, the PS material
is in the middle, and acrylic is the most transparent medium.

III. RESULTS

Figure 4 shows absorption contrast, DPC, and dark field
projection images of the PTFE tube acquired using the new
G2 grating. A single x-ray exposure was adequate to generate
these images. Figure 5-6 show CT images of the second phan-
tom. These results show that the new grating can successfully
generate CT image with three different contrast mechanisms.

IV. SUMMARY AND CONCLUSIONS

In this study, an x-ray differential phase contrast imag-
ing method with a new grating interferometer design was
developed to achieve DPC-CT imaging without mechanical
phase stepping. This method removes the need for performing
multiple exposures at each projection view thus removes the
technique hurdle that prevents DPC-CT from achieving the
same data acquisition speed of conventional x-ray absorp-
tion CT. More importantly, this method allows all of the
gratings used in DPC-CT to stay static relative to the tube-
detector assembly, therefore it should significantly improve
the mechanical stability of the x-ray interferometer. This is
particularly meaningful for CT acquisitions that requires the
gratings to be mounted into a high-speed rotary gantry. Due to
these advantages, this method is expected to greatly facilitate
DPC-CT imaging’s translation into clinical applications.
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Fig. 5. Axial images of the top fourth PS layer of the second phantom. From the left to right, they are the absorption image with display range of [0.07, 0.03],
the phase image with display range of [3.85, 3.21]× 10−7, and the dark field image with display range of [0.30, 0.20].
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Fig. 6. Axial images of the bottom POM layer of the second phantom. From the left to right, they are the absorption image with display range of [0.07, 0.03],
the phase image with display range of [3.85, 3.21]× 10−7, and the dark field image with display range of [0.30, 0.20].
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X-ray phase-contrast computed tomography in
helical mode without phase stepping

Mathias Marschner, Marian Willner, Julia Herzen, Peter B. Noël and Franz Pfeiffer

Abstract—Grating-based X-ray phase-contrast computed to-
mography has gained significant attention in recent years due
to the fact that it can be used with incoherent, polychromatic
sources. However, phase-contrast CT measurements still require
longer measurement time compared to conventional CT. This is
mainly a result of the need to perform a stepping of the gratings
to obtain the phase information. Several methods have been
proposed to increase measurement speed and to circumvent the
need for a phase stepping procedure, e.g. Moirée fringe scanning.
In this method the object is scanned over Moirée fringes in the
interferogram to sample a stepping curve. We extend this method
to the tomographic case which enables a continuous helical
acquisition without stepping the gratings. A helical movement
along the tomographic axis is used to simultaneously rotate
the sample and scan over the Moirée fringes. We present first
experimental results of this helical fringe-scanning phase-contrast
CT.

I. INTRODUCTION

X-ray computed tomography is a widely used tool for
medical and industrial applications including clinical diag-
nosis. Phase sensitive X-ray techniques are an interesting
alternative method for imaging weakly absorbing materials.
There, the linear attenuation coefficient is small compared to
the refractive index decrement. The refraction is responsible
for changes in the phase of the X-ray waves. Consequently,
better image quality and contrast can be achieved when using
phase information [1]. Several methods for phase-contrast
imaging have been developed and some have been transferred
to conventional laboratory-based X-ray tube sources.

Grating interferometry relies on transmission gratings in the
X-ray beam and enables high sensitivity phase measurements
even with laboratory sources [2]. Several studies explore the
possible benefit of using this method for biomedical imaging
[3].

In many applications, fast image acquisition is of great
importance. So far, acquisition times with phase-contrast CT
are long compared to conventional attenuation-based CT. The
prevailing measurement procedure relies on translation of one
of the gratings. This so called phase stepping procedure is
a limiting factor in the reduction of the acquisition time.
Further, the need for precise translation of the gratings implies
a demanding stability condition. Additionally, a continuous
motion of a rotating gantry is impossible if a phase stepping
has to be done for each projection.
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In medical CT systems a helical scanning procedure is used
to extend the field of view and reduce measurement time [4].
There are first theoretical and simulation studies on helical
scanning procedures for PCCT [5], [6], [7]. However, none
of these methods eliminate the need for a phase stepping
for each single projection. Recently, several procedures were
proposed to circumvent this need for a phase stepping at
each rotation step. Interlaced phase stepping [8] combines
rotation step and phase step. This way, a continuous rotation
is possible. However, the gratings still need to be moved
which implies the same stability conditions as a normal phase
stepping procedure. Also, the translation of the grating is of
limited speed and accuracy and therefore limits rotation speed
and image quality.

Fringe analysis is one approach that can be used to retrieve
the phase without the need of a phase stepping procedure.
However, the disadvantage of single-shot approaches of this
kind is a decrease in spatial resolution [9].

The reverse projection method [10] also enables phase
retrieval without the need of a stepping procedure. This is
achieved by a linear approximation of the stepping curve at
the steepest point. However, this entails that the retrieved phase
is only correct for small values what effectively decreases the
dynamic range of the system. Also, to obtain both absorption
and phase-contrast information, two interferograms at oppos-
ing angles have to be recorded, so a scan over 360 degrees
is needed. An interferogram is the raw image recorded by
the detector containing the information that arises due to the
interference of the X-rays. Furthermore, the dark-field signal
cannot be simultaneously obtained by this method. A simi-
lar approach [11] reconstructs a combined image containing
information both from attenuation and refraction also from
only one interferogram. However, it does not allow to obtain
separate maps of the absorption and refraction of the measured
object.

One could imagine to record a full stepping curve without
moving the gratings by use of a scanning setup [12]. Here,
the gratings are fixed while the sample is moved. A deliberate
misalignment of the gratings G1 and G2 (mismatch of inter
grating distance d′ = d+4d) leads to Moirée fringes. These
correspond to a spatially dependent intensity profile on the
detector. In a phase stepping configuration the image would
ideally be uniform and change its intensity dependent on the
relative grating positions. Therefore, different positions on
the detector correspond to different relative positions of the
gratings in a traditional phase stepping approach. When com-
bining these different areas a stepping curve can be obtained
as illustrated in fig. 1. Here, the sample is moved over different
detector positions instead of a translation of the gratings.
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Fig. 1. The interferogram (b) shows Moirée fringes introduced by deliberate
mismatch of the relative position of G1 and G2. A stepping curve can be
obtained by combining the height regions, marked by dashed lines. (a) shows
an exemplary stepping curve that is obtained by using the pixels marked by
red triangles.

Thereby, the same region of the sample is recorded at different
fringe phases. This way, a stepping is performed without
translating the gratings and a differential phase projection can
be obtained.

In contrast to the single-shot techniques, the full information
that is available with a phase stepping scan is also obtained
with the scanning method. The need to translate the gratings
with a precision of fractions of the grating pitch is eliminated.
Note, a precision to a fraction of 5µm is necessary. The
movement of the sample only needs to be precise to pixel sizes
which range from 50µm for mammography systems to over
500µm for clinical CT systems. Therefore, the requirement
for precision of the essential stepping movement is relaxed.
Additionally, the field of view of such a system is not
limited by the size of the gratings or the detector. Recently, a
commercial mammography system was converted to a grating
interferometry system [13] using the described fringe scanning
approach. It features multiple commercially available gratings
and several line detectors. However, the sample still needs to
be recorded at least three times to obtain a stepping curve.

We propose a method to extend the scanning setup to

the tomographic case, where the translation of the sample is
achieved by a helical motion of the tomographic axis. With our
proposed method a continuous helical rotation of the sample or
the gantry can be used, because no stepping of the gratings is
needed. As explained earlier, this increases the measurement
speed and is also beneficial for the stability of the system.
In contrast to single-shot techniques, there is no inherent loss
in resolution. Further, due to the scanning approach the field
of view is extended in vertical direction which enables the
imaging of objects larger than the field of view of the system.

II. HELICAL PHASE SCANNING

A scanning-type system similar to the one in [12] is realized
by upward motion of the tomographic axis during rotation. The
pitch is defined by the upwards movement per detector height
and slice thickness:

p =
4h
H

, (1)

with 4h being the upwards movement per rotation and H the
detector height. The number of helical rotations corresponds
to the number of phase steps M that are recorded for each
slice. For each angle, the same slice has to be in the field
of view at least three times, each at a different fringe phase.
That means that the pitch has to be lower then p ≤ 1/3. To be
able to use a standard processing algorithm, a full period of
the stepping curve has to be sampled at equidistant positions.
Therefore, the vertical movement per rotation is dependent on
the period of the Moirée fringes in the interferogram, or vice
versa. After M + 1 rotations, the phase of the Moirée fringe
has to be the same as before the first rotation. This leads to
the fact that the period P of the fringes has to be

P =
M + 1

k
4h , (2)

with k being the number of fringes in the interferogram.

III. EXAMPLE AND APPLICATION

A. Grating interferometer setup

A Talbot-Lau interferometer was used to experimentally
test the proposed method. It consists of three gratings G0,
G1, and G2 made out of gold with periods of 5.4µm. The
absorption gratings G0 and G2 have a height of 60 to 70µm.
The phase grating G1 was designed to give a phase shift of π
at 27 keV and has a height of 5.2µm. The setup was operated
in a symmetric configuration with inter grating distances of
G0G1 = G1G2 = 85.70 cm. The X-rays are generated by a
ENRAF Nonius rotating anode X-ray tube with a Molybdenum
target which is operated at 40 kVp and 70mA. A PILATUS
II single photon counting detector by Dectris, Switzerland
was utilized. It features a field of view of 487 × 195 pixels
with a pixel size of 172 × 172µm2. The measured phantom
consists of three plastic rods of PMMA, LDPE and POM
respectively, each with a diameter of approximately 6mm.
They were measured in a tube with a diameter of 3 cm, filled
with water which was itself put in a water bath to avoid phase
wrapping artifacts.
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Fig. 2. Six interferograms (a), each recorded at the same angle but at different
heights because of the helical movement, are combined to obtain a phase
stepping. The areas marked with a red box are used to obtain a transmission,
differential phase and dark-field projection (b, from top to bottom). The
complementarity between attenuation- and phase-contrast is clearly visible:
the LDPE rod in between the POM and PMMA rod has a low refractive
index but a high linear attenuation coefficient.

B. Helical phase scanning setup

In our experiment, the period of the Moirée fringes is
approximately 35 pixels. The Moirée fringes were tuned by
intentionally misaligning the gratings G1 and G2. An upward
movement per rotation of 4h = 30px was used to sample
one period of the stepping curve over the course of M = 6
rotations. That means that the sample was moved upwards by
0.05 pixels after each interferogram. Figure 2 shows interfero-
grams recorded for each rotation at the same angle. The sample
is moved upwards during the rotation step. Additionally, flat-
fields, which are projections without the sample, are recorded
after each rotation. These are necessary because of drifts of the
phase of the Moirée pattern induced by temperature changes
in the gratings. More advanced processing algorithms could
remove the need to record flatfields during the measurement,
e.g. by tracking the drift of the fringes in areas without sample.

The regions of interest that are combined to one stepping
series are indicated by red boxes. Standard processing in
form of a least-squares fit is used to extract the attenuation,
differential phase and dark-field projections.

The exposure time for each interferogram was 1 s and
therefore 6 s for each projection. During the tomographic scan

600 projections were recorded for each rotation. Each region
of the sample has to be imaged M = 6 times, therefore the
number of rotations needed and with that the total exposure
time depends on the size of the sample. Also, in the rotations
at the beginning and in the end, only part of the sample is in
the field of view, if the detector is not moved together with the
sample. Consequently, M − 1 additional rotations are needed
to scan the whole sample. If the sample is larger than the field
of view of the detector, more rotations are necessary leading
to a longer total exposure time for the sample. However,
each region of the sample has a fixed exposure time of
ttotal = MNθt. In this experiment this total exposure time
was 1 hour.

The height of the detector used is H × s = 195 pixels,
therefore the pitch is p ≈ 0.15. After 6 rotations, only M4h =
6×30 pixels = 180 pixels of the detector have been used. This
is due to the constraint that a complete stepping curve has to
be sampled. Thus, an integer multiple of fringes has to be in
the region of M+1 rotations. With a fringe period of 35 pixels
and M = 6 rotations, this leads to an active area of 180 px.
To use the whole detector for imaging, the fringe period needs
to be tuned to fit the height of the detector:

kP = (M + 1)4h . (3)

Due to grating imperfections and polychromatic sources this
can be a challenging task.

Fig. 3. The projections obtained from the combination of the height regions
can then be assembled to form a full projection that is even larger than the
field of view of the system. The non-uniform period of the fringes can with
standard processing algorithms lead to remaining fringes is the projections.
They are also visible in the differential phase projection shown here.

C. Experimental results

Figure 3 shows the differential phase projection of the
measured phantom consiting of three plastic rods. As indicated
in fig. 2, M = 6 phase steps were taken from six projections
recorded at the same angle but after increasing number of
rotations and therefore different heights. These were then
combined to form a phase stepping series. Standard processing
was used to extract the attenuation, differential phase and
darkfield projections. The size of the retrieved projections is
365× 240 pixels. In principle, there is no limit on the vertical
size of the sample scanned. Just one additional rotation is
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needed when the size of the sample increases by 4h. As a
result, the limited vertical field of view of the detector and the
gratings is overcome.

Imperfect and inhomogeneous gratings lead to non-uniform
fringes over the field of view. This does not disturb the
quality of the projections as long as the period of the fringes
is constant over the whole interferogram. But in the case
of our experiment, the fringe period is smaller in the left
part of the interferograms than in the middle and in the
right part. Therefore, in this region, the sampled stepping
curve is not of exactly one period. Standard processing then
leads to an error that is dependent on the fringe phase of
the interferogram. This results in remaining fringes in the
differential phase projections as visible in the left part of the
processed differential phase projection shown in fig. 3. It was
not possible to achieve a more homogeneous distribution of
the fringes with the available gratings. Future grating from
improved fabrication processes may be more homogeneous
which will make alignment procedure less challenging. Also,
more advanced processing methods are able to retrieve the
phase information correctly even from not completely sampled
stepping curves.

Fig. 4. The acquired differential phase projections can be used to reconstruct
the distribution of the refractive index decrement of the measured sample.
This figure shows an axial slice of the tomographic reconstruction. The three
phantom materials (POM, PMMA and LDPE in descending intensity) are
clearly visible.

The combined and processed projections were then used for
a tomographic reconstruction. First, the vertical displacement
of the projections due to the helical motion was corrected.
Then, standard filtered backprojection in combination with a
Hilbert filter kernel was used to reconstruct the distribution of
the refractive index decrement. Figure 4 shows an axial slice
of the tomographic reconstruction of the measured sample.
The three plastic rods are clearly visible in the tube filled
with water. There are visible ring artefacts that arise due to
inhomogeneous gratings and detector response. These are not
caused by the helical measurement procedure and also occur

in traditional phase-stepping acquisitions.

IV. CONCLUSION

It was shown that using a helical motion to scan over
different areas of the fringe pattern a phase stepping can be
performed. This procedure simultaneously yields conventional
attenuation, differential phase and dark-field projections. Fur-
ther, it was illustrated that this technique can be applied to
tomographic scans using a grating interferometer without the
need for the translation of the gratings. With fixed gratings
the stability of the system is less critical. Due to the fact
that no stepping procedure is necessary, the acquisition time
is only limited by the exposure time. In traditional phase
stepping acquisitions, the speed of the stepping motors is a
limiting factor. A continuous rotation is enabled for sufficiently
short exposure times. Additionally, the scanning nature of this
method enables imaging of larger samples without the need
for larger area gratings and detectors. In conclusion, this is an
important step towards industrial and clinical application of
grating-based phase-contrast computed tomography.
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Fast Splitting-Based Ordered-Subsets X-Ray
CT Image Reconstruction

Hung Nien and Jeffrey A. Fessler

Abstract—Using non-smooth regularization in X-ray computed
tomography (CT) image reconstruction has become more pop-
ular these days due to the recent resurgence of the classic
augmented Lagrangian (AL) methods in fields such as total-
variation (TV) denoising and compressed sensing (CS). For
example, undersampling projection views is one way to reduce
radiation dose in CT scans; however, this causes strong streak
artifacts in FBP images that degrade image quality. To overcome
this problem, the split Bregman (SB) method, an alias of the AL
method in the context of `1-regularized image reconstruction
problems, has been investigated using strong non-smooth TV
and sparsity regularizations. Unfortunately, existing SB-based
methods are slow due to the iterative updates for the challenging
inner least-squares problem. This paper proposes to solve X-
ray CT image reconstruction problems with TV or sparsity
regularization using a splitting-based ordered-subsets (OS) al-
gorithm, split OS-LALM, and evaluates the proposed algorithm
using a few-view X-ray CT image reconstruction problem with
TV regularization. Experimental results show that the proposed
algorithm significantly accelerates the convergence of X-ray
CT image reconstruction with non-smooth TV regularization
over the standard (linearized) SB method and demonstrates the
effectiveness of OS acceleration with splitting-based algorithms.

I. INTRODUCTION

X-ray computed tomography (CT) is a non-invasive medical
procedure that images the attenuation properties, such as
the density distribution, of the body. It is incredibly useful
and important in the medical community, while the growing
concern about radiation dose from CT scans comes from the
increased use of CT procedures. In the past three decades,
the average American’s dose from medical exposure (not
including radiotherapy) has increased from 0.54 mSv in 1982
to 3.0 mSv in 2006, where CT procedures account for about
half of the collective dose from all medical procedures [1].
Compared with the natural background yearly dose of 3.6 mSv,
the standard radiation dose used currently can increase the
possible risk of cancers, especially for body screening with
multiple scans.

Using fewer projection views in a CT scan is one way
to reduce radiation dose, but such undersampling causes
strong streak artifacts that degrade FBP image quality. To
reduce streak artifacts, the split Bregman (SB) method [2],
a fast convex optimization method using variable splitting
technique, has been investigated using total-variation (TV)
and sparsity regularizations. Unfortunately, existing SB-based

H. Nien and J. A. Fessler are with the Department of Electrical Engineering
and Computer Science, University of Michigan, Ann Arbor, MI 48105, USA.
This work is supported in part by NIH grant R01-HL-098686 and by an
equipment donation from Intel Corporation. The authors thank GE Healthcare
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methods for few-view CT image reconstruction, especially
for 3D CT, can be slow due to the challenging inner least-
squares problem with a highly shift-variant Hessian [3–5].
For example, [3] suggested solving the inner least-squares
problem of the SB method using up to 100 iterations of
the conjugate gradient (CG) method, that is, hundreds of
forward/back-projection pairs for a single outer-loop image
update! Although the forward/back-projection operations in
few-view CT are less time-consuming than in clinical CT,
using hundreds of forward/back-projection pair for a single
image update remains undesirable.

To solve the problem of the difficult inner least-squares
problem in SB methods, Ramani et al. [6] introduced an
additional auxiliary variable that separates the shift-variant and
approximate shift-invariant parts of the statistically weighted
quadratic data-fitting term so that one can find an appropriate
circulant preconditioner for the better-conditioned inner prob-
lem and solve the inner problem efficiently using the precon-
ditioned conjugate gradient (PCG) method. The acceleration is
significant in 2D CT [6]; however, in 3D CT, due to the cone-
beam geometry, it is much harder to find a good preconditioner
for the inner least-squares problem, and the method in [6] has
yet to achieve the same acceleration as in 2D CT.

Considering the same variable splitting scheme as in [6],
this paper proposes to solve X-ray CT image reconstruction
problem with TV or sparsity regularization using a linearized
augmented Lagrangian (AL) method [7, 8] that replaces the
difficult inner least-squares problem by a simple majorization-
minimization procedure (a gradient descent that guarantees
monotone decreasing of the cost value) and more importantly,
is suitable for ordered-subsets (OS) [9] acceleration. For
instance, suppose M ordered subsets are used for acceleration.
The proposed splitting-based OS algorithm takes roughly
1/M forward/back-projection pair for a single image update!
Therefore, compared with existing SB methods, we perform
many more image updates in a given reconstruction time,
leading to faster convergence.

The remainder of the paper is organized as follows. Sec-
tion II introduces the problem formulation and derives the
proposed splitting-based OS algorithm for solving regluarized
least-squares problems. Section III considers solving few-
view X-ray CT image reconstruction problem with penalized
weighted least-squares (PWLS) criterion using the proposed
algorithm and reports the experimental results comparing a
linearized SB method with our method. Finally, we draw
conclusions in Section IV.
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II. PROPOSED METHOD

A. Split OS-LALM: OS-LALM with an additional split

Consider a regularized least-squares problem:

x̂ ∈ arg min
x∈Ω

{
1
2 ‖y −Ax‖22 + Φ(Θx)

}
, (1)

where A is the system matrix, y is the noisy measurement,
Θ is an analysis regularization matrix, Φ is some convex (and
possibly non-smooth) potential function, and Ω denotes the
convex set for a box constraint (usually the non-negativity
constraint) on x. For example, in (anisotropic) TV-regularized
image restoration problems, Θ is a finite difference matrix,
and Φ is an `1 norm, probably with some weighting. The
minimization problem (1) is non-trivial in general since Θ
might not be an identity matrix, and Φ can be non-smooth.
One typical way to solve this problem is to use the SB method
[2] that introduces an auxiliary variable for the vector Θx
and decomposes the convex optimization problem into a series
of simpler penalized least-squares problems. However, when
A′A is highly shift-variant, the SB method can be slow due
to the iterative inner updates.

To develop a faster algorithm, instead of solving (1) using
the SB method, we consider solving an equivalent constrained
minimization problem:

(x̂, û, v̂) ∈ arg min
x,u,v

{g(u) + Φ(v) + ιΩ(x)}

s.t. u = Ax,v = Θx (2)

using the linearized AL method [7, 8]:

x(k+1) ∈ arg min
x

{
ιΩ(x) + θ̆k

(
x; x(k)

)
+ φ̆k

(
x; x(k)

)}
u(k+1) ∈ arg min

u

{
g(u) + ρ

2

∥∥Ax(k+1) − u− d(k)
∥∥2

2

}
v(k+1) ∈ arg min

v

{
Φ(v) + η

2

∥∥Θx(k+1) − v − e(k)
∥∥2

2

}
d(k+1) = d(k) −Ax(k+1) + u(k+1)

e(k+1) = e(k) −Θx(k+1) + v(k+1) ,
(3)

where g(u) , 1
2 ‖y − u‖22, ιΩ is the characteristic function of

the convex set Ω that handles the box constraint on x, d and e
are the scaled Lagrange multipliers of the split variables u and
v, respectively, and ρ > 0 and η > 0 are the corresponding AL
penalty parameters. The functions θ̆k

(
x; x(k)

)
and φ̆k

(
x; x(k)

)
are two separable quadratic surrogate (SQS) functions that
majorize the quadratic AL penalty terms

θk(x) , ρ
2

∥∥Ax− u(k) − d(k)
∥∥2

2
(4)

and
φk(x) , η

2

∥∥Θx− v(k) − e(k)
∥∥2

2
(5)

at x = x(k), respectively. Let L1 and L2 denote the maximum
eigenvalues of A′A and Θ′Θ, respectively, it follows that

θ̆k
(
x; x(k)

)
∝ ρ

2t1

∥∥x− (x(k) − t1A′
(
Ax(k) − u(k) − d(k)

))∥∥2

2

φ̆k
(
x; x(k)

)
∝ η

2t2

∥∥x− (x(k) − t2Θ′
(
Θx(k) − v(k) − e(k)

))∥∥2

2
,
(6)

where t1 , 1/L1 and t2 , 1/L2. The majorizations remove
the entanglement of x introduced by A and Θ, leading to
simple inner updates in (3) using proximal mappings.

As can be seen in (3), introducing an additional split variable
v only modestly changes the updates from the one-split
linearized AL iterates [7, 8]. Letting hk , ιΩ + φ̆k, the two-
split linearized AL iterates (3) become the one-split linearized
AL iterates with an iteration-dependent regularization term
hk, where the effect of hk is fully determined by the v-
and e-updates in (3)! Hence, we can easily rewrite the two-
split linearized AL iterates (3) to the two-split gradient-based
linearized AL iterates:

s(k+1) = ρ∇`
(
x(k)

)
+ (1− ρ) g(k)

x(k+1) ∈ prox(ρ−1t1)hk

(
x(k) −

(
ρ−1t1

)
s(k+1)

)
g(k+1) = ρ

ρ+1∇`
(
x(k+1)

)
+ 1

ρ+1g(k)

v(k+1) ∈ proxη−1Φ

(
Θx(k+1) − e(k)

)
e(k+1) = e(k) −Θx(k+1) + v(k+1) ,

(7)

where ` denotes the quadratic data-fitting term in (1), and
proxf denotes the proximal mapping of f defined as:

proxf (z) , arg min
x

{
f(x) + 1

2 ‖x− z‖22
}
. (8)

Since both ιΩ and φ̆k are separable, the x-update of the two-
split gradient-based linearized AL iterates (7) has a closed-
form solution:

x(k+1) =
[
x(k) − 1

ρL1+ηL2

(
s(k+1) + σ(k+1)

)]
Ω
, (9)

where [·]Ω denotes an operator that projects a vector onto Ω,
and

σ(k+1) , ηΘ′
(
Θx(k) − v(k) − e(k)

)
(10)

is the search direction attributed to the regularization term.
Finally, the two-split gradient-based linearized AL method
(7) is an extension of the one-split gradient-based linearized
AL method, so we can accelerate it by using OS and the
deterministic downward continuation approach proposed in
[7, 8]. For the OS version, we replace the gradients in (7)
with the subset gradients M∇`m for m = 1, . . . ,M , where
`1, . . . , `M are M smaller quadratic functions that satisfy
` = `1 + · · ·+ `M and the “subset balance condition” [9]:

∇`(x) ≈M∇`1(x) ≈ · · · ≈M∇`M (x) . (11)

When OS is used for acceleration, we call our proposed
algorithm split OS-LALM, by an analogy of the SB method.

B. Applications

In this paper, we consider a regularized least-squares prob-
lem with a general composite convex regularizer Φ(Θx).
As mentioned before, when Θ is a finite difference matrix
and Φ is a weighted `1 norm, (1) becomes a TV-regularized
image reconstruction problem. In this case, the v-update in
(7) can be solved efficiently uisng soft-thresholding, and the
constant L2 , λmax

(
Θ′Θ

)
= 4d, where d denotes the number

of neighbors we considered in the finite difference operator.
Furthermore, when Θ is the discrete framelet transform matrix
[10] and Φ is an `1 norm, (1) becomes a frame-based image
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reconstruction problem [11]. In this case, the v-update can
also be solved using soft-thresholding, and L2 = 1 because
the discrete framelet is a tight frame. In fact, the proposed
algorithm is even more general. For example, consider intro-
ducing one more split for the box constraint on x. In this
case, we can use non-separable (but probably tighter) quadratic
surrogate functions with non-diagonal (e.g., circulant) Hessian
matrices to majorize θk and φk in (3) because the additional
split variable takes care of the box constraint.

III. EXPERIMENTAL RESULTS

This section evaluates our proposed algorithm (7) using the
statistically weighted few-view X-ray CT image reconstruction
problem with TV regularization:

x̂ ∈ arg min
x∈Ω

{
1
2 ‖y −Ax‖2W + TV(x)

}
, (12)

where A is the system matrix of a CT scan, y is the noisy
sinogram, W is the statistical weighting matrix, and TV(·)
denotes an anisotropic TV regularization term. To solve (12)
using the proposed algorithm, we simply replace A and y
in (1) by the weighted forward projection operator W1/2A
and the weighted noisy sinogram W1/2y, respectively, and
let Θ , C denote a finite difference matrix and Φ denote a
weighted `1 norm.

Computing L1, the maximum eigenvalue of A′WA, is
sometimes impractical because the power iteration might take
hundreds of forward/back-projections for finding that number,
while the number changes with different weighting matrix
W, even for a fixed geometry. In practice, we simply use
L1 , diag{A′WA1} to construct the SQS of the quadratic
AL penalty term θk [7, 8]. This also provides voxel-dependent
step sizes for image updates in (9). One can also generalize L2

to a diagonal matrix L2 by considering a “weighted” quadratic
AL penalty term of the second split [12]. However, in this
paper, we just use L2 = 4d for simplicity.

We reconstructed a 512× 512× 122 image from an un-
dersampled chest axial CT scan. The size of the original
sinogram is 888× 64× 642 (half scan), and we uniformly
undersampled the number of projection views from 642 to 81
(about 12.6% of projection views are used for reconstruction).
Instead of using the standard SB-based method [3], we used
a linearized SB method as the baseline reconstruction method
because it has no iterative inner updates and is much easier for
imposing box constraints on x. Let OS-LALM-M -ρ-η denote
the proposed algorithm using M subsets with AL penalty
parameters ρ and η, where “ρ = c” denotes the deterministic
downward continuation [7, 8]. When ρ = 1, the proposed
algorithm happens to be the linearized SB method [13].

The number of subsets M is varied from 1 to 5 for
investigating different amounts of OS acceleration. The AL
penalty parameter η was hand-tuned for fastest convergence
and remained the same throughout the experiment for fair
comparison. Intuitively, η determines the step sizes for image
updates in (9), especially when the deterministic downward
continuation approach is used. Empirically, choosing ηL2 that
is about 2% to 10% of L1 (or the median of the diagonal en-
tries of L1) usually exhibits fast convergence of the proposed
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Fig. 1: Chest CT: cropped images [displayed from 800 to
1200 HU] from the central transaxial plane of (a) the initial
FBP image x(0) and the reference reconstruction x?, and (b)
the reconstructed images x(100) at the 100th iteration using
the proposed algorithm with different AL penalty parameters.
When ρ = 1, the proposed algorithm reverts to the linearized
SB method.

algorithm. Finally, the total number of iterations is set to be
100. In this case, 100 undersampled forward/back-projection
pairs, about 13 full forward/back-projection pairs, are used for
the reconstruction.

Figure 1 shows the initial FBP image and the almost con-
verged reference reconstruction together with the reconstructed
images of the proposed algorithm with different parameters.
As can be seen in Figure 1(a), the initial FBP image exhibits
strong streak artifacts due to the undersampled projection
views, and these streak artifacts are reduced significantly in
the reference reconstruction by applying TV regularization.
Figure 1(b) demonstrates the effectiveness of our proposed
algorithm. With the deterministic downward continuation (i.e.,
ρ = c), the proposed algorithm shows less streak artifacts in
the reconstructed images, and the reduction is more effective
for larger M . Figure 2 shows the convergence rate curves
(RMS differences between the reconstructed image x(k) and
the reference reconstruction x? as a function of iteration) of
the proposed algorithm with different AL penalty parameters.
As can be seen in Figure 2, the proposed algorithm shows
substantial acceleration with continuation and ordered subsets.
For example, the RMS difference of OS-LALM-5-c-η reaches
10 HU within 50 iterations, while the linearized SB method
(OS-LALM-1-1-η) is still far away from the optimum (about
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Fig. 2: Chest CT: RMS differences between the reconstructed
image x(k) and the reference reconstruction x? as a function
of iteration using the proposed algorithm with different AL
penalty parameters. When ρ = 1, the proposed algorithm
reverts to the linearized SB method.

90 HU in RMS difference). Finally, note that algorithms
with OS typically are not convergent. The algorithms enter
a “limit cycle” in which updates stop approaching the opti-
mum. However, as can be seen in Figure 2, the cyan curve
(OS-LALM-5-c-η) is below 5 HU at the 100th iteration and
keeps decreasing after that. This demonstrates the gradient
error tolerance of our proposed splitting-based OS algorithm.

IV. CONCLUSION

In this paper, we proposed a splitting-based ordered-subsets
(OS) algorithm, split OS-LALM, for solving weighted least-
squares X-ray computed tomography (CT) image reconstruc-
tion problems with a general composite convex regularizer. To
demonstrate our proposed algorithm, we investigated solving a
few-view X-ray CT image reconstruction problem with total-
variation (TV) regularization. Experimental results showed
that the proposed algorithm exhibits fast convergence rate
and excellent gradient error tolerance when OS is used for
acceleration. The same technique can also be applied to 3D
clinical CT with complicated (e.g., non-smooth) regularization
terms.
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Tomographic image reconstruction from continuous
projections

Jeroen Cant, Willem Jan Palenstijn, Gert Behiels, Jan Sijbers

Abstract—An important design aspect in tomographic image
reconstruction is the choice between a step-and-shoot protocol
versus continuous X-ray tube movement for image acquisition.
A step-and-shoot protocol implies a perfectly still tube during
X-ray exposure, and hence involves moving the tube to its next
position only in between exposures.

In a continuous movement protocol, the tube is in a constant
motion. The angular integration of the rays inherently produces
blurred projections. Conventional reconstruction from such pro-
jections leads to blurred reconstructed images, and therefore
the projection angles are kept small. Important advantages of
a continuous scanning protocol are shorter acquisition times and
less demands on modality construction from a mechanical point
of view.

In this work, the continuous protocol is extended with con-
tinuous projections, in which the X-ray source is continuously
emitting X-rays over larger angles. The focal spot motion can
no longer be ignored and is modeled in the reconstruction. The
reconstruction quality is compared with the equivalent step-and-
shoot counterpart showing improved results for region of interest
tomography.

I. INTRODUCTION

X-ray projections for tomographic image reconstruction can
be acquired in different ways. In a step-and-shoot protocol,
the X-ray tube and detector are stationary during the X-
ray projection and move to a next location only in between
exposures [1]. While this protocol is the easiest from an image
reconstruction point of view, it poses severe constraints on
the design of the modality and typically leads to a longer
acquisition time.

In the continuous acquisition mode, the tube is in a constant
motion and projections are acquired over small angles. In
a spiral CT scanner, the X-ray tube and the table are in a
constant motion. This enables a heavily reduced acquisition
time compared to the original step-and-shoot modality [2]. For
breast tomosynthesis, the tube is in a continuous movement
and emits short X-ray bursts at specific intervals, which also
enables a shorter acquisition time and thus increases patient
comfort [3].

Most reconstruction algorithms applied to projection data
that are acquired in a continuous acquisition mode, however,
still assume a stationary source and detector during exposure.
Any focal spot movement during exposure is considered
unwanted because the angular integration of X-rays produces
blurring in the projections which leads to decreased image
quality. Protocols are designed in such a way that this effect

JC, WJP and JS are with the iMinds-Vision Lab, University of Antwerp,
Belgium. JC and GB are with Agfa Healthcare NV, Belgium. Corresponding
author: jeroen.cant2@uantwerpen.be

is limited as much as possible, either by a low tube rotation
speed or short exposure time [3] [4].

In this work, the continuous acquisition model is taken one
step further. Continuous exposures are studied, whereby the X-
ray tube continuously emits radiation over larger angles while
moving through the acquisition path. In this model, focal spot
motion can no longer be neglected and needs to be modeled
in the reconstruction.

Motion related reconstruction artifacts have already been
studied extensively in the literature. Object motion during
acquisition of the different projections creates inconsistencies
between the projection images, leading to reconstruction ar-
tifacts unless the motion is modeled and incorporated in the
reconstruction algorithm [5]. A common example of subject
motion occurs in imaging of a thorax when a patient cannot
hold his breath. Another motion related artifact is caused by
unwanted motion of the tube or detector, e.g., due to me-
chanical drifting [6]. The focal spot motion of the continuous
exposures, however, differs from the previous motion examples
as it is incorporated into the acquisition protocol by design.
Recently, investigations have been made for modeling small
focal spot motion to improve reconstruction quality in breast
tomosynthesis [7].

In our work, the effect on the image quality of reconstruc-
tions modeling continuous exposures is studied and compared
with reconstructions from a step-and-shoot model with equal
total radiation dose and number of projections. As will be
demonstrated, for specific applications such as region of in-
terest tomography, reconstructions from continuous exposures
may significantly improve the image quality of the equivalent
step-and-shoot protocol, at the cost of decreasing spatial
resolution outside the region of interest.

The concept of continuous projections and the integration in
the SIRT algorithm is worked out in section II. In section III
the Fourier sampling behaviour of the continuous projections
is analysed. Section IV contains experiments on various phan-
toms. The conclusion can be found in section V.

II. METHODS

In this section, the concept of continuous projections is
explained for parallel beam geometry. Generalization to other
geometries is straightforward.

A. Continuous projections

The attenuation of an X-ray beam in the case of a step-and-
shoot protocol, further referred to as a ‘static’ projection, can
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(a)
(b)

Fig. 1: (a) shows an example image acquisition geometry.
Parallel beam projections are acquired at angles θn = n∆
with n = 1, ..., N . (b) shows the corresponding lines of these
projections in the Fourier space. In a continuous acquisition,
the detector integrates photons between θn and θn+1 and hence
gathers information about a wedge of angular width ∆ in the
Fourier space.

be expressed as follows:

Isn(t) = I0 exp

(
−
∫
Lt,θn

µ(x, y)ds

)
(1)

with (x, y) = (r cos θn − s sin θn, r sin θn + s cos θn). Fur-
thermore, I0 is the intensity measured by the detector without
object and I the intensity after attenuation by the object. The
attenuation coefficients of the imaged object are represented
by µ(x, y), and the line integral is taken over the X-ray beam
Lt,θn from source to detector as illustrated in Fig. 1a.

After dividing the projection data by I0, taking the logarithm
and inversion, the discretized version of Eq. (1) can be ex-
pressed as a linear combination of the attenuation coefficients
in x along the path of the ray:

bi =
∑
j

ai,jxj (2)

where bi represents projection pixel i. The image vector x
is the discrete representation of µ, and the weight of the
attenuation coefficient at image pixel xj is ai,j , which is
related to the intersection length of the ray with this pixel.

The combination of Eq. (2) for all projection pixels leads to
a system of linear equations

b = Ax (3)

where A = {ai,j} represents the system matrix, x the
vector of unknown attenuation coefficients in the discrete
representation of µ and b the vector of the entire projection
data.

In case of continuous projections, each projection value
Icn(t) is the result of the integration of photons during rotation
of the source-detector system from θn to θn+1 = θn+∆. When
the same total radiation dose is administered and the X-ray

source and detector move with constant angular velocity, the
measured intensity is given by:

Icn(t) =
I0
∆

∫ θn+1

α=θn

exp

(
−
∫
Lt,α

µ(x, y)ds

)
dα. (4)

with (x, y) = (r cosα − s sinα, r sinα + s cosα). For sim-
plicity, the tube is assumed to emit a constant intensity. Also,
the delay for reading out the detector is neglected. A more
refined model for the emitted energy is presented by [7].

To obtain a discrete formulation of Eq. (4), S rays are
sampled between θn and θn+1. Eq. (2) is modified to:

bi = − log

 1

S

S−1∑
s=0

exp

−∑
j

ai,j,sxj

 (5)

where ai,j,s now represents the weight of the attenuation
coefficient at position j for the beam arriving at detector pixel
i with angle θn + s

S∆.
The sampling factor S should be chosen high enough to

correctly sample the full area between the corresponding
lines in the Fourier space as illustrated in Fig. 1b. The
coefficients ai,j,s can be obtained by modelling the sampled
continuous projections system as a static projections system
with S ×N projections.

B. Continuous SIRT

The system of equations (3) can be solved using the
well known Simultaneous Iterative Reconstruction Technique
(SIRT) algorithm, which can be written in matrix formulation
as [8]:

x(k+1) = x(k) + CATR(b−Ax
(k)

),

where xk represents the reconstructed image at iteration k
and C and R the diagonal matrices with the inverse column
and row sums of the system matrix A, respectively. The
operation Ax(k) corresponds to a so called forward projection,
and the transpose AT is referred to as the backprojection
operator. With static exposures, this forward projection comes
down to a weighted sum of image pixel values on a ray from
source to detector, using an interpolation scheme between all
pixels that are partially intersected by this ray. Similarly, the
backprojection is a weighted redistribution of a value across
the same image pixels in the neighbourhood of that ray.

For the protocol with continuous projections, the forward
and backward projectors are adapted. Instead of backprojecting
a value along a single ray, this value is distributed across S
rays corresponding to S source-detector positions of each ex-
posure. The forward projector is modeled by S rays matching
our sampled continuous exposure.

III. FOURIER ANALYSIS

For a parallel beam geometry, the effect of uniformly
moving the source while constantly emitting radiation can
intuitively be understood from the fourier-slice theorem . This
theorem states that for parallel beams, the Fourier transform
of a static projection p(x) of an image f(x) is equal to a
slice s(kx) in F , the Fourier transform of f . Stated otherwise,
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each projection p ‘samples’ the Fourier space F of our image
formed by the attenuation coefficients µ.

Where static projections represent lines in the Fourier space,
a continuous projection will integrate all rays between angles
θn and θn+1 and thus gather information from the entire area
in the Fourier space between the two corresponding lines of
the static projections (Fig. 1b).

Conceptually, one can easily understand that when acquir-
ing only a few static projection images, the Fourier space
of the image will be severely undersampled and hence the
reconstructed image will contain reconstruction artifacts. This
can be seen in Fig. 2, where the reconstruction from only 10
projections shows streak artifacts.

Since the continuous projections sample the whole area
between the corresponding lines of the start and end angle
in the Fourier space of the image, it can be expected that this
technique produces reconstructions with less streak artifacts.
In the following section the reconstruction algorithm based on
these continuous projections is compared with static recon-
struction algorithms under various circumstances.

(a) Phantom (b) 180 projections (c) 10 projections

Fig. 2: SIRT reconstructions of a Shepp-Logan phantom (a)
with 180 (b) and 10 (c) projections, showing typical streak
artifacts.

IV. EXPERIMENTS

A. Reconstruction comparison between static and continuous
projections.

To illustrate the effect of continuous vs static projections,
the root mean square error (RMSE) for SIRT reconstructions
from static and continuous projections on the Shepp-Logan
phantom was compared as a function of the number of
projections. The static projections were equally distributed
along 180 degrees and the continuous projections integrated
all rays between two consecutive static projections. 1000
iterations were performed for all reconstructions. The SIRT
algorithm used for the continuous projections was modified as
described in section II-B by sampling the rays in the angular
range of the projections. For a limited number of projections,
the continuous exposures resulted in a lower RMSE. With
increasing number of projections, the difference between both
methods vanished (see Fig. 3).

The continuous projections approach was also applied to the
XCAT [9] phantom, with the center of source-detector rotation
in the left lung. One can easily notice from Fig. 5 that the
resolution improved in the rotation center, but decreased with
increasing distance from this rotation center compared to the
static reconstruction. This suggests that continuous projections
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Fig. 3: RMSE for SIRT reconstructions in function of the
number of projections. All projections angles were distributed
evenly over a total acquisition angle of 180 degrees.

(a) static (b) continuous

Fig. 4: Reconstruction of the Shepp Logan phantom, using 45
static (a) and continuous (b) projections.

might be of use in region of interest tomography, e.g., during
surgery when a physician is only interested in a fast and
accurate reconstruction of a local region of the patient.

(a) static (b) continuous

Fig. 5: Reconstruction of the XCAT phantom, using only 20
static (a) and fully continuous (b) projections with rotation
center in left lung. Both images are displayed with equal
contrast settings.

Besides an improved image quality around the rotation
center, artifacts can be observed due to the motion of the
tube outside this center. To analyze this further, projections of
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two phantoms were reconstructed. The first phantom (Fig. 6a)
consists of concentric circles, centered in the tube-detector
rotation center. In Fig. 6b & 6c, reconstructions from 20 static
projections and 20 continuously acquired exposures are shown,
respectively. Whereas the static reconstruction shows many
artifacts, the continuous reconstruction is nearly perfect.

The second phantom in Fig. 6d consists of 10 radial lines,
distributed evenly over 360°. The reconstruction from 20
continuous projections in Fig. 6f smeared the radial lines along
concentric circles, centered in the tube-detector rotation center.
The angle of this smearing corresponds to the covered angle
of the continuous projections.

(a) phantom (b) static (c) continuous

(d) phantom (e) static (f) continuous

Fig. 6: Circles phantom (a) with static (b) and continuous (c)
reconstruction, showing nearly perfect reconstruction for the
continuous projections. The radial lines phantom (d) illustrates
the concentric nature of the artifacts in continuous recon-
struction (f). Contrast was enhanced in all images for easier
visibility.

B. Noisy projections

The previous experiments were performed with noiseless
projections. As noiseless imaging is not a realistic scenario, the
effect of adding Poisson noise in the sinograms on the recon-
struction quality of continuous projections was investigated.
Reconstructions of static and fully continuous projections were
compared, both methods using the same radiation dose per
projection and an equal number of projections.

The artifacts along arcs centered around the tube-detector
rotation center, as discussed in section IV-A, can also be seen
in the continuous reconstruction from noisy projections (see
Fig. 7).

V. CONCLUSION

An acquisition protocol was investigated with continuous
exposures involving an X-ray source that continuously moves
while continuously emitting radiation. The motion of the X-
ray source was modeled in the reconstruction algorithm. A
comparison with a conventional step-and-shoot acquisition
protocol using the same total radiation dose and number of

(a) static (b) continuous

Fig. 7: Reconstruction of the XCAT phantom, using 20
static (a) and fully continuous (b) noisy projections. We have
used 300 iterations of SIRT used in both cases. Both images
are displayed with equal contrast settings.

projections showed reduced artifacts and improved contrast
and resolution around the tube-detector rotation center.

ACKNOWLEDGEMENT

This work was funded by the Agency for Innovation by Sci-
ence and Technology in Flanders (IWT). Networking support
was provided by the EXTREMA COST Action MP1207.

REFERENCES

[1] J. Hsieh et al., “Step-and-shoot data acquisition and reconstruction for
cardiac x-ray computed tomography,” Medical Physics, vol. 33, no. 11,
p. 4236, 2006.

[2] W. Kalender et al., “Single-breath-hold spiral volumetric ct by continuous
patient translation and scanner rotation,” Radiology, vol. 173, no. 2, p.
414, 1989.

[3] A. Smith, “Fundamentals of breast tomosynthesis,” White Paper, Hologic
Inc., WP-00007, 2008.

[4] H. U. Kerl et al., “Evaluation of a continuous-rotation, high-speed
scanning protocol for micro-computed tomography.” Journal of computer
assisted tomography, vol. 35, no. 4, pp. 517–23, 2011.

[5] I. Al-Shakhrah et al., “Common artifacts in computerized tomography:
A review,” Applied Radiology, vol. 32, no. 8, pp. 25–32, 2003.

[6] W. A. Kalender et al., “Flat-detector computed tomography (FD-CT).”
European radiology, vol. 17, no. 11, pp. 2767–79, Nov. 2007.

[7] K. Michielsen et al., “Patchwork reconstruction with resolution modeling
for digital breast tomosynthesis,” Medical Physics, vol. 40, no. 3, pp.
1–10, 2013.

[8] J. Gregor et al., “Computational analysis and improvement of SIRT.”
IEEE transactions on medical imaging, vol. 27, no. 7, pp. 918–24, Jan.
2008.

[9] W. P. Segars et al., “Realistic ct simulation using the 4d xcat phantom,”
Medical physics, vol. 35, no. 8, pp. 3800–3808, 2008.

Page 298 The third international conference on image formation in X-ray computed tomography



Preliminary Evaluation of Dental Cone-beam CT

Image from Reduced Projection Data by

Constrained-TV-minimization
Zheng Zhang, Xiao Han, Budi Kusnoto, E. Y. Sidky and Xiaochuan Pan

Abstract—Cone-beam computed tomography (CBCT) has
gained increasing acceptance in general dentistry and or-
thodontics during the past decade. Nevertheless, dental CBCT
delivers considerable radiation dose, which raises concern
about the potential risk. One of the approaches to lower the
radiation dose in CBCT data acquisition is to reduce the
total number of projections. However, image quality may be
degraded when current analytic-based algorithms are used for
reconstructing images from sparse-view CBCT data. Recently,
many optimization-based algorithms have been investigated for
image reconstruction from data containing reduced projections.
In this work, we apply the adaptive-steepest-descent (ASD)-
projection-onto-convex-set (POCS) algorithm to reconstructing
images from full (300)- and sparse (151 and 76)-view dental
CBCT data sets. The result shows that the ASD-POCS algo-
rithm can reconstruct from 300-view and 151-view data images
with quality comparable to, or improved over the clinical
images. The ASD-POCS reconstruction from 76-view data has
visibly degraded quality, but may still yield potential practical
utility in certain clinical tasks.

I. INTRODUCTION

Cone-beam computed tomography (CBCT) has gained

increasing acceptance in general dentistry and orthodontics

during the past decade [1], [2]. Dental CBCT provides three-

dimensional images, which eliminate superimposition and

distortion effects existing in two-dimensional X-ray imaging.

The three-dimensional images enable clinicians to have more

accurate anatomic information and more intuitive observa-

tion of structures of interest. Meanwhile, two-dimensional

X-ray images, such as projection radiographs, can still be

generated from the three-dimensional image.

Although dental CBCT possesses many advantages, con-

cerns about potential radiation risk exist because it generally

delivers more radiation dose than conventional 2D X-ray

imaging [3]. In particular, because children and adolescents

are more sensitive to radiation [4], it is of great merit

to lower the imaging dose in the CBCT scans for them.

One way to lowering the imaging dose is to reduce the

total number of projections while maintaining the exposure

per projection the same. However, image reconstruction

from sparse-view data often poses challenge to clinically

used reconstruction algorithms, and results in inferior image

quality, which may affect diagnosis or assessment.

Z. Zhang, X. Han, E. Y. Sidky and X. Pan are with The University of
Chicago.

B. Kusnoto is with Departments of Orthodontics, the University of Illinois
at Chicago.

Recently, a great body of studies has been carried out to

develop optimization-based algorithms for exploiting image

reconstruction from sparse-view data. One of such algo-

rithms is adaptive-steepest-descent (ASD)-projection-onto-

convex-set (POCS) algorithm [5]–[9], which has demon-

strated the potential to improve image quality and to re-

construct images with practical utilities in non-conventional

conditions. In this work, we perform optimization-based

image reconstruction by using the ASD-POCS algorithm

from dental CBCT data. In particular, we focus on sparse-

view image reconstructions.

II. MATERIALS AND METHODS

A. CBCT Imaging System

In the work, we collect data with an i-CAT CBCT system

(Imaging Sciences International, Hatfield, PA). In the i-CAT

system, the distances from the source to the rotation axis and

to the detector are 49.35 cm and 71.03 cm, respectively. The

detector consists of a 480× 384 array with an element size

of 0.508 × 0.508 mm2. The diameter of the field-of-view

(FOV) is about 13 cm within the transverse plane.

B. Data Acquisition

A patient data set was collected at 300 views over 2π. The

patient was scanned with tube voltage of 120 kV and tube

current of 20 mAs. The measured data contain truncation

because the scan FOV is insufficient to cover the entire

object support. We refer to the 300-view data as the full data,

from which we extracted sparse-view data sets at 151 and 76

views uniformly distributed over 2π. We then perform image

reconstruction from the full- and sparse-view data sets.

C. Optimization-Based Imaging Model

In an optimization-based reconstruction, the model data

g0 and image f are vectors with M pixels and N voxels,

respectively, and a discrete-to-discrete (D-D) linear model

links the two vectors [5]–[7], which can be written as:

g0 = Hf. (1)

H denotes the system matrix of size M × N. We employ

a ray-driven projection model to calculate elements of H.

The properties of H are affected by the data sampling, for

example, the number of projection views.
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D. Optimization-Based Reconstruction

In this work, we consider the constrained-TV-

minimization program

f∗ = argmin ‖ f ‖TV s.t. f ≥ 0 and D(f) ≤ ǫ, (2)

where D(f) =| Hf − g | denotes the Euclidean-data diver-

gence, g are measured data, and ǫ is a pre-selected, positive

parameter for accommodating inconsistencies between data

and the model. We use the ASD-POCS algorithm [5]–[9]

that has been developed previously to solve the optimization

program in Eq. (2). The algorithm uses alternatingly the

POCS to reduce the data divergence and the TV gradient

descent to lower the image TV. In the study, we reconstructed

images from the acquired full data and the extracted sparse-

view data sets by using the ASD-POCS algorithm. The

reconstructed image array size is 536 × 536 × 440, with

a voxel size of 0.3× 0.3× 0.3 mm3.

E. Image Evaluation

In the work, we focus on evaluating sparse-view ASD-

POCS reconstructions that if they can yield clinical utilities;

while the full-view ASD-POCS result is shown as the

upper bound for sparse-view reconstructions, and we want

to investigate if ASD-POCS algorithm can improve the

image quality in current dental CBCT imaging protocols.

We obtain clinical images from the i-CAT CBCT system,

which are reconstructed by use of the FDK algorithm [10].

These clinical images are used as the gold standard for

evaluating ASD-POCS reconstructions. We carry out two

evaluation studies: a visualization study for assessing the

quality of ASD-POCS reconstructions, and an accuracy

study [11] to evaluate the accuracy of those images when

used as diagnostic cephalometric analysis and measurement

(in orthodontics and oral surgery purposes).

In the visualization study, we compare ASD-POCS recon-

structions to the clinical images by using the cross-sectional

CBCT images. Two-dimensional sets of lateral and posterior-

anterior cephalograms are generated from 3D CBCT images

by using software Dolphin 3D (Dolphin Imaging & Manage-

ment Solutions, Chatsworth, CA). The two-dimensional im-

ages are evaluated by observers recruited from UIC School

of Dentistry, including orthodontic residents, orthodontic

faculties, oral surgery faculties, oral surgery residents and

oral and maxillofacial radiologists. In the study, observers

blindly evaluate the two-dimensional images of the clinical

images, the full- and sparse-view ASD-POCS reconstruc-

tions, respectively [12]. Observers assess each image if it

yields diagnostic acceptance ("yes" is recorded as 1 and "no"

as 0), and rank each image on a visual analog scale from 1

to 10 (1 is the poorest quality and 10 is the best quality).

Statistical analyses, such as Cochran test, McNemar test,

Friedman test, and Wilcoxon test, are conducted based on

observers’ evaluation.

In the accuracy study to determine the landmark loca-

tions, we evaluate two-dimensional images, such as lateral

cephalograms and posterior-anterior cephalograms. We en-

roll orthodontists to label and trace 65 anatomical landmarks

in these two-dimensional images. Inter and intra observer

reliabilities are tested and found consistent.

III. RESULTS

A. Cross-Sectional Images

We first compare cross-sectional CBCT images between

the clinical image and the ASD-POCS reconstructions from

full- and sparse-view data sets. We display in Fig. 1 the

clinical image within two transverse slices and one sagittal

slice, and use white boxes to enclose structures of root

canals in Fig. 1a, sinus in Fig. 1b, and aerated mastoid

bone in Fig. 1c, respectively. Those structures are of great

interest in many applications in general dentistry as well as

orthodontics. For detailed comparison between the clinical

image and ASD-POCS reconstructions, we display in Figs.

2-4 zoomed-in images within those ROIs.

Reconstruction from 300-view data (full data) We first

compare ROI images in the full-view ASD-POCS recon-

struction to those in the clinical image, which are shown in

Figs. 2-4. By comparing the root canals in Fig. 2, we observe

that the full-view ASD-POCS reconstruction is comparable

to the clinical image, with slightly enhanced contrast and

improved sharpness. In Fig. 3, closer inspection of the sinus

reveals that the full-view ASD-POCS reconstruction has

better defined boundaries of the structures. In Fig. 4, rich

details can be found within the aerated mastoid bone in the

full-view ASD-POCS result, which appear to be somewhat

obscured in the clinical image.

Reconstruction from 151-view data We then compare

the ROIs in the 151-view ASD-POCS result to those in

the clinical image as well as in the full-view ASD-POCS

reconstruction in Figs. 2-4. Observation can be made that

the 151-view ASD-POCS reconstruction is comparable to

the clinical image. We also notice that the 151-view ASD-

POCS result shows better sharpness of the sinus structures

than the clinical image in Fig. 3. In Fig. 4, there are still

more details of the complex structures within the aerated

mastoid bone in the 151-view ASD-POCS reconstruction

than in the clinical image. Moreover, we notice that the

reduction of view numbers from 300 to 151 appears to have

a less noticeable impact on ASD-POCS reconstructions.

Reconstruction from 76-view data Finally, we inspect the

ROIs in the image reconstructed from 76-view data in Figs.

2-4 by use of the ASD-POCS algorithm. Comparing to the

corresponding ROIs in the clinical image and in the full-

view ASD-POCS reconstruction, the 76-view ASD-POCS

result is visibly degraded due to substantial data reduction.

However, in Figs. 2 and 3 we can still delineate the inner

contour of the root canals and the sinus. By inspecting

the fine structures within the aerated mastoid bone in Fig.

4, we observe that the 76-view ASD-POCS result shows

comparable sharpness to the clinical image. Those results

indicate that the 76-view ASD-POCS reconstruction may

Page 300 The third international conference on image formation in X-ray computed tomography



(a)

(b) (c)

Figure 1. Images of the patient within transverse slices (a, b) and within a
sagittal slice (c). ROIs are enclosed by solid boxes, which show root canals
(a), sinus (b), and aerated mastoid bone (c). Display window: [-1000, 1800]
HU.

Figure 2. Zoomed-in view of ROI in (a) of Fig. 1. Top left: clinical image;
Top right: ASD-POCS image reconstructed from 300-view data; Bottom
left: ASD-POCS image reconstructed from 151-view data; Bottom right:
ASD-POCS image reconstructed from 76-view data. Display window: [0,
1800] HU.

possess potential utility for certain clinical tasks that do not

need very detailed information.

B. Human Observer Study

We carried out human observer study for qualitative

assessment. Professionals participate the study to evaluate

the lateral cephalograms and the posterior-anterior cephalo-

grams. The results demonstrate that the full-view ASD-

POCS result is more favorable relative to the clinic image.

The 151-view ASD-POCS reconstruction still produces re-

sults comparable to the clinical images, which can be used

for the routine diagnosis. When the projection number is

pushed down to 76, although observers consider that the

76-view ASD-POCS reconstruction is a little inferior to

Figure 3. Zoomed-in view of ROI in (c) of Fig. 1. Top left: clinical
image; Top right: ASD-POCS image reconstructed from 300-view data;
Bottom left: ASD-POCS image reconstructed from 151-view data; Bottom
right: ASD-POCS image reconstructed from 76-view data. Display window:
[-1000, 1500] HU.

Figure 4. Zoomed-in view of ROI in (d) of Fig. 1. Top left: clinical
image; Top right: ASD-POCS image reconstructed from 300-view data;
Bottom left: ASD-POCS image reconstructed from 151-view data; Bottom
right: ASD-POCS image reconstructed from 76-view data. Display window:
[-800, 1300] HU.
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the clinical image when evaluating the posterior-anterior

cephalograms, there are still few differences between them

in the lateral cephalograms. In particular, observers consider

the lateral cephalogram generated from the 76-view ASD-

POCS reconstruction can be used for orthodontic diagnosis.

C. Accuracy Study

In the accuracy study, orthodontists were recruited to

trace 65 cephalometric landmarks. Average error of the

location of the 65 cephalometric landmarks was found to

be (1.07 mm ± 0.68 mm) for the 2D images from 151-

view ASD-POCS reconstruction, which is comparable to the

i-CAT CBCT gold standard (1.00 mm ± 0.50 mm) when

used for cephalometric measurements and analyses. In some

instances, even the 2D images from the 76-view ASD-POCS

reconstruction still produced clinically acceptable accuracy

(1.44 mm ± 0.86 mm).

IV. DISCUSSIONS

In this work, we have investigated the application of the

ASD-POCS algorithm to reconstructing images from full-

and sparse-view patient data collected with an i-CAT CBCT

system. We evaluated the ASD-POCS reconstructions from

full data as well as sparse-view data sets containing 151 and

76 views, and compared them to the clinical image. We first

carried out visualization for assessing the image quality by

using the CBCT cross-sectional images; we then carried out

human observer study for evaluating the diagnostic accep-

tance of the ASD-POCS reconstructions, based on lateral

cephalograms and posterior-anterior cephalograms; finally,

we conducted accuracy study to evaluate the accuracy of

those images when used as diagnostic cephalometric analysis

and measurement (in orthodontics and oral surgery pur-

poses). Results show that ASD-POCS reconstruction from

full data is comparable to, or better than the current clinical

image. The 151-view ASD-POCS reconstruction is also

comparable to the clinical image, and can be used for the

routine diagnosis. The 76-view ASD-POCS reconstruction,

although visibly degraded in the cross-sectional images, is

comparable to the clinical image when using the lateral

cephalogram. The work suggests that the ASD-POCS al-

gorithm may be used for dental CBCT image reconstruction

from data containing reduced projections, which lowers the

imaging dose and yields images of practical utility.
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Old Ideas New Again: A System Concept for Fast CT 
Using Semi-Conventional Approaches 

 
G. M. Besson 

 
 

  Abstract- A system concept is introduced with the potential to 
achieve much faster data acquisition than currently possible in 
third-generation CT using extensions of known technologies.1 
 

I.    INTRODUCTION 
 
   Viewed under a specific lens, the history of computed 
tomography (CT) developments can be characterized as a 
quest for speed and coverage. While the pencil-beam data 
acquisition geometry of EMI’s first system, which took five 
minutes to acquire the data for a single slice, may perhaps be 
described as optimal for scanning a phantom or other fixed 
object, the realities of human imaging have led to a constant 
drive for faster data acquisition. This drive led first to the CT 
“generations,” and then to the “slice wars,” wherein per 
historical convention the EMI translate/rotate geometry is 
called first generation, and the “rotate/rotate” arrangement is 
referred to as third generation (jointly rotating source-and-
detector assembly). The second generation was an 
intermediate step long forgotten; more significant are the 
departures represented by fourth- and fifth generations to be 
described shortly. 
 
Speed and Coverage in Third Generation CT 
   The evolution from first generation to third-generation, the 
current de-facto standard geometry, initially enabled the 
acquisition of single slice data acquisition in the order of 1 
second. Indeed the General Electric (GE) platform of the 
1980s was known as the “High-Speed.” The c. 1990 
introduction of slip-ring gantries enabled continuous rotation 
for an arbitrary period of time and supported helical/spiral CT 
scanning. While in retrospect “obvious” this step went against 
the conventional wisdom of the times that best image quality 
was achieved in step-and-shoot acquisition. In fact helical data 
acquisition opened the door to organ scanning within a breath-
hold, and proved extremely valuable in multiple clinical 
applications. The next step that provided the platform for 
significant CT application advances was the introduction of 
true multi-row detector systems in 1998 by the major vendors. 
A commercial “slice-war” ensued through the introduction of 
systems with larger and larger z-axis coverage and number of 
detector rows; this emphasis started subsiding with the 
availability of 64 or 128 row-detector systems with 150 to 180 
rotation-per-minute (RPM) capability. However, at least one 
vendor put out a stake with the introduction in 2005 a 320-

G. Besson is with ForeVision Technologies Corporation . Part of this work 
was done while the author was with Analogic Corporation. 

detector row system capable of organ coverage in a single 
rotation for specific applications, such as cardiac CT. 
    
Cardiac CT Imaging, Electron-Beam Tomography 
   Cardiac imaging using early 1980s CT technology was 
challenging at best: while the concepts of prospective and 
retrospective gating were known, the temporal resolution 
limitation was simply overwhelming: this is the period of time 
when half-scan reconstruction was suggested to reduce the 
possibility that motion would introduce image artifacts 
suggestive of aortic dissection. The concept of electron-beam 
tomography (EBT) imaging was introduced by Haimson [1] 
and developed into commercial reality by Imatron [2]. EBT, 
also known as fifth-generation CT, enabled data acquisition of 
one or two slices in the order of 50 ms, a time frame sufficient 
for “freezing cardiac motion.”  EBT however suffered from a 
lack of instantaneous power, complexity, and high cost; 3thd 
generation multi-row detector systems in the early 2000s 
developed cardiac capabilities competitive with EBT. 
 
Historical Variants: Fourth-Generation and the Mayo Clinic’s 
DSR 
   In fourth generation CT, an x-ray source revolves inside a 
circle (or arc of a circle) of stationary detectors centered on 
isocenter (whereas in 3thd-generation geometry, the detector 
arc is centered at the source); a fan-beam projection is formed 
overtime with vertex at a given detector cell location.  

 
Fig. 1. Schematic for the Mayo clinic’s DSR, from [3]. 

  
 The Dynamic Spatial Reconstructor (DSR) developed at the 
Mayo clinic in the early 1980s [3] relied on multiple image 
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chains (x-ray tube coupled to a two-dimensional image-
intensifier detector) mounted on a rotating gantry to achieve 
fast volumetric imaging, cf. Fig. 1. 
 

II.   A NOVEL HYBRID SYSTEM DESIGN CONCEPT 
 

A.    Forces on X-Ray Tubes 
    The mechanical forces exerted on a rotating x-ray CT tube 
vary as a function of angular velocity ω per the relation: 
𝑓 = mrω2.  At constant flux per rotation, the power 
requirement on the tube increases with ω, and in most designs 
so does the mass of the x-ray source. For illustration, taking 
(arbitrarily) 𝑚 ∝  𝜔0.2 leads to the force relationship plotted in 
Fig. 2. It appears difficult at this time to expect tube 
technologies to evolve to support, say, a factor 10 increase in 
rotation speed from today’s ≈200 RPM capability.   

 
Fig. 2. Flux requirements and applied forces for x-ray tubes on a rotating 
gantry, angular velocity given in RPMs. The plot assumes the tube mass 

varies as 𝑚 ∝  𝜔0.2.  75 RPM was achieved in the late 1990s, while today’s 
fastest systems support 200 RPM or slightly more. 

 
B.    Packing a Third Generation Gantry 
   A patent to Franke [4] describes a rotating gantry packed 
with three image chains. Simple geometry calculations 
indicate that this is an upper limit in typical medical imaging 
geometries. A prototype using two image-intensifier-based 
image chains (the “Morphometer”) was developed in 1988 by 
CGR [5]. Siemens has recently commercialized a CT scanner 
with two imaging chains, the most recent version under the 
name “Somatom Force.” In these embodiments, the second 
imaging chain has a limited angle detector that does not cover 
the full imaging field-of-view [6]. 2 
 
C.    A Hybrid Approach 
  While designing x-ray tubes capable of withstanding much 
higher forces appears daunting, it is not clear that such 
limitations would carry over to detectors. Modern CT 
detectors are relatively compact solid state devices with no 
moving parts and in principle could be designed to accept 
large accelerations. Taking this hypothesis as a working 
assumption, consider a system with two concentric rotating 
gantries, respectively the “source drum” (“external”) and 
“detector drum” (“internal”) and an angularly-extended 
detector arc, as shown schematically in Fig. 3 in “artist 

2 In the following I often use the term “detector” to mean the detector and 
associated data-acquisition-system (DAS) electronics. 

rendition.” The proposed concept relies on: (1) a decoupling 
of the source rotation support from the detector rotation 
support; (2) concomitant observation of a source at a range of 
azimuthal angles; (3) utilization of a multiplicity Ns of x-ray 
sources; (4) use of a wider-angle detector extent and of a 
detector arc centered on iso-center; (5) a new anti-scatter grid 
architecture with lamellas substantially oriented parallel to the 
main gantry plane; (6) introduction of a sparse view 
acquisition geometry, termed “view bunching.”  

   
Fig. 3. Left: Three-dimensional rendition of an x-ray source drum (rotation at 

angular velocity ωs) comprising three tubes; Right: Rendition of an 
independently rotating detector drum (ωd), with an extended angular range, a 

drum aperture permitting x-ray illumination therethrough, and anti-scatter 
grids arranged parallel to the main gantry plane. 

 
D.    Theory of Operation 
  In one exemplary embodiment appropriate for medical 
imaging such as illustrated in Fig. 4, the detector arc covers 
about 4π/3 radians, and the beam aperture in the detector drum 
about 2π/3 radians. Accordingly a given x-ray source is in 
view of the detector (and acquires un-truncated projections) 
for a period of time Ts given by: 

 𝑇𝑠(𝜔𝑑 − 𝜔𝑠) = 2𝜋
3� .   (1) 

Writing 𝑟𝜔 = 𝜔𝑑 𝜔𝑠�  and choosing that the angular range 
covered by a source during the time Ts be at least equal to the 
angle interval Δ𝜃𝑠 = 2𝜋

𝑁𝑠�  between two (equi-angularly 
distributed) sources minus a fraction k, we impose: 

𝑇𝑠𝜔𝑠 ≥ (1 − 𝑘)Δ𝜃𝑠,   (2) 
 

 
 
Fig. 4. Conceptual diagram for a CT system with two independently rotating 
gantries, one supporting Ns x-ray sources (Ns =3 illustrated), the second an  

angularly-extended detector arc.  

z z 
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 from which: 

 𝑟𝜔 ≤ 1 + 𝑁𝑠
3(1−𝑘)

.    (3) 
 
E.    How Fast? 
  Data acquisition speed ratios as compared to third generation 
geometry are given by  (𝑟𝜔 − 1) assuming all x-ray sources in 
detector view can be counted as active and listed in Table I.  
 

 TABLE I 
RATIOS OF DATA ACQUISITION VELOCITIES VS. THIRD GENERATION 

 

k= ->  0 0.25 0.33 0.50 

     Ns=3 1 1.33 1.49 2.00 

Ns=6 2 2.67 2.99 4.00 

Ns=12 4 5.33 5.97 8.00 

 
F.    View Bunching 
When detector drum rotation is increased beyond the upper 
bound given by setting k=0 in (3), angular source data 
acquisition develops “gaps” and I term the result as “view 
bunching,” illustrated in Fig. 5.  
 

 
Fig. 5. Sparse view acquisition in a pattern of “view bunching” occurs when 

the constraint (3) for k=0 is not met.  
It is noted that some early sampling theorems support un-even 
sampling; see for instance Papoulis [7].  
 

III.   SUPPORTIVE TECHNOLOGIES AND TRENDS 
 
  Development of an actual system per the above design 
concept will depend on the feasibility of adapting and/or 
further developing current technologies in the following areas. 
   
A.    Bearings 
    Bearing technologies include mechanical bearings (ball or 
roller-based); magnetic bearings; and air bearings, wherein air 
is passed at a high pressure through a porous material to 
support the rotating drum. A concept for two independent co-
axial drum rotations can be found, for example, in [8]. 
 
B.    Detector Electronics 
    It is desirable to reduce the detector depth along a source-
to-detector central line so as to minimize the spacing between 
the two gantry drums. Current CT detector technology has 

been evolving in this direction, with the recent introduction of 
integrated detectors wherein the analog-to-digital electronics 
is completely contained within the geometric shadow of one 
detector cell x-ray absorption element; from which point-on 
communications are digital. If need be, more voluminous 
digital electronics could be rearranged further along the z-axis 
outside the primary x-ray beam projection, although “deeper” 
gantries are un-appealing to the patient. 
 
C.    Compact X-Ray Sources and Generators 
X-ray tubes tend to be heavy and voluminous sub-systems. 
However, Rand et al in 1991 described a concept [9] later 
implemented commercially [10] with the 2004 introduction of 
“rotating-envelope designs,” whereby significantly less bulky 
x-ray tube inserts are possible; Fig. 6 shows an exemplary 
embodiment of such technology in the Straton tube insert. 
However even for such tubes, the high-voltage (HV) power 
system remains quite large indeed. 

 
 

Fig. 6. Photo of a partly disassembled “hand-held” Straton tube from [11].  
While the overall bulk and mass of a complete Straton tube and HV power 

supply cannot be properly inferred from this photo, the illustration is 
nonetheless indicative of a significant step down in size as compared to 

competitive tubes. 
Power switching from one HV generator to several x-ray tubes 
is a desirable and known technology. 
 
D.    Distributed X-Ray Sources 
    Various technologies are being investigated that could 
potentially lead to truly distributed array sources: several 
configurations are then possible, including in the limit true 
dual 4th-generation geometry with a complete ring of 
stationary sources and a rotating detector.3   
 
E.    Data Acquisition Multiplexing 
In the illustrated geometry, for Ns ≥ 4 several tubes are in 
detector view. Grid switching enables rapid on-and-off cycling 
of x-ray tube emissions, which allows time-multiplexing 
between the various sources. Alternatively or in combination, 
spectral multiplexing might be used when an energy-resolving 
detector is available. Time multiplexing will increase tube-
power requirements. 

3 This configuration has the advantage of eliminating the cone-angle problem 
associated with 5th-generation geometry. 
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IV.   APPLICATIONS AND RESEARCH AREAS 

 
  A.    Cardiac CT 
    As discussed above, cardiac imaging has historically been a 
key driver for various aspects of CT technology. Effective 
data acquisition at 500 to 1,000 RPMs might open the door to 
improved imaging with better temporal resolution. 
 
B.    Scatter Correction 
    The trend toward detectors with much increased coverage 
along the rotation axis (z-axis) would be associated with the 
detection of much increased scattered radiation in the absence 
of counter-measures. Scatter in CT is a difficult problem as 
correcting for single events is not sufficient while at the same 
time the diffusion approximation does not necessarily apply; 
accordingly a method of choice to reduce the key scatter-to-
primary ratio has been the introduction of so-called multi-
directional anti-scatter grids (ASG) comprising lamellas 
crossing at angles. In the proposed approach, uni-directional 
lamellas would have to be oriented substantially parallel to the 
gantry main plane (orthogonal to z), since the detector will 
collect data from a given source at a variety of angles with 
respect to the central vector CO of Fig. 4. Such a geometry is 
less favorable to the blocking of “in irradiated-slice” single-
scatters but comparable in efficacy to uni-directional lamellas 
oriented along the z-axis for blocking multiple scatter events. 
 
C.    Multi-Spectral Imaging 
    As discussed in the Multiplexing paragraph above, the 
proposed architecture might naturally leverage progress in 
multi-spectral imaging to enable simultaneous data acquisition 
from more than one x-ray source. 
 
D.    Compressed Sensing 
    Today there is much interest in the area of compressed 
sensing, that is the possibility of achieving in some sense 
similar image quality in most cases from a reduced acquired 
data set. The CT system concept described above naturally 
leads to a version of sparse sampling, where the views are 
acquired in bunches separated by gaps. Research is needed to 
determine whether the promise of compressed sensing applies 
in this instance. 
 
E.    Photon Counting CT 
    Photon counting technologies promise “noise-less” data 
acquisition and energy discrimination; the later capability in 
particular would enable spectral multiplexing of two or more 
x-ray tubes and thus support the proposed architecture.  
 
F.    Reduced Dose CT 
    Reduced dose CT can be obtained via a combination of 
hardware and software approaches. On the hardware side, 
direct conversion detectors do not require a light reflector and 
thus potentially offer geometric efficiency limited only by the 
ASG. Software methods that leverage a-priori information to 
limit inversion noise-amplification and to perform image-level 
noise reduction are applicable to this proposed architecture.  

 
V.   DISCUSSION 

 
A.    CT Architecture Evolution 
 A natural “slice-wars” milestone is the ability to image an 
organ in a rotation using wide z-detector coverage. Will there 
be a role for systems with faster rotation and smaller z-
aperture, re-balancing costs between detector and sources and 
finding an improved operating point between scatter rejection 
and dose efficiency?  
 
B.    A First Most Likely Embodiment? 
 The above system concept outlines a potential path for much 
higher effective rotation and data acquisition speeds, at the 
price of a number of trade-offs, including costs, complexity, 
and scatter rejection efficiency.  Accordingly a first-
implementation might be to a photon-counting system with a 
relatively narrow z-aperture; such as 20-mm. With a moderate 
33% amount of view-bunching, such a system with six sources 
and two HV generators could support (Table I) a data 
acquisition speed of up to three times that of third generation; 
or about 600 RPMs using today’s tube technology. Such a 
system with for illustration 32×0.625-mm detector rows might 
enable a detector without ASG, and thus a low-dose platform, 
while providing coverage similar to a system with a 60-mm z-
aperture. 
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Mitigating cone-beam artifacts via shift-variant data
usage for large cone-angle scans

Jed D. Pack, Kai Zeng, Adam Budde, Zhye Yin, Bruno De Man

Abstract—Clinical CT scanners with a cone-angle that is large
enough to cover the entire heart have been introduced by two
vendors. Such scanners allow the heart to be scanned at a single
phase (temporal window) and can enable dynamic imaging of
the heart or brain for advanced analysis such as perfusion
and functional assessments. These scanners must use advanced
reconstruction methods if they are to produce images that are
free of cone-beam artifacts. In previous work [1], an approach
that helps mitigate such artifacts for the case of a short-scan
data acquisition was described. If a full-scan of data is available,
however, reconstruction of a larger volume is possible. Herein,
an approach is described for leveraging the main idea of [1] in
order to mitigate artifacts in the the portion of the image volume
that does not always project onto the detector during a full axial
scan.

I. INTRODUCTION

In clinical CT (especially cardiac CT), it is often a goal
to scan as large a volume as possible within a certain small
time window (e.g., in a single rotation or even less). An axial
scan tends to be the best way to achieve this goal with today’s
clinical scanners since we want to measure data that covers
the same section of the patient at all views (to the extent
possible) in order to maximize the region that has sufficient
data for reconstruction. Even in an axial scan, however, there
are voxels that project onto the detector for only a subset of
the views. This paper is mostly concerned with voxels that
project onto the detector for an angular range of between ˜180
and 360 degrees for a full axial scan (measured in terms of
ray rotation while ignoring the cone angle). It is reasonable
to think of reconstructing such voxels from a full-scan since
the set of missing frequencies associated with these voxels is
only moderate. If the scan were a short-scan, however, many of
these same voxels would be measured on a set of views that
provides highly incomplete frequency information. We will
call the region containing such voxels the “corner” region,
since these voxels are located in the corners of an image of
the xz- or yz-planes, as seen in figure 1.

One way to reconstruct the corner region is to use a view
weighting function that depends not only on the ray, but also
on the voxel position along the ray. There are several examples
of such functions in the literature [2]–[7]. In some cases, the
volume is divided into sectors and a short-scan reconstruc-
tion is done for each sector (N-segment [3], Combination-
Weighted-FDK [6]). In other cases, a view weighting function
that varies smoothly as a function of both voxel and ray is

Jed D. Pack, (Kai Zeng), Zhye Yin, and Bruno De Man are all with (or for-
merly with) GE Global Research Center, Niskayuna, NY, USA; Adam Budde
is with GE Heathcare, Waukesha, WI, USA.

Fig. 1. A cut-away view of the cone-beam imaging volume. The colored
regions represent volumes that are seen on the detector for different (wedge
geometry) view angle ranges as follows: 360 degrees (white), between 270
and 360 degrees (green), between 180 and 270 degrees (yellow), between 90
and 180 degrees (orange), between 0 and 90 degrees (red), 0 degrees (black).
The current paper is primarily concerned with reconstructing voxels in the
green and yellow regions.

employed (Hybrid-Tent-FDK [2], Extended-Parallel-BP [4],
3D-Weighted-FBP [5], Extended-FDK [7]).

Each of these view weighting-based approaches works by
amplifying the influence of rays that project onto the detector
whenever the conjugate ray projects off of the detector (as a
means of compensating for the missing conjugate ray data).
The functions are made smooth in order to avoid streaky
artifacts oriented along rays that are measured at the edge
of the detector. Essentially, each voxel is “seen” only for a
partial-scan, so the view weighting for that voxel bears a
lot of similarity to the view weighting functions commonly
used in partial-scan or short-scan reconstruction (e.g., Parker
weighting [9]).

However, as has been described previously [1], when
the cone angle is non-zero, view weighting can only
approximately handle the data redundancy in frequency
(Fourier/Radon) space. This approximation becomes quite
poor for cone angles of several degrees or more. The “But-
terfly” technique [1] has been developed to handle this redun-
dancy much more accurately for partial-scan reconstructions.
The goal of the current paper is to leverage this same technique
to improve image quality in the “corner” region of a full-
scan reconstruction, in much the same way as view weighting
methods were extended from partial-scan techniques to full-
scan techniques.

II. METHOD

The high-level idea in [1] is to produce two reconstructions
(each from a different view weighting function) and then
to combine the good frequency information in each using
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2D (slice-by-slice) filtering to produce a final image volume
with significantly reduced cone-beam artifacts. The filtering
is usually shift-invariant and can therefore be done using 2D
FFTs.

The frequency data handling in the corner region of a full-
scan is quite shift-variant and will therefore involve approx-
imations and/or added computation. There are many ways to
handle this. One way is to apply a finite number of shift-
invariant filters and then to combine them with spatially-
dependent weighting functions. One such implementation of
the algorithm flow (in cone-parallel or wedge geometry) is as
follows, and has been used to produce the relevant images
herein:

1) Perform fan-to-parallel rebinning of each row separately
(this results in the wedge geometry).

2) Apply a ramp filter to each row of data.
3) Apply length correction (cosine cone weighting).
4) Backproject, while applying a first weighting function

to produce reconstruction A.
5) Backproject, while applying a second weighting function

to produce reconstruction B.
6) For each image slice (i) that includes the corner region:

• Loop azimuthally over several angles (α):
– Apply a smooth mask Mα (oriented at angle α)

to the ith slice of both reconstructions (A and B)
– Compute the 2D FFT of both slices
– Blend the two FFT slices using a weighting

function Wα to produce a blended FFT image
– Compute the 2D IFFT to produce the blended

image
• Sum the resulting blended images across all α

values to produce the final image for the ith slice.
As the first three steps are common (e.g., [5], [8]), the details

of these steps are omitted in favor of details on the remaining
steps. The weighting functions for reconstructions A and B
must be selected as well as the image masking functions (Mα)
and the Fourier blending function (Wα). Details of each of
these is respectively given in one of the following subsections.

A. View (Backprojection) Weighting

As in the case of [1], the idea is to do two reconstructions
with significantly different view weighting (or backprojection
weighting) functions, so as to produce a pair of image volumes
in which the cone beam artifacts are oriented along different
directions (and therefore frequencies). Fourier domain blend-
ing can then be used to select the best frequencies from each
volume in order to remove such artifacts to the extent possible.

In general, view weighting functions can depend on voxel
location and view angle (four scalar parameters in all). How-
ever, in view of the fact that rotating a voxel around the
z-axis should only shift the view weighting function by the
same angle, the view weighting function can be built in a
coordinate frame that rotates with view angle around the z-
axis—specifically, (s, t, z), where the unit vector in the s
direction for a given view always points orthogonal to the
rays (thus the s coordinate determines which detector column
a voxel will project onto). We adopt the convention that s

Fig. 2. View weighting functions used herein (displayed in the st-plane). In
general these functions can also depend on radius and z. Left: reconstruction
A. Right: reconstruction B.

points generally from the left side of the detector toward the
right side (as seen from the source) and t points generally away
from the source rather than toward it. Using this coordinate
frame eliminates the dependence on view angle, so we are left
with a weighting function that can be stored as a lookup table
that is a function of three scalar parameters rather than four.

There are many (s, t, z) view weighting functions that can
accomplish our goal satisfactorily. However, a few guidelines
can be given. For example, the function for reconstruction A
should be the mirror image of the function for reconstruction
B in the s direction. Also, for any given voxel, the view range
used in reconstruction B should always be higher in angle than
the view range used in reconstruction A.

For completeness, the view weighting function used to
produce the images in this paper is now given. This function
is a further simplification of the above in that it can be
parameterized by a single parameter (azimuthal angle in the
st-plane) rather than the three parameters described previously.
The function is given here:

w(x, y, z, θ) = wr(s, t, z) (1)

wr(s, t, z) =

{
wa(φ), if t > 0, for reconstruction A
wa(−φ), if t > 0, for reconstruction B

(2)

φ = arctan(s/t) (3)

The function wr is only defined for t > 0 above. The
remainder of wr is defined so as to ensure that the usual
normalization condition is met (weighting of conjugate rays
must sum to one). Specifically, when t < 0, wr(s, t, z) =
1−wr(−s,−t, z); when t = 0, the value is chosen to ensure
continuity. In our implementation, wa is as follows:

wa(φ) =

{
φ/(π/4), if φ < π/4
1, otherwise

(4)

Figure 2 displays these functions in the st-plane.
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Fig. 3. First (left-most) panel: The views used to reconstruct a voxel in the corner region at the indicated location are highlighted in green (for reconstruction
A) and orange (for reconstruction B). Second panel: The resulting contributions to Fourier space are indicated with the color on each interior curve indicating
the level of extrapolation if the voxel is only seen for 180 degrees: from blue (none) through purple (minor) to bright red (most significant extrapolation).
Fourier data from views with a full view weight are rendered in a darker color than those with w < 1. Third panel: After Fourier masking. Last panel:
Combined Fourier data represented in the final image. See [1] for further background/explanation on this type of figure.

B. Image Masking

For each voxel in the corner region, there is a critical view at
which it is farthest from the source, and therefore projects onto
the detector at a minimum cone angle. This critical angle is at
the center of the view range for which this voxel is seen on the
detector. The set of voxels that have their critical angle within
a particular small range all are associated with similar artifact
orientations, and therefore require similar Fourier blending.
We can, therefore form image masks that select such voxels
for a series of small view ranges that together span a full 180
degrees. This would result in a series of binary masks, each of
which was set to one only within a pair of opposing sectors, as
shown in the top panel of figure 4. The sum of all such masks
is one everywhere since each voxel is represented in exactly
one such mask. As is often the case in CT reconstruction,
however, sudden transitions can result in visible artifacts. As
a result, these masks should be smoothed in the azimuthal
angle direction on concentric circles. In our implementation
this smoothing had an angular width of π/14, which matched
the angular width of the original sectors (we used a total of 14
masks). Several of the masks are shown on the bottom panel
of figure 4.

Alternatively, the smoothing can have a wider angular range
for circles that are near the boundary of the corner region
since voxels that are nearer this boundary are seen on the
detector over a wider angular range than those farther from
this boundary. Also, the image masking can optionally be done
after (instead of before) Fourier blending.

C. Fourier Blending

As shown in figure 3, data mishandling artifacts can be
minimized if the Fourier blending selects 90 degrees worth

Fig. 4. Image domain masks (Mα) are shown both without (top) and with
(bottom) azimuthal blending.

of Fourier data from each reconstruction (reconstruction A
and B). Fortunately, this strategy also minimizes the impact
of views in which the backprojection of extrapolated data is
done. Extrapolated data can be useful for approximating very
low frequencies, but such data can also produce streaks in
the image around the edges of high contrast structures (e.g.,
ribs) if it is used to fill in higher spatial frequency regions
of Fourier space. A uniform smoothing in the Fourier domain
(windowing in the spatial domain) not only shrinks the spatial
extent of our filter, but it also allows for extrapolated data to be
used at the very low frequencies while removing its influence
at the higher frequencies. At the same time, streaks due to
object motion are reduced since this introduces an effect that
is somewhat analogous to Parker weighting [9]. The results
in this paper were produced using a Gaussian smoothing of
the filter in frequency space with a standard deviation of 0.3
mm−1. A small amount of azimuthal smoothing can also
be included in the Fourier masks (we again used π/14) to
compensate for the finite number of image masks.
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Fig. 5. Top panel: nCAT reconstructions. Center panel: Reconstructions of
wide-cone CT data of a physical phantom. In the upper panels, the left image
uses the view weighting from [7], while the right image is the result of the
proposed method. The bottom panel shows a difference image (between the
two methods) for nCAT (left) and real data (right). All images use a display
FOV of 300mm and a 350 HU window and represent slices that are 4.4 mm
from the edge of the 160 mm coverage volume (so as to include voxels that
have close to 180 degrees worth of views). In each case, some improvement
is achieved by using the proposed method rather than the baseline method.

D. Comparison Method

As a baseline, we compared our algorithm with an algorithm
that performs steps 1-3 identically to the proposed method,
but then does a single backprojection step using the weighting
given in [7].

III. RECONSTRUCTION RESULTS AND DISCUSSION

In figure 5, we show results that illustrate the artifact
reduction provided by the Full-scan Butterfly method. Data for
the nCAT phantom [10] (top panel) was simulated with CatSim
[11] in the cardiac region. The number of views, columns,
and rows simulated was 984, 888, and 256 respectively. The
detector had a cone angle of 14.6 degrees. Real data for an
Anthropomorphic Upper Abdomen Phantom (Kyoto Kaguku,
Japan, central panel) was acquired on a prototype Revolution
CT system (GE Healthcare, Waukesha, WI). Reconstructions
were performed using the baseline method and the method
proposed here, and the difference between the two is shown
in the bottom panel.

As is the case for [1], we note that this algorithm can alter-
natively be performed in the native geometry. For example, one
could employ filtering (a view dependent derivative followed
by a Hilbert transform performed on curves at the intersections

of the detector surface with planes that intersect the source
trajectory tangentially), view-weighting in the (s, t, z) space
(modified to account for the geometry), and backprojection
with an inverse distance weight.

It should also be noted that although the current algorithm
has been described in the context of a full-scan reconstruction,
wherein voxels in the “non-corner” region are reconstructed
with equal contributions from all views, data usage can be
varied throughout the entire volume in order to provide the
best balance between noise, artifacts, and temporal resolution.

IV. CONCLUSIONS

The proposed method produces high quality images from
wide-cone full-scan data. The improvements come at a higher
algorithm complexity and computational cost and may not be
significant enough to justify use of this approach for some
applications, particularly if the cone angle is small. In wide-
cone clinical CT, however, such improvements are worth the
effort as they provide an even larger high IQ image volume.
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Efficient and Exact C-arm Cone-Beam Imaging for
Axially Extended Field-of-View using the

Ellipse-Line-Ellipse Trajectory
Zhicong Yu, Günter Lauritsch, Joachim Hornegger, Frédéric Noo

Abstract—C-arm computed tomography for axially long field-
of-view is an important extension to the current C-arm 3D
imaging capability and can be crucial in some intra-operative
cases. Recently, a novel data acquisition geometry, i.e., the Ellipse-
Line-Ellipse trajectory, was proposed for this new technique. It
has been shown that this trajectory satisfies mechanical motion
constraints of a C-arm system and provides excellent geometrical
characteristics for cone-beam image reconstruction. This work
makes good use of these characteristics and develops an efficient
and exact image reconstruction scheme using the general CB-FBP
reconstruction theory. We demonstrate this scheme by computer
simulations with a modified FORBILD head phantom.

I. I NTRODUCTION

C-arm Computed Tomography(CT) is an innovative tech-
nique that allows a C-arm system to produce3D images using
a set of cone-beam(CB) projections. Clinical reports (e.g., [1])
have shown that this new technique is becoming more and
more useful in the interventional room, such as neurovascular
imaging, interventional procedure guidance and post-surgery
assessment. These reports have demonstrated that C-arm CT
can reduce treatment related complications and improve inter-
ventional efficacy and safety.

However, current C-arm CT uses a circular short scan for
data acquisition, which limits the imaging ability along the
axial direction, i.e., along the centerline of the patient table.
This limitation has been reported in hepatic vascular imaging
where the entire liver is of interest [1]. In general, the axially-
short coverage limitation is an issue whenever imaging an
axially-long organ is needed in intra-operative cases, e.g., the
entire spine or the whole aorta. Hence, development of C-
arm CT for axially extended field-of-view(FOV) is needed in
the interventional room. For convenience, we call this new
development as extended-volume C-arm CT.

Significant effort has been made to achieve the extended-
volume C-arm CT [2]. Three data acquisition geome-
tries were investigated, namely, the reverse helix [3], [4],
the arc-extended-line-arc(AELA) [5] and the ellipse-line-
ellipse (ELE) [6]. The major challenge of extended-volume

Z. Yu and F. Noo are with Department of Radiology, University of Utah,
Salt Lake City, USA; G. Lauritsch is with Siemens AG, Healthcare Sector,
Forchheim, Germany; J. Hornegger is with Pattern Recognition Lab, Uni-
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National Institutes of Health (NIH) under grant R21 EB009168 and R01
EB007236. Its contents are solely the responsibility of the authors and do not
necessarily represent the official views of the NIH. The concepts presented
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C-arm CT is that the projection data are axially truncated
due to limited detector size. To overcome this challenge,
efficient and exact R-line based reconstruction algorithms are
the best candidates; an R-line is a segment of line that connects
two points on a connected source trajectory. However, the
reverse helix cannot provide sufficient R-line coverage in
the region-of-interest (ROI), hence exact and efficient cone-
beam (CB) image reconstruction is difficult for the reverse
helical trajectory. The AELA trajectory has sufficient R-line
coverage, but it is not continuous and induces x-ray exposure
pause. The ELE trajectory is continuous and has sufficient R-
line coverage in the ROI. Therefore, it is the best candidate
for extended-volume C-arm CT.

Geometrical characteristics of the ELE trajectory have
been thoroughly studied in [6], [2], and efficient and exact
image reconstruction scheme using the differentiated back-
projection (DBP) algorithm has been proposed [7]. To reduce
computational cost, the DBP method has to first perform image
reconstruction on R-line surfaces and then data rebinning from
R-line surfaces to Cartesian coordinate system. The former
step increases implementation complexity and the latter step
may cause unnecessary resolution loss. To overcome these
problems, the filtered-back-projection(FBP)-type R-line based
reconstruction algorithms are of interest.

This work aims at developing an efficient and exact image
reconstruction scheme for the ELE trajectory based on the
general CB-FBP reconstruction theory [8], [9], [10]. Although
different reconstruction schemes have been proposed for vari-
ous circle-plus trajectories [11], [12], none of them are readily
applicable to the ELE trajectory. The scheme for a circle-
plus-line trajectory [11] cannot solve the problem at hand,
because an R-line of the ELE trajectory may involve two
elliptical arcs and one line. The scheme for a general circle-
plus trajectory [12] cannot be used neither: the ELE trajectory
usually uses short scan due to mechanical motion constraints
of a C-arm system, but this scheme requires the general circle
to be closed. To apply the general CB-FBP theory to the ELE
trajectory, a new reconstruction scheme needs to be developed.

This paper is organized as follows. First, in Section II,
we describe the geometry of the ELE trajectory and clarify
the criteria for ROI design. Next, in Section III, we review
the general CB-FBP reconstruction theory and explain the
new reconstruction scheme for the ELE trajectory. Then, we
demonstrate the proposed reconstruction scheme in Section IV
by computer simulations using a modified FORBILD head
phantom. We conclude this work in Section V.
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II. ELE TRAJECTORY

A. Geometry

The ELE trajectory lies on a cylindrical surface that is
centered on the long-axis of the patient table as shown on
the left of Figure 1. Without loss of generality, we will only
consider one basic cycle of this trajectory, i.e., the bottom half
of the left of Figure 1. For convenience, we will simply call
this basic cycle the ELE trajectory in subsequent sections.

The ELE trajectory is composed of two elliptical arcs that
are connected by a segment of line. We call these two elliptical
arcs the upper and lower T-arcs, respectively, whereas the
segment of line is called the T-line. In the attached(x, y, z)
coordnate system, the ELE trajectory is centered on thez-axis
and mirror symmetric relative to the(x, y)-plane. The T-arcs
are perpendicular to the(x, z)-plane and the T-line is parallel
to thez-axis; see the right of Figure 1.

Let λ andγm be a polar angle and a fan angle, respectively.
We denoteau(λ) andal(λ) as vertex points on the upper and
lower T-arcs, respectively, and refer tob(z) as a vertex point
on the T-line. Let R be the radius of the cylindrical surface.
We refer to thez coordinate of the center of the upper (resp.
lower) T-arc asH (resp.−H), and thez coverage of each T-
arc as2∆H . Mathematically, any vertex point on this ELE
trajectory can be expressed by one of the following equations

au(λ) = (R cosλ, R sinλ,H(λ))
T

,

b(z) = (R cos γm,−R sin γm, z)T ,

al(λ) = (R cosλ, R sinλ,−H(λ))
T

,

whereλ ∈ [−γm, π + γm] and z ∈ [−H(γm),H(γm)] with
H(λ) = H + ∆H cosλ. For more details, we refer to [6].

Fig. 1. Left: a complete ELE trajectory. We focus on one basic cycle: the
bottom half of the trajectory on the left. Top right: orthogonal projection of
the basic cycle of the ELE trajectory onto the(x, z)-plane. Bottom right:
orthogonal projection of the basic cycle onto the(x, y)-plane. The light blue
cylinder indicates the ROI.

B. ROI Design

There are three types of R-lines for the ELE trajectory: EL
R-lines that connect the lower T-arc to the T-line, LE R-lines

that connect the T-line to the upper T-arc, and EE R-lines
that connect the two T-arcs. Let the radius of the region-of-
interest (ROI) ber. According to [6], full R-line coverage in
the ROI can be achieved by the following configurations:

γm = arcsin(r/R) and ∆H/H = r/R.

C. R-line Selection

For a given point of interest, there may be more than one
R-line through it. In this work, we select the shortest R-line, as
the same as that was used in [7]. The R-lines that are used for
image reconstruction of the ROI that is inside the convex hull
of the ELE trajectory and below the(x, y)-plane are shown
in the left of Figure 2. These R-lines are either EL or EE,
and they together provide full R-line coverage in the ROI; see
the right of Figure 2. The ELE trajectory is mirror symmetric
relative to the(x, y)-plane, so is the R-line coverage. Hence,
the R-lines for image reconstruction of the ROI that is inside
the convex hull and above the(x, y)-plane can be obtained
similarly to those in Figure 2.

Fig. 2. Left: illustration of R-lines that are used for image reconstruction of
the ROI that is inside the convex hull of the ELE trajectory and below the
(x, y)-plane. Right: the R-line coverage of the ROI in the(x, y)-plane. Blue:
EL R-lines; green: EE R-lines.

III. R ECONSTRUCTIONMETHOD

A. General CB-FBP Reconstruction Theory

In this subsection, we review the general CB-FBP recon-
struction theory [8], [9], [10]. We use the same notations as
those were used in [10]. Leta(λ) be a point on a trajectory
curve that starts froma(λs) and ends ata(λe). Let a′(λ) be
the derivative of a(λ) with respect toλ, and letx be a point
that is located on the line that connectsa(λs) anda(λe). For
illustration, see Figure 3. Lete0 be the unitvector pointing
from a(λ) to x, and let

e1 =
a′(λ) − (a′(λ) · e0)e0

||a′(λ) − (a′(λ) · e0)e0||
and e2 = e1 × e0,

so thate0, e1 and e2 form a Cartesian coordinate system. In
the plane that is spanned bye1 ande2, we define

e = cosφ e1 + sinφ e2 and e⊥ = e × e0,

whereφ is the polar angle frome1 to e in the plane that is
spanned by e1 and e2. Note that, whenφ is identical toπ/2
or 3π/2, the plane spanned bye⊥ and e0 is tangent to the
trajectory curve.
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Fig. 3. Illustration for the general CB-FBP reconstruction theory.

Let g(λ, x) be the line integral of the attenuation coefficients
along the line that goes througha(λ) andx, and letg′(λ, x)
be the derivative ofg(λ, x) with respect toλ. Now, consider
an arbitrary Radon plane that containsx with normaln. This
plane intersects the trajectory curve (bounded byas andae) at
positionsλ1, λ2, ... , λN(n,x), with N(n, x) being the number
of intersections. To address contributions of the projections
corresponding to all these intersections, we introduce a weight-
ing function, denoted asM(λ, φ; x), such that it satisfies the
the equation below

N(n,x)
∑

k=1

M(λk, φk; x) = 1, (1)

whereφ has the same geometrical meaning as that in Figure 3.
According to the general CB-FBP theory [8], [9], [10],x can
be reconstructed by the formula below:

f(x) = −
1

2π

∫ λe

λs

gF(λ, x)

||x − a(λ)||
dλ, (2)

where

gF(λ, x) =

∫ π

0

c(λ, φ; x) gH(λ, φ, x) dφ, (3)

with

c(λ, φ; x) = −
1

2

(

∂q

∂φ

)

(λ, φ, x), (4)

q(λ, φ; x) = sign(cosφ)M(λ, φ; x), (5)

and

gH(λ, φ, x) =

∫ π

π

1

π sin γ′
g′(λ, cos γ′e0 +sinγ′e⊥) dγ′. (6)

It is important to note that ifM(λ, φ; x) is piecewise constant,
c(λ, φ; x) will be a combination of pulse functions, which
meansonly a finite filtering lines on the detector will be needed
for reconstruction ofx.

B. Filtering Lines

Now, we focus onM(λ, φ; x), c(λ, φ; x), and the corre-
sponding filtering lines. We denote the ROI that is inside
the convex hull ROIC, and refer to ROIU and ROIL as the
portions of ROIC that are above and below the(x, y)-plane,
respectively. For convenience, we only clarify our choice of
M(λ, φ; x) and the corresponding filtering lines for ROIL.

Similar results can be obtained for ROIU due to the mirror
symmetry of the ELE trajectory.

Let x be the point of interest, and letR(x) be the shortest
R-line that goes throughx. We denote the trajectory curve
that is bounded byR(x) as S(x). Let Π be a Radon plane
that containsx. By construction, there will be one or three
intersections betweenS(x) and Π. In case that there is only
one intersection, the value ofM(λ, φ; x) is 1. In case that there
are three intersections, we label them according to the order
that the ELE trajectory goes through the plane, namely the
first, second and third intersections. We design theM(λ, φ; x)
according to the order of these intersections; see Table I. With
theM function defined as in Table I,c(λ, φ; x) will be zero for
most Radon planes, except for those tangent to the trajectory
at the current view point or through the endpoints ofS(x).

TABLE I
M FUNCTION USED FORROIL

intersection order M value
1st of three intersections +1
2nd of three intersections +1
3rd of three intersections -1
1st of one intersection +1

We select the filtering lines according to theM function
defined in Table I. For this purpose, at each view point,
we first projectS(x) and the critical Radon planes onto the
detector, and then study the value ofc(λ, φ; x). Two types of
R-lines may be associated tox, i.e., EL R-lines and EE R-
lines, depending on the location ofx. For an EL R-line, the
projections ofS(x) onto the detector when viewing from the
lower T-arc and the T-line are illustrated in the left and right
of Figure 4, respectively. It is observed thatc(λ, φ; x) is none-
zero only alongC1 andL1, which are parallel and tangent to
the projections of the lower T-arc, respectively.

Fig. 4. Projections of an EL R-line segment onto the detector. Left:viewing
from the lower T-arc; right: viewing from the T-line. Point̄Q is the projection
of x, andc(λ, φ; x) is zero everywhere except forC1 andL1.

For an EE R-line, when the view point is located on
the lower T-arc, there are two cases regarding the relation
between the filtering lines and the projection ofS(x), as
shownin Figure 5. However, in both cases, the filtering lines
corresponding to none-zeroc(λ, φ; x) are the same, namelyC1,
which is parallel to the projection of the lower T-arc. Similarly,
when the view point is located on the T-line or on the upper T-
arc,c(λ, φ; x) is zero everywhere except for the filtering lines
thatare tangent to the projections of the lower T-arc, as shown
by L1 in Figure 6.
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Fig. 5. Projections of an EE R-line segment onto the detector when the
view point is located on the lower T-arc. Point̄Q is the projection ofx, and
c(λ, φ; x) is zero everywhere except forC1.

Fig. 6. Projections of an EE R-line segment onto the detector when the view
point is located on the T-line (left) or on the upper T-arc (right). PointQ̄ is
the projection ofx, andc(λ, φ; x) is zero everywhere except forL1.

Based on the above analysis, for ROIL , gH(λ, φ, x) in
Equation6 should be calculated along the lines that are parallel
to the projection of the lower T-arc when the view point is on
the lower T-arc, and along the lines that are tangent to the
projection of the lower T-arc when the view point is on the
T-line or on the upper T-arc. It is important to note that the
filtering linesL1 are drawn for illustration purpose. In reality,
because the scan radius is much larger than the length of the
T-line, the parabola is wide open andL1 is usually quite flat.

C. Reconstruction Scheme

The reconstruction scheme for ROIL consists of three steps
using theM function listed in Table I. They are: i) view-
dependent differentiation, ii) Hilbert transform alongC1 or L1,
and iii) back-projection along R-line segments.

IV. COMPUTERSIMULATION

We demonstrate our reconstruction scheme using a modified
FORBILD head phantom [7]. The largest slice of this phantom
is in disk shape atz = 0 cm of radius12 cm. We adopted a
plat panel detector with pixel size of0.06 cm×0.06 cm, a scan
radius of30 cm and a source-to-detector of45 cm. For the ELE
trajectory, we choseH = 5 cm, ∆H = 2 cm andγm = 24◦.
For each T-arc,500 CB projections were generated, whereas
for the T-line, 61 CB projections were generated. All CB
projections were acquired with quarter detector pixel shift, and
each pixel value was calculated as the average of the values
corresponding to8 uniformly distributed sub-regions.

We performed image reconstruction according to Sec-
tion III-C. For the view-dependent differentiation, we adopted
the Noo’s scheme [13], and selected0.001 for the resolution
control parameterε. The reconstruction results are shown in
Figure 7. For comparison, we also illustrate the reconstruction

results obtained by only using the lower T-arc (Top right) and
by using the lower T-arc and T-line together (bottom right).
Compared to the result in the white box on the left, these re-
sults have significant CB artefacts. These results demonstrates
the validity of the proposed reconstruction scheme.

Fig. 7. Reconstruction results of the modified FORBILD head phantom. In
the left figure, from left to right: coronal slice aty = 6 cm; transverse slice at
z = 0 cm; sagittal slice atx = 0 cm. In the right figure, from top to bottom:
results using only the lower T-arc; results using the lower T-arc and the T-line
together. Gray scale window:[0, 100] HU.

V. CONCLUSION AND DISCUSSION

We have proposed a reconstruction scheme for the ELE
trajectory using the general CB-FBP theory. Computer simu-
lation results show that efficient and exact C-arm long-object
CB imaging is achievable using such a scheme.

The proposed reconstruction scheme avoids vertical filtering
lines and thus allows data truncation in the axial direction.
However, to what extent the truncation is allowed is not clear at
this stage. This issue of detector requirement will be addressed
in our future research.
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New Inversion Formula for the X-ray Transform
and its Application to CT reconstruction

Steven Oeckl1

Abstract—We present an inversion formula for the X-ray trans-
form that differs in many ways from well-known results: The
formula is valid for arbitrary dimensions and provides therefore
an uniform approach for fan- and cone-beam Computerized
Tomography. Instead of using the formula of Grangeat for linking
the X-ray transform and the Radon transform the presented
formula is based on a relation between the X-ray transform and
the extended Radon transform. Additionally, we don’t have to
deal with the derivative of the Crofton symbol which is usually
a discontinuous function. Applying the new formula we achieve
reconstruction algorithms of filtered backprojection and filtered
layergram type. The performance of the proposed algorithms is
shown using simulated data.

I. INTRODUCTION

THE (divergent) X-ray transform is the mathematical
modell for Computerized Tomography (CT). The two

dimensional (2D) and the three dimensional (3D) X-ray trans-
form is related to fan-beam and cone-beam CT, respectively.
Analytical reconstruction algorithms are therefore based on
the inversion of the X-ray transform especially for dimensions
n ∈ {2, 3}.

Instead of inverting the 2D X-ray transform usually the
2D Radon transform in combination with an appropriate
transformation is used to derive reconstruction algorithms for
fan-beam CT, see for example [1]. In case of cone-beam CT
several inversion formulas for the 3D X-ray transform are
well-known, see [2], [3], [4] [5], [6]. The mentioned formulas
have all in common that the inversion formula for the 3D
Radon transform serves as a starting point for the proof and
Grangeat’s formula [7] is used to achieve a relation between
the 3D Radon transform and the 3D X-ray transform. Further-
more in every formula one has to deal with the derivative of
the Crofton symbol which is usually a discontinuous function
and therefore causes numerical challenges.

In this contribution we present a different approach for
deriving an inversion formula for the X-ray transform for
arbitrary dimensions. The derivation starts with a new formula
for inverting the n-dimensional extended Radon transform.
Then we make use of a new relation between the extended
Radon transform and the X-ray transform. Using this approach
we avoid the derivative of the Crofton symbol. Details on all
results of this contribution can be found in [8].

In section two we provide the basic definitions and no-
tations for this contribution. An inversion formula for the
extended Radon transform is shown in section three. The

1Fraunhofer-Entwicklungszentrum Röntgentechnik EZRT, Fürth, Germany,
a division of the Fraunhofer-Institute for Integrated Circuits IIS in cooperation
with the Fraunhofer IZFP

relation between the extended Radon transform and the X-
ray transform is content of the fourth section. In section five
we present an inversion formula for the n-dimensional X-
ray transform. An inversion formula for the extended X-ray
transform will be presented in section six. The derivation of
reconstruction algorithms based on the new inversion formulas
is demonstrated in section seven. Section eight is reserved for
results and we finish the contribution with a conclusion in
section nine.

II. PRELIMINARIES

Throughout this paper let n ∈ N be a natural number
with n ≥ 2 and let r ∈ R+ be a positive real number.
We define N0 := N ∪ {0}, Rn∗ := Rn \ {0}, and Ωnr :=
{x ∈ Rn : ‖x‖ < r} the open n-dimensional ball with
radius r. Let Sn−1 := {x ∈ Rn : ‖x‖ = 1} be the n-
dimensional unit sphere and Hα(Ωnr ) the Sobolev space of
order α ∈ R+ ∪ {0}. The space of test functions is denoted
by D(Ωnr ) and the Schwartz space by S(Rn). Let f be an
appropriate function. For x ∈ Rn we define the translation
Txf := f(· − x) and for c ∈ R+ the dilatation Vcf := f(c·).
We define the convolution Cgf :=

∫
Rn f(x)g(· − x) dx and

the Fourier transform f̂ := 1
(2π)n/2

∫
Ωnr
f(x)e−i〈x,·〉 dx. The

Riesz potential Iα is defined for α ∈ R with α < n by
(Iαf )̂ := | · |−αf̂ . For f ∈ L2(Ωnr ) and (θ, t) ∈ Sn−1 × R
the operator Rrf(θ, t) := Rrθf(t) :=

∫
Ωnr
f(x)δ(〈x, θ〉−t) dx

is called Radon transform.

III. INVERSION OF THE EXTENDED RADON TRANSFORM

We introduce analogous to [9] the extended Radon trans-
form as follows: Let f ∈ L2(Ωnr ) and (y, t) ∈ Rn∗ × R. The
operator

R̃rf(y, t) := R̃ryf(t) :=

∫
Ωnr

f(x)δ(〈x, y〉 − t) dx

is called extended Radon transform. The extended Radon
transform is also well-defined for f ∈ S(Rn). In this case
we write R̃ instead of R̃r.

In [9] it was also pointed out that R̃rf is homogeneous of
degree −1, i.e. for θ ∈ Sn−1 we have R̃rρθf(ρ·) = ρ−1R̃rθf .
For α, β ∈ R with α ≥ β − (n− 1)/2 ≥ 0 and f ∈ Hα(Ωnr )
we have further

I−βR̃rρθf(ρ·) = ρ−(β+1)I−βR̃rθf . (1)

The next result shows an inversion formula for the extended
Radon transform.
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Theorem III.1. Let f ∈ H(n−1)/2(Ωnr ), ω ∈ Sn−1, g ∈
L1(Rn) rotationally symmetric with (·)−1g(·ω) ∈ L1(R) and
cg :=

∫∞
0
ρ−1g(ρω) dρ 6= 0. Then we have

f =
1

2cg
(2π)1−n

∫
Rn
I1−nR̃ryf(〈·, y〉)g(y) dy .

IV. RELATION BETWEEN X-RAY TRANSFORM AND
EXTENDED RADON TRANSFORM

For f ∈ L1(Rn), a ∈ Rn, θ ∈ Sn−1 and k ∈ N0 with
k < n we define

Dkf(a, θ) := Dkaf :=

∫ ∞
0

ρkf(a+ ρθ) dρ ,

Df(a, θ) := Daf(θ) := D0
af(θ) .

The operator D is called X-ray transform. We call Dk gener-
alized X-ray transform and we define the abbreviations

Gkf(a, θ) := Gkaf(θ) := Dkaf(θ) +Dkaf(−θ) ,
Gf(a, θ) := Gaf(θ) := Daf(θ) +Daf(−θ) .

The relation between the X-ray transform and the Radon
transform has been investigated in detail, see [10], [11], [12],
[7] and [13]. Instead of using a linkage between the X-
ray tranform and the classical Radon transform, we derive a
relation between the X-ray transform and the extended Radon
transform.

Theorem IV.1. Let α ∈ R+ with α ≥ max{0; (n − 3)/2},
f ∈ Hα(Ωnr ), β ∈ R+ with β > n − 3/2, ϕ ∈ Hβ(Ωnr ) and
a ∈ Rn. Then we have∫

Sn−1

Daf(θ)I2−nRrθϕ(0) dθ

=

∫
Ωnr

I2−nR̃ryf(〈a, y〉)ϕ(y) dy .

It can be shown that the formulas for linking the Radon
transform and the X-ray transform in [7] and in [11] can be
derived from Theorem IV.1, not only for the case n = 3, but
for all n ≥ 2.

V. INVERSION OF THE X-RAY TRANSFORM

Let Λ ⊂ R be a closed interval. The curve that corresponds
to a path φ : Λ → Rn is denoted by Γφ := R(φ) ⊂ Rn. The
set of all paths where the corresponding curve is lying outside
of Ωnr is defined by Φn,r(Λ) := {φ : Λ→ Rn |R(φ) ⊂ Rn \
Ωnr }. Within this paper we make always use of an admissible
path φ, i.e. φ ∈ Φn,r(Λ) and

∫
Λ
‖φ(λ)− r‖n−1 dλ <∞. This

condition ensures that the X-ray transform depending on an
admissible path φ which is defined for λ ∈ Λ und θ ∈ Sn−1

by
Dφf(φ(λ), θ) := Dφ(λ)f(θ)

turns into a continuous operator Dφ : L2(Ωnr ) → L2(Γφ ×
Sn−1).

In [2] it was shown that a stable inversion of the X-ray
transform can be performed if the path fulfills the so-called
Tuy conditions, i.e. φ ∈ Φn,r(Λ) is bounded, continuous,
differentiable a.e., and for all (x, θ) ∈ Ωnr × Sn−1 there

exists an element λ ∈ Λ such that 〈x, θ〉 = 〈φ(λ), θ〉
and 〈φ′(λ), θ〉 6= 0. Obviously, for the same λ ∈ Λ and
all ρ ∈ R \ {0} the equations 〈x, ρθ〉 = 〈φ(λ), ρθ〉 and
〈φ′(λ), ρθ〉 6= 0 are also valid.

Based on a Tuy path we define for θ ∈ Sn−1 and s ∈ R the
Crofton symbol by nφ(θ, s) := #{λ ∈ Λ : 〈φ(λ), θ〉 = s}.
For ρ ∈ R we get immediately nφ(ρθ, ρs) = nφ(θ, s).

Using the Crofton symbol we define a function that is
important for the inversion of the X-ray transform: Let φ ∈
Φn,r(Λ) be a Tuy path, λ ∈ Λ and y ∈ Ωnr . We define

tφ,λ,r(y) := |〈φ′(λ), y〉|nφ(y, 〈φ(λ), y〉)−1 . (2)

The function tφ,λ,r is even and homogeneous of degree 1,
because we have

tφ,λ,r(−y) = |〈φ′(λ),−y〉|nφ(−y, 〈φ(λ),−y〉)−1

= |〈φ′(λ), y〉|nφ(y, 〈φ(λ), y〉)−1 = tφ,λ,r(y)

and for ρ := ‖y‖ and θ := y/‖y‖ we get

tφ,λ,r(ρθ) = |〈φ′(λ), ρθ〉|nφ(ρθ, 〈φ(λ), ρθ〉)−1

= ρ|〈φ′(λ), θ〉|nφ(θ, 〈φ(λ), θ〉)−1 = ρtφ,λ,r(θ) .

The structure of the presented inversion formula for the X-
ray transform is essentially based on the following result.

Lemma V.1. Let β, z ∈ R+ with z < r and β > max{1, n−
3/2}, φ ∈ Φn,r(Λ) a Tuy path with tφ,λ,r ∈ Hβ(Ωnr ) for
λ ∈ Λ, g ∈ D(Ωnr ) rotationally symmetric with g

∣∣
Ωnz
≡ 0,

e ∈ S(Rn), ω ∈ Sn−1, cg :=
∫∞

0
ρ−1g(ρω) dρ 6= 0 and

ϕφ,λ,e,g :=
1

cg
I−1R̃(·)e(〈φ(λ), ·〉)g(·)tφ,λ,r(·) . (3)

Then we have ϕφ,λ,e,g ∈ Hβ(Ωnr ) and

I2−nRrθϕφ,λ,e,g(0) = 2(2π)n−2Gn−2
φ(λ)Cet̂φ,λ,r(θ) . (4)

The next theorem shows an inversion formula for the n-
dimensional X-ray transform.

Theorem V.2. Let β ∈ R+ with β > max{1, n − 3/2}, f ∈
L2(Ωnr ), φ ∈ Φn,r(Λ) a Tuy path with tφ,λ,r ∈ Hβ(Ωnr ) for
λ ∈ Λ. Then we have for almost every x ∈ Ωnr

f(x) = (2π)−1

∫
Λ

∫
Sn−1

Dφ(λ)f(θ)Gn−2
φ(λ)Txt̂φ,λ,r(θ) dθ dλ .

Proof. Let g ∈ D(Ωnr ) be rotationally symmetric with g
∣∣
Ωnz
≡

0 and cg :=
∫∞

0
ρ−1g(ρω) dρ 6= 0 for ω ∈ Sn−1. Since the

Riesz potential is self-adjoint we get using Theorem III.1 and
c := (2π)1−n/2 for an arbitrary e ∈ S(Rn)∫

Rn
f(t)e(t) dt =

∫
Rn

c

cg

∫
Ωnr

I1−nR̃ryf(〈t, y〉)g(y) dy e(t) dt

=

∫
Rn

c

cg

∫
Ωnr

∫
R
I1−nR̃ryf(s)δ(s− 〈t, y〉) ds g(y) dy e(t) dt

=
c

cg

∫
Ωnr

∫
R
I1−nR̃ryf(s)

∫
Rn
e(t)δ(s− 〈t, y〉) dt ds g(y) dy

=
c

cg

∫
Ωnr

∫
R
I1−nR̃ryf(s)R̃ye(s) ds g(y) dy

=
c

cg

∫
Ωnr

∫
R
I2−nR̃ryf(s)I−1R̃ye(s) ds g(y) dy . (5)
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Using the substitution s = 〈φ(λ), y〉 and using the definition
of ϕφ,λ,e,g from (3) yields

c

cg

∫
Ωnr

∫
R
I2−nR̃ryf(s)I−1R̃ye(s) ds g(y) dy

=
c

cg

∫
Ωnr

∫
Λ

I2−nR̃ryf(〈φ(λ), y〉)I−1R̃ye(〈φ(λ), y〉)

× |〈φ′(λ), y〉|nφ(y, 〈φ(λ), y〉)−1 dλ g(y) dy

=
c

cg

∫
Ωnr

∫
Λ

I2−nR̃ryf(〈φ(λ), y〉)

× I−1R̃ye(〈φ(λ), y〉)tφ,λ,r(y) dλ g(y) dy

=
c

cg

∫
Λ

∫
Ωnr

I2−nR̃ryf(〈φ(λ), y〉)

× I−1R̃ye(〈φ(λ), y〉)g(y)tφ,λ,r(y) dy dλ

= c

∫
Λ

∫
Ωnr

I2−nR̃ryf(〈φ(λ), y〉)ϕφ,λ,e,g(y) dy dλ . (6)

Since ϕφ,λ,e,g ∈ Hβ(Ωnr ) (Lemma V.1) we can apply Theorem
IV.1. Together with Lemma V.1 we get

c

∫
Λ

∫
Ωnr

I2−nR̃ryf(〈φ(λ), y〉)ϕφ,λ,e,g(y) dy dλ

IV.1
= c

∫
Λ

∫
Sn−1

Dφ(λ)f(θ)I2−nRrθϕφ,λ,e,g(0) dθ dλ

V.1
= (2π)−1

∫
Λ

∫
Sn−1

Dφ(λ)f(θ)Gn−2
φ(λ)Cet̂φ,λ,r(θ) dθ dλ . (7)

Concluding (5), (6), and (7) yields∫
Rn
f(t)e(t) dt =

(2π)−1

∫
Λ

∫
Sn−1

Dφ(λ)f(θ)Gn−2
φ(λ)Cet̂φ,λ,r(θ) dθ dλ . (8)

Let eγ := eGauß
γ,n := 1

(2π)n/2γn
e
− ‖·‖

2

2γ2 be the n-dimensional
Gaussian function and choose the arbitrary function e in (8)
as eγ(· − x). For γ → 0 we get for almost every x ∈ Ωnr

f(x) = (2π)−1

∫
Λ

∫
Sn−1

Dφ(λ)f(θ)Gn−2
φ(λ)Txt̂φ,λ,r(θ) dθ dλ .

VI. INVERSION OF THE EXTENDED X-RAY TRANSFORM

For f ∈ L2(Ωnr ), a ∈ Rn and y ∈ Rn∗ we define

D̃f(a, y) := D̃af(y) :=

∞∫
0

f(a+ ty) dt .

The operator D̃ is called extended X-ray transform. The
extended X-ray transform is homogeneous of degree −1, i.e.
for a ∈ Rn, ρ ∈ R+ und θ ∈ Sn−1 we have D̃af(ρθ) =
ρ−1D̃af(θ), see [14].

The next result shows an inversion formula for the extended
X-ray transform.

Theorem VI.1. Let β ∈ R+ with β > max{1, n − 3/2},
f ∈ L2(Ωnr ), φ ∈ Φn,r(Λ) a Tuy path with tφ,λ,r ∈ Hβ(Ωnr )

für λ ∈ Λ and Wa := Ta + T−a für a ∈ Rn. Then we have
for almost every x ∈ Ωnr

f(x) = (2π)−1

∫
Λ

∫
Rn
D̃φ(λ)f(y)W(φ(λ)−x)t̂φ,λ,r(y) dy dλ .

VII. RECONSTRUCTION ALGORITHMS

Using Theorem V.2 we derive reconstruction algorithms
of filtered backprojection type. Depending on the number
of approximations we achieve shift-variant or shift-invariant
filtering. The first of maximal two approximations is nearly
the same as in the standard filtered backprojection algorithm
for fan-beam geometry, see [14], and should therefore cause
no artefacts in an usual CT setup.

An algorithm of filtered layergram type based on Theorem
VI.1 is also shown. In this case no approximations are neces-
sary.

A. Filtered Backprojection

The inner integral concerning Sn−1 in the inversion for-
mula in Theorem V.2 depends on the reconstruction point
x ∈ Ωnr and must be calculated for every x. To achieve a
backprojection algorithm we need to show that the value of
the inner integral is equal for all reconstruction points lying
on a single ray starting at a curve position φ(λ). Therefore
we define for u ∈ Rn∗ and v ∈ Rn with v 6= u the mapping
Uu,v : Rn → Rn such that Uu,v

(
u−v
‖u−v‖

)
= u
‖u‖ . Obviously,

Uu,v is a rotation and therefore unitary. The corresponding
Operator Uu,v : L1(Rn) → L1(Rn) is defined by f 7→
Uu,vf := f(Uu,v(·)).

Applying the X-ray transform to a translation can be ex-
pressed as a combination of appropriate rotation operators and
the X-ray transform, i.e. for a, x ∈ Rn and k ∈ N0 with k < n
we have

GkaTx =

(
‖a− x‖
‖a‖

)k+1

Ua,xGkaU∗a,xV ‖a−x‖
‖a‖

. (9)

Since tφ,λ,r is homogeneous of degree 1, we get for c ∈ R+

Vct̂φ,λ,r = c−(n+1)t̂φ,λ,cr . (10)

Combining (9) and (10) yields the following variant of Theo-
rem V.2: Let β ∈ R+ with β > max{1, n−3/2}, f ∈ L2(Ωnr ),
φ ∈ Φn,r(Λ) a Tuy path with tφ,λ,r ∈ Hβ(Ωnr ) for λ ∈ Λ,
c := (2π)−1 and cφ(λ),x := ‖φ(λ)−x‖

‖φ(λ)‖ . Then we have for
almost every x ∈ Ωnr

f(x) = c

∫
Λ

c−2
φ(λ),x

∫
Sn−1

Dφ(λ)f(θ)gx,φ,λ,cφ(λ),xr(θ) dθ dλ

with

gx,φ,λ,cφ(λ),xr(θ) := Uφ(λ),xGn−2
φ(λ)U

∗
φ(λ),xt̂φ,λ,cφ(λ),xr(θ) .

1) Backprojection with Shift-Variant Filtering: If for all x ∈
Ωnr and λ ∈ Λ the estimation ‖x‖ � ‖φ(λ)‖ holds, then we
approximate t̂φ,λ,cφ(λ)(x)r ≈ t̂φ,λ,r and get f ≈ f̃1 with

f̃1(x) := c

∫
Λ

c−2
φ(λ),x

∫
Sn−1

Dφ(λ)f(θ)gx,φ,λ,r(θ) dθ dλ .

(11)
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For an arbitrary reconstruction point x ∈ Ωnr and an arbitrary
curve position λ ∈ Λ we define

mφ,λ,r(x) :=

∫
Sn−1

Dφ(λ)f(θ)gx,φ,λ,r(θ) dθ . (12)

Let La,θ := {a + ρθ : ρ ∈ R+} ⊂ Rn be the ray with
starting point a ∈ Rn and direction θ ∈ Sn−1. For x1, x2 ∈
Ła,θ we have a−x1

‖a−x1‖ = a−x2

‖a−x2‖ . This yields Ua,x1
= Ua,x2

and therefore mφ,λ,r(x1) = mφ,λ,r(x2). This shows that it is
not necessary to calculate (12) for every point x ∈ Ωnr . It is
sufficient to calculate the value of (12) for every ray Lφ(λ),θ at
an arbitrary point x ∈ Lφ(λ),θ. This value can be backprojected
along Lφ(λ),θ because the value holds for every other point on
this ray. Therefore we have a backprojection algorithm.

Due to the operator U∗φ(λ),x in gx,φ,λ,r the value of (12)
changes if the ray for which we have to calculate (12) changes.
We can therefore interpret (12) as a shift-variant filtering.
Calculating the filter consists essentially of determining t̂φ,λ,r
and computing the generalized X-ray transform of t̂φ,λ,r.

2) Backprojection with Shift-Invariant Filtering: If we
approximate in (11) additionally Gn−2

φ(λ)U
∗
φ(λ),xt̂φ,λ,r(θ) ≈

Gn−2
φ(λ)t̂φ,λ,r(θ) , then wie have f ≈ f̃2 with

f̃2 := c

∫
Λ

c−2
φ(λ),x

∫
Sn−1

Dφ(λ)f(θ)g̃x,φ,λ,r(θ) dθ dλ (13)

and
g̃x,φ,λ,r(θ) := Uφ(λ),xGn−2

φ(λ)t̂φ,λ,r(θ) .

We still have a backprojection in (13) and the inner integral
concerning Sn−1∫

Sn−1

Dφ(λ)f(θ)Uφ(λ),xGn−2
φ(λ)t̂φ,λ,r(θ) dθ

is a convolution of Dφ(λ)f with Gn−2
φ(λ)t̂φ,λ,r. Therefore formula

(13) is a filtered backprojection with shift-invariant filtering.

B. Filtered Layergram

Since the preliminaries for applying the approximations
in the previous section are not always fulfilled we show
another reconstruction algorithm. This algorithm is based on
the inversion formula for the extended X-ray transform and is
of filtered layergram type, i.e. a filtering is performed after
an unfiltered backprojection. Because no approximation is
necessary, the algorithm is theoretically exact.

Using Theorem VI.1 and the homogeneity of D̃ we get the
following result: Let β ∈ R+ with β > max{1, n−3/2}, f ∈
L2(Ωnr ) and φ ∈ Φn,r(Λ) a Tuy path with tφ,λ,r ∈ Hβ(Ωnr )
for λ ∈ Λ. Then we have for almost every x ∈ Ωnr

f(x) =
1

2π

∫
Λ

hf,φ,λ,r(φ(λ)− x) + hf,φ,λ,r(x− φ(λ)) dλ

with

hf,φ,λ,r :=

∫
Rn
‖y‖−1Dφ(λ)f(y/‖y‖)t̂φ,λ,r(· − y) dy .

The function hf,φ,λ,r is a convolution of ‖·‖−1Dφ(λ)f(·/‖·‖)
with t̂φ,λ,r. If the projection data Dφ(λ)f(θ) is given for all θ ∈
Sn−1, then we can determine Dφ(λ)f(y/‖y‖) for all y ∈ Rn

by performing a backprojection. A subsequent weighting by
‖ · ‖−1 yields ‖y‖−1Dφ(λ)f(y/‖y‖) for all y ∈ Rn. Therefore
we have an algorithm of filtered layergram type where the
filtering has to be performed after every backprojection step.

VIII. RESULTS

Generating results using the proposed algorithms is in
progress and will be finished for the final version of this paper.

IX. CONCLUSION

We’ve showed in this paper CT reconstruction algorithms
based on a new inversion formula for the X-ray transform.
Although the formula is only valid for paths fulfilling the
Tuy conditions the presented approaches for deriving recon-
struction algorithms are also applicable to non Tuy paths
if small reconstruction artefacts are allowed. Finishing the
implementation of the algorithms and comparing the results
to state-of-the-art reconstruction algorithms are the next steps.
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Abstract-- New data consistency conditions (DCC) have been
derived for parallel projections in two dimensions, which have the
remarkable feature that they can be applied to truncated projec-
tions. We show the derivation of these conditions and illustrate a
potential application to motion detection and compensation.   

I. INTRODUCTION
In the context of image reconstruction, data consistency

conditions (DCC), also called range conditions, are mathemati-
cal descriptions of the redundancies in projection measure-
ments. These conditions can usefully decouple the
tomographic reconstruction problem from other systematic
effects in the measurement model. For example, if the target
specimen (usually a patient in the medical imaging scenario)
undergoes an abrupt rigid motion, the measurement model now
consists of both a very large linear tomographic system as well
as a handful of nonlinear parameters that describe the motion
and the time point when the motion occurred. If DCC are
available for the tomographic model, then the small number of
nonlinear parameters can be estimated by requiring the
adjusted model to satisfy the DCC, which is usually a far easier
task than repeated reconstructions using trial nonlinear param-
eters. This technique has found numerous applications in
various areas of medical imaging, including in x-ray CT (e.g.
[Bas00, Pat02, Def03, Hsi04, Yu07, Maz10, Tan11]).

The most well-known DCC are those of Helgason-Ludwig
(HL) [Lud66, Hel80], which apply to the Radon transform in
parallel projection geometries. Others have been established
for fanbeam, cone-beam, exponential, and attenuated
transforms and for different formats such as for Fourier trans-
formed sinograms. (For example DCC: [Jon38, Nat83, Fin83,
Edh86, Agu95, Pat02, Che05, Yu06, Lev10, ClD13]). Only a
few of these DCC allow subsets of a full tomographic set of
data to be examined for consistency. For example, with the HL
conditions, the order zero condition is that the projection sums
are constant, so any number of projections can be checked for
consistency of their DC terms. Similarly, any two parallel pro-
jections can will determine the degree-1 polynomial specified
in the HL DCC, and other projections can then be checked
against this polynomial. Convenient descriptions of DCC

where subsets of projections can be checked exist in a few
cases, see [ClD13] for an example using cone-beam projec-
tions. This flexibility to apply DCC to subsets of measure-
ments increases their usefulness in applications.

With the advent of true ROI reconstruction in the plane
(see [Cla10] for an overview), it is important to consider the
situation of truncated projections. To our knowledge, no DCC
are known to exist that can treat truncated projections, with the
exception of the differential form given in [Joh30], which has
the both the advantage and disadvantage of applying locally to
fully 3D measurements; they cannot directly be used for just
two truncated cone-beam projections for example.

We announce here what we believe to be the first DCC
that can handle truncated parallel projections in the plane. We
provide a simple proof of the consistency which we illustrate
with simulations. We then discuss how these new DCC might
be applied in practice, using a toy problem (for illustration)
that involves motion detection of a known tumour-like object. 

II. THEORY
We let  represent the unknown density function,

and  be the parallel projection of  defined by

                          (1)

where  and ,  =
. Now, for each non-negative , we consider a

weighted backprojection of , where the weight depends
on . The projection  will be weighted by 
prior to backprojection. The singularity near  will be
dealt with by only considering  as will be
discussed below, but to simplify the derivation we ignore this
detail for now. The weighted backprojection is given by 

              (2)

Since the system is shift-invariant, the behavior of the
weighted backprojection can be completely characterized by
its point response function (PRF), so we first examine this
PRF, and then show how it leads to consistency conditions in
the form of polynomials of degree  which can accommodate
truncation of the projections.

A direct substitution of equation 1 into equation 2,
followed by the substitution  yields

  (3a)

R. Clackdoyle is with the Laboratoire Hubert Curien, CNRS UMR 5516,
Saint Etienne, France (e-mail: rolf.clackdoyle@univ-st-etienne.fr).

L. Desbat is with the TIMC-IMAG laboratory, CNRS UMR 5525, and
Joseph Fourier University, Grenoble, France (e-mail laurent.desbat@imag.fr).

This work was partially supported by the Agence Nationale de la Recherche
(France), project “DROITE,” number ANR-12-BS01-0018.

f x y 
p  r  f

p  r  f r s+  sd
–


=

  2–  2   cos sin = 
sin– cos  n

p  r 
n p  .  tann cos

 2
  2 –

bn x y  p  x y    tann

cos------------- d
 2–

 2
=

n

s x y   s–=

bn x y  f x y    s+  tann

cos------------- sd
–


 d

 2–

 2
=

     Data Consistency Conditions for
2D Truncated Parallel Projections

Rolf Clackdoyle and Laurent Desbat

The third international conference on image formation in X-ray computed tomography Page 319



=              (3b)

=              (3c)

=               (3d)

where the point response function is 

                           (4)

Equation 3c was obtained from equation 3b by performing the
polar-to-rectangular coordinate change of variables  =

, with  = . 
Note that for , the point response function becomes

 and the backprojection  is equal to
an unweighted integration in the -direction of .

We continue the derivation to arrive at our main result. 

     (5a)

=  (5b)

 =                                 (5c)
where we consider  to be held constant and  is given by

    = 

  (6)

The new consistency conditions for 2D parallel projec-
tions can now be stated as follows:
Theorem: Suppose that a sinogram  satisfies
equation 1 for some density function . For  chosen such
that the line  does not intersect the compact support of

, and for any non-negative integer , the weighted back-
projection  (equation 2) evaluated along the line segment

 is a polynomial function of , of degree at
most . That is, 

     (7)
Note that by choosing  such that the line  does

not intersect the support of , all potential singularities vanish.
The expression for  given by equation 6 no longer contains a
singular kernel because the support of  restricts the integra-
tion range to exclude . Furthermore, with the compact
support of  not touching the line , we see that there
must exist some small  such that the projection of the support
of  at any angles  will miss the line
segment , and therefore, for  on the
line segment, this small  range of angles will not contribute to

 given by equation 2, and thus the  singu-
larity is avoided.

According to the theorem, testing the DCC for a parallel
beam system can be achieved by simply performing a weighted
backprojection onto a line segment outside the object, and
verifying that the values on the line segment form a polynomial

of the correct degree. The advantage of these DCC over the HL
or other published conditions is that some projection truncation
is allowed: only those lines which contribute to the backprojec-
tion  for  are needed. In the simulations
section below, we illustrate the large amount of projection
truncation that can be sustained while still being able to check
the DCC of the measurements.

Since the backprojection is only performed along a line
segment rather than a 2D volume, the computational cost is
very low. Furthermore, the number of points along taken along
the line can be chosen to trade off between computational
effort and the accuracy desired to check the polynomial. For
our simulations (see below) we examined only orders

 yet we chose about 100 points on the line
segment. 

For each backprojection of order , a different weight is
required. However, many different backprojections can be
computed in parallel as only the weight depends on . 

III. AN ILLUSTRATION OF DCC
A. Phantom and acquisition geometry

To illustrate the DCC we used a simple phantom made up
of elliptical regions of constant density. Parallel beam projec-
tions of this phantom were obtained by computing exact line-
lengths passing through the component ellipses. The phantom
consists of a large elliptical shell of outer axes lengths 25 units
x 40 units with several smaller elliptical features inside. The
outer component of the elliptical shell is horizontally centered
in the coordinate system but is displaced 10 units in the vertical
direction (so its center is at (0,-10)). The phantom details are
presented in Table 1, and Fig. 1 shows a sketch of it.   

A non-truncated sinogram  was created of this
phantom, for 1600 projections  over the range 
with 2560 samples for . Also, a truncated
sinogram  was considered which was the same as

 by extracting the 1024 central samples for 
 in each projection. This truncated sinogram corre-

sponds to the field-of-view (FOV) of diameter 20 indicated in
Fig. 1. The two sinograms are displayed in Fig 2. Note the
heavy truncation of sinogram : every projection is
truncated either on one side, or the other, or on both sides.      
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Fig 1. Illustration of the phantom, showing also the FOV corresponding to the
truncated sinogram, and also the line-segment along which the backprojections
were calculated for verifying data consistency.

Field-of-
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Line segment 
where bn(x, y0)
is calculated

Table1: Ellipse Parameters
Ellipse Center (Dx, Dy) Density

1a (0, -10) (40, 25) 0.5
1b (0.5, -10) (38, 24) -0.5
2 (-5, -12) (8.75, 8.75) 0.1
3 (2, -7) (3.75, 2.5) 0.1
4 (4, 0) (5, 2.5) 0.1
5 (-7, -1) (1.25, 2.5) 0.1
6 (-3, 0) (1.25, 1.25) 0.1
7 (-4, -4) (2.5 2.5) 0.2
8 (-2, -3.5) (1.5, 1.5) 0.2
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Reconstructions from the two sinograms of Fig. 2 are
shown in Fig. 3. From the full data, a standard filtered back-
projection (FBP) reconstruction was performed. Accurate
(“exact”) ROI reconstruction from such truncated sinograms
was only theoretically established in 2007 [Def07], but no
suitable analytic reconstruction technique is known at this
time. The image of Fig. 3 (right) was achieved by using a con-
jugate gradient method to minimize a least-squares criterion
with a small amount of regularization. This ROI reconstruction
from truncated data is computationally intensive.

B. Verifying data consistency conditions
From the simulated sinogram, the weighted backprojec-

tion functions  defined by equation 2 were calculated
for the line segment  with  = 5 and  as
illustrated in Fig. 1. We now drop the fixed  and just write

 for short. We only examined cases  and the
backprojection was performed for 101 samples along the line
segment, spaced every 0.16 units apart. The plots of Fig. 4
show least-squares fits of the backprojections  to polynomi-
als of degree . We note the excellent polynomial fits of the
correct degree, as predicted by the theory.  

The central observation here is that to perform the back-
projections , only the truncated sinogram was necessary.
All lines (sinogram entries) necessary to calculate the back-
projection were available because the line-segment lies inside
the FOV of Fig. 1. Thus we have found (and numerically
verified) necessary DCC for the truncated sinogram .

IV. AN APPLICATION OF DCC
As an illustration of potential applications of truncated

projection DCC, we consider a dynamic version of our
phantom and illustrate how the DCC can be applied to search
for 3 motion parameters. 

A. Dynamic phantom 
We define a dynamic version of the phantom which

changes during the course of the scan and therefore the projec-
tions will not be consistent. The dynamic nature of the
phantom is described by 3 nonlinear parameters, and the
objective is to search for these parameters by minimizing
inconsistency. For the dynamic phantom, ellipses 7 and 8
undergo a horizontal oscillatory motion (such as a tumour
moving due to respiration). It is assumed that the shape and
density of the “tumour” are known, but not the three motion
parameters  defined below, and not the rest of the
phantom. 

We assume that the projections are gathered over 
seconds uniformly, so . The centers of
ellipses 7 and 8 are now  and  where 

(8)

For our simulation we use  seconds and
 = (2, 17, 7). Fig. 5 illustrates the motion.

Fig 2. Sinograms. Left: the full 1600 projections (vertical axis) of 2560 elements
each for large coverage of 50 units in diameter. The red lines show the boundary
of the FOV indicated in Fig. 1. Right: the 1600 x 1024 truncated sinogram ex-
tracted from full sinogram, covering the 20 units diameter FOV shown in Fig 1. 

r r

 

Fig 3. Reconstructions. Left: a FBP reconstruction of the full object from the full
sinogram of Fig. 2. The reconstruction size was 1024 x 1024.  Right: a conjugate
gradient reconstruction from a downsampled 800 x 512 version of the truncated
sinogram. The image size is 256 x 256. (Greyscale windows are not the same.)
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Fig 4. Data Consistency Conditions. The backprojections , , 
were fit respectively to polynomials of degree 0, 1, 2. The three graphs show the
original 101 values  along the line  and, superimposed, the best fit
polynomial. The residual values are also listed.

b0 x  b1 x  b2 x 

xi x 8– 8 

DCC Order Zero

DCC Order One

DCC Order Two

b0(xi) 
c0 = 9.436 

residualmax = 0.005 

b1(xi) 
c0 + c1 x   = 

residualmax = 0.01 

-3.43 - 1.70 x 

b2(xi) 
c0 + c1 x + c2 x2 = 

residualmax = 0.06 

20.30 + 0.94 x +
                                                               0.42 x2 

t0 t1 A  

T
t  T t  2–=
t 4– 4–  t 2– 3.5– 

t x y 
x

A
2
--- A

2
--- 2

t t0–
t1 t0–-------------- 

 cos–+ y 
      if t t0 t1 

x y                                     otherwise





=

T 18=
t0 t1 A  

The third international conference on image formation in X-ray computed tomography Page 321



B. Sinogram and reconstruction of dynamic data     
As before, the (truncated) projections were simulated by

using line-length calculations, but through the dynamic
phantom described above. Fig. 6 shows the resulting sinogram
and the reconstruction obtained from this sinogram. It is an
interesting curiosity that the movement of disks 7 and 8 does
not cause only a lateral blurring, but seems to suggest a
triangular motion. 

C. Using DCC to identify the motion
We describe here our procedure for using DCC to estimate

the three motion parameters of the tumour from the projections
 of the dynamic phantom. We introduce non-negative cost

functions  which are zero when the (truncated) sinogram
is consistent. Recalling that  is the backprojection of 
along the line segment, we define  to be the residual of
the best degree-  polynomial fit to . That is,

                        (9)

where  is the set of all polynomials of degree . 
Since we know the tumour properties, from a set of motion

parameters  we can simulate its position at time 
and thereby construct a simulated tumour sinogram . If
we successfully estimate its motion parameters, they can be
subtracted from the measurements  to give consistent
data. So, we define a cost function  as follows:

         (10)

We used the Downhill Simplex method (see “amoeba”
[Pre03]) to minimize  starting from four vertices of
an initial simplex of  = (1.5, 16, 6), (3, 16, 6),
(1.5, 17.5, 6), (1.5, 16, 7.5) with respective costs 0.27, 0.88,
0.31, 0.63. We obtained, after 204 evaluations of the cost
function, the values  = (1.98, 16.99, 7.03) with a cost
of 0.19 (which was slightly lower than the cost at the “true”
motion parameters  = (2, 17, 7)). 

In Fig. 7 we show the sinogram  of the estimated
movement of the tumour, which we subtract from the measured
sinogram  to give a corrected sinogram 
which is the most consistent possible according to our
procedure. We performed a motion-corrected reconstruction
from this consistent sinogram, and in comparing with Fig. 6 we
note that the motion artifacts have been virtually eliminated.

V. DISCUSSION AND CONCLUSIONS
We have derived necessary DCC for truncated parallel

projections. We believe these to be the first published DCC for
truncated projections. The conditions were applied to a toy
problem in motion estimation and compensation to illustrate
their potential for practical applications. 

DCC for truncated fanbeam projections are possible using
the same principles as shown here, but the backprojection step
would be more elaborate, probably requiring 2D interpolations. 

The backprojection weight functions are closely related to
expressions appearing in recently-published fanbeam DCC
[Cla13]. The link can be seen by considering the virtual
fanbeam approach (see [Cla10] for a description) applied to the
truncated parallel projections. 
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Fig 6. Left: sinogram  of the dynamic phantom, same parameters as in
Fig. 2(right). Conjugate gradient reconstruction from the sinogram at left; same
parameters as in Fig 3(right). Note that complicated blurring caused by motion.
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Abstract-- New data consistency conditions (DCC) have
recently been published for fanbeam projections. We explore the
potential of applying fanbeam DCC to detection and tracking of
motion of a small known object inside an unknown background
without the need for image reconstruction. Two scanning geome-
tries are considered that have different data consistency proper-
ties. A downhill simplex search for 3 nonlinear parameters by
minimizing inconsistency was successful. Various issues on the use
of fanbeam DCC are discussed. 

I. INTRODUCTION
In image reconstruction from projections, the simple line-

integral model presents a large system of linear equations. Data
consistency conditions (DCC) analytically describe the redun-
dancies in this integral equation, and they can play a useful role
in image reconstruction. The idea is that by verifying the DCC
of the measured data, other systematic and possibly nonlinear
effects can be identified and possibly corrected before per-
forming the tomographic reconstruction step. It was probably
Natterer who pioneered this approach over 30 years ago, when
he explored the use of consistency conditions on the attenuated
Radon transform to identify unknown attenuation coefficients
from SPECT emission measurements [Nat83]. This general
approach has been followed numerous times, with a range of
medical imaging applications in PET, SPECT and CT. See for
example, [Nat93, Gli94, Men99, Bas00, Erl00, Pat02, Wel03,
Lay05, Yu07, Tan11, Def12] among others. 

At the heart of such approaches are the consistency condi-
tions themselves. These are mathematical equations that
describe the consistency (arising from redundancy) of the mea-
surements. For the simple (non-attenuated) line-integral model
which is valid for CT imaging, the well-known Helgason-
Ludwig (HL) conditions [Lud66] [Hel80] apply, and are partic-
ularly useful because they can be expressed in terms of subsets
of parallel projections. In other words, consistency of a sub-
collection of measured projections can be checked without

obtaining a full collection of projections. The situation for sub-
sets of fanbeam projections is more complicated although such
consistency conditions for linear trajectories have recently
been published [Cla13]. 

In this work, we are only concerned with unknown density
functions in the plane, and with fanbeam projections. The pur-
pose is to explore the use of fanbeam consistency conditions
and study issues that might arise in applications. We define an
artificial 2D problem in motion detection which is both chal-
lenging yet within reach of fanbeam consistency methods. 

II. FANBEAM PROJECTIONS AND CONSISTENCY CONDITIONS
As usual in classical tomography, we let  represent

the unknown density function. We define a fanbeam projection
with x-ray source at position , by 

                    (1)

where  with  ranging over some interval
of length at most  which may depend on the source position

. The source trajectory is parameterized by  for some
bounded interval . Our example trajectories will be a straight
line segment, and a conventional circular scan.

Fanbeam consistency conditions can be stated for the case
of a straight line trajectory that does not cut through the object.
By rotating and translating the coordinate system if necessary,
we can assume that the straight line trajectory is the -axis (so

), and that the object lies entirely in the  half-
plane. In this situation, the range of  is . Now
for any fixed non-negative  strictly less than the number of
measured projections , we convert each projection to a scalar
function  as follows:

                   (2)

If the projections are consistent, i.e. if  satisfies equation 1
for some , then  is a polynomial in  of degree at
most . These necessary conditions are easily verified and also
turn out to be sufficient [Cla13]. 

The case  has been known in various guises for
some time [Fin83, Noo02, Che05, Lev10] (see the discussions
in [Tan12] and [Cla13]), and this case has the following special
feature which will be relevant for the studies presented in sec-
tions III and IV below. For , the expression  =

 is a constant (does not depend on ) and
the constant is given by 
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                           (3)

We notice therefore that any translation of the object in the
direction parallel to the trajectory line (the  direction) will not
affect this constant. Furthermore, equation 3 remains constant
even when replacing  by  for any
translation  of the  component of . So multiple pieces of
the object translating independently in the trajectory direction
also leave  unchanged. 

III. MATERIALS AND METHODS

A. Phantom description
We used a highly simplified 2D phantom consisting of two

components. The static component is a bounding elliptical
shell containing 5 ellipses, and we refer to this phantom as .
The second component, referred to as , consists of two disks
undergoing motion during the simulated measurement proce-
dure. Tables 1 and 2 give details of the ellipses making up the
static and dynamic components of the phantom. Note that Dx
and Dy refer to the full axis lengths of the ellipses.

For the dynamic component of the phantom, an oscillatory
motion of amplitude  occurs in the horizontal direction
during the time period  where  and
where  is the total duration. We take  = 10 seconds in this
work. The precise description of the motion is given by

 and  other-
wise, where

                         (4)

The amplitude of the motion is fixed at some value in the range
. The standard motion parameters used in the simu-

lations will be . The phantom is illus-
trated in Fig 1. 

It is assumed that the static component of the phantom in
Table 1 is unknown, but that the dynamic component in Table 2
is known except for the motion parameters . The
main purpose of these experiments is to determine if the
motion parameters can be extracted from projection measure-
ments without (or before) performing image reconstruction. If

the motion parameters can be determined, then a full dynamic
reconstruction is possible because the moving component is
then fully specified, and can be subtracted from the projections
leaving the static part which can then be fed to any standard
reconstruction algorithm. 

B. Measurement geometry 1: linogram mode
In the first measurement geometry, the x-ray source trajec-

tory follows a straight line  for  =
. A total of 101 projections are taken along the line,

starting at the position (-25, 20) and ending at (+25, 20) in
steps of 0.5. The source is assumed to move at constant speed
along the line, during the collection time of  = 10 seconds, so

 = . Each projection is considered to be instanta-
neously measured, with a temporal spacing of 0.1 seconds
between projections.

For this geometry, a suitable range of  would be
, however we assume a flat immobile detector with

“equispaced” sampling (in the terminology of [Kak88]) posi-
tioned along the line . Using the equispaced variable

 instead of , our projection measurements become

                       (5)

where  is the unit vector leaving the source at  =
 and pointing at the detector position . To

ensure that there is no truncation of these projections for the
larger static phantom, the detector extent runs from (-140, -15)
to (140, -15). See Fig 2(a).  

When the appropriate changes of variables are applied to
equation 2, we find that

              (6)

where  here refers to the angle of incidence of the ray with
the detector, so .
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Fig 1. Illustration of the phantom. (a) scale drawing of the positions of the
component ellipses, also showing the extent of the motion for  = 7. (b) plot of
the motion function given by equation 4.
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Table 1: Static Component

Ellipse Center (Dx, Dy) Density
1a (0, 0) (40, 25) 0.5
1b (0.5, 0) (38, 24) -0.5
2 (-5, -2) (8.75, 8.75) 0.1
3 (2, 3) (3.75, 2.5) 0.1
4 (4, 10) (5, 2.5) 0.1
5 (-7, 9) (1.25, 2.5) 0.1
6 (-3, 10) (1.25, 1.25) 0.1

Table 2: Dynamic Component
Ellipse Center (Dx, Dy) Density

7 t (-4, 6) (2.5 2.5) 0.2
8 t (-2, 6.5) (1.5, 1.5) 0.2
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Fig 2. The two scanning geometries. (a) The linogram geometry, drawn to scale
except for the extent of the detector which is long enough to avoid truncated
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This geometry, of parallel detector and trajectory, is the
well-known linogram geometry [Edh87], and the quantity

 is a linogram. The finite length of the trajec-
tory segment however, means that the system is tomographi-
cally incomplete so mathematically-correct image recon-
struction is not possible.

The 101 linogram projections were simulated using ana-
lytic line-length calculations for the elliptical elements in the
phantom, with dynamic parameters  =  and

 seconds. The simulated linogram is shown in Fig 3(a).
Using the known dynamic component of the phantom, the
unknown motion parameters  were sought by apply-
ing the DCC (equation 6) of orders  =  and calculating
the residuals of the polynomial fits. If incorrect motion param-
eters are used to model the linogram projections, then resulting
DCC may not be satisfied. Note that order  is not useful
because the motion is parallel to the trajectory and order zero
consistency is always maintained in that case.  

An optimization cost function  was formed
for each feasible triple  by simulating linograms 
of the dynamic component of the phantom (using pixelized
representations to avoid “inverse crime”) and computing DCC
functions  from them according to equation 5. The dif-
ference  was fit to an -degree polynomial in

 to determine a residual vector  (recalling from
equation 2 that consistency implies that  is a polynomial
of degree at most ). If  = 0 then the subtraction of the sim-
ulated movement from the measurement represented a consis-
tent linogram and the unknown motion parameters were
considered to be found. The cost function was defined as  =

. 

C. Measurement geometry 2: circular trajectory
The second fanbeam geometry is standard, consisting of

600 projections taken over a circular source trajectory of radius
30. Thus  for , and we
note the clockwise motion of the source, starting at the “12
o’clock” position. The projections are collected at constant
speed over  = 10 seconds, so . The projections
were simulated on a “virtual” flat detector passing through the
origin and oriented perpendicularly to the tangent of the source
motion; we use  for the detector variable. The projections are
now represented by  where

 is the unit vector pointing from the source to the -posi-
tion on the detector which is . See Fig. 2(b).
The fanbeam sinogram for this 360o circular scan is shown in
Fig.3(b). Standard FBP reconstructions are shown in Figs.3(d)
and 3(c) respectively for the dynamic phantom and for a static
version of the phantom, frozen at .

For circular trajectories, fanbeam consistency can be
achieved by converting an entire fanbeam dataset to parallel
projections and using the standard HL conditions (e.g. [Pat01,
Yu07]). Alternatively, fanbeam projections can be handled
pairwise by considering the line connecting two sources as a
pseudo trajectory, and applying the DCC of equation 2. With
only two sources on the trajectory, only the  term is
available (it is possible to check for equality of  for two
values of , but higher order polynomials cannot be handled).
Recalling the restriction that the trajectory line not intersect the
object, we find that there are a total of 96,000 pairs (pseudo tra-
jectories). 

We write  for the DCC value corresponding to
source  with the (pseudo) trajectory line connecting the two
sources  and . Note that the cosine term in equation 2 is
with respect to angle  measured perpendicularly to the
pseudo trajectory line. Furthermore the projection is equis-
paced, not equiangular (using the [Kak88] terminology) so a
change of variables is needed. We skip the details of this deri-
vation and present the final formula, which is

    =   (7)

where  = 30 is the trajectory radius, and  is the
signed angular difference between the two source locations.
Zeroth order consistency of a pair of projections simply means
that

                               (8)
Note that if the line connecting sources  and  is hori-

zontal then the pseudo trajectory is parallel to the motion of the
dynamic component of the phantom, so even though projec-
tions  and  were of different temporal phases of the
object, consistency of order zero is still maintained in this situ-
ation.
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Fig 3. Top row: (a) linogram and (b) fanbeam sinogram simulations of the
phantom with moving feature (more evident in linogram than sinogram).
Bottom row: FBP reconstruction from (d) dynamic sinogram above and (c) from
the sinogram of the frozen  instant of the phantom. The horizontal
movement manifested itself as a triangular-shaped blurring in the reconstruction.
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IV. RESULTS AND DISCUSSION

A. The linogram scan
The cost function was calculated on a coarse grid through-

out the feasible range and its behavior was studied. For order
, it was found to be virtually constant, correctly reflect-

ing the known theory that any horizontal motion would remain
consistent for this linogram geometry. For orders  = 1, 2, 3 a
single deep global minimum was found at the correct motion
parameters as shown in the plots of Fig. 4. The few isolated
local minima lay in shallow “bowls” in different locations for
the different orders, suggesting that a single cost function of

 would be suitable. The cost function was
re-calculated and re-examined after adding 3% Gaussian noise
to the linogram data elements. The resulting plots (not shown
here) were very similar except the global minimum increased
slightly for  = 1, 2, 3. 

The downhill simplex method was used for the nonlinear
optimization of  using each of the four value of . In each
case, the routine converged in roughly 200 to 300 iterations,
with the following results. For each of  respec-
tively, the estimated parameters were  =

, , ,
 (recalling that the true motion parameters

were ).
Further studies are underway, including using different

true motion parameters, different initialization locations, and
quantifying the effects of additive noise in the projection data.        

B. The circular scan
The order zero DCC condition was calculated for every

pair of source points whose connecting line (pseudo trajectory)
lay outside the 20 cm field-of-view. For each pair, the percent

relative difference was calculated. The results were grouped
into parallel trajectory lines because the horizontal or nearly
horizontal lines would not reveal inconsistency, being aligned
with the movement of the dynamic component. 

At a fixed orientation, there were always 160 parallel tra-
jectory lines, 80 on each side of the field-of-view (FOV).
These lines varied from 20 cm to 30 cm from the center of the
system. We grouped the lines as shown in Fig 5, and displayed
the average percent relative difference over all the parallel
lines lying on one side of the FOV. We also plotted the average
relative difference for just the lines between 20 cm and 25 cm
from the center, because they represent source pairs that are
more separated temporally: from 1.83 second minimal separa-
tion to 2.67 seconds of separation, whereas consecutive
sources are only separated by 0.017 seconds. (For the pairs of
source positions that cross the starting point, the lines between
20 cm and 25 cm from the center respectively have temporal
separation between 8.17 and 7.33 seconds.)

The results of the graph show two effects. One is that, as
predicted by the theory, the horizontal (0o or 180o) movement
does not cause inconsistency, because horizontal and nearly
horizontal trajectory lines showed very low relative differ-
ences. The other effects are due to temporal behavior of the
phantom. Each condition compares one pair of snapshots and
there are many instances when the phantom can be in the same
position for the two snapshots. The 1 second immobile period
at the start and the 2 seconds at the end maintain consistency
during these periods, as do snapshots that are temporally sym-
metric about the midpoint of the motion, which occurs at =
4.5 seconds. The flat region in Fig 5 near 160 degrees is attrib-
uted to this symmetry effect. 

We note that the average relative errors appear quite small,
all under 0.5%, but it is important to note that the mass of the
moving part of the phantom is a small fraction of the total.The
total number of lines (conditions ) in this
simulation was 96000. These conditions could be exploited in
a similar way to those of the linogram to provide estimates of
the motion parameters.

The flat areas of the plot of Fig 5 can be used to roughly
identify the direction of the motion, because a strictly linear
motion will enforce two angles, separated by 180 degrees, for
which consistency will generally hold.

V. SUMMARY AND CONCLUSIONS
With two different fanbeam geometries, various features

of the application of DCC have been explored. The order zero
condition can not detect motion parallel to the trajectory, but
can potentially be used to detect the direction of linear move-
ment. In our simulations, the higher order conditions could be
used to build a suitable cost function for finding three motion
parameters for a simple motion of a known component of the
phantom. The DCC are linear in the components of the image,
so they might become swamped if a large static background
object were involved. There are many potential applications of
fanbeam DCC, and we have illustrated various approaches and
and discussed their features and limitations.
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Fig 5. Average relative differences. (a) illustration of a group of parallel
trajectory lines showing the  cm group (shaded) and  cm group
(light shading). (b) Plot of average relative difference as a function of line angle
for all lines (lower curve) and for just those lines closer than 25 cm (upper curve).
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Motion Compensated Fan-Beam CT by Enforcing
Fourier Properties of the Sinogram

Martin Berger, Andreas Maier, Yan Xia, Joachim Hornegger and Rebecca Fahrig

Abstract—In computed tomography involuntary patient mo-
tion can lead to a severe degradation of image quality. Most of
the motion estimation methods rely on additional information,
such as fiducial markers or an ECG signal. In contrast, data
driven motion estimation exists which aims to estimate the motion
directly from the acquired projections. This is typically achieved
by the optimization of an error metric that is either defined in
the image or in the projection domain. In this work, we present
a novel data driven error function for motion compensation
in fan-beam CT and its combination with a simple motion
compensation scheme. The new method operates entirely in the
fourier domain of the sinogram, by enforcing zero energy regions
of the spectrum. Qualitative and quantitative results show that the
proposed method is able to remove most of the motion artifacts,
yielding a relative root mean square error of 7.09% compared
to 20.35% for the motion corrupted reconstruction.

Keywords—Computed Tomography, C-arm CT, Motion Com-
pensation, Image Reconstruction

I. INTRODUCTION

In computed tomography (CT) patient or scanner motion
can lead to severe motion artifacts, typically observable as
streaking. This is due to the fact that the acquired projections
are no longer consistent with the trajectory assumed for image
reconstruction. Detection and compensation of such motion
during the image reconstruction process can substantially in-
crease the image quality. However, often additional informa-
tion is necessary to detect the motion. For example external
markers which are clearly visible in the projection images can
be attached to estimate the patient motion [1]. The assumption
here is that the detected surface motion correlates to the motion
at the volume of interest (VOI), which might not always be
true. In the field of cardiovascular imaging, motion artifacts can
be reduced by ECG-gating. Here only a subset of the acquired
projections from similar heart phases is built by exploiting
information of the ECG signal that was acquired during the
scan. However, the ECG data might not correspond exactly
with the heart motion and reconstruction of such a subset can
also cause undersampling artifacts [2].

To allow for a motion compensated reconstruction inde-
pendent of additional information sources the motion needs
to be directly estimated from the acquired data. This type of
motion estimation typically requires an iterative minimization
of error metrics, where the motion is estimated such that the
error metric is minimized. The metrics can be defined directly
in the reconstructed image domain, but also in the sinogram

Rebecca Fahrig is with the Department of Radiology, Stanford University,
Stanford, CA, USA. Martin Berger, Andreas Maier, Yan Xia and Joachim
Hornegger are with the Pattern Recognition Lab, Department of Computer
Science, Friedrich-Alexander-Universität Erlangen-Nürnberg. This work has
been supported by the Research Training Group 1774 “Heterogeneous Image
Systems”, funded by the German Research Foundation (DFG).

space [3]. For parallel-beam geometry, it has been shown
that the two-dimensional Fourier transform of the sinogram
contains triangular shaped regions that have an absolute value
close to zero [4]. Recently this concept has been extended to
the fan-beam case [5]. In this work we utilize the findings of
[5] and propose an error metric and motion estimation scheme
that is entirely based in the fourier domain of the sinogram.

II. MATERIALS AND METHODS

A. Fourier Properties of the Sinogram

In Fig. 3(f) an example spectrum of a sinogram is shown
which clearly depicts the triangular regions. The size and
orientation of these regions depend on the maximum distance
of the object to the center of rotation rp, as well as the source-
to-patient distance L and the detector-to-patient distance D.
According to [5] the spectral zero regions for a flat detector
can be described by∣∣∣∣ ω

ω − ξ(L+D)

∣∣∣∣ > rp
L

, (1)

where ω and ξ are the frequency variables corresponding
to the projection angles and the detector rows, respectively.
The triangular regions are by definition designed for objects
centered in the rotation center. However, potential patient or
scanner motion violates this requirement. Hence, the overall
energy in the triangular spectral regions increases.

B. Error Measure for Motion Compensation

We now introduce the cumulative energy, i.e. the sum of
squared absolute values inside the triangular regions, as an
objective function for patient motion correction. The error
measure can be written as

e(P ) =
∥∥∥F ξ P F ω ◦W

∥∥∥2
F
, (2)

where P ∈ RM×N is the sinogram with N projections of
length M on its columns. F ξ ∈ RM×M and F ω ∈ RN×N

denote discrete fourier transform (DFT) matrices, correspond-
ing to DFTs along the detector and the projection angles,
respectively. W ∈ RM×N is a binary matrix that evaluates
to one where (1) is true and to zero otherwise. Further, ‖.‖2F
is the squared Frobenius norm and ◦ denotes the element-wise
matrix multiplication.

For the correction of the two-dimensional patient motion
we assume simple one-dimensional detector translations. Op-
timization of (2) requires frequent evaluations of the error
function including the 2D fourier transform. We utilize the
shift-theorem to move the detector translation after the 1D
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Fig. 1. Simulated periodic translation along the x-axis over the scan progress.

fourier transform along the detector. Let tn be the translation
of the n-th projection, then (2) can be rewritten as

[t1, · · · , tN ] = argmin
[t1,··· ,tN ]

∥∥∥ ((F ξ P )T )F ω ◦W
∥∥∥2
F
, (3)

with T =

e
−i 2πξM t1 · · · 0

...
. . .

...
0 · · · e−i

2πξ
M tN

 .

T ∈ RN×N is a matrix that has the phase factors on its
diagonal and is zero elsewhere. Note, that F ξP is independent
of tn and can thus be precomputed prior to optimization.
Thus, additional evaluations of (3) only require a 1D fourier
transform along the projection angles.

C. Gradient Computation

For a more robust numerical optimization it is advanta-
geous to have an analytically derived gradient of the cost
function [6]. In the following we derive the partial derivatives
of (3) with respect to the detector shifts tn. First, we build
the derivative of the Frobenius norm, where Tr(.) denotes
the trace and H the Hermitian operator. We used the identity
‖X‖2F = Tr

(
XXH

)
and define X = ((F ξ P )T )F ω ◦W .

∂

∂tn
‖X‖2F = Tr

((
∂

∂tn
X

)
XH +X

(
∂

∂tn
X

)H)
(4)

To evaluate (4) we need to derive the partial derivatives of X .

∂

∂tn
X =

∂

∂tn

(
((F ξ P )T )F ω ◦W

)
=

(
(F ξ P )

∂

∂tn
T

)
F ω ◦W (5)

=

(
(F ξ P )(−i2πξ

M
exp(−i2πξ

M
tn)J

nn)

)
F ω ◦W

= (E)F ω ◦W

Here Jnn is a single-entry matrix, which is one at (n, n) and
zero elsewhere. E ∈ RM×N can be interpreted as follows.
First we shift the projections by tn directly in the fourier
domain. Subsequent multiplication by −i 2πξM is equivalent to
the derivative over the shifted projections. With Jnn we then
select the n-th projection and set the others to 0. Because E
has only one non-zero column, the fourier transform over the
rows, F ω , degenerates to a simple vector multiplication

(E)F ω = enf
ω
n ,

Parameter Symbol/Unit High-quality Low-quality

Source-patient-distance L 600 600
Detector-patient-distance D 0 0
Approx. object extent [mm] rp 122.5 122.5
#Detector cells M 1240 620
Detector spacing [mm] du 0.25 0.5
#Projections N 892 240
Angular spacing [degree] dβ 0.404 1.5
Reconstruction size Rx × Ry 2048×2048 2048×2048
Pixel size [mm×mm] 0.125×0.125 0.125×0.125
Absorption model - monochromatic monochromatic
Photon Energy [keV] 80 50
#Photons - - 30000

TABLE I. SIMULATION PARAMETERS USED FOR THE EVALUATION.

where en ∈ RM×1 is the n-th column of E and fωn ∈ R1×N

is the n-th row of F ω . Considering the use of a fast fourier
transform (FFT) the complexity reduces from O(MN log(N))
to O(MN).

Because X is already computed when evaluating the error
function (3), the gradient computation does not require an
additional FFT and can be implemented efficiently.

III. EVALUATION AND RESULTS

A. Evaluation

To evaluate our method we used the central slice of the
FORBILD head phantom1. The experiments consisted of a
high quality, noise free scan, but also a low quality, noisy
simulation to investigate the method’s behaviour under more
realistic conditions. The geometric, as well as the reconstruc-
tion parameters used for the simulations are presented in
Table I.

Affine motion of the head phantom has been simulated as
an accelerated periodic translation around the x-axis, denoted
as tx(β). The motion model can be described by

tx(β) = t̂x

(
2

1 + exp (a cos (kβ))
− 1

)
, (6)

where t̂x is the amplitude, k is the number of periods per scan,
and a is an acceleration factor. For our simulation we chose
t̂x = 5 mm, k = 16 deg−1 and a = 4. Fig. 1 depicts a plot of
the x-axis translation over the scan progress.

The evaluation procedure for both, low-quality and high-
quality simulations, was as follows. First we analytically
computed the sinogram for the motion corrupted but also for
the motion free case. As a reference we also rendered the
phantom directly in the reconstruction space, where we used
the attenuation coefficients as pixel intensities. Note that the
attenuation coefficients are energy dependent, hence the low-
quality differs from the high-quality ground truth phantom.
All simulations have been carried out using the open source
software CONRAD [7].

For the minimization of the cost-function (3) we used the
L-BFGS algorithm, where we provided the partial derivatives
as given by (4). To compute the mask W the object extent rp
is required. We estimated rp from the sinogram by measuring

1www.imp.uni-erlangen.de/phantoms
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Fig. 2. Qualitative reconstruction results for the high-quality (top row) and the low-quality (bottom row) simulations. From left to right: Ground truth rendering,
motion corrupted, motion corrected and the motion free reconstruction. Visualization windows are [0.07, 0.27] for the top and [0.07, 0.80] for the bottom row.

the maximum distance between the projection boundaries (see
Table I). The optimization was done repeatedly using a multi-
resolution approach. The sinogram scaling factors were 0.25,
0.5 and 1 and a zero vector was used for initialization. The
optimized shifts were incorporated into the reconstruction as
described in [8].

For a quantiative evaluation we computed the relative root
mean square error (rRMSE) of the motion corrupted, the
corrected and the motion-free reconstruction with respect to
the corresponding ground truth. The rRMSE is defined as

rRMSE (R,G) =
1

Îg
‖R−G‖F

where R is the reconstructed and G the ground truth image
and Îg the intensity range of G.

B. Results

Figure 2 shows the reconstruction results for the high (top
row) and low-quality (bottom row) simulations. In both cases
the image quality improved substantially when comparing
the corrected to the motion corrupted reconstructions. The
proposed method was able to restore edges, especially at the
lateral boundaries. However, in the high-quality simulations
we still observe some residual streaking artifacts compared to
the reference reconstruction where no motion was present. For
the low-quality simulations our approach yielded comparable
results to the motion free reconstruction.

The sinograms and their spectra are depicted in Fig. 3 for
the high-quality simulations. The motion and its correction
is clearly visible in the spatial domain. This observation is
supported by the corresponding spectra, where we clearly see
a reduced energy in the superimposed triangular regions. This
is in agreement with the actual error function values provided
in Table II.

Measure With motion Corrected Reference

High-quality
rRMSE [%] 20.35 7.09 2.48
e(P ) [×106] 1648.49 32.35 0.34

Low-quality
rRMSE [%] 25.12 13.97 12.57
e(P ) [×106] 109.55 6.32 4.12

TABLE II. ERROR FUNCTION AND RRMSE VALUES FOR THE MOTION
CORRUPTED, THE CORRECTED AND THE REFERENCE SPECTRA.

(a) (b) (c)

(d) (e) (f)

Fig. 3. Sinograms (top row) and their logarithmically scaled spectra (bottom
row) for the noise-free projections. From left to right: motion corrupted,
motion corrected and the motion free reference. Visualization windows are
[1.0, 5.5] for the sinograms and [1.5, 5.0] for the log-spectra.

In Fig. 4 we can see a detailed view of the reconstructed
area around the phantom’s resolution pattern for the noise-free
data. In comparison to the motion corrupted reconstruction,
where the pattern is no longer visible, the proposed method
could restore the pattern adequately. However, we can see some
loss of information compared to the motion free reconstruction.
For the noisy data a close-up of the phantoms ear is shown
in Fig. 5. Compared to the non-corrected reconstruction, our
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(a) (b)

(c) (d)

Fig. 4. The reconstructed resolution pattern for the high quality simulations.
From (a) to (d): Ground truth, motion corrupted, motion corrected and motion
free reconstruction. The region’s position is superimposed in Fig. 2(a).

(a) (b) (c) (d)

Fig. 5. The reconstructed left ear in case of the noisy data. From left
to right: Ground truth, motion corrupted, motion corrected and motion free
reconstruction. The region’s position is superimposed in Fig. 2(e).

method was able to restore the encapsulated air bubbles,
yielding similar results to those seen in the motion free
reconstruction.

To get an impression of how accurate the translations
were estimated, we forward projected the moving phantom’s
center position to the detector for each projection. In Fig. 6
the forward projected (gray, solid line) and the estimated
translations (orange, dashed line) are plotted for the high-
quality simulations. The plot shows that our approach reliably
estimated the translational effect of the motion. A very similar
result was obtained for the low-quality case.

IV. DISCUSSION

Our evaluation shows promising results for ideal high-
quality data without noise. Because the error function is
defined in the fourier domain we show that the method also
works for low-quality simulations which contain a significant
amount of noise. Compared to the reconstructions without
motion correction, our approach improved image quality sub-
stantially. For the low-quality case the motion compensated
reconstruction yielded comparable results to those of the
reference reconstruction without motion. This is in line with
the achieved quantitative results as shown in Table II.

In case of the high-quality data our method was able to
restore most of the structures, yet we still observe some re-
maining motion-based artifacts. This limitation might be due to
our relatively simple motion model which only takes detector
shifts into account. Shifting the detector can effectively only
compensate for that part of the motion that was parallel to the
detector. It does not take potential scaling of the projections
into account that occur from motion orthogonal to the detector.
The resulting residual artifact is represented by small ripples
in the corrected sinogram in Fig. 3(b). In Fig. 6 we show that
when we only consider the motion parallel to the detector, the
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Fig. 6. Forward projection of the phantom’s center (solid line) compared to
the estimated detector shifts (dashed line), for the high-quality data.

optimization of our error measure is capable of estimating the
motion with high accuracy.

A simulated periodic motion along the x-axis was used for
this proof of concept. Evaluations with a more realistic patient
motion will be part of future work. Further, we plan to extend
the underlying fourier properties to a cone-beam formulation
where we also want to incorporate short-scans. This would
then allow its application on real C-arm CT data.

V. CONCLUSION

In this work we present a novel data driven error function
for motion compensation in fan-beam CT. Further we introduce
its combination with a simple motion compensation scheme
by incorporating projection shifts. We also derive the gradient
and show that its computation can be implemented efficiently.
Our qualitative and quantitative results show that the proposed
method is able to correct most of the motion artifacts.
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Redundancies in X-ray images due to the epipolar
geometry for transmission imaging

André Aichert, Nicole Maass, Yu Deuerling-Zheng, Martin Berger, Michael Manhart, Joachim Hornegger,
Andreas K. Maier and Arnd Doerfler

Abstract—In Computer Vision, the term epipolar geometry
describes the intrinsic geometry between two pinhole cameras.
While the same model applies to X-ray source and detector,
the imaging process itself is very different from visible light.
This paper illustrates the epipolar geometry for transmission
imaging and makes the connection to Grangeat’s theorem,
establishing constraints on redundant projection data along
corresponding epipolar lines. Using these redundancies, a
geometric consistency metric is derived. Our metric could be
applied to any pair of transmission images and could be used
for pose refinement, calibration correction and rigid motion
estimation in fluoroscopy and flat detector computed tomogra-
phy (FD-CT) . In addition to the theoretical contribution, this
paper investigates the properties and behavior of the metric
for the purpose of re-calibration of an FD-CT short scan for
narrow angular range.

I. INTRODUCTION

In order to reconstruct a 3D image from a number of
2D X-ray projections, one requires accurate knowledge of
the underlying projection geometry. The trajectory for CT
reconstruction is either assumed fixed by construction or
are calibrated before acquisition. Artifacts in the recon-
struction may arise from inaccuracies of the calibration and
unpredictable or non-reproducible scanner motion. This is
also equivalent to rigid movement of the patient in medical
scenarios.

Each image is associated with a projection matrix, which
uses the same pinhole camera model as it is common in
Computer Vision. The analogy opens up a field of estab-
lished methods which are ready for application to trans-
mission imaging problems [1], [2]. This paper studies the
connection between the epipolar geometry of two projections
and Grangeat’s theorem [3] in order to exploit redundancies
in the projection data for image-based optimization of the
assumed projection geometry after an acquisition. Both the
epipolar geometry and Grangeat’s Theorem have previously
been used for this purpose [4], [5], but their connection has
not been established. In contrast to [6], [5], the work of
Debbeler et al. [4] does not require reconstruction and uses
a relatively simple and fast metric on 2D projections. We
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and Michael Manhart are associated with the Pattern Recognition
Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Nicole
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Figure 1. Epipolar geometry of two source positions C0 and Ci from a
circular trajectory. An image point x0

∼= P0X on the detector is back-
projected to a ray Bx0 (λ). The line li ∼= Fxi is the projection of that
ray from Ci to the corresponding detector plane and hence contains the
projection xi

∼= PiX and the projection of the other source ei ∼= PiC0,
called the epipole. It follows that the line can be written as the join of the
image point with the epipole li ∼= ei × xi.

derive a new formulation of that metric based on epipolar
geometry, which allows us to model the reliability in a
certain direction given a specific trajectory. Finally, we will
investigate accuracy, precision and robustness of the X-ray
source and detector, specifically for subsets of a short scan
trajectory of an FD-CT C-arm system.

II. EPIPOLAR REDUNDANCIES IN X-RAY IMAGES

A. Epipolar Geometry

The term epipolar geometry describes the relative geome-
try between two pinhole cameras defined by their projection
matrices P0 and Pi. We rely on the real projective n-space
Pn = Rn+1\ {0} and introduce an equality relation

a ∼= b ⇔ a,b ∈ Pn, ∃λ ∈ R, : λa− b = 0 (1)

for the equivalence classes of scalar multiples. We will de-
note the location of the X-ray source as C ∼= (−tR, 1)T ∼=
kernel(P) ∈ P3, for the projection matrix P ∼= K[R|t] ∈
R4×3, according to the notation common in Computer Vi-
sion. The projection matrix P maps a world point in real pro-
jective three-space X ∈ P3 to an image point on the detector
in the real projective plane x ∼= (u, v, 1)T ∼= PX ∈ P2. We
will work with a large number of views, but consider only
two pairs of projection matrices and images (P0, I0) and
(Pi, Ii) at a time. For convenience, a lower index denotes
the view number, for example, xi ∼= PiX is a point in
projective two-space on image Ii. W.l.o.g., we will use the
index 0 as a reference view.
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Suppose that the same world point is seen by two cameras
as x0

∼= P0X and xi ∼= PiX. The intensity of a pixel x0

on the detector is the line integral along the back-projection
ray Bx0(λ) ∼= P+

0 x0 + λC0, where ·+ denotes the pseudo
inverse. There exists a 3 × 3 matrix of rank 2 called the
fundamental matrix Fi0 defined up to scale which maps a
point x0 on the reference image I0 to a line li ∼= Fi0x0

on Ii. The epipolar line li is the forward projection of a
back-projection ray from a point on I0 to Ii . Since the
projection of Bx0 is the line li and Bx0contains the source
position C0, the line li must also contain the projection of
C0 to the i-th image called the epipole ei ∼= PiC0. Hence
epipolar lines form a bundle around the epipole li ∼= ei×xi.
The fundamental matrix can be expressed directly in terms
of the projection matrices

Fi0
∼= [ei]×PiP

+
0 (2)

where [ei]× denotes the skew symmetric matrix represent-
ing the cross-product with the epipole. See also Figure 1 for
an intuitive example and [1] for a thorough discussion.

B. 3D Radon Transform on Epipolar Planes

1) Notation: The key to finding redundancies imposed
by this geometry is that the source positions C0, Ci and
any back-projection ray Bx0 define a plane, which contains
both epipolar lines. There is a pencil of such planes around
the line joining the source positions. We will now estab-
lish a relationship between the observed intensities along
epipolar lines and the plane integral of the object over this
epipolar plane. We call the plane E ∼= join (Bx0 ,Ci) ∼=
(nT ,−n)T ∈ P3 with normal n and signed distance from
the origin n. W.l.o.g. assume that the origin of our coordinate
system is in the (finite) X-ray source C0 with the z-
axis pointing in orthogonal direction to an epipolar plane
containing the back-projection ray Bx0 In this coordinate
system the plane equation becomes E ∼= (0, 0, 1, 0)T , hence
we need only consider x and y coordinates in the following.
For points xT0 l0 = b on the epipolar line we introduce the
notation Fx0

(r) := f(r · cos(ϕ), r · sin(ϕ), 0) , where r is
the distance to C0

∼= (0, 0, 0, 1)T and ϕ is the ray direction
within the plane E and f : R3 → R denote the absorption
coefficients of our object . Fx0

essentially samples f along
the ray Bx0

.
2) 2D Radon Transform ρI0 along epipolar lines: We

start from the X-ray intensity

I(u, v) = Itube · exp
(
−
ˆ
Fx0(r) dr

)
(3)

detected in x0
∼= (u, v, 1)T attenuated by an object f along

the ray Bx0with initial intensity Itube. The X-ray projection
for a single detector point on the 2D plane reads

ln

(
Itube
I(u, v)

)
=

ˆ
Fx0

(r) dr =

ˆ
f

 r · cos(ϕ)
r · sin(ϕ)

0

 dr

(4)

where a single angleϕ defines the ray, because by choice of
coordinate system the source is in the origin. The distance to
the origin r defines a point on that ray. Finally, the integral
over an epipolar line l0 ∼= e0 × x0 in the polar coordinates
of E is

ρI0(l0) =

¨
f

 r · cos(ϕ)
r · sin(ϕ)

0

 drdϕ (5)

3) 3D Radon Transform ρf over the epipolar plane: The
3D radon transform of the object at E is the plane integral

ρf (E) =
˝

f(x, y, z)δ((x, y, z, 1) ·E)dxdydz
=
˜
f(x, y, 0)dxdy

(6)

If we write the same plane integral in terms of the polar
coordinates, we get the relationship with the integral over
the epipolar line l0. The Jacobian determinant of the polar
transformation of the x-y-plane is exactly

det(JΦ) = r · cos(ϕ)2 + r · sin(ϕ)2 = r (7)

which yields

ρf (E) =

¨
f(x, y, 0)dxdy =

¨
f(Φ(ϕ, r))det(JΦ)drdϕ

=

¨
f

 r · cos(ϕ)
r · sin(ϕ)

0

 r drdϕ 6= ρI0(l0)

(8)
We observe for cone-beam projections, that the integrals

over epipolar lines generally differ by a weighting with the
distance to the X-ray source. In the following, we will derive
a formulation of a derivative of the epipolar plane integral
which happens to cancel out that weighting factor.

C. Grangeat’s theorem

The relationship between line integrals on the projection
image and plane integrals of the object has been investigated
in a different context by Grangeat [3], [7]. For the moment,
we restrict ourselves to a single projection image. If we
assume w.l.o.g. that the origin of the u-v-plane is located
in the principal point, we can write the epipolar line

l ∼= (cos(ψ +
π

2
), sin(ψ +

π

2
), −t)T (9)

in terms of an angle ψ and distance t from principal point
p. The point o is the orthogonal projection to that line. The
2D radon transform for l is

ρI(l) =

¨
I(u, v)δ((u, v, 1) · l) dudv (10)

Figure 2 (a) reveals the geometric relationships between the
2D radon transform ρI(l) and the 3D radon transform of
the object ρf (E). The 3D distance from C to the line l is
exactly the distance to the image plane within a projection
in direction of t. Its orthogonal projection must therefore be
again o. It follows that the lines join(p,o) and join(C,o)
are orthogonal to l. An arbitrary point x on l can be written
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in terms of the angles κ (between E and the principal ray)
and ϕ (between o and x measured at C). The distance from
C to l is then cos(ϕ)r and the focal distance cos(κ)cos(ϕ)·r
(via triangle p,C,o).

Now, we apply Grangeat’s trick and look at the derivative
of ρ(E) with respect to the distance to the origin n.
d

dn
ρf (E) =

d

dn

¨
Fx(r)r drdϕ =

¨
d

dn
Fx(r)r drdϕ

(11)
Observe in Figure 2 (b) that there is a relationship dn =

sin(dκ) · cos(ϕ)r. Because for small angles sin(dκ) = dκ
it holds

dκ

dn
=

1

cos(ϕ)r
(12)

and by chain rule we obtain
d

dn
Fx(r)r =

d

dκ

1

cos(ϕ)
Fx(r) (13)

Since the angle ϕ is small (bounded by half fan-ange), the
cosine is almost one and we ignore it in our computations.
We also ignore that n is tilted slightly out of the detector
plane, because κ is small. We can compute the derivative
w.r.t t instead of n.

d

dn
ρf (E)

dκ≈0

=

¨
d

dκ

1

cos(ϕ)
Fx(r) drdϕ

ϕ small

≈ d

dκ

¨
Fx(r) drdϕ

κ small

≈ d

dt
ρI(l)

(14)

p

l
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p
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Figure 2. Grangeat’s theorem: relationship between angle κ and normal n.

D. Definition of the metric

The main result of this paper and the connection between
Equations 2 and 14 is that for a point x0 on I0 we find
redundant information in the i-th view (Pi, Ii)

M i
0(x0) :=

(
d

dt
ρI0(e0 × x0)− d

dt
ρIi(F

i
0x0)

)2

≈ 0

(15)
The equation states, that given an image pair I0 and Ii, a

point x0 defines two corresponding epipolar lines e0×x0 and
Fi0x0, whose line integrals derived w.r.t t are approximately
the same. This is assuming the projection is accurately
known. We expect the line integrals to differ more or less,
depending on the geometric accuracy of the epipolar plane,
respectively the projection parameters.

As discussed in Section II-B1, there is a pencil of such
epipolar planes and each defines a pair of redundant line
integrals. Figure 3 shows the epipolar lines of two views
along with their respective derivative of the radon transform.
We define the epipolar consistency metric as the sum over
the squared differences between a selection of corresponding
epipolar lines. To exclude planes which do not intersect the
projection images and to control the sampling, we select
points X i0 ⊂ P2 on I0, such that the resulting epipolar lines
are evenly spaced, all intersect the images and that their
maximal distance inside image bounds is no more than k
pixels. We devise the following algorithm to select X i0 for a
finite epipole:

1) Find the most distant corner of I0 to the epipole

ei0
∼= P0 ·Ci (16)

and call its distance m.
2) Compute the angular step dα , such that

tan(dα) =
k

m
(17)

3) Find minimal and maximal angles αmin, αmax, so that
any line

lα =
(
(cos(α), sin(α), 0)T + e0

)
× e0 (18)

intersects at least one image.
4) Compute the set X i0 via
X i0 = {x0 ∈ P2 : x0

∼= (cos(α), sin(α), 0)T + e0

∀j ∈ N : α = αmin + j · dα < αmax}
(19)

In this formulation, the points in X i0 lie on a circle around
e0, no matter the radius. For (almost) infinite epipoles e0

∼=
(ex, ey, ε)

T , ε ≈ 0, one can simply assume it were finite and
sufficiently far away. We can now express the metric as

M i
0 =

1

|X i0|
∑

x0∈X i0

(
d

dt
ρI0(x0 × e0)− d

dt
ρIi(F

i
0x0)

)2

(20)
divided by the number of line pairs |X i0|. The derivatives of
the 2D radon transform d

dtρI can be pre-computed.
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Figure 3. Two views with epipolar lines aligned to a plot of the derivative
of the line integrals for the left image (blue) and right image (green). Notice
a shift in the signals due to imperfect geometry.

Finally, we sum up all those pairs of views, which change
during optimization. If we want to optimize over parameters
in P0, for example, we need not compute redundancies
between (Pi, Ii) and (Pj , Ij) for i 6= 0 6= j, because they
remain constant if only P0 changes: M0 =

∑
iM

i
0.

III. EXPERIMENTS AND RESULTS

A. Materials and methods

We validate against the digital phantom with random
beads in a full 360° rotation presented in [4] (512× 512 px
projections, 1000 mm source-detector distance, phantom of
diameter ∼ 100 mm). In addition, we conducted an ex-
periment for this work using a 120° sweep of 190 pro-
jections showing a real PDS2 calibration phantom using
a sequence of a Siemens C-arm system. Using [8] we
computed the C-arm projection matrices from the projections
of the metal beads in the calibration phantom and obtained
an average re-projection error of about 1.3 pixels (image
size 960 × 1240 px, bead size about 8 − 12 px), which we
also verified by visual inspection. These projection matrices
are the gold standard. In order to prove the robustness of
our method, we use the raw projection data directly from
the scanner, without corrections of any kind (i.e. no I0
correction, no correction for varying tube voltage etc.). We
use a non-linear optimizer without gradient (Powell-Brent).
In order to investigate accuracy, precision and stability of
our method, we conduct a series of random studies over
a rigid transformation in world space. As an intuitive and
meaningful error metric, we compute the distance between
the bead centers projected with the ground truth versus the
current projection. This error is more informative, since the
method itself is entirely image based, while quantities in
millimeters and degrees of world space depend on overall
scaling and most of the parameters a highly interdependent.

1) Sampling of radon space: In case of a circular trajec-
tory, the epipole moves on a straight line from plus infinity,
through the image to minus infinity. The epipolar lines are
almost parallel, when the epipole is far away. When we
align the detector v-axis with the axis of rotation, epipolar
lines in most views will be almost parallel to the u-axis.
This is visualized in Figure 4, where all the samples taken

120°

170°

0°

90°

Epipole moves
on a line!

120°

170°

0°

90°
t

ψ

t

ψ

Figure 4. Derivative of the radon transform of the digital phantom. Samples
for a 170° rotation about Y-axis with a maximum distance between epipolar
lines of one pixel (left) and 5 pixels (right). Sampled locations in black.

from radon space are marked with a black dot. Note that a
line bundle corresponds to a sinoid curve in Radon Space.
Also note a linear trajectory of the epipole leads to a single
intersection point of all sinoids. This is because the epipole
itself moves on a line, which is represented in a single point
in radon space, and that line is contained in any of the line
bundles. Through the definition of X i0 , we can easily adjust
the number of lines, hence the sampling in radon space.

2) Dependency on direction of epipolar lines: We expect
the method to be reliable whenever the epipole is close to
the image or even inside the image. The epipole is inside
the image when the two views are related dominantly by
a forward-backward translation, including opposing views.
For cases, where the epipolar lines are almost parallel, we
get little information in their direction (the direction of the
integrals) but only orthogonal to them. Note that a pure
translation parallel to the image plane results in parallel
epipolar lines, a translation orthogonal to the image plane
leaves the epipole in the center of the image. Rotations
around the source merely apply a 2D homography to the
image. As a general motion is a combination of these
effects, we can predict which geometries will give reliable
information and in which spatial direction. Observe, for
example Figure 4, where sampling is dense close to the
ψ = 0 axis (horizontal). This is a property of any circular
trajectory. The epipole is within the image for views within
± fan angle from the opposing view. For an opening angle
of 40° this is just about 10 of all views. The method is
thus much more robust for optimizing parameters orthogonal
to the plane of rotation (usually denoted v-direction of the
detector). Only for opposing views is it similarly reliable
in both u and v directions. This is a problem especially for
short scans, as visualized in the shape of the graphs in Figure
5, which show a long and narrow valley in u-direction.

B. Random study

1) Accuracy: First, the gold standard geometry is as-
sumed and optimized w.r.t the metric to find the distance
of the closest minimum. Any change away from the gold
standard is an inaccuracy. We obtained a mean accuracy over
all projections of ∼ 0.25 px and a maximum of 1.00 px.
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Figure 5. Plots of the epipolar consistency metric for detector shifts u and
v for the numerical 360° phantom and the real 120° PDS2 phantom. Note
the minimum can be located much more clearly in u-direction for 360°
data.

2) Precision: The second step is to randomly disturb the
optimal pose by a random set of parameters. The distur-
bances are uniformly distributed in a range of ±5 mm for
the translations and ±0.05 radians ≈ ±2.8° for the rotations.
We present results for only one representative projection at
a sample size of n = 30. We were able to reduce the mean
pixel error from ∼ 2.4 px to ∼ 0.2 px (maximum error was
0.7 px).

3) Stability: Finally, we conducted another random study
with extreme disturbances of ±25 mm for the translations
and ±0.25 radians ≈ ±14° for rotations and observe the
range of parameters, for which optimization is successful.
We found that of n = 100 samples drawn, with an average
error of ∼ 10 px we were able to recover the pose up to
an error of < 1 px in 51 cases. The minimum initial error
of the unsuccessful cases was 7.0 px and the mean initial
error, which could be corrected for was 9.3 px.

4) Ultra short scan: Due to the direction of the epipolar
lines for narrow angular range (compare Section III-A2), we
conduct the random studies for the 120° data only w.r.t to
the world Y-position of the source (similar to detector v)
of the projection at 60° primary angle. This is currently a
major limitation and subject of future work. The result of
an initial random study for n = 100 and ±25 mm offsets
are a reduction of the mean error down from ∼ 9.7 px to
∼ 0.01 px with a maximum error of ∼ 0.1 px. The same
study for detector shift u would fail and even increase the
mean error. This example shows, that a correct optimization
strategy must be found.

IV. CONCLUSION

We present a new formulation for redundancies in trans-
mission imaging data based on the epipolar geometry
between pairs of views. We make the connection from
Grangeat’s theorem to the epipolar geometry of two X-
ray projections, which enables us to express corresponding
line integrals in the projection data using the fundamental
matrix. We further derived a consistency metric, which
exploits redundancies of these line integrals to optimize the
projection geometry. We are presenting a fast algorithm to
compute that metric and observe some of its properties,
including robustness to varying X-ray tube parameters and

its ability to correct 3D parameters, without the need for 3D
reconstruction. The understanding of the underlying epipolar
geometry gives us control over the sampling in radon space
and it helps us identify geometries for which the metric
is reliable. An initial random study using projections of a
numerical and physical phantoms suggest that the metric
can indeed find practical use in a multitude of applications
related to the estimation of projection geometry. We believe
that its potential applications range from pose estimation in
fluoroscopy, tracking of a rigid object in X-ray projections,
automatic re-calibration of the imaging system for FD-CT
reconstruction up to the detection, estimation and correction
of rigid patient movement. Future work should investigate
different approches to optimization, such as finding subsets
for reliable optmization, finding a minimal set of parameters
to avoid dependencies in the optimization, evaluate real data
sets and compare computation speed versus precision with
other approches to calibration correction.
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Geometrical Jitter Correction in Computed
Tomography

Nicole Maass, Frank Dennerlein, André Aichert, and Andreas Maier

Abstract—In computed tomography and tomosynthesis per-
spective projections of an object are measured from different
views. These projections are correlated to each other as they
image the same object. Quantification of their consistency con-
stitutes a cost function, which allows to reduce misalignment
artifacts. Previously, a promising cost function for perspective
projection consistency quantification has been proposed and
evaluated for global misalignment artifact reduction [1]. In
this work we evaluate the ability of that cost function to
quantify and improve misalignment artifacts that originate from
unreproduceabley wobbling scanner components. The evaluation
is done for scans with circular trajectories using mathematical
simulations and measurements.

I. INTRODUCTION

In computed tomography, misalignment artifacts degrade
reconstructed CT images if the geometrical information of
each view are in bad agreement with the real positions and
orientations of the CT scanner’s components (source, object,
detector). Thus, there are numerous methods published in
literature on that issue. Some of these methods place markers
in the field of measurment or perform dedicated calibration
measurements in order to calibrate a reproduceable trajectory
[2]–[4]. In this work we are focusing on methods that do
not require markers, dedicated calibration measurments, or
reproduceable system trajectories [5]–[8]. We use the cost
function that has been proposed in reference [1] and evaluate
its ability to correct not only global misalignment, as it
has been shown in reference [1], but also projection-specific
misalignment (jitter). Additionally, we give further insights
into intermediate results that allow to assess the efficiency of
the cost function for the optimization of a particular geometry
parameter with a given trajectory.

II. METHOD

A. Flat detector geometry

Without loss of generality, we use the flat detector cone–
beam CT geometry from reference [1] throughout this work,
as it is sketched in Figure 1. Cone–beam projections

p(λ, u, v) =

∫ ∞
−∞

dt f(s(λ) + tt(λ, u, v)) (1)

of the object f(x, y, z) are measured from N source positions
λn. The scalar lambda parameterises the piecewise continuous
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f(x,y,z)

o s

Fig. 1. Illustration of the circular 3D cone–beam acquisition geometry with
a flat panel detector.

trajectory s(λ), that contains all source positions s(λn). The
coordinates u and v parameterise the flat detector pixel’s
columns and rows, respectively, such that the triple (n, u, v)
uniquely describes one specific ray (line integral) through the
object f(x, y, z).

B. Radon planes

Picking two different source positions s(λn) and s(λn̂) we
have already fixed two points of a Radon plane. We choose
an angle ψ, with −π2 ≤ ψ < π

2 , as a third parameter which
identifies one plane from that set of planes. With these three
parameters (n, n̂, ψ) we are able to uniquely identify a Radon
plane that contains the source positions s(λn) and s(λn̂).
The actual meaning of ψ is unimportant for the remainder
of this work; we can just think of it as the angle between
the normal vector of the plane and some (almost) arbitrarily
chosen reference vector. Varying ψ from −π2 to π

2 we get
all Radon planes that contain the source positions s(λn) and
s(λn̂) of views n and n̂, respectively.

For practical implementations, ψ needs to be discretized in
an appropriate step size dψ = π

Nψ
. Throughout this work we

use equiangular sampling of ψ with Nψ = 768. Obviously,
not every possible Radon plane intersects with the projection
images of both views (n and n̂), as the size of each projection
image is limited. We define the function m(n, n̂) to count the
number of Radon planes that intersect with the detectors of
both views, i.e. 0 ≤ m(n, n̂) < Nψ .

C. Radon domain consistency

In reference [9] an intermediate function S(s, µ, λ) over
the previously discussed Radon planes is derived. Note that
the parameterization of the Radon plane is done by the view
λ and a line on that view’s detector plane, which is defined
by the distance to the image origin s and an angle µ. Either
notation refers to a Radon plane in 3D object domain.

In reference [1] it has been shown that redundancies in
that intermedate function can be used to quantify the rawdata
consistency and that this consistency criterion can be used for
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global misalignment correction. Thereby, the overall rawdata
consistency criterion from reference [1] does not distinguish
specific projections but calculates a sum over all Radon planes
of all combinations of two different views n and n̂:

ĉRP =

√√√√√N−1∑
n=0

π/2∑
µ=−π/2

Lmax∑
l=−Lmax

(g3(n, µ, l)− g3(n̂, µ̂, l̂))2, (2)

where g3(n, µ, l) of reference [1] corresponds to S(s =
l, µ, λ = λn) in reference [9]. In equation 2 a Radon plane
is described by the triple (n, µ, l), which corresonponds to
picking one view’s source position s(λn) and one line on the
detector of that view. g3(n̂, µ̂, l̂) is the corresponding second
measurement of the Radon intermediate function, with s(λn̂)
being the second intersection of the Radon plane with the
source trajectory (the first time is at s(λn)) and (µ̂, l̂) describes
the line on that second view’s detector.

D. Projection-specific cost function

Using the parameterization of a Radon plane introduced in
section II-B, we reformulate the overall rawdata consistency
cost function of equation (2) to

cRP =
N−1∑
n=0

N−1∑
n̂=n+1

cPP(n, n̂),with (3)

cPP(n, n̂) =

√∑Nψ−1
nψ=0

(
g3(n, µ, l)− g3(n̂, µ̂, l̂)

)2

m(n, n̂)
(4)

being the normalized contribution of one projection pair (PP)
to the cost function. Note that µ, l, µ̂, and l̂ are functions
of the Radon plane which is uniquely defined by the triple
(n, n̂, ψ), as discussed earlier. In order to obtain comparable
cost function contributions from each pair of projections,
we have modified equation (2) by 1) calculating the norm
only over all planes of one pair of projections instead of
all available Radon planes of all projection pairs and 2)
normalizing cPP(n, n̂) with the count function m(n, n̂).

In figure 2(a) a 2D plot of the function cPP(n, n̂) is shown
using n ∈ [0, N − 1], n̂ ∈ [0, N − 1]. The plot is created from
the simulated projection data of the Forbild head phantom
described in section II-F. Thereby the correct geometry was
used for calculations, such that all values different from 0 are
numerical errors. These numerical errors introduce an constant
offset into the cost function cRP. We did not observe that this
offset affects the optimization procedure which is performed
using this cost function.

E. Jitter correction

With the formulation of a normalized projection pair-wise
cost function cPP(n, n̂) in equation (4) we can easily define a
cost function that considers the consistency of one particular
projection n with all other projections:

cn =
N−1∑
n̂=0

cPP(n, n̂). (5)

(a) cPP(n, n̂) without dejusts, showing
numerical errors only

(b) cPP(n, n̂) with axial dejust
in=300,∆v0 = 1

(c) cPP(n, n̂) with lateral dejust
in=300,∆u0

= 1

(d) difference: 2(b)−2(a) (e) difference: 2(c)−2(a)

Fig. 2. Projection pair cost cPP(n, n̂) using projection data of the Forbild
head phantom simulations. The number of projections of this dataset is N =
600 and therefore the plots have 600× 600 pixels with each pixel showing
the (normalized) inconsistency of the Radon domain intermediate function
of all Radon planes that were found for that pair of projections. Note that
due to the symmetry cPP(n, n̂) = cPP(n̂, n) it is unneccessary to label the
axis. The grayscale window is C/W = 0.3/0.6 for standard images and
C/W = 0/0.6 for difference images.

The cost functions cn and cPP(n, n̂) implicitly depend on the
geometry of all projections as the intersection line (n, µ, l)
of a Radon plane (n, n̂, ψ) with the detector of view number
n changes with the geometry of views n or n̂, as visualized
in figure 2. Equation (5) means summing up row or column
number n in a 2D plot of cPP(n, n̂). Since we are mainly
interested in changes of the function cn while varying the
geometry (which refers to subfigures 2(d) and 2(e)), we
have dropped the dependency of this function on the overall
geometry and explicitly denote its dependency on geometry
changes in equation (6).

For every geometry parameter under consideration, we
define a base step size, which is the optimization resolution
and maps the continuous physical parameters on an integer

The third international conference on image formation in X-ray computed tomography Page 339



(a) jittered (b) corrected

(c) difference: 3(a)−ground truth (d) difference: 3(b)−ground truth

Fig. 3. Head phantom simulations with jitter added on the lateral and axial
detector position: u0,n = u0 ± 20 ·∆u0, v0,n = v0 ± 20 ·∆v0. Grayscale
window: Standard images C/W = 0.01/0.03 mm−1; difference images
C/W = 0.0/0.03 mm−1.

grid. Considered geometry parameters and their base step sizes
are:
• lateral detector offset ∆u0 = 1.0 px
• axial detector offset ∆v0 = 1.0 px
• detector slant ∆b = 0.15◦

• source-object distance ∆R = 0.01 ·R
• source-detector distance ∆D = 0.01 ·D
For optimization, we calculate

imin
n,∆ = argmin

i∈[−20,20]

(cn(i ·∆)), (6)

with ∆ being the geometry parameter under consideration.
The search range of ±20 steps is arbitrarily chosen here and
should be adapted to the expected jitter deviations of a given
system.

After finding the minimum cost function value of projection
n for geometry parameter ∆ the trajectory correction is applied
before the next view is considered. To avoid the introduction
of offsets by systematic errors of the trajectory (e.g. parameter
drift), we process the projections in bit-reversal order. After
processing all projections with one geometry parameter under
consideration, the next geometry parameter ∆ is used. After
processing all projections with all geometry parameters, one
iteration is considered to be completed. The process of jitter
correction can be repeated iteratively.

F. Experiments

We use simulations of the Forbild head phantom to prove
the concept with known ground truth. The simulations were

(a) jittered (b) corrected

(c) difference: 4(a)−ground truth (d) difference: 4(b)−ground truth

Fig. 4. Head phantom simulations with jitter added on the source-object-
distance (R) and source-detector-distance (D): Rn = R ± 20 ·∆R, Dn =
D± 20 ·∆D, with ∆R = 7.5 mm and ∆D = 12 mm. Grayscale window:
Standard images C/W = 0.01/0.03 mm−1; difference images C/W =
0.0/0.03 mm−1.

performed using an ideal circle trajectory with source trajec-
tory radius of R = 750 mm, source-detector-distance D =
1200 mm, N = 600 projections equiangularly distributed on
a full circle, and 512×512 detector pixels with 0.8×0.8 mm.
Reconstructions use a 512×512 ×512 voxel grid with 0.5 mm
isotropic voxel size, but only the central slice is presented. In
a first experiment we simulate a combination of uniformly
distributed lateral (u0) and axial (v0) detector jitter of up
to ten pixel in each direction. In a second experiment we
simulate a combination of uniformly distributed source-object
distance jitter (R) and source-detector distance jitter (D) of
up to 10% each. We present reconstruction results with the
jittered geometry configuration and after application of three
iterations of the jitter optimization proposed in section II-E.

In addition to the simulation, we show a CT measurement of
a car key. The dataset has N = 1440 projections equiangularly
distributed on a full circle using R = 100 mm source-object
distance, D = 450 mm source-detector distance, and about
1000 × 750 detector pixels with a size of 0.15 × 0.15 mm.
The projection data of this measurement are severly truncated
in about half of the projections in order to measure the object
with high spatial resolution (i.e. high magnification). The
industrial CT scanner, which has aquired those data, does not
suffer from noticeable wobbling of measurement components
such that we can use the dataset trajectory as ground truth
(after global misalignment correction according to reference
[1]). We add uniformly distributed artificial jitter on each of
the scanning paramters (one at a time) and run the optimization
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algorithm for exactly that scanning parameter. In an additional
experiment we add artificial jitter on three scanning parameters
at a time (v0, u0, and b) and run the optimization algorithm
for exactly those scanning parameters.

For presentation we choose a 512 × 512 pixel slice with
0.015 mm isotropic pixel size that contains tiny high contrast
objects, which are the cross sections of wires connecting a
chip with a circuit board. Figure 5 gives an overview of
the complete dataset, its field-of-measurement, and the slices
presented in figure 6.

Fig. 5. Overview of the car key dataset delinieating the field of measurement
(red circle) and the area presented in figures 6 and 7 (red rectangle). The
grayscale window is C/W = 0.1/0.25 mm−1.

III. RESULTS

A. Head phantom simulations

In figures 2(b) and 2(c) there is the visualization of cPP(n, n̂)
while dejusting projection number n. It is noticeable that the
effect of dejusting projection n is restricted to exactly the line
(column) which is used in cn. A dejust of just one detector
pixel causes a signal in the plots that is clearly visible. It
is further noticeable that there are projection pairs including
projection number n where the effect of the dejust cannot be
observed clearly. There are even some negative values on line
n in figure 2(b). We conclude that for each parameter there
are some projection pairs that are less suited for consistency
quantification than others. This observation helps predicting
which parameters can be optimized for a given trajectory.

However, in figure 2 there is only the effect of one dejusted
projection (for visualization). In the experiment we have
randomly dejusted every projection (by up to 10 steps) and
applied the proposed jitter optimization algorithm (seaching up
to 20 steps) using cn as a cost function. The results of the first
experiment dejusting u0 and v0 simultaneously is presented in
figure 3; the result of the second experiment dejusting R and D
is presented in figure 4. In both experiments we can notice that
the artificial jitter severely degrades the image quality, such
that many structures are hardly noticeable. The proposed jitter
correction algorithm significantly improves the image quality
in both experiments, however, slight dejusts remain.

B. Car key measurement

Figure 6 presents the results of the car key dataset after
dejustment of single geometry parameters. Figure 7 presents
the results after simultaneous dejustment of three geometry

(a) jittered: u0,n = u0 ± 10 ·∆u0 (b) u0,n corrected

(c) jittered: v0,n = v0 ± 10 ·∆v0 (d) v0,n corrected

(e) jittered: Rn = R± 10 ·∆R (f) Rn corrected

(g) jittered: Dn = D ± 10 ·∆D (h) Dn corrected

Fig. 6. Car key dataset with artificial jitter added on various circle trajectory
parameters (left column) and after two iterations of jitter correction (right
column). Grayscale window C/W = 0.10/0.25 mm−1

parameters (u0, v0, and b) with difference images provided
for comparison with the ground truth reconstruction. The
artificially introduced jitter severely degrades the image quality
(left column) and the proposed jitter correction algorithm is
able to recover the original image quality in all cases (right
column). No noticeable artifacts remain in standard images;
in difference images slight differences remain, which are not
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(a) jittered (b) corrected

(c) difference: 7(a)−ground truth (d) difference: 7(b)−ground truth

Fig. 7. Car key dataset with artificial jitter added on the axial detector
offset (v0), the lateral detector offset (u0), and the detector slant (b) and the
correction after two iterations. Grayscale window: Standard images C/W =
0.10/0.25 mm−1; difference images C/W = 0.0/0.25 mm−1.

neccessarily artifacts but could also result from an overall shift
of the object.

In order to give more insight into the method, we plot the
jitter for the optimization of the v0 parameter in figure 8.
From the plot it can be seen that the remaining jitter is one
optimization step or less.

In figure 9 we plot all N = 1440 cost functions cn that
are evaluated during the first iteration of optimization in v0-
direction. Every single cost function is very smooth, has a
unique minimum within the search range, and would also
allow for gradient decent optimization (which is not done in
this work).

Figures 5–9 originate from a measured real world dataset
that has about 50% of its projections severly laterally truncated
(all projections are axially truncated).

IV. CONCLUSION

We have evaluated the use of a rawdata consistency quan-
tification method based on a Radon intermediate function for
the optimization of geometrical jitter in circular computed
tomography scans. The results are promising regarding ability,
reliability, and stability of the method. For a final conclusion
a larger number of real world measurements will be used.

Disclaimer: The concepts and information presented in
this paper are based on research and are not commercially
available.
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An Efficient Technique For Multi-Phase Model
Based Iterative Reconstruction

Shiyu Xu, Debashish Pal and Jean-Baptiste Thibault

Abstract—Multi-phase scan is a fundamental CT acquisition
technology used in a variety of applications such as cardiac CT
and perfusion CT. Model-based iterative reconstruction (MBIR)
has already demonstrated significant IQ improvements that can
provide significant noise reduction with improved resolution that
are essential for such applications. However the challenge is to
efficiently reconstruct multi-phase scans. The simplest way is to
perform MBIR reconstruction on each individual phase data in a
sequential order or in a parallel computing framework. However,
these approaches either lead to increase in overall compute
time or reduce the patient throughput due to more computing
resources being utilized for a single patient. Alternatively due to
the views shared among the adjacent phases, it is possible to reuse
the geometric coefficient calculations and to reconstruct multiple
image volumes simultaneously. The proposed approach involves
joint optimization of the MBIR cost-function to estimate images
from all phases simultaneously. In this paper, the efficiency and
feasibility of multi-phase reconstruction is investigated. First a
quantitative metric is derived for estimating the improvement
in the efficiency, then the improvement is verified using an
implementation of the prototype algorithm. It is demonstrated
using a cardiac multi-phase data that the proposed algorithm
improves the computational efficiency with no change in the IQ
compared to sequential MBIR reconstruction. It is also concluded
that the improvement is dependant on the type of the optimization
algorithm and the compute architecture.

Index Terms—Cardiac CT, multi-phase scan, MBIR, perfusion
CT.

I. INTRODUCTION

TEchnology for X-ray detection in cone-beam (CB) ge-
ometry is rapidly improving and offers potential of per-

forming fast high-resolution volume CT imaging. However,
to optimally build such systems, the problem of CB image
reconstruction needs to be fully understood. Statistical iterative
methods (IR) exhibit particularly promise since it provides the
flexibility of accurate physical noise modeling and geometric
system description. Recently invented IR technique, model
based iterative reconstruction (MBIR) [1], [2], significantly
improves image quality (IQ) compared to conventional filtered
back-projection (FBP). Iterative reconstruction suffers from an
inherent challenge in terms of compute time compared to FBP
due to multiple iterations needed for convergence and each
iteration involves forward/back-projections using a complex
geometric system model.

Shiyu Xu is with the Department of Electrical and Computer Engi-
neering, Southern Illinois University Carbondale, IL, 62901 USA (e-mail:
shiyu.xu@gmail.com).

Debashish Pal and Jean-Baptiste Thibault is with Advanced Science and
Engineering Group, GE Healthcare 3000 N Grandview Blvd W1180 Wauke-
sha, WI 53188 USA.

Multi-phase reconstruction using MBIR poses an additional
challenge of reconstructing multiple images volumes corre-
sponding to different phases. Multi-phase scanning involves
acquiring CT data at different time instants and is widely used
in a variety of applications such as cardiac and perfusion CT.
In cardiac CT [3], [4], multi-phase scans are typically used to
identify images at a quiescent phase with least motion artifacts.
Reconstructions from multi-phase scan data can also be used
to generate the motion signature which can then be applied to
correct the motion artifact and in turn to improve temporal
resolution [5]. A typical multi-phase scan in cardiac axial
CT is demonstrated in Fig. I(a), where view ranges for the
adjacent phases partially overlap. In perfusion CT [6], multi-
phase scan enables the potential to view crucial information
such as blood flow (arterial and venous) and function in the
heart, brain, joints and other parts of the body. In a non-cardiac
axial perfusion CT geometry adjacent phases share the same
view range and the data for all phases are totally co-located.

One simple way of reconstructing multiple volumes corre-
sponding to different phases using MBIR is to reconstruct each
phase sequentially, which is easy to implement but increases
the reconstruction time by a factor of k, which is the number
of phase. If several parallel computing nodes are available,
reconstruction for each phase can be distributed amongst
different nodes and all phase reconstructions are performed
simultaneously. In this case, a K-time speed up is gained
compared to the sequential reconstructions. However, utilizing
more compute resources for a single exam reduces the patient
throughput which is critical in the CT work flow. A more
efficient approach is proposed in this paper in which the
image volumes corresponding to different phases are jointly
reconstructed on the same compute node as described in sec-
tion II-A. The efficiency is gained due to the fact that the views
among adjacent phases are shared and hence the geometric
model calculations can be shared during the forward/back-
projections. Additional details about the memory organization
of the sinograms are shown in section II-B. The improvement
in the efficiency is demonstrated using cardiac multi-phase
data in section III.

II. METHODS

A. Multi-phase reconstruction framework

The joint objective function for a multi-phase scan can be
constructed as:

Φ(µ) =

K∑
k=1

M∑
i=1

(yi −
N∑
j=1

ai,jµk,j)
2wk,i
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(a) (b)

Fig. 1. Schematic geometry of multi-phase scan with partial and full overlap
in the views.

Fig. 2. Schematic demonstration of the projection data and statistical weights
used for multi-phase MBIR reconstruction.

+β
K∑

k=1

N∑
j=1

∑
m∈Nj

κk,mκk,jρ(µk,j − µk,m), (1)

where i ∈ [1,M ] indexes the projection data from all phases
that needs to be reconstructed; j ∈ N is the voxel index;
k ∈ K is the phase index ; Nj is an index set of j-th voxel’s
neighbors. The first term in the objective function Φ is the
data-fidelity to minimize the data mis-match, where y is the
projection data; wk is a vector of statistical weights and is
constructed separately for each phase k; ai,j is the system
coefficient calculated by a distance driven (DD) forward
model. The system matrix coefficients are shared by all the
phases. µk is the image volume estimated for the k-th phase.
The second term in the objective function Φ is a prior term
where ρ is q-GGMRF potential function [1], [2] , κk,j are
spatially varying regularization coefficients and β controls the
tradeoff between the data-fidelity and prior.

An example of the projection data and statistical weights
for a cardiac three-phase reconstruction is shown in fig. 2. The
projection data and weights are vectors of dimension M . The
index i represents the detector index with the view index being
the slowest variable. The windowing function shown in the
figure are cardiac gating function for each phase. The gating
function is applied on the statistical weights to reduce motion
artifacts [7]. As explained in eq. 1, the projection data spans
all the phases but the gating function imposes limit on the
number of views actually used for reconstructing a particular
phase.

Iterative coordinate descent (ICD) [2] is used as the opti-
mization technique to solve eq. 1. ICD is a greedy optimization
algorithm in which the voxels are updated using a sequence

of one-dimensional functions. In the case of multi-phase
reconstruction, the K-dimensional vector µk is estimated by
solving the function,

µn+1
k,j = arg min

µk,j≥0
{θ1,kj(µk,j − µn

k,j)

+
1

2
θ2,kj(µk,j − µn

k,j)
2

+β
∑

m∈Nj

κk,jκk,mρ(µk,j − µn
k,m)}, (2)

which leads to the update step,

µn+1
k,j = µn

k,j −
θ1,kj +

∑
m∈Nj

κk,jκk,mρ′(µk,j − µn
k,m)

θ2,kj +
∑

m∈Nj
κk,jκk,mρ′′(µk,j − µn

k,m)
,

(3)
where the first and second derivative of ρ is computed using
the functional substitution method [2]. θ1,j is a K-dimensional
gradient vector and θ2,j is a K-dimensional diagonal matrix
for voxel index j. The elements of these matrices are computed
as,

θ1,kj =
∑
i

ai,j(ek,iwk,i),

θ2,kj =
∑
i

a2i,jwk,i. (4)

ek is the error sinogram and is maintained separately for every
phase. The error sinogram is first computed as,

ek,i =
∑
j

ai,jµ
0
k,j − yi, (5)

and it is updated after every voxel update,

ek,i = ek,i +∆ek,i,

∆ek,i = ai,j(µ
n+1
k,j − µn

k,j). (6)

The efficiency in the multi-phase reconstruction can be
achieved by reusing the system coefficients ai,j to compute
the error sinogram for all phases. The error sinogram is
then consumed to compute the first and second derivatives
of the cost-function as shown in eq. 4. However, this ap-
proach requires more memory than a sequential processing
or parallel processing. The proposed method requires K M -
dimensional error sinogram, and statistical weight and K N -
dimensional image volume. The efficiency improvement in a
multi-phase framework depends on the number of coefficients
shared amongst the phases. For example, in a clinical scan
with an average heart rate of 65 bpm and gantry rotation
speed of 0.35 s over 984 views, a three phase scan with 5%
phase difference will have total 1080 views. A very crude
calculation of the efficiency ratio using the proposed approach
is η = 642∗3

1080 = 1.78. In the subsequent sections, a more
accurate metric is used to compute the efficiency achieved
with the proposed approach.

B. Memory organization and voxel processing

The update equation in eq. 3 consists of multiple steps
of data operation and memory access in a general computer
model shown in Fig. 3 where the local buffer could be
on-chip SRAM or cache, Mem represents main memory
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Fig. 3. k-dimensional vector update in a general computer.

Fig. 4. Memory organization for a three-phase reconstruction in physical
memory line.

system (off-chip). These steps are summarized as below:

Voxel processing:
1: The system coefficients aij are generated using DD
model and written back to Mem through a-buffer.
2: After fetching operation 1/2/3, θ1 and θ2 are computed
by Eq. 4 for k-dimensional vector, µk.
3: k-dimensional vector, µk and its neighbors are fetched
by operator 4 to compute ρ′ and ρ′′.
4: The k-dimensional vector, µk is updated simultane-
ously by Eq. 3 and is written back to Mem by operator
5.
5: Consequently, the error sinogram is updated using
Eq. 6 by operator 6.

In the above operations, memory access operations 1/2/3/4/5
can take as high as 80% of total computing cost. Therefore,
it is crucial to organize the data in a more efficient way. A
potential memory arrangement is to interlace the phase data
as a package and to store it in a continuous physical memory
line. By using the burst mode, reading weight wx,i at any
phase can also fetch other phase wy,i to fill in one cache line,
which can hide the memory latency to read other phase data.
Fig. 4 demonstrates the memory organization for accessing
data in a three-phase reconstruction. This allows reading one
element which brings in all other elements automatically by
a burst mode to update the 3-dimensional voxel vector using
the shared system matrix coefficients.

Interleaved non-homogeneous (NH) and homogeneous
voxel selection is used to speed up convergence by focusing
the computation where it is most needed [2]. During each

(a) (b) (c)

Fig. 5. IQ comparison of the center slices reconstructed using multi-phase
MBIR and individual MBIR at target phase (75% of the RR cycle). (a) shows
the slice reconstructed by multi-phase MBIR; (b) shows the slice reconstructed
by individual MBIR; (c) shows the reconstruction difference between the
multi-phase MBIR and individual MBIR

non-homogenous update, a set of voxel indices are selected
based on their update magnitudes. In the multi-phase MBIR
framework, the same set of voxel indices is used to update
images from all phases. This set of voxel indices is selected
based on the sum of update magnitudes from all phases as
given below:

m(j) =

K∑
1

|µn+1
k,j − µn

k,j |. (7)

III. EXPERIMENTS AND RESULTS

A. Image quality validation

A cardiac CT clinical data is used to demonstrate the fea-
sibility of multi-phase MBIR image reconstruction. The data
is acquired in GE Discovery 750HD using a pitch of 0.2 with
a gantry rotation speed of 0.35 s. Images are reconstructed
at 66%, 75% and 83% of the RR cycle. Individual MBIR
reconstructions of the phases are also performed to generate
reference results. This comparison is performed to perform a
sanity check on the implementation. It is clear from Eq. 1
that the cost function of a single MBIR reconstruction should
converge to the same image as the multi-phase reconstruction
for a given phase. All the images are reconstructed in a 70
cm field-of-view with a 418 × 418 matrix inside a zROI of
dimension 13. A total of 99 slices are reconstructed as MBIR
requires extra slices to be reconstructed outside the zROI.
4 iterations of ICD are used to reconstruct all the images.
The dimension of the projection data used for multi-phase
and single MBIR reconstruction is , 1080 × 888 × 64 and
642×888×64, respectively. As explained in section II-A, the
size of the error sinogram and statistical weight sinogram for
multi-phase reconstruction is 3×1080×888×64. In contrast,
the size of these sinograms are the same as the projection data
for a single phase MBIR reconstruction.

Fig. 5 and Fig. 6 show the IQ comparison of the central
slice of the zROI using the proposed multi-phase MBIR and
separate MBIR reconstructions at the two phase locations.
Hence a sanity check on the implementation is performed
demonstrating that within the same number of iterations multi-
phase MBIR reconstruction produces IQ comparable to sepa-
rate MBIR reconstructions performed at the given phases.

In Section II , a rough estimation on the acceleration ratio is
presented. A more thorough metric to evaluate the efficiency
gained by doing multi-phase reconstruction over separate
MBIR reconstructions is described here. In the best case
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(a) (b) (c)

Fig. 6. IQ comparison of the center slices reconstructed using multi-phase
MBIR and individual MBIR at right phase (83% of the RR cycle). (a) shows
the slice reconstructed by multi-phase MBIR; (b) shows the slice reconstructed
by individual MBIR; (c) shows the reconstruction difference between the
multi-phase MBIR and individual MBIR

scenario when all the phases share exactly the same number
of views (i.e. axial perfusion CT), fetching one system matrix
coefficient can be reused K (number of phases) times and this
would hold for every fetch operation. However typically this
would depend on the amount of overlap between the phases.
The metric can be specific to every detector element and will
indicate the efficiency of the fetch operation for every detector
element. For the sake of simplicity, this metric is averaged
across all detector elements and is shown in Eq. 8 below.

η =

∑K
k=1

∑
j(
∑

i Ii∈kI(ai,j 6=0))∑
j

∑
i I(ai,j 6=0)

, (8)

where I is an indicator function; I(ai,j 6=0) counts the number
of non-zero geometric coefficients corresponding to the j-
th voxel and i-th detector index. Ii∈k counts the number of
phases that share detector index i. The ratio η is the efficiency
gained due to shared system coefficients. A ratio of 3 demon-
strates the best-case scenario for a 3-phase reconstruction and
with 100% overlap in the views, while in the case of the scan
used in section III-A the efficiency metric is evaluated as 2.3.
This implies that the performance of a 3-phase reconstruction
on the scan used in the previous section will be 3/2.3 ≈ 1.3
times a single phase MBIR reconstruction.

B. Practical efficiency measurement

The multi-phase MBIR algorithm is implemented and is
run on a multi-thread environment to evaluate the actual
improvement in the efficiency. The performance of a 3-phase
MBIR reconstruction is measured to be 3/1.4 = 2.1 times
a single phase MBIR reconstruction. The reason of slower
performance than the predicted one is due to time spent
in memory access. It is to be noted that all the efficiency
metrics computed in the previous sections ignore the memory
access time. Since the multi-phase MBIR reconstructions need
bigger sinograms than a single phase MBIR reconstruction,
the memory access time may have a significant impact in
negating the efficiency gained due to sharing the system matrix
coefficients. In contrast, the best-case performance is measured
to be 3/2.1 = 1.5 times a single phase MBIR reconstruction.
The best-case situation is shown in Fig. I(b).

IV. CONCLUSION

In this paper, a multi-phase MBIR algorithm is presented for
reconstructing data from a multi-phase scan. The multi-phase

scans have overlapping view ranges and as a result the geo-
metric model calculations are shared in the proposed algorithm
reducing the compute time. It is shown that the multi-phase
MBIR algorithm is a better alternative than performing indi-
vidual MBIR reconstructions sequentially without impacting
the final image quality. It is shown that the images obtained
with individual MBIR reconstructions are almost identical to
the images obtained with the multi-phase MBIR reconstruction
algorithm. The minor difference in convergence rate can be
caused due to the fact the update mask used in the non-
homogenous update is different in the two implementations.
The efficiency improvement is measured with a 3 phase
reconstruction at 66%,75%, and 83% using a clinical dataset
on a particular implementation of the algorithm available in-
house. The efficiency is gated by the memory access as the
multi-phase algorithm requires larger arrays for the sinograms.
To optimize the memory access, the data from all the phases is
interlaced into a continuous physical memory line which can
then be accessed in a burst mode to update all the image vol-
umes simultaneously. Finally the measurements are based on
ICD algorithm which is a sequential algorithm and may have
a different memory access pattern than a simultaneous update
algorithms such as PCG, OS-SPS. In addition the efficiency
achieved is highly dependant on the compute platform itself. In
the future, more study is required to evaluate the efficiency for
techniques that are based on simultaneous updates. The image
model used in this study is still an indicator function and can
be expanded to include more kinetic models as proposed in
[8] for cardiac multi-phase scans.
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Multiscale Interior Tomography using 1D
Generalized Total Variation

Minji Lee, John P. Ward, Michael Unser and Jong Chul Ye∗

Abstract—We propose a method for accurate and fast re-
construction of the interior of a 2D or 3D tomographic image
from its incomplete local Radon transform. Unlike the existing
interior tomography work with 2D total variation, the proposed
algorithm guarantees exact recovery using a 1D generalized total
variation semi-norm for regularization. The restrictions placed
on an image by our 1D regularizer are much more relaxed
than those imposed by the 2D regularizer in previous works.
Furthermore, to further accelerate the algorithm up to a level
of clinical use, we propose a multi-resolution reconstruction
method by exploiting the Bedrosian theorem for the Hilbert
transform. More specifically, as the high frequency part of the
image can be quickly recovered using Hilbert transform thanks to
the Bedrosian equality, we show that computationally expensive
iterative reconstruction can be applied only for the low resolution
images in downsampled domain, which significantly reduces
the computational burden. We demonstrate the efficacy of the
algorithm using circular fan-beam and helical cone-beam data.

I. INTRODUCTION

In x-ray computed tomography (CT), reconstruction of
region of interest (ROI) from local projection data has been
called for to reduce radiation exposure in imaging specific
organs such as heart, or to reduce size of x-ray detector for cost
saving. Using the backprojection filtration (BPF) method [1],
it was shown that the ROI that cannot cover the whole object
can be determined uniquely when the intensity of subregions
inside the field of view (FOV) are known a priori [2], [3].
However, in general, it is difficult to know the intensity inside
the object. Consequently, using the 2D total variation, the
authors in [4] showed that unique reconstruction is possible
if the images are piecewise constant. In those papers, while
the images were assumed to be piecewise polynomial, the
regularization term was 2D and fairly complex, which led the
authors to focus on piecewise linear images [5]. Furthermore,
the iterative procedure to reconstruct the interior images under
the regularization is quite complicated, which prohibits its use
in clinical environment.

As in those papers, we seek to reconstruct images that are
piecewise smooth; i.e., the domain where the image is defined
can be decomposed into a finite number of subdomains such
that the image is a smooth function on each piece. However,
our approach generalizes the ideas developed in [5] with a
simplified 1D formulation, and as a result, we are able to
perfectly reconstruct new classes of functions. In particular, we
can reconstruct any image that is a generalized L-spline along
a collection of lines passing through the region of interest.

M. Lee and J. C. Ye are with Bio Imaging & Signal Processing Lab,
Department of Bio & Brain Engineering, KAIST, Korea. J. P. Ward and M.
Unser are with Bioimaging Group, EPFL, Switzerland.

Here L is a differential operator that can be more general
than an n-th order derivative. For example, we can reconstruct
images whose 1D restrictions are non-polynomial exponential
B-splines, and which are not covered by the previous works.

To further accelerate the algorithm up to a level of clinical
use, we propose a multi-scale reconstruction method that
separately reconstructs low frequency part and high frequency
part of the 1D signal at different resolution. More specifically,
thank to the Bedrosian equality for the Hilbert transform, even
for the truncated Hilbert transform, we can show that high
frequency part of the signal can be recovered accurately using
one step Hilbert transform. Therefore, the computationally
expensive iterative reconstruction can be performed only to
reconstruct the low frequency part of the signal after down-
sampling, which allows its fast implementation. We verify the
efficacy of the algorithm using 2D fan-beam and 3D cone-
beam reconstruction with realistic acquisition parameters.

II. MATHEMATICAL BACKGROUNDS

A. Differentiated Backprojection and Hilbert Transform

In helical cone-beam CT, the scanning trajectory is ex-
pressed as

r⃗0(λ) =

(
R cos(λ), R sin(λ),

h

2π
λ

)T

, (1)

where λ is the rotation angle of x-ray source, R the distance
from the source to rotation axis, and h the pitch of helical
trajectory. If h = 0, the acquisition geometry is reduced to a
2D fan-beam geometry. From helical cone-beam scanning, we
can get the cone-beam projection data of a 3D object function
f(r⃗), and it can be expressed as

P (r⃗0, β̂) =

∫ ∞

0

ds f(r⃗0 + sβ̂), β̂ ∈ S2 (2)

with the unit vector β̂ of projection direction from a x-
ray source location at r⃗0. From this projection data, the
differentiated backprojection (DBP) at the 3D point r⃗ can be
computed by [1]

g(r⃗) =
−1
2π

∫ λ2

λ1

dλ

|r⃗ − r⃗0(λ)|
∂

∂q
P
(
r⃗0(q), β̂(λ, r⃗)

)∣∣∣∣
q=λ

.

(3)
In this equation, ∂

∂qP
(
r⃗0(q), β̂(λ, r⃗)

)∣∣∣
q=λ

means differen-

tiation of projection with respect to the source trajectory,
and

∫ λ2

λ1

dλ
|r⃗−r⃗0(λ)| refers the backprojection with cone-beam

weighing. Here, λ1 and λ2 are determined by a PI line through
r⃗. This PI line is unique for any point inside the helix, so
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there must be unique λ1 and λ2 for r⃗. Now, with a slight
abuse of notation, if we define DBP data and attenuation image
restricted on the PI line as

g(x) := g (r⃗0(λ1) + x(r⃗0(λ2)− r⃗0(λ1))) (4)
f(x) := f (r⃗0(λ1) + x(r⃗0(λ2)− r⃗0(λ1))) . (5)

Then, we have the following 1D Hilbert transform relationship

g(x) =
1

π
P.V.

∫ ∞

−∞

dx′

x− x′ f(x
′) = Hf(x) (6)

where P.V. denotes the Cauchy principal value. For the case
of 2D fan-beam geometry, the PI line is not unique and we can
choose infinitely many PI lines that pass through r⃗. Among
these, we use a set of PI lines that are parallel to each other
to simplify the implementation.

B. Interior Tomography Formulation

If the DBP data g(x) is available for all x, the reconstruction
of f(x) can be simply done by performing inverse Hilbert
transform H−1, which is equal to −H. However, in the case
of interior tomography problem, the detector is truncated; so,
the DBP data is only available within xı(e1, e2). The main
problem of such truncated Hilbert transform is the existence
of the null space. More specifically, there exists non-zero ν(x)
such that

Hν(x) = 0, x ∈ (e1, e2) . (7)

Indeed, ν(x) can be expressed using an appropriate DBP data
h(x) outside of the ROI:

ν(x) = − 1

π

∫
R\(e1,e2)

dx′

x− x′h(x
′) . (8)

Then, a required interior tomography formulation is to find
an appropriate regularization term that suppresses the signal
belonging to the null space of the truncated Hilbert transform.
Note that ν(x) in (8) is differentiable in any order due to the
removal of the origin in the integrand.

III. MAIN CONTRIBUTIONS

A. Exact Recovery under Generalized TV Penalty

To generalize the TV to meet the goal, we consider a
regularization with respect to a Fourier multiplier operator L
that is defined on L2(R) and satisfies two conditions. First, for
any interval E = (e1, e2) ⊂ R, we require L to map C∞

c (E)
to Cc(E). Second, the null space of L, denoted as NL, should
consist of entire functions. An example of such an operator is
a constant coefficient differential operator

L := aKDK + aK−1D
K−1 + . . .+ a1D+ a0 (9)

where K ≥ 1, D denotes the distributional derivative on
R, and each ak is a real number. In this example, the
finite-dimensional null space consists of linear combinations
of exponential functions multiplied by polynomials. For an
operator L and an interval E ⊂ R, we formally define the
generalized total variation semi-norm

∥f∥TV (L;E) := ∥Lf∥L1(E) (10)

which is valid when Lf ∈ L1(E). In order to ensure that this
semi-norm is valid for a larger class of functions, we use the
dual formulation

∥f∥TV (L;E) := sup
h∈Ch

∫
E

f(x)L∗h(x)dx (11)

where Ch = {h ∈ C∞
c (E), ∥h∥L∞ ≤ 1}. As in [4], our

results are based on the fact that ν(x) in (8) is infinitely
smooth in E. Suppose, furthermore, the signal f(x) to be
reconstructed is a generalized L-spline, where L is a finite-
order operator. It is this disparity between the infinitely smooth
ν(x) and the finitely smooth f(x) that allows us to have
perfect reconstruction.

Theorem 1. Let f0(x) be a generalized L-spline such that

Lf0(x) =
N∑

n=1

anδ(x− xn) (12)

on E. Then, the following minimization problem

argmin
f

∥f∥TV (L;E) subject to Hf0(x) = Hf(x), x ∈ E

has the unique solution equal to f0(x).

B. Multi-Resolution Decomposition Using Bedrosian Equality

Unlike the previous works [5], our regularization is based
on 1D TV semi-norm. Therefore, the optimization problem is
much less complex. In addition, we now propose a multi-scale
decomposition method that further reduces the computational
complexity.

1) Low frequency reconstruction: To reconstruct f(x) from
its truncated Hilbert transform, we split it into low-pass and
high-pass components. This is accomplished by convolving
with a function ϕ whose Fourier transform Φ satisfies:

• For some ω0 > 0, Φ(ω) = 1 when |ω| < ω0 and Φ(ω)
has fast decay for |ω| > ω0;

• Φ is even, smooth, and decreasing for |ω| > ω0

In this paper, we use a spline for ϕ. Then, the low-pass
component fL(x) is given by convolving a−1

f ϕ(af ) with f(x),
for some dilation factor af > 0. This can be easily imple-
mented using spline wavelet transform and taking the lowest
band signal. Furthermore, the low-pass component fL(x) can
be recovered from the corresponding low-pass component of
the DBP data g(x) since the Hilbert transform preserves the
bandwidth as observed in

G(ω) = F{Hf}(ω) = −i sgn(ω)F (ω). (13)

Thanks to (13), we can reconstruct the fL(x) from the down
sampled DBP data gL(x). For the recovery of the resulting
low-pass band fL(x), we make the following assumption.

Assumption 1. fL is well modeled as an L-spline for some
Fourier multiplier operator L.

Under this assumption, fL is reconstructed using the it-
erative algorithm with TV semi-norm regularization. The
implementation of the iterative step will be explained in detail
later.
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2) High frequency reconstruction: After reconstructing
fL(x), the high-pass component fH(x) is the complement.
Note in particular that the Fourier transform of fH is iden-
tically zero in a neighborhood of the origin. This allows us
to compute fH using Bedrosian’s theorem for the Hilbert
transform.

Theorem 2 (Bedrosian). Let f, g ∈ L2(R). Suppose that the
Fourier transform of f , denoted by F (ω), vanishes for |ω| >
ω0, with ω0 > 0, and the Fourier transform of g, denoted by
G(ω), vanishes for |ω| < ω0; then

H{f(x)g(x)} = f(x)Hg(x) . (14)

Since we only have exact data for Hf(x) on a restricted
interval E = (e1, e2), we apply a band-limited finite length
window w(x) before computing the inverse Hilbert transform.
Bedrosian’s theorem implies that

w(x)gH(x) = w(x)HfH(x) = H{w(x)fH(x)} (15)

as long as the support of W (w) is contained in a neighborhood
of the origin that is disjoint from the support of FH(w). Here,
we use the characteristic function of the interval E = (e1, e2).
Solving for fH in (15), we get

fH(x) =
−H{w(x)gH(x)}

w(x)
, x ∈ E . (16)

IV. IMPLEMENTATION

A. Low Frequency Signal Reconstruction

To recover the low frequency signal, we first take down-
sampling of the original DBP by wavelet decomposition and
taking the lowest frequency band (see Fig. 1). From the
downsampled DBP signal, the low frequency part of signal
is reconstructed using projection onto convex sets (POCS)
algorithm, and the reconstructed signal is then upsampled to
the original resolution signals. This procedure takes much less
time than iterative reconstruction of the original full-resolution
DBP signal. For POCS implementation, the following five
convex constraint sets are used:

C1 = {f(x) ∈ L2(R) : f(x) = 0, x /∈ (b1, b2)}
C2 = {f(x) ∈ L2(R) : Hf(x) = g(x), x ∈ (e1, e2)}
C3 = {f(x) ∈ L2(R) : ∥f∥TV (L;E) ≤ τ}
C4 = {f(x) ∈ L2(R) :

∫ b2
b1

dxf(x) = P (r⃗0(λ1), β̂(λ1, r⃗))}
C5 = {f(x) ∈ L2(R) : f(x) ≥ 0,∀x},

Here, (b1, b2) denotes the approximate object boundary. The
projection to each constraint is quite straightforward except
for the projection on C3, the generalized TV norm constraint.
It turns out that the projection on C3 from a point f0 can be
implemented as the following denoising step.

f̂ = argmin
f

{
∥f − f0∥22 + 2λ∥f∥TV (L;E)

}
(17)

for an appropriate Lagrangian parameter. Using the definition
of the generalized TV semi-norm, the optimization problem is
given by

sup
h∈Ch

min
f

{
∥f − f0∥22 + 2λ⟨f,L∗h⟩

}
, (18)

whose optimal solution of the inner minimization is given by
f̂ = f0 − λL∗h. So, (18) can be reformulated with respect to
the dual variable:

min
h∈Ch

{
λ2∥L∗h∥2L2(E) − 2λ⟨f0,L∗h⟩

}
. (19)

Then, the optimal solution ĥ can be obtained by gradient
projection method

hk = PCh
(hk−1 − 2tkλL (λL∗hk−1 − f0)) (20)

when tk denotes the k-th step size, PCh
denotes the projection

on the convex set Ch, and 2λL(λL∗h− f0) is the gradient of
the cost function in (19). For super-linear convergence rate,
we implement the algorithm based on Nestrov method.

Fig. 1. Multi-resolution reconstruction flowchart.

B. High Frequency Signal Reconstruction

After low frequency reconstruction, the reconstructed low
frequency signal is upsampled using wavelet reconstruction.
The upsampled low resolution image is then transformed using
Hilbert transform to extract the high frequency residual DBP
signals. Then, the resulting high frequency residual signal
is applied to an inverse Hilbert transform to obtain high
frequency signal. Finally by adding the reconstructions of low
and high frequency, we can get the interior tomography with
the original resolution (see Fig. 1).

V. NUMERICAL RESULTS

A. Circular Fan-Beam CT

The first reconstruction result was obtained with circular
fan-beam projection. The 2D phantom is 512×512 size with
1×1 mm2 size pixel. The number of detector array is 400 with
1 mm pitch, and the number of views is 1200. The distance
from source to rotation axis is 800 mm, and the distance from
source to detector is 1400 mm. The radius of FOV is about 113
mm, so for each PI line, the truncation rate (length of support
divided by length of FOV) is from 0 to 0.95. In Fig. 2, the first
image in (a) is the original ground truth. Fig. 2(b)(c) show the
low and high frequency reconstruction images respectively,
and the final reconstruction is shown in Fig. 2(d), which is
nearly identical to the original signal.

B. Helical Cone-Beam CT

The second simulation is 3D cone-beam CT with helical
trajectory. The resolution of the phantom is 512×512×512
voxels with voxel size 1×1×1 mm3. The distances from
source to rotation axis and from source to detector are same
with the circular fan-beam simulation. The detector resolution
is 450×109 pixels with pitch of 1×1 mm2, so the radius of
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(a) Ground truth (b) fL

(c) fH (d) fL + fH

Fig. 2. 2D fan-beam reconstruction: (a) ground truth, (b) low frequency
signal reconstruction, (c) high frequency signal reconstruction, and (d) the
final reconstruction result.

FOV is about 127 mm. For helical scanning trajectory, the
number of rotations is 3, the helical pitch h is 100 mm, and
the number of views is 1200 per rotation. First, the object was
reconstructed in PI line space, and then by regridding process,
the final reconstruction of about 250 slices was obtained.

Fig. 3 is the reconstruction result in FOV for the helical
cone-beam CT. Even for helical cone-beam CT, the original
3D problem can be converted into many 1D problems on the
PI line, so what we need to do is repeat the 1D reconstruction
processes for all PI lines. In the first column, transection,
coronal, and sagittal planes are shown, and for each row, the
line profile whose location is indicated by white line in the
plane image was plotted. The total computational time was
less than 14 minutes, which corresponds to about 3 seconds
for each slice.

VI. CONCLUSIONS

Using the differentiated back projection, an interior to-
mography problem in 2D or 3D can be converted to a 1D
truncated Hilbert transform problem. Due to the existence of
the null space in the truncated Hilbert transform, appropriate
regularization is necessary. To overcome the complexity and
restriction of the existing 2D-TV regularization approach,
this paper proved that 1D generalized TV semi-norm penalty
is more relaxed but still sufficient to guarantee the perfect
recovery. Moreover, by exploring the Bedrosian theorem,
we demonstrated that the computational expensive iterative
reconstruction can be performed at very coarse resolution,
which significantly reduces the computational complexity. The
simulation result shows the proposed algorithm can produce

Fig. 3. Reconstruction images and line profiles with 3D inner organ phantom
and helical cone-beam scanning

high quality reconstruction for both 2D and 3D geometries,
and its computational time can be significantly reduced down
to practical level even for helical cone-beam CT.
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Application of incremental algorithms to CT image
reconstruction for sparse-view, noisy data

Sean Rose1, Martin S. Andersen2, Emil Y. Sidky1, and Xiaochuan Pan1

Abstract—This conference contribution adapts an incre-
mental framework for solving optimization problems of in-
terest for sparse-view CT. From the incremental framework
two algorithms are derived: one that combines a damped
form of the algebraic reconstruction technique (ART) with
a total-variation (TV) projection, and one that employs a
modified damped ART, accounting for a weighted-quadratic
data fidelity term, combined with TV projection. The
algorithms are demonstrated on simulated, noisy, sparse-
view CT data.

I. INTRODUCTION

In iterative image reconstruction (IIR) there can be
a large disconnect between practical iterative algorithms
and the optimization problems that motivate their design.
Particularly for image reconstruction from sparse-view
CT data with its associated ill-conditioned linear system
model, the number of required iterations for accurate
solvers of relevant optimization problems can be much
greater than 1,000. When iteration numbers are this large,
the trajectory of the image estimates can be quite impor-
tant because practical application of IIR dictates iteration
numbers on the order of ten – well short of convergence.

The usual strategy for obtaining useful images rapidly
is to employ algorithms that process the data sequentially
[1,2]. In particular, for sparse-view CT we have been de-
veloping the adaptive-steepest-descent - projection-onto-
convex-sets (ASD-POCS) algorithm [3], which is sequen-
tial in that it employs ART for the data agreement step.
The algorithm has been shown to yield useful images
at low iteration numbers [4]. While we have also used
ASD-POCS for accurate solution of constrained TV-
minimization, the algorithm is not guaranteed to converge
and parameter selection is not straight-forward when ac-
curate solution is desired.

Recently, an incremental framework [5,6] has been
developed from which sequential iterative algorithms can
be derived that both yield useful images at low iteration
numbers and converge to the solution of a designed
optimization problem. The reason why such a framework

1The University of Chicago, Department of Radiology MC-2026,
5841 S. Maryland Avenue, Chicago IL, 60637.

2Technical University of Denmark, Department of Applied Mathe-
matics and Computer Science, Lyngby, Denmark

can be helpful for IIR algorithm development is that many
design principles such as maximum entropy, maximum
likelihood (ML), and sparsity exploitation are a form of
optimization. It is not clear that truncating the iteration
of the optimization problem solver will yield images
that reflect the intentions of the designed optimization
problem. With the incremental framework, where initial
convergence is rapid, there may be a stronger link between
early image estimates and the solution to the designed
optimization.

In this work, we motivate and investigate the use of
TV-constrained data-discrepancy minimization for sparse-
view image reconstruction from noisy CT data. Two
different data agreement terms are compared: a Euclidean
distance between estimated data and input data, and a
weighted quadratic where the weighting reflects the model
used for generating the simulated noise. Accurate solution
of the designed optimization, solved using the Chambolle-
Pock (CP) algorithm, is compared to image estimates
obtained at low iteration numbers for algorithms derived
from the incremental framework.

II. M ETHODS

Using a generic linear model for X-ray projection

g = X f , (1)

ideal gradient magnitude image (GMI) sparsity exploiting
image reconstruction is formulated as

f∗ = arg min
f

‖∇f‖1 such thatX f = g, (2)

where X is the system matrix representing X-ray pro-
jection; f is the image,g is the sinogram;∇ is a finite
differencing implementation of the spatial gradient of the
image; and the objective function‖∇f‖1 is the TV of
the imagef . The specified optimization problem seeks,
among all images that agree with the data perfectly, the
one with minimum TV. When noise or other inconsistency
is present in the data, the strict equality of Eq. (2) cannot
be satisfied and this constraint must be relaxed

f∗ = arg min
f

‖∇f‖1 such that‖X f − g‖2 ≤ ǫ, (3)

where ǫ is a parameter of the optimization that puts a
tolerance on the allowable data discrepancy. While this
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optimization problem can be used for GMI sparsity-
exploiting image reconstruction, it is somewhat inconve-
nient in that the parameterǫ must be searched.

For this work, we formulate the GMI sparsity exploiting
optimization with a constraint on the TV instead of the
data discrepancy

f∗ = arg min
f

1

2
‖X f − g‖22 such that‖∇f‖1 ≤ γ, (4)

where now the parameterγ constrains the image TV. This
form is particularly convenient for phantom studies to
test the effectiveness of GMI sparsity-exploiting image
reconstruction, becauseγ can be set to the value derived
from the test phantom. In this way, both ideal and noisy
data studies can be conducted using Eq. (4). In the ideal
case the data fidelity term can be driven to zero, while
in the noisy case the objective minimum will likely be
nonzero and positive. Moreover, employing a TV con-
straint allows easy comparison of GMI sparsity-exploiting
image reconstruction with different data fidelity terms. As
an example of such an alternative, which we investigate
below, we employ the maximum-likelihood data fidelity
for uncorrelated Gaussian noise

f∗ = arg min
f

1

2
(X f − g)T diag(v)−1(X f − g)

such that ‖∇f‖1 ≤ γ, (5)

wherev represents the variance of the data noise model.
All of the optimizations stated above can be solved

by a first-order algorithm such as that of Chambolle and
Pock [7,8], but the required iteration number for a useful
image can be large. One can also employ the incremental
framework to derive sequential algorithms that solve both
Eqs. (4) and (5). Following Ref. [6], we write down in
Algorithm 1 an instance of an incremental algorithm for
the optimization problem in Eq. (5).

III. R ESULTS

Fig. 1. Breast phantom for CT and its corresponding gradient-
magnitude image (GMI). Left is the linear attenuation map of the
phantom in the gray scale window [0.174,0.253] cm−1. Right is the
GMI [0.0,0.1] cm−1 that serves to illustrate that the test phantom is
sparse in the GMI.

Algorithm 1 Pseudocode for N steps of an incremental
algorithm instance for solving the TV-constrained opti-
mization problem in Eq. (5). Note that this algorithm
also applies to Eq. (4) by settingv = 1. The integer
M is the total number of measurements in the sinogram.
The parameterst0, ρ andα all affect rate of convergence,
but for the simulations here where iteration numbers are
low, ρ and α are fixed to one and zero, respectively.
The parametert0 is determined by the value that yields
the smallest data discrepancy within a fixed number of
iterations. The parameterγ belongs to the optimization
problem, and for the simulations presented here it is
always set to the TV of the test phantom. The projection
in line 14, which finds the image closest tohM with TV
less than or equal toγ, is carried out by the CP algorithm
[7,8].

1: select algorithm parameters:
2: t0 ∈ (0,∞); ρ ∈ (0, 2); α ∈ [0, 1]
3: select TV constraint parameterγ
4: initialize f0
5: n← 0
6: repeat
7: h0 ← fn
8: tn ← t0/(n + 1)α

9: i← 0
10: repeat
11: hi+1 ← hi − ρxi

(x
T

i
hi−gi)

‖xi‖2

2
+vi/tn

12: i← i + 1
13: until i ≥M
14: fn+1 ← ρproj{f |‖∇f‖1≤γ}(hM ) + (1− ρ)hM

15: n← n + 1
16: until n ≥ N

To demonstrate the utility of the Algorithm 1, we
conduct image reconstruction studies with ideal and noise
sparse-view projection data. The digital phantom shown
in Fig. 1 emulates breast CT and it consists of 256×256
pixel array. For the ideal data study, the projection data
are obtained by use of Eq. (1) so that the system matrix
employed in data generation and image reconstruction are
identical. The projection data consist of 100 projections
onto a 512-bin linear detector array. The source-detector
and source-isocenter distances are modeled to be 72cm
and 36cm, respectively. The sampling of this configuration
is clearly not sufficient for direct or implicit inversion of
Eq. (1) because the number of image pixels exceeds the
number of measurements.

a) Noiseless study: Exploiting GMI sparsity with
TV-constrained optimization, we solve Eq. (4) setting
γ = γ0, the true value obtained from the test phantom.
We state without showing results that the true phantom can
be recovered exactly in the numerical sense under these
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Fig. 2. Progression of image estimates for both CP and incremental
algorithms for the case of noiseless projection data. The iteration
number is indicated in each panel.

conditions. The more important point for our purpose is
how quickly can a useful image be obtained. We solve Eq.
(4) by use of both CP and the incremental instance shown
in Algorithm 1, settingv = 1. Intermediate iterates are
shown up to 50 iterations in Fig. 2. One can immediately
see the advantage of Algorithm 1 as a visually accurate
reconstruction appears already at 10 iterations while the
CP results are not close to the phantom for any of the
shown images. This difference is not specific to these two
algorithms. Rather it stems from a well-known feature of
algorithms that process the data sequentially versus those
that do not. The point of interest here is that we have
the rapid initial convergence with Algorithm 1, and as
the iterations continue the image estimate is guaranteed
to converge to a solution of Eq. (4).

b) Noisy study: For the remainder of the results, im-
age reconstruction is performed on simulated data includ-
ing noise. The same discrete-to-discrete model generates
the mean sinogram, but noise realizations are drawn from
a Gaussian distribution, where the covariance is taken to
be diagonal and the variance at each sample is the one over
the transmitted number of photons. The integrated incident

number of photons per view per detector bin is modeled
to be 2×105, corresponding to a fairly low intensity that
might be used in an actual breast CT scan. In this simu-
lation the only source of inconsistency is due to the noise
model, and we know exactly what probability distribution
function governs the noise realization selection. All other
sources of inconsistency: continuous object model, beam
hardening, scatter, partial volume averaging, etc., which
would be present in actual CT data are suppressed. In this
way, we can isolate and address two questions: (1) within
the parameters of the simulation what is the impact of
using the ML motivated weighted quadratic in Eq. (5)
as opposed to the isotropic quadratic of Eq. (4) in terms
of the solution to the respective optimization problems,
and (2) if there is difference between solutions of these
problems, will this difference be reflected in the images
generated by Algorithm 1 when the iteration is severely
truncated, i.e. 10 to 20 iterations.

isotropic:v = 1 weighted:v = 1/Nph

Fig. 3. Image standard deviation (top row, [0.0,0.005] cm−1) and mean
(bottom row, [0.174,0.253] cm−1) estimated from accurate solution of
Eq. (5) for 1000 realizations of noisy data. The left and right columns
correspond respectively to an isotropic data fidelity and a one-over-
transmission-intensity (1/Nph) weighted quadratic motivated by the
ML principle. The mean image RMSE from the truth is 2.19×10

−3

cm−1, left, and 2.10×10
−3 cm−1, right.

Employing the CP algorithm, the mean and standard
deviation of the solution to Eq. (5) usingγ = γ0,
the true TV of the phantom, are estimated from 1000
noise realizations and are shown in Fig. 3. The bias for
both isotropic and ML weighting is low as both image
means are visually close to the phantom. The estimated
standard deviation images are more interesting, showing
structure that reflects the object. In both cases the image
standard deviation is reduced dramatically by the use
of the TV constraint except for at pixels near to those
corresponding to nonzero values of the phantom’s GMI.
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This phenomenon was also observed in the fully sampled
case in Ref. [9]. We do observe a difference in the
background of these images and it does appear that the
ML weighting yields a lower standard deviation in the
middle of the image. Going toward the image periphery,
the isotropic weighting appears to result in a slightly lower
standard deviation. Overall, the ML weighting lowers
the image standard deviation with respect to isotropic
weighting without increasing bias.

isotropic:v = 1 weighted:v = 1/Nph

Fig. 4. Same as Fig. 3 except that results are obtained after 20
iterations of Algorithm 1. For both isotropic and ML weighting, the
algorithmt0 is selected to yield the lowest value of the data fidelity at
the last iteration. The mean image RMSE from the truth is 3.14×10

−3

cm−1, left, and 2.21×10
−3 cm−1, right.

Turning to the use of Algorithm 1, we have verified
(results not shown) using a single noise realization that we
obtain an accurate solution to Eq. (5) in 1000 iterations.
The interest here, however, is in use of Algorithm 1 at low
iteration number. A parallel set of results are shown in
Fig. 4 obtained by use of Algorithm 1 and stopping at 20
iterations. Again the TV constraint is set to the phantom
TV, but because the iteration is truncated an additional
parametert0 has a large effect on the reconstructed image.
For this preliminary work we have selected this parameter
as described in the figure caption, but there is a bias-
variance trade-off associated witht0, which would need
to be fully explored for a more complete understanding.
Nevertheless we do observe an effect of the different
weightings even though the iteration is severely truncated.
The ML weighting for the givent0 settings yields a
visually lower standard deviation background and a lower
RMSE between mean and phantom.

IV. SUMMARY

We have applied the incremental framework of Refs.
[5,6] to generate an algorithm instance of TV constrained,

data discrepancy minimization for CT image reconstruc-
tion. The algorithm yields an accurate solution to the
designed optimization problem at large iteration numbers
and can provide a useful image at low iteration numbers.
To demonstrate the utility of this framework, we apply the
algorithm to two different TV constrained optimization
problems with different data discrepancy terms. We ob-
serve with preliminary results from a controlled simulation
that at low iteration numbers we may be able to (1)
accurately recover the image from under-sampled data by
use of the TV constraint and (2) obtain a more favorable
variance-bias trade-off by use of the weighted quadratic
term.

V. ACKNOWLEDGMENT

MSK was supported by Grant No. ERC-2011-ADG
20110209 from the European Research Council. This
work was also supported in part by NIH R01 Grant Nos.
CA158446, CA120540, and EB000225. The contents of
this article are solely the responsibility of the authors
and do not necessarily represent the official views of the
National Institutes of Health.

REFERENCES

[1] R. Gordon, R. Bender, and G. T. Herman, “Algebraic reconstruc-
tion techniques (ART) for three-dimensional electron microscopy
and X-ray photography,”J. Theor. Biol., vol. 29, pp. 471–481,
1970.

[2] J. Qi and R. M. Leahy, “Iterative reconstruction techniques in
emission computed tomography,”Phys. Med. Biol., vol. 51, no.
15, pp. R541–R578, 2006.

[3] E. Y. Sidky and X. Pan, “Image reconstruction in circular
cone-beam computed tomography by constrained, total-variation
minimization,” Phys. Med. Biol., vol. 53, pp. 4777–4807, 2008.

[4] E. Y. Sidky, X. Pan, I. Reiser, R. M. Nishikawa, R. H. Moore, and
D. B. Kopans, “Enhanced imaging of microcalcifications in dig-
ital breast tomosynthesis through improved image-reconstruction
algorithms,” Med. Phys., vol. 36, pp. 4920–4932, 2009.

[5] D. P. Bertsekas, “Incremental proximal methods for large scale
convex optimization,” Math. Program., vol. 129, pp. 163–195,
2011.

[6] M. S. Andersen and P. C. Hansen, “Generalized row-action
methods for tomographic imaging,”Numer. Alg., pp. 1–24, 2013,
http://dx.doi.org/10.1007/s11075-013-9778-8.

[7] A. Chambolle and T. Pock, “A first-order primal-dual algorithm
for convex problems with applications to imaging,”J. Math. Imag.
Vis., vol. 40, pp. 120–145, 2011.

[8] E. Y. Sidky, J. H. Jørgensen, and X. Pan, “Convex optimization
problem prototyping for image reconstruction in computed tomog-
raphy with the Chambolle-Pock algorithm,”Phys. Med. Biol., vol.
57, pp. 3065–3091, 2012.
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GPU Accelerated Structure-Exploiting Matched
Forward and Back Projection for Algebraic Iterative

Cone Beam CT Reconstruction
William M. Thompson and William R. B. Lionheart

Abstract—Algebraic iterative reconstruction algorithms have
been the subject of much research into problems of limited data
CT reconstruction. However, their use for practical problems,
particularly for high resolution systems and corresponding large
volume sizes, has often been considered unfeasible due to their
high computational demands. For cone beam geometry, we
present a highly parallel adaptation of Siddon’s algorithm for
discrete forward and back projection, based on exploitation of
structure in the pattern of the cone beam rays. The proposed
algorithm has been implemented for nVidia GPUs using CUDA,
resulting in speedup of an order of magnitude when tested against
a non-structure exploiting parallel CPU implementation of Ja-
cobs’ algorithm. The work is presented in the context of circular
scan, flat panel detector micro CT, but could easily be adapted
to other scanning trajectories and detector configurations.

I. INTRODUCTION

Cone beam x-ray micro CT is now a widely-used imaging
technique in materials science [1], and also in other appli-
cations such as non-destructive testing, oil exploration and
semiconductor manufacture for example. In such applications,
there is currently a drive towards faster acquisition times,
motivated by a variety of reasons including higher through-
put scanning, dose reduction and higher temporal resolution
four dimensional imaging. To this end, the use of algebraic
iterative reconstruction algorithms involving total variation
(TV) minimisation (e.g. [2], [3]) is the subject of much
current research. Such algorithms have particularly high utility
in these applications, as objects of interest often consist of
homogeneous materials with a piecewise constant structure. A
typical problem may involve calculating distribution of pore
sizes based on analysis of a segmented volume, for example.

At the core of any algebraic iterative reconstruction algo-
rithm are the projection matrix A, and its transpose, represent-
ing back projection; these are formed from a discrete model
of the projection process, for which many choices exist. A
common choice is to represent the rays as straight lines, and
to consider the lengths of intersection with a regular grid of
voxels. Then the discrete forward projection of the nth ray is
given by

pn =
∑
i,j,k

ln(i, j, k)x(i, j, k), (1)

where ln(i, j, k) represents the length of intersection, and
x(i, j, k) is the value of the CT attenuation coefficient function

Henry Moseley X-ray Imaging Facility and School of Mathematics, Univer-
sity of Manchester. Corresponding author: William R. B. Lionheart, E-mail:
bill.lionheart@manchester.ac.uk.

in the voxel with x, y and z indices (i, j, k). All such ln(i, j, k)
together form the projection matrix A; however, due to the
size of the system, these values are usually not stored but are
computed on the fly during forward or back projection.

Siddon’s algorithm [4] gives an efficient way to calculate
the values of ln(i, j, k) by following rays through the volume.
Subsequent work ([5], [6], [7], [8]) has refined Siddon’s
algorithm somewhat, and more recently, a new approach has
been proposed [9]. However, all of these methods are presented
in the general case of a single ray, and do not exploit any
structure in the pattern of multiple rays.

A typical cone-beam micro CT scanner consists of a micro-
focus x-ray source located opposite a square flat panel de-
tector; the object under inspection is rotated in the path of
the beam to change the projection angle. Typical detector
resolutions can be 2048×2048 pixels or higher, with resulting
reconstructed volume size of 20483 voxels; therefore, in order
to enable algebraic iterative reconstruction of realistically sized
experimental data sets within reasonable time scales, it is
essential to make the discrete forward and back projection
operations as fast as possible. For this reason, in practical ap-
plications it is often the case that a different discrete model is
used for back projection than that used for forward projection.
In such cases, the matrix representing back projection is not
the exact transpose of the projection matrix, which may have
a negative impact on algorithm convergence. Our work has
focused on implementations where the same model is used
for both, creating a matched forward and back projector pair.

The work presented here discusses acceleration of Siddon’s
algorithm in the cone beam case, by exploiting structure
in the rays. Although the work is presented in the specific
case of a flat panel detector, the method is also equally
applicable to curved detectors. The work is presented in the
context of forward projection, but it should be noted that the
implementation of the corresponding matched back projector
uses the same method for the calculation of the ray-voxel
intersection lengths, but with obvious differences in how these
are used.

II. SIDDON’S ALGORITHM

Siddon noted that since most of the ln(i, j, k) are zero,
rather than summing (1) over all voxels, it is much more
efficient to follow the path of each ray through the volume,
summing over only the non-zero values.

Considering only the two-dimensional case initially, and
adopting the notation of [5], let a ray have end points
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Fig. 1: Parametric representation of rays in Siddon’s algorithm

p1 = (p1x, p1y) and p2 = (p2x, p2y), and assume p1x 6= p2x
and p1y 6= p2y; the degenerate cases can be handled trivially.
Let p = (px, py) be any point along the ray; then we have the
parametric representation

px(α) = p1x + α(p2x − p1x), (2)
py(α) = p1y + α(p2y − p1y), (3)

where α ∈ R and α ∈ [0, 1] for points on the ray between p1
and p2.

Without loss of generality, assume that the reconstruction
grid consists of isotropic cubic voxels of unit size, with the
grid origin at the lower left corner. In reality, the source and
detector geometry can be simply scaled and translated to fit.
Define the grid by its edges, the surfaces x = i and y = j,
where i ∈ {0, . . . , Nx} and j ∈ {0, . . . , Ny}, and denote these
respectively as the x and y planes.

Let αx(i) and αy(j) represent the α values at the intersec-
tion points of the ray with the ith x plane and jth y plane, as
shown in figure 1; then

αx(i) =
i− p1x
p2x − p1x

, αy(j) =
j − p1y
p2y − p1y

. (4)

Note that these points are not restricted to intersections lying
within the grid.

Denote the values of α at the ray’s grid entry and exit points
by αmin and αmax. These may be calculated easily from the αx
and αy values at the grid extremities. Denote the indices of
the first intersected x and y planes after the ray enters the grid
by respectively imin and jmin. Similarly, denote the indices of
the last intersected x and y planes, up to and including the
grid edge, by respectively imax and jmax. Again, these may be
calculated from the αx and αy values at the grid extremities.

Using these calculated indices, we now form arrays αx[.]
and αy[.] containing the α values of every intersection point
of the ray with the x and y planes:

αx[imin, . . . , imax] = [αx(imin), . . . , αx(imax)], (5)
αy[jmin, . . . , jmax] = [αy(jmin), . . . , αy(jmax)]. (6)

We then sort the elements of
{
αmin, αx[.], αy[.]

}
in ascending

order, forming the single array αxy[.], containing the α values
of every intersection point of the ray with the grid edges, in
monotonically increasing order. Note that in the construction

of the αxy[.] array, duplicate values of αx and αy are not
included. These values correspond to intersections of the ray
with the corner (or in 3D, also an edge) of a voxel.

Now we loop through all points in the αxy[.] array and
calculate the x and y voxel indices and intersection lengths.
For each m ∈ {1, . . . , Nv}, where Nv is the total number of
intersections, the x and y indices im and jm are given by

im =

⌊
px

(
αxy[m] + αxy[m− 1]

2

)⌋
, (7)

jm =

⌊
py

(
αxy[m] + αxy[m− 1]

2

)⌋
. (8)

Then the intersection length for each voxel is given by

l(im, jm) =
(
αxy[m]− αxy[m− 1]

)
.dconv, (9)

where dconv is the Euclidean length of the ray.
The algorithm can be generalised to 3D by following

essentially the same procedure to create an αz[.] array, and
then forming the total sorted array αxyz[.].

In CPU implementations of Siddon’s algorithm, or any of
its derivatives, we can parallelise by simply distributing the
rays among available threads. However, this approach treats all
rays independently, and as such does not exploit any structure.
It is also not ideal for GPU implementations, since these
algorithms necessitate a high level of conditional branching.
This causes the GPU threads to take different execution
paths, a phenomenon known as warp divergence, which can
have serious consequences for performance. Memory access
patterns are also unlikely to be well-structured, with similar
impact on performance.

III. STRUCTURE-EXPLOITING CONE BEAM ALGORITHM

Defining the cone beam geometry as in figure 2, the key to
our approach for accelerating Siddon’s algorithm in the cone
beam case is the observation that for any projection angle
and u coordinate on the detector, the projection of this ray in
the z direction onto the x-y plane is completely independent
of the detector v coordinate. Hence, for any such ray, the
values of αx and αy , and the x and y voxel indices, are also
independent of the detector v coordinate. Therefore, we seek
to decompose the ray tracing algorithm into a component in
x-y and a component in z.

As a first step, we order the volume so that z is the
fastest increasing dimension, and order the projections with
detector v coordinate fastest increasing. Then the loop over
detector v coordinate can be brought into the core of the
ray tracing algorithm, resulting in far more localised memory
access patterns. This approach leads to significant performance
increase, but the calculation of the ray tracing parameters in
the z direction is still dependent on components in x and y, and
the algorithm still needs a high level of conditional branching.

In order to make the z component completely independent,
we first make the additional assumption that the cone angle
is less than or equal to 45◦. By cone angle here, we mean
the angle that the rays corresponding to the minimum and
maximum detector v coordinates make with the x-y plane,
assuming the detector is symmetric. Note that, at least in the
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case of most laboratory based micro CT scanners, this is a
realistic assumption. The effect of this is that, if we consider
the reconstruction volume as being composed of columns of
voxels in the z direction for constant x and y, then any ray
will intersect either one or two voxels in each column it passes
through.

Consider any ray with p1z < p2z , and let the projection of
this ray in the z direction onto the x-y plane have associated
αxy[.] array as in the 2D version of Siddon’s algorithm. Now
consider the mth entry in this array; then the parametric value
of the next intersection with a z plane, αz , and the z index of
the first intersected voxel in the currently intersected column,
k, are given by

αz =
k + 1− p1z
p2z − p1z

, k =
⌊
pz(αxy[m])

⌋
, (10)

where
pz(α) = p1z + α(p2z − p1z). (11)

Figure 3 shows the locations of the points αxy[m], αxy[m+
1] and αz along the ray in each of the two possible cases.
Now let αmin = min (αxy[m+ 1], αz); then in both cases, the
intersection lengths with the intersected voxel or voxels are
given by

l(im, jm, k) =
(
αmin − αxy[m]

)
.dconv, (12)

l(im, jm, k + 1) =
(
αxy[m+ 1]− αmin

)
.dconv, (13)

where im and jm are the x and y indices of the currently
intersected column of voxels. Note that in the single voxel
case, the length assigned to the second voxel is simply zero.

For rays with p1z > p2z , we have the similar formulae

αz =
k − p1z
p2z − p1z

, k =
⌊
pz(αxy[m])

⌋
, (14)

l(im, jm, k) =
(
αmin − αxy[m]

)
.dconv, (15)

l(im, jm, k − 1) =
(
αxy[m+ 1]− αmin

)
.dconv. (16)

Rays with p1z = p2z are a trivial two-dimensional sub-case
and can be handled separately in situations when they arise.
However, for the CT systems this work has been developed

Source Detector

x y

z

u

v

Fig. 2: The flat panel cone beam geometry, showing the
exploited structure in the rays

k

k + 1

k + 2

αxy [m]

αxy[m+ 1]
αz

αz

αxy[m+ 1]

αxy[m]

Two voxel case One voxel case

Fig. 3: Ray tracing parameters in the z direction for the one
voxel and two voxel cases

for, the detector usually has an even number of pixels and this
case need not be considered.

These equations form the basis of CUDA kernels for dis-
crete forward and back projection. For each projection angle,
the kernel is launched with thread blocks allocated for each
detector u coordinate; each thread within a block is then
assigned a detector v coordinate. The 2D αxy[.] arrays and
associated x and y voxel indices for each u coordinate are
calculated as a CPU process, and copied to the GPU memory
asynchronously. In practice, these arrays can often simply
be pre-computed and stored for all projection angle and u
coordinate pairs.

Threads in each block loop through the pre-calculated αxy[.]
array, effectively tracing the rays corresponding to all detector
v coordinates simultaneously in lock-step. This process is
essentially the same for forward and back projection, but the
exact implementation differs in each case. At each point in the
loop, the threads only access volume memory locations corre-
sponding to the same column of voxels, keeping the memory
access patterns localised. For back projection, values for the
whole column of voxels are accumulated in shared memory
before writing to global device memory. Multiplication by
dconv is performed only once; at the end for forward projection,
and at the beginning for back projection. In practice, division
by p2z − p1z is replaced by multiplication by its reciprocal;
since these values depend only on detector v coordinate, the
values may easily be pre-computed and stored. This gives
a significant performance increase, since division in CUDA
maps to 16 instructions, versus a single instruction for a
multiplication.

Note that since both the single voxel and two voxel inter-
section cases are covered by the same update equations, this
results in a CUDA kernel with very few conditional branches;
we need only make a decision before the main loop whether
p2z is greater than or less than p1z to decide which set of
equations to use. The vertical dimension of the detector is
padded to a multiple of the CUDA warp size; hence all threads
follow the same branch and warp divergence is eliminated.

Due to the limited amount of memory available on the GPU,
the controlling host CPU process performs an outer loop over
projection angles. For forward projection, data for the whole
volume are copied to the device before starting the loop, while
for back projection, it is necessary to accumulate the volume
and copy this back at the end. All other host-device and device-
host memory transfers are asynchronous, keeping GPU idle
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FP time (s) BP time (s)
Jacobs, CPU, 32 threads 100 200
Inner v loop Jacobs, CPU, single thread 292 367
Inner v loop Jacobs, CPU, 32 threads 18 65
New, GPU 5.9 7.1

TABLE I: Comparison of timings for the GPU implementation

time low.

IV. RESULTS

Our algorithm has been implemented in CUDA, and has
been profiled and tuned for nVidia devices of compute ca-
pability 2.0. Table I shows timings for forward and back
projection for a synthetic data test problem consisting of 720
cone beam projections of size 512×512, into a volume of size
5123. We compared the CUDA implementation of the new
algorithm against a parallel CPU implementation of Jacobs’
algorithm, and serial and parallel CPU implementations of Ja-
cobs’ algorithm with inner loop over the detector v coordinate.
Timings for the GPU code include the time taken for host-
device and device-host memory transfers. The test hardware
was a dual CPU Intel Xeon 3.1GHz machine with 64GB RAM
and nVidia Quadro 6000 GPU, featuring 448 CUDA cores
and 6GB onboard RAM. The operating system was Windows
7 Professional, using CUDA version 5.5. Hyperthreading was
enabled.

Comparing the GPU version of our new algorithm to the
parallel implementation of the Jacobs algorithm, our results
show speedups of approximately 19 and 28 times respectively
for forward and back projection. Comparing the new algo-
rithm against the optimised CPU implementation of Jacobs’
algorithm with inner loop over v, respective speedups of 3
and 9 times are observed. We attribute the comparatively
greater speedup for back projection to the elimination of the
OpenMP atomic operations which are necessary for volume
updates in the parallel CPU implementations. However, back
projection is still significantly slower than forward projection,
since although the volume is updated in columns, the method
is still essentially ray driven.

Raw performance of the algorithm in terms of the GUPS
metric was measured at 40.1 GUPS for forward projection,
and 28.9 GUPS for back projection. This was calculated by
counting the exact number of updates made in each case to
the volume or projection data, and dividing by the kernel
run time as measured by the nVidia nSight profiler. While
this performance for back projection falls substantially short
of that given by the latest implementations submitted for the
RabbitCT benchmark, it should be noted that back projection
as part of a matched forward and back projector pair is a
fundamentally different problem to that of a highly optimised,
standalone voxel driven back projector.

The new algorithm has also been tested in algebraic iterative
reconstruction methods for real experimental data sets, with
varying numbers of projections of size 1024 × 1024 into
a 10243 volume. Figure 4 compares a slice from an FDK
reconstruction of a 400 projection scan of an Aluminium rod,
at a resolution of 0.7 microns, with a reconstruction using a
combined steepest descent and TV minimisation algorithm.

(a) FDK (b) Iterative

Fig. 4: Example slice from reconstruction of 400 projection
experimental data set

The iterative reconstruction shows clearly lower noise level
while maintaining the main features of interest, resulting in
a volume which is much easier to segment. Using the new
algorithm, iterative reconstruction times for this type of data
set are in the order of minutes, rather than hours for our
original parallel Jacobs implementation.

V. CONCLUSIONS

Due to the computation time, our previous work in applica-
tion of algebraic iterative reconstruction techniques to micro
CT problems has been limited to studying the effects on a
central two-dimensional slice through the volume. The new
algorithm presented here now allows us to apply such methods
to realistic problem sizes with experimental data in full 3D,
within reasonable time scales.

Our plans for future development of this work include im-
plementations designed to cope with larger size reconstruction
volumes, where the entire volume does not fit into the GPU
memory, and testing and optimising the code for the latest
generation of GPU devices.
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Duality-based projection-domain tomography solver
for splitting-based X-ray CT reconstruction

Madison G. McGaffin Jeffrey A. Fessler

Abstract—Model-based image reconstruction (MBIR) for X-
ray CT produces high quality images from relatively low-dose
scans, but the high computational cost of MBIR algorithms
prevent them from being used ubiquitously in the clinic. Variable
splitting with the alternating directions methods of multipliers
(ADMM) provides rapidly converging algorithms by decompos-
ing the challenging MBIR optimization problem into an iterated
sequence of simpler subproblems. Variable splitting algorithms
have achieved state-of-the-art performance in 2D, but replicating
those successes in 3D has proved difficult. In this paper, we
consider a simple splitting algorithm that decomposes the recon-
struction problem into a nonnegative denoising problem and a
quadratic tomography problem. Unlike prior work, we solve the
tomography problem with a novel duality-based approach that
yields convergent algorithms similar to ordered subsets methods
and iterated filtered backprojection. We show some promising
preliminary results.

I. INTRODUCTION

Consider the following statistical X-ray CT reconstruction
problem [15]

x̂ = argmin
x≥0

{
J(x) =

1

2
||Ax− y||2W + R(x)

}
, (1)

with noisy sinogram data y ∈ RM , system matrix A ∈
RM×N , statistical weights W = diagi{wi}, and convex
edge-preserving regularizer R. The optimization problem (1)
is impractical or impossible to solve in closed form due
to the large dimension of x, the nonnegativity constraint
and the nonquadratic regularizer. Consequently, solving (1)
requires an iterative optimization routine, but unfortunately
this is a challenging problem to solve efficiently. Gradient-
based simultaneous algorithms that update all pixels of x
simultaneously appear to be better-equipped to take advantage
of modern highly-parallel hardware. However (1) presents
several challenges for gradient-based methods:

1) the CT projection (A) and backprojection (A′) oper-
ations, which are both required to compute an update
direction for simultaneous gradient-based methods, are
computationally expensive; and

2) the reconstruction cost function J is difficult to precon-
dition, especially for 3D reconstruction [3], [4], [9], [18].

In this paper, we consider a variable splitting algorithm that
decomposes (1) into an image-space denoising problem and a
quadratic “tomography” minimization problem involving the
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CT system matrix. The primary contribution of this paper is
a novel duality-based approach to this tomography problem.

II. VARIABLE SPLITTING

Variable splitting with ADMM is a technique to solve a
challenging optimization problem, e.g., (1), with an iterated set
of simpler subproblems [9], [11]–[13]. Let v ∈ RN . Instead
of directly solving (1), we solve the constrained problem

x̂ = argmin
x

min
v≥0

1

2
||Ax− y||2W + R(v) s.t. x = v. (2)

The augmented Lagrangian for this constrained problem is

L(x,u;η) = 1

2
||Ax− y||2W + R(v) +

1

2
||x− v + η||2Γ,

(3)

where Γ � 0. The alternating directions method of multipliers
(ADMM) iterations leads to two subproblems:

x(n+1) = argmin
x

1

2
||Ax− y||2W +

1

2

∣∣∣∣∣∣x− v(n) + η(n)
∣∣∣∣∣∣2

Γ
,

v(n+1) = argmin
v≥0

1

2

∣∣∣∣∣∣v − x(n+1) − η(n)
∣∣∣∣∣∣2

Γ
+ R(v),

η(n+1) = η(n) + x(n+1) − v(n+1).
(4)

The x and v updates do not need to be performed exactly to
ensure convergence [2]; empirically, more accurate solutions
accelerate convergence.

We choose Γ to be diagonal. The v update is then a
penalized weighted least squares denoising problem. There
are many algorithms to solve this class of problem, and it
can be solved quickly even for large problems and non-
smooth regularizers [7], [8]. Hereafter we focus on the more
challenging tomography x update. Note that many splitting-
based algorithms have inner steps similar to the x update we
study here [9], [13]. The techniques in the following section
can be applied to those algorithms as well.

III. THE TOMOGRAPHY SUBPROBLEM

Though the x update in (4) is a theoretically simple uncon-
strained quadratic minimization problem, solving for x(n+1)

is challenging in practice [9], [10]. The popular family of
gradient-based methods share the form:

r(m) = Ax(m) − y,

g(m) = A′Wr(m) + Γ
(
x(m) − v(n) + η(n)

)
,

d(m) = f (m)
(
g(m)

)
,

x(m+1) = x(m) + d(m).

(5)
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The function f (m) : RN → RN is an iteration-dependent
preconditioning and step-size computing step. Preconditioning
modifies the search direction such that d(m) “points” more
toward the global minimizer x∗. The ideal, and unrealizable,
preconditioner would rapidly implement the inverse of the cost
function Hessian

fideal(g) = Pidealg = [A′WA + Γ]
−1

g. (6)

Many practical approximations to Pideal have been proposed
involving diagonal matrices, circulant operators and the FFT
[3], [4], [9], [13], [18]. Unfortunately the shift-varying nature
of the Hessian, induced by the statistical weights W and
geometrical properties of A, make designing a highly effective
preconditioner challenging.

A. Duality approach

Instead of solving the tomography problem directly with
a gradient-based method, we introduce an auxiliary variable
u ∈ RM and consider the following equivalent saddle-point
problem:

x(n+1) = argmin
x

max
u

{
S(x,u) = (Ax− y)′Wu

+
1

2

∣∣∣∣∣∣x− v(n) + η(n)
∣∣∣∣∣∣2

Γ
− 1

2
||u||2W

}
. (7)

Performing the inner maximization yields the original
quadratic function in (4):

∇uS = W(Ax− y)−Wu = 0, (8)
u(x) = Ax− y, (9)

S(x,u(x)) = 1

2
||Ax− y||2W +

1

2
||x− v + η||2Γ, (10)

so solving (7) (i.e., finding the saddle point), solves the
quadratic x update problem.

We observe that S(x,u0) is convex and continuous in x
for all u0, and S(x0,u) is concave and continuous in u for
all x0. By Sion’s minimax theorem [14], we can reverse the
order of the minimization and maximization steps in (7),

min
x

max
u
S(x,u) = max

u
min

x
S(x,u), (11)

to find the saddle point. In other words, instead of solving
the image-space primal problem, we can solve the projection-
domain dual problem.

We compute the minimizing value of x in terms of u,

x(u) = v(n) − η(n) − Γ−1A′Wu, (12)

and plug (12) into (7) to yield the quadratic dual problem:

u∗ = argmax
u

{
D(u) = −1

2
u′
(
W + WAΓ−1A′W

)
u

+ u′W
(
A
(
v(n) − η(n)

)
− y

)}
. (13)

There are many options for solving (13), and as in the primal
problem, a natural family of algorithms are the gradient-based

methods. The general form of a gradient-based algorithm in
the dual domain is:



p(m) = W
(
y + u(m) + A

(
Γ−1γ(m) − v(n) + η(n)

))
,

q(m) = f (m)
(
p(m)

)
,

u(m+1) = u(m) + q(m),

γ(m+1) = γ(m) + A′Wq(m),
(14)

with u(0) = 0, γ(0) = 0, and f (m) a preconditioning and
step-size computing operation in the projection domain. After
a number of iterations, we update x with (12) and return to
the outer iterations of the ADMM algorthm (4),

x(n+1) = x
(
u(m)

)
= v(n) − η(n) − Γ−1γ(m). (15)

As a practical matter, we can warm-start this dual problem
by saving the final values of u(m) and γ(m) between x updates
and use those instead of u(0) = 0 and γ(0) = 0.

B. Projection-domain group coordinate ascent algorithm

Ordered subsets (OS) algorithms [1], [5] partition the sys-
tem matrix, weights and data into disjoint subsets by view,
{Sk}Kk=1, such that

A′W
(
Ax(m) − y

)
≈ Nβ
|Sk|

∑
β∈Sk

Aβ
′Wβ

(
Aβx(m) − yβ

)
.

(16)

The right hand side of (16) is used in OS methods as an
approximate gradient that requires the forward- and back-
projection of only |Sk| views instead of Nβ . This gradient
approximation is accurate when x(m) is far from the solution
and when the subsets contain enough views, but for x(m)

near the solution and smaller subsets, OS algorithms without
relaxation approach limit cycles around the solution.

In the projection (dual) domain, an analogy to ordered
subsets is group coordinate ascent (GCA). A GCA algorithm
divides u into K groups, u = [u0, . . . ,uK−1] and iteratively
maximizes over each group while holding the others constant.
Even if the maximization is performed approximately with a
minorize-maximize step, the algorithm is convergent [16].

The following algorithm for solving (13) uses f (m) to apply
the linear preconditioner Pk and computes the optimal step
length for each group. For all groups k = 0, . . . ,K−1 perform
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the following:

p
(m)
k = Wk

(
y + u

(m)
k

+Ak

(
Γ−1γ(m+ k

K ) − v(n) + η(n)
))
,

q
(m)
k = Pkp

(m)
k ,

d
(m)
k = Ak

′Wkq
(m)
k ,

α
(m)
k = −

(
q
(m)
k

)
′p

(m)
k(

q
(m)
k

)
′Wkq

(m)
k +

(
d
(m)
k

)
′Γ−1d

(m)
k

,

u
(m+1)
k = u

(m)
k + α

(m)
k q

(m)
k ,

γ(m+ k+1
K ) = γ(m+ k

K ) + α
(m)
k d

(m)
k .

(17)

These updates are iterated for m = 1, . . . , Niter-dual. In the con-
text of an ADMM algorithm with warm-starting, Niter-dual = 1
or 2 appears to be sufficient.

C. Comparison to image-space algorithms

While (17) is written in a convenient form for implementa-
tion, the behavior of the algorithm is unclear. To compare (17)
and traditional ordered subsets algorithms, we rewrite some of
the steps in terms of x using (15):

r
(m)
k = Akx

(m+ k
K ) − yk,

u
(m+1)
k = uk + α

(m)
k PkWk

(
u
(m)
k − r

(m)
k

)
,

x(m+ k+1
K ) = x(m+ k

K )

−α(m)
k Γ−1Ak

′WkPkWk(rk − uk),
(18)

with x(0) = v(n) − η(n).
Recall that the group assignments are arbitrary and each

loop through all the groups requires only one total forward
and back-projection. The algorithm given in (18) will converge
to the solution to the x-update equation, x(n+1), though
possibly not monotonically in the primal cost function. This
flexibility in subset selection is very different from traditional
OS algorithms that require judicious design of the subsets to
satisfy the subset approximation (16).

The step size computation guarantees monotone conver-
gence in the dual function, so we have some flexibility
in designing the projection-domain preconditioners Pk. One
interesting choice is

PIFBP
k = W−1

k FkW
−1
k , (19)

where the Fk are positive-definite ramp filters. If Γ−1 is
chosen to correct for the nonuniform spatial sampling of the
CT system, (18) resembles an iterated filtered backprojection
algorithm for solving the x update subproblem (7):

x(m+ k+1
K ) = x(m+ k

K ) − α(m)
k Γ−1Ak

′Fk(Akx− yk − uk).
(20)

D. Simplified step size computation

As the number of groups increases, the forward- and back-
projections are no longer the only considerable computational
costs of the dual group coordinate ascent algorithm (17).
In particular the step size computation, which includes an
inner product on two image-sized vectors, becomes relatively
computationally expensive. To mitigate this we replace the
step size computation with a minorize-maximize step. Let
Mk � AkΓ

−1Ak
′ be diagonal. All the entires of Ak and

Γ are nonnegative, so we use the easily-computed majorizer
[1]:

Mk = diagi
{[

AkΓ
−1Ak

′1
]
i

}
. (21)

The following modified dual ascent algorithm performs no
inner products and only a few diagonal matrix multiplications:

p
(m)
k = Wk

(
y + u

(m)
k

+Ak

(
Γ−1γ(m+ k

K ) − v(n) + η(n)
))
,

q
(m)
k = −(Wk + WkMkWk)

−1
p
(m)
k ,

u
(m+1)
k = u

(m)
k + q

(m)
k ,

γ(m+ k+1
K ) = γ(m+ k

K ) + Ak
′Wkq

(m)
k .

(22)

This algorithm is more practical than (17) when the number
of groups is very large (e.g., one group for each view). We
do not expect that using a majorizer will considerably slow
convergence, because AkΓ

−1Ak
′ shrinks as the number of

views in the kth group decreases.

IV. PRELIMINARY EXPERIMENTS

As a preliminary experiment, we instantiated a 1024 ×
1024×192-pixel XCAT phantom and generated simulated data
for an axial scan with a GE Lightspeed scanner [17] with
888 channels, 64 rows, and 984 views. We simulated Poisson
noise and reconstructed onto a 512 × 512 × 96-pixel grid
without the nonnegativity constraint and using a 26-neighbor
edge-preserving regularizer with the smooth Fair potential. All
calculations were performed on an NVIDIA Tesla C2050.

The proposed variable splitting algorithm used Γ =

diagj
{
[A′WA]jj

}
. We solved the denoising subproblem with

group coordinate descent [8] and performed the x update with
the tomography solver using one view per group and the
simplified step size calculation (22). We looped through all
the views in the tomography algorithm once per outer iteration
and visited the views in random order.

To provide a preliminary comparison, we plotted cost
function against iteration for the proposed algorithm, ordered
subsets with separable quadratic surrogates Nesterov’s 1983
first-order acceleration [6] with 8, 10, 12 and 16 subsets. All
algorithms perform one forward- and back-projection per outer
iteration; each algorithm took approximately one minute per
(outer) iteration. See Figure 1. The proposed algorithm con-
verges faster than all the accelerated OS algorithms. Figure 3
illustrates the cost function of each algorithm as a function of
iteration, and Figure 2 shows the center slice of x(5) after five
iterations of the proposed algorithm.
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Fig. 1: Root mean squared difference of the proposed algo-
rithm and OS-SQS-Nesterov by iteration to a converged refer-
ence image. The proposed algorithm converges considerably
more quickly than OS-SQS-Nesterov with any tested number
of subsets.

Fig. 2: Image after 5 iterations of proposed algorithm; center
slice shown in a [800,1200] HU window.

V. CONCLUSIONS AND FUTURE WORK

We proposed a novel duality-based method to solve an
inner quadratic tomography subproblem for a variable splitting
algorithm. The reconstruction algorithm appears to converge
rapidly in preliminary experiments, and we intend to perform
a more thorough investigation of its performance.

The duality-based approach to the tomography problem
presented here is applicable beyond the simple splitting-based
algorithm in this paper, and it offers an efficient solution to
the challenging 3D “tomography problem” that appears in
many splitting-based reconstruction algorithms. Future work
will explore more efficient methods to solve the projection-
domain dual problem.
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Abstract—Statistical model-based reconstruction methods 

derive much of their advantage over traditional methods 

through more accurate forward models of the imaging system. 

Typical forward models fail to integrate two important aspects 

of real imaging systems: system blur and noise correlations in 

the measurements. This work develops an approach that 

models both aspects using a two-stage approach that includes a 

regularization deblurring operation followed by generalized 

penalized weighted least-squares reconstruction. Different 

reconstruction noise models including standard uncorrelated 

and correlated presumptions were explored. Moreover, 

different imaging systems were investigated in which blur was 

dominated by source effects, dominated by detector effects, or 

by a combination of source and detector blur. The proposed 

reconstruction approach that models the correlated noise 

demonstrated the best performance across all scenarios with 

the greatest benefits for increased source blur and for 

reconstructions with finer spatial resolution. This suggests 

potential application of the method for high resolution systems 

like dedicated flat-panel cone-beam CT (e.g., head, extremity, 

dental, mammography scanners) where system resolution is 

limited by both source and detector blur effects and noise 

correlations in measurement data are traditionally ignored. 

Index Terms—High spatial resolution CT, Model-based 

Reconstruction, Generalized Least-Squares Estimation.  

I. INTRODUCTION 

Model-based tomographic reconstruction techniques 
have demonstrated better dose utilization and noise versus 
image quality tradeoff than traditional methods [1]. Such 
advantages are, in part, due to the integration of improved 
forward models that more accurately represent the physics 
and noise processes of acquisition and detection. Forward 
models of varying complexity can be designed to 
incorporate different imaging system characteristics, such as 
source and detector blur [2][3]. While recent studies [4] 
suggest that blur modeling may not yield substantial 
improvements for current diagnostic CT scanners and scan 
protocols, the advantages of blur modeling are dependent on 
target spatial resolutions and system geometries. For 
example, degradations in spatial resolution are potentially 
much more important in systems like dedicated flat-panel 
cone-beam CT that has been developed for high spatial 
resolution applications (e.g., temporal bone, extremity, 
dental imaging). The intrinsic spatial resolution in these 
systems is limited by both detector and source blurring 
effects. Detector blur tends to be dominated by light spread 
in the scintillator as opposed to detector aperture effects, 
since the pixel size tends to be small compared to the 
scintillator blur. Source blur is also often more pronounced 
in such systems due to the compact geometries (short 
source-to-detector distances) and the use of fixed anode 

sources with focal spots that are larger than their rotating 
anode counterparts. 

Thus, higher fidelity forward models like those in [2][3] 
that incorporate system blur offer an opportunity to recover 
lost spatial resolution. However, those approaches and 
nearly all traditional model-based reconstruction methods 
make an important assumption about the underlying noise 
model that is potentially quite inaccurate for flat-panel 
systems that use indirect detection. Specifically, the 
conversion of primary quanta to secondary quanta in the 
scintillator of an indirect detector imparts spatial correlations 
in the measurement noise. These correlations are visibly 
evident in gain scan acquisitions, yet the standard 
assumption for statistical model-based reconstruction is to 
presume that the measurements are independent. Despite this 
noise model mismatch, model-based approaches have 
demonstrated an advantage in cone-beam CT [1]. However, 
we hypothesize that additional advantages can be attained 
when more accurate noise modeling is integrated in the 
reconstruction, particularly in high spatial resolution 
applications in which system blur is also modeled. 

Previous work [5] has shown that integrating a correlated 
noise model into the reconstruction process allows for 
improved tradeoffs between noise and resolution. In [5], a 
linearization of the data that included a deblurring operation 
followed by penalized generalized weighted least-squares 
reconstruction was introduced and applied to an imaging 
system with equal amounts of source and detector blur. The 
work presented here further generalizes the methodology of 
[5] to consider regularized deblurring of projection data and 
extends the investigations to systems with varying degrees 
of source and detector blur. Specifically, we consider 
scenarios where source blur is dominated by source effects, 
or dominated by detector effects, or is a mixture of source 
and detector effects to find where blur and correlated noise 
modeling yields the greatest advantage. Understanding this 
relationship has important implications for hardware design 
in cone-beam CT systems, including choices in the system 
geometry, focal spot size, scintillator thickness, etc. 

In the following sections, the generalized reconstruction 
approach with system blur and a correlated noise model is 
introduced and investigated. Three different noise models - 
white noise, uncorrelated noise with unequal variances, and 
generalized correlated noise - are compared in simulated CT 
studies, and the improved performance using the correlated 
noise model is demonstrated 

II. METHODS

A. Forward Model and Correlated Noise Model 

The system model for a general CT system with indirect 

detection is illustrated in Figure 1. The mean measurement 

model that we adopt for development of the reconstruction 

algorithm has the following form: 
�� = �����exp(−�) 				� = �{�} (1) 

which uses a monoenergetic formulation of Beer's law where 
the image volume is denoted by µ , the projection operation 
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is represented by the system matrix A, and the diagonal 
matrix G denotes a gain associated with each detector ray 
(i.e. x-ray fluence).  (The notation D{·} denotes the operator 
that puts the vector operand onto the diagonal elements of a 
diagonal matrix.) Two linear blur operators are included that 
model the effects of source blur, Bs, and detector blur Bd 
separately. This model is an approximation, particularly for 
source blur, since source effects are depth-dependent. 
However, for objects that are relatively thin (without a 
substantial change in magnification across the volume) this 
is a convenient and reasonable approximation. 

The propagation of noise through the imaging system is 
also illustrated in Figure 1. Photons generated at the x-ray 
source are presumed to be independent with a variance equal 
to their mean (e.g., a Gaussian approximation to a Poisson 
distribution) yielding a diagonal covariance matrix. Some x-
ray photons are attenuated in the object modifying these 
variances by their survival probabilities as well as spatial 
spreading due to source blur; however, the noise remains 
uncorrelated at this point. In the detector, individual x-ray 
photons are converted to many light photons, which spread 
spatially (detector blur) and correlate the noise. Lastly, 
photodiodes convert light photons to a digital signal with 
possible readout noise (presumed independent and Gaussian 

with standard deviation equal to σro). This results in the 
following model for the distribution of noise in the 
measurements: 

 �	~	Gaussian���, �� 				�� = ���!��
" + �$  

 �! = �%&!'()*'+
, - = �{��.}				�$ = �{&$/

, } (2) 

with the following covariance matrices: Kq represents pre-
detection uncorrelated quantum noise, Kr denotes 
uncorrelated readout noise, and Ky is the covariance 
associated with the measurement vector y.  

As in [5], rather than trying to solve the generalized 
nonlinear least-squares reconstruction problem, we choose to 

transform the measurements to obtain a linear least-squares 
objective function. Specifically, we may compute estimated 
line integrals using the follow equation 

 01(�) = 	− log(�56�56�). (3) 
This transformation includes the familiar normalization (G-1) 
and logarithm operations, but also includes a deblurring of 
projection data represented by B-1.  

Ideally, this deblurring would remove spatial resolution 
losses associated with both the source and detector blur 
suggesting that 

 �56 ≈ 8����956 (4) 
Unfortunately, such an inverse may not exist, or the inverse 
is highly ill-conditioned, yielding computational difficulties 
and potential noise amplification. Instead, we adopt the 
following regularized pseudo-inverse 

 �56 = 8��
"��

"���� + :;956��
"��

". (5) 
This transformation allows for regularized inversion of the 
source and detector blurs and includes a parameter λ to 
control the strength of the regularization. (Here, we have 
adopted a magnitude regularization scheme, but other 
options, including pairwise roughness penalties, could also 
be applied.) 

Applying the linearization in (3) suggests the following 
generalized penalized weighted (linear) least-squares 
reconstruction objective function: 

 �̂ = argmin	?01(�) − �?�@
AB

, + CD(�)  

 = E"�F
56 + CGHI

56"�F
5601(�). (6) 

which encourages a fit between the line integral estimates 
and the projected image volume estimate. In this case, we 
have adopted a quadratic regularization term which leads to 
a closed form solution with penalty strength governed by the 

scalar parameter β. Central to the data fitting is a weighting 
by the inverse of the covariance associated with the 
estimated line integrals. Thus, an expression Kl is required. 
As in [5], propagating the measurement covariance Ky 
through the transformation in (3), one can show that the 
covariance of the line integral estimates may be 
approximated as 

 JF ≈ KL 6
MAB��N M

56J�8M569"KL 6
MAB��N (7) 

While the estimator in (6) is fully specified with the 
definitions in (5) and (7), there are a number of practical 
concerns in performing this optimization. 
B. Practical Implementation 

 For typical CT systems, it is impractical to store and 
invert most of the matrices defined above. Thus, the action 
of the matrices is implemented functionally. This includes 
projection and backprojection functions, shift-invariant blur 
functions implemented using Fourier methods, and 
computation of Kl through serial application of each of its 
components. The measured data were used as an 
approximation for �� in (7), and Kq in (2) was approximated 

from measurements by �{�56�}.  
 The matrix inverses require special treatment as well. For 
shift-invariant blur functions, (5) may be computed directly 
using Fourier domain division. The action of the remaining 
three matrix inverses in (6) are computed using conjugate 
gradient (CG) based approximation. 
  

Fig. 1.  System model for a generalized indirect detector cone-beam CT 

system. Following the generation and transit of photons (left to right), the 

mean number of quanta and the covariance associated with those quanta 

are modeled. Specifically, the mean distribution of x-ray photons at 

generation (g) is both attenuated by the object and undergoes spatial 

blurring due to the extended source. In the detector, additional blur due to 

light spread in the scintillator is modeled yielding the form for the mean 

measurement model. Noise undergoes a similar propagation through the 

system starting with independent photon noise with variance equal to the 

mean. Changes in the mean due to attenuation in the object modify these 

variances, which then exhibit spatial spreading (correlation) in the 

scintillator. Finally, these correlated measurements may be modified with 

the addition of (independent) readout noise. 
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Noting that (6) can be rewritten as 
 O�̂ = P (8) 

 P = 	Q"JF
5601(�) (9) 

 O = 	Q"JF
56Q + CRH (10) 

we see that the inverse in (9) can be approximated with one 
CG loop, whereas approximating (8) requires a nested loop 
with an inner CG loop to estimate the inverse in (10) and an 
outer CG loop to solve (8). 

In this work, the inner loop Kl inversions in (10) were 
performed using a maximum of 100 CG iterations, and the 
outer loop inversion in (8) used a maximum of 250 CG 
iterations. The inversion in (9) used a maximum 1000 CG 
updates. All optimization code was written in Python with 
calls to external GPU libraries for fast projection and 
backprojection operations. 

 
 
 

C. Simulation Experiments 

To investigate the performance of the proposed 

reconstruction approach, simulation experiments were 

conducted using the phantom in Figure 2. The system 

geometry used a 100x100 axial image reconstruction with 

0.1 mm voxels and a 1D detector array of 150 pixels with 

0.14 mm pitch. The source-to-detector distance was 400 

mm and source-to-axis distance was 200 mm. Projection 

data were obtained for 360 angles over 360°. Predetection 

quantum noise was simulated using a Gaussian distribution 

with a constant 105 photons in the unattenuated beam (with 

variance equal to mean). For these initial studies, readout 

noise variance was set to 0.  

We compared reconstructions using the generalized 

penalized weighted least-squares approach of (6) using 

three different noise models: 1) The correlated noise model 

described in (7); 2) a white Gaussian noise model; and 3) an 

uncorrelated Gaussian model that presumed each 

measurement had a variance equal to its mean 

(approximating a Poisson random variable). Additionally, 

we consider three different blur scenarios with Gaussian 

source and detector blurs. Specifically, three imaging 

systems were modeled with: 1) detector dominated blur 

(2.121 pixels FWHM detector, 0.001 pixels FWHM source 

blur); 2) equally distributed blur, (1.5 pixels FWHM source 

and detector blur); and 3) source dominated blur (0.001 

pixels FWHM detector, 2.121 pixels FWHM source blur). 

We performed a dual parameter sweep (β and λ) for each 

noise model and blur scenario combination. 
To compare images, bias and variance were calculated 

for each reconstruction. Bias was calculated using a 

reconstruction of noiseless data according to the following:  

 PSTU = V|�̂)/X�YFY�� −	�*$'Y|V
,
 (11) 

The variance was calculated as the spatial variance over a 

flat part of a reconstruction (indicated with dashed line in 

Fig. 2). 

 

III. RESULTS 
 Fig. 3. shows plots of bias versus variance for each of the 
reconstruction noise models and each of the three different 

Fig. 2.  Two-dimensional 

digital phantom used for 

performance investigations. 

The phantom comprises low 

and high-contrast targets and 

two sets of line pairs. A 

square region of interest in a 

uniform region of the 

phantom is indicated with a 

dashed line showing where 

variance in the reconstructed 

image is computed. 

Fig. 3.  Plots of bias versus variance 

for the three noise models of 

reconstruction and the three system 

blur scenarios. The plots contain a 

summary of results from the two-

dimensional parameter sweep over λ

and β. Within each plot five 

separate curves for fixed λ are 

shown. Individual curves are 

generated by sweeps over β. The 

importance of regularization in the 

deblurring step is most important in 

the source dominated scenario 

where nonzero λ values improve the 

bias-variance relationship for each 

reconstruction noise model. 
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blur scenarios. In particular this investigation shows the 
relative performance of different methods across a wide 
range of regularization strengths for the deblurring operation 

(λ) and for reconstruction (β). Within each plot of Fig. 3 
there are five curves representing the bias versus variance 
performance for a fixed value of λ and varying β. In the case 
of detector dominated blur, there was little or no benefit 
from using a regularized de-blur. It appears that the added 
bias due to increased λ did not improve the noise tradeoff, 
and the added bias becomes a detriment at higher values of 
λ. 
 Similar trends are evident in the case of equal source and 
detector blurs. That is, the regularization in the deblurring 
step does not appear to improve the bias-variance tradeoff 
and at higher λ, this added regularization is detrimental. 
 The situation is different for the case of source 
dominated blur. In this case, increased regularization in the 
deblurring step improves the bias-variance tradeoff. 
However, the relationship is more complex and depends on 

the noise model in the reconstruction. For the white noise 
and uncorrelated noise models, λ=0.01 is optimal over much 
of the bias range; however, the optimal λ decreases at lower 

bias levels (as induced by small β values). For the correlated 
noise model, there appears to be a single optimal λ value 
over the range with λ=0.001. The correlated noise plots also 

show unusual behavior for very low β values when λ is also 

low. Specifically, lower β appear to increase bias. This is 
likely due to ringing in the reconstruction for (nearly) 
unregularized solutions. 
 To compare the three noise models with each other, we 
consolidated the above sweeps into a single curve for each 

noise model by selecting the (λ,β) pair that achieves the best 
performance for each bias level. These results are 
summarized in Fig. 4.  
 When the blur is dominated by the detector, the overall 
image quality is better than the other blur scenarios, and the 
three noise models perform similarly. Equivalence between 
the white and correlated models is not unexpected since 
correlations are due to detector blur and the deblurring 
preprocessing operation decorrelates the noise, making the 
noise model white. However, it is somewhat surprising that 
the incorrect uncorrelated noise model with nonuniform 
variances performs similarly, suggesting relatively low 
variations in mean measurements for this small object.  
 When blur is predominately due to the x-ray source, the 
overall image quality is worse, but the advantage in using 
the correlated noise model is highest. In this scenario, none 
of the noise is initially correlated, and the deblurring step 
introduces correlations in the data. The uncorrelated noise 
model appears to be an improvement over the white noise 
model, with the advantage of the correlated noise model 
diminishing for higher bias levels. In this high bias regime 
there is less advantage to blur and correlation modeling 
when the reconstructed images have coarser spatial 
resolution. In effect, if a coarse resolution image is desired, it 
doesn't matter if the blur comes from intrinsic system blur or 
from regularization. The equal blur scenario falls in-between 
the other two scenarios for performance and interpretation. 
The rank ordering of methods is the same as the source blur 
dominated case, with a smaller difference between the three 
noise models. 
 Fig. 5 shows bias matched reconstructions generated 
using each noise model in each blur scenario. Bias was 
matched at approximately 0.4 mm-1 (indicated by the dotted 

lines in Fig 3) and an optimal (λ,β) pair was applied for each 
noise model. These reconstruction results illustrate the trends 
in Fig 3. When blur is predominately attributed to the source, 

 

Fig. 5.  Bias matched reconstructions for each blur scenario and 

reconstruction noise model. The bias of each reconstruction is shown in 

the top left (approximately 0.4 mm-1), and the relative variance (the ratio 

of the noise variance in the reconstruction relative to the correlated noise 

variance) is shown in the bottom left of each image. Improved image 

quality (i.e., reduced noise) for the correlated noise model is evident in the 

equal blur and source blur dominated cases. 

Fig. 4.  Bias-variance plots for each blur 

scenario with optimal selection of (λ,β).

These plots illustrate the relative 

performance of each reconstruction noise 

model. In the detector blur dominated 

scenario, the three models perform 

comparably. In both the equal blur and 

source dominated blur scenarios, the 

correlated noise model shows the best 

performance and the white noise model 

shows the worst performance. The 

relative gain of the correlated noise 

model is greatest in the source blur 

dominated scenario. 
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using the correlated noise model results in a substantial 
reduction in noise. The noise reduction is less when the blur 
is equally distributed between source and detector, and is 
marginal when the blur is caused predominately by the 
detector. 

IV. DISCUSSION 

In this work a generalized approach for reconstructing 

CT data with system blur and measurement correlations was 

introduced. The two step process involved a regularized 

deblurring step followed by a generalized penalized 

weighted least-squares reconstruction. Different noise 

models for the reconstruction were investigated including 

an approach that explicitly models the propagation of noise 

through the system and preprocessing. This explicit 

correlated model outperforms standard (uncorrelated) noise 

model choices. The benefits are greatest with more source 

blur, but are evident in a more typical scenario of balanced 

source and detector blur. 

The proposed approach has potential application in 

tomographic systems that demand high spatial resolution 

and minimum noise/dose. Possible applications include flat-

panel cone-beam CT systems, including dedicated dental, 

head, extremities, and mammography systems. 
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CT Reconstruction of Surfaces

from Binary Objects
Stefan Sawall, Jan Kuntz, Joscha Maier, Barbara Flach, Sören Schüller, and Marc Kachelrieß

Abstract—The extraction of polygonal objects from computed
tomography (CT) reconstructions is a common task in several
applications, e.g. for finite element analysis of bone biomechanics.
Usually, a voxel volume is reconstructed from the acquired
rawdata using an appropriate reconstruction algorithm. In a
subsequent step global or local thresholds are applied to obtain
a set of points on the object surface which undergo a polygo-
nization. The result is a polygonal surface representation of the
object. This process is governed by a variety of parameters, each
of them is influencing the final result and thus requires careful
calibration. To overcome this issue we propose a reconstruction
algorithm that directly reconstructions the vertices of a polygonal
surfaces. As typical meshes contain up to several million triangles
we employ a spatial subdivision structure to speed up the ray–
polygon–intersection tests and which in turn also allows for a
performant application of regularizations on the obtained meshes.
The preliminary results in the herein presented feasibility study
indicate that the proposed method allows for a highly accurate
reconstruction of polygonal surfaces from measured rawdata
within reasonable time. This boosts several applications, e.g.
the easy and fast construction of antropomorphic phantoms for
simulations or for 3D printing models from CT scans.

I. INTRODUCTION

POLYGONAL representations of objects obtained from

computed tomography (CT) reconstructions are used in

a variety of applications. Examples include finite element

simulations (FEM) of biomechanical properties of bones [1],

[2], the construction of antropomorphic phantoms used in

the simulation of imaging modalities [3] or for 3D printing.

In most cases the acquired rawdata are reconstructed onto a

discrete voxel grid, i.e. a volume, by an appropriate image re-

construction algorithm. In a subsequent step features of interest

are segmented manually or by applying global and/or local

thresholds, which are dependent on a variety of parameters

based on the chosen methodology [4]. The therefrom obtained

binary voxel objects are converted to polygonal objects using

appropriate algorithms, e.g. the marching cubes method or

more sophisticated methods like the ball pivoting algorithm

[5], [6], which again might be dependent on several tweakable

parameters. Errors introduced due to a miscalibration in any

of the required parameters might accumulate along this pre–

processing pipeline and degrade the quality of the obtained

polygonal object representation in terms of accuracy and

degree of refinement. This process is illustrated in figure 1. To

avoid these disadvantages we propose to directly reconstruct

polygonal objects, i.e. meshes, and to perform an iterative
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man Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg,
Germany.
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refinement of the mesh vertex positions such that the difference

of a forward projection through this object and the acquired

rawdata is minimized, similar to the idea proposed in [7]. As

a typical object, however, might contain up to several million

polygons, we employ a spatial subdivision structure to allow

for a rapid computation of intersection lengths through the

considered meshes. In the following we will restrict ourselves

to meshes which are solely constructed from triangles, as these

are the most commonly used primitives. We also assume that

all provided meshes are watertight in the ray direction, i.e. any

arbitrary ray intersecting this object results in an equal number

of inbound and outbound intersections.

II. MATERIALS AND METHODS

A. Ray–Triangle Intersection

Let us define a triangle (in three dimensional space) as

T (o,a, b) =
{

o+ λ1a+ λ2b
∣

∣ 0 ≤ λi, λ1 + λ2 ≤ 1
}

. (1)

where o is one of the triangle’s edges, and a and b are

vectors pointing from this edge to the other two edges (see fig.

2). The definition is such that the normal vector n = a × b

is pointing away from the object. We now need to find out,

whether our ray s+ λΘ, originating at the source position s

and heading in direction Θ, intersects the triangle, i.e. whether

there exist λ1, λ2 ≥ 0 with λ1 + λ2 ≤ 1 such that

s+ λΘ = o+ λ1a+ λ2b. (2)

To do so, let us first compute D = n ·Θ = (a×b) ·Θ. If D is

zero our ray is either parallel or lies within the plane defined

by the triangle. Now, let c = o− s and m = Θ× c, multiply

(2) by Θ× a to obtain

λ2 = −
(Θ× a) · c

(Θ× a) · b
= +

m · a

D

and check if 0 ≤ λ2 ≤ 1. If this is not the case, the ray is

not intersecting the triangle. If this is the case, we are done.

Otherwise we continue by multiplying (2) with Θ×b and find

λ1 = −
(Θ× b) · c

(Θ× b) · a
= −

m · b

D
.

If 0 ≤ λ1 and if λ1 + λ2 ≤ 1 we know that the ray is inter-

secting the triangle. The intersection is found by multiplying

(2) with n as

λ =
n · c

D
.

If n ·Θ > 0 the intersection point is the point where the ray

exits the object. If n·Θ < 0 the ray enters the object. To speed

up the calculation one may rather regard the quantities λ̂1 =
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Fig. 1. Overview of the process resulting in a polygon mesh based on measured rawdata. The usual operations are framed by dashed lines while the proposed
method is illustrated using dotted lines.

λ1n ·Θ and λ̂2 = λ2n ·Θ and then perform the computations

without the divisions. In case n·Θ > 0 we have an intersection

if 0 ≤ λ̂1, λ̂2 and if λ̂1 + λ̂2 ≤ n · Θ. If n · Θ < 0 we

may simply replace Θ by −Θ, then carry out the intersection

calculations, and at the very end replace λ by −λ.

B. Spatial Subdivision

As typical objects contain up to several million triangles,

simple bruteforce intersection tests are computanionally not

feasible. E.g. the computation of intersection lengths for 1000
projection images through an object containing 106 triangles

with a detector size of 1000 × 1000 pixels would require

the computation of 1015 ray–triangle–intersection tests. To

overcome this issue we use a spatial subdivision structure

proposed recently [8]. In particular, an octree is used in the

following. An octree in three-dimensional space is a tree

structure with each node in general containing eight child

nodes. If we consider the root node to be the bounding box

of our triangulated objects these child nodes correspond to

equally sized spatial subdivisions, i.e. rectangular boxes, of

this bounding box. These nodes will be referred to as internal

nodes in the following. This subdivision process continues by

subdividing each child node in eight boxes again. If the space

enclosed by such a subbox does not contain any triangles, it

will no further be used to spawn new child nodes. I.e. its parent

node rejects this child node and thus the number of childs is

reduced by one. As soon as certain termination criteria are met

the process stops. The subdivision in our case stops as soon

as no new subboxes can be generated that contain at least

16 triangles. The triangles contained in a subbox are stored

in a so–called external child node. If the intersections of a

ray with an object shall be computed the octree is traversed.

I.e., it is ensured that the ray intersects with the bounding

box of the root node. If this is not the case the procedure

is terminated. If the ray intersects the root node all internal

child nodes are recursively checked for an intersection. If any

of these nodes contains an external child node the intersection

points with the triangles enclosed therein are computed. Using

this spatial subdivision scheme ensures that the number of

triangles that have to considered per ray is highly reduced and

thus performance is increased by several orders of magnitude.

C. Mesh Optimization

Given the measured rawdata p we wish to adapt our triangle

mesh to these data by finding new vertex positions such

that the difference between the measured data and simulated

intersection lengths L(r), as a function of the N vertices r =
(rx1

, ry1
, rz1 , . . . , rxN

, ryN
, rzN ), is minimized. We assume

that a valid initial mesh is provided, e.g. by a reconstruction

of p, segmentation and triangulation of the obtained volume

followed by a successful registration in either image space

(3D–3D) or rawdata space (2D–3D). Note that sophisticated

algorithms already exist to achieve this task [9], [10]. The

alignment of the vertices to the rawdata can be performed by

optimizing the following cost function:

C(r) = ‖p− µL(r)‖22 + ηR(r). (3)

The term ηR(r) therein denotes a penalty term with the

weight η that allows for a regularization of the obtained mesh,

e.g. by Geometric Laplacian (GL) to constrain the smoothness

of a given vertex rk as proposed in reference [11]:

GL(rk) = rk −

∑

m∈n(rk)
l−1
m rk

∑

m∈n(rk)
l−1
m

(4)

Therein, n(r) denots the set of vertices adjacent to rk, and

lk is the Euclidian distance from vertex rm to vertex rk. The

cost function in eq. 3 can easily be extended to include other

effects, e.g. a finite focal spot size or a finite detector aperture.

Note that the used spatial subdivision structure allows for a

highly performant application of local and global mesh regu-

larization schemes. However, we restrict ourselves to η = 0 in

the feasibility study presented herein and only consider binary

objects, i.e. by choosing the linear attenuation coefficient as

µ = 1. Hence the linear attenuation coefficient will be dropped
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Fig. 2. Overview of the triangle formed by o,a, b, a ray originating at the
source s heading in direction d and intersecting at point Q∗. The dashed lines
indicate a translation of the vertices due the proposed refinement scheme.

in the following considerations. As the intersection lengths

through a mesh are the distances between consecutive entrance

and exit points, the cost function might also be given as

C(r) = ‖p−
∑

i∈I

(Oi − Ii)‖
2
2 (5)

with O = O(r) and I = I(r) being all I ∈ N respective

entrance and exit points. An optimization of this cost function,

and hence of the desired mesh, can be performed using ,e.g.,

the gradient descent method. The required derivatives of (5),

omitting constants, for all rays J ∈ N with respect to the

vertex coordinates are

∇rC(r) = −
∑

j∈J

[

(pj − Lj)

(

∑

i∈I

∂Oi

∂r
−
∑ ∂Ii

∂r

)]

. (6)

The derivatives of the entrance and exit points, ∂I/∂r and

∂O/∂r, can easily be obtained from the equations governing

the ray–triangle–intersection computations. Optimized vertex

positions can be obtained as

rk+1 = rk + t∇rC(rk) (7)

with t being the step size and k ∈ N being the iteration

number. To speed up convergence our implementation uses

a non–linear conjugate gradient descent employing a Polak–

Ribière conjugation with a backtracking line search [12]. We

further employ an ordered subset update scheme as it is known

from the ordered subset simultaneous algebraic reconstruction

(OSSART) [13], i.e. the updates are successively performed

from orthogonal directions.

D. Simulations

To illustrate the feasibility of the proposed method the

triangulated mesh of a lumbar vertebra with a size of about

60mm × 60mm × 40mm containing about 70000 triangles

obtained from BodyParts3D is used in the presented simulation

study (see fig. 3) [14]. As the choice of the segmentation

threshold is a common source of errors in the extraction

of triangulated surfaces from CT scans this will be used as

an example in the following. In particular, a miscalibrated

threshold results in an erroneous scaling of the obtained mesh.

This issue is emulated by simulating 360 projection images

in a circular trajectory of the vertebra with 1000 × 1000
detector pixels per projection and a pixel size of 400µm. The

source–detector–distance is 930mm and the distance between

source and isocenter is 570mm. To simulate an erroneous

segmentation the proposed algorithm was initialized with a

scaled version of the original vertebra. The scaling by a

factor of 0.9 was performed around its center of mass. This

corresponds to a maximum deviation of about 6mm which is

by far larger than typical voxel sizes in CT. The algorithm was

stopped as soon as the summed changes of the vertex positions

in consecutive iterations were smaller than 10−4 mm.

III. RESULTS

Using a scaled version of the vertebra as initialization

for the proposed method, the algorithm converged after 450

iterations. Figure 3 shows the wireframe of the vertebra,

a projection obtained using the reference mesh, difference

images between this initial projection and the ones obtained in

a given iteration, and a series of color–coded deviation maps.

The latter were obtained using CloudCompare (EDF R&D,

Telecom ParisTech, Paris, France) and represent the signed

distance of the reference mesh, i.e. the unscaled vertebra,

compared to the mesh obtained in a given iteration. As can

be seen a comparison between the unscaled vertebra and the

mesh used to initialize the algorithm, i.e. the vertebra scaled

by 0.9, shows severe deviations in the order of up to 6mm.

Note that distances are not computed between corresponding

triangles in both models but between the surfaces closest to

each other and thus the color-coded deviation maps are not

entirely blue but also reddish colors appear. After about 150

iterations larger planar areas are already well reconstructed

and only show small errors while edges still exhibit deviations

in the order of 6mm. At iteration 300 almost all vertices

are reconstrcuted illustrated by the greenish colors. However,

still deviations in the order of 3mm remain at the edges of

the object. The deviation-map obtained after 450 iterations

illustrates that the vertebra could be completely reconstructed

from the given rawdata with errors remaining in the order of

a few micrometers. A similar conclusion can be drawn from

the difference images between projections obtained in a given

iteration and the one obtained from the reference mesh. The

shown differences, due to the choice of µ = 1 directly showing

differences in intersection lengths, are almost zero after 450

iterations, illustrating that the vertebra was fully recovered.

IV. CONCLUSION AND DISCUSSION

This feasibility study illustrates that the proposed method is

capable of reconstructing triangle meshes from a given set of

rawdata. As this task can be achieved in reasonable time in the

scale of minutes it is a promising perspective to obtain highly

detailed meshes from CT scans without the flaws of the usual

methodology including several parameter dependent segmen-

tation and triangulation steps. Future research might include

an estimation of the number of required projection images,
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Fig. 3. The top row shows the color–coded deviation maps for iterations 1, 150, 300, 450. The bottom row shows the initial projection image of the reference
vertebra and the differences of the same projection to the results obtained in each iteration. The projection image is windowed C = 30 mm, W = 60 mm
and difference images are windowed C = 2mm, W = 6mm.

the processing of multi–material objects and the integration of

the proposed method into complexer scan protocols, i.e. with

a reasonable anatomical background.
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Statistical Framework For Synthetic Object Addition
to CT Projections

StanislavŽabíc1, Kevin M. Brown1, Brendan Eck2

Abstract—In this paper we present a statistical framework
for adding synthetic objects of arbitrary size to raw X-ray
CT data on a system with energy integrating detectors. In CT
projections, added objects change both the mean signal as well
as the noise distribution. To add synthetic objects to CT data,
we attenuate individual projections accordingly and account for
those changes, based on the conditional variance theorem. This
method allows for the addition of both hypodense and hyperdense
lesions of arbitrary size, independent of reconstruction technique.
Simulations with analytic phantoms over 1000 noise realizations
showed that the proposed statistical framework agrees with the
ground truth.

I. I NTRODUCTION

Synthetic objects are often added to clinical computed
tomography (CT) data in order to evaluate computer aided
diagnosis (CAD) algorithms, to evaluate image perception, and
to compare image quality of various reconstruction algorithms.
A review of the literature on studies which add synthetic
objects to CT data shows a wide variety of applications and
approaches, as we will discuss in detail in SectionII. The size
of added objects varies from relatively small, low contrast liver
lesions, larger lung nodules to high contrast implants. Objects
added to liver and lungs can range anywhere from 1mm to
10mm in diameter and can have contrast of 5HU (Hounsfield
units) for lesions to one-hundred or more in the case of the lung
nodules. Lesions are typically hypodense (negative contrast)
and nodules are invariably hyperdense (positive contrast). If we
also consider the possibility of adding implants, added objects
can be even several hundred HU or more.

All approaches that we have reviewed in the literature as-
sume that the data with the added object approximately inherits
statistical properties of the background data. This certainly
seems reasonable for relatively small objects or objects with
low attenuation. However, noise properties of CT data are
dominated by the statistics of x-ray generation and attenuation,
and we expect that whenever we add or take something out of
the CT data, we necessarily change not only the mean values,
but also the statistical properties of the data. No work that
we have reviewed took this into careful consideration, nor
argued at what point the size and attenuation of the added
object relative to the background interfere with the statistical
properties enough to be concerned.

In this paper we assume that the x-ray portion of the CT data
is well approximated by the Poisson distribution and that the
distribution of detector noise is known. With those assumptions
we present a very simple statistical framework for synthetic
object addition to CT projections which claims to agree with
the assumed model on the first two statistical moments (mean
and variance).

II. STATE OF THE ART

Ambrosini [1] argues that a good simulation of lung nodules
must have anatomical shape similar to real lung nodules

1 Philips Healthcare,2, Case WesternReserve University, Cleveland, OH

for objective testing of CAD applications for abnormality
detection. Their technique of modeling the size, shape and
attenuation of the synthetic objects is valuable and in this paper
we assume that size, shape and attenuation of the synthetic
object is known.

Li et. al. [7] study techniques for simulation of lung nodules.
They consider three types of synthetic nodule simulation: 1)
synthetic nodules are added to a physical or mathematical
phantom, 2) nodules are either segmented out from the real
clinical images or 3) computer generated. For types 2) and 3),
the nodules are added to the reconstructed clinical images. The
advantage of adding nodules to the clinical images is that it
creates a volume with realistic anatomy. Earlier work on this
subject is by Hoe et. al. [5] with liver lesions. Studies of Li [7]
and Hoe [5] motivate us to take a step further in developing
a realistic framework that uses existing clinical data without
lesions or nodules, and adds synthetic ones which can then be
used for observer studies.

Madsen [8], [9], [10] et. al. are interested in lung nodule
addition based on a library of nodules extracted from clinical
image volumes. Abnormalities are added in the image space
and images are used in image perception studies. Shin [13] et.
al. and Kazantzakis [6] et. al. developed a similar tool, which
also adds virtual pulmonary nodules to CT data, and this is the
only paper that we identified which also has some statistical
considerations. The objects are added and synthetic noise is
simulated with heuristically determined patterns and levels in
the image space using a blending technique based on an early
work in digital imaging by Porter and Duff [11], interestingly
of the Star Warscinema franchise. Our motivation is to create
a framework based on a more accurate noise model of CT
data.

Falck et. al. [3] use realistic liver lesions which are seg-
mented from real clinical cases and added to phantom data
using an image domain blending technique described in [4].
Images to which synthetic nodules are introduced, come from
a statistical reconstruction algorithm, SAFIRE, and they are
subsequently used for image quality (IQ) performance testing
of that algorithm. The authors do not offer much details on
the accuracy of the blending technique, simply stating that the
simulations inherit noise magnitude and characteristics of the
target data-setto a large extent, but that extent has not been
quantified. The image reconstruction algorithm used in this
study belongs to a class of statistical reconstruction algorithms,
which use the knowledge of the statistical properties of the data
in the process of image formation. A successful object blend-
ing technique must be tailored to this specific algorithm. This
means that if we wish to compare performance between two
different reconstruction algorithms, we also need to modify
the blending technique. This motivates us to create an object
insertion strategy which adds an object to the data accurately
regardless of its size and attenuationbefore the images are
reconstructed to allow for an independent IQ comparison for
any reconstruction algorithm.

Page 372 The third international conference on image formation in X-ray computed tomography



As an additional argument for a more careful consideration
of the object size, wealso quote Wang’s [14] talk at the RSNA
meeting in 2013, where he indicated the need for a statistically
accurate addition of larger synthetic implants to interventional
cone-beam CT data. Clearly, large implants will at one point
change the noise characteristics of the target data set.

The final motivation for our work comes from Wunderlich
and Noo [16], who derived the analytical formula of image
covariance in direct fan-beam CT reconstruction and used a
channelized hoteling observer (CHO) for modeling the perfor-
mance in a simulated lesion detection task. The phantom used
in their study is fully analytical and certain images contain
the lesion while others do not. The task of the observer is
to recognize whether the lesion is present or not. Their study
can now be extended to clinical data to whichsignal present
data could be obtained by adding synthetic lesions using our
statistical framework.

III. A SSUMPTIONS ANDTHE PROBLEM STATEMENT

Suppose that an X-ray is generated with the flux ofNa

photons, wherea indicates a tube current and that we have
a CT system with energy integrating detectors with a fixed
integration period during the scan. Before the X-ray reaches
the detector, it attenuates through an object with an attenuation
µ1 and according to the monochromatic Beer’s law, the mean
number of detected photons is:

ya,l1 = Nae
−l1 ,

wherel1 =
∫

r
µ1dl is the line integral of the objectµ1 along

ray r.
In practice, this mean number is not available because the

recorded value is corrupted by noise. In fact, on a system with
energy integrating detectors, we record the signal which can
be modeled as

ŝa,l1 = AP(Nae
−l1) +D,

whereA is the electronic gain,P(m) indicates Poisson re-
alization with meanm and D indicates zero-mean detector
electronic noise realization with varianceσ2

D. We described
this model in details in [17] which heavily relies on earlier
work by Whiting et. al [15].

Assuming that the noise from X-ray photons and the detector
are independent random variables, according to the model in
[15], we have the following result for the first two statistical
moments of the signal̂sa,l1 :

Mean(ŝa,l1) = Aya,l1 and
Var(ŝa,l1) = A2ya,l1 + σ2

D.
(1)

Our goal is to add an object with a different attenuation
function µ2 to the original object. If we do that, then the
combined line integral along rayr is l = l1 + l2, where
l2 =

∫

r
µ2dl. Since the added object can consist of parts which

have a negative contrast, we require that the tube currentb in
the combined object scan satisfies

b <= min{ael2 , a}. (2)

If l2 > 0, then we can keepb = a, but otherwise,b < a,
which happens if the added object has a negative attenuation
in certain views. The mean number of detected photons in a
combined object scan will be

yb,l = Nbe
−l.

There are some important practical considerations that stem
from condition (2). Namely, if we are adding a hyperdense
object to the data, then we need to introduce more noise
only to the parts of the CT data that penetrate through the
added object. But, if a synthetic object has some negative line
integrals, then, roughly speaking, we resort to adding noise
to the projections of the background data, since nose removal
is a much more difficult task and is really the job of a CT
reconstruction algorithm.Adding noise to the backgroundis a
good description of the meaning when we writeb < a. In that
case, background data must be acquired at a higher dose if we
wish to achieve the noise levels of the target volume with the
synthetic lesion which contains hypodense regions.

Let us assume that condition (2) holds. We claim that the
following formula gives us a signal where a synthetic object is
inserted into the existing object, while satisfying the first two
statistical moments (1) for tube currentb

ŝa→b,l1+l2
= Aa−be

−l2

a
P

(

be
−l2

a−be−l2

ŝa,l1

A

)

+

+D
√

1− b2e−2l2

a2 ,
(3)

whenevera > be−l2 , otherwiseŝa→b,l1+l2
= ŝa,l1+l2

.
One can see that for̂sa→b,l1+l2

we have

Mean(ŝa→b,l1+l2
) = Ayb,l, and

Var(ŝa→b,l1+l2
) = A2yb,l + σ2

D,

by following the steps of the proof in the Appendix of [17].
Just takeα = a andβ = be−l2 , whereα andβ are symbols
used in [17]. The key part that allows us to prove our claim is
conditional variance theorem[2] which we discussed in details
in [17].

IV. SIMULATION STUDY

In this section, we verify theoretical results from the previ-
ous section using a mathematical phantom. To simplify our
simulation and underline the importance of the conditional
variance principle for the Poisson part of the noise model, we
will assume that the detector noiseD is not present. Detector
noise is not a dominant source of noise for the dose levels
selected for the experiement, which is another reason why
we excluded it from our experiments in this paper. We use
the analytical simulations to demonstrate the effectiveness of
our model, but the method itself is not restricted just to the
simulations. Results with real data and electronic noise will be
presented in our poster at the conference.

We start with three analytical phantomsp, p1 andp2 where
phantom p is simply a sum ofp1 and p2. Line integrals
corresponding to the phantomp will be denoted asl and
they are calculated along rays that form a realistic CT cone-
beam geometry. Similarly, line integrals of the phantomp1
will be denoted asl1 and line integrals of the phantomp2
will be denoted asl2. We will simulate noisy CT projections
for the phantomsp and p1 and then we will add phantom
p2 to p1 using the formula (3). The role of the phantomp2
is that of an arbitrary synthetic lesion, nodule or an implant
added to the background datap1. We will demonstrate that the
mean and noise variance of 1000 noisy image reconstructions
with FBP for the direct noise simulations on phantomp and
reconstructions from data calculated with formula (3) are the
same. We are adding a large object to exaggerate the effects
of the noise, but the method is not limited to the object size.

We will perform the experiment twice, first with objectp+2
which contains entirely positive line integrals (Fig. 1. d) )
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and second with objectp−2 which has negative lineintegrals
(Fig. 1. e) ). When adding an object with positive values,
the attenuation in combined data will be higher in areas that
correspond to the added object, so we expect the noise to go
up in those areas. However if an added object has negative
values, the attenuation will be lower in those areas than in
the background. As argued in the previous section, we cannot
decrease the noise in projections, so we resort to adding noise
to the background. The mathematical expression that reflects
this is in condition (2). In our experiment with objectp+2 ,
we can keepa = b = 100mA, but in our experiment with
objectp−2 , condition (2) forces us to choose tube current for the
background to bea = 100mA and for the targeted simulation,
we choseb = 69mA since the minimum line integral through
the added object in that case is−0.37. Throughout this
experiment, the integration period was simulated at the fixed
length of417µs.

Let indices(i, j) denote detector channels (i) and views (j)
in this simulation. We make 1000 three noisy sets with mean
valuesyb,l(i, j) = Nb(i)e

−l(i,j), ya,l1(i, j) = Na(i)e
−l1(i,j)

and yb,l1(i, j) = Nb(i)e
−l1(i,j), using the Poisson noise

generator, such as the one described in [12]. Details on how
to obtainNa andNb for a system are in [17]. The noisy data
sets are denoted as

ŷb,l(i, j) = P (yb,l(i, j)) ,

ŷa,l1(i, j) = P (ya,l1(i, j)) and,

ŷb,l1(i, j) = P (yb,l1(i, j)) .

Note that in our experiment with the positive objectp+2 ,
because ofa = b, we do not need the third simulation̂yb,l1 .

We will then create three new data sets byaddingthe object
p2 to the backgroundp1 using three different methods. The first
method is derived from our formula (3)

ŷa→b,l1+l2
(i, j) =

a− be−l2(i,j)

a
P

(

be−l2(i,j)

a− be−l2(i,j)
ŷa,l1(i, j)

)

,

and the two other methodsobtain the new data by simply
adding the line integralsl2(i, j) to l1(i, j)

ẑb,l1+l2
(i, j) = ŷb,l1(i, j)e

−l2(i,j),

ẑa,l1+l2
(i, j) = ŷa,l1(i, j)e

−l2(i,j).

Again, the last simulation̂za,l1+l2
is skipped for objectp+2 ,

which contains only positive line integrals becausea = b.
We reconstruct all the obtained data-sets into images using

a classical fan beam, filter-back-projected reconstruction algo-
rithm and calculate mean value and variance for all 1000 noise
realizations. Results are summarized in Figures 2-5. One can
see that the images from data obtained with formula (3) mean
and variance agrees very well with the direct simulations and
that naive approaches fail to do so.

V. CONCLUSION AND DISCUSSION

We have demonstrated a feasible and accurate statistical
framework for adding synthetic objects to CT data using
simulations. Simulations performed on the mathematical phan-
tom validates the theoretical considerations when detector
noise is not present. We will also present results with the
real data at the conference. One of the drawbacks of our
work is that we do not incorporate the object material and
its spectral properties into our simulation tool, which will
be a topic of our future research. Another limitation is that

a) b) c) d) e)

Fig. 1. Image a) represents the full phantomp1+p+2 and image b) represents
the full phantomp1 + p−2 . Imagec) represents the backgroundp1. Image d)
is the hyperdense objectp+2 and e) is the hypodense objectp−2 which we
add to the background. Backgroundp1 contains an outer ellipse with the long
axis of 350mm and short axis of 210mm and HU of 0. The circle at the
top has diameter of 70mm and 750HU. Hyperdense objectp+2 is one circle
at the bottom with diameter of 50mm and HU of 1000 when added to the
background. Hyperdense objectp−2 is one circle at the bottom with diameter
of 50mm and HU of -310 when added to the background. Window for all
images is 50 HU, images a) - c) are centered at 0 HU and d) and e) are
centered at -1000HU.

a) b) c) d) e)

Fig. 2. Simulation results: Images a) b) and c) represent mean of reconstruc-
tions from 1000 noise realizations forthe hyperdense experiment described
in Section IV. Image d) is the ratio image a) divided by b) and image e) is
the ratio image a) divided by c). Image a) is for the full object and dataŷa,l,
image b) is for the datâza,l1 and image c) is for the datâya,l1+l2 . Naive
approach in image b) underestimated the realistic mean from image a) and our
method in c) completely agrees with image a), which is also seen in the ratio
images. For images a) - c) is window 50 HU and center 0HU. For images d)
- e), window is 0.02 and center is 1

a) b) c) d) e)

Fig. 3. Simulation results: Images a) b) and c) represent variance of
reconstructions from 1000 noise realizationsfor the hyperdense experiment
described in Section IV. Image d) is the ratio image a) divided by b) and
image e) is the ratio image a) divided by c). Image a) is for the full object
and datâya,l, image b) is for the datâza,l1 , image c) is for the datâya,l1+l2 .
Naive approach in images b) underestimates the realistic variance from image
a) and our method in d) completely agrees with image a), which is also seen
in the ratio images. For images a) - c) is window 6000 and center 4000HU.
For images d) - e), window is 1.5 and center is 1.

the objects are inserted into the background using only the
additive rule. Another interesting topic would be to develop a
similar framework in case the precedence rule, which would
be convenient when a user wishes to superimpose objects into
the existing background. Nevertheless, with a relatively simple
framework, we addressed some of the most important limita-
tions of previously published works on this topic: in our work,
objects are added statistically accurately, independently of their
size and attenuation and our method does not depend on the
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a) b) c) d) e) f) g)

Fig. 4. Simulation results: Images a) b) c) and d) represent mean of reconstructions from 1000noise realizations for the hypodense experiment described in
Section IV. Image e) is the ratio image a) divided by b) and image f) is the ratio image a) divided by c) and image g) is the ratio image a) divided by d). Image
a) is for the full object and datâyb,l, image b) is for the datâza,l1 , image c) is for the datâzb,l1 and image d) is for the datâya→b,l1+l2 . Naive approach in
images b) and c) do not agree the realistic means from image a) and our method in image d) completely agrees with image a), which is also seen in the ratio
images. For images a) - d) is window 50 HU and center 0HU. For images e) - g), window is 0.02 and center is 1.

a) c) d) e) f) g)a) b) c) d) e) f) g)

Fig. 5. Simulation results: Images a) b) c) and d) represent variance of reconstructions from1000 noise realizations for the hypodense experiment described in
Section IV. Image e) is the ratio image a) divided by b) and image f) is the ratio image a) divided by c) and image g) is the ratio image a) divided by d). Image
a) is for the full object and datâyb,l, image b) is for the datâza,l1 , image c) is for the datâzb,l1 and image d) is for the datâya→b,l1+l2 . Naive approach
in images b) and c) do not agree the realistic variance from image a) and our method in image d) completely agrees with image a), which is also seen in the
ratio images. For images a) - d) is window 6000 and center 4000HU. For images e) - g), window is 1.5 and center is 1

reconstruction method, being a projection-based simulation.
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Abstract – The aim of this research is to develop a 
cardiac CT simulation platform by integrating a 
realistic 4D anthropomorphic phantom, with a beating 
heart and coronary stent models, and an accurate CT 
projection data simulator. This enhanced simulation 
platform has the advantages of utilizing realistic models 
of human anatomy and coronary stent without 
voxelization, the realistic cardiac beating and coronary 
artery motion, and accurate modeling of the 
characteristics of clinical CT systems. First, we modeled 
different heart motion curves and heart rates for the 4D 
NURBS-based XCAT phantom to represent different 
cardiac beating patterns. Second, we modeled primitive-
based coronary stent models using multiple stent 
parameters and these stent models moved according to 
the corresponding coronary tree motion of the XCAT 
phantom at different cardiac phases. Third, the 
DRASIM CT protection data simulator was enhanced to 
trigger the generation of the dynamic phantoms at the 
required cardiac phases before running the projection 
data simulation for all projection views according to the 
specific rotation speed and cardiac beating patterns. We 
employed our new simulation platform to perform a 
series of cardiac CT angiography simulation to study the 
effect of stent diameters on artificial lumen attenuation, 
and the effect of heart rates on the motion artifacts for 
stents deployed at different coronary branches. In our 
results, our new simulation platform shows its capability 
in the generation of clinically realistic cardiac CT 
images with realistic motion artifact. Significant 
increase in the error of intra-lumen attenuation is 
observed as the stent diameter decreases from 4mm to 
2.5mm which might be caused by the system spatial 
resolution. Moreover, minor to moderate motion 
artifacts are observed for stents located in LAD and 
LCX at the heart rate 50 and 70 bpm whereas RCA 
stent suffers much more significant motion artifacts 
even at low heart rate. In conclusion, we have developed 
a unique 4D XCAT/DRASIM CT simulation platform, 
which provides a powerful tool for the design and 
optimization of CT scanners, scanning protocols, and 
image reconstruction methods for cardiac CTA studies. 
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I. INTRODUCTION  
Non-invasive cardiac CT is one of the most demanding 

and challenging diagnostic CT applications. Due to the 
rapid beating heart and small and complex anatomic 
structure of coronary arteries, both high temporal and high 
spatial resolution conditions are required to virtually freeze 
the cardiac motion and to accurately image the fine 
coronary structure. Over the last few decades, various 
advancements in the methods and technologies of CT have 
been developed and progressively improving the CT image 
quality and lower the radiation dose for cardiac and other 
clinical applications [1]. At the same time, CT scanners 
have become exceedingly complex and any protocol or 
design optimization studies become a big challenge. It is 
impractical to optimize the large number of parameters of 
imaging protocols and design settings in modern CT 
systems based on human subject studies due to the 
prohibitive high cost and unnecessary radiation dose 
concerns. On the other hand, it is equally impractical to 
perform optimization studies on physical phantoms as those 
cannot realistically mimic the true clinical scenario in 
general, such as fabricating an anatomically realistic 
physical beating heart phantom. Therefore, the most 
promising practical approach to these optimization studies 
is through realistic computer simulation [2] using realistic 
human-model phantom and accurate CT simulator. It is 
crucially important to understand that without a highly 
realistic anthropomorphic phantom and a physics- and 
geometric-accurate CT projection data simulator, the studies 
might lead to clinical irrelevant, or even misleading, 
conclusions. Another major merit of using computer 
generated phantoms in simulation studies is that the exact 
anatomy and motion of the phantom are known, thus 
providing the ground truth for quantitative evaluation. 

Previously, we have developed a complete CT/human-
model simulation package [3] by integrating the  eXtended 
CArdiac-Torso (XCAT) phantom [4], a computer generated 
Non-Uniform Rational B-Spline (NURBS) surface based 
phantom that provides a realistic model of human anatomy, 
and the Deterministic RAdiological SIMulation (DRASIM) 
(developed by Siemens Healthcare) CT projection data 
simulation program [5]. In this paper, we have further 
enhanced our simulation platform by modeling realistic 
cardiac beating motion using heart cycle curve, modeling 
realistic integrated models of human anatomy and coronary 
stent without voxelization, and adding the support of 
dynamic phantom by the CT projection simulator. We 
employed our new simulation platform to perform a series 
of cardiac CT angiography simulation to study the effect of 
stent diameters on in-stent false enhancement, and the effect 
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of heart rates on the motion artifacts for different coronary 
branches and scanner settings. 

II. METHODS 
Essentially, the simulation platform consists of multiple 

components: 4D XCAT and stent phantom, DRASIM 
simulator, and projection data generation. The schema and 
data flow diagram of the integration is depicted in Figure 1. 
 

 
Figure 1. The schema and dataflow diagram of the 4D 

XCAT/DRASIM integration 
 

A.  Realistic 4D digital phantom of human and stent models 

The XCAT phantom [4] is a whole-body computer 
model of the human anatomy based on NURBS surfaces. 
Unlike other phantoms based on simple mathematical 
primitives or voxelized phantoms, the XCAT provides an 
accurate representation of the complex human anatomy 
using over 2,000 NURBS surfaces and has the advantage 
that its organ shapes can be changed according to the 
anatomical parameters to realistically model anatomical 
variations of the patients. For the XCAT cardiac motion, it 
was originally determined from tagged MRI data of a 
normal human. The motion is depicted as a large collection 
of 3-D motion vectors with each defined for each control 
point in each myocardial surface: 5 surfaces for left 
ventricle including endocardial border, epicardial border, 
and 3 mid-myocardial surfaces between endo-epicardial 
borders; endo- and epicardial borders for right ventricle. 
Heart motion curve (as shown in Figure 2) could be used to 
define the contraction point at specific cardiac phase in 
which the heart deforms from end-diastole to end-systole 
then back to end-diastole. With the heart motion curve, the 
users have the capability to adjust the motion of the 
myocardium at any time points, the quiet phase of a cardiac 
cycle, and change the ratio of the duration of systole and 
diastole phases. 

Coronary stent is a small metal framework that 
deployed in the coronary arteries to maintain the arteries 
open and the myocardial blood supply in the treatment of 
coronary heart disease. Basically, most stents are built by 
interconnecting a series of basic units which called “rings” 
or “cells” with “link strut”.  A typical structural pattern of a 
ring can be approximately represented as sinusoidal curve. 

In our stent model, we employed 6 parameters: location of 
the stent in the arteries; length and radius of the stent; the 
cell height; the cell gap, and the strut thickness. The rings 
were parallel to the tangent of the centerline of the arteries. 
The neighbor rings were joined together by link struts. For 
simplicity, we represented the stents as interconnected 
cylindrical struts as shown in Figure 3. The material was 
defined as stainless steel and the strut thickness was fixed to 
0.1mm. Since the stent was deployed inside the artery, the 
NURBS surface of the artery was deformed to match the 
size and extend of the stent. Moreover, we made an 
assumption the motion of the arteries did not change due to 
deployment of stents. Therefore, the stents moved with the 
corresponding centerline of the moving coronary arteries. 

 

 
Figure 2. A number sample heart motion curves to 

define different heart beat motion patterns 

   
Figure 3. Rendered images of the XCAT heart phantom and 

stent models deployed at LAD, LCX and RCA branches  
 

B.  Accurate CT projection simulator  

The DRASIM software package [5], developed by 
Siemens Healthcare, is a CT projection data simulation 
program which allows simulation of x-ray transmission data 
based on a narrow beam assumption. Since DRASIM is 
developed by the research department of the manufacturer, 
it has all the necessary parameters that need to accurately 
reproduce the projection data generated by actual Siemens 
clinical CT scanners. DRASIM can accurately model a 
detailed list of CT scanner specific parameters, such as 
focus size and the detector aperture with oversampling, the 
motion of the focal spot on the anode plate, and the 
polychromatic x-ray beam. However, original DRASIM 
only works with simple geometric phantoms composed of 
multiple simple geometric primitive objects, such as 
spheres, ellipsoids, and cylinders.   
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C. Projection data generation with 4D phantom 

We employed the dynamic-link library (DLL) approach 
to integrate the 4D XCAT phantom and the DRASIM 
software programs.  The new NURBS-based DLL was 
loaded into the DRASIM program when it was called at 
runtime only. One of the main component of the DLL was 
the efficient ray–tracing algorithm for NURBS surfaces, 
which included Bezier clipping method, bounding volume 
hierarchy representation, and fast ray-box intersection 
calculation, as part of the development of the CT projector 
for the XCAT phantom [6]. Due to the extremely high 
spatial resolution of the projection rays, additional work has 
been performed in fine-tuning the stopping tolerance for the 
recursive subdivision process in Bezier clipping method in 
order to achieve highly accurate ray-sum calculation. 
Additional logic has been designed to keep track the 
incident and exit sequence of the casting ray through a 
surface using the surface normal at intersection point in 
order to achieve highly robust ray-sum calculation.   

As the heart and stents were at different phases at every 
single projection view for the simulation studies of beating 
heart, the XCAT and stent phantoms were needed to be 
generated at the specific corresponding phase at the starting 
of every projection view generation. The users were 
allowed to save all the generated phantoms at required 
phases to save the time for phantom generation. However, 
the disk space required for thousands instances of the 
phantoms could be extremely large.    

D. Cardiac CTA simulation and evaluation 

The data acquisition parameter settings of DRASIM 
were based on the Definition Flash dual-source CT scanner 
(Siemens Healthcare). The geometry settings, including 
source to center distance, center to detector distance, 
number of detector channels, number of views per rotation, 
fan angle of the detector, filters, and many other were 
specified accordingly. To isolate the beam hardening effect, 
a monoenergetic x-ray source of 75 keV and tube current 
setting of 320mAs per rotation were employed for all 
simulations. Oversampling of 3x3 on focus and detector 
elements was employed. The CT image reconstruction was 
performed by short-scan Parker-weighting filtered back 
projection. 2304 view/rot, 0.6mm collimator  

The simulation platform was employed on a series of 
coronary CTA studies. In the first study, we studied the 
effect of stent diameters on artificial lumen attenuation 
coronary arteries and stents. The coronary arteries and the 
left ventricular blood pool were enhanced to 300HU. The 
diameters of the stents tested were ranging from 2.5mm to 
4mm. Stents were deployed at all 3 arteries. To isolate the 
motion artifacts from spatial resolution, static phantom at 
mid-diastolic phase was used. The figure-of-merit was 

	 	 	 %  
mean	measured	HU	inside	stent

true	HU	inside	stent
1 ∗ 100% 

 

In the second study, we studied the effect of heart rates 
on the motion artifacts for different coronary branches. The 
rotation speed of the scanner was 0.28s/rotation. The 
beating heart model was tested at 4 different heart rates 
(HRs), i.e., 50, 70, 90, and 110bpm. The figure of merit 
used was 

 
III. RESULTS AND DISCUSSIONS  

As shown in Figure 4, ALA increases from 3.4% to 
25.6% as the RCA stent diameter decreases from 4mm to 
2.5mm due to system spatial resolution. At this slice, stents 
at both LAD and RCA suffer similar degradations in terms 
of ALA and are higher LCX for each of stent size. It could 
be explained as the orientations of stents at LAD and RCA 
are closed to vertical whereas the LCX one is oblique with 
the transaxial plane which leads to larger lumen area thus 
less effect from the system spatial resolution.      

 
(a) (b) 

 
(c) (d) 

 
(e) 

Figure 4. Coronary CTA simulation using static heart at 
mid-diastolic phase and the stents with the diameter of (a) 

2.5mm, (b) 3.0mm, (c) 3.5mm, and (d) 4.0mm. (e) The 
ALA for stents with different dia. at LAD, LCX, and RCA. 

Page 378 The third international conference on image formation in X-ray computed tomography



 

As shown in Figure 5, RMSE was used to measure the 
degree of motion artifacts with reference to the images from 
static CTA simulation. It is apparent that the simulated CTA 
images the blood pool border of left ventricle suffers 
significant motion artifacts at high heart rates (70, 90 and 
110 bpm). For all heart rates, LAD stents always suffer the 
least motion artifacts, LCX stents suffer intermediate 
artifacts, and RCA stents suffer the most serious motion 
artifacts. It is fully explainable as, it is known that, in most 
patients, LAD has least motion whereas RCA has the 
biggest motion. Also, qualitatively, we also observe that 
LAD and LCX suffer minor to moderate motion artifacts at 
the heart rate 50 and 70 bpm. However, RCA suffers very 
significant motion artifacts even at heart rate as low as 
50bpm. 

 

 
(a) (b) 

 
(c) 

 
(d) 

 
(e) 

Figure 4. Coronary CTA simulation with single-source CT 
with coronary stents and heart beating at (a) 50bpm, (b) 
70bpm, (c) 90 bpm, and (d) 110bpm. (e) The ALA for 

stents with different heart rates at LAD, LCX, and RCA. 
 

We have further investigated the effect of different 
scanning protocols, which are single source and dual source 
scan modes, on motion artifacts at different heart rates and 
stent locations. We have found DSCT achieves lower 
RMSE than SSCT for all HRs and all stent locations. For 
LAD & LCX, DSCT provides moderate motion artifacts 
improvement depending on HRs (~19% on avg.). For RCA, 
DSCT achieves dramatic improvement in RMSE than using 
SSCT (~36%), but still suffers from significant motion 
artifacts, especially at high HRs  

  

IV. CONCLUSION  
In conclusion, we have developed a unique 4D 

XCAT/DRASIM CT simulation platform, which enables 
highly realistic cardiac CTA simulation with clinical CT 
systems. The platform provides a powerful tool for the 
design and optimization of CT scanners, scanning protocols, 
and image reconstruction methods for cardiac CTA studies. 
We have utilized the new platform for the evaluation of our 
newly developed motion compensation methods for the 
reduction of motion artifacts [7]. 
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Abstract— The backprojection-filtration and differentiated 

backprojection with Hilbert filtering (BPF/DBPF) algorithms are 
originally derived for exact helical and axial image reconstruction 
from cone beam (CB) and fan beam projection data, respectively. 
To extend their applications in axial CB scan for reconstruction of 
three-dimensional (3D) images, we have proposed its integration 
with a 3D weighting scheme (namely 3D weighted CB-BPF/DBPF 
algorithm), in which we’ve found that, the artifacts due to cone 
angle can be significantly reduced by the 3D weighting, but the 
post-backprojection (post-BP) Hilbert filtering induces severe 
streak artifacts in images located away from the central plane 
determined by the circular source trajectory. To eliminate the 
streak artifacts caused by the post-BP Hilbert filtering, we 
propose to integrate the 3D weighted axial CB-BPF/DBPF 
algorithm with paired Butterfly filtering in this paper. Using the 
Forbild head phantom that is rigorous in reconstruction accuracy 
inspection, we evaluate the proposed algorithm and verify that, by 
incorporating the paired Butterfly filtering, the 3D weighted axial 
CB-BPF/DBPF algorithm at least performs as well as the 3D 
weighted axial CB-FBP algorithm in reconstruction accuracy. 

 

Index Terms— Reconstruction, Filtered backprojection, 
Backprojection-filtration, Differentiated backprojection 

I. INTRODUCTION 
Approximate cone beam (CB) reconstruction algorithms for a 

circular trajectory (namely axial CB scan) have been 
extensively employed in CT imaging for medical and industrial 
applications [1, 2]. However, since the circular trajectory does 
not satisfy the data sufficiency condition (DSC) [3], CB artifact 
appears and worsens with increasing cone angle. Though the 
reconstruction algorithms associated with helical/spiral [4-9] or 
‘circle plus’ [10-11] trajectories have been proposed to meet the 
DSC, the axial CB scan is still the most desirable in practice for 
physiological and interventional imaging in the clinic, which 
drives the CT image reconstruction community to explore 
solutions for reducing, if not eliminating, CB artifacts existing 
in the images reconstructed from axial CB scan data, especially 
when the cone angle becomes relatively large [12]. 

Weighting schemes have been proposed for CB filtered 
backprojection (CB-FBP) algorithms to reduce the artifacts 
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caused by cone angle to a clinically acceptable level. Among all 
the solutions in this category, the three-dimensional (3D) 
weighted CB-FBP algorithm is of merit and has found its 
applications in clinical multi-detector row CT scanners [9, 12]. 
By giving a favorable weight to the ray out of a conjugate ray 
pair with the smaller cone angle, the artifacts due to conjugate 
ray inconsistency and longitudinal detector truncation, both are 
consequences of the cone angle, can be effectively reduced. 

The algorithms of backprojection-filtration and differentiated 
backprojection with Hilbert filtering algorithm (BPF/DBPF 
henceforth) are originally derived for exact helical and axial 
image reconstruction from cone beam and fan beam projection 
data, respectively [7, 13]. Its major advantage is the capability 
of reconstructing a region of interest (ROI), leading to the 
success of dealing with data truncation in practical situations 
wherein data truncation is inevitable. To extend the BPF/DBPF 
algorithm’s application in axial CB scan, we have proposed to 
integrate the BPF/DBPF algorithm with 3D weighting (namely 
3D weighted axial CB-BPF/DBPF algorithm) [14]. Preliminary 
results show that the 3D weighted CB-BPF/DBPF algorithm 
can work as well as the 3D weighted CB-FBP algorithm in terms 
of CB artifact reduction. However, the post-BP Hilbert filtering 
is in fact not accurate (see section V), resulting in severe streak 
artifacts along the Hilbert filtering’s orientation in reconstructed 
images at the spots where the object varies abruptly [14-16].  

Recently, the so-called Butterfly filtering has been proposed 
by Pack et al to reduce the artifacts caused by the data null and 
redundancy in a partial (270°) CB scan [17]. With resort to a 
pair of orthogonal Butterfly filters in spatial-frequency domain, 
the artifacts caused by the data null and redundancy can be 
mitigated to an unnoticeable level. Recognizing the fact that the 
artifact generated by the post-BP Hilbert filtering in the 3D 
weighted CB-BPF/DBPF algorithm is orientation-specific and 
the Butterfly filtering is good at suppressing orientation-specific 
artifacts, we propose in this paper to incorporate the Butterfly 
filtering into the 3D weighted axial CB-BPF/DBPF algorithm 
(namely 3D weighted axial CB-BPP/DBPF with Butterfly 
filtering) and conduct an evaluation to verify its performance.  

II. THEORETICAL BACKGROUND 
   The derivation of BPF and DBPF algorithms starts at different 
points, but ends up with a common algorithmic structure. We 
present the proposed algorithm under the DBPF framework.  

A. CB Geometries for Axial Scan and Reconstruction 
The native CB geometry is shown in Fig. 1 (a), where O-xyz 

represents the coordinate system. S is the focal spot of x-ray 

Axial Cone Beam BPF/DBPF Reconstruction 
with 3D Weighting and Butterfly Filtering 

Shaojie Tang, Wenqing Wang and Xiangyang Tang* 

Page 380 The third international conference on image formation in X-ray computed tomography

mailto:tangshaojie@xupt.edu.cn�
mailto:xiangyang.tang@emory.edu�


source, and P(x, y, z) denotes a point within the object to be 
imaged. The ray emanating from S and passing P(x, y, z) is 
determined by its view angle η, fan angle γ, and cone angle α. In 
the native CB geometry, the circular trajectory is expressed as 

( ) ( ) ( )min maxsin , cos ,0 , , ,ST R Rη η η η η η= ⊆          (1) 

where ηmin and ηmax denote start and end of the source trajectory.  

  
(a)            (b) 

Fig. 1. The schematic of native cone beam (a) and cone-parallel (b) geometries. 

Through a row-wise fan-to-parallel rebinning, the native CB 
geometry is converted into the cone-parallel geometry shown in 
Fig. 1 (b). The ray emanating from focal spot S and passing 
through P(x, y, z) is uniquely determined by its view angle β, 
distance t from the axis of rotation (AOR), and cone angle α. In 
the cone-parallel geometry, significantly improved noise 
uniformity and image generation speed can be attained. 

B. Conjugate Ray Inconsistency in Cone-parallel Geometry 
   The conjugate ray inconsistency means that, due to cone angle, 
the conjugate rays that are 180o apart in β are not identical. In 
the cone-parallel geometry, the ray corresponding to (αc, βc, tc) 
= (αc, π + β, -t)

 
is conjugate to the ray associated with (α, β, t).  

C. Axial CB-FBP Algorithm in Cone-parallel Geometry 
The 3D weighted axial CB-FBP algorithm in the cone-parallel 

geometry can be expressed as [9, 12] 

( ) ( ) ( )
max

min

3
max min

, , co s , , , , , ,df x y z w t l s t d
β

β

π α α β α β β
β β

≈
− ∫     (2) 

( ) ( ) ( ), , , , ,s t s t h tα β α β= ⊗

              
(3) 

where h(t)
 
is the ramp filtering kernel in parallel beam, and s(α, 

β, t) denotes the rebinned projection data. Let l denote the 
distance between the image and central planes, the weighting 
function w3d(α, β, t, l) meets the normalization condition 

( ) ( )3 3, , , , , , 1.d d c c cw t l w t lα β α β+ =
               

(4) 

In a full scan (βmax - βmin = 2π), w3d(α, β, t, l)
 
is designed as [13] 

( ) ( )
( ) ( )

( ) ( ) ( ) ( )3 3

tan
, , , , .

tan tan

k l
c

d d k l k l
c

w t l w l
α

α β α
α α

= =
+

     (5) 

D. Axial BFP/DBPF Algorithm in Cone-parallel Geometry  
If we modify the definition of s (α, β, t)

 
in Eq. (3) as 

( ) ( ), , , , .s t s t
t

α β α β∂
=

∂
                   (6) 

Eq. (2) can be converted into 

( ) ( )
max min

2 , , , ,H f x y z b x y zθ θ
ππ

β β
− ≈ =

−  

( ) ( )( ) ( )
max

min

3cos , , , sgn sin , , ,dw t l s t d
β

β

α α β β θ α β β−∫       (7) 

where Hθ

 
denotes the Hilbert transform along the direction 

(-sinθ, cosθ, 0) [7, 13]. Using a finite Hilbert inverse transform, 
one can approximately determine the object function f(x, y, z)

 from the differentiated backprojection (DBP) image bθ(x, y, z). 

E. Butterfly Filtering 
Pack et al proposed the approach of Butterfly filtering to deal 

with the data null and redundancy in spatial-frequency domain 
corresponding to a partial [0°, 270°) CB scan [17]. Illustrated in 
Fig. 2 is an example of the Butterfly filter pair. 

 
Fig. 2. A pair of Butterfly filters that are orthogonal in the frequency domain. 

 III. NUMERICAL EVALUATION 

A. Parameters of CT System, Scan and 3D Weighting  
The proposed algorithm is evaluated using the Forbild head 

phantom [18] simulated in an axial scan under the native CB 
geometry and rebinned into the cone-parallel geometry. In 
computer simulation, the distance from x-ray source to the AOR 
of CT gantry is assumed 541.0mm and the detector is with 
64×0.625 mm z-dimension at the AOR. 1160 projection views 
are acquired along the angular range [0º, 360º). The weighting 
parameter k(|l|)

 
in w3d(α, β, t, l) is empirically determined in Ref. 

[12] and reused here. The matrix of reconstructed transaxial 
images is 512×512, with a field of view (FOV) 256×256 mm2, 
leading to a voxel size 0.5×0.5×0.625 mm3. 

B. Scan Range and post-BP Hilbert Filtering Orientation 
The full axial scan data are used to evaluate the proposed 

algorithm. According to Ref. [7, 13], as a full scan corresponds 
to angular range [0°, 360°), there should be no limitation on the 
orientation along which the post-BP Hilbert filtering is carried 
out. We carry out the post-BP Hilbert filtering and the Butterfly 
filtering along the 0° (horizontal in reconstructed image) and 
90° (vertical) directions, respectively. As an extension, we also 
investigate the case wherein only partial scan data in angular 
range [0°, 270°) is available. By decomposing [0°, 270°) into 
two sub-angular ranges [0, 180°) and [90°, 270°), the post-BP 
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Hilbert filtering and Butterfly filtering can only be implemented 
along the 0° and 90° directions, respectively, according to Ref. 
[7, 13]. Note that no 3D weighting is implemented in the partial 
scan case since not every ray is associated with a conjugate ray. 

IV. PRELIMINARY RESULTS 
  In the performance evaluation and verification, the 

outermost slice is selected as the reconstruction plane. 
Presented in Fig. 3 (a) and (b) are images reconstructed by the 
CB-FBP algorithm without and with the 3D weighting, 
respectively, and that in Fig. 3 (c) is their difference. Fig. 3 
clearly shows that CB artifact is significantly reduced, if not 
eliminated, by the 3D weighting in the CB-FBP algorithm. 

 
Fig. 3. Images reconstructed from full (360°) axial scan data by the CB-FBP 
algorithm without (a) and with (b) 3D weighting, and their difference (c). 

 
Fig. 4. Images reconstructed from CB full-scan data by the axial 
CB-BPF/DBPF algorithm without 3D weighting and with the Hilbert filtering 
carried out at orientation of (a) 0º and (b) 90º, and (c) the synthesized image. 

Presented in Fig. 4 (a) and (b) are the images reconstructed by 
the CB-BPF/DBPF algorithm from full scan data with  the 
Hilbert filtering carried out along 0º and 90º, respectively, in 
which no 3D weighting is employed. By applying the Butterfly 
filter pair on the images in Fig. 4 (a) and (b), we get the 
synthesized image in Fig. 4 (c), showing that the artifacts caused 
by the post-BP Hilbert filtering along both horizontal and 
vertical directions can be reduced, if not removed, to a 
unnoticeable level.  The layout of Fig. 5 is the same as that in Fig. 
4, except for that the images are reconstructed by the 
CB-BPF/DBPF algorithm with the 3D weighting. Presented in 
Fig. 5 (d) is the difference between the images in Fig. 4 (c) and 
Fig. 5 (c), showing that the 3-D weighting indeed reduces the 
CB artifacts significantly, while the artifact caused by the 
Hilbert filtering are eliminated by the paired Butterfly filtering. 

   
Fig. 5. Images reconstructed from CB full-scan data by the axial CB-DBPF 
algorithm with 3D weighting with the Hilbert filtering carried out at orientation 
of (a) 0º and (b) 90º, and (c) the synthesized image, as well as (d) the difference 
between Fig. 4 (c) and Fig. 5 (c). 

   Displayed in Fig. 6 (a) and (b) are the images reconstructed by 
the CB-BPF/DBPF algorithm from data in the angular ranges 
[0°, 180°) and [90°, 270°), respectively. Note that no 3D 
weighting can be applied in the reconstruction to get these two 
images, since only half-scan data in the cone-parallel geometry 
is available in each case. Hence, CB artifact exists in the image 
shown in Fig. 6 (c), while the streak artifacts are removed by the 
paired Butterfly filtering. It should be noted that, to obtain the 
projection data within the range [0° 270°) in the cone-parallel 
geometry, the corresponding angular range in the native CB 
geometry is larger than [0° 270°) but smaller than [0° 360°). 

V. DISCUSSIONS AND CONCLUSIONS 
   A 3D weighted axial CB-BPF/DBPF algorithm integrated 
with paired Butterfly filtering is proposed here for CB image 
reconstruction from axial CB scan data. The 3D weighting has 
been previously proposed by us for the CB-DBPF to suppress 
CB artifacts, while the paired Butterfly filtering proposed here 

(a) (b) 

(c) (d) 

  

(a) 

(c) 

(b) 

 

(a) (b) 

(c) 
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is to suppress the severe streak artifacts caused by the post-BP 
Hilbert filtering. Since the BPF/DBPF algorithm for image 
reconstruction in CB axial scan is theoretically approximate, the 
performance of the proposed algorithm needs to be investigated 
thoroughly. In this work, we conduct a performance evaluation 
via simulation study, and the preliminary results show that the 
integration of 3-D weighting with paired Butterfly filtering in 
the CB-BPF/DBPF algorithm works well as anticipated, 
enabling the proposed algorithm for CB axial scan wherein the 
cone angle is relatively large.  

   We used to speculate that the occurrence of severe streak 
artifacts after the post-BP Hilbert filtering in the 3D weighted 
CB-BPF/DBPF algorithm [14] may be due to a corruption by 
the residual CB artifact that cannot be removed by the 3D 
weighting. It is our current understanding that the BPF/DBPF 
algorithm is originally derived for exact helical reconstruction 
on PI-lines/chords and exact axial reconstruction from fan beam 
projection data, respectively [7, 13]. In axial CB scan, once the 
image plane is away from the central plane determined by the 
x-ray source trajectory, the BPF/DBPF algorithm is no longer 
accurate. Fortunately, the reconstruction inaccuracy mainly 
manifests itself as steak artifacts aligned with the orientation 
along which the Hilbert filtering is carried out. Thus, the paired 
Butterfly filtering that is orientation-specific can be utilized to 
remove the streak artifacts effectively and efficiently [17]. 
However, it should be noted that the paired Butterfly filtering 
may compromise the proposed algorithm’s capability of dealing 
with data truncation, because, two orthogonal directions, other 
than just one direction in the original BPF/DBPF algorithm, 
have to be taken care in the reconstruction.  

  
Fig. 6. Images obtained by the axial CB-DBPF algorithm without 3D weighting 
from data in angular range [0º, 180º) (a) and [90º, 270º) (b), corresponding to 
Hilbert filtering carried out at 0º and 90º, respectively. The image in (c) is 
synthesized from (a) and (b) via paired Butterfly filtering. 

   We believe that the proposed 3D weighted axial 
CB-BPF/DBPF algorithm is novel from the standpoint of 
reconstruction algorithm development, though its extension 

from the original BPF/DBPF algorithm [7, 13] to the algorithm 
proposed in this work is quite heuristic. In addition, we’d like to 
indicate that, under the BPF algorithmic framework, an axial 
CB-BPF reconstruction algorithm has been proposed in the 
literature [15]. It is believed that the 3D weighting scheme and 
Butterfly filtering presented in this paper are also applicable to 
the CB-BPF algorithm published in Ref. [15]. Further work to 
investigate the proposed algorithm’s robustness over noise and 
larger cone angle is under the way and the results will be 
promptly reported in our near future publication. 
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Reduction of Cone Artifacts in CT with
Incomplete Source Trajectories

Johan Sunnegårdh, Harald Schöndube, Thomas Flohr

Fig. 1. Incompleteness of circular x-ray source trajectory.

Abstract—In medical CT, incomplete x-ray source trajecto-
ries such as the circular and high-pitch dual source helical
trajectories are frequently used, mainly due to their superior
temporal properties. The increasingly large detectors of modern
CT systems in combination with data incompleteness may lead
to image artifacts. We present a modified Regularized Iterative
Filtered Backprojection (RIFBP) algorithm which allows for im-
proved reduction of these artifacts by incorporating certain prior
knowledge. Unlike iterative methods employing non-quadratic
regularization, e.g. `1-norm minimization, the prior knowledge
is only used for reducing artifacts and does not affect resolution
or noise texture notably. Experiments on high-pitch dual source
scans of an anthropomorphic thorax phantom demonstrate the
improved artifact reduction of the proposed method.

I. INTRODUCTION

In cone-beam computed tomography, to allow for exact and
stable image reconstruction, the x-ray source trajectory has
to satisfy the Tuy-Smith condition [1], [2]: for each point P
in the object to be reconstructed, all planes containing P are
required to intersect the x-ray source trajectory at least once.
Data are assumed to be untruncated. Therefore, only x-ray
source points that contribute with measurements of P are to
be considered.

In medical applications X-ray source trajectories that do not
satisfy the Tuy-Smith condition are frequently used. Examples
of such trajectories are the single/multiple circle trajectory and
the High-Pitch Dual Source (HPDS) trajectory [3]. Although
these trajectories do not allow for exact reconstruction, they
have advantages in situations where high temporal resolution
is required.

Fig. 1 illustrates data acquisition with two circular x-ray
source trajectories. Obviously, if the point P is outside the
planes defined by the source trajectories, no near-axial planes
passing through P intersect any of the source trajectories.

Fig. 2 illustrates the situation for HPDS data acquisition
with pitch factor 3.2. Here, each source-detector system il-
luminates the point P slightly more than 90◦. Between the

The authors are with Siemens Healthcare, Forchheim, Germany

Fig. 2. Incompleteness of the HPDS x-ray source trajectory with a pitch
factor of 3.2. The red o-markings and green *-markings indicate segments of
x-ray source trajectories contributing with measurements of P .

two contributing source trajectory segments, planes that do not
intersect any of the contributing trajectories can be placed.

Cone artifacts, i.e., artifacts that are directly related to the
cone beam geometry of the data acquisition, are caused by
(i) non-exactness of the reconstruction algorithm and (ii) by
incomplete data. Artifacts caused by the non-exactness of the
reconstruction algorithm can be suppressed by linear (Regular-
ized) Iterative Filtered Backprojection (RIFBP) methods [4],
while incomplete data artifacts require incorporation of some
kind of additional information.

In the following section, RIFBP and related notation are
introduced. This is followed by a presentation of Edge-
RIFBP, which improves reconstruction by incorporating prior
information about the sharpness of high-contrast edges. Edge-
RIFBP was previously proposed in [5] as a method for wind-
mill artifact reduction. In the results section, reconstructions
without iteration (Weighted Filtered Backprojection (WFBP)
[6]), reconstruction with linear RIFBP, and results with Edge-
RIFBP are compared. Finally, conclusions and open points are
summarized.

II. MATERIALS AND METHODS

A. Regularized Iterative Filtered Backprojection (RIFBP)

In the past, Iterative Filtered Backprojection (IFBP) meth-
ods have been successfully applied for artifact reduction in
a wide variety of tomographic reconstruction problems. A
review of early works on IFBP is found in [7].

We use a vector/matrix notation for representing images and
data, and linear operations. The vector pin ∈ RM denotes input
projection data and the vector f ∈ RN denotes an image. The
matrix Q ∈ RN×M denotes a reconstruction operator, and the
matrix P ∈ RM×N denotes a forward projector. In our case,
Q is the Weighted Filtered Backprojection (WFBP) [6], and
P is the forward projection by Joseph [8].
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Typically, RIFBP is initialized with a WFBP reconstruction
f0 = Qpin. This is followed by iterative application of the
RIFBP update equation

fk+1 = fk − α(Q(Pfk − pin) + βRfk) (1)

The regularization operator R ∈ RN×N is a high-pass filter
which, in combination with the parameter β, controls the
smoothness of the final result.

For a better understanding of the role of βR, we note
that QP ∈ RN×N , i.e. forward projection followed by
reconstruction, can be approximated as a low-pass filtering
L ∈ RN×N plus artifact generation A ∈ RN×N :

QP = Smoothing(L) + Artifact generation(A). (2)

By substituting R = (I − L)/β in (1), where L is an
approximation of the smoothing due to interpolations in QP
and the apodization of the rampfilter in Q, we get

fk+1 = (1− α)fk + α(Lfk + Q(pin − Pfk)) (3)
= (1− α)fk + α(Qpin − (QP −L)︸ ︷︷ ︸

artifact operator A

fk) (4)

Thus, for α = 1, the update step may be seen as subtracting
of artifacts (QP − L)fk from an image Qpin which has
artifacts. Note that if L is smoother than QP (β high), the
result becomes smoother than Qpin, and conversely, if L is
sharper than QP (β low), the result becomes sharper than
Qpin.

If the spectral radius of

∆ , I − α(QP + βR) = I − α(I + QP −L) (5)

is strictly less than one, the RIFBP method converges to the
fixed point

f∞ = (I −∆)−1Qpin = (QP + βR)−1Qpin =

= (I + QP −L)−1Qpin = (I + A)−1Qpin. (6)

To avoid undesired modification of certain structures, e.g.
high frequencies, or image regions, an operator G ∈ RN×N
which suppresses these structures or regions from the correc-
tion image may be applied in each update step:

fk+1 = (1− α)fk + α(Qpin −G(QP −L)fk). (7)

The fixed point of this update step is

f∞ = (I + G(QP −L))−1Qpin. (8)

In the following, for simplicity we will restrict the discus-
sion to the case α = 1, i.e.,

fk+1 = Qpin −G(QP −L)fk. (9)

Details on the operator G are given in Section II-D.

B. Improved artifact reduction
The RIFBP method is able to perfectly suppress cone

artifacts caused by non-exactness of the reconstruction Q.
However, in the case of incomplete source trajectories, there
is no unique solution to be found by the data fidelity term
Q(Pfk − pin). Therefore, RIFBP is not necessarily conver-
gent, and if it converges, artifacts will remain in the final result.

To further reduce artifacts, incorporation of additional in-
formation is necessary. Typically, this is accomplished by
replacing the linear regularization R with a non-linear reg-
ularization, e.g. the Geman-McClure prior [9], which enforces
piecewise smoothness onto the final image. Although this
approach efficiently reduces artifacts, it also leads to modified
contrast and resolution properties, which may be undesired.

Here, we employ a different approach based on the follow-
ing observations:

1) The input volume to (QP −L) in equation (9) is solely
used for generating artifacts to be subtracted from Qpin.
Therefore this volume has to contain the structures that
cause cone artifacts, but does not necessarily need to
faithfully represent the object to be reconstructed.

2) The intensity of cone artifacts is an order of magnitude
smaller than that of structures causing cone artifacts.
Therefore, only high-contrast edges need to be considered
for artifact reduction.

3) In medical CT, high-contrast edges (bone/soft tissue, soft
tissue/air) may be considered step functions. During data
acquisition and reconstruction, the highest frequencies
of these edges are lost, leading to failure to accurately
reproduce the artifacts with (QP −L).

These observations motivate the introduction of an “edge
recovery operator” F : RN −→ RN which reduces contrast
in low-contrast regions, and more importantly restores high-
contrast edges prior to artifact generation:

fk+1 = Qpin −G(QP −L)F (fk). (10)

This type of method was first proposed by Hsieh [10] for
reduction of cone artifacts in the single circle source trajectory.
In the following, (10) in combination with the edge recovery
operator described in the next section (first presented in [5])
will be referred to as Edge-RIFBP.

C. The edge recovery operator F
The purpose of the edge recovery operator is to restore high-

contrast edges, and to further reduce contrast in low contrast
regions.

For each output voxel fouti , a set Ωi consisting of the
corresponding f ini and neighboring input voxels is considered.
Furthermore, given the input parameter m ∈ [0, 1], the
following entities are calculated:

Ωi,min = min(Ωi), (11)
Ωi,max = max(Ωi), (12)

Ωi,median = median(Ωi), (13)
Ωi,contrast = Ωi,max − Ωi,min, (14)

Ωi,L = Ωi,min +m · Ωi,contrast, and (15)
Ωi,H = Ωi,max −m · Ωi,contrast. (16)
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TABLE I
RECONSTRUCTION PARAMETERS

Voxel volume in-plane sampling distance ∆xy 0.68mm
Voxel volume cross-plane sampling distance ∆z 0.3mm
Median filter dimensions kx, ky , kz 1,1,15
Contrast threshold T 300HU
Relative contrast margin m 0.05
Transition function shape γ 0.25
WFBP redundancy weight Q 0.8

Now, given a contrast threshold T , the condition

Ωi,contrast < T ∨ f ini < Ωi,L ∨ f ini > Ωi,H (17)

is evaluated. If this condition is true, the neighborhood is
classified as a low-contrast region, and fouti is set to Ωi,median.
Otherwise, the neighborhood is assumed to contain a high-
contrast edge, and fouti is set to g(f ini |Ωi,L,Ωi,H , γ).

The function g(·|L,H, γ) describes a transition between L
and H , and is defined by

g(x|L,H, γ) =
sign(x′) |x′|γ (H − L)

2
+
L+H

2

x′ = 2
(x− L+H

2 )

H − L
. (18)

For γ = 1, the transition is linear, and for γ close to zero, the
transition resembles a step function.

D. Experiments

Although the method should work also for reducing artifacts
between the circles in the multiple circle source trajectory,
experiments have only been done for the HPDS spiral source
trajectory with pitch factor 3.2 so far. To examine the effec-
tiveness of the proposed method, the Turbell clock phantom
[11] and an anthropomorphic thorax phantom were used.
Reconstruction parameters are listed in Table I. The scanning
geometry is illustrated in Fig. 2.

Since cone artifacts are caused by high-contrast edges
orthogonal to the z-axis, the dimensions of the neighborhood
Ωi of the edge recovery operator were chosen to be ±2.5mm
along the z-axis and 0mm in the xy-plane.

The linear operator L in (10) was selected to be a separable
spatially invariant linear filter approximating the frequency
characteristics of QP in the iso-center. Although such a
filter cannot perfectly model the spatially dependent behavior
of QP , the effects of the mismatch between QP and L
were observed to be small, as long as the image matrix was
large enough to harbor the frequency content produced by the
reconstruction Q.

To further reduce possible unwanted effects of the algo-
rithm, the operator G in (10) was selected to be a cylindri-
cally symmetric spatially invariant linear filter with frequency
characteristics

G(u, v, w) =


1, ρ < ρL

cos2
(
π
2
ρ−ρL
ρH−ρL

)
, ρL ≤ ρ < ρH

0, ρH ≤ ρ
, (19)

where ρ =
√
u2 + v2. The cut-off frequencies were set to

ρL = 2.5lp/cm and ρH = 5.0lp/cm. The use of a filter G

a) WFBP b) RIFBP, 2 iterations

c) Edge-RIFBP, 2 iterations d) Edge-RIFBP - WFBP
Fig. 3. Reconstructions of the Turbell sphere clock phantom [11]. Greyscale
window: (C : 0HU,W : 200HU).

to reduce in-plane frequency content is motivated by the ob-
servation that cone artifacts consist mainly of low frequencies
in-plane, and have higher frequencies along the z-axis.

III. RESULTS

Fig. 3 shows reconstructions of the Turbell sphere clock
phantom at z = −3mm with a greyscale window width
of 200HU. The phantom consists of a water cylinder filled
with spheres with an attenuation of 1000HU. Due to the high
contrast between the spheres and the water background, strong
artifacts occur in the WFBP reconstruction in Fig. 3a. For
acquisitions with pitch factor less than 1.5, cone artifacts are
normally perfectly suppressed with the RIFBP algorithm [4].
However, due to the incompleteness of the HPDS trajectory,
artifacts remain in the RIFBP reconstruction as shown in Fig.
3b. It is worth noting that the RIFBP reconstruction does not
improve much if the number of iterations is increased (not
shown). Fig. 3c shows the reconstruction result with Edge-
RIFBP. Although some artifacts remain, the result is much
better than for RIFBP. As shown in Fig. 3d, the difference
between Edge-RIFBP and WFBP consists mainly of artifacts.

To examine the behavior of Edge-RIFBP in a more realistic
scenario, experiments were made with a physical anthropo-
morphic thorax phantom. The results are shown in Fig. 4.
Again, strong cone artifacts appear in the WFBP result in Fig.
4a. These artifacts are alleviated but not perfectly suppressed
by the RIFBP in Fig. 4b. With Edge-RIFBP, the result is
much better: as shown in Fig. 4c, remaining artifacts are
rather due to beam-hardening than related to the cone-beam
geometry. Fig. 4d shows the difference between Edge-RIFBP
and WFBP. Although some ringing artifacts around high-
contrast structures can be seen, the amplitudes of these artifacts
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a) WFBP

b) RIFBP, 2 iterations

c) Edge-RIFBP, 2 iterations

d) Edge-RIFBP - WFBP
Fig. 4. Reconstructions of an anthropomorphic thorax phantom. Greyscale
window (C : 0HU,W : 300HU)

are less than 1% of the local contrast.

IV. CONCLUSION

It has been demonstrated that Edge-RIFBP efficiently re-
duces cone artifacts for HPDS data acquisitions with pitch
factors up to 3.2, without affecting image noise texture or
resolution. By carefully selecting the linear operators L and
G, undesired modification of high-contrast edges is avoided.

The optimal selection of the operator G remains to be
determined: on the one hand, to enable correction for all
frequencies, it is desirable to have G resembling the identity

matrix as much as possible, on the other hand any unwanted
modification of high-contrast edges has to be avoided.

One possible side effect of the algorithm is the introduction
of new artifacts due to erroneous recovery of high-contrast
edges. However, this effect has not been observed in the
experiments.

In comparison with the similar algorithm [10], the Edge-
RIFBP algorithm relies on local contrast information rather
than segmenting to known attenuation values (water, bone,
...). For the HPDS and multiple circle trajectories, using the
local contrast information might be more beneficial because
(i) the attenuation of bone varies due to density variations and
beam-hardening, and (ii) the local contrast information in Qp
along the z-axis in the interior of the scan range is relatively
reliable. However, for the single circle trajectory, and for the
borders of the HPDS and multiple circle trajectories, stronger
assumptions about the attenuation values may be necessary.
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Bilateral filtering for x-ray phase-contrast imaging
Sebastian Allner, Thomas Koehler, Andreas Fehringer, Marian Willner, Franz Pfeiffer, and Peter B. Noël

Abstract—Phase contrast computed tomography (PCCT) suf-
fers from severe noise when aiming towards dose-comparable
preclinical scans. To reduce the noise level bilateral filters
can be used which can exploit the three different registered
signals this imaging modality provides. Here, we propose a
different derivation for the value dependent filter part built
on a covariance-based weighting scheme. Furthermore, we will
introduce a covariance analysis method to investigate noise
correlation and reveal the advantages of 3D versus 2D filtering.
We will also show the improvement from taking complementary
image information into account. Finally we compare the filter
derived in the proposed way with the standard range filter and
present bilateral filter result for grating-based phase contrast
reconstructions of a human artery sample at different noise
levels.

I. INTRODUCTION

In the last decade phase contrast imaging which pro-
vides absorption, phase, and scattering information about the
sample has undergone a remarkable development [1]. The
enhanced soft tissue contrast [2], [3], this method provides
is especially useful in computed tomography and yields com-
plementary data to standard absorption imaging. However,
the image acquisition entails major challenges like the phase
stepping procedure or an absorbing analyzer grating after the
sample which reduce the image statistics significantly. In
a preclinical context the applicable dose to utilize grating-
based phase contrast imaging is limited. Therefore, the
resulting reconstructions exhibit lowered photon statistics.
This lowered statistics leads to increased noise and decreased
image quality. This is even more apparent in coronal slices
of the phase reconstruction due to low frequency noise.
One way to improve image quality is to use iterative re-
construction techniques [4], [5], [6]. Another possibility to
treat noise is image post processing. The bilateral filters in
this work reduce the noise while preserving edges in the
sample. Whereas the standard range filter is represented by
a normal Gaussian distribution we apply a more physically
motivated approach. In [7], an extension of the bilateral filter
was introduced that exploits the edge information from the
absorption and phase image. However, this algorithm does
not take into account that the noise power spectra in the two
images are very different. Specifically, the absorption image
has predominantly high-frequency noise, whereas the phase
image suffers from low-frequency noise. The goal of this
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work is to include this additional piece of information into
the bilateral filter.

II. MATERIALS AND METHODS

A. Bilateral filtering

The concept of bilateral filtering [8] is based on a weight-
ing scheme for neighboring pixels. The general form of a
bilateral filter contains a distance dependent domain filter
part d(x, x′) and a gray value dependent range filter part
r(f(x), f(x′)):

f̃(x) =
1

N(x)

ˆ ∞

−∞
f(x′)d(x, x′)r(f(x), f(x′))dx′, (1)

with x being the position of the central pixel, x′ the
positions of neighboring pixels and N(x) a normalization
factor. While the domain filter accounts for local weighting
of neighboring pixels the range filter part enforces the value
dependent component to prevent filtering across edges. For
domain and range filter parts normally a Gaussian distribu-
tion is applied either with the squared pixel distance for the
domain or the squared value difference for the range filter
part:

d(x, x′) ∝ exp

(
− (x− x′)2

2σ2
d

)
, (2)

r (f(x), f(x′)) ∝ exp

(
− (f(x)− f(x′))

2

2σ2
f

)
, (3)

with σd being the standard deviation of the filter kernel
size and σf the noise standard deviation of the considered
reconstruction values (e.g. absorption noise σa). However, in
those formulations no influence of the noise behavior or the
correlation between different image bands is present. In this
work we are including those into our model. The different
registered signals of grating-based phase contrast imaging
are from this point forward referred as bands.

We start the derivation of the new bilateral filter by the
following Gaussian model for the noise distribution in two
voxels in two bands:

g(n1, n2, n3, n4) ∝ exp

(
1

2
(n1, n2, n3, n4)S (n1, n2, n3, n4)

T

)
,

(4)
where n1 and n2 are the noise values of the two consid-

ered voxels in one band, n3 and n4 in the other comple-
mentary band. The matrix S is the inverse of the covariance
matrix of the two two-band voxels. Since each voxel has in
our case two bands (absorption and phase) the covariance
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matrix between two pixel is a 4 × 4 matrix. Symmetry
arguments and a locally constant noise level lead to:

C =


c11 c12 c13 c14
c21 c11 c14 c13
c13 c14 c33 c34
c14 c13 c34 c33

 , (5)

S = C−1, (6)

with skl = (S)kl being the elements of the inverted co-
variance matrix. The variables are in the order (ai, aj , pi, pj)
with i being the treated central voxel and j the other voxels
of the weighting array. This makes the upper left 2 × 2
matrix the noise correlation of the absorption signal, the
bottom right 2 × 2 matrix the noise correlation of phase
and the other matrix entries the linkage between absorption
and phase noise.

The idea for new range filter is to set it proportional
to the marginal likelihood that a certain difference is ob-
served in the two bands, given the assumption that the true
values of the two voxels are the same in both bands. In
order to calculate this marginal likelihood, we introduce
the difference of the band values ∆a and ∆p and with
n2 = ∆a−n1, n4 = ∆p−n3 into equation (4). The marginal
likelihood can then be calculated by integrating over all
possible noise realizations which result in the same observed
differences ∆a and ∆p :

r ∝
ˆ ∞

−∞

ˆ ∞

−∞
exp

(
1

2
(n1,∆a− n1, n3,∆p− n3)

· S (n1,∆a− n1, n3,∆p− n3)
T

)
dn1dn3.

Exploiting also the symmetry of S this leads to:

r ∝ exp

(
∆a2

4
(s12 − s11)

+
∆a∆p

2
(s14 − s13) +

∆p2

4
(s34 − s33)

)
. (7)

Note that for the case of completely uncorrelated noise
where all off-diagonal elements of S vanish, the range filter
boils down to the one proposed in [7] except for the detail
that the noise variance of the difference is used instead of
the noise level in the image.

B. Investigated filters

We applied the filters to absorption and phase recon-
structions recovered from filtered back-projection (FBP). All
following filter formulas are mentioned for just one band
but can be transferred to the other by replacing a by p.
The investigated filter based on equation (7) is referred as
covariance-based filter, which takes additional information
from the other band and noise correlations of the datasets
into account:

ãi =
1

Ni

∑
j∈Ni

ajd(xi, xj) exp

(
∆a2ij
4

(s12 − s11)

+
∆aij∆pij

2
(s14 − s13) +

∆p2ij
4

(s34 − s33)

)
, (8)

where xj is the considered voxel in the neighborhood
Ni of the central voxel xi. We compared this filter to the
standard Gaussian bilateral filter, where the image bands are
treated separately, the single-band filter:

ãi =
1

Na
i

∑
j∈Ni

ajd(xi, xj) exp

(
−
∆a2ij
2σ2

a

)
, (9)

and the multi-band filter [7] which exploits the comple-
mentarity of the additional band and can be written as:

ãi =
1

Ni

∑
j∈Ni

ajd(xi, xj) exp

(
−
∆a2ij
2σ2

a

−
∆p2ij
2σ2

p

)
. (10)

It uses the edge information from both bands to recover
more reliable weights but does not consider noise correla-
tion.

C. Correlation Analysis

We used a covariance analysis in the image domain for
determining the noise correlation. Subvolumes of the size of
the filter array are selected in a background area in order
to acquire independent noise measurements. To guarantee
the independence of the different measurements a minimum
distance between the subsets is considered. Because one can
assume the noise correlation to be equal over the field of
view and symmetric due to the FBP algorithm the covariance
matrices between the central and the neighboring voxels
have to be calculated only once.

D. Scanning parameters

The filters were applied to image data of a human artery
which was measured at a symmetric grating-based Talbot-
Lau interferometer lab setup with a rotating anode source
and a photo counting detector. All gratings have a period
of 5.4µm and an inter grating distance of 80 cm. The
formalin-fixated sample was put into a 3 cm tube and imaged
in a water bath. The x-ray tube was operated at 40 kVp
resulting in an effective energy of ≈ 27 keV. The sample
was measured with 11 phase steps and different exposure
times per step (long exposure: 3.6 s, medium exposure: 0.4 s
and short exposure: 0.144 s).

III. RESULTS

A. Influence of 2D or 3D filtering

The filter kernel size plays an important role in post
processing with filters. However, in computed tomography
there is also the possibility to filter across slices and thus
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Figure 1. The unfiltered, 2D and 3D single-band results of an axial and
a coronal slice from phase FBP.

to work on volume data. Because of the random orientation
of structures three-dimensional (3D) filtering provides more
statistics and therefore yield improved results. The kernel
size has to be adapted reasonably because small kernels may
not cover enough values and too large kernels require long
computation time. In this study we used a Gaussian domain
filter with the size of σd = 4px and the filter was truncated
at a distance of 8 px. Figure 1 exhibits an axial slice in the
top row and a coronal slice in the bottom row of a phase
signal reconstruction of the human artery sample. These
single-band filtered images have a reduced noise amplitude
compared to the unfiltered FBP whereas the 3D-filtered
slice provides the best results due to improved statistics.
Additionally the differential phase projections cause low
frequency noise in axial images and introduce strong noise
streaks in the coronal slices due to slice-independent FBP
reconstruction. These streaks are contained in 2D filtering
but reduced in 3D post processing. From this point 3D
filtering is used because of its improved results.

B. Integrating complementary information

Pure domain filters like a simple Gaussian or mean filter
smooth over edges and features of the approximate size
of their kernel. Bilateral filtering prevents this by taking
the photometric distance and the noise standard deviation
into account. However, when an edge or feature is in the
range of noise it is washed out. This unwanted behavior is
partially overcome by the multi-band or covariance-based
filter because they include the registered complementary
band information of grating-based phase contrast imaging.

Figure 2 shows a detail image view of the absorption
signal of an artery wall which is obstructed by noise in the
unfiltered absorption image. It can not be distinguished from
the formalin because absorption signal has much lower soft
tissue contrast than the phase image. The single- and multi-
band filter reduce the noise level by approximately the same
amount, and the covariance-based filter decreases noise even
further. However, on the inner edges of the artery wall the
multi-band and covariance-based versions recover a more
prominent edge than the single-band bilateral filter because
the range filter part is influenced by the higher phase signal
contrast. The best result is achieved by the covariance-based

unfiltered single-band multi-band covariance unfiltered

absorption phase

Figure 2. A detail image of the different filter results of the absorption
signal of an artery wall. The image to the right shows the same detail in
the phase image.

filter combining the small noise amplitude and the additional
edge information of the complementary phase band.

C. Filtering different image qualities

Figure 3 shows the three investigated filter results for the
absorption and the phase signal for different exposure times.
All filters reduce the noise range in the images but the best
result is achieved with the covariance-based filter. The filters
which use more bands achieve a better result via an improved
weighting. This is most apparent at the artery walls of the
absorption images where the complementary phase band
saves the filter from smoothing over faint edges. Additionally
the edges appear less jagged in the multi-band and even a
little less in the covariance-based filter image. This effect can
be observed in the medium exposure absorption or the short
exposure phase image at the top border of the specimen. In
this example the absorption signal benefits more from the
phase image because the setup has a high phase sensitivity.

IV. CONCLUSION

We showed that the bilateral filter derived with the
correlation approach reduces the noise range significantly
in comparison to the standard Gaussian formulation. It
improves the image quality by optimizing the filter weights.
Incorporating more bands in the weighting process and
thus using complementary data decreases the possibility to
smooth over faint features, especially when dealing with
shorter exposure times. The covariance-based filter accounts
for the noise correlation in the signals and weights correlated
voxels less. However, this influence is not visible in the
images and the main benefit stems from the use of the
variance of the difference instead of the variance of the
noise in the image itself. Particularly when using the 3D
filtering the effect of including off-diagonal elements of the
inverse covariance matrix is small. There only a few voxels
in the same slice differ considerably in weighting compared
to the large amount of uncorrelated weights as the noise is
not correlated in different axial slices. However, bilateral
filtering offers the possibility to perform phase contrast
computed tomography with shorter exposure times leading
toward dose-comparable preclinical scans.
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Figure 3. The absorption and phase reconstructions of good, medium and poor image quality with their bilateral filter results.
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Metal artifact reduction using l1 and non-local

penalties with iterative sinogram correction

Kyungsang Kima,b, Jong Chul Yeb, Georges El Fakhria and Quanzheng Lia,∗

Abstract—Metal artifact reduction is a challenging issue in CT
reconstruction. Due to insufficient measurements after passing
through the metal object, the break down of the inconsistency
in attenuation sinogram results in severe steak artifacts in the
reconstructed image. In this project, we propose a metal artifact
reduction method using l1 norma and non-local penalties with
iterative sinogram correction, where the 3D in-painting algorithm
is iteratively used to estimate the sinogram in the iteratively
updated metal regions. Metal and non-metal images using l1
norm and non-local penalties are reconstructed separately. The
split Bregmann algorithm and the generalized non-local formula
were applied to solve the optimization problems associated with
l1 norm and non-local penalties. Both body phantom simulations
and real dental CT experiments verify that the proposed method
can significantly reduce the metal artifacts and provide more
clear details of the image structure.

I. INTRODUCTION

Metal artifact reduction (MAR) is a crucial and challenging

issue in the computed tomography (CT) reconstruction. High

attenuation coefficients in metal objects significantly decrease

the total number of photons, the severe beam-hardening effect,

referred as the metal artifact, leads to artifacts such as dark

stripes between metal objects and shining stripes in metal and

surrounding tissues. Specifically, if the number of detected

photon is close to zero after passing through metal objects,

the consistency of measurements breaks down, meaning the

linear relationship of measurements in projection space does

not exist any more [1]. For example, metal objects such as

implant and gold crown are popularly used, which results in

severe metal artifacts in reconstructed dental CT images.

To deal with the MAR problem in CT imaging, sinogram

correction methods using interpolation [2], [3], segmentation

[4], [5] and in-painting [6], [7], [8], [9] have been widely used.

Sinogram correction methods remove metal regions in the

projection domain, and then fill the estimated values for metal

parts in the sinogram using interpolation, segmentation and

in-painting based methods. In addition, iterative reconstruction

methods [10], [11], [12] have been proposed for MAR, which

can provide more accurate results at the expense of higher

computational cost, compared with conventional filtered back-

projection (FBP) algorithm. More interestingly, metal region

reconstruction using a compressed sensing based sparsity

constraint has been also proposed in [13] where the method

solves a l1 minimization using the FOCal Underdetermined

System Solver (FOCUSS) algorithm with only few views.

aCenter for Advanced Medical Imaging Sciences, Massachusetts General
Hospital and Harvard Medical School; bBio Imaging Signal Processing Lab.,
Dept. of Bio&Brain Engineering, Korea Advanced Institute of Science and
Technology

In this paper, we propose a novel MAR method that consists

of both a new iterative sinogram correction algorithm and

advanced iterative reconstruction schemes for metal and non-

metal images. We first propose a novel iterative sinogram cor-

rection method using an iterative metal region filling method

with a 3D in-painting method proposed by Garcia [14], where

metal regions in sinogram are estimated by the discrete cosine

transform (DCT) based in-painting method. After estimation

of metal and non-metal sinograms, we propose iterative re-

construction methods using l1 and non-local penalties for

metal and non-metal images, respectively. For the metal image

reconstruction using l1 penalty, we exploit the alternating split

Bregman algorithm [15], which is the alternating-direction

method of multipliers (ADMM) algorithm for solving the

l1 penalty. Furthermore, we used the generalized non-local

penalty [16], [17] for the non-metal image reconstruction,

which provides the general formula for the non-local penalty.

We validate our method using both a simulated digital body

phantom data and real dental data. The results demonstrate

the proposed method provides the significant improvement on

metal artifacts reduction compared to the conventional FBP. In

addition, we accelerate the proposed method by implementing

forward and backward projectors using GPU [18], so the

proposed method is considerably practical and can be easily

applied in real clinics.

II. METHOD

A. Iterative sinogram correction

The first step in the proposed method is the sinogram correc-

tion. In this step the accurate metal region detection is critical

to fully utilize the original sinogram which is pre-converted

by the negative logarithm from original measurements. Thus,

we propose an iterative sinogram correction that updates metal

regions iteratively. In Fig. 1, we describe the flowchart of the

iterative sinogram correction. First, we reconstruct an initial

image using the conventional FBP, and then threshold the

background values and extract the initial metal image. The

size of the initial metal regions in sinogram are over-estimated

by forward projection of the initial metal image. Therefore,

we calculate difference between the estimated sinogram in

the metal regions and original sinogram. If the difference is

less than a specific value ε, we consider that small difference

regions are not metal regions. In our method, ε = 0.1 was

used. We then remove those regions from the metal regions

and update a new estimated metal region. For several itera-

tions, metal regions can be more accurately defined. Finally,

the metal sinogram is calculated by subtracting non-metal
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Fig. 1. Flowchart of the iterative sinogram correction.

Fig. 2. Iterative reconstruction using (a) l1 and (b) non-local penalties for metal and non-metal images, and (c) final image is the sum of both images.

sinogram from original sinogram. During all the iterations,

the sinogram in the metal region is estimated using a DCT

based 3D in-painting method [14]. The in-painting algorithms,

which have been used as state-of-the-art sinogram correction

method in MAR for several years [6], [7], [8], [9], fill smoothly

varying values in the metal region because the intensity varies

smoothly along spatial and angular directions in sinogram if

metal objects do not exist.

B. Iterative reconstruction

The second step in the proposed method is to reconstruct

metal and non-metal images separately and iteratively as

shown in Fig. 2. In this step we we optimize two cost functions

for metal and non-metal images, respectively. Specifically,

we define the original sinogram y, metal sinogram ym and

non-metal (background) sinogram yb. Corresponding to each

sinogram, metal image xm, non-metal image xb and the final

image x are defined. The first cost function using the l1 penalty

for the metal image is as follows:

min
xm

1

2
||ym −Axm||

2
2 + λ||xm||1 , (1)

where A denotes the system matrix of projection in cone-beam

geometry, and λ is a control parameter to keep the balance

between the data fitting term and the penalty term.

Then, the second cost function using the non-local penalty

for the non-metal image is as follows [19]:

min
xb

1

2
||yb −Axb||

2
2 + βR(xb) , (2)
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where the generalized non-local formula is that

R(xb) =

nj
∑

j

1

p

(

∑

k∈Ω

wjk(xb)(|xb,j − xb,k|)
2

)p/2

,(3)

wjk(x) = exp

(

−
||fj(x)− fk(x)||h

σ2

)

, (4)

and

||fj(x)− fk(x)||h =

√

√

√

√

Np
∑

l=1

hl(xjl
− xkl

)2 , (5)

where β is also control parameter to keep the balance between

the data fitting term and the penalty term, σ is a filtering

parameter and Ω is the neighbors. Np is the number of pixels

in a patch, hl is the normalized inverse distance between pixel

jl and kl in which
∑

l
hl = 1. In this paper, Ω = 5 × 5 × 5,

Np = 3× 3× 3, β = 0.1, σ = 0.001 and p = 2 were used.

III. OPTIMIZATION

A. Metal image reconstruction using l1 penalty

In the alternating split Bregman method, Eq. (1) can be

expressed as follows [15]:

(xn+1
m

, un+1) = min
xm,u

1

2
||ym −Axn

m
||22 + λ1||u

n||1

+
λ2

2
||xn

m
− un − bn||22, (6)

bn+1 = bn + α(un+1 − xn+1
m ). (7)

where the initial b0 = 0, α is a constant for the update b, and
we then solve two minimizations for xm and u alternatively.
Solution for each subproblem is as follow:

xn+1
m,j = xn

m,j −

∑ni

i=1 aij(ȳ
n
m,i − ym,i) + λ2(x

n
j − un

j − bnj )∑ni

i=1 aijγi + λ2
,

(8)

un+1 = shrink{xn+1
m , λ∗

} = max(xn+1
m − λ∗, 0), (9)

bn+1 = bn + α(un+1
− xn+1

m ), (10)

where λ∗ = λ1/λ2, γi =
∑nj

j
aij , ȳn

m,i
=

∑nj

j=1 aijx
n

m,j
and

ni and nj denote the number of pixels of sinogram and image,

respectively. Here,
∑

ni

i=1 aijγi can be pre-calculated. In this

paper, α = 1 and λ∗ = λ1 = 0.001 were used.

B. Non-metal image reconstruction using non-local penalty

Eq. (2) is differentiable, thus the solution is calculated using

the first and second derivatives:

xn+1
b,j

= xn

b,j
−

∑

ni

i=1 aij(ȳ
n

b,i
− yb,i) + βṘ(xb,j)

∑ni

i=1 aijγi + βR̈(xb,j)
, (11)

where

ȳnb,i =

nj
∑

j=1

aijx
n

b,j , (12)

Ṙ(xn

b,j
) =

∑

k∈Ω

wj,k(x
n

b
)(xn

b,j
− xn

b,k
) , (13)

R̈(xn

b,j
) =

∑

k∈Ω

wj,k(x
n

b
) . (14)

Finally, the reconstructed image of the proposed method is

the sum of xm and xb.

Fig. 3. Reconstruction images of (a) FBP and the proposed method using
(b) initial sinogram correction and (c) iterative sinogram correction.

IV. EXPERIMENTAL RESULTS

We evaluate the performance of the proposed method using

both digital body phantom data and real dental CT data. In

the body phantom simulation, several ribs are setup as metal

subjects to generate metal artifacts, We then simulated CT

measurements using polychromatic spectrums. In Fig. 3, we

validated the effect of iterative sinogram correction as well as

the image quality improvement, and compared the proposed

method with the conventional FBP. Metal artifacts in Fig. 3(a)

were significantly reduced as shown in Figs. 3(b) and 3(c).

In addition, details of Fig. 3(c) were more clear than that

of Fig. 3(b), which means that the accurate metal region

estimation is important for the recovery of edge structures

near metal objects. The results demonstrated that the iterative

sinogram correction improves the details of image, and the

proposed method reduces the metal artifact significantly.

We also performed an in vivo experiment using real dental

CT data. The reconstructed image of FBP and the proposed

method were compared In Fig. 4. Since there are several im-

plants and gold crown in the data, severe metal artifacts were

observed in the FBP reconstruction. However, the proposed

method significantly reduced metal artifacts. In addition, the

edge of both metal and non-metal images was more clear.

Particularly, the non-local penalty with a novel optimization

framework was exploited for the reconstruction of the non-

metal image, . In Fig. 5, we compared non-metal images of

FBP and the proposed method. It clearly demonstrated that

the iterative reconstruction using non-local penalty can reduce

noise variance while preserving edge directions and could

be an excellent choice of low dose image reconstruction for

MAR.

Furthermore, we implemented forward and backward pro-
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Fig. 4. Reconstruction images of (a) FBP and (b) the proposed method,
and (c) and (d) are region of interests of FBP and the proposed method,
respectively.

Fig. 5. Reconstructed non-metal images of (a) FBP and (b) the proposed
method.

jectors using GPU, where the Nvidia Tesla C2070 with com-

pute unified device architecture (CUDA) was exploited. In our

geometry, the 512× 512× 320 image with 608× 616× 455
sinograms takes 17s for one iteration. Comparing to the Intel

i7-2670 CPU, the reconstruction time of the proposed method

using GPU was 270 times faster than using CPU, so the

proposed method can be easily applied in real clinics.

V. CONCLUSIONS

In conclusion, we proposed a metal artifact reduction

method using l1 and non-local penalties with iterative sino-

gram correction. The proposed method consists of two steps,

one is a novel iterative sinogram correction, and another one

is the iterative reconstructions of metal and non-metal images

using l1 and non-local penalties, respectively. To exploit l1
and non-local penalties, we proposed a novel optimization

framework using the split Bregman algorithm and the gen-

eralized non-local formula. The results of both body phantom

simulation and real dental experiments showed our proposed

algorithm can significantly reduce metal artifacts and provide

more clear details. In addition, GPU implementation of the

proposed method demonstrated the feasibility to apply this

method in real clinics.
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Abstract 

This study was conducted to demonstrate the 

feasibility of using data consistency as a criterion of 

optimizing scatter convolution kernel for scatter 

correction in cone-beam CT. By utilizing data 

consistency, one can iteratively optimize the parameters 

of a scatter kernel in the deconvolution method. In the 

optimization, we used a Particle Swarm Optimization 

(PSO) algorithm for its computational efficiency and its 

excellence in convergence. For validating our proposed 

method, we performed a simulation study using the XCAT 

phantom, and also performed an experimental study 

using the ACS head phantom. The results showed that the 

proposed method substantially improves the accuracy of 

the deconvolution method. The beauty of the proposed 

method is that an accurate and robust scatter correction 

can be achieved from a single cone-beam scan without 

using any auxiliary hardware. 

1. Introduction 

Scatter constitutes a dominant source of image 

artifacts in cone-beam CT, and numerous methods for 

scatter correction have been developed [1, 2]. The 

deconvolution method is one of the correction methods 

that deconvolves projection data using appropriate scatter 

kernels. This method has the advantages of convenience 

in scanning and of computational efficiency. However, it 

has been reported that the deconvolution method may be 

less accurate than other scatter correction methods such 

as Monte Carlo method [2]. 

 

Accuracy of the deconvolution method largely 

depends upon the scatter kernel and its parameters. The 

kernel and its parameters are in general determined 

empirically, and therefore may not apply well to diverse 

situations in clinical scans. Empirical determination 

process itself can be cumbersome and inaccurate to 

certain degree. To improve the accuracy of 

deconvolution method, we made use of the data 

consistency condition in this work. Data consistency, one 
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of the fundamental properties of Radon transform [3], 

provides a useful criterion that is independent of the 

view-angles of parallel-beam and therefore can be 

utilized for scatter kernel optimization. Data consistency 

is challenged by physical factors such as scatter, 

suboptimal calibration, and data truncation. Under the 

condition that other factors are managed within a 

tolerable level or can be neglected, data consistency will 

depend largely on the scatter component. In other words, 

data consistency can be used to provide an index of the 

amount of scatter contamination in the data.  

 In this work, we used the data consistency which tells 

that sum of the line integrals in the mid-plane of cone-

beam data after fan-parallel rebinning should be a 

constant throughout the entire scanning angles. Mid-

plane cone-beam data basically constitute fan-beam data, 

and a rebinning process that converts the fan-beam to 

parallel-beam is required to meet the data consistency. 

We then used the data consistency to secure that the 

optimal scatter kernel can be obtained for scatter 

correction. For optimizing the parameters of a scatter 

kernel iteratively, we used the so-called Particle Swarm 

Optimization (PSO) algorithm. We performed a 

simulation study using the XCAT phantom which is a 

numerical human body phantom, and also performed an 

experiment study using the ACS head phantom. We 

demonstrated that the data consistency can help improve 

the scatter correction substantially.  

2. Method 

2.1. Deconvolution method 

The deconvolution method originates from an 

assumption that the scatter component can be estimated 

by a spatial convolution of the primary signal with a 

scatter kernel. The scatter kernel determines the 

magnitude and distribution of the scatter component [4, 

5]. Accuracy of the deconvolution method largely 

depends on the shape of a scatter kernel. Various scatter 

kernel models have been proposed for improving the 

accuracy of scatter correction [6, 7]. In this work, we 

used an asymmetric scatter kernel proposed by Josh Star-

Lack et al. [7], which is believed to outperform other 

kernels. In their model, the scatter signal can be 

estimated as follows : 
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                                            (2) 

                 (3) 

where   is amplitude factor,  is form function,  is 

the primary estimate,  is thickness estimate,  is a 

proportional constant,  is attenuated primary signal, and  

 is unattenuated primary signal. The parameters  ,  , 

A, B, , and   are the fitting parameters that will 

determine the shape of a scatter kernel. The key 

contribution of our work is to determine these parameters 

iteratively using the data consistency condition without 

any further empirical processes.   

2.2. Data consistency 

Data consistency in 2D, one of the fundamental 

properties of Radon transform, tells that the total 

attenuation in a parallel-beam geometry should remain 

constant from view to view. In other words, if we sum up 

the measured parallel projection data for each view, the 

sum should be a constant independent of the view-angle. 

 

 

          

     

                        (4) 

 

To apply this condition, we used only mid-plane of 

projection data. Also, we converted fan-beam projection 

data to parallel-beam projection data by a process called 

fan-parallel rebinning [8] because data consistency 

condition is valid only in parallel-beam geometry. 

2.3. Fan-parallel rebinning 

Both fan and parallel-beam geometries are shown in 

Fig. 2.  is the fan-beam source angle,  is the fan-angle, 

 is the parallel angle, and  is the radial parallel 

coordinate.  is the virtual fan-beam detector coordinate 

and  is the distance of the source point from the origin.  

The relationship between ( , ) and ( , ) is given by 

Eq. (5) and (6). Using this relationship, we converted the 

fan-beam projection data to parallel-beam projection data. 

 

                                                           (5) 

                                         (6) 

2.4. PSO algorithm 

 

The key step of this work is to find the optimum 

parameters of a scatter kernel. While changing the 

parameters iteratively, the optimum is sought for which 

satisfies the data consistency best. However, this strategy 

can be challenging for its computational burden; all 

possible parameters in a certain range should be checked 

collectively. 

For an efficient implementation of the optimization, 

we incorporated the PSO algorithm [9]. PSO algorithm is 

one of the optimization algorithms that find a best 

element out of available alternatives, and it simulates the 

foraging process of a bunch of creatures. PSO algorithm 

has advantages of simplicity in its implementation and its 

relatively fast convergence to the global optimum 

compared to other algorithms. There are two conditions 

that need to be met in the PSO algorithm. Agents or 

particles, which stand for individuals in swarm, should 

share information each other during iterations. And, they 

should move based on the shared information. When 

better positions of the agents are found, then the 

movement of the swarm will be updated and guided by 

these. The process is repeated and by doing so it is hoped 

 

Figure 1.  Rotated coordinate system. 

 

Figure 2. Geometry of fan and parallel-beam. 
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that a satisfactory solution will eventually be reached 

within a reasonable number of iterations. 

 

2.5. Proposed scatter correction method 

A conceptual diagram of the proposed scatter 

correction method is shown in Fig. 3. The procedures are 

explained below: 

 

1. Initially set up the parameters of the scatter kernel 

model. 

2. Apply the deconvolution method with a selected 

kernel and remove the scatter component. 

3. Rebin the scatter-removed projection data from 

fan-beam to parallel-beam geometry. 

4. Check whether the data satisfies data consistency 

condition or not. 

5. Iterate 1-4 steps with PSO algorithm until data 

consistency is met to a satisfactory level. 

6. Acquire the optimum parameters of the scatter 

kernel model and the optimum scatter correction 

result. 

3. Results 

3.1. Simulation study 

Using the XCAT phantom, we acquired cone-beam 

projection data and added the scatter noise on the 

projection data by use of a specific kernel which is 

assumed to be unknown. With scatter-contaminated 

projection data, we applied the proposed scatter 

correction method. 

In the scatter-free projection data, data consistency is 

well preserved as shown in Fig. 4 (a). But, in the scatter-

contaminated case, there is a pronounced variation of 

sum of line integrals as can be seen in Fig. 4 (b). Fig. 4 

(c) shows data consistency profile of the scatter-corrected 

data by use of the proposed method, and it demonstrates 

that the scatter components are successfully corrected. 

We introduced an inconsistency level to assess scatter 

correction quantitatively as defined in Eq. (7). The 

inconsistency level was used as a criterion in the iterative 

procedure of optimizing the parameters. 

 

     (7)  

 
Table 1.  Inconsistency levels of each data consistency graph. 

(a)  (b) (c) 

0.529 2.473 0.593 

 

In Table 1, we summarize the inconsistency level 

values of the corresponding data. The inconsistency level 

has been much reduced after scatter correction. 

The reconstructed images from scatter-free, scatter-

added, and scatter-corrected projection data are shown in 

Fig. 5. Image artifacts caused by the scatter component 

are clearly seen in (b), and the artifacts are substantially 

removed by use of the proposed method. For a 

quantitative assessment, we used Structural Similarity 

Index (SSIM). Table 2 shows that the image accuracy has 

been much improved after scatter correciton. 

 

 

Table 2. SSIM of reconstructed images of scatter-

contaminated (a) and scatter-corrected (b) projection data 

 

(a) scatter- 

contaminated 

(b) scatter-

corrected 

0.8804 0.9752 

 

Figure 3. Conceptual diagram of the proposed 
scatter correction method. 

(a) (b) (c)

 

Figure 5. Reconstructed images of scatter-free 
projection (a), scatter-contaminated projection 
(b), and scatter-corrected projection data (c). 

 

Figure 4. Data consistency graph of scatter-free projection data (a), scatter-contaminated projection data 
(b), and scatter-corrected projection data (c) 
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3.2. Experimental study 

We also applied the proposed method to the 

experimentally acquired data using the ACS head 

phantom and our bench-top CT system.  

 
Table 3. Inconsistency levels of data consistency of scatter-

contaminated and corrected projection data. 

(a) scatter- 

contaminated 

(b) scatter-

corrected 

1.769 0.537 
 

The inconsistency level measures are also summarized 

in Table 3. In Fig. 6, the reconstructed images from the 

original data and scatter-corrected projection data are 

shown, respectively. Image artifacts are clearly seen in 

(a), and the artifacts are successfully removed by use of 

the proposed method. The line profiles of reconstructed 

images in Fig. 7 also shows that the cupping artifact from 

scatter component is successfully removed by use of the 

proposed method. 

 

 

 
Table 4.  CNR of scatter-contaminated and corrected 

projection data. 

(a) scatter- 

contaminated 

(b) scatter-

corrected 

0.85 1.26 

 

We calculated CNR values of the ROI marked as red 

circles in Fig. 6. CNR value increased from 0.85 to 1.26 

as the scatter was corrected.  

 

4. Conclusion 

In this work, we proposed an improved deconvolution 

method for scatter correction by use of data consistency. 

The results from both numerical and experimental studies 

confirmed that the proposed method can efficiently 

correct for the scatter without additional scans or 

hardware equipments.  
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Figure 6. Reconstructed images of scatter-
contaminated projection data (a), and scatter-
corrected projection data (b). 

 

Figure 7. Line profiles of scatter-contaminated 
(a), and scatter-corrected (b) reconstructed 
images. 
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Abstract—Cone-beam CT (CBCT) offers the capability for 

novel, point-of-care imaging platforms dedicated and 

optimized to specific diagnostic tasks, many with stringent 

demands on quantitative accuracy, image uniformity, and 

detectability of low-contrast soft-tissue structures that exceed 

conventional image quality limits. For example, a CBCT 

system is now under development for imaging of traumatic 

brain injury at the point-of-care, employing a compact 

scanning geometry and requiring a new level of image quality / 

radiation dose performance beyond that of previous CBCT 

applications. Among the major challenges to image quality, 

uniformity, and dose is x-ray scatter, motivating the 

development of a high-speed, high-fidelity scatter estimation 

and correction methodology to yield artifact free images with 

contrast resolution sufficient for the task of detecting small, 

fresh bleeds (~1 mm diameter, 50 Hounsfield Unit contrast). 

We report a fast and accurate approach for Monte Carlo 

(MC) based scatter correction that advances computational 

speed to practical levels and accuracy in scatter fluence 

estimation well beyond that of simple parametric approaches. 

A novel methodology combining GPU acceleration, variance 

reduction techniques, simulations with low number of photons 

and with a reduced number of projection angles (sparse MC) 

augmented by kernel denoising yields a computation time of 

~2 min. Uniformity in reconstructions of a realistic head 

phantom is improved by ~60% compared to an uncorrected 

image and by ~20% compared to an "oracle" correction based 

on constant scatter fraction. The sparse MC framework is also 

suitable to integration with novel reconstruction methods (e.g., 

model-based penalized weighted least squares) under 

development to advance CBCT image quality beyond 

conventional limits to a level required by challenging 

application in brain imaging. 

Index Terms—X-ray Scatter, Monte Carlo Simulation, 

Artifact Correction, CT Reconstruction, Head CT.  

I. INTRODUCTION 

Increased awareness of the healthcare burden of traumatic 

brain injury (TBI), estimated to result in >$76B in direct 

and indirect costs, has generated a growing interest in 

imaging technologies for assessment of brain injury directly 

at the point-of-care or even within the environment where 

TBI frequently occurs (e.g., athletic or war theater). Such 

technology could also find application in other settings 

where visualization of acute brain injury is essential for 

proper diagnosis and treatment, e.g. in assessment of 

concussion or intracranial hemorrhage in the Emergency 

Department or Intensive Care Unit. Flat-panel detector 

(FPD)-based CBCT systems provide an excellent platform 

for development of point-of-care imaging. Research 

underway at our institution is developing such technology 

for high quality imaging of the brain in platforms well 

suited to such challenging application areas and imaging 

tasks [Fig. 1 (A)]. One of the significant challenges in such 

application is the required level of contrast and image 

uniformity. For the task of detecting fresh intraparenchymal 

blood associated with acute injury, the contrast is ~50 

Hounsfield Units (HU), and the size of a bleed can be as 

small as ~1 mm in diagnosis of mild TBI.  As shown in Fig. 

1(B), current generation CBCT systems can detect such 

contrast levels for >2 mm detail size, but lack image 

uniformity compared to conventional CT [Fig. 1(C)]. This 

loss of uniformity is largely caused by shading artifacts due 

to increased scatter inherent to CBCT. The proposed 

imaging system involves a compact geometry to facilitate 

portability, further increasing scatter magnitude. Moreover, 

the need to minimize radiation dose likely prohibits the use 

of an antiscatter grids. Consequently, a scatter correction 

algorithm capable of high-accuracy scatter fluence 

estimation is essential to achieving the desired level of 

image quality in head CBCT.  

Monte Carlo (MC) simulations provide accurate scatter 

estimates, but have been considered too computationally 

expensive for application in scatter correction. Recently, 

MC simulation engines have been successfully ported onto 

GPUs [1, 2], providing a convenient parallel platform for 

fast MC on desktop computers.      

Wojciech Zbijewski, Alejandro Sisniega, J. Webster Stayman, John Yorkston, Nafi Aygun, Vassili Koliatsos,  and Jeffrey H. Siewerdsen 

A Sparse Monte Carlo Method for High-Speed, High-

Accuracy Scatter Correction for Soft-Tissue Imaging in 

Cone-Beam CT  

 
Fig. 1. High-quality CBCT head imaging. (A) Mock illustration of a 

dedicated CBCT scanner for application in the ICU and other point-of-

care settings for high-quality imaging of the head and neck, intracranial 
hemorrhage, and traumatic brain injury. (B) Reconstruction of a head 

phantom with simulated bleeds obtained on a current generation CBCT 

employing scatter grid and basic scatter and beam hardening corrections. 
(C) Reconstruction of the same phantom on clinical CT. 
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We have combined GPU-based MC simulations of x-ray 

scatter with GPU-optimized variance reduction (VR) 

techniques, introduced in the general theory of MC to 

provide acceleration by improving signal-to-noise ratio 

(SNR) in the scatter estimates obtained within a given 

simulation time. Further acceleration of MC is possible by 

decreasing the number of tracked photons. The resulting 

speed-up is offset by decreased SNR in the estimates, but 

successful de-noising of the scatter distributions with 3-

dimesional iterative Richardson-Lucy fitting has been 

demonstrated [3]. This approach exploits the smoothness of 

scatter in the detector plane and in projection angle. Here 

we employ a non-iterative (and thus potentially faster) de-

noising algorithm (kernel smoothing, KS). We combine this 

approach with GPU-enabled MC simulation with VR and 

investigate additional speed-up through a reduction in the 

number of simulated projections (sparse angular sampling). 

The proposed approach is tested on experimental data 

pertinent to head CBCT, demonstrating accurate correction 

within 2 min simulation time.  

II. METHODS 

A. GPU-Accelerated Monte Carlo Simulator 

The GPU implementation of the MC x-ray transport model 

is based on MC-GPU v1.1 (code.google.com/p/mcgpu/). In-

house additions to the simulator [2] include a probabilistic 

model of tungsten anode x-ray spectra with arbitrary 

filtration, and an analytical model of energy-dependent 

detection in CsI:Tl scintillator. 

The GPU-accelerated MC package employs variance 

reduction through Interaction Splitting, whereby every 

interacting photon is split into several virtual photons, 

followed by Forced Detection, whereby virtual photons are 

deterministically ray-traced toward a randomly selected 

detector pixel. The implementation of VR was optimized 

for parallel execution on a GPU [2]. For a head CBCT 

geometry, VR achieved ~6x improvement in SNR over 

MC-GPU with no VR at equal runtime [2].  

B. A Fast MC Scatter Correction Pipeline 

The proposed scatter correction pipeline is illustrated in 

Fig. 2. In the initialization phase, the initial CBCT 

reconstruction is segmented by simple thresholding, and a 

fixed nominal density ("piecewise" segmentation) is 

assigned to each tissue (bone, soft-tissue, and air). GPU-

accelerated MC simulation of the segmented reconstruction 

is performed using an extremely low number of photons 

(simulation times of <1 min). The resulting scatter estimates 

are too noisy to yield accurate correction even with de-

noising, but are sufficient to estimate the mean scatter per 

projection, allowing for a baseline correction.  

The corrected reconstruction is then segmented using a 

second-pass "continuous" tissue model, where the density 

of each tissue is now allowed to vary in a linear manner 

based on the HU value. The initial, baseline correction 

facilitates this approach by reducing gross HU inaccuracies. 

The use of the continuous model is essential to e.g. avoid 

under-correction due to over-estimate of scatter absorption 

in the skull (occurring when the skull is simulated as 

uniform layer of cortical bone).   

GPU-based MC is then applied to the segmented volume. 

The number of photons is again sparse – low enough to 

yield practical correction times – but greater than in the 

initialization phase, so that the resulting scatter distribution 

SMC can be de-noised to yield an accurate scatter estimate 

for the correction (SMC-KS) : 
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(1), 

where u, v are the detector coordinates, θ is projection 

angle, and index i runs through the scatter sinogram. KKS is 

a 3-dimensional Gaussian kernel applied to the distance 

between two points in the (u, v, θ) space; the FWHM of the 

kernel is denoted as σKS. In the studies presented here, the 

numerical values of σKS in the spatial and angular 

dimensions are  equal when expressed in pixels for (u, v) 

and degrees for θ. Note that Eq. (1) allows estimation of the 

 
Fig. 2. Workflow of the proposed rapid MC-based scatter correction algorithm, consisting of an initial baseline correction facilitating accurate 

segmentation in the subsequent correction employing rapid MC-GPU with low number of photon tracks and de-noising of the scatter estimates. 
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signal at locations (u, v, θ) located outside of the lattice  (ui, 

vi, θi) where the noisy input data (SMC) are provided. This 

allows for estimation of the complete scatter sinogram from 

simulations done only at a sparse subset of projection angles 

with no need for interpolation.  

C. Experimental Setup 

An FPD-based imaging bench is configured in a geometry 

envisioned for head CBCT as shown in Fig. 1 (A). The 

SDD is ~700 mm, and the SAD is ~500 mm. The system 

employs a PaxScan 4343 FPD  (Varian Imaging Products, 

Palo Alto, CA) with a 250 mg/cm2 CsI:Tl screen and 

0.139x0.139 mm2 native pixel size; the data is binned to 

0.556 mm2 pixel size. The studies involved a head phantom 

consisting of a natural skull embedded in uniform water-

equivalent (Rando) body material (The Phantom 

Laboratory, Salem, NY) with spherical contrast-detail 

patterns in the cranium (~1-15 mm diameter range, ~-100 - 

+200 HU contrast range). The phantom is imaged at 100 

kVp (+2 mm Al, +0.2 mm Cu) and 0.25 mAs/projection; 

360 projections are collected at 1o increments.  

Reconstructions employed the Feldkamp algorithm using 

0.5 mm3 voxels, Hann apodization and a cutoff at 0.5 of the 

Nyquist frequency.  In each case, bone-induced beam 

hardening was corrected (after scatter correction) using a 

variation of the two-pass Joseph-Spital approach [4]. GPU-

based MC scatter estimation was executed on an Nvidia 

GTX 780 Ti GPU with 2880 CUDA cores and 3 GB on-

board memory (Nvidia, Santa Clara, CA). 

The accuracy of the correction was assessed by evaluating 

the uniformity of the reconstructions.  A region-of-interest 

(ROI) consisting of the complete intra-cranial volume was 

chosen inside a 10 mm thick slab in the superior orbital 

region of the head, where the cranium is filled only with the 

brain-equivalent Rando material. The ROI was thus 

expected to be uniform; deviations from uniformity were 

measured by computing the standard deviation of voxel 

values in the ROI (denoted as nonuniformity, NU). While 

this metric includes both the effects of noise and artifact, it 

is assumed that for the same projection dataset, changes in 

NU primarily reflect changes in the artifact level, with 

lower values of NU indicating more uniform images. 

III. RESULTS 

 Fig. 4 (A) shows a gold standard MC result computed 

from the head phantom reconstruction with 1011 

photons/projection (no VR was applied).  A noisy 

distribution obtained with 108 photons/projection (and 

x1000 shorter runtime) [Fig. 4 (B)] is successfully restored 

with KS to a similar level of noise and detail as the gold 

standard, as shown in Fig. 4 (C). Fig. 5 demonstrates the 

relationship between the uniformity in the scatter corrected 

reconstructions, the number of simulated photon histories, 

and the size of the smoothing kernel (again without VR). 

The size of σKS yielding minimal NU increased with 

increasing number of photons, reflecting increased noise in 

the MC scatter estimates. Very small kernels (σKS =10 

pixels/degrees, likely smaller than typical scatter PSF) are 

insufficient even for 108 phot/proj, whereas simulation with 

a very low number of photons yielded artifacts in the 

corrected images even for σKS close to the optimum [Fig. 5 

(B)]. For large kernels, the performance was similar across 

the entire range of numbers of photon histories; in this case, 

MC-KS converged to a correction with uniform scatter 

intensity per projection and exhibited overcorrection.  

 
Fig. 5. (A) The nonuniformity NU in reconstructions obtained using MC-KS scatter correction as a function of the  number of simulated photons and the 

size of the 3D smoothing kernel σKS. (B) MC-KS scatter corrected reconstructions obtained using MC with 106 photons/projection (top row) and 108 

photons/projection (bottom row) and various sizes of the smoothing kernel. 

 
Fig. 4.  (A) A gold-standard MC scatter simulation of the head phantom 
using 1011 photons/projection is compared with MC simulations with 108 

phot/proj (B), along with the corresponding  result of 3D KS (C). 
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Scatter-corrected reconstruction obtained with MC-KS 

with 108 phot/proj in Fig. 5 achieved a high level of 

uniformity, but the simulation time (~50 min) is prohibitive 

for many clinical applications. While the potential for 

further reduction in the number of simulated photons 

without sacrificing uniformity certainly exists [as 

demonstrated e.g. by the 107 phot/proj MC-KS curve in Fig. 

5 (A)], an alternative approach was investigated that 

combines MC with a low number of photons with sparse 

sampling of the projection angles. Example results are 

shown for the head phantom in Fig. 6. Reconstruction of a 

thinly collimated scan with reduced scatter is compared 

with a reconstruction with no scatter correction (initial 

volume in the scatter correction pipeline of Fig. 2), 

reconstruction with an "oracle" constant scatter fraction 

correction (scatter in each projection estimated as a constant 

fraction of the signal in the center of the shadow of the 

object, where the fraction is estimated from an MC 

simulation), and three examples of MC-KS. For MC-KS, 

the kernel sizes were chosen to minimize NU. MC-KS with 

no VR, 108 phot/proj and no projection subsampling shows 

considerable improvement over uncorrected image (~60% 

reduction in NU), noticeable improvement over the "oracle" 

correction (~20% reduction in NU and reduction in 

artifacts) and similar (or slightly better) uniformity as the 

collimated scan (no NU estimate is available due to the 

limited field of view). A very similar level of uniformity 

was exhibited by MC-KS correction with 5107 phot/proj 

(no VR) and simulation of every 5th projection, requiring 

less than 5 min simulation time per scan.  Even shorter 

simulation time of only 2 min/scan achieved a comparable 

level of uniformity and artifact when MC-KS was combined 

with variance reduction, using fewer photons in the VR 

simulation, but giving a noise level similar to that of plain 

MC with ~30x more photon histories.  

IV. DISCUSSION 

 Monte Carlo-based scatter correction in head CBCT 

imaging was achieved within ~2 min simulation time by 

employing a combination of sparse sampling in the number 

of photons and projection angles with variance reduction, 

GPU acceleration, and denoising via kernel smoothing. The 

ability to achieve accurate scatter estimation with sparse 

sampling of projections can be advantageous for MC 

acceleration because of the potentially better load balancing 

associated with tracking of a large number of photons 

concentrated within fewer frames (compared to simulating 

fewer photons for all projection angles). Such tradeoffs are 

a subject of ongoing work. The proposed approach relies on 

an accurate segmentation of the reconstructed volume; 

current results show a ~20% degradation in uniformity 

when the continuous object model is replaced with the 

simpler piecewise model. Segmentation algorithms, tissue 

models and associated calibration methods are under 

investigation. Integration with model-based image 

reconstruction for further enhancement of soft tissue 

detectability will be pursued, initially as a pre-correction 

step in a Penalized Weighted Least Squares approach 

operating on line integral data.  The algorithm will be 

validated in a series of benchtop studies and deployed on 

the dedicated CBCT scanner currently under development 

at for high-quality imaging of the head and neck. 
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Fig. 6. Comparison of CBCT head phantom reconstructions without scatter correction, with a basic scatter correction and with MC-KS scatter correction. 

Highly uniform reconstructions with significantly reduced artifacts are achievable within ~2 min/scan using accelerated MC simulations. 
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Deformable 3D–2D Registration for CT and its

Application to Low Dose Tomographic Fluoroscopy
Barbara Flach, Jan Kuntz, Marcus Brehm, Rolf Kueres, Sönke Bartling, and Marc Kachelrieß

Abstract—4D intervention guidance by low dose tomographic
fluoroscopy opens up the possibility to make interventions faster
and saver. To do so, a prior volume of the patient is acquired
at the beginning of the intervention and is then continuously
updated using a very low number of low dose cone–beam
projections during the intervention. To update the prior, which
is also known as the running prior, a deformable registration
that robustly works with sparse target data is required. Volume–
to–volume registration, however, suffers from streak artifacts
contained in the target volumes that are reconstructed from a
very low number of projections. To overcome this drawback, we
here introduce a new deformable volume–to–rawdata registration
algorithm.

The proposed 3D–2D registration computes a displacement
vector field that maximizes the agreement of a CT volume
and the acquired rawdata. The registration is constrained by
a regularization term in accordance with a fluid–based diffusion.
Optimizing the rawdata term and the regularization term is
done in an alternating manner. The agreement with the rawdata
is optimized by a conjugate gradient method for non–linear
functions, while the regularization is realized by convolution of
the vector fields with Gaussian kernels.

Based on measured data from an in–vivo pig we show that the
results of our 3D–2D deformable registration do not depend as
strong on the number of projections used for defining the target
position as the results of the demons algorithm do. This opens the
opportunity to increase the temporal resolution of the running
prior technique, and in consequence to increase the robustness
of low dose tomographic fluroroscopy.

Index Terms—computed tomography (CT), flat detector CT,
interventional radiology, minimally–invasive interventions, un-
dersampled reconstructions, deformable registration

I. INTRODUCTION

M INIMALLY–INVASIVE interventions become more

and more important due to a quicker recovery of the

patient and a reduced risk of infections [1]. These interventions

are often guided by projective fluoroscopy providing tempo-

rally resolved projection (2D+time) data. But those projection

images show only a superposition of the patient’s anatomy

and therefore the navigation through more complex structures

is difficult because the images are ambiguous. Continuously

displaying 3D volumes would obviously help but for clinical
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acceptance the dose level needs to be as low as in projective

fluoroscopy.

Recently we published the PrIDICT algorithm for low dose

tomographic fluoroscopy which provides temporally resolved

volume (3D+time) data at the same dose level as projective

fluoroscopy [2], [3]. This becomes possible using a high

quality prior volume acquired before the intervention showing

the patient’s anatomy and extracting only the position of the

interventional material out of very few projections acquired

during the intervention. Figure 1 shows some time frames of

such a reconstruction. To make the PrIDICT algorithm more

robust regarding movements of the patient we extended it by

the running prior technique [4]. A deformable volume–to–

volume (3D–3D) registration based on the demons algorithm

[5] is used to correct for motion between the prior scan and the

current position of the patient represented by a reconstruction

of the latest intervention projection data. In addition, each

projection is incorporated into the resulting running prior

volume to account for low–contrast objects appearing during

the intervention like bleedings.

Fig. 1. Volume renderings of an intervention guided by low dose tomographic
fluoroscopy. The anatomy is shown in gray, the vasculature in red and the
guidewire in yellow.

The quality of the registration highly depends on the quality

of the target volumes. If those are reconstructed from too few

projections, e.g. to ensure a high temporal resolution of the

running prior, the image quality is deteriorated and therefore

the results of the registration are not acceptable [6]. To avoid

the influence of reconstruction artifacts we here introduce a

deformable volume–to–rawdata (3D–2D) registration calcu-

lating a displacement vector field (DVF) u(r) that gives a

displacement for each voxel.

The existing 3D–2D registration literature is typically re-

stricted to rigid transformations [7]–[10]. A deformable 3D–

2D registration based on motion vector fields is suggested

by Wang et al. [11] who minimize the cost function for

matching an volume to projection data by a conjugate gradient

(CG) method. Prümmer et al. [12] propose a deformable 3D–

2D registration with curvature regularization and solve it by

discrete cosine transforms.
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Here we introduce a new 3D–2D registration with a fluid–

based diffusion regularization to get a fair comparison to the

demons algorithm which works with this regularization.

II. MATERIALS AND METHODS

The potential workflow of an intervention guided by our low

dose tomographic fluoroscopy will start with the acquisition

of a high quality prior volume fP reconstructed from about

NP = 600 projections. Afterwards, maybe with a short break

inbetween, the intervention starts. To reach a dose level as

low as in projective fluoroscopy only very few interventional

projections 10 ≤ NI ≤ 20 per half rotation were acquired.

They serve for the reconstruction of the interventional material

and for the adaptation of the prior.

A. Low Dose Tomographic Fluoroscopy

The volumes shown during the intervention, which we refer

to as the time frames fTF,i, must not show undersampling

artifacts. For this reason we apply the PrIDICT algorithm [2],

[3]. It uses the information about the anatomy of the high

quality prior volume fP and combines it with the temporally

resolved interventional material. Ideally the rawdata difference

between the latest acquired projections pi consisting of e.g.

NI = 15 projections and the forward projection of the prior

volume fP in the same geometry shows only the interventional

material and some noise. A reconstruction of this difference is

deteriorated by streak artifacts because of the high undersam-

pling. We use the fact that the interventional material is very

small and of high contrast. Hence, the reconstructed difference

volume is sparse and we reduce its L0–norm by setting all

insignificant voxels to zero. The result of this step is a volume

showing only the interventional material which is added to the

prior volume for display. Summarizing,

fTF,i = fP + φ
(

X
−1(pi − X(fP))

)

,

with X being the x–ray transform and φ being the sparsifying

transformation setting insignificant voxels to zero.

This algorithm is extended by replacing the static prior

volume fP by the running prior fRP,i, with fRP,0 = fP. This

running prior fRP,i evolves from the last running prior fRP,i−1

by a non–rigid deformation with the DVF ui resulting from

a registration explained more detailed in section II-B for a

fixed i. Additionally to this deformation step we use the

latest acquired rawdata pi to replace the information of older

projections in the deformed running prior of the last time

step f̂RP,i(r) = fRP,i−1(r + ui(r)). This is done by forward

projecting f̂RP,i in the same geometry as the projections pi
are acquired, by subtracting these forward projections from

the pi, and by adding the reconstruction of the difference to

the deformed running prior of the last step f̂RP,i(r):

fRP,i = f̂RP,i + X
−1(pi − Xf̂RP,i).

B. 3D–2D Registration

In reference [4] the DVF u(r) is determined by a reg-

istration of the last running prior fRP,i−1(r) to the current

position of the patient defined by a reconstrucion of the latest

NT = 60 projections, a volume–to–volume registration. This

leads to a lower temporal resolution than that of the displayed

interventional material which is reconstructed from NI = 15
projections. One would prefer to have the same temporal

resolution for both which means NT = NI. But using such a

low number of projections for the target volume leads to non–

acceptable results of a volume–to–volume registration because

of the streak artifacts in the target image. To avoid this we

decided to compare the deformed volume and the projection

data in the rawdata domain leading to a volume–to–rawdata

registration.

Such a 3D–2D registration aims at finding the DVF u(r)
maximizing the correlation of a volume and the rawdata. This

corresponds to minimizing the functional

S[u] = ‖Xm(r + u(r))− p‖22, (1)

with m(r) being the model volume which is to be deformed, in

our case the last running prior fRP,i−1(r), and p the rawdata

defining the target position of the model consisting of NT

projections. This problem is ill–conditioned and therefore we

have to constrain the problem by additional requirements on

u(r). Typically, (1) is minimized iteratively and therefore

we can introduce a temporal variable t where the devel-

opment of the DVF over the iterations corresponds to the

temporal evolution of the DVF u(r, t). That means the DVF

u(r, k∆t) belongs to the result of iteration k and we introduce

u(k)(r) := u(r, k∆t). Back to the constraints, we use a

fluid–based diffusion registration [13], [14] and ask for a

smooth DVF u(r, t) as well as a smooth velocity vector field

v(r, t) = ∂tu(r, t). To achieve smoothness of a vector field

w(r, t) = (w1(r, t), w2(r, t), w3(r, t))
T the following term

has to be minimized:

R[w] =
3

∑

d=1

∑

r∈Ω

〈∇rwd(r, t),∇rwd(r, t)〉,

with 〈., .〉 : V × V → R the inner product on a vector space

V and ∇r = (∂x1
, ∂x2

, ∂x3
)

T
the spatial derivative in r. To

summarize the registration should minimize the following cost

function

C[u] = S[u] + βR[u] + γR[∂tu]

with β and γ being regularization parameters that have to be

chosen according to the problem.

For efficient calculation we separate the minimization terms

and thus introduce a linking term

C[u,u] = S[u] + σ‖u− u‖22 + βR[u] + γR[∂tu].

The solution can be approximated by minimizing in an alter-

nating manner

C[u] = S[u] + σ‖u− u‖22, (2)

with fixed u and

C[u] = σ‖u− u‖22 + βR[u] + γR[∂tu], (3)

with fixed u.

The first problem (2) is solved by a conjugate gradient

(CG) method for non–linear functions [15]. The linking term
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σ‖u−u‖22 is accounted for by initializing the CG step by the

result u originating from the last minimization of problem (3).

The second problem (3) can be solved by convolution of the

DVF u(r, t) and the velocity vector field v(r, t) = ∂tu(r, t)
with Gaussian kernels [16], [17]. Since the iterations can

be regarded as temporal development of the deformation

the velocity field belongs to the update part for which the

displacement field u(k) is adjusted to get u(k+1).

We end up with the registration algorithm shown in algo-

rithm 1.

Algorithm 1 Deformable 3D–2D registration algorithm with

alternating minimization of dissimilarity by CG algorithm for

non–linear functional S[u] and minimization of regularization

by convolution with Gaussian kernels.

Initialize:

u(0)(r) = 0 or a given DVF

g(0)(r) = ∇uS[u
(0)(r)] gradient

d(0)(r) = −g(0)(r) conjugate search direction

Iterate:

Smooth velocity field to model fluid motion

d(k)(r) = Kfluid ∗ d
(k)(r)

Determine step length λ by backtracking line search [18] to

minimize

‖Xm(r + λd(k)(r) + u(k)(r + λd(k)(r))) − p‖22

Update DVF

u(k+1)(r) = λd(k)(r) + u(k)(r + λd(k)(r))

Smooth DVF to model diffusive motion

u(k+1)(r) = Kdiffusive ∗ u
(k+1)(r)

Calculate forces for next iteration

g(k+1)(r) = ∇uS[u
(k+1)(r)]

ρ = max

{

0,
g(k+1)T(g(k+1) − g(k))

g(k)Tg(k)

}

d(k+1)(r) = −g(k+1)(r) + ρd(k)(r)

Note that this algorithm, apart from the calculation of the

forces, is similar to the demons algorithm as described in

reference [13] and as implemented for the results here and

in reference [4].

C. Datasets

We applied the proposed algorithm to a dataset where the

carotid of a pig was probed with a guidewire. The data for the

prior volume consist of NP = 600 projections distributed over

a full rotation and were acquired within 20 s at 80 kV tube

voltage and 50 mA tube current. During the intervention we

acquired 120 projections per full rotation at a sampling rate

of 30 frames per second. From these data we use only every

fourth projection for our investigations resulting in NI = 15

projections per half rotation used for reconstruction of each

time frame. Between the prior and the intervention scan the pig

was moved manually while there was almost no motion except

for the interventional material during the intervention scan

itself. Based on the dataset we compare the registration results

using the demons algorithm as described in reference [13] and

the proposed 3D–2D registration with NT = {60, 30, 15, 8}
projections. Both registrations are initialized by the same DVF

u(0) resulting from an affine registration.

III. RESULTS

The comparison of the errors with different NT in figure 2

shows exemplarily on one slice that the registration results

from the demons algorithm strongly depend on the number

of projections while the registration results from the proposed

3D–2D registration are stable and do not show this effect.

As ground truth fGT(r) we take the reconstruction from all

available projections. The residual error in image domain is

defined as the difference fP(r + u(r)) − fGT(r) respectively

the initial error as fP(r) − fGT(r) and in rawdata domain

XfP(r + u(r))− p respectively XfP(r)− p.

Fig. 2. Comparison of registration results from a 3D–3D registration and
a 3D–2D registration with different numbers of projections. The images are
shown at a gray scale window of C = 0 HU, W = 1500 HU. The error
images are shown at a gray scale window of C = 0 HU, W = 1000 HU.

Since our aim is to use only NT = NI = 15 projections for

the registration we compaired both registrations especially for

this case. Figure 3 shows the residual errors for NT = 15 in

image domain by further slices of the dataset and in rawdata

domain.

It demonstrates that both algorithms improve the matching

as can be seen comparing with the initial error. In most parts

of the image 3D–2D registration is superior to the 3D–3D

registration, e.g. in areas pointed to by arrows. A similar result

can be observed in rawdata domain. This is not surprising
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Fig. 3. Comparison of residual errors in image and in rawdata domain
for NT = 15 projections. The images are shown at a gray scale window of
C = 0 HU, W = 1000 HU and the rawdata images at a window of C = 0.0,
W = 1.0.

since with 3D–2D registration this expression is explicitely

minimzed. Both observations are confirmed by the objective

results shown in table I where we analyzed the error in

the image domain defined by Eimg = ‖fP(r + u(r)) −
fGT(r)‖22/‖fGT(r)‖22 and in the rawdata domain defined by

Eraw = ‖XfP(r+u(r))−p‖22/‖p‖
2
2. We calculated the norms

only in parts not affected by truncation.

TABLE I
ERRORS OF DIFFERENT REGISTRATION APPROACHES IN IMAGE AND

RAWDATA DOMAIN.

Initial 3D–3D 3D–2D

Eraw 28.06 · 10−4 10.66 · 10−4 6.85 · 10−4

= 100 % = 38 % = 24 %
Eimg 0.061 0.042 0.037

= 100 % = 68 % = 60 %

IV. CONCLUSION AND DISCUSSION

Our investigations on improving the temporal resolution of

the running prior are promising. The registration results show

that the matching in rawdata domain offers the potential to

reduce the number of projections used for the registration to

NT = NI = 15. Although the registration is here introduced

for CT with the X–ray transform it can easily be applied also

to other imaging techniques by replacing the X–ray transform,

for example by the Fourier transform in MRI.
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Abstract—C-arm cone-beam CT offers great potential in 
image-guided interventions, but conventional analytic recon-
struction methods are associated with limited image quality, 
particularly for soft-tissue imaging. While model-based 
iterative reconstruction (IR) methods improve image quality 
and/or reduce radiation dose, long reconstruction time limits 
utility in clinical workflow. Additionally, in contrast to 
diagnostic CT, C-arm cone-beam CT (CBCT) involves 
complexities of lateral truncation, an incomplete orbit, and 
relatively few projections. Lateral truncation in particular 
slows reconstruction convergence and introduces large errors 
in the reconstruction. Faster IR algorithms are therefore 
essential for broader adoption in CBCT-guided procedures. 
This work examines the acceleration achieved by modifying 
the ordered-subset, separable quadratic surrogates algorithm 
for solving the penalized-likelihood (PL) objective to include 
Nesterov’s method, which utilizes “momentum” from image 
updates of previous iterations to better inform the current 
iteration and provide significantly faster convergence. 
Reconstruction performance was assessed in C-arm CBCT of 
an anthropomorphic head phantom and cadaveric torso, 
demonstrating that Nesterov’s method provides equivalent 
image quality while reducing the reconstruction time by an 
order of magnitude. Despite the slower convergence of IR with 
truncated C-arm CBCT, implementation of Nesterov-
accelerated PL reconstruction on relatively inexpensive GPUs 
reduced reconstruction time from ~100 min for the ordered 
subset, separable quadratic surrogates method to as little as ~2 
min.  

Index Terms—Iterative Reconstruction, Cone-Beam CT, 
Radiation Dose, Image-Guided Surgery, Truncation 
 

I. INTRODUCTION 
Advances in model-based iterative reconstruction (IR) 

methods for x-ray CT and cone-beam CT (CBCT) imaging 
have led to numerous studies demonstrating the benefits of 
improved image quality and/or reduced radiation dose [1]–
[3]. However, the increased reconstruction time (up to 
several hours, even on commercial systems) is a major 
drawback that limits the use of IR in many applications, 
especially those that require timely images as part of the 
clinical workflow. For example, potential applications of IR 
for CBCT include the use of C-arms in image-guided 
surgery for verifying device placement (orthopedic surgery) 
and providing high-quality, low-dose intraoperative checks 
against normal tissue complication (e.g., intracranial 

hemorrhage in neurosurgery) [4][5]. Such applications 
demand image reconstructions on the order of minutes 
rather than hours. 

Accelerating iterative reconstruction is an active area of 
research and can be addressed using a number of possible 
solutions, including hardware and/or algorithmic 
improvements. For example, the separable quadratic 
surrogates (SQS) method iteratively solves the penalized-
likelihood (PL) reconstruction problem using a highly 
parallelizable approach that can leverage advances in 
parallel computing such as GPUs, but convergence can still 
be slow. Further compounding the challenge, lateral 
truncation of projections is typical in C-arm CBCT due to 
the relatively small field of view (FOV). Expanding the 
reconstruction FOV beyond the C-arm “complete data” 
FOV is important in IR methods to enforce consistency of 
the line integral of the reconstruction with the 
measurements, but the problem is generally ill-conditioned. 
Image regularization can improve conditioning of the 
problem, but truncated data and/or sparse sampling leads to 
even slower convergence.  

A common acceleration technique divides the projections 
into ordered subsets (OS) to accelerate the reconstruction by 
a factor approximately equal to the number of subsets. Even 
so, convergence typically requires hundreds of iterations 
and can take hours. While conventional SQS updates the 
image without any “memory” of previous updates, the 
algorithm can be modified to carry “momentum” from 
previous updates to better inform the current update. Kim et 
al recently demonstrated such a method [6], combining OS-
SQS with Nesterov’s method [7] to achieve faster 
convergence in penalized weighted least squares (PWLS) 
for CT reconstructions. The work below extends Nesterov’s 
method to acceleration of PL reconstruction in C-arm 
CBCT in the context of image-guided surgery, with a 
particular emphasis on how acceleration can help overcome 
convergence issues associated with truncated data. Per-
formance is assessed relative to SQS in an anthropomorphic 
head phantom for truncated and untruncated data, and 
demonstrated in a cadaveric torso emulating a scenario of 
CBCT-guided abdominal surgery. 

II. METHODS 
A. Statistical Reconstruction Algorithms 
The PL framework enables statistical image reconstruction 
by first applying a basic Poisson statistics model to the 
data: 

 ��~Poisson(
�,����),  (1) 

where y are the raw projections, I0 is the number of incident 
photons, and l = Aµ are the line integrals computed for 
system matrix A (forward-projection) and image volume µ. 
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PL then formulates the reconstruction as the solution to 
an optimization problem, where the objective Φ(�; �) 
comprises the log-likelihood function �(�; �) of the data 
and image regularization by a roughness penalty �(�) with 
strength β:  

 �̂ = argmax� �Φ(�; �) ≜ �(�; �) − "�(�)#, (2) 

Ignoring constant terms, the log-likelihood function is:  

 �(�; �) ≅ −∑ 
�,���� + ��'�� ,  (3) 

and the image roughness is calculated as: 

 �(�) = ∑ ∑ ()*+(�) − �*)*∈-.) , (4)  

where j indexes all voxels, k indexes the voxels in a 
neighborhood Nj about voxel j (first-order neighborhood in 
this work), wjk are the weights within a neighborhood (unity 
in this work), and + is the penalty function. 

The OS-SQS method [8] is often employed to solve Eq. 
(2) and utilizes highly parallelizable forward and 
backprojection operators and voxel-wise operations of 
volumes. The starting image �(�) can be initialized by the 
filtered backprojection (FBP) reconstruction (although a 
common alternative is a zero image). When M subsets are 
used (providing acceleration by approximately a factor of 
M), the algorithm is run for N iterations as follows 
(Algorithm 1, denoted SQS-M): 

Algorithm 1: SQS with M Ordered Subsets (SQS-M) 

Initialize � = �(�) 
Pre-compute /0 = 101, for m = 1, 2, …, M 
For n = 1, 2, 3, …, N 

For m = 1, 2, 3, …, M ' = 13� (5) 
ℎ5 � = �� − 
�,���� , ∀7 ∈ 80 (6) 
�5 = 9:13; ℎ5 < (7) 

=�('�) = >2
�,� (1 − ��� − '����) '�
@⁄ , 			'� > 0																			
�,�	, 																												'� = 0 (8) 

E = 9F13; (/ ⋅ =('))H (9) 

Δ) = − �5) + "∑ ()*+5J�) − �*K*∈-.
E) + "∑ 2()*LMJ�) − �*K*∈-.

 

� = F� + ΔHN (11) 

where Am and Am
T are the forward and backprojection 

operators, respectively, for subset m; γm are the projections 
of a volume of all ones; Sm are the projections in subset m; i 
and j index detector pixels and volume voxels, respectively; �5  and d are the gradient and curvature of the likelihood 
surrogates, respectively; ⋅ denotes an element-wise product 
of two vectors; +5  and LM are the derivative and curvature 
of the penalty function surrogates, respectively; ∆ is the 
image update; and F⋅HN is a nonnegativity constraint. In this 
work, the edge-preserving Huber penalty was used, with 

+O(P) = Q		P@ (2R)⁄ ,									 |P| ≤ R|P| − R/2,									|P| > R , (12) 

LMV(P) = 1/max	(|P|, R), (13) 

where δ is used to control the degree of edge preservation 
by controlling the width of the quadratic penalty region 
about 0. 

Despite the OS acceleration, SQS-M convergence can be 
very slow. Significant acceleration can be achieved by 
adapting Nesterov’s method [7] with improved momentum 
weights [9] to accumulate momentum from image updates 
∆ (denoted −W�X9∇Ψ0(�) in [6]). The algorithm is run 
for N iterations and M subsets as follows (Alg. 2, denoted 
Nes-M): 

Algorithm 2: Nesterov Acceleration of SQS-M (Nes-M) 

Initialize [ = \ = � = �(�), ] = 1 
For n = 1, 2, …, N 

For m = 1, 2, …, M 
Compute Δ [ = F� + ΔHN (14) \ = \ + ]Δ (15) 
] = J1 + √1 + 4]@K 2⁄  (16) 

� = `1 − X
ab [ + X

a :�(�) + \<N (17) 

where z is the current image estimate; v is the cumulative 
momentum from all image updates; t is a scalar that 
increases approximately linearly with each subiteration; and 
µ is now a state variable that linearly combines the current 
image estimate with the cumulative momentum added to the 
initial image. The image update ∆ is computed as usual 
[Eqs. (5)–(10)]. The additional computational expense of 
Nesterov’s method is minimal: it requires just one 
additional volume v in memory storage (the implementation 
can eliminate the intermediate variable z), and the additional 
computation of v and µ are multiply-and-add, voxel-wise 
operations of volumes that can be performed in parallel. 
 

B. Experimental Setup 
The performance of the SQS-M and Nes-M algorithms 

were compared on CBCT data acquired using an x-ray test 
bench and a prototype mobile C-arm capable of CBCT 
(modified PowerMobil, Siemens Healthcare). Studies 
employed an anthropomorphic head phantom containing a 
natural skeleton and simulated soft-tissue inserts as well as 
a cadaveric torso emulating an abdominal surgery scenario. 
The test bench incorporated a 43×43 cm2 flat-panel detector 
(PaxScan 4343CB, Varian Medical Systems, 0.2782 mm2 
pixel size) providing little or no lateral truncation (of the 
head phantom). The C-arm employed a 30×30 cm2 detector 
(PaxScan 3030+, Varian Medical Systems, 0.3882 mm2 
pixel size) with realistic lateral truncation (Fig. 1). The 
acquisition technique and geometry of the test bench 
replicated that of the C-arm – 100 kVp tube voltage, 80 
mAs total exposure, 198 projections over ~178° orbit, 60 
cm SAD, and 120 cm SDD. 

The SQS and Nes algorithms were fully implemented 
using custom CUDA libraries to leverage the parallel 
computing capabilities of GPUs. Unless otherwise noted, 
the separable footprints (SF-TT) projector was used due to 
its greater accuracy [10]. The effect of M was quantified for 
integer divisors of the number of projections – thus, 
M	∈{66, 33, …, 1}. Lastly, reconstruction parameters were 
set at I0 = 8000, β = 200 (for the bench data, and β = 80 for 
the C-arm data to compensate for the smaller detector 
array), δ = 10-4, and 0.63 mm3 voxel size.  
  

(10) 
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Fig. 1. (a) C-arm with anthropomorphic head phantom. (b) The bench and 
C-arm FOV are depicted with respect to a CT image of the phantom, 
display window [-400 400] HU. 

Different reconstruction algorithms (e.g., Nes-11 vs SQS-
1) were compared by assessing how many iterations nA 
were required for algorithm A to achieve the same objective 
value as nB iterations of algorithm B:  

 min cd	s. t.		Φ `�d
	gh�; �b i Φ `�j

	gk�; �b. (18) 

In this way, the acceleration factor (AF) of algorithm A 
could be determined in relation to algorithm B: 
 AF	cj� � cj/cd, (19) 
which for SQS-M, produces the familiar AF n 9. 
Additionally, the root mean square difference (RMSD) 
between �	g� and a “converged” reconstruction �∗ was used 
to quantify image accuracy as a function of iteration. 

III.  RESULTS 
A. Untruncated Reconstructions of the Head 

Test bench images of the head phantom were 
reconstructed using the SQS-M algorithm run for 1000 
iterations for each M, and the acceleration factors relative to 
SQS-1 demonstrated the speedups associated with SQS-M 
(Fig. 2). As expected, SQS-M achieved AF up to M 
(although the AF tends to fall off due to suboptimal limit 
cycles, as seen with SQS-66). The Nes-M algorithm was 
similarly run for 100 iterations each and demonstrated much 
greater AF than SQS-M. For example, Nes-11 exhibited AF 
= 357 at 104 equivalent SQS-1 iterations, and the AF 
continued to monotonically increase with more iterations, 

 
Fig. 2. Acceleration factor for SQS and Nes relative to SQS-1 (note the 
different y-axis scaling). (a) SQS-66 reaches a suboptimal limit cycle and 
cannot further improve the objective, while SQS-{33, 22, 11} achieve the 
same objective as 104 iterations of SQS-1 in {321, 469, 922} iterations, 
respectively, and provide AF approximately equal to M. (b) On the other 
hand, Nes-{22, 18} exhibit unstable, non-monotonic acceleration, while 
Nes-{11, 9, 6} achieve the same objective as 104 iterations of SQS-1 in 
only {28, 34, 50} iterations, giving AF of {357, 294, 200}, respectively. 

suggesting a faster rate of convergence than SQS and 
increasingly more benefit from additional iterations. The 
AF also appeared to be proportional to M (for	9 T 11). For 
9 C 11, the reconstruction may not converge due to limit-
cycle issues or instability, since momentum from each 
subset only contains information from a few projections, 
which may lead the reconstruction to false local optima. 

The converged reference volume µ* was achieved with 
3000 iterations of Nes-1 followed by 3000 iterations of 
SQS-1 and was confirmed to have greater objective value 
than any of the other reconstructions. The convergence of 
SQS-M and Nes-M was assessed by the RMSD with µ* in a 
region encompassing soft-tissue simulating inserts (Fig. 3). 
For SQS reconstructions, SQS-66 most rapidly reduced 
RMSD in early iterations but quickly leveled out after 
achieving 2.0 HU† accuracy in 140 iterations, while SQS-33 
was capable of RMSD = 1.0 HU after 260 iterations. On the 
other hand, Nes-18 only required 15 iterations to achieve 
RMSD = 2.0 HU, and Nes-11 achieved RMSD = 1.0 HU in 
21 iterations. 

 
Fig. 3. Accuracy of image reconstructions. (a) For RMSD = 2.0 HU, the 
fewest iterations required for SQS was M=66, N=140 and (b) for Nes was 
M=18, N=15. (Note the different x-axis scaling.) If better convergence 
(e.g., RMSD < 1 HU) is required, Nes exhibits an even greater reduction in 
iterations relative to SQS. (c) Reference volume µ* and circular region 
used for RMSD evaluation annotated in yellow. The SQS and Nes 
difference images [(d) and (e), respectively] show residual high frequency 
structure at edges and residual streaks at the posterior of the skull arising 
from the incomplete orbit (178°). 

B. Truncated Reconstructions of the Head 
For the truncated C-arm projections, the AF followed a 
similar trend as the untruncated bench data, with Nes-11 
providing a stable, monotonic increase in AF up to 345× for 
104 equivalent SQS-1 iterations. However, analysis of 
RMSD illustrated the challenge of truncated projections, 
particularly due to missing data outside the C-arm FOV and 
the slow convergence in those regions (Fig. 4). Both SQS 
and Nes were unable to achieve RMSD as low as their 
counterparts in the untruncated data, in large part due to 
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influence from the large errors outside the C-arm FOV 
(RMSD >180 HU outside the C-arm FOV). The algorithms 
therefore require more iterations even for a higher RMSD 
than in untruncated data, with SQS-33 achieving 4.0 HU 
RMSD in 197 iterations and Nes-11 in 21 iterations. Even 
so, Nes-11 provided a 9.4× reduction in the number of 
iterations required with SQS-33. Additionally, large M (e.g., 
SQS-66, Nes-22) resulted in unstable reconstructions and 
was susceptible to divergence from the optimal solution 
with too many iterations. Even moderate values of M for 
Nes exhibited some degree of divergent behavior, and 
improving stability is the subject of ongoing work. 

 
Fig. 4. Convergence and accuracy in truncated data. (a) SQS and (b) Nes 
reconstructions of truncated projections provided reconstructions with 
RMSD < 4 HU but were subject to divergence at a large number of 
iterations. (c) The converged solution µ* shows a reasonably accurate 
reconstruction inside the C-arm FOV. An RMSD of 4.0 HU was achieved 
by (d) 197 iterations of SQS-33 in 6371 sec, (e) 21 iterations of Nes-11 in 
638 sec, and (f) 32 iterations of Nes-11 with the simpler Siddon/Peters 
(SP) projectors in 121 sec. Display window [-400 400] HU. 

While the above results all used the SF-TT projector, 
preliminary investigation with faster, less accurate 
projectors (e.g., ray-driven Siddon forward projector [11] 
and voxel-driven Peters backprojector [12], denoted SP) 
was also able to yield RMSD of 4.0 HU but required a 
greater number of iterations (32 iterations for Nes-11-SP) 
since the overall RMSD was increased due to the 
unmatched projectors. Nevertheless, the SP projectors may 
be useful if the benefit of increased speed outweighs the 
cost of additional iterations – e.g., in near-real-time CBCT 
for image-guided surgery. 

C. Reconstruction Time with GPU Implementation 
Reconstruction times for C-arm CBCT were measured 

for the full head volume (300×360×300 voxels) on a PC 
workstation with a single GPU (EVGA GeForce GTX Titan 
Black Superclocked Signature). Relative to the SQS-11 
time per iteration, SQS-33 added an additional 7.94% 
computational time cost (primarily due to regularizing and 
updating the volume for each subset), while Nes-11 only 
added 1.34% cost (Table I). Conversely, the faster SP 
projectors dramatically reduced the time per iteration by 
almost a factor of 8 since it is particularly well-suited for 
efficient parallel implementation. An RMSD of 4 HU could 
be accomplished in ~11 min for Nes-11 SF-TT, while the 
faster SP projectors allowed reconstruction in just over 2 
min (121 sec). Therefore, Nesterov’s method (Nes-11) 
alone reduced reconstruction time by 10.0× over SQS 
(SQS-33), and faster projectors enabled an additional 
speedup of 5.3× over SF-TT with the same RMSD. 

TABLE I.  RECONSTRUCTION TIME FOR A FULL HEAD VOLUME 

(300×360×300 VOXELS) AT FIXED RMSD = 4 HU. 

 
SQS-11 
SF-TT 

SQS-33 
SF-TT 

Nes-11 
SF-TT 

Nes-11  
SP  

Time/Iter (sec) 29.96 32.34 30.36 3.79 

Cost/Iter –– +7.94% +1.34% -87.3% 

Iterations 494 197 21 32 

Total Time (sec) 14800 6371 638 121 

D. Truncated Reconstructions of the Abdomen 
The same analysis of SQS and Nes algorithms was 

performed in reconstructions of fully truncated C-arm 
projections of a cadaveric torso (Fig. 5). Because of the 
larger object size, the reconstructed volume was increased 
to 500×350×300 voxels and a balance between 
reconstruction time and RMSD was found with SQS-33 
providing 6.0 HU RMSD in 205 iterations (9522 sec), while 
Nes-11-SP was able to do so in only 38 iterations (197 sec = 
3.3 min). Compared to the head reconstruction, the 
abdomen reconstruction required more iterations even for a 
higher RMSD due to the greater degree of truncation and 
missing data. However, the acceleration of Nes-M-SP 
relative to SQS-M was just as pronounced, with a 48.3× 
reduction in reconstruction time, demonstrating the 
applicability of the algorithm to objects with even more 
severe truncation.  
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Fig. 5. Accelerated reconstruction of a cadaveric torso in CBCT-guided surgery. (a) Coronal slice of the reference reconstruction µ* of a cadaveric torso. 
The reconstruction FOV encompassed the axial extent of the abdomen, while the C-arm FOV (outlined in yellow) covers the right kidney, liver, spine, and 
small pockets of gas in the bowels. (b) SQS-33 provided RMSD = 6.0 HU (measured in an ROI around the kidney) in 205 iterations (9522 sec), while (c)
Nes-11-SP provided the same RMSD in 38 iterations (197 sec). Display window [-500 500] HU. 
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IV.  DISCUSSION AND CONCLUSION 
Nesterov’s method offers dramatic reduction in 

reconstruction time by accelerating convergence of the 
conventional ordered subset SQS algorithm. With faster 
Siddon-Peters type projectors, a GPU implementation of 
Nesterov-accelerated SQS was capable of providing a 
volumetric reconstruction of the head in ~2 minutes, despite 
the challenge of fully truncated C-arm CBCT projections, 
which leads to an ill-conditioned problem and slower 
convergence due to the large amount of missing data. 
Conventional FBP reconstruction is still faster than iterative 
reconstruction since by definition it requires only a single 
backprojection (cf., multiple forward/backprojections for 
IR). For example, FBP reconstruction of the head volume 
only required 19.3 sec [18.0 sec for filtering (implemented 
on GPU, but not yet fully optimized for run time) and 1.3 
sec for backprojection]. Nonetheless, such reconstruction 
speed further facilitates incorporation of IR methods in 
image-guided interventions, with corresponding benefits to 
image quality and reduced radiation dose.  

Ongoing work includes integration of other methods for 
addressing lateral truncation, e.g., a fit of projection data to 
an elliptical model of the volume. Using coarser voxels 
outside the C-arm FOV (i.e., a multi-resolution volume) 
could provide further acceleration, since accuracy outside 
the FOV is not as critical. Simultaneous use of multiple 
GPUs has been investigated to reduce forward and 
backprojection time for the SF-TT projector by distributing 
the projections within each subset among the GPUs, 
whereas the already fast SP projectors were unable to take 
advantage of multiple GPUs due to the overhead cost of 
transferring data between GPUs. For example, a GPU 
workstation with 3× GTX Titan’s reduced the time per 
iteration of the head volume to 15.52 sec (2.1× reduction, 
cf. Table I) for Nes-11, but increased the time to 6.84 sec 
(1.8× increase) for Nes-11-SP. Future work includes 
derivation of a method for selecting M a priori to maximize 
acceleration and minimize instability for a given level of 
RMSD as well as incorporation of a convergence criterion 
for terminating the reconstruction at an appropriate number 
of iterations.  
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Patient-bounded Extrapolation for 3D Region of
Interest Reconstruction in C-arm CT

Yan Xia, Sebastian Bauer, Andreas Maier, Martin Berger, and Joachim Hornegger

Abstract—Three-dimensional (3D) region of interest (ROI)
imaging with C-arm systems provides anatomical information in
a predefined 3D target region at a considerably low X-ray dose. A
necessary initial step prior to a 3D acquisition is to isocenter the
patient with respect to the target to be scanned. To this end, two
low-dose fluoroscopic X-ray acquisitions are usually applied from
anterior-posterior (AP) and medio-lateral (ML) views. In this
paper, we present a patient-bounded extrapolation method that
makes use of these non-collimated fluoroscopic images to improve
image quality in 3D ROI reconstruction. The algorithm first
extracts the 2D patient contours from the AP and ML images.
These 2D contours are then combined to estimate a volumetric
model of the patient. Forward-projecting the shape of the model
at the eventually acquired C-arm rotation views gives the patient
boundary information in the projection domain. In this manner,
we are in the position to substantially improve image quality
by enforcing the extrapolated line profiles to end at the known
patient boundaries, derived from the 3D shape model estimate.
The proposed method is evaluated on five clinical datasets with
different degrees of truncation. The proposed algorithm achieved
a relative root mean square error (rRMSE) of 0.7% with respect
to non-truncated data, even in the presence of severe truncation,
compared to 8.7% from a state-of-the-art heuristic extrapolation.

I. INTRODUCTION

Three-dimensional (3D) C-arm based region of interest
(ROI) tomography that provides anatomical information in a
predefined target region at considerably low X-ray dose is a
valuable tool in interventional radiology for therapy planning
and guidance, particularly for neurointerventions. However,
ROI imaging leads to laterally truncated projections from
which conventional reconstruction algorithms generally yield
images with severe truncation artifacts.

A major category of truncation correction methods is based
on estimating the missing data using a heuristic extrapolation
procedure, such as symmetric mirroring of projection images
(Ohnesorge et al. [1]), water cylinder extrapolation (Hsieh et
al. [2]), square root extrapolation (Sourbelle et al. [3]) and
hybrid extrapolation (Zellerhoff et al. [4]). Although these
methods can be carried out without a priori information, they
rely on heuristics. The degree of accuracy of these extrapola-
tion estimates highly depends on the level of truncation.

Later, Maltz et al. [5] observed that the thickness of the
patient could be estimated by calculating water-equivalent
thicknesses, so that the unknown patient boundary can be

Y. Xia, M. Berger, A. Maier and J. Hornegger are with the Pattern Recog-
nition Lab, Friedrich-Alexander-University Erlangen-Nuremberg, Germany.
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Fig. 1: Illustration of two short fluoroscopic X-ray pulses from ML view
(left) and AP view (right), respectively. The red outlines indicate the extracted
boundary information.

approximated. However, in practice, the presence of any non-
water tissue may result in a substantial over- or underestima-
tion of the actual object thickness.

In contrast, Wiegert et al. [6] and Kolditz et al. [7] suggested
that patient size and shape information can be obtained from an
a priori low-dose CT scan if available. By forward-projection
of this a priori CT volume, the collimated regions in the ROI
acquisition can be extended in an accurate manner.

In this paper, we present a patient-bounded extrapolation
method that leads to major improvements in the quantitative
accuracy of 3D ROI imaging, even in the presence of severely
truncated data. The method does not require any additional
hardware and can be readily integrated into the existing
interventional workflow. It is based on the fact that prior
to a 3D scan, low-dose fluoroscopic X-ray acquisitions are
generally performed from anterior-posterior (AP) and medio-
lateral (ML) views, to isocenter the patient with respect to
the target to be scanned; see Fig. 1. The fundamental idea of
the proposed method is to estimate a 3D shape model of the
patient from these low-dose non-truncated fluoroscopic images
and then exploit this patient-specific a priori shape knowledge
for the extrapolation of truncated projections.

II. METHOD

First, we estimate the rough 3D patient shape based on
two low-dose fluoroscopic projections, using per-slice ellipse
fitting. The details are elaborated in the following sections;
also see Fig. 2 for notations.

Contour-bounded Slice-wise Ellipse Fitting
To extract the boundaries, we first compute the gradient

image of fluoroscopic projections and detect the edges using
an empirically pre-set threshold. Suppose uAPlb =

(
uAPlb , vi, 1

)
,

uAPrb , uML
lb , and uML

rb are the homogeneous coordinates of the
segmented left and right boundary points at detector row vi of
the 2D fluoroscopic images from AP and ML view. Let P ∈
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Fig. 2: Illustration of the patient-bounded extrapolation scheme. (Left) Contour-bounded slice-wise ellipse fitting. (Right) Forward-projection of the boundaries
of the previously estimated patient shape model at a given C-arm rotation view provides the patient boundary in the projection domain.

R3×4 be the projection matrix that maps position x = [x, y, z]
in the C-arm coordinate frame to a position u = [ωu, ωv, ω]
in the 2D projection plane:

u = P

[
x
1

]
. (1)

The matrix P can be decomposed as follows:

P = [P13 | p4] = [AR | At] (2)

where R ∈ R3×3 denotes the rotation matrix, t ∈ R3 denotes
the translation vector, and A ∈ R3×3 the intrinsic parameter
matrix.

Then, we can compute the direction unit vector eAPm , eML
m

of the ray that connects the source to the middle point of the
two boundaries, i.e., uAPm =

(
uAPlb + uAPrb

)
/2 and uML

m =(
uML
lb + uML

rb

)
/2, as:

eAPm =
(PAP13 )−1uAPm
‖(PAP13 )−1uAPm ‖2

, eML
m =

(PML
13 )−1uML

m

‖(PML
13 )−1uML

m ‖2
,

(3)
where P−1 denotes the pseudo-inverse of the matrix P.

Now the ray equations can be expressed as (t, l ∈ R)

lAPm (t) = sAP + teAPm , and lML
m (l) = sML + leML

m , (4)

where sAP and sML are source positions at AP and ML views,
which can be computed using s = −P−113 p4.

Then, the center of the fitted ellipse x0 is estimated by
computing the intersection of the two rays lAPm and lML

m .
Here, we confine to breaking the problem down to a 2D line
intersecting based on the approximation that sAP Iz = sMLIz
and eAPm Iz = eML

m Iz = 0, where Iz =
[
0 0 1

]T
. The

third component of x0 is given by the corresponding slice
position. To obtain the intersection point x0, we establish
sAP +teAPm = sML+leML

m and solve for t. Then, substituting
t in the first equation of (4) yields:

x0 = sAP +

∥∥(sML − sAP
)
× eML

m

∥∥
2

‖eAPm × eML
m ‖2

eAPm . (5)

Now we need to determine the radii Rx, Ry of the ellipse.
The line equation of the rays from AP view that connects
the patient boundary and source can also be expressed as
(e.g. right boundary) lAPr (h) = sAP + heAPr , where eAPr
is computed using uAPrb accordingly. Suppose xr is the point

Fig. 3: Visualization of the actual patient shape extracted from a non-
collimated 3D reconstruction (left) and the 3D volumetric model estimated
from two orthogonal projections with different ellipses in each slice (right).

located on the line lAPr that satisfies xrIy = x0Iy , i.e., with
the same y-axis coordinate as x0. Then, the radius along the
x-axis Rx can be approximated as follows:

Rx = (xr − x0) Ix (6)

where Ix =
[
1 0 0

]T
and Iy =

[
0 1 0

]T
.

In analogy, we can use the boundary from ML view to
determine the radius of the ellipse along the y-axis Ry .

Patient Boundary Estimation for Arbitrary Angulations
With the estimated ellipse in the volumetric image domain,

we can compute the left and right patient boundaries of that
ellipse for any given C-arm rotation angle λ as follows:

xλlb = x0 − reu, (7)

xλrb = x0 + reu, (8)

where r =
√
(Ry cosλ)

2
+ (Rx sinλ)

2 and eu denotes the
unit vector in detector row direction.

Then, we forward-project these voxel positions to 2D pro-
jection plane using Eq. (1), also cf. Fig. 2:

uλlb = Pλ
[

xλlb
1

]
, and uλrb = Pλ

[
xλrb
1

]
. (9)

The estimated patient left and right boundaries at the
detector row vi and rotation angle λ, i.e.,

(
uλlb, vi

)
and(

uλrb, vi
)
, can be easily obtained with uλlb = uλlbIx/u

λ
lbIz and

uλrb = uλrbIx/u
λ
rbIz .
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Fig. 4: Comparison of the non-bounded traditional extrapolation and patient-bounded extrapolation in a severe truncation case. Line profiles at projection
views of λ = −40◦ (left), λ = 20◦ (middle) and λ = 80◦ (right). Note that the bounded ellipse parameters are estimated using two single projections from
λ = −90◦ (ML) and λ = 0◦ (AP). Shaded regions indicate the measured part of projections in ROI scan.

Bounded ROI Projection Profile Extrapolation
Based on the estimated patient boundaries in the ROI scan

projection data, we are in the position to apply any extrap-
olation technique and adapting it according to the restriction
that the extrapolated profile must end at the known patient
boundaries. In this paper, we adapt the water cylinder approach
of Hsieh et al. [2] by extending or compressing the initial
extrapolated lines to fulfill this restriction. Let g (λ, u, v) be
the projection data at the detector coordinates (u, v) acquired
at angle λ. Then, the extrapolation function is given by

g̃wat (λ, u, v) = 2µ

√
R2 − ξ2 (u− uw)2 (10)

where µ is the water attenuation coefficient, uw is the location
of the fitted cylinder with respect to the detector row and R
is the radius. The parameters uw and R are determined as
described in [2].

In contrast to the formulation by Hsieh et al., in Eq. (10) we
introduce ξ that serves as a scaling factor to stretch or shrink
the extrapolated profiles, which is computed as

ξ2 =
R

ub − uw
, (11)

where ub indicates the left or right boundary (ulb or urb) we
obtained in the previous section.

Bounded Square Root Function Extrapolation
As an alternative, we also investigate the square root func-

tion extrapolation that was proposed by Sourbelle et al. [3].
The extrapolation function is given as

g̃sqr (λ, u, v) =
√
a · u2 + b · u+ c. (12)

To determine the parameters a, b, and c, the following
continuity equations are used:

g (λ, ut, v) =
√
a · u2t + b · ut + c, (13)

g′ (λ, ut, v) =
b+ 2a · ut
2g (λ, ut, v)

, (14)

where ut denotes the truncated projection edge and
g′ (λ, ut, v) is the mean slope value over a small region.

We integrate the patient boundary information into (12) such
that the extrapolated profile ends at ub:

Fig. 5: Transversal slices of the clinical data 1 (medium truncation) recon-
structed by FDK from non-truncated data (left), patient-bounded extrapolation
(middle), and water cylinder extrapolation (right), in the grayscale window
[-1000 HU, 1000 HU]. The black circles indicate the ROI.

g (λ, ub, v) =
√
a · u2b + b · ub + c = 0. (15)

Thus, the three parameters a, b, and c can be deter-
mined using these three equations. Note that for both patient
bounded extrapolation schemes, we apply a cosine-based
smooth weighting on the transition region.

III. EVALUATION

A. Experiment Setup

Five clinical datasets of the patients’ head (data courtesy of
St. Luke’s Episcopal Hospital, Houston, TX, USA) were used
to evaluate the proposed method. The datasets were acquired
on a C-arm system with 496 projection images (1240×960 px)
at the resolution of 0.308 mm / px. Even though a practical
implementation would involve the extraction of the patient
boundaries from low-dose fluoroscopic data, for proof of
concept we here confined to extract the boundaries from two
projections (λ = −90◦ and λ = 0◦) of a non-collimated 3D
scan. All datasets were virtually cropped to a medium field of
view (FOV) and a small FOV and were reconstructed onto a
volume of 5123 with an isotropic voxel size of 0.4mm3. The
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Table I: Quantitative evaluation of truncation corrections for different FOVs. Note that the given RMSE, rRMSE and CC are the average over all five datasets.

Medium FOV Small FOV

Water cylin. [2] Bounded water cf. [2] Bounded sqr. cf. [3] Water cylin. [2] Bounded water cf. [2] Bounded sqr. cf. [3]

RMSE 96.4 HU 30.6 HU 56.1 HU 391.8 HU 43.8 HU 50.6 HU
rRMSE 2.21 % 0.71 % 1.21 % 8.77 % 0.96 % 1.12 %

CC 0.925 0.995 0.992 0.892 0.992 0.991

Fig. 6: Transversal slices of the clinical data 2 (off-centered ROI) reconstructed
by FDK from non-truncated data (left), patient-bounded extrapolation (mid-
dle), and water cylinder extrapolation (right) [-1000 HU, 1000 HU].

original, non-bounded water cylinder extrapolation (Hsieh et
al. [2]) was investigated as a baseline and compared to our
proposed algorithm for the two schemes. To quantify image
quality, three quantitative metrics were used: the root mean
square error (RMSE), the relative root mean square error
(rRMSE) (i.e., the RMSE divided by the total intensity range)
and the correlation coefficient (CC).

B. Results
An example of the estimated ellipse model compared to the

actual patient shape extracted from reconstruction is shown in
Fig. 3. Figure 4 shows the comparison of the heuristic and pro-
posed extrapolation in a severe truncation case. Reconstruction
results from the dataset 1, 2, and 3 are presented in Fig. 5-
7, respectively. The quantitative evaluation is summarized in
Table I. We can see that the proposed method improves the
image quality substantially, particularly for severely truncated
data. This is due to the fact that non-bounded heuristic extrap-
olation can not accurately fit the data outside an ROI, while the
proposed method yields a much better approximation; see Fig.
4. The reconstructions also show that the proposed method
is robust to both severe truncation and off-centered ROIs.
Quantitative accuracy is improved considerably: the average
RMSE reached 43.8 HU in severe truncation, compared to
391.8 HU from the heuristic method. A relative error of less
than 1% was achieved, yielding an error reduction by a factor
of 8 compared the heuristic method.

IV. DISCUSSION

The method we proposed in this paper leads to a major
improvement in image quality for 3D C-arm based ROI

Fig. 7: Sagittal slices of the clinical data 3 (severe trucnation) reconstructed by
FDK from non-truncated data (top), patient bounded extrapolation (middle),
and water cylinder extrapolation (bottom) [-1000 HU, 1000 HU].

imaging. It involves no additional radiation when using the
fluoroscopic images, as they are acquired anyway during the
patient isocentering process. The model estimation can be
readily integrated into the existing interventional workflow
without additional hardware. Furthermore, it is well-suited for
neurointerventions since: 1) The ellipse is a good model for
the head; 2) the low-dose fluoroscopic images are usually non-
collimated and cover the entire object of interest. Regarding
computation times, both slice-wise ellipse fitting and patient
boundary estimation are computationally inexpensive since
only the boundary points are involved with small vector/matrix
multiplications. Due to their very low radiation dose, a sparse
set of fluoroscopic images can be further acquired from
different views. In this manner, the detailed patient shape could
be estimated using some parametric models such as B-splines.
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Catheter Artifact Reduction (CAR)
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Abstract—A C-arm CT system offers the possibility to acquire
2-D high-resolution X-ray images of the patient from different
views. These projections can be used for 3-D imaging. Anatomical
three-dimensional imaging holds great potential to improve
cardiac interventions. However, the image acquisition using a
C-arm CT system takes several seconds. A standard FDK recon-
struction using all acquired projection images results in a motion
blurred image. In order to improve the temporal resolution,
an electrocardiogram (ECG) is acquired synchronously with the
acquisition and reconstruction is performed only with subsets
of projection images, each belonging to a certain heart phase.
This retrospective ECG-gating of data from a single C-arm
rotation provides only a few projections per heart phase for image
reconstruction. This view sparsity leads to prominent streak
artifacts and a poor signal-to-noise ratio. Therefore, motion
estimation and correction are required for the reconstruction
of the cardiac chambers. We recently presented a deformable
image registration approach which allows for motion estimation
on the initial ECG-gated volumes using a specifically designed
imaging protocol. In this paper, an additional step to improve the
initial image quality is presented which removes dense objects,
i.e. pacing electrodes or catheters, before the deformable 3-D/3-
D registration step. The algorithm is evaluated quantitatively
and qualitatively on a simulated phantom dataset. The relative
root mean square error (rRMSE) was reduced by 27 % and the
universal image quality index (UQI) improved by 13 % compared
to the algorithm without removing the dense objects from the
reconstructions. Finally, the presented algorithmic framework
was applied to a first clinical patient dataset and the preliminary
results are presented in this paper.

I. INTRODUCTION

In recent years, three-dimensional imaging has become
more and more important in the field of cardiac imaging.
However, most systems can only be used pre- or post-
interventionally. Therefore, need for 3-D imaging directly in
the catheter lab has become of major interest in the last
years. Interventional 3-D imaging can be performed with
an angiographic C-arm CT system already available in most
catheter labs in order to perform 2-D fluoroscopic imaging.
The 3-D C-arm CT image provides valuable information to the
cardiologist directly inside the catheter lab, e.g. for minimally
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invasive valve procedures or device implantations [1]. For
example, in [2], the 3-D reconstruction of the aortic root is
used for guidance of a transcatheter aortic valve implantation
(TAVI) by overlaying the 3-D reconstruction onto the fluoro-
scopic images during the deployment of the prosthesis, and for
measuring critical anatomical parameters in 3-D image space.

Up to now, pre-operative three-dimensional echocardio-
graphic volumes are used for wall motion analysis for car-
diac resynchronization therapy (CRT) procedures in order to
find the optimal lead position [3]. Three-dimensional C-arm
reconstructions of the cardiac chambers in various heart states
directly in the catheter lab would provide valuable information
for the cardiologist during the CRT procedure.

For the reconstruction of a temporal sequence of 3-D cardiac
images using a C-arm system, a specifically designed contrast
and acquisition protocol for dynamic cardiac imaging is re-
quired [4]. Due to the design of the imaging protocol, multiple
retrospectively ECG-gated reconstructions can be performed.
The resulting volumes suffer from noise and streaking artifacts
due to sparse view sampling. One possible solution to improve
image quality is the use of all acquired projection data in
combination with compensation for the cardiac motion in
the reconstruction step. The cardiac motion can be estimated
by registration of initial 3-D volumes of each heart phase
to one reference heart phase. However, the quality of the
initial images influences the accuracy of the estimated cardiac
motion.

We already investigated different techniques to generate
initial images for cardiac motion-estimation via deformable
3-D/3-D image registration [5]. In this paper, an additional
catheter artifact removal (CAR) approach is presented to
further improve the initial image quality before estimation of
the cardiac motion. In our case, a contrast filled catheter and
a pacing electrode are always present in the scanning field
of view. The presented algorithm is applied to a simulated
phantom dataset and to a first clinical patient dataset.

II. DYNAMIC CARDIAC IMAGING

In this section, the new initial image reconstruction method
is described as well as the 3-D/3-D registration for cardiac
motion estimation. With the estimated motion, a motion-
compensated reconstruction is performed using all acquired
projection images.
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A. 3-D Initial Image Generation

The cardiac motion is estimated on initial 3-D volumes.
The initial images are reconstructed by retrospective ECG-
gating. A weighting function based on the relative heart phase
is introduced into the standard FDK approach, which assigns
to each image an impact weight on the reconstruction result.
Here, a rectangular window is used. A total of K heart phase
volumes can be reconstructed. The resulting reconstructions
are denoted as FDK.

Catheter Artifact Removal (CAR): Strong undersampling
artifacts are caused by high-density objects like the pigtail
catheter or a pacing electrode. Therefore, these objects need
to be removed from the 2-D projection images before the
reconstruction. The high density objects are identified in the
ECG-gated volumes to generate binary 3-D mask volumes for
each heart phase. The segmentation process is restricted to a
user-defined region of interest (ROI). A thresholding operation
is applied with a threshold determined as the mean value inside
the defined ROI. The segmented pixels are dilated by a circular
object with a radius of 1 voxel. The resulting mask volumes
are forward projected into the 2-D projection images which
belong to the corresponding heart phase. The 2-D mask images
combined with the log-transformed projection images are used
for catheter removal. In this paper, a low-frequency-based
object masking called Subtract-and-Shift (SaS) is used for the
removal of the catheter in the 2-D projection images [6]. The
algorithm makes use of the fact that many dense objects do
not absorb all incident radiation. Therefore, some remaining
anatomical structure is still available within the region overlaid
by the object and should be used by an interpolation algorithm.

The resulting projection images are used for ECG-gated
filtered backprojection reconstruction to provide volumes with-
out catheters and electrodes. These reconstructions using the
catheter removed projections are denoted as cathFDK.

B. Cardiac Motion Estimation

In order to estimate the cardiac motion, one heart phase
needs to be chosen as reference phase. The corresponding
volume is the reference volume and all other volumes are
registered separately to the reference volume. The 3-D motion
vector field is derived by optimizing an objective function
LNCC(s̃mm), with the vector s̃mm ∈ RK̃mm denoting the
motion model parameters between two heart phases, such that
the negative normalized cross correlation (NCC) between the
(catheter removed) ECG-gated volumes is minimized. The
optimization is performed with an adaptive stochastic gradient
descent optimizer. The motion is parameterized by cubic
third-order B-splines with uniformly spaced control points
Cs × Cs × Cs. Every control point has its own parameter
vector, defining the number of motion model parameters as
K̃mm = 3(Cs + 3)3. In order to estimate the cardiac motion
over the whole scan, the optimization needs to be performed
between all K−1 heart phases, resulting in an overall motion
vector dimension Kmm = (K−1) K̃mm. In this paper, a toolbox
for nonrigid registration of medical images called elastix is
used for the 3-D/3-D motion estimation [7]. A multi-resolution
scheme of 4 levels is used with a sampling factor of 2 on each

pyramid level. At the highest image resolution a number of
Cs = 16 control points are used in each spatial dimension.

C. Motion-compensated Reconstruction

The estimated motion vector field is incorporated into a
voxel-driven filtered backprojection reconstruction algorithm
which compensates for the motion [8]. The motion correction
is applied during the backprojection step by shifting the voxel
to be reconstructed according to the motion vector field.

Using no catheter removal for the initial volume reconstruc-
tion, the resulting motion-compensated reconstructed volumes
are denoted as FDK-MC. When the CAR approach is used
for the initial image reconstruction and motion estimation,
but the motion-compensated reconstruction is performed with
the original measured projection images, the reconstruction is
denoted as cathFDK-MC. If the motion-compensated recon-
struction utilizes the projection images without catheters and
electrodes, the volumes are denoted as cathFDK-MCi.

III. EXPERIMENTS

A. Phantom Model

A ventricle dataset [9], [10] of a similar design to the
XCAT phantom [11] was created. The phantom dataset was
simulated with a polychromatic X-ray spectrum. We used
a source spectrum E(b) with 36 energy bins from 10 keV
to 90 keV, and a time-current product of 2.5 mAs per X-
ray pulse. A catheter was simulated coming from the aorta
into the left ventricle. The same deformation as for the heart
was applied to the catheter. The material of the catheter is
similar to copper in order to induce severe streak artifacts in
the reconstructions. The material properties of the catheter,
bones and the bone marrow have the were chosen accord-
ing to the mass attenuation coefficients of the NIST X-Ray
Table1. All other structures are assumed to have the same
absorption behavior as water with different densities similar
to the FORBILD phantom2. The density of the contrasted left
ventricle bloodpool was set to 2.5 g/cm3, the density of the
myocardial wall to 1.5 g/cm3 and the contrasted blood in the
aorta to 2.0 g/cm3. Poisson distributed noise was added to the
simulated projection stacks such that the noise characteristics
of the reconstructed images fit those of the clinical data.
As gold standard, static projection images of the phantom
with a catheter were generated without noise. The phantom
projection data and geometry are publicly available and can
be downloaded from https://conrad.stanford.edu/data/heart.

The phantom dataset was simulated with similar parameters
as used for clinical acquisitions of porcine models [5], [4].
The acquisition simulation was performed over 14.5 s captur-
ing 381 projection images at an angular increment of 0.52°
during one C-arm sweep. The isotropic pixel resolution was
0.31 mm/pixel (0.19 mm in isocenter) and the detector size
1240 × 960 pixels. The heart rate was set to 131 bpm. For the
phantom dataset, a strict gating was performed, i.e. only one
projection per heart cycle is used for reconstruction. A total
of 32 heart cycles were acquired resulting in 12 reconstructed

1http://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html
2http://www.imp.uni-erlangen.de/phantoms/thorax/thorax.htm
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Table I: The rRMSE and UQI of the dynamic phantom model
with a catheter for all K = 12 heart phases as mean and
standard deviation.

Method rRMSE UQI
FDK-MC 0.85 ± 0.34 0.84 ± 0.01

cathFDK-MC 0.62 ± 0.43 0.94 ± 0.01
cathFDK-MCi 0.58 ± 0.52 0.97 ± 0.01

heart phases. Image reconstruction was performed on an image
volume of (25.6 cm)3 distributed on a 2563 voxel grid.

B. Clinical Data

A clinical patient dataset acquisition was performed using
an Artis zeego system (Siemens AG, Healthcare Sector, Forch-
heim, Germany). The acquisition time was 14 s capturing 381
projection images with 26 f/s at an angular increment of 0.52°
during one C-arm rotation. The isotropic pixel resolution was
0.31 mm/pixel (0.19 mm in isocenter) and the detector size
1240 × 960 pixels. The heart rate was stimulated through
external heart pacing to 115 bpm, which is lower than the
frequency used for the phantom model (131 bpm). The width
of the gating window was set to 10% of the heart cycle,
resulting in ≈ 34 projections for the reconstruction of an
initial image at a specific heart phase. For this dataset, 10
heart phase volumes were reconstructed at a phase increment
of 10%. A volume of 91 ml undiluted contrast agent fluid
was administered in the pulmonary artery at a speed of 7 ml/s
beginning 13 s before the X-ray rotation was started. The
X-ray delay was determined by a test bolus injection. Image
reconstruction was performed on an image volume of (25.6
cm)3 distributed on a 2563 voxel grid.

IV. RESULTS AND DISCUSSION

A. Phantom Model

For the dynamic phantom data, the 3-D error and a quanti-
tative 3-D image metric can be evaluated. The gold standard
image of the non-gated FDK reconstruction using all projec-
tions of the static heart phantom of the same heart phase is
shown in Fig. 1a. The error as well as the image quality
metric were evaluated inside a volume of interest around
the ventricle. The region of the catheter was also excluded
from the evaluation, since the catheter motion was not in
the focus of the cardiac chamber imaging. The relative root
mean square error (rRMSE) was used to quantify the 3-D
reconstruction error. The results were averaged over all heart
phases, resulting in an overall rRMSE. As a 3-D image quality
metric the universal image quality index (UQI) was computed
[12]. The UQI ranges from −1 to 1, with 1 as the best overlap
between both reconstructions. All results were averaged over
the heart phases, resulting in the overall UQI. Looking at
the quantitative results in Table I, the cathFDK-MCi and
the cathFDK-MC outperform the FDK-MC reconstructions.
For the cathFDK-MCi, the rRMSE is reduced by 27 % and
the universal image quality index (UQI) improved by 13 %
compared to FDK-MC.

The reconstruction results for the phantom data are shown
in Fig. 1 for a heart phase of 30 %. The non-gated FDK

reconstruction suffers from motion blurring artifacts as can be
seen in Fig. 1b. The catheter causes severe streak artifacts in
the ECG-gated reconstructions (Fig. 1c). Motion compensation
does not eliminate these streak artifacts since the motion esti-
mation is disturbed by them (Fig. 1d). The cathFDK (Fig. 1e)
shows less streak artifacts and consequently the corresponding
motion compensated image shows a much better image quality
(Fig. 1f). In Fig. 1g, the cathFDK-MCi result is presented, only
minor streaking artifacts are visible in the reconstruction. As
a post-processing step, the segmented catheter can be added
to the cathFDK-MCi reconstruction (Fig. 1h).

B. Clinical Data
The reconstruction results for the clinical patient dataset

are presented in Fig. 2 for a systolic and a diastolic heart
phase. It can be seen that artifacts overlay small left ventric-
ular structures in the systolic and diastolic ECG-gated FDK
reconstructions (cf. Fig. 2a and 2b, indicated by the arrows).
The image quality of the motion-compensated reconstructions
using cathFDK-MCi is improved considerably compared to
the initial images (cf. Fig. 2c and 2d).

V. SUMMARY AND CONCLUSION

For cardiac image acquisition with a C-arm CT, it is nec-
essary to include the cardiac motion in the reconstruction. In
this paper, we have presented cardiac motion estimation from
initial 3-D volume data sets with a deformable B-spline regis-
tration. If a dense object is present inside the scan field of view,
the undersampled ECG-gated initial images suffer from streak
artifacts which disturb the motion estimation. The shadow of
the dense object has to be removed from the 2-D projection
images as a preprocessing step before the reconstruction of
the initial images. Using these volumes, motion is estimated
with an improved accuracy. No further image enhancement and
processing is needed. For motion-compensated reconstruction
of sparse structures like the catheter, different algorithms can
be used [13]. The phantom simulation study shows quantita-
tively the benefit of the proposed method. Clinical preliminary
motion-compensated reconstructions of a patient dataset are
promising.

Disclaimer: The concepts and information presented in
this paper are based on research and are not commercially
available.
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