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Dear Colleague, 

 

It is a pleasure to welcome you in Salt Lake City for the second edition of The International Conference on Image 

Formation in X-ray Computed Tomography, also known as “The CT meeting”. 

The idea for this meeting came about four years ago, following a wish from many to have a venue where CT 

scientists could meet together to discuss in depth all aspects that impact the image formation process in CT. These 

aspects include dose evaluation and dose reduction strategies, non-linearity effects and compensation schemes 

for these effects, image reconstruction algorithms, spectral decomposition, dynamic effects, geometrical 

calibration, phase-contrast physics, and image quality assessment. Both medical imaging and non-destructive 

testing applications are of interest, along with emerging breast imaging techniques, and the attractive micro- and 

nano-CT technology.  

Pleasantly, the meeting is quickly becoming an attractive venue. Whereas 57 presentations were given at the first 

meeting, in 2010, 104 presentations will be given this year, including a special session on homeland security 

applications. As you will see, the breadth of the topics being covered is amazing. I am grateful to all authors for 

submitting their work for presentation at this conference. As in 2010, oral presentations have been allocated 

significant time to allow for in-depth discussion between the attendees. Also, comfortable poster sessions have 

been planned, and attractive locations have been selected to promote discussion during the meals. 

The meeting could not be a success either without a great scientific committee. I would like to take the 

opportunity here to once again thank the following scientists, for their support, as well as for their help with the 
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Once again, we were also fortunate to receive generous support from 

 Siemens AG, Healthcare Sector 

 Toshiba Medical Systems Corporation 

 GE Healthcare 

This financial support is essential to accommodate a lower registration fee for graduate students. This year, we 

have 151 attendees out of which a full third are students. 

Finally, I am thankful to Andrew Karellas for his continuous support and advices. Also, without his help, there 

would most likely be no special issue of Medical Physics. I am grateful to Dominic Heuscher, Jeremy Jorgensen, 

Yanfei Mao, Katharina Schmitt, Adam Wunderlich, and Zhicong Yu for providing a strong hand. And, of course, 

there was my colleague, Larry Zeng, helping me at each step; I cannot imagine how one could run such a 

conference without Larry. 

I wish you all a pleasant meeting. 

 

Frederic Noo, Ph.D. 
General Chair  
Utah Center for Advanced Imaging Research (UCAIR) 
Department of Radiology 
University of Utah 
E-mail: noo@ucair.med.utah.edu 
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Improving Best-Phase Image Quality in Cardiac CT
by Motion Correction with MAM Optimization

Christopher Rohkohl, Herbert Bruder, Karl Stierstorfer and Thomas Flohr

Abstract—Despite the latest hardware developments in high-
end cardiac CT (e.g. dual source), there exist clinical scenarios
where the temporal resolution is not sufficient and motion
artifacts affect the image quality mainly of the coronary arteries.
Latest research claims motion correction in cardiac CT to be a
solution to improved image quality in such scenarios. However,
yet it could only be shown that the motion information inferred
by 3-D / 3-D registration from quiescent heart phases of a 4-D
cardiac CT acquisition can be used to increase the image quality
during rapid phases of motion.

In this paper we propose a novel method for motion estimation
and compensation, which for the first time allows a significant
improvement of the clinical relevant best-phase image quality
and does not rely on a multiple phase (4-D) data acquisition.
For image reconstruction the motion compensated version of the
ECG-gated FDK-algorithm is utilized. The motion is modeled by
a sub-sampled 4-D motion vector field which is parameterized by
the acquisition time of the contributing projection data. Motion
estimation is formalized as a high-dimensional optimization
problem. The cost function is based on the definition of motion
artifact metrics (MAM) which allow the quantification of motion
artifacts in a 3-D reconstructed image. By adjusting the motion
field parameters the MAM of the resulting motion compensated
reconstruction is optimized (motion artifacts are minimized)
using a gradient descent procedure. Since for motion estimation
and compensation only analytical methods (FDK-algorithm) are
utilized, the derivatives can be easily computed, which in turn
allows a fast and practical implementation.

I. INTRODUCTION

THE imaging of cardiac structures, in particular the coro-
nary arteries, using CT is a clinically important and at

the same technically challenging problem. Cardiac vessels are
small, rapidly moving structures and therefore require a high
temporal resolution of the reconstructed image. Naturally the
temporal resolution is limited by hardware constraints which
evolved into the latest high-end dual-source systems with a
temporal resolution of less than 90 ms [1]. Clinical imaging
is usually performed in phases of low motion. The duration of
that quiescent heart phases shortens with increasing heart rate
and at the same time lead to higher vessel velocities [2]. This
circumstance causes image quality problems due to motion
artifacts especially in older or cheaper systems, and can even
bring high-end systems to their limits.

That’s the reason why the research community is actively
trying to increase the temporal resolution by means of novel
reconstruction algorithms. In essence there exist two different
strategies. One research direction is to use less data than

The authors are with the Siemens AG, Healthcare Sector,
Forchheim, Germany. Corresponding author: C. Rohkohl (christo-
pher.rohkohl.ext@siemens.com).

theoretically required for image reconstruction. In order to
overcome limited data artifacts, constraints need to be in-
corporated into an iterative algorithm, e.g. a prior image
and smoothness constraint in TRI-PICCS [3] or a positivity
constraint in TRIM [4]. The quantification of the temporal
resolution of those algorithms is difficult and latest results
suggest only minor improvements for TRI-PICCS [5], [6]. For
TRIM no quantitative or clinical results have been reported yet.

The second research direction is to estimate the cardiac
motion by 3-D / 3-D registration of the relevant structures at
different heart phases [7]–[10]. The estimated motion is then
used to reconstruct an image with improved image quality by
compensating the object motion in the image reconstruction
algorithm, e.g. [11]. While theoretically appealing, estimating
the unknown heart motion proofs to be a challenging prob-
lem. Promising results have been presented for coronary CT
which show that phases of rapid motion benefit from motion
correction [8]–[10]. However, to our best knowledge, yet no
publication reported an increased image quality for the best
motion phase available in a particular dataset and threfore no
increase of temporal resolution could be actually demonstrated
for 3-D / 3-D or tracking based motion correction algorithms.
In literature this aspect has not received attention yet. We
hypothesize that one main reason is the accurracy of the
registration or tracking. The image quality of the coronaries
drastically decreases in non best-phase images and thus can
render a perfect tracking or registration highly difficult.

Due to that we believe that a new approach towards solving
this problem is required. For C-arm systems latest research
suggests, that the quality (artifact level) of a reconstructed
image can be estimated directly from the image by computing
an image metric, e.g. the Entropy [12]. This observeration was
used to correct the geometric calibration of the wobbling C-
arm trajectory by seeking a geometry which minimizes the
image quality metric. We propose to use a similar approach for
correcting artifacts caused by local motion of the heart during
the data acquisition. The novel approach requires only the data
that is used for image reconstruction. This allows saving dose
as no additional data needs to be acquired and further – for
the first time shown – allows a significant improvement of the
best phase image quality by motion correction. The detailed
algorithm along with the motion artifact metrics is presented
in the remainder of this paper.

II. MOTION CORRECTED RECONSTRUCTION

A. Motion Model
One important building block of the proposed framework

is the ability to perform a motion compensated 3-D image
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reconstruction. Therefore we need to define a motion model
that formally describes the motion. There exists a variety of
different possibilities for describing a time-continuous local
motion. Mostly a set of control points is placed in space and
time. Each control point is assigned a motion vector. The
motion at a certain point and time is then computed by a linear
combination of the neighboring control points, e.g. using B-
splines [13].

In this paper we will follow the same approach and use
a linear interpolation of a sub-sampled time-resolved motion
vector field. However, in theory any other motion model would
be applicable. For simplicity, we denote the parameters of the
motion model to be the parameter vector s where st,x ∈ R3 is
the linearly interpolated motion vector from the control points
in s for a spatial location x ∈ R3 at the acquisition time t.
The formula for the motion model function is then given by

M(t,x , s) = x + st,x . (1)

It computes for any time t and any location x , the novel
(displaced) location from a particular parameter vector s .

B. Reconstruction Algorithm

For computing a motion compensated image from the
parametric motion model we propose to use the approximate
algorithm introduced by [11] based on the FDK-algorithm. It
is fast and gives reasonable improvements of image quality if
provided with correct motion information. The ony difference
to the standard algorithm is the backprojection along a new
trajectory which is defined by the motion model function
M . Formally, the analytical formular for a reconstructed
image value at location x is given by the summation of the
backprojection onto each acquired detector data i, i.e.

f(x , s) =
∑
i

Q(i,x ′) p(i, A(i,x ′)) (2)

with x ′ = M(ti,x , s). Here, ti is the acquisition time for
detector image i, the function Q is a redundancy weight,
p(i,u) returns the ramp-filtered detector value at detector bin
u and A(i,x ) = u is the geometric mapping (backprojection)
of the voxel x to the detector coordinate u .

In [13] it was demonstrated that the analytical algorithm has
various benefits, e.g. the derivative ∂f(x ,s)

∂s of the reconstruc-
tion with respect to the motion model can be analytically de-
termined and be computed in a backprojection-like operation.
This enables fast and efficient schemes for motion estimation
and will be exploited in the herein proposed algorithm.

III. NOVEL MOTION ESTIMATION ALGORITHM

The novel motion estimation algorithm is composed of three
major components which will be detailed in the following.
First, different motion artifact metrics (MAM) are defined
which allow the relative quantification of local motion arti-
facts. Locality of the motion artifacts requires the identification
of corrupted volume areas (volume of interest) which we
denote motion maps. As last component, an optimization
algorithm for the MAMs is required which actually estimates
the unknown parameters of the motion model.

A. Motion Artifact Metrics (MAM)

Local motion of contrasted structures causes streaks and
blurring in the reconstructed images caused by data incon-
sistencies. We propose different metrics which can be used
to assess the relative amount of motion artifacts. The metrics
are formally described by a function L(s) which computes
the MAM value for the motion compensated reconstruction
corresponding to the motion model parameters s in a volume
of interest (motion map) denoted Ω.

1) Entropy: Entropy is an information theoretic measure
quantifying the amount of information encoded in the volume.
The over- and undershoots caused by motion artifacts therefore
increase entropy values which in turn may allow a relative
quantifaction of the artifact level [12]. Formally it is given by

Lent(s) = −
∑
h

P (h, s) lnP (h, s), (3)

where P (h, s) is the probability of the intensity value h in the
reconstructed volume. An estimate of the probability values
can be computed using various kernel density estimation
techniques, e.g. Parzen-windowing [14]:

P (h, s) =
1

|Ω|
∑
x∈Ω

K(f(x , s)− h) (4)

with some kernel function K, e.g. a Gauß-kernel.
2) Positivity (No-Undershoots): With the introduction of

the TRIM-algorithm [4] a constraint for iterative reconstruc-
tion algorithms was proposed which punishes undershoots, i.e.
enforces positivity against an average value T of the structure
of interest. This constraint can be easily transformed into an
MAM by

Lpos(s) =
∑
x∈Ω

({
0 if f(x , s) ≥ T

(f(x , s)− T )2 otherwise

)
(5)

which becomes minimum if there are no reconstructed values
in Ω which are below the undershoot threshold T .

3) Total Variation: Another MAM cab be derived from the
smoothness constraint of iterative reconstruction algorithms.
Those algorithms assume that artifacts caused by motion
increase the total variation of the image. This constraint can
be easily transformed into an MAM by

Ltv(s) =
∑
x∈Ω

√√√√ 3∑
j=1

(
∂f(x , s)

∂xj

)2

. (6)

B. Motion Maps

In the previous definition of the MAM the computation
was restricted to a volume of interest Ω. This set of voxels
describes the image regions that show motion artifacts and
hence will be named a motion map. We propose to utilize an
automatic segmentation algorithm for the motion map compu-
tation. There have been enormous efforts to make automatic
segmentation of the coronaries feasible in recent years and var-
ious algorithmic solutions are available with a high accurracy
and reliability. For our results the algorithm presented in [15]
was utilized for extracting the coronary centerlines. Further
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the segmented region was dilated by several millimeters in
order to capture the whole range of motion related artifacts
originating from the contrasted vessels.

C. Optimization Algorithm

Motion estimation corresponds to finding a set of motion
parameters s that minimizes one or more of the selected
MAMs. For minimization a simple gradient descent algorithm
with adaptive step size is utilized. This requires the derivative
of the MAM with respect to the motion parameters. This
derivative ∂L(s)

∂s can be analytically computed for all presented
MAMs. It further requires the determination of ∂f(x ,s)

∂s which
was shown in [13] to be feasible in a backprojection-like
operation. The optimization is stopped after a fixed number
of iterations. If multiple MAMs are to be optimized, they are
alternated in fixed order.

IV. EXPERIMENTS

A. Experimental Setup

It is the aim of this paper to show a proof of concept for a
novel algorithmic approach to motion estimation. Therefore
we provide results for four clinical datasets. The spatial
spacing of the motion model control points was set to 7.5 mm
in each direction. The temporal spacing was set to 2.5% of the
heart beat duration. The specification of the dataset and of the
optimization algorithm were varied in order to demonstrate the
flexibility of the introduced concepts. Further dataset specific
details can be found in the corresponding figures Fig. 1 to
Fig. 3. The reconstruction was parameterized to cover the
complete heart, i.e. the field of view was 150 mm with a
matrix size of 512 pixels, a slice thickness of 0.6 mm and a
slice spacing of 0.3 mm. Motion estimation was carried out
at a reduced resultion with a matrix size of 128 pixels for
accelerating the computation.

B. Results and Discussion

The reconstruction results from the four clinical cases are
depicted in Fig. 1 to Fig. 4. It can be observed that the image
quality drastically improves for dual source and single source
datasets, i.e. the motion artifacts are clearly reduced by the
novel algorithm. In Fig. 2 it can be seen how the proposed
algorithm can significantly improve the best phase image
quality even in datasets with a very good temporal resolution
of 75 ms. Further the algorithm is capable to improve image
quality reconstructed in non-ideal phases (cmp. Fig. 1) and
in datasets with a lower temporal resolution (cmp. Figs. 3–4).
This demonstrates the generality of the proposed approach and
that it can fully automatically optimize image quality without
relying on image data from other heart phases as it is the case
in 3-D-3-D registration or tracking algorithms.

V. CONCLUSIONS AND OUTLOOK

In this paper a novel approach for motion estimation and
correction was proposed. It is based on the definition and
optimization of motion artifact metrics (MAMs). For first

Standard Proposed

Fig. 1: Results for a clinical case with a stent. It is a single-
source dataset with a temporal resolution of 143 ms at a heart
rate of 66 bpm reconstructed in a heart phase centered at 66%.
The MEM Lent was optimized over 20 iterations.

Standard Proposed

Fig. 2: Results for a clinical case. It is a dual-source dataset
with a temporal resolution of 75 ms at a heart rate of 73 bpm
reconstructed in the best heart phase centered at 75%. The
MEMs Lent and Lpos were optimized over 30 iterations.

clinical datasets it was demonstrated that with the new ap-
proach the quality of the best-phase image can be drastically
improved. Yet, the results are only qualitatively and a quanti-
tative evaluation of temporal resolution improvement and a
comparison of different MAMs remains to be investigated
in future work. Due to the encouring results we show great
promise that image quality of the coronary arteries can be
drastically increased without exposing the patient to more dose
and without requiring the latest hardware. However, we are
convinced that the software-based approaches cannot make
hardware developments like dual source CT mandatory, but
rather extend their applicability to a wider range of patients.
One example for this are dual source CT protocols which
image the complete heart during a single cardiac cycle [16].
With novel motion estimation and compensation approaches as
the one presented, such protocols could be applied to patients
with high heart rates.
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Standard Proposed

Fig. 3: Results for a clinical case. It is a single-source dataset
with a temporal resolution of 143 ms at a heart rate of 73 bpm
reconstructed in the best heart phase centered at 76%. The
MEMs Lent and Lpos were optimized over 30 iterations.
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Evaluation of Interpolation Methods for Motion
Compensated Tomographic Reconstruction for

Cardiac AngiographicC-arm Data
Kerstin Müller, Yefeng Zheng, G̈unter Lauritsch, Christopher Rohkohl, Chris Schwemmer,

Andreas K. Maier, Rebecca Fahrig and Joachim Hornegger

Abstract—Anatomical and functional information about the
cardiac chambers is a key component of future developments
in the field of interventional cardiology. With the technology of
C-arm CT it is possible to reconstruct intraprocedural 3-D images
from angiographic projection data. Some approaches attempt to
add the temporal dimension (4-D) by electrocardiogram (ECG)-
gating in order to distinguish physical states of the heart.
However, for the left heart ventricle scanned during one single
C-arm sweep, this approach leads to insufficient projection data
and thus to a degraded image reconstruction quality.
In this paper, we evaluate the influence of different interpolation
methods for a motion compensated reconstruction approach for
the left heart ventricle based on a recently presented 3-D dynamic
surface model. The surface model results in a sparse motion
vector field (MVF) defined at control points. However, to perform
a motion compensated reconstruction a dense MVF is required.
The dense MVF can be determined by different interpolation
methods. In this paper, we evaluate thin-plate splines (TPS), the
Shepard’s method, simple averaging, and a smoothed weighting
function as interpolation functions. The 2-D overlap of the
forward projected motion compensated reconstructed ventricle
and the segmented 2-D ventricle blood pool is quantitatively
measured with the Dice similarity coefficient and the mean de-
viation between extracted ventricle contours. Preliminary results
on heart ventricle phantom data, as well as on clinical human
data show the best results with the TPS interpolation.

I. I NTRODUCTION

A. Purpose of this Work

There is increasing interest in three-dimensional imaging
of dynamic cardiac ventricular shapes, e.g. left ventricle (LV)
motion, for quantitative evaluation of cardiac function such
as ejection fraction measurements and wall motion analy-
sis. Typically these parameters are estimated based on 2-D
projections from two or less views [1]. The 2-D approach
lacks information about the 3-D shape of the LV. A 3-D
reconstruction with projection data from a short-scan permits
the physician to assess the LV in all spatial dimensions. Due
to the long acquisition time (a few seconds) of the C-arm,

K. Müller, C. Schwemmer and J. Hornegger are with the Pattern Recogni-
tion Lab, Department of Computer Science and the Erlangen Graduate School
in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität
Erlangen-N̈urnberg, Erlangen, Germany. Email:kerstin.mueller@cs.fau.de.
G. Lauritsch, C. Rohkohl and A. K. Maier are with the Siemens AG,
Healthcare Sector, Forchheim, Germany. Y. Zheng is with Image Analytics
and Informatics, Siemens Corporate Research, Princeton, NJ, USA. R. Fahrig
is with the Department of Radiology, Stanford University, Stanford, CA, USA.

the dynamics of the ventricle need to be taken into account.
A standard cone-beam reconstruction (FDK) [2] averages over
all heart phases and has no temporal resolution. Therefore, a
motion compensated tomographic reconstruction for the heart
ventricle should be developed. An accurate estimate of the
motion would also provide a direct analysis of the temporal
characteristics of the ventricle.

B. State-of-the-Art

Different approaches for recovering ventricular shapes from
angiographic data using biplanar angiographic systems can be
found in the literature [1], [3]. These systems can acquire two
orthogonal projection images simultaneously. However, such
a biplanar system is not accessible to all cardiologists.
Another approach records an ECG signal during acquisition
and a relative heart phase is assigned to each projection.
Commonly, the heart phases are then denoted as a percentage
between two successive R-peaks. In order to improve temporal
resolution, the reconstruction is performed with the subset of
the projections that lie inside a certain ECG window centered
at the favored heart phase [4]. As an example, for a 5 s acqui-
sition time and 60 bpm five intervals contribute to one heart
phase. The ECG-gated approach works well for the sparse and
high contrasted structure of the coronaries [5]–[7]. However,
for the heart chambers an insufficient number of projections
are acquired in a single scan. Consequently, multiple sweeps
of the C-arm have to be performed in order to acquire enough
projections for each heart phase [8], [9]. The longer imaging
time results in a higher contrast burden and radiation dose for
the patient.
In this paper, we perform a motion compensated tomographic
reconstruction with projection data from one single C-arm
sweep. As a first step, a dynamic surface model of the LV
is generated to extract a sparse MVF [10]. The LV surface
model is reconstructed from a set of ECG-gated 2-D X-ray
projections such that the forward projection of the recon-
structed LV model matches the 2-D blood pool segmentation
of the ventricle. In the second step, a motion compensated
tomographic reconstruction is performed. This requires a dense
MVF [11]. Thus, the sparse motion field on the surface has
to be interpolated. In order to generate a dense MVF from
scattered data several interpolation methods can be applied
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[12]. For computed tomography (CT) image reconstruction,
different interpolation methods for cardiacmotion were in-
vestigated by Forthmann et al [13]. However, the main focus
of the reconstruction was on the sharpness of the coronaries.
Furthermore, C-arm projection data displays different contrast
conditions and suffers from a lower temporal resolution than a
conventional CT scanner. Therefore, it is not evident that the
same interpolation methods yield the same results.

C. Outline

In this paper, we investigate different interpolation methods:
a thin-plate spline (TPS) interpolation [14], [15], the Shepard’s
method [16], a simple averaging, and a weighting function
based interpolation method. The interpolation methods were
evaluated by comparing the image results of the motion com-
pensated tomographic reconstructions with the gold standard
of the segmented original projection data.

II. SURFACE BASED MOTION COMPENSATED

RECONSTRUCTION

A. Surface Model

The basis of the motion compensated reconstruction is the
dynamic 3-D surface of the ventricle with its control points
pi(φk) ∈ R

3, with i = 1, . . . , N whereN is the number of
control points for each heart phaseφk [10]. For reconstruction
a reference heart phaseφ0 is selected. Displacement vectors
di(φk) ∈ R

3 between the control points in the reference heart
phaseφ0 and the current heart phaseφk can then be computed.

B. Interpolation Methods

In order to perform a motion compensated tomographic
reconstruction, a dense MVF needs to be generated from the
sparse MVF. Therefore, different interpolation methods were
evaluated.

1) Thin-Plate Splines (TPS): The deformation of the con-
trol points over time can be represented by a TPS transforma-
tion. The TPS approach assumes that the bending and stretch-
ing behavior of the left ventricle is similar to the bending of a
thin plate. TPS have already been applied to estimate cardiac
vascular motion of CT data [17] and ventricular motion of
MRI data [18].
The TPS coordinate transformation with its displacements for
an arbitrary pointx ∈ R

3 is given as:

d(x, φk) =
N
∑

i=1

G(x−pi(φk))ci(φk)+A(φk)x+b(φk), (1)

where the spline coefficientsci(φk) ∈ R of the TPS are
determined by the control pointspi(φk) ∈ R

3 and the dis-
placementsdi(φk) ∈ R

3 of the control points.A(φk) ∈ R
3×3,

b(φk) ∈ R
3 specify an additional affine transformation to

which the spline reduces farther away from the control points.
The transformation’s kernel matrixG(x) ∈ R

3×3 of a point
x ∈ R

3 for a 3-D TPS is given according to [15]:

G(x) = r(x) · I, (2)

r(x) = ||x||2 =
√

x2

1
+ x2

2
+ x2

3
, (3)

where I ∈ R
3×3 is the identity matrix.In order to solve

Equation 1 for eachφk, setd(x, φk) = d(φk) for x = pi(φk).
Since Equation 1 is linear inci(φk),A(φk), andb(φk) it can
be solved in a straightforward manner [15].
The resulting spline coefficients and affine parameters are
inserted in Equation 1 in order to evaluate the spline at
any arbitrary 3-D point. A motion vector can therefore be
computed for every voxel in the reconstructed volume.

2) Linear Interpolation: All surface control points inside a
radiusR (here: 2 cm) around the pointx are determined and
the resulting displacement vectord(x, φk) is a weighted sum
of the corresponding displacement vectors:

d(x, φk) =

N
∑

i=1

G∗(x− pi(φk))di(φk), (4)

G∗(x) = f(x) · I, (5)

where f is a weighting function. Functionf weights the
displacement vectors according to the distance of the control
point pi(φk) to the pointx.

a) Simple Averaging: Here the resulting displacement
vectord(x, φk) is a simple average of the displacement vectors
at the surrounding control points. Thus the functionf , with
M denoting the number of control points used is defined as:

f(x) =

{

1

M
|x| ≤ R

0 else
(6)

b) Weighting Function: Here the functionf is a cosine-
based smoothing function:

f(x) =

{

1

N
(1 + cos(x·π

R
)) |x| ≤ R

0 else,
(7)

where N denotes a normalization constant such that
∑M

j=1
f(xj) = 1.

c) Shepard’s Method: Here an inverse distance weighting
is applied according to the distance from the considered point
to then closest control points [16]. The functionf is therefore
defined as:

f(x) =
||x||−1

2
∑n

j=1
||xj ||

−1

2

. (8)

We setn empirically to 30in this paper.

C. Cutting

In order to reduce the computational complexity we assume
that the left ventricle is the central moving organ inside the
scan field of view. Therefore, a dense MVF is computed inside
the ventricle and within a neighborhood around the extracted
surface of the first section of the ascending aorta and the
ventricle. Hence, the considered set of pointsP is given as:

P = {x | ||x− px(φk)||2 ≤ l} , (9)

wherepx(φk) is the closest surface control point to the current
point x. The distancel was heuristically set to2 cm.
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III. E XPERIMENTS

A. Phantom Data

The presented algorithm hasbeen applied to a ventricle data
set comparable to the XCAT phantom [19]. We simulated data
using a clinical protocol with the following parameters: 395
projection images simulated equi-angularly over an angular
range of 200◦ in 8 s with a size of 620× 480 pixels at an
isotropic resolution of 0.62 mm/pixel (≈0.4 mm in isocenter).
The heartbeat was simulated with75 bpm. The surface model
consisted of 40 heart phases and 957 control points uniformly
distributed over the left ventricle. The image reconstruction
was performed on an image volume of (25.6 cm)3 distributed
on a 2563 voxel grid.

B. Clinical Data

The dataset was acquired on an Artis Zee C-arm sys-
tem (Siemens AG, Healthcare Sector, Forchheim, Germany).
It consists of 133 projection images acquired over an angular
range of 200◦ in 5 s with a size of 960× 960 pixels at an
isotropic resolution of 0.18 mm/pixel (≈0.12 mm in isocenter).
The patient had a heart rate of≈60 bpm. The surface model
consisted of 26 heart phases and 961 control points equally
distributed over the first section of the ascending aorta and left
ventricle. Image reconstruction was performed on an image
volume of (14.1 cm)3 distributed on a 2563 voxel grid.

C. Quantitative Evaluation

In order to compare the reconstruction quality of the motion
compensated reconstruction algorithm, the maximum inten-
sity forward projections (MIP) of the compensated LVs were
generated. Binary mask images were created from the MIPs
where a value equal to zero defines background and a non-zero
value defines the ventricle shape. These binary images were
compared to the segmented 2-D projections from which the
original surface model was built. The overlap of the binarized
image and the segmented 2-D projections was analyzed with
the Dice similarity coefficient (DSC) [20]. The DSC is defined
in the range of[0, 1], where0 means no overlap and1 defines
a perfect match between the two compared images. Since the
motion compensated reconstruction improves the sharpness of
the ventricle contour, the similarity of the contours of the
projection images were evaluated with the mean deviation
between the contours denoted byǫ, where a smallǫ denotes
a similar contour. The results were averaged over all heart
phases.

IV. RESULTS AND DISCUSSION

In Figure 1, an MVF of the human data set between the
reference heart phase at end-diastole and the current heart
phase at end-systole are illustrated for the TPS.

A. Phantom Data

In Table I the results for the phantom left ventricle are
reported. The best results were obtained with the TPS interpo-
lation method. The contour deviation (ǫ) improved by≈2 pixel
which corresponds to1.24mm compared to the standard FDK.

Fig. 1. Illustration of a dense MVF of the human data set computed with TPS
between reference heart phase70% and current phase 20%. Undersampled for
illustration purposes.

TABLE I
RESULTS FOR THE LEFT VENTRICLE.

Phantom
Dice [pixel] ǫ [pixel] ǫ [mm]

TPS 0.95± 0.03 3.26± 0.37 2.02± 0.23

Shepard 0.95± 0.02 3.33± 0.31 2.06± 0.20

Weighting Fct. 0.95± 0.02 3.33± 0.27 2.06± 0.17

Simple Averaging 0.94± 0.02 3.64± 0.33 2.26± 0.20

Standard 0.94± 0.03 4.66± 1.91 2.89± 1.18

Human
Dice [pixel] ǫ [pixel] ǫ [mm]

TPS 0.93± 0.01 9.15± 1.22 1.65± 0.22

Shepard 0.91± 0.02 10.29± 2.07 1.85± 0.33

Weighting Fct. 0.91± 0.02 10.92± 3.02 1.97± 0.54

Simple Averaging 0.91± 0.03 11.74± 2.81 2.11± 0.51

Standard 0.88± 0.03 17.60± 10.0 3.17± 1.80

The standard deviation is also much smaller with the TPS
compared to the standard reconstruction. Thewidely used
Shepard’s method and the weighting function provide slightly
inferior results compared to the TPS. The Dice coefficient
shows similar results between all interpolation methods as well
as for the FDK reconstruction.

B. Clinical Data

In Table I the results for the human left ventricle are
listed. The best motion compensated reconstruction is again
performed with the TPS interpolation method. The contour
deviation (ǫ) improved by ≈9 pixel which corresponds to
1.62mm compared to the standard FDK. The patient had a
healthy ejection fraction of≈75%. The standard deviation is
also much smaller with the TPS compared to the standard
reconstruction. The widely used Shepard’s method and the
weighting function provides slightly inferior results compared
to the TPS. The Dice coefficent again shows similar results
between all interpolation methods as well as for the FDK
reconstruction.
In Figure 2 the results of different reconstructions are illus-

The second international conference on image formation in X-ray computed tomography Page 7



(a) Standard FDK reconstruction.(b) Nearest-Neighbor ECG-gated re-
construction for 20% heart phase (5
views).

(c) Motion compensated reconstruc-
tion for 20% heart phase.

(d) Motion compensated reconstruc-
tion for 70% heart phase.

Fig. 2. Reconstruction results of the human left ventricle with the TPS
interpolation (W 3000, C 1200, Slice Thickness 3.0 mm). The ECG-gated
reconstruction was windowed to be visually comparable.

trated. The standard reconstruction in Figure 2(a) exhibits
blurring around the LV. In Figure 2(b) it can be observed
that the ECG-gated reconstruction lacks LV structure. In
comparison, the motion compensated reconstruction shows an
expansion in diastole and contraction in systole of the LV,
respectively (Fig.2(c),2(d)).

V. CONCLUSION

In this paper, we investigated the influence of different
motion interpolation methods for a left ventricle motion com-
pensated tomographic reconstruction. The best quantitative
results (Dice coefficient, mean contour deviation) of a phantom
and human data set were achieved with the TPS interpo-
lation approach. The Shepard’s method and the weighting
function might be a good compromise between computational
efficiency and accuracy. In conclusion, motion compensated
reconstruction improved the reconstruction results compared
to a standard reconstruction.

ACKNOWLEDGMENT

The authors would like to thank Drs. Patrick W. Serruys, Carl
Schultz, Peter de Jaegere, and Robert van Geuns, Thorax Center,
Erasmus MC, Rotterdam, The Netherlands for acquiring clinical
data. Furthermore, the authors gratefully acknowledge funding of
the NIH grant R01 HL087917 and of the Erlangen Graduate School
in Advanced Optical Technologies (SAOT) by the German Research

Foundation (DFG) in the framework of the German excellence initia-
tive.
Disclaimer: The concepts and information presented in this paper
are based on research and are not commercially available.

REFERENCES

[1] M. Moriyama, Y. Sato, H. Naito, M. Hanayama, T. Ueguchi, T. Harada,
F. Yoshimoto, and S. Tamura, “Reconstruction of time-varying 3-D left-
ventricular shape from multiview x-ray cineangiocardiograms,”IEEE
Trans. Med. Imag., vol. 21, no. 7, pp. 773–785, 2002.

[2] L. Feldkamp, L. Davis, and J. Kress, “Practical cone-beam algorithm,”
J. Opt. Soc. Am. A, vol. 1, no. 6, pp. 612–619, 1984.

[3] R. Medina, M. Garreau, H. Lebreton, and D. Jugo, “Three-dimensional
reconstruction of the left ventricle from two angiographic views,” in
IEEE EMBS, October 1997, pp. 569–572.

[4] B. Desjardins and E. Kazerooni, “Ecg-gated cardiac ct,”Am. J.
Roentgenol., vol. 182, no. 4, pp. 993–1010, 2004.

[5] C. Blondel, G. Malandain, R. Vaillant, and N. Ayache, “Reconstruction
of coronary arteries from a single rotational x-ray projection sequence,”
IEEE Trans. Med. Imag., vol. 25, no. 5, pp. 653–663, 2006.
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Second-pass Stent Reconstruction 
Satoru Oishi, Yu-Bing Chang, Michael D. Silver, Masanobu Yamada, Hiromichi Yokoyama, Tetsu Satow 

 

Abstract—A new self-calibration technique is developed for 

reconstructing stents used for stent-assisted coiling. It is 

valuable to clearly visualize the struts of the stents after 

stent deployment and before starting coiling in the cases of 

wide-neck aneurysms. Phantom studies show the technique 

is robust for irreproducible factor of C-arm wobble. The 

same technique can be used in cases of slight patient motion 

such as pulsatile of the vessel supporting the aneurysm. 

Keywords-coiling; stent-assist technique; intra-cranial 

stent; self-calibration; reconstruction; CT; cone-beam CT; C-

arm gantry 

I. INTRODUCTION 

Coiling is a treatment technique for intra-cranial 
aneurysms. The number of coiling cases is increasing 
dramatically year by year because it is less invasive than 
surgical clipping. However, clipping has been preferred in 
the wide-neck aneurysm case illustrated in Fig. 1(b). Here 
the aneurysm neck is wide compared to the aneurysm 
dome and there is a risk that a coil could escape to 
occlude major vessels. On the other hand, the open-skull 
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treatment technique for surgical clipping is also risky, 

especially for elderly patients, often leaving such patients 

with few options. 

 

The answer is the stent-assisted coiling technique [1] as 

cartooned in Fig. 1(c). First, the stent is deployed to 

cover the aneurysm-neck and then the coils are inserted. 

Stent struts prevent coils from escaping the aneurysm. In 

this technique, it is essential to check stent deployment 

before starting coiling. But it is too hard to see struts on 

fluoroscopy or acquisition images. The two most used 

stents for this purpose are the Enterprise VRD from 

Codman & Shurtleff and Neuroform3 from Boston 

Scientific Corporation. Diameter of the struts of these 

two stents is 60 m; that is much smaller than for other 

types of stents. Only four markers at each end are visible 

on the fluoro or acquisition images as seen on Fig. 2. 

Figure. 2 Acquisition image. Four markers at 
proximal and distal ends are circled. 

We propose to use cone-beam CT (CBCT) from a C-
arm gantry to see the stent struts. There are several factors 
working against us besides the usual spatial resolution 
restrictions: 

 motion of aneurysm and stent due to pulsatile 
blood pressures 

 irreproducible C-arm wobble.  
 
Our CBCT method calibrates C-arm wobble with data 

from a previously performed calibration scan. This works 
fine for vessels or aneurysms, but it is sometimes difficult 
to control irreproducible factor of C-arm wobble within 

100 m or less. 

To solve this problem, which also works in principle 
to correct for pulsatile motion, we have developed a 2

nd
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pass reconstruction technique using a new self-calibration 
technique. 

 

II. SECOND PASS RECONSTRUCTION TECHNIQUE 

The flowchart of the technique is shown in Fig 3. 

Figure. 3 Flowchart of 2nd pass reconstruction technique. 

 

A. 1
st
 reconstruction 

The first reconstructed image uses a modified 
Feldkamp method [2], which assumes perfect 
reproducibility of the C-arm wobble. The acquisition data 
is often truncated due to the limited size of the flat panel 
detector (FPD) so a water cylinder data extrapolation 
method is used to assure good image quality within the 
region-of-interest of the aneurysm and stent. 

B. Dertermination of markers 

The volume image from the 1
st
 reconstructed image 

undergoes a threshold segmentation to isolate the eight 
markers. Implants or guide-wires are also extracted but 
these are removed from the image volume using a priori 
knowledge of the volumetric differences among markers, 
implants, and guide-wires. 

C. Fitting markers with ellipsoid model 

Marker positions and inclinations are determined 
accurately by fitting each individual marker with an 
ellipsoid model. The dimensions of the model are 
automatically determined to fit the surfaces of the 
markers, which were calculated by the marching cube 
algorithm [3].  

D. Reprojecting of ellipsoid models 

Four ellipsoid models at one end of the stent are 
reprojected onto detector plane by using same calibration 
data used in the 1

st
 reconstruction. The reprojected models 

are expressed as E (u,v), where u,v are the horizontal and 

vertical axes on detector plane, and  is projection angle. 
If the reprojection area of our markers at the proximal end 
is close to the reprojection area of four markers at distal 
end, the eight ellipsoid models are reprojected as one set 
of markers instead of treating the distal and proximal 
separately. 

If the markers overlap in the reprojected projections, 
we treat them as a single unit. 

E. Determination of mis-registration vector 

Cross-correlation coefficients between the original 

projection data p (u,v) and the reprojected models 

E (u+ u,v+ v) are carried out by changing ( u, v) at 
certain intervals within a certain area. The mis-registration 

vector 
0 0,u v derives from the maximum 

correlation coefficient; it is determined for each projection 
and at each end of the stent. Mis-registration vector is 
finally calculated by averaging two the mis-registration 
vectors at the two ends. 

F. 2
nd

 reconstruction 

Our backprojection equation was derived in [2]; it is 
given by 

 

1, 2, 3, 4,

9, 10, 11,

5, 6, 7, 8,

9, 10, 11,

1
, ,

1

1
, ,

1

m x m y m z m
u x y z

m x m y m z s

m x m y m z m
v x y z

m x m y m z s

 (1) 

where 
,nm are the coefficients that map from 3D-space 

to 2D-space with s as the pitch of the sensor cells in the 

FPD. These coefficients are given by calibration and 

assumed repeatable for non-stent imaging. 

For the second reconstruction, we assume the stent is 
reasonably close to isocenter so we only need to update 

4 8 and m m : 

 
4, 4, 0

8, 8, 0

m m u

m m v
. (2) 

 

III. PHANTOM STUDIES 

The experimental setup for the phantom studies, Fig. 4 

 

 

 
 
 

  

FPD 

Styrofoam box 

with water and 

Enterprise VRD 

X-ray tube 

110cm 

Figure 4. Experimental setup for phantom studies. 
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contained a Styrofoam box, about 18 cm on each side. 
 

A. Acquisitions 

Five phantom data sets were acquired with conditions 
shown in Table 1. Projections of 607 frames were 

acquired covering 200°. The FPD pitch is 194 m and the 

focal spot size is 300 m. Magnification was 1.57. 

TABLE I.  ACQUISITION CONDITIONS OF PHANTOM DATA 

DATA 

ACQUISITION CONDITIONS 

Voltage 

[kV] 

Current 

[mA] 

Pulse 

width 

[msec.] 

Beam filter 

Angular 

sampling 

[deg./frame] 

1 120 200 10.4 Cu 0.2 mm 0.33 

2 110 250 9.6 Cu 0.2 mm 0.33 

3 100 250 11.7 Cu 0.2 mm 0.33 

4 90 320 8.2 Cu 0.2 mm 0.33 

5 80 320 9.7 Cu 0.2 mm 0.33 

 

B. Reconstructions 

Two image volumes were reconstructed for each data 
set, one using the existing method and the other using the 
new 2

nd
 pass stent reconstruction technique. 

C. Evaluations 

We measure the full-width at half maximum (FWHM) 
from profiles through the struts. Our procedure, for the 
before (first-pass reconstruction only) and the after 
(second-pass reconstruction), is listed below: 

1) We use zoom mode reconstruction with a voxel size 
of 7 m in order to have enough points in the profiles. 

2) Make two coronal MIPs (max intensity projections) 

a) One MIP is the front half of the stent 

b) The other MIP is the backhalf of the stent 

This is to avoid overlapping structs in the MIPs. 

3) A total of 120 locations were manually selected for 
the center of each profile in the MIPs. Each location 
was midway between strut crossings. 

4) All 120 of the 101-point profiles were averaged 
together. 

5) FWHM calculated from the before and after images 
along with the percent improvement. 

 

We also check the contrast improvement by comparing 
the profile amplitude above background before and after 
for each of the five data sets. 

IV. RESULTS 

Fig. 5 shows some examples of the full coronal MIPs, 
comparing the standard, first-pass reconstruction with the 
second-pass reconstruction that uses the self-calibration 
technique. All data sets were first reconstructed with the 
same set of wobble coefficients and then again with the 
self-calibration. It is evident from comparing data set 1 
images with data set 5 images that the C-arm gantry 
geometry was very similar between set 5 and the 
calibration while for set 1, the gantry wobble was 
somewhat different. This is verified in Fig. 6 where the 

mis-registration vector, 0u is shown ( 0v is less 

interesting). We see that all five data sets think there was 
something different about the gantry rotation at -20° from 
calibration but that there is a range of mis-registrations at 
other angles from the most mis-registration for data set 1 
(black) to the least for data sets 4 and 5 (cyan and red). 

Fig. 7 shows the averaged profiles for data sets 1, 3, 
and 5 while Table II gives the FWHM and contrast 
improvement results for all five data sets. Because the 

struts are thin (60 m) compared with the beam width as 

defined by the FPD pitch and focal spot (~200 m), 
spatial resolution is dominated by the sampling beam. 
FWHM might not be a good metric in such cases. 

 

On the other hand, contrast is clearly improved in all 
five cases, more in line with our visual assessment. 
Contrast improvement is the difference in profile 
(maximum – minimum) between the before and after 
images divided by background and converted to percent. 
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TABLE II. RESOLUTION AND CONTRAST IMPROVEMENT 

 FWHM Contrast 
Improve-

ment Data 
Set 

Before After Improve-
ment 

1 0.301 0.249 17% 6.8% 

2 0.294 0.255 13% 7.1% 

3 0.245 0.245 0 6.1% 

4 0.297 0.262 12% 5.5% 

5 0.296 0.273 8% 5.0% 

V. CONCLUSIONS 

Phantom studies demonstrate accurate self-calibration 
for stent struts by using stent markers against 
irreproducible factor of C-arm wobble. 

We have started to use this technique in a few clinical 
cases and observed an improvement in image quality of 
the stent. Thus, the self-calibration does correct against 
motion of aneurysms and stents due to pulsatile blood 
pressures.   However, it is too soon to say whether this 
imaging method improves patient outcomes. 

Ultimately, spatial resolution is limited by the sensor 

pitch of the FPD, here 194 m, and focal spot size, here 

300 m. 
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Diaphragm Tracking for Respiratory Motion
Compensated Cardiac C-Arm CT

Marco Bögel∗, Andreas Maier∗, Hannes G. Hofmann∗, Joachim Hornegger∗,† and Rebecca Fahrig‡

Abstract—Long acquisition times of several seconds lead to
image artifacts in cardiac C-arm CT. While ECG gating is able
to select a certain heart phase, residual artifacts are mostly
caused by respiratory motion. In order to improve image quality,
it is important to accurately estimate the breathing motion
that occurred during image acquisition. It has been shown that
diaphragm motion is correlated to the respiration-induced motion
of the heart.

We present a motion estimation and compensation method
based on the tracking of the diaphragm contour in projection
space. The approach utilizes a 2-D quadratic curve model to
estimate and track the diaphragm with sub-pixel accuracy. Based
on the tracking results, we use a motion corrected triangulation
algorithm to estimate the 3-D motion of the diaphragm top.
The resulting signal is used to compensate for superior-inferior
respiratory motion during the reconstruction.

Index Terms—C-arm CT; reconstruction; respiratory motion;
diaphragm tracking; motion compensation;

I. I NTRODUCTION

Cardiac C-arm CT enables reconstruction of 3-D images
during medical procedures. However, the long acquisition time
of several seconds, during which the heart is beating and the
patient might breathe, may lead to artifacts, such as blurring
or streaks. A commonly used technique to reduce breathing
motion is the single breath-hold scan. The physician instructs
the patient to hold his breath after exhalation. The data is
then acquired during the breath-hold. Although this approach
is widely used, several studies have shown that breath-holding
does not eliminate breathing motion entirely. Monitoring
the position of the right hemidiaphragm during breath-hold,
Jahnke et al. observed residual breathing motion to a certain
extent in almost half of their test group [1]. Therefore, it is
necessary to develop more sophisticated methods to estimate
and compensate for respiratory motion in cardiac C-arm CT.

There are many ways to acquire respiratory signals. Most
are based on additional equipment, e.g. Time-of-Flight or
stereo vision cameras. Other techniques aim to extract the
respiratory signal directly from the projection images. Using
this approach the extracted breathing signal is perfectly syn-
chronized with the projection images. Image-based respiratory
motion extraction often relies on tracking of fiducial markers
in the projection images [2], [3]. Wang et al. have shown that
the motion of the diaphragm is highly correlated to respiration-
induced motion of the heart [4]. Sonke et al. propose to extract
a 1-D breathing signal by projecting diaphragm-like features

∗Pattern Recognition Lab, Universität Erlangen-Nürnberg, Germany
†Erlangen Graduate School in Advanced Optical Technologies (SAOT)
‡Dept. of Radiology, Lucas MRS Center, Stanford University, CA, USA

on the superior-inferior axis and selecting the features with the
highest temporal change [5]. However, the downside of this
approach is that the extracted signal is not the real respiration
signal. Due to perspective projection, the projected amplitude
depends on the C-arm rotation angle.

In this work, we propose to estimate respiratory motion by
tracking the diaphragm in a set of rotational projection images.
The tracked position of the diaphragm top is used to compute
a 1-D respiration signal, which is then incorporated into the
reconstruction algorithm to compensate for respiratory motion.

II. M ETHODS AND MATERIALS

The proposed method is composed of three major steps that
are each discussed in the following sections. In the first step,
the contour of the diaphragm is tracked throughout the entire
projection image sequence. Based on this tracking, we are able
to obtain the 2-D projection of the diaphragm top for each
image. In the second step, a motion corrected triangulation
approach is used to compute the 3-D position of the diaphragm
top for each projection. Assuming superior-inferior breathing
motion, the 1-D respiration signal is extracted. In the final step,
the respiration signal is used to compensate for respiratory
motion during reconstruction.

A. Diaphragm Tracking

We introduced a model-based tracking method that is able to
accurately track the contour of a user-selected hemidiaphragm
in a set of rotational projection images [6]. Compared to other
tracking-based methods, e.g. fiducial markers, the shape we
want to track is not unique. The diaphragm appears as two
similar shaped hemidiaphragms. Therefore, it is necessary for
the user to select the one to be tracked. The user selects a point
roughly located at the top of the desired contour. Subsequently,
we define a rectangular Region of Interest (ROI) symmetrically
around the selection. The image is then preprocessed using a
gaussian low-pass filter and the Canny edge detector.

In the next step, the Random Sample Consensus
(RANSAC) [7] is used to fit a parabolic curve to the obtained
set of edge points. RANSAC can deal with datasets with large
percentages of gross errors, and is thus the ideal choice to
fit a model to our very noisy set of points. The aim of this
method is to model the diaphragm as a quadratic function
v = au2+ bu+ c, whereu andv are the detector coordinates.
Thus, RANSAC has to estimate the three parametersa, b, and
c. In the first step, three random points are selected. The model
estimation is then formulated as the following optimization
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problem:
3

∑

i=1

(a · u2

i + b · ui + c− vi)
2 → min. (1)

A total ofN models are estimated and evaluated to determine
the best one. A model’s quality is defined by the number
of inliers. An inlier is a point that lies within a predefined
distance to the model. Since an accurate model is desired, we
only consider points with a one pixel distance to the model
inliers. Assuming small motion between subsequent frames,
the contour is tracked by calculating the current contour’s
vertex and using it as the start point in the subsequent frame.

One additional important optimization is made. Instead of
continuing to use the rectangular ROI, we restrict it to a
parabolic ROI based on the model from the previous frame.
This approach decreases the number of points we have to
consider in the model estimation.

To guarantee accurate tracking in projections where both
hemidiaphragms are visible in the ROI, we propose additional
constraints based on the small motion assumption and prior
knowledge: (i) the horizontal motion of the contour is limited
by the average motion, (ii) deformation of the contour is
limited to 5% compared to the previous model, and (iii) the
direction of horizontal motion can be derived from patient
positioning and C-arm rotation.

B. Triangulation and Signal Extraction

The result of the diaphragm tracking is a parabolic model
of the hemidiaphragm for each image. Our approach relies
on the assumption that the projection of the 3-D diaphragm
top coincides with the top of the 2-D diaphragm contour.
However, this assumption is quite restrictive. Based on this
assumption, we are able to reconstruct the 3-D position using
multi view triangulation. However, triangulation algorithms are
designed for static scenes and yield inaccurate results when
used for dynamic scenes. For triangulation of dynamic scenes
we propose the following four step process:

1) Select image pair
2) Rectification of the image planes [8]
3) Motion correction
4) Triangulation [9]

First, we select two images with the contour verticesg̃ =
(g̃u, g̃v, 1)

T and g̃′ = (g̃′u, g̃
′
v, 1)

T . Ideally, the selected im-
ages should be acquired from orthogonal views. The second
step is essential for the subsequent motion correction. The
rectification algorithm by Fusiello et al. transforms the image
planes such that they become coplanar and their epipolar lines
become parallel and horizontal [8]. The transformed images
have then one very important feature: the projections of a point
have the same vertical coordinate in both image planes. Thus,
after transforming the point correspondences, any residual
difference in their vertical coordinates must be caused by
respiratory motion during image acquisition. Therefore, we
can eliminate the respiratory motion of this image pair in the
third step. We choose the first pointg̃ as the reference and the
corresponding point in the second image is set to

g̃′ = (g̃′u, g̃v, 1)
T . (2)

Algorithm 1: Motion compensated reconstruction. Respi-
ratory motion is compensated in line 8.

1 forall the projections i ∈ [1, Np] do
2 forall the voxels (x, y, z) do
3 Project voxel(x, y, z) onto detector plane
4 if point on detector plane then
5 Get update value
6 else
7 Next voxel
8 zcorr ← z + r̂i
9 if (x, y, zcorr) in volume then

10 Update voxel (x, y, zcorr)

Finally, we use the transformed and motion corrected point
correspondences to triangulate the corresponding 3-D point.
In this work a simple iterative Linear-Eigen approach, as
proposed by Hartley [9], has yielded excellent results.

After we triangulate a 3-D point corresponding to each
image, we can now compute the respiration signal. Since respi-
ratory motion is generally considered as a mainly translational
motion along the superior-inferior axis, we compute the 1-D
respiration signal̂r as

r̂i = zref − zi, (3)

with zref as the z-coordinate of the reference point, andzi
as the z-coordinate of the triangulated point corresponding
to imagei. Finally, the resulting signal is smoothed using a
gaussian low-pass filter.

C. Motion Compensated Reconstruction

The signal is now included in the reconstruction process.
Algorithm 1 shows the motion compensated reconstruction
algorithm. For each projection, each voxel is projected on the
detector to get the update value. Instead of regularly updating
the volume, we first compensate for respiratory motion by
shifting the voxel back to its reference position using the esti-
mated signal. Then, we update the corrected voxel. Therefore,
we are able to obtain a reconstruction at the reference time
we selected for the respiration signal. The proposed method
assumes a constant shift for the whole heart. For clinical
data more sophisticated motion models are required, as the
deformation of the heart is not rigid.

III. E XPERIMENTAL RESULTS

The evaluation of this work was carried out on a simulated
XCAT phantom [10]. The XCAT phantom was created with
breathing motion only. We simulated an acquisition time of
four seconds with one full respiration cycle. Both heart and
diaphragm moved about2.3 cm along the superior-inferior
axis, the rest of the scene was static. A detector of size640×
480 px was simulated with a resolution of0.616 mm/px. 200
projections were acquired with an average angular increment
of 1.0◦. As ground truth we used the reconstruction of an
XCAT dataset that was simulated without respiratory motion.
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Fig. 1. Comparison of the extracted diaphragm motion signal and the actual
breathing signal. The amplitude of the signal can not be estimated accurately,
as the projections of the diaphragm top do not coincide with the 2-D contour.
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TABLE I
TRIANGULATION ERRORS(IN MM ) BASED ON PROJECTIONS OF THE REAL

DIAPHRAGM TOP. ANGULAR OFFSET OF THE IMAGE PAIR IN BRACKETS.

Mean 3-D Std. Dev. 3-D Mean Z Std. Dev. Z
Rect. Iter. (90◦) 0.20 0.06 0.10 0.06
Rect. Iter. (30◦) 0.32 0.15 0.10 0.06
Rect. Iter. (10◦) 0.89 0.60 0.11 0.08
Iterative (90◦) 2.22 0.97 2.22 0.96

The diaphragm tracking method was evaluated on the left
and right hemidiaphragms in XCAT projection data [6]. We
were able to track the vertex of the diaphragm contour with
sub-pixel accuracy. We observed a Euclidean distance of the
right vertex to the correct vertex of0.45 ± 0.56 pixels, and
0.75± 0.84 pixels for the left vertex respectively.

Figure 1 shows the extracted signal based on the diaphragm
tracking results. As previously noted, our approach depends
on the assumption that the projection of the diaphragm top
lies on the 2-D contour. However, this is a strong assumption
that is not always fulfilled. In fact, the correct projection of
the diaphragm top is often located below the contour, due
to perspective projection. This results in inaccuracies in the
estimated amplitude of the signal, caused by triangulation with
false point correspondences. In order to assess the accuracy
of the triangulation approaches without the effect of false
point correspondences, we tested the methods using the correct
projections of the diaphragm top as input. Therefore, we can
test the performance of our algorithm if the assumption is met.
As results in TABLE I show, our rectified iterative approach
provides sub-millimeter accuracy even for image pairs with
low angular offset, whereas the average error of the standard
approach without rectification and motion correction is about
10% of the total breathing motion.

For the evaluation of reconstruction quality we used the
structural similarity index (SSIM) by Wang et al. [11]. SSIM
measures the similarity of two images based on structural
information. Two images are compared and a value between
−1.0 and 1.0 is returned, with1.0 for a perfect match and
−1.0 for completely different images. In order to reduce the
influence of the static background on the quality evaluation,
the reconstructed volume was cropped to the bounding box
that contains the heart. In total, we evaluated the quality of
three different reconstructions: (i) a compensated reconstruc-

Fig. 2. Structural similarity index of the heart volume for xy and xz-slices.
The uncompensated reconstruction shows better results in the beginning and
the end, as the heart is only of small size in these slices.
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(b) xz-slices

tion using the proposed tracking methods, (ii) a compen-
sated reconstruction with the correct 2-D projections of the
diaphragm top (simulating an optimal diaphragm tracking),
and (iii) an uncompensated reconstruction. Figure 2 shows
the evaluation results for xy and xz-slices. Both compen-
sated reconstructions show highly improved image quality. As
expected, the diaphragm tracking approach is slightly below
the quality of the optimal reconstruction. However, it shows
significant improvement when compared to the uncompensated
reconstruction. The uncompensated reconstruction seems to
be superior in the first and last slices. The heart is only of
small size in these slices. Therefore, the static background
has a larger influence on the evaluation. Compensation blurs
the static background, whereas it is perfectly reconstructed
without compensation. Figures 3 and 4 show the results for
two example slices.

IV. CONCLUSION AND OUTLOOK

Results of respiratory motion compensated reconstruction
already show promising results in image quality improvement
close to the optimal solution. Still, there is one important issue
that has to be solved. The proposed method works on the very
restrictive assumption that the projection of the 3-D diaphragm
top coincides with the top of the 2-D contour.

Future work will be focused on this problem. Due to
perspective projection, this assumption is not always fulfilled.
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Fig. 3. Comparison of xy-slice 70 of compensated and uncompensated
volumes (cf. Fig. 2a). Simulated high-contrast heart lesions further illustrate
the improved image quality.

(a) No compensation.
SSIM: 0.75

(b) Compensation with tracked
signal.SSIM: 0.86

(c) Compensation with optimal
signal.SSIM: 0.90

(d) Ground truth

Fig. 4. Comparison of xz-slice 60 of compensated and uncompensated
volumes (cf. Fig. 2b).

(a) No compensation.
SSIM: 0.76

(b) Compensation with tracked
signal.SSIM: 0.84

(c) Compensation with optimal
signal.SSIM: 0.88

(d) Ground truth

This results in inaccurate amplitudes of the extracted respi-
ration signal. One interesting approach would be to combine
the current approach with other existing methods to estimate
respiratory motion, e.g. Time-of-Flight cameras. This way, we
could possibly improve the extracted diaphragm motion signal
by correlating it to the externally measured respiration signal.
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Effects of Ray-Modeling: Simulation Study
Christian Hofmann, Michael Knaup, and Marc Kachelrieß

Abstract—In the recent years iterative reconstruction regained
more and more interest to several applications in computed
tomography such as cardiac CT imaging. This is mainly due
to the fact that modern compute hardware makes acceptable
reconstruction times feasible. Furthermore much research has
been done to push the potential of iterative reconstruction and
to benefit most of its advantages. In this context one must
mention image representation by spherically symmetric Kaiser
Bessel functions, regularization methods and ray modeling of
the physical acquisition process. We want to focus on the last
aspect, the ray modeling process. This paper aims at investigating
the possible improvements by exactly modeling the forward
projection in an iterative reconstruction by a simulation study.

A thorax phantom with resolution line pairs in the region of
the heart is simulated. Simulations are performed in 2D. An FBP
reconstruction with a Ram-Lak kernel is used as a reference
reconstruction. This is compared with an OSSART (Ordered
Subset SART) algorithm without any ray modeling and with an
OSSART in which the forward projection is modeled concerning
the finite focal spot, detector size and angular blurring (OSSART-
RM). For the regularized iterative scheme proposed in this paper
a bilateral filter (BF) is used as a regularization.

The simulation and the patient data show that the signal-to-
noise ratio cannot be improved significantly by the ray modeling
process compared to the FBP and the OSSART reconstructions.
The modeling in OSSART-RM affects the convergence speed
in terms of iterations compared to OSSART but not in terms
of time due to the increased computational effort. The point
of convergence is different in OSSART and OSSART-RM but
there is no improvement in signal-to-noise ratio. By using this
knowledge the iterative reconstruction scheme utilizes the edge
preserving bilateral filter in combination with the iterative
algorithms to achieve a higher resolution at identical noise level as
in the FBP image. The differences in the results of the schemes in
the simulation case with OSSART and OSSART-RM are minor.

Ray modeling is an expensive task. The benefits are only minor
and bear in no relation to the additional computational effort.
The regularization seems to be a crucial part of an iterative
reconstruction. The iterative scheme is promising but a clinical
study has to confirm this from a diagnostic point of view.

Index Terms—Computed Tomography (CT), Cardiac, Region
of interest imaging, Iterative reconstruction

I. INTRODUCTION

CLINICAL applications of CT diagnosis demand for con-
sistent improvement of computer tomographs. Analyt-

ical reconstruction algorithms are based on approximation
approaches for cone beam reconstructions which introduces
cone beam artifacts among others. This issue of image quality
can be addressed by iterative reconstruction algorithms which
do not underlie this problem. On the contrary, iterative recon-
struction algorithms offer the possibility to incorporate non
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idealities in the problem description. Prior knowledge such
as positivity or smoothness can be considered in an iterative
algorithm by different regularization approaches. Furthermore
the forward projection step of iterative algorithms offers the
possibility of modeling the physical acquisition process [1],
[2]. One can account for angular blurring, finite focal spot
and detector sizes thus avoiding inaccuracies which can lead
to a loss of resolution in the reconstructed images.

This paper aims at investigating the effects of modeling
forward projection in a highly accurate way. A simulation
study is done to investigate the effects of ray modeling on
high contrast objects and noise properties. The simultaneous
algebraic reconstruction method (SART) [3] has proven to be
a suitable choice and can be improved in performance by
using ordered subsets (OSSART) [4]. Furthermore the gained
knowledge of the simulations induced us to develop a new
iterative scheme consisting of an OSSART regularized with a
bilateral filter [5]. This scheme will also be presented in the
context of this paper as it was developed as a integral part of
the analysis of the simulation study.

II. MATERIALS AND METHODS

The simulations are based on the Siemens Definition Flash
scanner geometry, using a simulated thorax phantom con-
taining the heart region. Iterative reconstruction algorithms
like OSSART need a preprocessing step of the rawdata for
an iterative region of interest reconstruction (IROI) which is
based on a method presented in [6]. Details of the employed
reconstruction algorithms, realization of the ray modeling
procedure, the phantom study and the iterative reconstruction
scheme are explained in detail in the following.

A. ROI Reconstructon Methods
The analytical reference reconstruction is an FBP with a

Ram-Lak kernel for the simulations. The OSSART is an
established iterative algebraic reconstruction method which
offers an approximate solution by finding an image represented
by a vector f which minimizes the rawdata fidelity term
||Af −p||22 < ε. A is the system matrix which represents the
forward projection process. The transpose of A, AT , can then
be seen as the backprojection operation. The measured rawdata
are represented by the vector p. The parameter ν indicates the
ν-th subset that is being processed. The update equation, taken
from [7], for the OSSART algorithm then is:

f (n+1) = f (n) + λ · 1

AT
ν 1

AT
ν

(p(ν) −Aνf
(n))

Aν1

The parameter λ ∈]0, 1[ is called the relaxation parameter.
It determines how strong the update is incorporated in each
iteration.
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Preprocessing has to be done with the rawdata to perform
an iterative region of interest (IROI) reconstruction. The basic
idea is taken from reference [6].One has to perform an initial
FBP reconstruction of the full field of view (FOV). Then
the desired ROI is being clipped from this volume. This
volume is being forward projected and then subtracted from
the measured data resulting in the sinogram for the IROI
reconstruction.

We aim at having an as fair comparison as possible between
the analytical reconstruction and the iterative reconstruction
with and without ray modeling. The OSSART algorithm incor-
porates no further knowledge about the noise structure as for
example the OSC algorithm which is based on a Poisson noise
model. Furthermore no postprocessing was performed on both
the analytical reconstructions and the iterative reconstructions.
Thus the investigated effects are the effects of the ray modeling
process.

B. Phantom simulations

Fig. 1. The Simulated FORBILD thorax phantom. The circle shows the
reconstructed ROI, the dashed box shows the the section with the resolution
patterns. In the enlarged section the line profile through the lower pattern line
is indicated.

To investigate the effects of ray modeling, high contrast
resolution line profiles are used which were simulated into a
FORBILD thorax phantom [8]. We use four pairs of profiles
with successive smaller dimensions. The rawdata for the
simulations were simulated analytically. Poisson noise was
simulated resulting in 20 HU noise in the FBP reconstruction.
The finite focal spot and detector were realized by simulating
and averaging of 27 lines. The angular blurring is taken
account for by averaging within the range of the angular
increment ∂α. The finite focal spot is a line of 10 mm length
perpendicular to the direction from source to center of rotaion.
The ray modeling was performed in the same manner like it is
handled later in the forward projection with the difference that
a very fine sampling used for the detector, the focal spot and
the angular increment ∂α. An FBP reconstruction with a Ram-
Lak kernel is used as a reference reconstruction. The analytical
reconstruction is compared with the OSSART reconstructions
without any ray modeling and with OSSART in which the
forward projection is modeled in the same manner like in the
rawdata generation (OSSART-RM). The forward projection

algorithm used in the iterative algorithms is of Joseph type
[9].

The simulation is based on three different approaches to
analyze the effects of ray modeling. In the first case the
iterative algorithms are stopped when the same noise level
is reached as in the reference FBP reconstruction to conclude
on the influence on the signal-to-noise ratio. For the second
case a fixed number of iterations is chosen for both iterative
algorithms. Thus one can draw conclusion on the effect ray
modeling can have on the convergence speed in terms of
number of iterations. The third case investigates the results of
OSSART and OSSART-RM in the region of convergence and
how this is being affected by the ray modeling. Convergence
here means that a certain threshold is underrun by the update
of the iterative algorithms.

For the 2D simulations a circular scan with 1150 projections
was simulated. The FORBILD thorax phantom was used. Four
resolution line profiles were simulated into the region of the
heart. All lines have a height of 4 mm. The thickness and
distance d of the lines is equal and follow the relation d =
0.75n mm for n ∈ [0, 3]. All lines have the same attenuation
value equivalent to 400 HU. The distance from the focus to the
center of rotation is 595.0 mm and the distance from the center
to the detector is 490.6 mm. The detector has 736 elements
in fan direction.

For the ROI reconstruction first an FBP reconstruction of the
whole FOV with radius of 250 mm is reconstructed with 830×
830 voxels resulting in a 0.6 mm voxel grid. The reconstructed
ROI has a radius of 60 mm reconstructed with a voxel size of
0.2 mm which is equivalent to 512× 512 voxels. The ROI is
centered at (-15 mm, 40 mm).

C. Iterative Scheme

Fig. 2. Illustration of the iterative scheme. The scheme is initialized with the
ROI prior image and the preprocessed IROI data. The scheme is composed
of an iterative algorithm like the OSSART and an edge preserving bilateral
filter.

The results of the ray modeling investigation induced us to
develop an iterative scheme which was evaluated with simu-
lations. Figure 2 illustrate the iterative scheme. The scheme is
initialized with the ROI prior image (ROI Prior), which has
the same reconstruction grid as the IROI reconstruction.
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The iterative scheme is composed of an iterative algorithm
like the OSSART and an edge preserving regularization like
the bilateral filter (BF-OSSART). To define the bilateral filter
we restrict to one dimension. Bilateral filtering of a function
f(x) is defined as

Bf(x) =
∫
dtD(x, t)R(x, t)f(t)∫
dtD(x, t)R(x, t)

with B denoting the bilateral filtering operator and

D(x, t) = e−( x−tσx
)2

R(x, t) = e
−(

f(x)−f(t)
σf

)2

being the domain and the range filter, respectively. The pa-
rameters σx and σf are the widths of the Gaussian domain
and range filters, respectively.

The OSSART could be replaced by another iterative re-
construction algorithm like the OSC which takes the noise
structure into account. The iterative reconstruction is done
until higher resolution than in the ROI prior is reached which
is equivalent to σThreshold > σPrior were σPrior is the noise in an
ROI in the prior image. This is controlled by fixed parameter
σThreshold which is chosen to be 100 HU. Depending on this
noise threshold the bilateral filter is used to suppress noise to
a lower value than in the ROI prior by setting σDomain = 4 mm
and σRange = σThreshold. In the final iteration step of the iterative
scheme the stopping criteria for the OSSART is a noise less
or equal to the noise of the initial analytical reconstruction
σFinal ≤ σPrior. In the simulations three iterations (Nscheme = 3)
were enough to get satisfying results.

III. RESULTS

Fig. 3. The simulation results with matched noise. The reconstructions from
left to right are FBP, OSSART and OSSART-RM. The images on top show
a small region containing the resolution line patterns of the transversal view.
The corresponding profile through the lower left line pair is presented at the
bottom. The images are shown at a grayscale window of C/W = 0/1000 HU.

Fig. 4. The simulation results with fixed number of iterations for the iterative
reconstructions. The reconstructions from left to right are FBP, OSSART
and OSSART-RM. The images on top show a small region containing the
resolution line patterns of the transversal view. The corresponding profiles of
the lower left line pair is presented at the bottom. The images are shown at
a grayscale window of C/W = 0/1000 HU.

Fig. 5. The simulation results at convergence. The reconstructions from left
to right are FBP, OSSART and OSSART-RM. The images on top show a
small region containing the resolution line patterns of the transversal view.
The corresponding profile through the lower left line pair is presented at the
bottom. The images are shown at a grayscale window of C/W = 0/1000 HU.

To conclude on the signal-to-noise ratio, we first matched
the noise of the FBP, OSSART and OSSART-RM. The results
can be seen in figure 3. The profiles are drawn through the
lower left line pair as can be seen in figure 1 in the enlarged
dashed box. In figure 3 no major differences can be seen
between the three cases. This means that no significant benefit
in signal-to-noise ratio can be achieved with the ray modeling
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Fig. 6. The simulation results with the iterative scheme. The reconstructions
from left to right are FBP, iterative scheme with OSSART and iterative
scheme with OSSART-RM. The images on top show a small region containing
the resolution line pattern of the transversal view. The corresponding profile
through the lower left line pair is presented at the bottom. The images are
shown at a grayscale window of C/W = 0/1000 HU.

approach without additional means.
Next we investigated the behavior of the iterative algorithms

with a fixed number of iterations. The results are shown in
figure 4. The iterative algorithms show a better resolution
compared to the FBP which can be seen in the profiles with
the downside of higher noise (σFBP < σOSSART < σOSSART-RM).
Comparing the OSSART with OSSART-RM the same can be
seen here. With a fixed number of iterations the OSSART-RM
results in an image with better resolution but also higher noise
as in the OSSART reconstruction. From this one can conclude
on faster convergence speed in terms of iteration number in
the ray modeling case.

The last case of interest is to investigate the results of
OSSART and OSSART-RM in the region of convergence.
Convergence here means that a certain threshold is underrun
by the update. The results can be seen in figure 5. Here
one can again see that OSSART and OSSART-RM result in
images with higher resolution and higher noise. The interesting
observation that can be done comparing the OSSART with
OSSART-RM is that they both converge to different results due
to the ray modeling. This can be seen comparing the profiles
in figure 5. Again this is at the expense of higher noise which
increases in the same degree the contrast of the line profile.
Thus so far no clear benefit can be seen through ray modeling.

One can now think of a regularization approach which takes
advantage of the OSSART and OSSART-RM by suppressing
noise and maintaining resolution so that the reconstruction can
profit from the higher resolution of the iterative algorithms.
We use a bilateral filter incorporated in an iterative scheme.
This scheme utilizes the fact that iterative algoritms result in
a higher resolution as the analytical reconstructions.

The simulation results of the iterative scheme can be seen in

figure 6. Here the stopping criterion was σFinal = σPrior = σFBP
That means the iteration was stopped when the noise is
matched with the noise of the reference FBP reconstruction.
Looking at the profiles one can see that the line profile in
the lower left can now be resolved in the BF-OSSART and
in the BF-OSSART-RM case. Thus the signal-to-noise ratio
could be improved. Comparing the results with and without
ray modeling one can see that the result with ray modeling
is slightly better but bears in no relation to the additional
computational effort.

IV. SUMMARY

We have examined the effects that are introduced by model-
ing the ray acquisition process in the forward projection of an
iterative OSSART algorithm in a simulation study. Comparing
it to a reference FBP reconstruction and a normal OSSART,
we could not recognize any benefits in signal-to-noise ratio.
The main difference was found in the convergence behavior
of the OSSART and OSSART-RM. From these findings we
derived an iterative scheme which utilizes an bilateral filter
as an edge preserving regularization leading to a better signal
to noise ratio. Our overall finding is that ray modeling is an
expensive task and the benefits are only minor and bear in
no relation to the additional computational effort. However it-
erative reconstruction schemes with appropriate regularization
seem to be promising.

ACKNOWLEDGMENTS

This work was funded by the Deutsche Forschungsgemein-
schaft DFG under grant KA 1678/3-1. Parts of the recon-
struction software were provided by RayConStruct R© GmbH,
Nürnberg, Germany. We thank the Intel Corporation and
Fujitsu Siemens Computers GmbH for providing the highly
performant computing hardware.

REFERENCES

[1] K. Zeng, B. De Man, and J.-B. Thibault, “Spatial resolution enhancement
in CT iterative reconstruction,” Nuclear Science Symposium Conference
Record (NSS/MIC), 2009 IEEE, pp. 3748–3751, Oct. 2009.

[2] S. Do, S. Cho, W. Karl, M. Kalra, T. Brady, and H. Pien, “Accurate
model-based high resolution cardiac image reconstruction in dual source
CT,” Biomedical Imaging: From Nano to Macro, 2009. ISBI ’09. IEEE
International Symposium on, pp. 330–333, Jul. 2009.

[3] T. Nielsen, R. Manzke, R. Proksa, and M. Grass, “Cardiac cone-beam
CT volume reconstruction using ART,” Med. Phys., vol. 32, no. 4, pp.
851–860, Apr. 2005.

[4] C. Kamphuis and F. Beekman, “Accelerated iterative transmission ct
reconstruction using an ordered subsets convex algorithm,” IEEE Trans-
actions on Medical Imaging, vol. 17, no. 6, pp. 1101–1105, 1998.

[5] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color
images,” Proc. 6th Int. Conf. Computer Vision, pp. 839–846, 1998.

[6] A. Ziegler, T. Nielsen, and M. Grass, “Iterative reconstruction of a region
of interest for transmission tomography,” Med. Phys., vol. 35, no. 4, pp.
1317–1327, Apr. 2008.

[7] A. Andersen and A. Kak, “Simultaneous algebraic reconstruction tech-
nique (SART): A superior implementation of the ART algorithm,” Ultra-
sonic Imaging, vol. 6, pp. 81–94, 1984.

[8] M. Kachelrieß, “The FORBILD CT–simulation phantoms,” Proc. of the
1999 Int. Meeting on Fully 3D Image Reconstruction, p. 383, Jun. 1999.

[9] P. M. Joseph, “An improved algorithm for reprojecting rays through pixel
images,” IEEE Transactions on Medical Imaging, vol. MI–2, no. 3, pp.
192–196, Nov. 1982.

Page 20 The second international conference on image formation in X-ray computed tomography



Patchwork Reconstruction with Resolution
Modeling for Digital Breast Tomosynthesis

Koen Michielsen, Katrien Van Slambrouck, Anna Jerebko and Johan Nuyts

Abstract—Visualizing micro-calcifications adequatly remains a
challenge in digital breast tomosynthesis. We propose a maximum
a posteriori algorithm which uses a plane by plane updating
scheme for faster convergence. The scheme enables efficient
implementation of an approximate model for position dependent
resolution. An observer study shows an improvement in detection
of micro-calcifications compared to the filtered backprojection
method currently in use.

I. INTRODUCTION

Early detection of breast cancers by mammography screen-
ing has been shown to improve patient outcome [1]. However,
some lesions, like masses in dense breasts, remain difficult
to detect due to the amount of anatomical noise [2]. A three
dimensional imaging technique, like digital breast tomosyn-
thesis (DBT), may be able to solve this problem by removing
interference from overlapping dense tissue [3]. DBT provides
a limited angle set of projections. These projections are usually
reconstructed with filtered backprojection (FBP). However,
because of the limited angular range and low dose acquisitions,
reconstruction by FBP is not always optimal [4], [5], especially
for small angular range [6].

Using the more accurate acquisition model of the Maximum
Likelihood for Transmission (MLTR) algorithm proposed in
[7] could improve reconstruction for DBT, but this algorithm
(like all iterative methods) is quite slow in comparison to FBP.
We try to improve the convergence speed of the algorithm by
applying a grouped coordinate ascent (GCA) algorithm [8],
[9], where groups of voxels are updated sequentially instead
of simultaneously. By choosing the reconstruction planes par-
allel to the detector as these groups, we can simultaneously
introduce a resolution model which is dependent on the height
above the detector.

II. MATERIALS AND METHODS

A. Patchwork Reconstruction

In the MLTR algorithm, attenuation distribution ~µ is ob-
tained by maximising log-likelihood function L. The log-
likelihood can be written as

L =
∑
i

yi ln ŷi − ŷi (1)
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with yi the measured transmission scan, ŷi the estimated
transmission scan and i the index of the projection line. In
the simplest case the acquisition process can be written as:

ŷi = bie
−

∑
j lijµj (2)

with bi the blank value for projection line i and lij the
intersection lenght between projection line i and voxel j. With
this information, one can construct a gradient ascent algorithm,
with following update step:

µnew
j = µold

j +
αj
∑
i lij(yi − ŷi)∑

i lij ŷi
∑
h αhlih

(3)

Choosing αj = 1 in equation 3 results in the MLTR algorithm
and αj = µold

j + ε, with ε a small positive constant to make
sure αj > 0, gives the convex algorithm [10].

For a patchwork reconstruction, the image is divided into
regions (patches) that are updated separately and sequentially
[11]. Accelerated convergence is partly due to the sequential
updates but mainly due to an increased step size in the update.
In equation 3 we can consider a patch update as an update with
αj = 0 everywhere except in the current patch. Therefore the
sum

∑
h αhlih in the denominator will be smaller and the

step size for updates will be larger for smaller patches. We
choose to use each plane (parallel to the detector surface) in
the reconstruction volume as a separate patch. This is both
the logical choice, since this is how tomosynthesis images
are visualized, and close to optimal, since it minimises the
denominator in equation 3, indicating that voxels in one plane
share little information in the projection.

Because of the limited angular sampling, there is little to
no information on the distribution of attenuation values in the
direction perpendicular to the detector surface. The patchwork
algorithm tends to accumulate all low frequency information
in the first patch. To ensure that low frequency information
will be uniformily distributed over all patches, we initialize the
reconstruction volume with a rough estimate of the attenuation
and divide the update step for each patch in the first two
iterations by the number of patches that still need to be
updated in the current iteration. Because this creates a non-
uniform noise distribution in the volume, the update order of
the patches is reversed in the second iteration.

B. Resolution Modeling
While the detectors in mammography tomosynthesis sys-

tems have good resolution, tube motion during the acquisition
causes additional blurring in the acquisition of tomosynthesis
data. Mathematically this blurring can be added to the simple
aqcuisition model in equation 2 as follows:

ŷi = bi
∑
n

Ain

∫ θ2

θ1

w(θ)e−
∑

j lnj(θ)µjdθ + si (4)
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With the angles θ representing the tube motion during one
of the acquisitions of the tomosynthesis series, w(θ) is the
relative weight of each angle within a single exposure. The
scatter is represented by si, and the kernel with coefficients
Ain represents the intrinsic detector blurring.

Although equation 4 describes the acquisition process ade-
quatly, the derived update step would be too complex for an
efficient reconstruction. Therefore we introduce the following
approximation, making use of the fact that the volume is
already split in patches parallel to the detector plane:

ŷi = bi
∏
p

∑
n

Apine
−

∑
j∈p lnjµj + si (5)

In essence, the motion blur, which is dependent on the height
above the detector plane, is included in the detector blur Apin
for each patch p.

Using the following notation, we can derive the update step
for an MLTR algorithm using this model for the acquisition.

ŷi = bi
∏
p

ψ̄pi + si (6)

ψ̄pi =
∑
n

Apinψ
p
n (7)

ψpi = e−
∑

j∈p lijµj (8)

The patches appear in equation 8 in the form of the sum over j:∑
j∈p lijµj =

∑
j αj lijµj with αj = 1 for j ∈ p and αj = 0

for j /∈ p. With this we can calculate the update step in eq. 9.

∆µj =
− ∂L
∂µj∑

k
∂2L

∂µj∂µk

(9)

− ∂L

∂µj
=
∑
i

lijψ
p(j)
i

∑
n

A
p(j)
in

yn − ŷn
ψ̄
p(j)
n

ŷn − sn
ŷn

(10)

∑
k

∂2L

∂µj∂µk
≈ −

∑
i

lijψ
p(j)
i ·

∑
k

lik ·

∑
n

A
p(j)
in

ŷn − sn
ψ̄
p(j)
n

(
1− ynsn

ŷ2n

) (11)

The approximation for the second derivative comes from the
assumption that the intersection lengths are smooth on the
scale of the kernel Apin:∑

n

Apinψ
p
n

∑
k∈p

lnk ≈
∑
k∈p

lik
∑
n

Apinψ
p
n (12)

C. Phantom Simulation and Reconstruction

To test the reconstruction method, we simulated background
images with stochastical noise by filtering white noise with a
power law filter f(ν) = κ/νβ , with ν the frequency, β = 3
and κ = 10−5 mm−1 [12], [13]. The resulting images were
reduced to 500 by 500 by 200 isotropic voxels with sides of
85 µm. This background volume was placed in one of three
possible locations, always with one side above the chest-side
detector edge: central at 27 mm above the detector plane,
central at 67 mm above the detector plane, and 75 mm off
center at a height of 47 mm.

We used the background images to generate two data sets:
in the first set we added a random number of clusters to each
background image, Poisson distributed with a mean of 1.0 per
image, and placed at a random location within the volume (but
not on the edge). Each cluster consisted of a random number
of calcifications, with a mean of 2.5 per cluster (again Poisson
distributed), but with a minimum of a single calcification per
cluster. The individual calcifications were spherical, with a
diameter between 100 and 200 µm, spaced 0.5 to 1.5 mm
apart in a random direction and set in a volume with isotropic
voxel spacing of 5 µm.

For the second set we created two series of micro-
calcifications (smooth, corresponding to Le Gal II and irreg-
ular, corresponding to Le Gal IV) according to the recipe
of Näppi [14]. These micro-calcifications were rescaled to
diameters between 200 and 600 µm. The volume in which they
were set had isotropic voxel spacing between 6 and 18 µm,
depending on the rescaling.

Projections of these volumes were simulated according to
the acquisition model described in eq. 4 and with increased
detector sampling. Multiple source positions were sampled for
each exposure angle, corresponding to an exposure time of
120 ms per projection, x-ray energy was set to 20 keV and
Poisson noise was generated with a blank scan of 1500 photons
per pixel (12.5 µGy detector dose after attenuation).

The geometric blurring parameters for our model were
determined for the Mammomat Inspiration1 system (Siemens,
Erlangen, Germany), which is in clinical use on site. Therefore
the Siemens iFBP method [15] without detector binning, with
slice thickness filter and with a filter designed so that resulting
reconstructed slices resemble 2D mammography images was
used as the point of reference. The two reconstructions to be
compared to the point of reference were 3 iterations of our
patchwork reconstruction with resolution modelling, with prior
and without prior. The Huber prior (equation 13) was used,
with β = 3.0 · 10−4 and δ = 2.5 · 10−4 mm−1. Since the
average reconstructed attenuation is about 0.06 mm−1, the
prior function is mostly active in linear mode.

|µj − µk| < δ : P (~µ) =
∑
j,k

wjk
(µj − µk)2

2δ2

|µj − µk| ≥ δ : P (~µ) =
∑
j,k

wjk
|µj − µk| − δ/2

δ

(13)

Figure 1 shows an example of the three reconstruction methods
for two simulated calcifications.

We compare the convergence speed of the two patchwork
iterative methods used in the observer study with the MLTR
and Convex algorithms by plotting, Lmax − L in function
of iteration number for the reconstruction of a mathematical
phantom [16].

1Breast tomosynthesis with Siemens MAMMOMAT Inspiration is an
investigational practice and is limited by U.S. law to investigational use. It is
not commercially available in the U.S. and its future availability cannot be
ensured.
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Fig. 1: Two simulated calcifications with a diameter of 400
µm. Window is set from minimum to maximum pixel value.
Top: smooth, bottom: irregular; from left to right: true slice,
iFPB, patchwork iterative without prior and with prior.

D. Reconstruction Comparison

The comparison was split in two distinct observer exper-
iments: first, a free search study to check the detectability
of small spherical micro-calcifications and second, a two-
alternate forced choice (2AFC) study to check the discrim-
ination between smooth (Le Gal II) and irregular (Le Gal IV)
micro-calcifications.

For the detection study, 7 readers performed a free search
on 120 cases for each reconstruction (with 40 images used for
initial training) and scored detected lesions on a 4 point scale
as shown in table I. Results were analyzed using the weighted
JAFROC method [17].

Score Description
1 I see a hint of a calcification
2 This might be a calcification
3 This is probably a calcification
4 I am sure this is a calcification

TABLE I: Evaluation scale for the detection experiment.

For the 2AFC study, 5 readers evaluated 300 cases for
each reconstruction (of which 100 cases were used as initial
training) by classifying them as smooth or irregular and
providing their certainty of this classification (low, medium or
high certainty). Results were analysed using the DBM MRMC
method [18].

III. RESULTS

Figure 2 shows results for the detection study. The extension
from the point of the lowest confidence score (1 in table I) is
shown in grey. There are significant differences between the
iFBP and the patchwork reconstruction with prior (p = 0.029)
and between both patchwork reconstructions (p = 0.022)
for detecting the smallest micro-calcifications (<200 µm).
There is no difference between the iFBP and the patchwork
reconstruction without prior (p = 0.893).

Table II shows the results for the shape discrimination
study with the area under the ROC curve (AUC) as the
figure of merit (FoM). The p-value of 0.935 indicates that
the three reconstruction methods have identical performance
when considering shape discrimination of small lesions.
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Fig. 2: AFROC curve of detection study results.

Reconstruction Figure of Merit
iFBP 0.774

Patchwork 0.773
Patchwork w Prior 0.769

p-value 0.935

TABLE II: Results of the 2AFC study.

Figure 3 shows the likelihood as a function of the iteration
number. The patchwork reconstruction with prior is not shown
since its curve would overlap that of the normal patchwork
reconstruction on the graph. The patchwork reconstructions
reach a better likelihood value than the MLTR reconstruction
at 10 and 20 iterations after only 5 and 7 iterations respectively.

IV. DISCUSSION

The initial evaluations show that the patchwork recon-
struction with resolution modelling and smoothing prior can
improve upon iFBP after only 3 iterations for detecting very
small micro-calcifications while performing at the same level
for classifying slightly larger micro-calcifications.

The new algorithm currently results in a limited improve-
ment on the clinical image quality, as shown in a comparison
with iFBP in figure 4. This makes sense when considering the
fact that the iFBP algorithm has been specifically optimised
for the Mammomat Inspiration system. We expect further
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Fig. 3: Likelihood (Lmax − L) curve.
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Fig. 4: A cluster of micro-calcifications (left: iFBP, right: patchwork reconstruction with resolution modelling).

improvements in our algorithm when including the measured
point spread functions of the system in the resolution model
instead of a Gaussian approximation.

An important advantage in comparison to other iterative
methods is the improved convergence speed that comes from
applying a grouped coordinate ascent algorithm. The much
faster convergence speed per iteration step reduces one of the
most critical factors that keeps iterative reconstruction from
being used in the clinic: reconstruction time. In our results
we only used 3 iterations while typically we would use 8-10
iterations without the GCA algorithm.

V. CONCLUSIONS

The described method greatly increases convergence rate per
iteration of DBT reconstruction while including an accurate
resolution model. Adding a Huber-prior to the algorithm
limits the noise in the image and allows reconstruction of
clinical images in only 3 iterations while increasing detection
performance in comparison to iFBP and maintaining the same
level of lesion discrimination performance.
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Iterative Image Reconstruction 
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Abstract 
 
Fast and accurate image reconstruction is the ultimate goal 
of iterative methods for limited-angle, few-view, interior 
problems, etc. Recently, we proposed a finite-detector-
based area integral model (AIM) to model the projection 
procedure of a discrete imaging object. On the other hand, 
the distance-driven model (DDM) is the state-of-the-art 
technology to model forward projection and 
backprojection. In an ordered-subset simultaneous 
algebraic reconstruction technique (OS-SART) framework, 
both of the AIM and DDM are implemented and evaluated 
using a sinogram from a phantom experiment on a 
Discovery CT750 HD scanner. The results show that the 
DDM-based method is 6 to 10 times faster than the AIM-
based method assuming the same number of times of 
iterations. The spatial resolution of the AIM-based method 
can have ~10% improvement compared to the DDM-
based method in terms of full-width-of-half-maximum 
(FWHM). 
 

Index Terms--- computed tomography (CT), image 
reconstruction, area integral model, distance-driven model, 
OS-SART. 

 
 
 

1. Introduction 
 
Computed tomography (CT) reconstruction is a process of 
recovering n-dimensional (nD) image data from a set of 
integrals of that data over lower-dimensional subspaces. 
The projection and/or backprojection model is required for 
image reconstruction, artefact correction, or simulation 
purposes. In the continuous domain, the well known 
Radon transform is accepted as the projection model, in 
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which line integrals of the imaging object are calculated. 
The backprojection model, generally defined as the 
transpose (or adjoint) of the projection model. The most 
prevalent application of the backprojection operation is in 
the filtered backprojection (FBP) reconstruction 
algorithms, which are based on analytic inversion 
formulae for the Radon transform [1]. Parallel to the 
development of analytic reconstruction algorithms, the 
iterative reconstruction methods are proposed, in which 
repeated applications of the projection and backprojection 
are used to approximate the image that best fits the 
measurements according to an appropriate objective 
function [2]. 

There are many methods to model the projection and 
backprojection procedures for a discrete imaging object. 
All of those models compromise between computational 
complexity and accuracy. To our best knowledge, the 
current projection and backprojection models can be 
divided into three categories[3]. The first is the pixel-
driven model, which is usually used for implementations 
of backprojection. By connecting a line from the focal 
spot, a location of intersection on the detector is 
determined on a detector array. A value is obtained from 
the detector via interpolation, and the result is 
accumulated in the pixel [4-6]. The second is the ray-
driven model, which is used for forward projection. It 
connects a line from the focal spot through the image to 
the detector centre. A value is obtained via interpolation 
from the image pixel values, and the result is accumulated 
on the detector cell. The third is called the distance-driven 
model (DDM), which combines the advantages of the 
pixel-driven and ray-driven models [7, 8]. The key is to 
calculate the length of overlap between each image pixel 
and each detector cell, and then use the normalized length 
of overlap to calculate the weight used in projection and 
backprojection. Recently, a finite-detector-based 
projection model was proposed for iterative CT 
reconstructions by H.Y. Yu and G. Wang [9], which was 
also called area integral model (AIM). This model is 
different from all the aforementioned projection models 
without any interpolation. 

It is our understanding that the AIM-based method can 
be simplified to the DDM-based method under some 
approximation. Compare to the distance-driven method, 
the AIM-based method is more accurate but on the other 
hand more time-consuming due to the high computing 
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cost of the system matrix. In this paper, we will perform 
extensive numerical experiments to quantitatively evaluate 
the DDM-based and the AIM-based methods assuming a 
fan-beam geometry of a typical GE CT scanner. This work 
will have a direct impact on several applications including 
the development of fast and accurate iterative CT 
reconstruction for super resolution. The rest of this paper 
is organized as follows: In Section II, we will briefly 
summarize the AIM and DDM; In Section III, numerical 
experiments will be performed and the results will be 
presented; In Sec. IV, we will discuss some related issues 
and conclude the paper. 
 

2. Method 
 
2.1. Discretized Description of a CT Imaging System 
Many imaging system, such as CT scanners can be 
modeled by the following linear equations [10]: 

,   (1) 

where  represents projection data,  represents 
an unknown image, and the non-zero matrix  is 
a projection operator. For practical applications, the 
discrete-discrete model is assumed. In other words,  and 

 are vectors. The projection data  is usually measured 
by detector cells, which implies that  is already discrete. 
For the two-dimensional (2D) case, an image can be 
discretized by superimposing a square grid on the image. 
Usually  is assumed as constant in each grid cell, which is 
referred to as a pixel. As a result, we have a 2D digital 
image ,   , where the indices 1 , 
1  are integers. Define 

, , 1 ,  (2) 

with 1 , and , we can re-arrange the 
image into a vector   ¸  ¸  …  ¸  ¸  . We 
may use both the signs  and ,  to denote the image.  

       Let  be the  measured datum with  ray. 
Eq.(1) can be rewritten as 

 ∑ ¸  1¸ 2¸  …  ¸ . (3) 

where  is the total number of rays and  is the 
weighting coefficient that represents the relative 
contribution of the pixel to the  measured datum. 
Therefore, we have a system matrix  and 
two vectors ¸  ¸  …  ¸  ¸   and 

¸  ¸  …  ¸  ¸   for the discrete-discrete model. 
The major difference between the AIM and DDM is how 
to calculate the weighting coefficient . 
 
2.2. AIM 
As shown in Fig. 1, the AIM considers the rays as ‘fat’ 
lines or narrow fan-beam [9], which covers a region 
connecting the x-ray source and two endpoints of the 
detector cell. The coefficient  can be expressed as: 

¸

¸
,   (4) 

where ¸  represents the interaction area between the  
pixel and the  ray, and ¸  represents the product of 
the narrow fan-beam angle  and the distance from the 
center of the  pixel to the x-ray source. For the details 
of the derivation, please refer to [9]. 
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Fig.1: Area-integral model 

 
     Fig. 2: Distance-driven model 

2.3. DDM 
The DDM combines the advantages of the pixel-driven 
and ray-driven methods. The key step for calculating the 
weighting coefficient is to calculate the length of overlap 
between each image pixel and each detector cell [3]. To 
calculate the overlapped length, we need to map all the 
detector cell boundaries onto the centerline of the image 
row of interest. One can also map all pixel boundaries in 
an image row of interest onto the detector. Or map both 
sets of boundaries onto a common line. In Fig. 2, we map 
the two boundaries of the  detector onto the centerline 
of the  image row,  and  are the ending boundary 
and the beginning boundary of the  detector, 
respectively. Let  and  are the  and  1  
pixels locate at the  row of the image, which are the 
only two pixels that intercept with the  detector in the 

 row of the image. ,  and ,  are the length of 
overlap between the two image pixels and the  

Page 26 The second international conference on image formation in X-ray computed tomography



 
 

detector in this row.  is the interception length between 
every image row and the  ray. The normalized 
weighting coefficient can be computed by, 

  · ,

, ,
,   (5) 

 is the weighting coefficient that represents the 
relative contribution of the  pixel to the  measured 
datum, and will be used in projection and backprojection 
(symmetric). For details of the DDM, please refer to [3]. 
 
2.4. OS-SART Reconstruction 
In the ordered-subset simultaneous algebraic 
reconstruction (OS-SART) framework [11], we 
implemented each projection model assuming an 
equiangular fan-beam geometry. The fast iterative 
shrinkage thresholding algorithm (FISTA) [12] was 
employed to accelerate the convergence. 
 

3. Results 
 

A phantom experiment was performed on a GE Discovery 
CT750 HD scanner at Wake Forest University Health 
Sciences with a circular scanning trajectory. After 
appropriate pre-processing, we obtained a sinogram of the 
central slice in typical equiangular fan-beam geometry. 
The radius of the scanning trajectory was 538.5 . Over 
a 360° range, 984 projections were uniformly acquired. 
For each projection, 888 detector cells were equiangularly 
distributed, which defines a field of view of 249.2  in 
radius and an iso-center spatial resolution of 584 µ . 
Using the aforementioned sinogram, the DDM and AIM 
were evaluated and compared quantitatively according to 
the following criteria: 
(a). Computational cost: the total computational times 
were compared assuming the same number of iteration 
times. The algorithms were implemented in Visual C++ 
and tested on a platform of PC (4.0 GB memory, 3.2 GHz 
CPU). 
(b). Image noise: the standard variance of the pixel values 
within a homogenous region were computed to measure 
the image noises using Eq. (6), 

  ∑      (6) 

where  is the total number of pixels in the selected flat 
region,  is the mean of the total image pixel values in 
the region. 
(c). Spatial resolution: Full-width-of-half-maximums 
(FWHMs) were calculated in a red square (showed in Fig. 
3 within red square) to compare the spatial resolution [13]. 

For different projection models, the same parameters 
were used in the OS-SART algorithms. The initial image 
was set to zero and the size of all the subsets of OS-SART 
was set to 41. We reconstructed image matrixes of 
512x512 (40 iterations) and 2048x2048 (20 iterations) to 
cover the whole field of view (FOV), and each pixel 
covered an area of 973.3 973.3 µ  and 243.3

243.3 µ , respectively.The full view of the phantom is 
shown in Fig. 3, and the selected sub-regions of the four 
reconstructed results were magnified as shown in Fig. 4. 
The results are summarized in Table 1. 

 

Fig. 3: The full view of the phantom 

From Fig. 4 and Table 1, we can conclude that: the 
reconstruction speed of DDM-based OS-SART is about 
6.3 (512x512, 40 iterations) and 9.4 (2048x2048, 20 
iterations) times faster than the AIM-based OS-SART. 
While the image noise of DDM-based method is lower 
than that of AIM-based method, the AIM-based method 
has a better spatial resolution than that of DDM-based 
method. 
 

4. Discussion and Conclusion 
 
Compared to the AIM-based method, the DDM-based 
method is faster. This is because most of the 
computational cost in AIM-based method is to compute 
the system matrix  analytically. On the other hand, the 
system matrix computation in DDM-based method is more 
efficient because of the low computation complexity. In 
conclusion, we have numerically compared the AIM and 
DDM in an OS-SART framework. While the AIM-based 
method has a better performance, it requires higher 
computational cost. When the requirement of spatial 
resolution is not high, we can choose DDM-based method 
for lower computational cost.  
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(a) DDM (512 512) (b) AIM (512 512) 

  

(c) DDM (2048 2048) (d) AIM (2048 2048) 

Fig. 4: Magnifications of the selected regions in Fig. 3. (a)-(d) correspond to the reconstructed images by DDM and AIM with 
different image matrixes, respectively. 

Table 1: Performance comparison between the DDM- and AIM-based methods. 

OS-SART +FISTA Image size # of 
Iteration 

Computational 
Cost (hrs) 

Noise (HU) Spatial Resolution 
( ) 

DDM 512 512 40 0.4335 32.4945 1.8481 
AIM 512 512 40 2.7648 35.3084 1.6904 
DDM 2048 2048 20 1.3652 41.9767 0.4228 
AIM 2048 2048 20 12.7951 49.0495 0.3720 
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A New Method for Metal Artifact Reduction in
CT

Thomas Koehler,a Bernhard Brendel,a and Kevin M. Brownb

Abstract—In this work, we present a new method for metal
artifact reduction in computed tomography (CT), which is
based on a sinogram interpolation technique. The method
further comprises an adaptive application of the correction
image which is specifically designed to avoid that the correction
introduces new artifacts. The method is evaluated using clinical
data.

I. I NTRODUCTION

The presence of metal within the field of view of a
CT scanner can create severe artifacts in the reconstructed
images. There are several different physical origins of these
artifacts and the appearance of the artifacts can be very
different, too [1]: Metal causes beam-hardening, resulting in
dark and bright shading artifacts, in particular dark shading
between metal objects, e. g., between two hip implants.
Metal has a large linear attenuation coefficient leading to
photon starvation in the shadow of the metal object, which
can result in severe noise streaks. The large contrast of
metal objects makes the CT imaging chain more sensitive
to patient motion, which can lead to streak-shaped or arc-
shaped artifacts for axial or helical acquisitions, respec-
tively [2]. Furthermore, the contribution of scattered photons
to the detected signal in the metal shadow is typically large,
resulting also in dark and bright shading artifacts.

There are a lot of methods for metal artifact reduction
(MAR): Noise streaks due to photon starvation can be
suppressed by adaptive filtering [1], [3]. Beam hardening can
be addressed by beam hardening correction algorithms [1],
[4].

Another common and completely different approach for
MAR is to replace data in the metal shadow in the sinogram
by something more meaningful. The shadow is typically
identified by segmentation in image domain followed by
a forward projection. The replacement can be done by
interpolation [2], [3], [5]–[9], or by a re-projection of a
segmented image [10]–[13].

More recently, several iterative methods for MAR have
been proposed [14]–[16]. Although statistical iterative meth-
ods are in general less sensitive to metal artifacts since the
statistical weight for data in the metal shadow are small due
to their bad statistics, they cannot reduce beam-hardening
artifacts unless they contain a metal segmentation step.

a Philips Technologie GmbH, Innovative Technologies, Research Labo-
ratories, Hamburg, Germany

b Philips Healthcare, Cleveland, OH, USA

MAR has been an area of active research for more than
30 years now, indicating that it is in fact a very tough
problem. From our point of view, the major problem with
MAR algorithms is robustness: Since the effects which lead
to the artifacts and the appearance of the artifacts can
be quite different, it is hard to set up an algorithm that
handles every case well. Furthermore, many of the advanced
methods contain a segmentation step in the processing chain.
However, we observed that the artifacts in the original
images can be so severe that a reliable segmentation is not
possible, often leading not only to an imperfect correction
of the metal artifacts but rather to the introduction of new
artifacts. While an imperfect or incomplete correction of the
metal artifacts may be acceptable in a clinical use case, the
introduction of new artifacts is not.

This work contains two new contributions to the art
of MAR: The first one is a further improvement of the
algorithm proposed by Timmer [11]. The second is a general
idea related to artifact correction methods in CT that aims
specifically at preventing the introduction of new artifacts.

II. M ETHOD

First, we briefly review the method described by Tim-
mer [11] and discuss its shortcomings.1 The basic idea of
the algorithm is to replace the data in the metal shadow
by something more meaningful than the linear interpolation
used by Kalender et al. [6]. In detail, the method comprises
the following steps:

1) generation of an initial image using filtered back-
projection,

2) classification of the pixels in the initial image into
metal, bone, soft tissue, and air by thresholding,

3) generation of a metal only sinogram by forward pro-
jecting the pixels classified as metal,

4) generation of a synthetic image by replacing the pixels
belonging to the soft tissue class by their mean pixel
value (keeping bone and metal pixels unchanged),

5) generation of a synthetic sinogram by forward project-
ing the synthetic image,

6) replacing the line integrals in the metal shadow by the
synthetic sinogram values (including a linear baseline
shift to ensure that the replacement fits continuously
to the data), and

1We always use additionally an adaptive filtering step in order to suppress
high frequency streak patterns.
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7) generation of the corrected image by filtered back-
projection of the new sinogram.

The use of the forward projected synthetic image to fill
the metal shadow gives a realistic estimate of the missing
data. The classification step is intended to avoid that streak
or shading artifacts propagate through the processing chain
into the corrected image.

The first shortcoming of this algorithm is that the clas-
sification procedure sometimes fails in the presence of
severe beam-hardening artifacts. This issue was addressed by
Schmitt et al. [17] by performing the classification step on
an image that is already corrected by Kalenders algorithm.

Another shortcoming is that the linear baseline correction
in the metal shadow replacement step ensures a continuous
fit of the synthetic sinogram data but not a smooth fit.
Consequently, there is still a fair likelihood that streak
artifacts are generated. This problem is addressed in the
new algorithm by the introduction of a smooth fading of
the synthetic sinogram data into the metal shadow. Another
minor change is that we do not explicitely interpolate across
the shadow, but rather calculate a correction sinogram. These
changes lead to the following processing scheme, which is
also illustrated in Fig. 1:

1) Initial MAR:
a) generation of aninitial image by an FBP recon-

struction,
b) generation of ametal only image by thresholding,
c) generation of ametal mask sinogram by forward

projection of the metal only image followed
setting all non-zero values to one,

d) generation of ametal replaced sinogram by lin-
ear interpolation across the metal shadow in the
original sinogram, and

e) generation of a1st MAR image by filtered back-
projection of the metal replaced sinogram.

2) 2nd pass MAR:
a) generation of asynthetic image as in the original

method by Timmer from the1st MAR image,
b) generation of asynthetic sinogram by forward

projection,
c) generation of anerror sinogram as the difference

of the synthetic sinogram and the original sino-
gram,

d) generation of acorrection sinogram by multiply-
ing the error sinogram with a smoothed version
of the metal mask sinogram,

e) generation of acorrection image by filtered back-
projection of the correction sinogram, and

f) generation of the2nd MAR image by subtracting
the correction image from the original image.

We note that the artifact reduction can be further improved
by running a3rd pass with the2nd MAR image as input. The
original sinogram can be either the acquired sinogram or a
synthesized one re-projected from the original image. Using
the synthesized sinogram results typically in only slightly
worse results, but the processing is much faster since 2D

processing can be used. For the images in this paper, the
second method is used.

Even though the smoothed metal mask sinogram is used to
generate the correction sinogram, we still observe occasion-
ally some newly introduced streak artifacts. Furthermore,
inaccuracies in the segmentation and classification can lead
to some artificial dark or bright shading in the final image.
These remaining problems can be addressed by the following
idea of adaptive application of the correction image: The
starting point for the idea is the fact that the correction image
is supposed to show just the artifacts which are present in
the initial image. In other words, the intention of the last
processing step, namely the image subtraction, is to remove
structured features from the initial image. This observation
leads to the idea of performing the last step locally, if and
only if, the amount of structure in the obtained image is
reduced. One straight forward realization of this idea is to
locally weight the correction image with a weighting factor.
If this weighting factor is allowed to take values smaller or
larger than one, the method can also correct locally an over-
or under-estimation of the strength of the metal artifacts.

We formulate this method using the following definitions:
The N × N initial image is denoted asI with individual
pixels Iij . The correction image and its pixels are denoted
asC andCij , respectively. For a given index pair(k, l) we
denote a sub-image ofI containing the neighborhood of the
image pixel Ikl as Nkl(I). We further assume to have a
structure measureS that gives for any image a quantitative
measure for the amount of structure in the image. Details
about the neighborhood and the structure measure will be
given later. Using these definitions we can formulate the
calculation of a weighting imageW by

Wkl = argmin
w

S (Nkl(I)− wNkl(C)) (1)

and the final image metal artifact corrected imageF is
defined by

Fkl = Ikl −WklCkl . (2)

For the evaluation of this approach we need to pick a
structure measure and a certain neighborhood. Several op-
tions are at hand for the structure measure like the variance
of the image values or their total variation. Here, we use
the entropy of the normalized histogram of the image as
structural measure. The default bin size for the histogram
is 10 HU. The neighborhoodNkl(I) of the pixel Ikl is by
default a11 × 11 patch centered around the pixelIkl. In
a few special cases, we observed that the shading artifacts
in the correction image are so large and smooth that the
default neighborhood of11× 11 is too small in order to be
able to calculate appropriate weighting factors using Eq. (1)
since the structure measure is insensitive to just changing all
pixel values by the same correction value. In this case, the
neighborhood can be adaptively enlarged in order to ensure
thatNkl(C) has sufficient structure.

III. R ESULTS

The proposed method was tested on a couple of clinical
cases. Fig. 2 shows the performance of the new algorithm
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Fig. 1. Flow chart of the proposed MAR algorithm. The lower processing may be executed multiple times.

applied to a few example cases. For illustration purpose, we
show in addition to the initial, uncorrected image and the
final, fully corrected image also the result of the algorithm
without the last step of adaptive application of the correction
image, i. e. the images obtained using a weighting imageW

that is a constant unity image. Please note that we selected
only examples, where the algorithm without adaptive appli-
cation of the correction image does in fact introduce some
new artifacts, which happens only in rare cases. However,
we selected these examples to show the importance and
effectiveness of the additional step of adaptive application
of the correction image.

The top row of Fig. 2 shows a case with bilateral hip
replacement. The dominant artifact in the initial image is
the dark broad streak between the two hips. This dominant
artifact is well reduced using the plain MAR algorithm.
However, it also introduces a few minor streak artifacts
(indicated by arrows). The use of the adaptive application of
the correction image avoids the introduction of these artifacts
while still removing the dominant ones.

The middle row of Fig. 2 shows a case with a ventricular
assist device. The dominant artifacts in the initial image
are streaks emanating from the electrode and the battery.
Again, the plain MAR algorithm reduces the dominant
artifacts substantially. However, it also introduces a lot of

low frequency artifacts, in this case most likely because the
contrast agent in the ventricle and the aorta is classified as
soft-tissue. As in the first case, the adaptive application of
the correction image avoids the introduction of these artifacts
while still removing the dominant one.

The bottom row of Fig. 2 shows another slice of the
same case as in the middle row. The dominant artifact
in the initial image are two streaks connecting the metal
objects. These streaks are reduced considerably by the plain
MAR algorithm (although not completely, see arrow), but
some shading artifacts are introduced (indicated by a circle
in the middle column). Again, the adaptive application of
the correction image preserves the suppression of the metal
artifacts while at same time it does not introduce new
artifacts.

IV. D ISCUSSION

MAR has been a field of active research for more than
30 years now. This long history and the fact that it was
only recently introduced commercially on a clinical scanner
indicates that MAR is a very difficult problem. We presented
in this work two new contributions to the art of MAR.
The first one is a basic MAR algorithm that works well
already in most cases. The second one is the idea of adaptive
application of the correction image, which is specifically
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Fig. 2. Results of the proposed method. Left column: initial images with metal artifacts.Middle column: Result of the proposed method without adaptive
application of the correction image. Right column: Result of the proposed method with adaptive application of the correction image. Level and window
are 0 HU and 500 HU, respectively.

designed to avoid the introduction of new artifacts in the
image after application of MAR. We would like to stress
that the second idea can be applied to any MAR algorithm
as long as this algorithm can be formulated as a subtraction
of an correction image from an initial image, which is in
most cases possible, at least in FBP based methods.

The idea of adaptive application of the correction image
requires a choice for a structure measure and for a neighbor-
hood. So far we obtained decent results using the entropy
as a structure measure and a11 × 11 neighborhood that
can be further enlarged if the sub-image of the correction
image does not contain sufficient structure. However, the
optimization of this structure function is rather slow since a
lot of evaluations of the logarithm are required. Thus, further
investigations in this area comparing effectiveness and speed
of different structure measures are desirable.
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Parallelizable algorithms for X-ray CT image

reconstruction with spatially non-uniform updates
Donghwan Kim and Jeffrey A. Fessler

Abstract—Statistical image reconstruction methods for X-ray
CT provide good images even for reduced dose levels but require
substantial compute time. Iterative algorithms that converge
in fewer iterations are preferable. Spatially non-homogeneous
iterative coordinate descent (NH-ICD) accelerates convergence
by updating more frequently the voxels that are predicted to
change the most between the current image and the final image.
However, the sequential update of NH-ICD reduces parallelism
opportunities.

This paper focuses on iterative algorithms that are more
amenable to parallelization, namely the axial block coordinate
descent (ABCD) algorithm and an ordered subsets algorithm
based on separable quadratic surrogates (OS-SQS), because these
have the potential to be faster than ICD in multiprocessor imple-
mentations. We first adapt the “non-homogeneous” approach to
ABCD, which simply requires updating more frequently the axial
blocks that are predicted to change the most during convergence.
More interestingly, we derive a new version of the OS-SQS
algorithm that leads to spatially non-uniform updates with larger
step sizes for the voxels that are predicted to change the most
between the current image and the final image. The single
subset version of this algorithm is still guaranteed to converge
monotonically.

We use a 3D patient CT scan to demonstrate that the proposed
algorithms with spatially non-uniform updates converge faster
than the ordinary algorithms. In particular, the NU approach
accelerated the OS-SQS algorithm by a factor of three.

I. INTRODUCTION

Statistical image reconstruction for X-ray CT can provide

good images even with reduced dose levels [1]. However, the

substantial compute time required for the iterative algorithms

is a drawback. This paper describes acceleration methods for

parallelizable algorithms for penalized weighted least-squares

(PWLS) image reconstruction.

Iterative coordinate descent (ICD) is a convergent method

that can converge to a reconstructed image that is close to

the minimizer of the PWLS cost function in a small number

of iterations when initialized appropriately [1]. However, ICD

updates each voxel sequentially so it is relatively difficult to

parallelize. To accelerate ICD, one can try to predict which

voxels will change the most between the current image and

the final image, and then update those voxels more frequently.

This non-homogeneous (NH) approach to ICD, called NH-

ICD [2], can reduce the number of iterations needed but does

not affect the parallelizability.

Considering the modern parallel computing architecture, we

focus on two parallelizable algorithms: axial block coordinate

Dept. of Electrical Engin. and Computer Science, Univ. of Michigan, Ann
Arbor, MI 48109 USA (e-mail: kimdongh@umich.edu, fessler@umich.edu).
Supported in part by NIH grant 1-R01-HL-098686.

descent (ABCD) [3] and an ordered subsets (OS) algorithm

based on separable quadratic surrogates (SQS) called OS-

SQS [4]. When appropriately parallelized, these algorithms

should require less time per iteration, but need more iterations

to converge than NH-ICD. (ABCD needed a similar number of

iterations as ICD in one preliminary simulation [3], whereas

OS-SQS needed far more iterations than ICD [5].) Inspired

by the success of NH-ICD, in this paper, we develop similar

acceleration methods for ABCD and OS-SQS. Applying the

NH idea to ABCD is straightforward; we simply update more

frequently the axial blocks that we predict will change the

most during convergence. However, the original NH idea is

not directly applicable to OS-SQS because it updates all voxels

simultaneously. In this paper we derived a new version of the

OS-SQS algorithm that leads to spatially non-uniform (NU)

updates. Specifically, we design the surrogate functions so that

the resulting iterations take larger step sizes for voxels that are

predicted to change the most during convergence. Importantly,

the theoretical derivation ensures that the new SQS algorithm

(the one-subset version of the OS-SQS algorithm) is still

guaranteed to converge monotonically. The derivation uses

a modification of De Pierro’s approach [6]. The resulting

algorithm still updates all voxels simultaneously and thus is

amenable to parallelization.

NH-ABCD and NU-OS-SQS are designed to work effi-

ciently with the separable footprint (SF) projector [7]. The

axial/transaxial separability of the SF projector facilitated the

proposed algorithm to be highly efficient and parallelizable.

We examined the performance of the proposed algorithms

using a 3D patient CT scan. The results show that the proposed

spatially non-uniform algorithms converge much faster than

the ordinary algorithms. The proposed NU approach acceler-

ated the OS-SQS algorithm by about a factor of three.

II. PROBLEM

We reconstruct an image x ∈ RN from a noisy CT

measurement data y ∈ RM by finding the minimizer x̂ of

the following PWLS cost function [1]:

Ψ(x) = Q(x) + βR(x) =
1

2
||y −Ax||2W + βR(x)

=
M
∑

i=1

qi([Ax]i)+β
K
∑

r=1

ψr([Cx]r), (1)

where A is a system matrix (projector), C is a finite differ-

encing matrix, W = diag{wi} is a statistical weighting for

measurement data, qi(t) = 1

2
wi(t − yi)

2, each ψr(t) is a

(edge preserving) potential function, and β is a regularization

parameter. Our goal is to find the minimizer x̂ more efficiently.
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III. SPATIALLY NON-HOMOGENEOUS AXIAL BLOCK

COORDINATE DESCENT (NH-ABCD)

A. Algorithm

ABCD sequentially updates each axial block of voxels

[3]. The low coupling between voxels within an axial block

simplifies the update [3]. Traditional ABCD updates the axial

block sequentially, but the update order is flexible so we can

easily adapt the NH idea of NH-ICD for the ABCD algorithm.

Let x
(n)

k denote the vector of voxel values along the kth

axial block at the nth iteration, and let x
(∞)

k denote the

corresponding converged values, where k ranges from 1 to the

number of voxels in one transaxial plane. One way to describe

how much the voxels change between the nth iteration and the

converged image is by this “update-needed factor” [2]:

û
(n)

k =
∣

∣

∣

∣x
(n)

k − x
(∞)

k

∣

∣

∣

∣

1
.

Ideally NH-ICD would order the voxel updates based on û
(n)

k ,

updating more frequently voxels within axial blocks having

larger values of û
(n)

k , accelerating convergence. However, û
(n)

k

is unavailable at the nth iteration in practice, so NH-ICD uses

the following factor instead:

u
(n)

k =
∣

∣

∣

∣x
(n)

k − x
(n−1)

k

∣

∣

∣

∣

1
, (2)

which is the difference between the current and previous kth

axial block. (In addition u
(n)

k is low-pass filtered to try to

improve u
(n)

k .) In practice, the NH-ICD approach uses both

homogeneous update orders and non-homogeneous update

orders based on u
(n)

k for fast convergence overall.

We adapted these NH ideas to the ABCD algorithm, yield-

ing NH-ABCD, by non-uniformly updating axial blocks. We

implemented a SQS version of NH-ABCD (NH-ABCD-SQS)

that we expected to converge faster than ABCD-SQS.

IV. SPATIALLY NON-UNIFORM SEPARABLE QUADRATIC

SURROGATE (NU-SQS) APPROACH

A. SQS Algorithm

SQS for PWLS has the benefit of low computation per

iteration and high parallelizability [4]. However, it needs

many iterations to converge. This section presents a new SQS

algorithm that uses spatially non-uniform updates to accelerate

convergence without reducing parallelizability.

In a simultaneous update algorithm like SQS, the idea of

updating certain voxels more frequently is unnatural. Instead,

we re-derive the algorithm to increase the step size of voxels

that are predicted to need to change more during convergence.

Simply weighting the step size arbitrarily would break the

monotonicity of optimization, so instead we derive an appro-

priate weighting scheme that preserves the monotonicity (in

the one subset version) by adapting De Pierro’s approach [6].

For completeness, we repeat De Pierro’s argument in [4].

We first rewrite forward projection [Ax]i as follows:

[Ax]i =

N
∑

j=1

aijxj =

N
∑

j=1

π
(n)

ij

(

aij

π
(n)

ij

(xj − x
(n)

j ) + [Ax(n)]i

)

,

where
∑N

j=1
π
(n)

ij = 1 and π
(n)

ij is zero only if aij is zero.

Using the convexity of qi(·) and the convexity inequality:

qi([Ax]i) ≤
N
∑

j=1

π
(n)

ij qi

(

aij

π
(n)

ij

(xj − x
(n)

j ) + [Ax(n)]i

)

.

Thus we have the following separable quadratic surrogate

φ
(n)

Q (x) for the data-fit term Q(x):

Q(x) ≤ φ
(n)

Q (x) ,

N
∑

j=1

φ
(n)

Q,j(xj)

=

M
∑

i=1

N
∑

j=1

π
(n)

ij qi

(

aij

π
(n)

ij

(xj − x
(n)

j ) + [Ax(n)]i

)

. (3)

The second derivative of the surrogate φ
(n)

Q,j(xj) is

d
Q,(n)

j ,
∂2

∂x2j
φ
(n)

Q,j(xj) =
M
∑

i=1

wia
2

ij/π
(n)

ij .

Then the step size ∆
(n)

j of SQS [4] has this relationship:

∆
(n)

j , x
(n+1)

j − x
(n)

j ∝
1

d
Q,(n)

j

∝ π
(n)

ij , (4)

where small d
Q,(n)

j and large π
(n)

ij values lead to larger steps.

Therefore we should encourage π
(n)

ij to be large to accelerate

the SQS algorithm, subject to the condition
∑N

j=1
π
(n)

ij = 1.

The standard choice [4], [8] is π
(n)

ij =
aij∑
N
l=1 ail

, leading to

d
Q,(n)

j =

M
∑

i=1

wiaij

(

N
∑

l=1

ail

)

. (5)

This choice does not exploit the relationship (4). Thus, we

propose to choose π
(n)

ij to be larger if the jth voxel is predicted

to need more update based on the following “update-needed

factor” after the nth iteration:

u
(n)

j =
∣

∣x
(n)

j − x
(n−1)

j

∣

∣. (6)

We select π
(n)

ij =
aiju

(n)
j

∑
N
l=1 ailu

(n)
l

which is proportional to u
(n)

j

and satisfies the conditions for π
(n)

ij . This choice for π
(n)

ij leads

to the following NU-based denominator:

d̃
Q,(n)

j =
1

u
(n)

j

M
∑

i=1

wiaij

(

N
∑

l=1

ailu
(n)

l

)

, (7)

which leads to spatially non-uniform updates ∆
(n)

j ∝ u
(n)

j .

Computing (7) requires one forward and back projection

which increases computation, but Sec. IV-B explains how to

minimize this effect. The NU-based denominator (7) reduces

to the standard denominator (5) when u
(n)

j is uniform.

Recall that NH-ICD balanced between the uniform and non-

uniform voxel ordering to provide fast convergence. Likewise,

using values for u
(n)

j with too large of dynamic range that

would focus most of the updates on a few voxels would likely

be undesirable. Therefore we modified the “update needed
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Fig. 1. Dynamic range compression (DRC) applied u
(4)
j

for NU-OS-SQS.

In each case we map u
(n)
j

to 16 for the largest 5% voxels, to [8 4 2] for

next [10% 20% 40%] voxels, and to 1 for the rest of the voxels, followed
by low-pass filtering. NU-OS-SQS updates more the bright voxels, whereas
ordinary OS-SQS updates all voxels equivalently.

factors” u
(n)

j to have a reasonable dynamic range (see Fig. 1),

which we call dynamic range compression (DRC).

Similar to the data-fit term, we derive the denominator of

NU-SQS for the regularizer term to be:

d̃
R,(n)

j =
1

u
(n)

j

K
∑

r=1

ψ̈r(0)|crj |

(

N
∑

l=1

|crl|u
(n)

l

)

, (8)

by using the choice π
(n)

rj =
|crj |u

(n)
j

∑
N
l=1 |crl|u

(n)
l

and using the

maximum curvature ψ̈r(0) = maxt ψ̈r(t) for efficiency [4].

The computation of (8) is negligible compared to that of data-

fit term.

Combining the above derivations leads to the following

simple and parallelizable NU-SQS iteration:

x(n+1) = x(n) − diag

{

1

d̃
Q,(n)

j + βd̃
R,(n)

j

}

∇Ψ(x(n)).

This algorithm monotonically decreases Ψ(x) and is provably

convergent [9]. We can further accelerate NU-SQS by using

ordered subsets (OS) of projection views [4], [10] which we

call NU-OS-SQS.

B. Implementation

The dependence of π
(n)

ij on u
(n)

j increases computation,

but we found two practical way to reduce the burden. First,

we found that it suffices to update u
(n)

j every few iterations

instead of every iteration. Second, in 3D CT we use forward

and back-projectors that compute elements of the system

matrix A on the fly, and as those elements are computed

for gradient of Q(x), which requires one forward and back

projection, we simultaneously compute the forward and back-

projection needed for the NU-based denominator (7). For the

results shown below, we computed u
(n)

j during one iteration

and computed the NU-based denominator (7) during the next

iteration, and then used it for several iterations. For the first

iteration we form u
(0)

j using a combination of edge and

intensity detector. This is reasonable as the initial FBP is a

good low-frequency estimate, so û
(0)

j will be bigger for voxels

near edges.

C. Application of NU-SQS in ABCD algorithm

We also tried to further accelerate the ABCD algorithm by

applying the NU-SQS principle to ABCD using the following

NU-based denominator:

d̃
Q,(n)

j =
1

u
(n)

j

M
∑

i=1

wiaij

(

∑

l∈Bk

ailu
(n)

l

)

, j ∈ Bk, (9)

where Bk denotes the indices of the voxels in the kth axial

block. For a typical multi-slice CT geometry, the set {l : ail >
0, l ∈ Bk} contains at most three (adjacent) voxels with sim-

ilar u
(n)

l values, and the resulting acceleration was minimal.

However, block coordinate descent (BCD) algorithms [11] that

group voxels in transaxial plane could exploit non-uniformity.

V. RESULT

We implemented the proposed algorithms in C and applied

them to a helical patient CT scan. We examined spatially

nonuniform approaches for ABCD and OS-SQS algorithms in

terms of convergence rate and compute time per iteration. Our

implementations are not optimized in terms of run time, so we

show the results of each method separately. Fig. 2 and Fig. 4

show the root mean squared (RMS) difference (in HU) from

the converged image1 versus normalized run time for NH-

ABCD and NU-OS-SQS. The run time of the algorithms are

normalized in time by one iteration of ABCD-SQS and OS-

SQS respectively, and the plot markers show each iteration.

Image reconstruction included the nonnegativity constraint.

In Fig. 2, NH-ABCD converged 3× faster than ABCD,

similar to the acceleration of NH-ICD in [2]. Using the NH

idea in the ABCD algorithm increased compute time per

iteration by only 3%.
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ABCD−SQS

NH−ABCD−SQS

Fig. 2. RMS difference [HU] from converged image vs. normalized compute
time for previous ABCD-SQS [3] and proposed NH-ABCD-SQS. Compute
time is normalized by the elapsed time for one iteration of ABCD-SQS.

1We generated an (almost) converged image by running 100 iterations of
NH-ABCD-SQS followed by 2000 iterations of SQS.
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Fig. 3. FBP image x(0) , converged image x̂, and reconstructed images by ABCD and OS-SQS algorithms. Numbers in parentheses represent normalized
compute time; ABCD and OS-SQS have different normalized compute time. The proposed NH and NU methods each accelerate convergence to x̂.

In Fig. 4, the NU approach accelerated the OS algorithm

by a factor of three. Incorporating the computation of the

NU-based denominator (7) simultaneously with the gradient

increased run time by 25%, but this increase was amortized by

updating the NU-based denominator only every few iterations.

Fig. 4 suggests that every 3-5 iterations is enough.

Compressing the dynamic range of u
(n)

j , as shown in Fig. 1,

was essential to accelerate convergence compared with solely

using (6). The DRC approach in Fig. 1 is just one of many

possibilities, and we expect to find other candidates that will

lead to even faster convergence.
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Fig. 4. RMS difference [HU] to converged image vs. normalized compute
time for NU-OS-SQS with 246 subsets. Compute time is normalized by the
elapsed time of one iteration of OS-SQS. Number in the legend indicates how
often we update the NU-based denominator.

Fig. 3 shows the center slice of FBP, the converged image

x̂, and reconstructed images by ABCD and OS-SQS methods.

The quality of x̂ compared to FBP reaffirms the benefits of

statistical image reconstruction. The reconstructed images with

the proposed spatially non-uniform approaches are closer to

the converged image x̂ than the ordinary ABCD and OS-SQS

reconstructed images.

VI. DISCUSSION

We have used spatially non-uniform updates to accelerate

parallelizable iterative algorithms ABCD and OS-SQS. In

particular, we derived a new spatial non-uniformity approach

for SQS, a simultaneous update algorithm, which improved

the convergence rate by about a factor of three. The next step

is to optimize the implementation in terms of compute time

and parallelization, and compare the proposed algorithms with

other algorithms such as NH-ICD.
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Combined shearlet and TV regularization in
sparse-view CT reconstruction

Bert Vandeghinste, Bart Goossens, Roel Van Holen, Christian Vanhove, Aleksandra Pižurica,
Stefaan Vandenberghe and Steven Staelens

Abstract—Preclinical in vivo micro computerized tomography
suffers from high image noise, due to limitations on total scanning
time and the small pixel sizes. A lot of different noise mini-
mization algorithms have already been proposed to reconstruct
images acquired in low dose settings. Sparse-view reconstruction
amongst others can reduce acquisition dose significantly, by
acquiring only a small subset of projection views. These low-
view datasets can then be reconstructed by using Total Variation
minimization. However, the performance of TV is suboptimal for
complex images, compared to simple images with little texture.
This is mainly due to the underlying piecewise constant image
model imposed by TV.

A recent efficient solver was developed for convex problems,
able to incorporate regularization terms different from TV.
The work presented here is a proof-of-concept study combining
both isotropic TV as well as shearlets as regularization terms
into one general CT reconstruction algorithm. Shearlets, closely
related to wavelets, take edges into account in a multitude
of directions at different scales, and have good compaction
properties. This makes shearlets a better candidate than TV for
compressed sensing problems. The resulting reconstructions were
compared to TV minimization and to shearlet minimization. The
combination of both shows benefits for sparse-view CT imaging,
and leads to edge-preserved image denoising. Difference images
show a very small loss in resolution, which may be caused by
difficult parameter selection.

Index Terms—Computed Tomography, Iterative Algorithms,
Noise, Reconstruction Algorithms

I. INTRODUCTION

PRECLINICAL in vivo micro computerized tomography
(µCT) suffers from high image noise, as a result of the

small detector pixel sizes, a high scatter-to-primary noise ratio
[1], and the limited time animals can be safely kept under
anesthetics. This results in limited soft tissue contrast. Re-
ducing the dose without sacrificing image quality could offer
significant benefits for longitudinal preclinical research, where
the small animals receive a large dose within a timeframe of
several days to weeks.
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Total variation (TV) minimization has been extensively
investigated in the last decade for image denoising in general
and sparse-view reconstruction in particular [2]–[5]. These
methods have been shown to have superior denoising perfor-
mance in simple classes of images. However, TV minimization
produces cartoon-like approximations due to its underlying
image model. This model biases the results towards distorted
images, which may be less suitable for medical images used
in diagnostics [3].

In the search for objective functions different from TV,
a recent efficient solver was developed, based on a split-
Bregman approach. With this solver, other regularization terms
can easily be tested. One possibility is the shearlet [6],
[7], closely related to wavelets, which has better directional
sensitivity, better `1-norm sparsity and, because of a different
underlying image model, does not lead to the staircasing
effect. We have previously shown that shearlet-regularized
reconstructed images show no staircasing and exhibit small
aliasing artifacts. However, these reconstructions did not out-
perform TV-based regularization for all datasets [8], as the
anisotropic nature of shearlets tends to not work optimally
for isotropic image features. In the research presented here,
we investigate if combining isotropic TV and shearlets can
combine their benefits and reduce the small artifacts induced
by both methods in CT reconstruction. This combination has
already been shown effective in Magnetic Resonance Imaging
reconstruction [9]–[11].

The remainder of this paper is organized as follows. In Sec.
II, we introduce the problem formulation and quickly reiterate
the mathematical background for using the split-Bregman ap-
proach in CT. Section III describes the set-up for the evaluation
on simulated and measured preclinical in vivo µCT data. In
Sec. IV we compare the combination of shearlets and TV
to conventional algebraic reconstruction and to reconstruction
with only one of these terms, for sparse-view data. These
results are then discussed in Sec. V, where suggestions are
also made for further research. Our conclusions are in Sec.
VI.

II. PRELIMINARIES

Previously, we have developed the split-Bregman framework
for regularized CT reconstruction [8], [12], [13]. We denote
an `1-norm by |.|1 and an `2-norm by ‖.‖2. The following
minimization problem is solved:

x̂ = arg min
x

E(x) + λ
∥∥∥C−1/2 (y −Wx)

∥∥∥2

2
, (1)

The second international conference on image formation in X-ray computed tomography Page 37



with x the unknown reconstructed image, E(x) the penalty
term, λ a constant which determines the contribution of the
regularization to the total cost, C a prewhitener to decorrelate
the noise, y the measured data and W the system matrix.

The penalty term E(x) can include different regularizers.
Previously, the `1-norm of the discrete gradient operator has
already been used in anisotropic fasion [13], as well as a case
where shearlets were used [8]. In this study, we will use a
penalty term combining the isotropic TV with shearlets:

E(x) = γTV

√
(∇xx)2 + (∇yx)2 + γSH |Sx|1 , (2)

with ∇ the discrete gradient operator, S the shearlet transform
and constants γTV and γSH weighting the influence of the
two components. This cost function can be minimized by
using Bregman iterations and variable splitting [12], effectively
splitting the `1- and `2-norm into subproblems which are easier
to solve [13]. This results in Algorithm 1.

III. MATERIALS AND METHODS

A. Simulated data

Fan-beam data was simulated using MC-GPU v1.2 [14]1, a
GPU-accelerated x-ray transport simulator. A high resolution
phantom was built based on the work of the FORBILD group2

(Fig. 1a). The resolution rods were simulated as containing
air, surrounded by soft tissue. One 3.6864 cm× 3.6864 cm×
0.1395 cm thick slice was generated, containing 8192× 8192
voxels, to get sufficient subsampling in the holes with smallest
diameter. The detector was simulated as a perfect detector
with 100% efficiency, and consists of 296 elements with
a pixel pitch of 0.14 mm, acquiring 360 uniformly spaced
projection views over 2π. All data was generated using a 60
keV monoenergetic x-ray source with 108 photons per ray.
The sinogram includes scattered photons.

B. Measured data

The X-O CT system (Gamma Medica Ideas, Northridge,
California, USA) was used to obtain preclinical data of one
in vivo contrast-enhanced mouse study. This flat-panel cone-
beam system consists of a 1280×1120 detector with a 100
µm pixel pitch. The tube current is determined automatically
during calibration to ensure that the dynamic range of the
detector is optimally used. Fan-beam data were generated by
retaining only the central detector row. 2048 projection views
were obtained over 2π. A new dataset was generated from
this projection data, by removing all but every 16th projection
(128 views).

C. Data reconstruction and analysis

All datasets were reconstructed using 4 methods: SIRT,
split-Bregman using isotropic TV (SpBR-TV), split-Bregman
using shearlets (SpBR-SH) and split-Bregman using both
shearlets and isotropic TV (SpBR-SHTV). In SpBR, x(i+1)

1Freely available from http://code.google.com/p/mcgpu/
2http://www.imp.uni-erlangen.de/phantoms/highcontrast/highcontrast.html

resolution phantom preclinical reference

a b

Fig. 1. Reference images for the simulated data (resolution phantom
converted to 60 keV attenuation values) and the preclinical data (converged
SIRT reconstruction of 2048 projection views).

was minimized using 30 iterations of conjugate gradient on
the normal equations. Matrix W was implemented as the
2D Distance Driven projector [15]. The shearlet transform
S was implemented as previously proposed by Goossens et
al. [16], based on the Meyer wavelet. Soft-shrinkage [12]
was used to implement the minimization to find d(i+1). The
Bregman update step used to find b(i+1) is trivial to solve.
All regularized reconstructions converged and were stopped
at iteration 20. All SIRT reconstructions were stopped when∥∥x(i+1) − x(i)

∥∥2

2
/
∥∥x(i+1)

∥∥2

2
< 10−4.

The simulated data was reconstructed to a 2562-grid with
voxel pitch 0.16 mm, the preclinical data was reconstructed to
a 2562-grid with 0.13 mm voxel pitch. The diagonal elements
of C were set to cii = e−yi [17] with yi the measured counts,
serving as an estimator for the mean number of counts.

For each regularized reconstruction, parameter λ was em-
pirically chosen, by reconstructing with different λ values
and gradually making the search interval smaller, fine tuning
the amount of denoising. This generally results in 5 to 10
reconstructions needed to determine a good λ value for the
case of only one regularizer. When SH and TV were combined,
γSH and γTV also had to be empirically determined. The
parameter µ was always set to 0.025λ, which was empirically
determined.

The peak signal-to-noise ratio (PSNR) was determined to
objectively evaluate the preclinical images. The SIRT recon-
struction of 2048 projection views was used as the reference
many-view image (Fig. 1b).

IV. RESULTS

Figure 2 shows the resolution phantom reconstructed with
the different methods, zoomed in to the low resolution part of
the resolution phantom. For SpBR-TV, noise patches become
apparent in the image with little denoising (λ = 4000),
compared to more denoising (λ = 1600). However, a slight
increase in resolution can be noted when only a small amount
of denoising is applied. Furthermore, the rods are shaped
irregularly and are not perfectly round.

In the SH reconstruction, denoising with a low λ factor
does not eliminate all noisy patches in between of the rods.
The resolution increases when less denoising is used, also
increasing the noise in the background. However, when SH

Page 38 The second international conference on image formation in X-ray computed tomography



Algorithm 1 The proposed split-Bregman reconstruction algorithm, solving Eq. (1).

initialize d(0) = 0, b(0) = 0, i = 0
repeat
x(i+1) = arg min

x

λ
2

∥∥C−1/2(y −Wx)
∥∥2

2
+ µ

2

∥∥∥d(i)
TV,x −∇x (x)− b(i)

TV,x

∥∥∥2

2
+ µ

2

∥∥∥d(i)
TV,y −∇y (x)− b(i)

TV,y

∥∥∥2

2

+µ
2

∥∥∥d(i)
SH − Sx− b(i)

SH

∥∥∥2

2

s =

√∣∣∣∇xx(i+1) + b(i)
TV,x

∣∣∣2 +
∣∣∣∇yx(i+1) + b(i)

TV,y

∣∣∣2
d(i+1)
TV,x = max

(
s− 1

µ , 0
) ∇xx(i+1)+b

(i)
T V,x

s , d(i+1)
TV,y = max

(
s− 1

µ , 0
) ∇yx(i+1)+b

(i)
T V,y

s

d(i+1)
SH = arg min

d
|d|1 + µ

2

∥∥∥d− Sx(i+1) − b(i)
SH

∥∥∥2

2

b(i+1)
TV,x = b(i)

TV,x +
(
∇xx(i+1) − d(i+1)

TV,x

)
, b(i+1)

TV,y = b(i)
TV,y +

(
∇yx(i+1) − d(i+1)

TV,y

)
b(i+1)
SH = b(i)

SH +
(
Sx(i+1) − d(i+1)

SH

)
i← i+ 1
until i = iterations + 1

SpBR-SH
! 1300

SpBR-SHTV
! 4000

! 1600
SpBR-TV

SIRT

! 4000
SpBR-TV

SpBR-SH
! 3000

Fig. 2. Comparison of SIRT of noisy data, combined SH and TV
(γSH = 1.0, γTV = 0.45), TV with low and high λ, SH with low
and high λ. All images were normalized to the same window.

and TV are combined (γSH = 1.0 and γTV = 0.45), round
rods are obtained, whilst still perfectly minimizing the noise
in the background.

Figure 3 compares SpBR-TV, SpBR-SH and SpBR-SHTV
to the reference high-dose SIRT reconstruction in the case

of measured preclinical data. Parameter λ was set to 2000
for SpBR-SHTV, with γSH = 0.25 and γTV = 1.0. Plotted
on the right are the absolute difference images between the
reconstruction and the reference image. SIRT shows streak-
ing artifacts when only 128 views are used. All regularized
reconstructions lead to higher PSNR compared to SIRT.

The difference image for SpBR-TV shows some resolution
loss at the edges of the animal bed and at the body contour, pri-
marily at edges which are not mainly horizontally or vertically
oriented. For SH, these edges are not visible. However, there
are some streaking artifacts left, which could not be minimized
with a different λ choice without sacrificing resolution. When
SH and TV are combined, good denoising properties are
obtained with a small amount of resolution loss. This is
primarily visible at the sternum, where the spongious bone is
more difficult to distinguish on SpBR-SHTV reconstructions
than on SIRT or with TV alone.

V. DISCUSSION

Combining TV and SH regularization into one algorithm
shows benefits for sparse-view CT imaging. Previous research
has shown that shearlets do not lead to any form of piecewise-
constant behavior, but on the other hand do not tend to
approximate uniform regions as well as TV [8]. The prelim-
inary results presented here show that a combination of both
regularization terms combines the benefits of both SH as well
as TV.

One tricky and very sensitive area is parameter selection in
iterative algorithms. Next to determining λ empirically, there
is now also the difficulty of weighing the contribution of SH
against the contribution of TV with γSH and γTV . Special care
has to be taken to not let TV overpower SH, as this will result
in piecewise constant behavior. In theory, we would like to
use shearlets to minimize the cost function in general, and use
a little bit of TV to minimize the introduced artifacts, such as
Gibbs phenomena next to jump discontinuities, or remaining
streaking artifacts. We have shown that this works sufficiently
in the case of preclinical data, although with a small loss of
resolution. This may be due to parameter selection.
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Fig. 3. Preclinical sparsified data reconstructed from 128 projection
views with SIRT, SpBR-TV, SpBR-SH and SpBR-SHTV (γSH = 0.25,
γTV = 1.0). All images were normalized to the same window. Difference
is the absolute difference between reconstruction and reference.

On the other hand, a larger γTV than γSH is needed when
phantom data is reconstructed. Shearlets can not reconstruct
the uniform areas in phantoms accurately, as was demonstrated
with the resolution phantom in Fig. 2. However, these cases
are not realistic when doing (pre)clinical measurements. Op-
timal selection of these parameters will be subject to future
research, as well as task-based observer studies to determine
if SpBR-SHTV has better diagnostic value than simple TV
minimization.

VI. CONCLUSION

We have combined TV and shearlet minimization into one
reconstruction algorithm, and have shown its benefits for
sparse-view CT imaging in a proof-of-concept study. A small
loss of resolution is apparent, probably due to suboptimal
parameter selection.
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“Efficient design of a low redundant discrete shearlet transform,” Proc.
of the 2009 Int. Workshop on Local and Non-Local approximation in
Image Processing, pp. 112–124, 2009.

[17] K. Sauer and C. Bouman, “A local update strategy for iterative recon-
struction from projections,” Signal Processing, IEEE Transactions on,
vol. 41, no. 2, pp. 534–548, 1993.

Page 40 The second international conference on image formation in X-ray computed tomography



 

Low-dose CT image reconstruction by adaptive-weighted TV-

constrained penalized weighted least-squares approach 

Yan Liu, Jianhua Ma, Hao Zhang, Jing Wang and Zhengrong Liang 

Abstract–Previous work has shown that computed 

tomography (CT) image can be reconstructed satisfactorily 

from sparse-view or under-sampled projection data by 

minimizing the total variation (TV) of the desired image with 

some data constraints without considering the data statistical 

properties.  However, the data statistical properties play an 

important role for CT image reconstruction, especially for the 

data acquired from low-mAs or low-dose protocols.  Inspired 

by previous works in statistical iterative reconstruction (SIR), 

this paper introduces a novel method to integrate the data 

statistical properties for an adaptive-weighted TV-constrained 

penalized re-weighted least-squares (AwTV-PRWLS) 

approach with comparison to the conventional TV-constrained 

PRWLS method (i.e., TV-PRWLS).  It further compares the 

above approaches to the previous TV minimization with 

projection onto convex sets approaches (i.e., AwTV-POCS and 

TV-POCS).  All these four approaches were tested by cone-

beam projection data from an anthropomorphic head phantom.  

The results indicate that when the current normal dose 

acquisition becomes sparse, i.e., the noise level is very low in 

each projection view and the number of projection views is 

reduced, both the AwTV-POCS and TV-POCS methods can 

reconstruct images satisfactorily, while the AwTV-PRWLS 

and TV-PRWLS algorithms may produce inferior results.  

When the data sparsity is not severe and the noise level is 

relatively high as in low-mAs acquisitions, the AwTV-PRWLS 

and TV-PRWLS algorithms may be advantageous over the 

AwTV-POCS and TV-POCS methods.  In the case of both 

sparse sampling and low-mAs acquisition, all the four 

approaches couldn’t satisfactorily reconstruct the images.  In 

addition, the results show that AwTV-based approaches can 

outperform TV-based approaches.  AwTV-PRWLS has 

advantage in non-sparse and low-mAs acquisition, while 

AwTV-POCS has advantage in sparse and high-mAs 

acquisition.  Both AwTV-PRWLS and AwTV-POCS have the 

potential for low-dose CT imaging via reducing the X-ray 

exposure and further evaluation is needed. 

 
Index Terms–Adaptive-weighted total variation, penalized 

re-weighted least squares, anisotropic weights, image 

reconstruction, noise reduction, low-dose computed 

tomography 
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I. INTRODUCTION 

owadays, in clinical practice, around thousand of 

projection views are performed for computed 

tomography (CT) image reconstruction, and such high X-ray 

exposure will cause potential negative effects to the patients.  

Previous works have shown that it is possible to reconstruct 

CT image from sparse-view or angularly under-sampled 

projections by minimizing the total variation (TV) of the 

desired image with some data constraints.  A typical 

example is the TV minimization with projection onto 

convex sets (TV-POCS) approach [1], and its upgraded 

computing algorithm, i.e., the adaptive-steepest-descent-

POCS (ASD-POCS) algorithm [??].  Both algorithms are 

based on the assumption of piecewise constant source 

intensity distribution and showed good ability to reconstruct 

piecewise smooth image without introducing noticeable 

artifacts.  Considering the anisotropic property of edges in 

the image domain, an adaptive-weighted total variation 

(AwTV) model and its associated computing algorithm, i.e., 

AwTV-POCS, was introduced by Liu et al. [2] as another 

example in the field.  The AwTV model showed noticeable 

gain in edge preservation by incorporating the edge 

characteristics in the reconstruction. 

Although the above algorithms (i.e., TV-POCS and 

AwTV-POCS) showed effective reconstruction from sparse 

projection views, they do not consider the statistical 

properties of the projection data and, therefore, demand a 

high fidelity between the projection data and the anticipated 

data, which may limit further reduction for low-dose CT 

(LDCT) imaging.  On the other hand, remaining sufficient 

angular-sampling rate while reducing the X-ray tube 

current-milliampere-seconds (mAs) or voltage-kilovoltage-

peak (kVp) for data acquisition at all views has been 

investigated as an alternative means for LDCT imaging via 

statistical image reconstruction strategies [3].  Based on 

repeated data-scanning experiments, a nonlinear relationship 

between the variance and mean of the acquired low-mAs 

projection data was determined, which provides a 

reasonable theoretical prediction of the variance of the 

projection data.  Based on the nonlinear relationship, Wang 

et al. [3] investigated a framework of penalized re-weighted 

least-squares optimization (PRWLS) to reconstruct the low-

mAs data for LDCT imaging.  More general description on 

CT image reconstruction methodologies can be found in [4, 

5].  This alternative means for low-dose CT imaging may 

also encounter limitation because the mAs or kVP level 

cannot be lowered unlimitedly. 

By considering the advantages of both the TV 

minimization approaches and the statistical reconstruction 

N 
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strategies, we consolidate the statistical property of the 

projection data with the constraints of TV on the image 

intensity distribution for LDCT image reconstruction in this 

study.  While similar concepts have been recently presented 

in [6, 7], two distinctions differentiate our work from theirs.  

(1) In their data statistics description or WLS term, the 

weight is related to the acquired random data and does not 

reflect the truth.  Our weight reflects the truth on the first 

and second statistical moments of the data and, therefore, 

results in the re-weighted LS minimization.  (2) Their TV 

term remains the conventional definition, while ours 

incorporates additional anisotropic property of edges in the 

TV definition on the image and, therefore, results in the 

AwTV model.  By consolidating the advantages, we will 

focus, in this paper, on the comparison between AwTV/TV-

PRWLS strategy and AwTV/TV-POCS approach. 

The remainder of this paper is organized as follows.  In 

section II, the noise model described in [8] will be presented 

for the WLS term, followed by presentation of the AwTV 

model described in [2] to establish the AwTV-PRWLS 

framework where TV-PRWLS is a simplified version.  In 

section III, preliminary experimental results will be reported 

with comparison to the AwTV/TV-POCS approach.  

Finally, discussions and conclusions will be given in Section 

IV. 

II. MATERIALS AND METHODS 

A. Penalized Re-weighted Least-squares Approach 

Practically, the measured transmission data I can be 

assumed to statistically follow the Poisson distribution upon 

a Gaussian distributed background noise: 
2Poisson( ) Normal( , )e eI m                    (1) 

where   is the mean of Poisson distribution and em  and 

2

e  are the mean and variance of the Gaussian distribution. 

Based on the signal model (1), Ma et al. [8] recently 

derived a new formula for the mean-variance relationship in 

CT projection domain by considering the effect of the 

Gaussian distributed electronic noise background at 

different mAs levels: 

,

0 0

2

2 1.251
exp( ) 1 exp( )

i

e i

i i

i i

p p p
I I




 




 


           (2) 

where 0iI  is the mean number of incident photons along 

projection path i, ip  denotes the log-transformed ideal 

projection datum along path i and is usually called the line 

integral of the attenuation coefficients along the projection 

ray,
2

,e i  is the variance of the electronic noise associated 

with the measurement on ip , and 
2

iP  represents the 

variance of measuring the projection datum ip .  From Eq. 

(2), it can be observed that a larger line integral ip  value, 

indicating less X-ray photons being detected in the detector, 

will have a larger variance.  Thus, a smaller signal-to-noise 

ratio (SNR) is expected due to the Poisson noise nature of 

the detected photons.  On the contrary, a smaller line 

integral ip  value will result in a higher SNR.  Due to this 

property, the 2

iP  of (2) shall be used as the weights for the 

WLS term, i.e., a lower SNR shall contribute less for the 

estimate of the ideal projection and a higher SNR will 

contribute more for the estimation.  This expectation is 

mathematically proved by Taylor expansion on the signal 

model (1) as described in [8]. 

Using the terminologies in the previous study [3], the cost 

function of PRWLS can mathematically be written as: 
1ˆ ˆ( ) ( ) ( ) ( )Tp A p A R          .                 (3) 

The first term in the right hand side is the re-weighted least-

squares (RWLS) measure, where p̂  is the acquired 

projection data and A represents the system transfer matrix, 

which depends on the projection geometry, and its elements 

of ,i ja  can be the length of the intersection of projection ray 

i with voxel j,   is the vector of the attenuation coefficients 

to be reconstructed.  The matrix   is a diagonal matrix and 

its ith element denotes the variance of the projection datum 

at detector i as defined by Eq. (2).  This definition 

distinguishes the RWLS from the conventional WLS.  

Minimizing only the first term, similar to the maximum-

likelihood (ML) approach, usually leads to unacceptable 

results [4], thus a penalty R (the second term in the right 

hand side) is desired for a penalized solution.  The 

parameter 0   is designed to control the weight of the 

penalty.  The desired image can be calculated by minimizing 

the cost function (4), which can be written as: 

0
arg min ( )


 


  .                                (4) 

For LDCT image reconstruction, the resulting image 

always suffers noticeable artifacts due to the low SNR 

property of the signals.  To eliminate the effects of the 

noise, many penalty forms have been used as an a priori 

constraint to regularize the weighted least-squares solution, 

such as isotropic quadratic term in [3] and anisotropic 

quadratic term in [9].  In this work, we adapt both the 

AwTV term introduced in [2] and the conventional TV term 

in [1] as a penalty respectively.  By solving Eq. (4) 

iteratively with the penalty, a desired resulting image can be 

obtained.  Their related computing algorithms are presented 

in the next two sections. 

B. Iterative Algorithm for TV-PRWLS Minimization 

From the previous work [1], the definition of TV is given 

as: 
2 2 2

, , 1, , , , , , 1 , , , 1,3
, ,

( ) ( ) ( )

                          

s t z s t z s t z s t z s t z s t zAwTV D
s t z

        
       (5) 

where s and t are the indices of the location of the 

attenuation coefficients along in-plane domain (slice), z is 

the indices of the attenuation coefficients along the axis 

direction.  Thus, the cost function of PRWLS-TV is: 
1ˆ ˆ( ) ( ) ( )T

TV TV
p A p A          .      (6) 
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In practice, several schemes can be implemented to solve 

such optimization problem, for example the PWLS ordered 

subsets (PWLS-OS) method was introduced in [5].  In our 

study, the conventional Gauss-Seidel method as described in 

[3] was used to solve this problem.  Simply, the proposed 

algorithm was termed as “TV-PRWLS”. 

C. Iterative Algorithm for AwTV-PRWLS Minimization 

Based on the definition of AwTV in [2], anisotropic 

weights are added to the conventional TV term and the 

addition can mitigate the over-smooth effects of the 

conventional TV term.  Simulation results have shown that 

the AwTV model can more accurately reconstruct image as 

compared to the conventional TV model [2].  Inspired by 

the motivation of AwTV-POCS approach, the AwTV model 

is adapted to the PRWLS strategy here.  The definition of 

AwTV can be written as: 
2 2
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where   in the weights is a scale factor which controls the 

strength of the diffusion during each iteration.  Then, the 

cost function for AwTV -PWRLS can be written as: 
1ˆ ˆ( ) ( ) ( )T

AwTV AwTV
p A p A          .         (9) 

Since the weights in AwTV depend on the local intensity 

of the image, it is numerically difficult to utilize directly the 

second-order derivative for the purpose of effectively 

minimizing the objective function (9), the weights will be 

separately pre-computed before each iteration step.  By 

executing such iterative reconstruction, a desired image can 

be obtained. 

III. RESULTS 

To estimate the incident X-ray intensity over the field of 

view (FOV), an air scan was performed at a specific mA 

level.  In this study, the tube voltage was set to 125 kVp.  

Figure 1 shows an example of the incident X-ray intensity in 

low-dose case.  The X-ray tube current was set at 10 mA 

and the duration of the X-ray pulse at each projection view 

was set to be 10 ms.  For the corresponding high-dose case, 

the tube current was set at 80 mA and the duration of the X-

ray pulse at each projection view was 12 ms.  A total of 678 

projection views were collected for a full 360 rotation.  The 

dimension of each projection image is 1024×768 pixels.  To 

reduce computational time, the projection data were down-

sampled by a factor of 2. Only 8 out of 768 slices from the 

projection image were selected for image reconstruction. 

The distance of source-to-axis is 100 cm and source-to-

detector distance is 150 cm.  The pixel size in the 

reconstructed image is 0.776×0.776×0.776 mm
3
. 
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Fig. 1:  Incident X-ray intensity profile across the field of view with 10 mA 

tube current and 10 ms pulse time for fan-beam geometry. 

A. Noise Reduction 

In this study, the above presented TV-PRWLS and 

AwTV-PRWLS reconstruction algorithms were tested by 

cone-beam projection data acquired from an 

anthropomorphic head phantom. An image reconstructed by 

the Feldkamp–Davis–Kress (FDK) method with Hamming 

window at Nyquist frequency cutoff in 80 mA protocol was 

used as a reference for comparison purpose. 

Figure 2 shows that the reconstructed images by TV-

PRWLS and AwTV-PRWLS can noticeably reduce the 

noise for 10 mA data.  In addition, because of the 

anisotropic property of the AwTV model, the result of 

AwTV-PRWLS shows more some improvement (as 

indicated by arrows) compared to  the result of the TV-

PRWLS. 

 

  
(a)                                              (b) 

   
(c)                                       (d) 

Fig. 2:  Transverse reconstructed images of the head phantom:  (a) The 

reconstruction with 80 mA tube current by FDK method.  (b) The 

reconstruction with 10 mA tube current by FDK method.  (c) The 

reconstruction with 10 mA tube current by TV-PRWLS approach.  (d) The 

reconstruction with 10 mA tube current by AwTV-PRWLS approach.  The 

display window is [0, 0.03]. 

 

To further visualize the difference between the two 

approaches for image reconstruction in low-dose case, 

profiles of the resulting images were drawn across the 108
th

 

row and 127
th

-227
th

 column for each approach and are 

shown in Fig. 3. 
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Fig. 3:  Horizontal profiles of the reconstructed images. 

B. Image Reconstruction from Sparse-view Projections 

Previous works have shown that the gain of implementing 

the TV or AwTV term as an objective function with data 

constrains for image reconstruction from sparse projection 

views is significant [1, 2].  The results show that both TV-

POCS and AwTV-POCS can reconstruct image very well by 

sparse number of projection views.  Moreover, the 

improvement by considering the edge properties in the 

AwTV model over the conventional TV model was 

noticeable for LDCT image reconstruction [2].  In order to 

further insight the possibility of extending the PRWLS 

strategy for LDCT image reconstruction from sparse 

projection views, we performed a comparison study among 

AwTV/TV-PRWLS strategies and AwTV/TV-POCS 

approaches.  The TV-POCS algorithm introduced in [1] and 

the AwTV-POCS algorithm introduced in [2] were 

implemented.  A total of 113 projections were selected from 

the original 678 views in different protocols (i.e., 80mA and 

10mA) to mimic the sparse data.  The reconstruct image 

results are shown in Fig. 4 and Fig. 5. 

 

   
(a)                                              (b) 

  
 (c)                                              (d) 

     
 (e)                                                  (f) 

Fig. 4:  Comparison study between AwTV/TV-PRWLS strategy and 

AwTV/TV-POCS approach in high-dose case.  (a) The reference or high 

dose FDK image from 80 mAs data. (b)-(f): The reconstructions from 113 

(or sparse) projection views with 80 mA tube current, where (b) from FDK 

method, (c) from TV-PRWLS approach, (d) from AwTV-PRWLS 

approach, (e) from TV-POCS approach, and (f) from AwTV-POCS.  The 

display window is [0, 0.03]. 

  
(a)                                                     (b) 

  
 (c)                                                   (d) 

  
 (e)                                                (f) 

Fig. 5:  Comparison study between AwTV/TV-PRWLS strategy and 

AwTV/TV-POCS approach in low-dose case.  (a) The reference or high 

dose FDK image from 80 mAs data.  (b)-(f): The reconstructions from 113 

(or sparse) projection views with 10 mA tube current, where (b) from FDK 

method, (c) from TV-PRWLS approach, (d) from AwTV-PRWLS 

approach, (e) from TV-POCS approach, and (f) from AwTV-POCS.  The 

display window is [0, 0.03]. 

 

From Figure 4, it can be observed that both the TV-POCS 

and AwTV-POCS have higher ability to reconstruct image 

from sparse projection views in the high-dose 80 mA 

protocol.  Because a scalar parameter   was introduced to 

the AwTV-POCS, the resolution and noise level can be 
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controlled by selecting different values of  .  Thus, the 

result from the AwTV-POCS has a better resolution than the 

TV-POCS as indicated by arrows in Fig. 4(e) and Fig. 4(f). 

In the low-mA (i.e., 10 mA protocol) and sparse case, as 

shown at Fig. 5, we can conclude that all the four algorithms 

produced weaker results.  For the PRWLS strategy, the 

sampling rate is not sufficient.  When the rate was increased, 

better result was obtained, as seen in Fig. 2.  For the TV-

POCS approach, the data constraint is not sufficient.  When 

the data noise was decreased in the high-dose case, better 

result was obtained, as seen in Fig. 4. 

IV. CONCLUSION AND DISCUSSION 

In this work, we presented the PRWLS strategy with 

incorporation of the TV image model.  Two related 

algorithms, AwTV-PRWLS and TV-PRWLS, were 

formulated and tested for LDCT image reconstruction.  The 

visual comparison of these two algorithms indicates that 

both algorithms can mitigate the noise effect in the 10 mA 

protocol (i.e., about 1/8 of the high-dose case) for full 

angular scanning protocol.  Because of the consideration of 

the anisotropic property of edges in the AwTV model, 

reconstruction resolution can be improved by selecting a 

proper value of   in the AwTV model.  Thus, a higher 

quality of image can be obtained by using the AwTV -

PRWLS algorithm. 

We also compared these two algorithms with the previous 

works (i.e., TV-POCS and AwTV-POCS) for image 

reconstruction from sparse-view projections (i.e., the 

number of views was about 1/6 of the original views).  In 

such sparse case, the TV-POCS and AwTV-POCS can have 

a higher ability than the TV-PRWLS and AwTV-PRWLS 

for reconstruction of the high-dose data from the 80 mA 

protocol.  We further observed the gain of the AwTV model 

as compared to the conventional TV model.  In the low-dose 

(10 mA protocol) and sparse-view (1/6 views) case, all the 

four algorithms could not produce satisfactory results. 

Based on experimental results above, we can draw the 

conclusions as follows.  For sufficient angular sampling and 

low-dose on each view, the PRWLS strategy has advantage.  

For sparse sampling (low-dose) and high counts on each 

view, the TV approach has advantage.  Further evaluation 

on these two alternative approaches to LDCT imaging is 

needed and is under progress. 
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Algebraic Tomosynthesis Reconstruction
with Spatially Adaptive Updating Term

Yulia M. Levakhina, Jan Mueller, Robert L. Duschka, Florian M. Vogt, Joerg Barkhausen, Thorsten M. Buzug

Abstract—Digital Tomosynthesis (DT) is an attractive low-dose
alternative to Computed Tomography (CT) in certain medical
imaging applications. In contrast to CT, an accurate image
reconstruction in DT is a challenging task due to the incomplete-
ness of the projection data. In the current work, an adaptive
weighting for the back-distribution of the updating term in
the Simultaneous Algebraic Reconstruction Technique (SART) is
proposed. It is designed for tomosynthesis imaging of objects with
high-contrast features. The weights are spatially adaptive and
calculated based on the dissimilarity evaluated in a space called
“backprojected space”. The proposed approach is evaluated on
real three-dimensional tomosynthesis data. The reconstruction
results demonstrate the feasibility of the proposed algorithm to
reduce out-of-focus artifacts and black shadows produced by
the dense features. The proposed algorithm can potentially be
included into various iterative reconstruction algorithms with an
additive updating strategy and it can also be extended to the a
CT scan with full data..

I. INTRODUCTION

Digital Tomosynthesis (DT) is a limited angle X-ray imag-
ing technique for producing a three-dimensional stack of cross-
sectional images of an object. Nowadays, it is an attractive
low-dose alternative to Computed Tomography (CT) in certain
imaging applications e.g. breast imaging [1], chest imaging
[2], dental imaging [3] or musculoskeletal imaging of hands
[4]. In contrast to CT, an accurate image reconstruction
in DT is a challenging task since only limited number of
projections acquired over limited angular range is available.
The incompleteness of the projection data results in several
problems. First, tomosynthesis provides images with limited
in-depth resolution. Only the planes parallel to the detector can
be reconstructed with high resolution. Second, the in-plane
images are typically affected by out-of-focus artifacts and
black shadows. Out-of-focus artifacts are produced by struc-
tures located above and below the plane of interest and appear
as “ghosting” copies of those structures. It is known that an
intensity of out-of-focus artifacts is proportional to the size and
density of the artifact-causing object [5]. Black shadows are
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produced by high-contrast boundaries which are perpendicular
to the tube movement direction. High-absorption features with
clearly visible boundaries like bones, microcalcifications or
metal objects create both type of artifacts at the same time.
Various reconstruction methods have been proposed so far in
order to reduce artifacts and obtain tomosynthesis images with
good quality [6].

The tomosynthesis measurement process is schematically
shown in Fig. 1 (left) and the simple backprojection is shown
in Fig. 1 (right). The selected plane of interest with the green
triangle feature is marked by a dashed gray line. It can be seen
that after the backprojection step the green triangle feature
appears sharp in this plane. At the same time the red circle
feature produces blur in this plane, i.e. it appears as multiple
“ghosting” copies. This happens because the green triangle
belongs to the selected plane and the corresponding projection
value is always back-projected onto the “correct” location. The
red circle does not belong to the selected plane and therefore
it is always back-projected onto the “wrong” location. Taking
into account the blur formation principle, it is possible to intro-
duce the weighting coefficients into reconstruction algorithms
for DT in order to suppress contributions from high-contrast
structures when they are backprojected onto wrong geometri-
cal locations. As it will be discussed in the Section 2, the blur
formation can be decomposed into angular components when
considering a so-called backprojected space (also known as a
stackgram representation [7] in two-dimensional case).

An empirical adaptive weighting scheme which allows for
the reduction of the simple backprojection blur in muscu-
loskeletal tomosynthesis has been presented recently [8]. The
scheme is based on the evaluation of the dissimilarity in the
backprojection space. In this scheme the weighting coefficients
are calculated for each pixel and each angular view individu-
ally based on the ensemble of the measured projection data.
Extending this idea, the weighting can be used in an iterative
reconstruction. In the current work an algorithm for using the
adaptive weighting for the back-distribution of the updating
term in the Simultaneous Algebraic Reconstruction Technique
(SART) is proposed. The proposed algorithm does not need
any segmentation step or decisions done by thresholding. An
algebraic reconstruction (SART) was chosen as an example
to show the capability of the proposed algorithm to reduce
artifacts. The proposed algorithm is not only limited to the
algebraic reconstruction and can potentially be included into
various iterative reconstruction algorithms with an additive
updating strategy. The scheme is also not only limited to
tomosynthesis geometry but can be extended to the full scan
CT case and applied, for example, to the metal artifact
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Figure 1: The principle of blur formation in tomosynthesis
and a motivation for the weighted backprojection.

reduction problem or data truncation problem.
The paper is organized as follows. In the second section, a

short description of the SART algorithm will be given. Then,
an idea of the backprojection space is explained followed by
the scheme for weighing coefficients calculation. In the third
section, the materials and the used tomosynthesis acquisition
system are described. In fourth section, the reconstruction
results are presented and discussed. Finally, the fifth section
presents the conclusion and the outlook.

II. METHODS

In the current work an algorithm for weighting coefficients
calculation for an additive iterative tomosynthesis reconstruc-
tion on an example of Simultaneous Algebraic Reconstruction
Technique (SART) is proposed. The process of coefficients
calculation is called adaptive because it is based on the
ensemble of the projection data and it is spatially adaptive
because an individual weighting coefficient is assigned to each
updating term and each image voxel.

A. SART

The tomographic reconstruction problem can be considered
as a system of linear equations, which is undetermined in
case of limited angle tomosynthesis acquisition. Let f be
a discrete representation of an object to be reconstructed,
A be a system matrix describing the measurement process
and acquisition geometry and p be the measured data. The
algebraic reconstruction is searching for a solution of a system
Af = p in therms of L2 norm minimization min |Af − p|2,
i. e. it iteratively minimizes the residual error between the
measured data and the calculated forward projection of the
estimated image. It works as follows: in i-th iteration a forward
projection of the current solution is calculated. Afterwards it
is compared with the measured data and based on this an
updating term is calculated. Then, the updating term is homo-
geneously projected back into image domain according to the
system matrix A. If an updating term is applied considering
each single ray, the method corresponds to the classical ART
scheme, if an updating term is applied considering a complete
view, the method is called Simultaneous ART (SART). In the

presence of high density features such as bones or metal the
corresponding measured projection value will be relatively
high. Consequently, an updating term calculated based on
these projection values will be “too large” for certain voxels,
contributing this way to the formation of the out-of-focus
artifacts and black shadows.

B. Backprojected space

A backprojected space representation allows for easily iden-
tifying which voxels will get “too large” updating term and
for calculatingthe corresponding weighting coefficients.

The stackgram representation is a sinusoid-like curve de-
composition of the sinogram [7] . In case of the two-
dimensional imaging geometry it is an intermediate step
between the sinogram domain and the image domain. In order
to construct this representation, the integral (summation) in the
backprojection operator is replaced by a stack operator. The
stack operator S maps the projection p (l, θ) onto the three-
dimensional function h (x, y, θ). In case of the 2D parallel
beam geometry h is defined as:

h (x, y, θ) = Sp (l, θ) = p (x sin θ + y cos θ, θ) . (1)

In the two-dimensional case hxy (θ) represents the data on the
sinus, which the image-point (x, y) produces in the sinogram.
In case of the three-dimensional imaging geometry, a similar
operator S can be defined for each point (x, y, z) within
the reconstructed volume, resulting in the four-dimensional
backprojected space h (x, y, z, θ):

h (x, y, z, θ) = Sp (u, v, θ) . (2)

The angle θ describes the X-ray tube position and (u, v) are
coordinates describing a point on the detector. In contrast to
the simple two-dimensional parallel beam geometry where
the S is easily defined, in the three-dimensional case it can
not be easily described and depends on the specific geometry
of the scanner. A vector hxyz (θ) contains all backprojected
values contributing to the current point (x, y, z) from differ-
ent angular views. In case if a volume contains only one
feature located at the position (x, y, z), the corresponding
projection data p (u, v, θ) will contain exactly one three-
dimensional sinusoidal-like curve. Therefore, all entries of the
corresponding θ-vector hxyz (θ) in the backprojected space
have the same value. In the case of medically relevant images
(volumes), the projection data contains multiple overlying
sinusoidal-like curves and each entry in the θ-vector might
have a different value. When an object contains a high-contrast
feature, the sinusoidal-like curves produced by this feature will
cross the sinusoidal-like curve produced by the (x, y, z) point.
The values on the crossing location will be relatively large
when comparing to the rest of the values. One can assign a
dissimilarity degree to each value in the θ-vector and identify
outliers. The outliers come from the high-contrast features
and potentially produce artifacts. It allows for introducing the
spatially-depended adaptive weighting coefficients to suppress
non-similar values based on their dissimilarity degree.
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C. Weighting scheme and ωSART

The same principle can be used to correct for “too large”
updating terms in the algebraic reconstruction when the up-
dating term is calculated using a large projection value and is
back-distributed onto the “wrong” geometrical location. First,
for each voxel (x, y, z) within the reconstructed volume the
backprojected space representation is constructed (eq. 3, first
step). Then, for each element of each θ-vector a dissimilarity
is assigned (eq. 3, second and third steps). The dissimilarity
can be, for example, calculated as a mutual cross-difference
between all values in the θ-vector. It can also be defined as an
appropriately normalized Lp-distance measure to a reference
value M . The trade-off between noise-sensitivity and artifact
amplitude defines the choice of the reference value. The
reference value can be chosen as a mean, min, median or other
values based on the statistics of the θ-vector. It is important
to note, that the reference value M is not considered as an
expected solution and the algorithm is not converging to this
value. The relation between the dissimilarity and the weighting
coefficients can be assumed to be a non-increasing convex
function, see the eq. 3, the fourth step as an example. Here,
the α and the β are two parameters defining the steepness of
the function.

1. ∀ (x, y, x) ∈ V, ∀ γ ∈ Γ : h (x, y, z, θ) = Sp (u, v, θ)

2. ∀ hxyz (θ) select the reference value Mxyz

3. dxyz (θ) = ‖hxyz (θ)−Mxyz‖p , 0 ≤ d ≤ 1

4. ωxyz (θ) = f (dxyz (θ)) , e.g. ω =
(

1−d
1+αd

)β
(3)

Now, the weighting coefficients ω (x, y, z, θ) can be used
in the SART reconstruction as a weighting of the back-
distribution of the updating term.

III. MATERIALS

All measured data have been acquired with the Siemens
Mammmomat Inspiration tomosynthesis device. The device
is equipped with a half-cone X-ray tube, a fixed flat-panel
detector and a compression paddle. The X-ray tube moves
along 50o-arc taking 25 projections. The detector total size is
24 cm x 30 cm and the detector element size is 85 µm. The
compression paddle is used for object fixation. All measure-
ments were done with the tube voltage 35 kV and the tube
current 152 mAs. An apple with metal needles and a hand
from a body donor were used in the current work. The apple
height is 60 mm. Ten needles have been manually inserted
into the apple at approximately half of its height (30 mm)
forming the plane of interest. The needles have been inserted
in two perpendicular directions and distributed in the following
fashion: one needle is on the frontal side, two needles are on
the right-hand side, three needles are on the back side and
four needles are on the left-hand side. They are oriented such
that some of the needles are parallel and some of the needles
are perpendicular to the tube rotation axis. The needles were
used to visually demonstrate the formation of the out-of-focus
artifacts and black shadows. The hand is from a body donor
who gave a permission to use its body for medical education

and research. The hand is approximately 44 mm thick and
has been placed on the detector in the prone position. The
hand was used to demonstrate the artifacts formation in the
clinically relevant case.

IV. RESULTS AND DISCUSSION

To determine the efficacy of the proposed weighting al-
gorithm to reduce the out-of-focus artifacts and black shad-
ows, several experiments were conducted. Two objects have
beenused: a hand and an apple with metal needles. For each
object a stack of slices with 1 mm thickness was reconstructed.
All images in the stack are parallel to the detector plane.
Reconstruction is done using Simultaneous Algebraic Recon-
struction Technique (SART) with and without the adaptive
weighting. The SART reconstruction parameters have been
chosen: zero-valued initial guess and the random projection
access order. For the weighting coefficients calculation the
reference value has been chosen as a minimum value, L1-norm
has been chosen as the dissimilarity measure and the damping
function parameters were α = 2, β = 2. The reconstructed
volume of the apple contains 60 slices, the needles appear
in-focus at slices 29-31. When discussing the reconstructed
images, the frontal side of the apple is referred to the bottom
side of the image and the back side is referred to the top side
of the image. The reconstructed volume of the hand contains
44 slices. For all images presented below, the visualization
parameters, i.e. the window width and the window level have
been adjusted in order to emphasize artifacts. The minimum
value of the window width was chosen slightly negative. The
tube movement direction is from the left to the right with
respect to all presented tomosynthesis images.

A. Apple with needles

The apple with needles visually shows the formation of
the out-of-focus artifacts and black shadows. Slice number
29 is presented in Fig. 2. The reconstruction using SART
without weighting is shown in Fig. 2a. The reconstruction
using SART with weighting and convex-shaped correction
function is shown in Fig. 2b. In the presented slice, the bottom
needle and one of the top needles are in-focus. Only one of
the top needles is in-focus due to the fact that the needles
are slightly angulated with respect to the slice orientation. All
discussed in-focus features are marked with dashed ellipsoids
and all discussed artifacts are marked with dashed arrows. In
the Fig. 2a one can see the shadows around the bottom needle
and multiple “ghost” copies of the top needles. Similar artifacts
can be noticed near the horizontally-oriented needles. They
are oriented parallel to the tube rotation axis and produce less
artifacts in the selected slice. Beside this, the apple boundary is
also surrounded by out-of-focus artifacts (marked with double
arrow). In the Fig. 2b one can see an improvement in the
image quality. The ghosting artifacts produced by needles and
the apple itself are reduced. The black shadows produced
by needles are almost completely eliminated. In Fig. 3 slice
number 40 is presented. In this slice all needles are out-of-
focus. SART reconstruction shows “ghost” copies of the top
and bottom needles and black shadows around them. At the
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same time the ωSART is able to reduce artifacts and shadows
considerably. Needles which are parallel to the tube rotation
axis produce the strongest artifacts in this slice. The ωSART
notably reduces them.

(a) SART (b) ωSART

Figure 2: Apple, slice 29. (Almost all) needles are in-focus.

(a) SART (b) ωSART

Figure 3: Apple, slice 40. All needles are out-of-focus.

B. Hand

The hand from a body donor represents a clinically rele-
vant case. An arbitrary selected slice is presented in Fig. 4.
Reconstruction using SART without weighting is shown in
Fig. 4a. Reconstructions using SART with weighting and
convex-shaped correction function is shown in Fig. 4b. In the
presented slice, three proximal phalanges (forefinger, middle
finger, ring finger), one metacarpals (little finger) and carpals
are in-focus. At the same time, the thumb, the proximal
phalange (little finger), three metacarpals (forefinger, middle
finger, ring finger) and all distal phalanges are out-of-focus.
The typical out-of-focus artifacts and the black shadows are
marked with the dashed arrows. As in the previous example,
one can see that the artifacts are successfully suppressed when
using the proposed weighting scheme.

V. CONCLUSIONS AND OUTLOOK

In the current work, an adaptive weighting for the back-
distribution of the updating term of the Simultaneous Al-
gebraic Reconstruction Technique (SART) in the application
to tomosynthesis of objects with high-contrast features was
proposed. Coefficients are spatially varying and calculated

(a) SART (b) ωSART

Figure 4: A hand reconstruction, slice 24.

based on the dissimilarity in the backprojected space. The
proposed approach was evaluated on real three-dimensional
tomosynthesis data. The reconstruction results of the apple
with metal needles and the hand demonstrate the feasibility
of the proposed algorithm to reduce the out-of-focus artifacts
and the back shadows produced by dense features.

The proposed algorithm does not need any segmentation
step or decisions done by thresholding. An algebraic re-
construction (SART) was chosen as an example to show
the capability of the proposed algorithm to reduce artifacts.
The proposed algorithm is not only limited to the algebraic
reconstruction and can potentially be included into various
iterative reconstructions with an additive updating strategy.
The algorithm is also not only limited to tomosynthesis
geometry but can be extended to the full scan CT case and
applied, for example, to the metal artifact reduction problem
or data truncation problem.
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Initial Experience in Constrained-TV-minimization
Image Reconstruction from Diagnostic-CT Data

Zheng Zhang,Junguo Bian, Xiao Han, Daxin Shi, Alex Zamyatin, Patric Rogalla, Emil Y. Sidky and
Xiaochuan Pan

Abstract—Advanced diagnostic CT scanners typically ac-
quire a large number (>1000) of projections, and em-
ploy analytic-based algorithms for image reconstruction.
Optimization-based algorithms can reconstruct images of po-
tentially enhanced quality, and has the flexibility in accommo-
dating non-conventional data-acquisition configurations, such
as data collected at sparse views. In this work we focus on
reconstructing CT images by tailoring and applying one of
such algorithms, the adaptive-steepest-descent-projection-onto-
convex-sets (ASD-POCS) algorithm from patient and swine
data sets collected at 1200 views by use of a Toshiba 320-
slice scanner. We first studied ASD-POCS reconstructions from
1200-view data and compare them with those obtained with
an analytic-based algorithm that is used currently in practical
applications. We also performed reconstructions from 600- and
240-view data. The results show that the ASD-POCS algorithm
can reconstruct from 1200- and 600-view data images with
quality comparable to, or improved over, what can be obtained
currently. In addition, although ASD-POCS reconstructions
from 240-view data sets are visibly degraded, it has clear
advantage over analytic-based reconstructions in terms low-
contrast preservation and noise suppression, and thus may yield
images of potential practical utility.

I. I NTRODUCTION

There exists an increased interest in development and
evaluation of optimization-based algorithms for image re-
construction in computed tomography (CT), because, when
applied to the large amount of data typically collected in
current applications, they may yield images with improved
quality over that of reconstructions obtained by use of
analytic-based algorithms such as FDK-based algorithms,
and because they can be more flexible for accommodating
imaging conditions of practical significance than analytic-
based algorithms. A great deal of results have been re-
ported on image reconstruction by use of optimization-
based algorithms from data acquired with non-diagnostic
CT. However, applications of optimization-based algorithms
to reconstructing images from data collected with advanced
diagnostic CT seem to be limited.

Among optimization-based algorithms developed recently,
algorithms exploiting image-sparsity properties have at-
tracted considerable attention as they have shown some
potential to yield reconstructions of practical utility.

Z. Zhang, X. Han, J. Bian, E. Y. Sidky and X. Pan are with the University
of Chicago.

D. Shi and A. Zamyatin are with Toshiba Medical Research Institute
USA.

P. Rogalla is with UHN Toronto General Hospital, Canada.

The adaptive-steep-descent (ASD)-projection-onto-convex-
set (POCS) algorithm is one of such algorithms, and it has
been applied to reconstructing images from data collected
with an array of scanning configurations largely in non-
diagnostic CT systems. Evaluation studies have shown a
potential of the ASD-POCS algorithm in yielding quality
images from data less than what are needed by an analytic-
based algorithm in current imaging applications. Although
some of the studies involving the ASD-POCS algorithm used
diagnostic CT data, a majority of them was carried out by
use of data collected with non-diagnostic CT systems.

In this work, we focus on tailoring the ASD-POCS
algorithm to reconstructing images from patient and animal
data acquired with a Toshiba 320-slice CT scanner. One goal
of the investigation is to study and evaluate, whether the
ASD-POCS algorithm can yield images comparable to or
better than what the currently used FDK-based algorithm
can produce. Another objective of the work is to investigate
and evaluate image reconstructions obtained with the ASD-
POCS algorithm from sparse-view data extracted from data
acquired in typical clinical scans. Although current diag-
nostic CT scanners generally collect projection data at a
large number (e.g., 1200) of views over 2π, they can also
readily be used for collecting data at a substantially reduced
view number such as∼ 600 by taking every other view or
combining views pair-wise. Investigation of these scanning
configurations may provide insights into issues such as how
the total imaging dose can “optimally” be distributed. Also,
even though a data set containing extremely sparse views
may be a hypothetic scenario for current diagnostic CT scan-
ners, its study allows an evaluation of image reconstruction
from sparse-view data of diagnostic-CT-data quality, thus
yielding insightful information for possible design of future
diagnostic CT systems with innovative scanning configura-
tions.

The submission is organized as below. Following the
introduction in Sec. I, we briefly describe in Sec. II the
imaging model, optimization program, and ASD-POCS al-
gorithm for image reconstruction, and in Sec. III real-data
acquisition. In Sec. IV, reconstruction results were obtained
by use of our FDK-based and ASD-POCS algorithms from
patient and swine data acquired with the 320-slice Toshiba
CT scanner. Final comments and discussion are given in Sec.
V.
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II. OPTIMIZATION -BASED RECONSTRUCTIONS

An optimization-based reconstruction generally includes
the establishment of an imaging model, an optimization pro-
gram, and an algorithm that reconstructs the image through
solving the optimization program. In this section, we briefly
discuss these components involved in the study.

A. Imaging model

In an optimization-based reconstruction, the model data
g
0

and imagef are vectors withM pixels andN voxels,
respectively, and the imaging model links the two vectors
through a discrete-to-discrete (D-D) linear model:

g
0

= Hf, (1)

whereH denotes a system matrix of sizeM×N. It should be
reminded that system matrixH is determined by not only
the selection of data and image vectors but also the way
as to how the discrete X-ray transform is calculated. In the
work, the system matrix is calculated as, for a given detector
bin, the sum of voxel intersections, weighted by the values
within the voxels, of a line connecting the source and the
center of the detector bin. It should be noted that model data
g
0

differ from measured datag that will be considered below
in the optimization formulation.

B. Optimization programs

The inversion of Eq. (1) can be formulated into an opti-
mization problem that can be solved by use of optimization-
based algorithms. We first consider an optimization program

f∗ = argmin ‖ f ‖TV s.t. D(f) ≤ ǫ, (2)

where
D(f) =| Hf − g | (3)

denotes the Euclidean-data divergence between measured
datag and imaging modelHf, andǫ is a pre-selected, pos-
itive parameter for accommodating inconsistencies between
measured datag and imaging modelHf. The optimization
program in Eq. (2) includes no positivity constraint, because
real data used in the study contain negative values as a result
of the specific method that corrects for physical factors.

C. Optimization-based algorithm

We use the ASD-POCS algorithm that has been developed
previously to solve the optimization program in Eq. (2).
The algorithm uses alternatively the ASD to lower the
image TV and the POCS to reduce the data divergence in
Eq. (3). A necessary convergence condition was obtained
for the ASD-POCS algorithm when Eq. (2) contains an
additional positivity constraint. In the work, we derive a
similar necessary condition on the convergence of the ASD-
POCS algorithm as it is applied to solving the optimization
program in Eq. (2) in which no positivity constraint is

imposed: If the ASD-POCS algorithm converges, parameter
c(f) that can be calculated at any given iteration must satisfy

c(f) = −1, (4)

where

c(f) =
dTV · dD

|dTV||dD|

dTV = ▽
f
‖ f ‖TV . (5)

dD = ▽
f
D2(f)

Other methods than the POCScan be used to reduce the
value of c(f) to -1. Previous studies suggest that the ASD-
POCS reconstructions at iterations with−1 < c(f) < −0.5
show little visual differences.

III. M ATERIALS

A. CT imaging system

In the work, we focus on image reconstruction from data
collected with a Toshiba 320-slice diagnostic CT scanner
from swine and patient. In the scanner, the distance between
the X-ray source and the center of rotation is 60 cm; the
detector consists of 320 rows of detector bins, each of the
320 rows composes 896 bins and forms a fan angle of49.2◦,
thus yielding a field of view of∼50 cm within a transverse
plane. Data are collected at a gantry-rotation speed that can
be pre-selected in the range of 0.3 to 0.5 sec/per rotation

B. Data acquisition

We have performed real-data studies in which swine
and patient data were collected at 1200 views over 2π by
using the Toshiba 320-slice diagnostic scanner. In the swine
study, the animal was scanned with X-ray energy of 100
kV and current at 275 mAs, whereas in the patient study,
the subject was scanned with X-ray energy of 135 kV and
current at 100 mAs. The projection data were corrected for
scatter and beam-hardening by use of Toshiba’s standard
method installed on the scanner. We refer to the 1200-
view data as the full data. From each of the full data sets,
we also extracted sparse-view data sets at 600 and 240
views uniformly distributed over2π, and then perform image
reconstructions from the extracted sparse-view data sets.

C. Inverse-crime studies

In an attempt to validate the modified ASD-POCS algo-
rithm and its implementation, we first carried out an inverse-
crime study in which simulation data were generated by use
of a system matrix from a discrete image and images were
reconstructed by use of the same system matrix in the ASD-
POCS algorithm. In the study, data are completely consistent
with the imaging model, and the same system matrix was
used for data generation and image reconstruction. There-
fore, it provides a validation of the algorithms under ideal
conditions. We have used imaging parameters mimicking
the Toshiba 320-slice diagnostic CT scanner to generate
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simulated, full data at 1200 views from discrete images.
From the full data, we thenextracted sparse-view data at
600 and 240 views uniformly distributed over2π. We then
performed reconstructions from full and sparse-view data
generated. Results of the study, which are not included in the
abstract, validate that the ASD-POCS algorithm described
above can solve the optimization program in Eq. (2), and
they will be reported at the conference.

IV. RESULTS

In real-data studies below, images are reconstructed from
the acquired full data sets and extracted sparse-view data
sets; and the swine images are displayed on a620 × 620
array with a pixel size of 0.065 cm, whereas the patient
images are displayed on a500× 500 array with a pixel size
of 0.064 cm.

A. Reconstruction from 1200-view data (full data)

We first reconstructed a swine image by using our FDK-
based algorithm from full data, and display in Fig. 1a the
reconstruction within a transverse slice, and refer to the
image as theFDK-reference image. Two ROIs, enclosed
by solid white lines in Fig. 1a, are chosen for zoomed-
in examination of subtle, low-contrast details. In Fig. 1b,
we show the swine image within the same transverse slice
reconstructed by use of the ASD-POCS algorithm from full
data. The images within the ROI indicated in Fig. 1a are
shown in a zoomed-in view in Fig. 2. Examination of the
images suggests that although the overall visual quality of
the ASD-POCS reconstruction is comparable to that of the
FDK-reference image, the former appears to suggest slightly
improved contrast and reduced background noise. Closer
inspection of them in the zoomed-in views further reveals
that the ASD-POCS reconstructions generally have soft-
tissue boundaries better defined, potentially leading to easier
delineations of spiculated structures from the background,
than the FDK-reference images.

We also carried out ASD-POCS reconstructions from full
data of a patient and display them in Fig. 3, along with the
corresponding FDK-reference images, within a transverse
slice. Again, we select three ROIs, labeled with A, B,
and C in Fig. 3a and show three ROIs in a zoomed-in
view in Fig. 4. Observations similar to those for swine-data
reconstructions can be made. The overall visual appearance
of the FDK-reference and ASD-POCS reconstructions are
comparable. However, careful inspection of reconstruction
details in zoomed-in views reveals that the ASD-POCS
algorithm seems to be able to yield images with finer texture
and less background noise than the FDK-based algorithm.

B. Reconstruction from 600-view data

We performed ASD-POCS reconstructions from the 600-
view data sets extracted from the respective full data sets of
swine and patient. In an attempt to demonstrate the effect of
angular undersampling, an image was also reconstructed by

ROI BROI A

(a)

(b)

Figure 1. Swine images within atransverse slice reconstructed from 1200-
view data by use of the FDK-based (a) and ASD-POCS (b) algorithms. A
narrow display window [-8.5, 16] is used. ROIs A and B are enclosed in
solid white lines.

(a) (b)

(c) (d)

Figure 2. Swine images, displayed in a zoomed-in view, in ROI A (upper
row) and ROI B (lower row), reconstructed from 1200-view data by use of
the FDK-based (left) and ASD-POCS (right) algorithms. A narrow display
window [-8.5, 16] is used.
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ROI A
ROI B

ROI C

(a)

(b)

Figure 3. Patient images withina transverse slice reconstructed from 1200-
view data by use of the FDK-based (a) and ASD-POCS (b) algorithms. A
narrow display window [-6, 13] is used. ROIs A, B, and C are enclosed in
solid white lines.

use of our FDK-based algorithm. We show reconstructions
within a transverse slice and within ROIs in a zoomed-in
view, respectively, in Figs. 5 and 6 from swine data and
in Figs. 7 and 8 from patient data. Based upon the recon-
structions, observations can be made that noise and streak
artifact result in visible quality degradation in FDK-based
reconstructions. However, the reduction of view numbers
from 1200 to 600 appears to have a less noticeable impact
on ASD-POCS reconstructions, as low-contrast soft tissues
remain better preserved than FDK-based reconstructions. In
particular, the high contrast, but small, structure in ROI B in
the patient image can visually be somewhat challenging to
pinpoint in the FDK-based reconstruction due to ambiguity
of the surrounding noisy background; however, they can
be identified in the ASD-POCS reconstruction. The overall
image quality and recovery of subtle structures in ROIs
suggest that the 600-view ASD-POCS reconstruction is
comparable to the FDK-reference image.

(a) (b)

(c) (d)

(e) (f)

Figure 4. Patient images,displayed in a zoomed-in view, in ROI A (top
row) ROI B (middle row), and ROI C (bottom row), reconstructed from
1200-view data by use of the FDK-based (left) and ASD-POCS (right)
algorithms. A narrow display window [-6, 13] is used.

C. Reconstruction from 240-view data

Finally, we reconstructed swine and patient images by
use of the ASD-POCS algorithm from the 240-view data
sets extracted from the corresponding full data sets. Again,
for the purpose of demonstrating the impact of angular
undersampling, an image was also reconstructed by use
of our FDK-based algorithm. We show both ASD-POCS
reconstructions within a transverse slice and within ROIs in
a zoomed-in view, respectively, in Figs. 9 and 10 from swine
data and in Figs. 11 and 12 from patient data. Comparison
of the reconstructions in Figs. 9-12 to their corresponding
full-data reconstructions in Figs. 1-4 clearly reveals that both
FDK-based and ASD-POCS reconstructions are visibly de-
graded by substantial data reduction. However, an increased
difference in reconstruction performance can be observed
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(a)

(b)

Figure 5. Swine images within atransverse slice reconstructed from 600-
view data by use of the FDK-based (a) and ASD-POCS (b) algorithms. A
narrow display window [-8.5, 16] is used.

(a) (b)

(c) (d)

Figure 6. Swine images, displayed in a zoomed-in view, in ROI A (upper
row) and ROI B (lower row), reconstructed from 600-view data by use of
the FDK-based (left) and ASD-POCS (right) algorithms. A narrow display
window [-8.5, 16] is used.

(a)

(b)

Figure 7. Patient images withina transverse slice reconstructed from 600-
view data by use of the FDK-based (a) and ASD-POCS (b) algorithms. A
soft-tissue display window of [-6, 13] is used.

between the FDK-based and ASD-POCS algorithms: the
FDK-based reconstructions suffer from noise and streak
artifacts that distort soft tissue structures, whereas the ASD-
POCS reconstructions appear to show suppressed noise and
mitigated streak artifact. It should be pointed out that it
remains unclear whether 240-view ASD-POCS reconstruc-
tions would be of some utility in making a clinical diagnosis
decision.

V. D ISCUSSIONS

In this work, we have investigated the application of the
ASD-POCS algorithm to reconstructing images from full-
and sparse-view data collected in swine and patient studies
with a Toshiba 320-slice CT scanner. We evaluated the ASD-
POCS reconstruction from full data as well as sparse-view
data sets containing 600 and 240 views and compare them to
those obtained with our FDK-based algorithm currently used
in practical applications. Results suggest that ASD-POCS
reconstructions from 1200 and 600 views are comparable
to, or better than, FDK-based reconstructions. The 240-view
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(a) (b)

(c) (d)

(e) (f)

Figure 8. Patient images,displayed in a zoomed-in view, in ROI A
(top row), ROI B (middle row), and ROI C (bottom row), reconstructed
from 600-view data by use of the FDK-based (left) and ASD-POCS (right)
algorithms. A narrow display window [-6, 13] is used.

ASD-POCS reconstructions, while visibly degraded, shows
reduced artifacts than observed in the corresponding FDK-
based reconstructions. The study suggests that appropriately
designed optimization-based algorithms may be used for
potentially improving diagnostic image quality. Further re-
search and development of these algorithms may enable
and potentially engender novel CT system design and data-
acquisition configurations of practical utility.
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(a)

(b)

Figure 9. Swine images within atransverse slice reconstructed from 240-
view data by use of the FDK-based (a) and ASD-POCS (b) algorithms. A
narrow display window [-8.5, 16] is used.

(a) (b)

(c) (d)

Figure 10. Swine images, displayed in a zoomed-in view, in ROI A (upper
row) and ROI B (lower row), reconstructed from 240-view data by use of
the FDK-based (left) and ASD-POCS (right) algorithms. A narrow display
window [-8.5, 16] is used.
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(a)

(b)

Figure 11. Patient images withina transverse slice reconstructed from 240-
view data by use of the FDK-based (a) and ASD-POCS (b) algorithms. A
narrow display window [-6, 13] is used.

(a) (b)

(c) (d)

(e) (f)

Figure 12. Patient images,displayed in a zoomed-in view, in ROI A
(top row), ROI B (middle row), and ROI C (bottom row), reconstructed
from 240-view data by use of the FDK-based (left) and ASD-POCS (right)
algorithms. A narrow display window [-6, 13] is used.

Page 56 The second international conference on image formation in X-ray computed tomography



 

Total Variation Regularized Weighted Simultaneous 
Algebraic Reconstruction Technique  

– A Parallel Scheme 
Daxin Shi, Alexander A. Zamyatin and Mihail P. Dinu  

    Abstract–In this work, we propose a total variation (TV) 
regularized weighted simultaneous algebraic reconstruction 
technique (wSART) for the conventional x-ray CT image 
reconstruction problem. The proposed approach employs both the 
weighted property of wSART and the limited view reconstruction 
capability of TV-regulated algorithm. Compared to the 
conventional TV minimization reconstruction algorithm where 
projection on convex sets step and TV minimization step are in 
sequential, our proposed reconstruction algorithm assumes a 
parallel structure of these two procedures. As a consequence, the 
parallel structure of our algorithm enables its convenient 
implementation in parallel computing devices such as graphics 
processing units. We validate our approach by using physical 
phantom data collected from Aquilion ONETM CT scanner 
(Toshiba America Medical Systems, Tustin, CA, USA). 

I. INTRODUCTION 

NE of the advantages of the conventional TV regulated 
iterative reconstruction algorithms [1] [2] proposed for the 

x-ray CT imaging problem is to reduce the dose delivered to 
patients by reconstructing clinically useful images from fewer 
projection views than which are needed by the classic filtered 
backprojection (FBP) reconstruction algorithms. However, in 
some imaging cases, both statistical and deterministic 
weighting information are important to improve image quality 
and/or mitigate imaging artifacts. It is not yet clearly revealed 
how to build the statistical and/or deterministic weighting 
information in the conventional TV minimization iterative 
reconstruction algorithm. Recently, we proposed a weighted 
simultaneous algebraic reconstruction technique (wSART) for 
the conventional x-ray imaging problem [3]. We have 
demonstrated that wSART can be employed to mitigate the 
photon starving induced streaking artifacts. We have also 
demonstrated that the deterministic weighting scheme can be 
easily built into our wSART algorithm [3]. It is natural to 
integrate the wSART algorithm into the framework of TV 
minimization iterative reconstruction algorithm. We will show 
in this paper that the combination of wSART and TV 
minimization improves image quality.  

The basic structure of the conventional TV regulated 
algorithms contains two steps [1] [2]. The first step is so-called 
projection on convex sets (POCS) step. The second step is the 
TV minimization procedure. These two steps alternate and 
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form the main iterations of the TV minimization algorithm. It 
is easily seen that these two main steps are in sequential where 
the POCS step is followed by the TV minimization step.  An 
improved TV-regulated iterative reconstruction algorithm has 
been proposed in [4] where a linear combination of the POCS 
image and TV image from the nth iteration was formed to be 
the seed for the n+1st iteration. It was demonstrated in [4] that 
the combination scheme can produce images of better image 
quality. However, in the improved scheme [4], the basic data 
flow chart was not changed, i.e., the POCS and TV 
minimization steps are still in sequential (POCS followed by 
TV minimization). The sequential structure of the algorithm 
can potentially hinder the computational speed and impair 
taking advantages of currently available parallel computing 
devices, such as GPU’s. In this paper, we propose a new 
scheme which contains a parallel structure of wSART and TV 
minimization steps. Due to its parallel structure, our proposed 
algorithm can be easily implemented with parallel computing 
devices.  

 

II.  PARALLEL TOTAL VARIATION REGULATED WEIGHTED 

SIMULTANEOUS ALGEBREIC RECONSTRUCTION TECHNIQUE 

In this section, we propose the TV regulated weighted 
simultaneous algebraic reconstruction technique with a parallel 
structure for the conventional x-ray CT imaging problem.  

In the conventional x-ray CT imaging problem, an image 
volume was reconstructed from a set of projection data usually 
uniformly sampled along the view direction. Unlike the classic 
analytic reconstruction method such as the FBP algorithm 
which models the projection procedure as the x-ray transform, 
iterative reconstruction algorithms in general model the 
projection procedure as a system of linear equations [5] 

                                pAx = ,                                      (1) 

where the system matrix A mimics the x-ray projection 
procedure whose entries are denoted by {ai,j}. One of the 
simplest ways to compute the matrix A might be using 
Siddon’s method [6]. The vector p in Eqn. (1) denotes the 
projection data arranged in a column vector {pi}, where pi is 
the readout of the ith detector bin. The quantity x in Eqn. (1) is 
the unknown image. The imaging task in iterative 
reconstruction algorithm is to invert Eqn. (1) to produce the 
desired image volume x. To simplify our description, we 
consider only the two dimensional (2D) imaging problem 
hereafter. Also the image x will be denoted by both a column 

O 
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vector whose elements are represented by {xi} and a 2D matrix 
whose elements are represented by {xi,j} in different context.  

There exist many algorithms to invert Eqn. (1) such as the 
algebraic reconstruction technique (ART) and SART [5]. To 
employ statistical information, a weighted ART scheme was 
proposed in [7] for the PET imaging problem, but its 
performance on the x-ray CT imaging problem was not 
evaluated. We had proposed a empirical wSART algorithm in 
[3] to accommodate the statistical weighting scheme. The 
wSART algorithm employs the following form,  
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where the weights wi was created in a ray by ray manner and 
the parameter λ(k) is the usual relaxation parameter. It should 
be noted that when the weights wi are constant, the wSART 
reduces to the conventional SART. It should be noted also that 
the wSART algorithm can accommodate both statistic and 
deterministic weighting schemes. A good example of 
combining the statistic information and deterministic 
information to mitigate CT image artifacts can be found in [8].  
   The TV regulated iterative reconstruction algorithm also 
tries to solve the following minimization problem, 

( ) ( )∑ −+−= ++
i,j

jijijiji xxxx 2
,1,

2
,,1min U               (3)   

where the gradient descent algorithm was simply applied to 
solve the minimization algorithm. The conventional TV 
regulated iterative reconstruction algorithm contains a 
sequential structure in which the TV minimization step follows 
the POCS method [1] [2]. We could follow the same 
framework in which our wSART algorithm follow the TV 
minimization step. In [4], a modified structure was proposed 
which combines the output of the POCS step and the output of 
TV minimization to form a final image for one iteration. It was 
demonstrated that the combination scheme can improve image 
quality. However, the structure is still in sequential which 
could potentially impair the parallel computing ability of 
currently available parallel computing devices. To avoid the 
disadvantage of the sequential scheme, we propose a parallel 
reconstruction algorithm which is schematically described in 
Fig. 1.  

 In Fig. 1, the image of the n-1st iteration, )1( −nx , goes 
through the wSART module and TV minimization module in 

parallel. The output of wSART module, )(n
SARTx , is linearly 

combined with )1( −nx  to form an intermediate image )(n
Sx with 

the coefficient β . Output of the TV branch, )(n
REGx , is also 

combined with the input image )1( −nx  with the coefficient α   

to form another intermediate image )(n
Rx . The two 

intermediate images, )(n
Sx  and )(n

Rx are again combined 

linearly via the coefficient λ  to form the final output, )(nx  of 
iteration n.  
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Fig. 1.  A schematic description of the proposed parallel TV regulated 

weighted simultaneous reconstruction technique for the conventional x-ray 
CT imaging problem. The image in n-1st iteration goes through the wSART 
module and the TV module in parallel. A combination of the output of these 
two modules   forms the final image of one iteration. See the text for detailed 
description.  

 
In the actual implementation, the wSART module was 

implemented in an ordered subset version to speed up the 
convergence of wSART, i.e., the projection data were 
partitioned into different sets; within each subset the wSART 
was implemented. The simple gradient descent algorithm was 
employed to solve the TV minimization problem. In the data 

flow, we do not form the intermediate images )(n
Sx or )(n

Rx . In 

fact, the output of the nth iteration and the n-1st iteration 
assumes the following relation,  
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There is no need to compute the two intermediate images 
)(n

Sx or )(n
Rx . In Eqn. (4), the parameter λ  serves as a noise-

resolution trade-off. In general, the larger, the value of λ is, 
sharper and noisier is the final image. The other two 

parameters α and β  are computed in the fly whose are 

enforced in [0, 1]. To compute the combination coefficients 

α and β , we estimate the variances of the 

images )1( −nx , )(n
SARTx  and )(n

REGx . Let }{Var )1( −nx , 

}{Var )(n
SARTx  and }{Var )(n

REGx  denote the estimated variance 

of the images )1( −nx , )(n
SARTx  and )(n

REGx , respectively. We 

compute the two parameters α andβ  as follow, 
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It can be seen from Eqns. (5) and (6) that the values of 

α andβ  are confined within the range [0, 1].  
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III.  NUMERICAL RESULTS 

The proposed parallel TV regulated wSART algorithm was 
implemented with a parallel computing device GPU. In this 
section, we validate our proposed reconstruction scheme by 
showing examples using physical phantom data collected from 
a Toshiba Aquilion ONE scanner. We demonstrate that our 
parallel TV regulated wSART inherits the few view 
reconstruction ability of the conventional TV minimization 
algorithm. We also demonstrate that the parallel TV regulated 
wSART algorithm can improve image quality compared to our 
previously proposed wSART algorithm due to the TV 
regularizer.    

A. Reconstructed Images from Few Projection Views 

In this section, we show a set of images were reconstructed 
from physical phantom data. Images were reconstructed from 
the full number of views by use of both FBP algorithm and the 
proposed TV regulated wSART algorithm. Results are shown 
in Fig. 2 (a) and (b), respectively. The projection data were 
then uniformly down sampled by a factor of 3 and 5 
respectively. The reconstructed images from the down sampled 
projection data are shown in Fig. 2 (c) and (d), respectively. 
Our results showed that even only one fifth of the full number 
of projection views were employed for the reconstruction, an 
image of reasonably good quality can be produced by use of 
our proposed algorithm. 

 

  
                     (a)                                                             (b)    

  
               (c)                                                              (d) 
Fig. 2.  (a) Image reconstructed by use of the classic FBP algorithm from 

full number of views. (b) Image reconstructed by use of the proposed 
reconstruction algorithm from full number of views. (c) Image reconstructed 
by use of proposed algorithm from one third of the full number of views. (d) 
Image reconstructed by use of the proposed reconstruction algorithm from 
one fifth of the full number of views. 

B. Reconstructed Images from Shoulder Data 

It is well known that photon starvation often happens 
when imaging shoulder. The resulting phenomenon is the 
streaking artifacts in the reconstructed images. We had 
demonstrated [3] that the streaking artifacts can be greatly 
reduced by use of our wSART algorithm. In this section we 
show that with the TV regularization procedure the image 
quality can be improved. Fig. 3 (a) shows the reconstructed 
image by use of the conventional SART algorithm which is 
contaminated by streaking artifacts as expected due to the 
photon starvation problem. Fig. 3 (b) shows that the 
streaking artifacts can be greatly suppressed by use of the 
wSART algorithm. Fig. 3 (c) shows the image reconstructed 
by use our proposed parallel TV regulated wSART. One can 
see that noise in Fig. 3 (c) is improved compared to Fig. 3 
(b).  

 
                      (a) 

  
(b) (c) 

Fig. 3.  (a) Image reconstructed by use of the conventional SART. (b) 
Image reconstructed by use of wSART. (c) Image reconstructed by use of 
proposed parallel TV regulated wSART algorithm.  

Fig. 4 shows the profiles through the central row of Fig. 
3 (b) and (c). One can see that the ripples in the wSART 
image are diminished in Fig. 3 (c) due to the TV 
regularization procedure.  
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Fig. 4.  The profiles through the central row of Fig. 3 (b) and (c). The 
horizontal axis is the number of pixels and vertical axis is the value of 
pixels. The blue and red curves are the plots of the wSART and TV 
regulated wSART images, respectively.. 

IV.  SUMMARY 

In this work, we have proposed a parallel TV regulated 
wSART reconstruction algorithm. The wSART algorithm 
which accommodates both statistic and deterministic weighting 
information has been integrated into the TV minimization 
reconstruction framework. Compared to the conventional TV 
minimization algorithm, we proposed a parallel structure for 
the main loop in which the POCS and TV minimization steps 
are processed in parallel instead of in sequential. This parallel 
structure facilitates the full utility of currently available 
parallel computing devices. We demonstrated that our 
proposed algorithm inherits the few view reconstruction ability 
of the conventional TV minimization algorithm. We 
demonstrated also that compared to our previously proposed 
wSART algorithm, the TV regulated wSART algorithm can 
improve the image quality induced by photon starvation.   
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A Low Dose Simulation Tool
Stanislav Žabić1, Qiu Wang2, Kevin M. Brown1

Abstract—This paper introduces a new algorithm for
simulation of low dose computed tomography (CT) scans,
starting from a higher dose scan. We derive and analyze
a monochromatic noise addition model based on statistical
properties of an X-ray in a CT scan. The model is verified
against simulations and compared to the other models found
in literature.

I. INTRODUCTION

Motivation for creating a tool which simulates low dose
scans from a high dose scan is at least two-fold. A tool
that accurately simulates low dose scans would be useful
in clinical research to determine how low a user can go with
the dose without loosing the relevant diagnostic information
in the volume without multiple scanning. Another applica-
tion of this tool could be in the research of algorithms
that promise image quality in low dose scans equivalent to
the higher dose scans. These promises are sometimes made
even for ultra low dose scans, which calls for an extremely
accurate dose simulation tool. Modern task based image
quality metrics require multiple noise realizations. A low
dose simulation tool would make such metrics possible also
for the clinical data.

II. STATE OF THE ART

In the review of literature, we have identified several
different approaches of simulating low dose scans from a
high dose scan. Some approaches [1], [2], [3], [4] involve
combining the higher current data with Poisson, Gaussian
or a combination of Poisson and Gaussian noise either
to the measured intensity signal or to the line integrals
(negative logarithm of the intensity signal).

The earliest approach of adding more noise to real scans,
dates back to 1997 and the paper of Mayo et. al. [2]. The
same group of authors published details of this simulation
algorithm five years later in a paper from a group headlined
by Frush [1]. In their work, Gaussian noise is added to
the intensity data, with the removed dark current offset.
Another approach was published shortly afterwards, in
2003 by Amir et. al. [3]. In their work, Gaussian noise
is realized according to the line integral sinogram. The
Gaussian noise is then reconstructed separately and added
to the higher current volume in the image space.

A very valuable volume of work when it comes to low
dose CT simulation was performed by Bruce Whiting’s
group. Whiting’s papers in 2002 [5] and 2006 [6] provide a
detailed characterization of the signal statistics of an X-ray

1 Philips Healthcare, 2 Cornell University

in CT and it is a foundation for a model developed and
validated in the 2005-2009 period [7], [8]. Like in Frush’s
work [1], Whiting’s group adds noise to the intensity data
with the removed dark current offset, but it also takes the
electronic noise in consideration, which Frush’s group does
not do.

One of the most recent efforts in low dose simulation
was in 2010. Benson and De Man [4] add a form of
Poisson noise realization to the intensity signal. In addition,
like Whiting’s group [7], [8], they stress the importance
of adding the detector noise into the model which they
simulate in the form of a Gaussian noise realization.

Let us also mention several other relevant low dose
simulation tools, which will not be considered in this paper
for various reasons. For instance, in 2010, Wang and Pelc
[9] apply a model very similar to Frush’s [1]. The novelty of
this algorithm is that it utilizes dual energy data with a goal
to simulate data with varous tube voltages, which is out of
the scope of our research since our low dose simulations
have the same energy as the higher dose inputs. Also, in
2004 Sennst et. al. [10] reported on a noise addition tool as
a part of the Siemens’ syngo Explorer package. Unfortu-
nately, to our knowledge, no theoretical support is provided
to explain finer details of the algorithm. Lastly, in 2011
Nakashini [11] et. al. presented another interesting approach
in which system noise model is determined through a series
of experimental measurements.

All state of the art approaches for the single energy
simulation have one thing in common: a low dose scan
is simulated using a monochromatic model and synthetic
noise is added on to a higher dose scan. Our model is
different in that it does not add the noise to a higher
dose scan, but it simulates a low dose scan as an entirely
new noise realization. In addition, all previously published
papers on this topic make certain approximations to the
realistic noise models that break down for ultra low dose
simulations. We will discuss these approximations and
provide evidence for our concerns regarding the ultra low
dose scans and show that our model is the most accurate
one, especially in those conditions.

III. PROBLEM STATEMENT

Suppose a three dimensional object is scanned by ac-
quiring projections on a CT scanner with energy integrating
detectors, using the tube current α and a fixed tube voltage.
Let Nα be the number of photons emitted from the tube
at current α within a given integration period. We will
assume that the tube voltage does not vary throughout this
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paper. According to the Beer’s law, the mean number of
detected photons along a ray li connecting tube source with
a detector element through the scanned object µ is:

yα = Nαe
−l, (1)

where l =
∫
li
µdl is the line integral of the scanned object

along ray li.
In practice, the value of the mean yα is not available and

we actually record a value which is corrupted by noise. The
X-ray detection is a statistical event which has a Poisson
distribution. Thus, if we denote by P(m) a realization of a
Poisson noise variable with mean m, the number of photons
that arrives at the detector can be written as

ŷα = P(Nαe
−l). (2)

Since Mean(ŷα) = yα = Nαe
−l, and ŷα is a Poisson

realization, we also have

yα = Var(ŷα) = Nαe
−l.

The signal ŷα then enters the energy integrating detector
where it gets converted into a digital reading. Design of a
detector can vary from one type of scanner to another and
therefore the process and results of conversion of the pho-
tons to a digital reading varies. However, we believe that the
common practice is very similar among all manufacturers.
The signal is multiplied by a gain, which we denote by A,
and a constant electronic bias signal is added, which has
a noise realization independent of the X-ray event Poisson
noise. Assuming that the mean of this bias signal can be
measured and subtracted from the signal, we will denote by
D(c) a zero mean realization of the statistical distribution
contributed by the detector electronics. Then we can write
the complete monochromatic noise model as:

ŝα,c = AP(Nαe
−l) +D(c). (3)

Let us mention that this is essentially the same model as the
one used in Massoumzadeh et. al [7] and which is justified
in Whiting’s 2006 paper [6]. The first term represents the
influence of the photon statistics, and the second represents
the influence of the detector noise.

Now we can precisely state the goal of the low dose
simulation. We wish to find a corresponding signal sβ,c for
lower current β, β < α. In the next section, we derive
a solution to this problem when D(c) = 0 and A = 1.
One can also find the solution for a more realistic case,
D(c) 6= 0 and A > 0, but we will leave that for a different
occasion.

Associated to measurements ŷα and ŝα,s are the values

lα = − ln
ŷα|+
Nα

, lα,c = − ln
ŝα,c|+
ANα

, (4)

which are used for the reconstruction in filtered back-
projection algorithms. The symbol |+ means that we replace
all values that are less or equal to 0 by a small positive
value.

IV. ALGORITHM DERIVATION

Our approach involves finding a value ŷα→β as a func-
tion of ŷα, such that the mean and variance of ŷα→β is
equal to Nβe

−l, where Nβ is the number of photons emitted
from the tube at current β within a given integration period.
Then we can think of ŷα→β as a realization of the Poisson
noise with mean Nβe

−l and derive the line integral lα→β

as − ln(ŷβ/Nβ).
Let us denote by ŷβ0 a Poisson noise realization with

mean β
α−β ŷ

α:

ŷβ0 := P
(

β

α− β
ŷα

)
. (5)

We claim that the noisy variable

ŷα→β =
α− β

α
ŷβ0

has variance and mean equal to Nβe
−l. The only difficult

task in proving this claim lies in finding the variance of the
variable ŷβ0 . There we use the conditional variance identity
[12] (which is also known in probability theory as the law
of total variance and variance decomposition formula), and
it states the follwing in this case:

Var(ŷβ0 ) = Var
(
Mean(ŷβ0 |ŷα)

)
+Mean

(
Var(ŷβ0 |ŷα)

)
.

Once each contribution of the sum is calculated, which is
not a difficult task, one can calculate the variance of the
signal ŷβ0 without any approximation. The equation above
completely incorporates the covariance of the signal ŷα into
the signal ŷβ0 . Other parts of the proof of our claim will be
presented in a follw up publication where we will have
more room for such details.

Given this claim, we can come up with an algorithm that
adds noise to the line integrals lα in order to simulate signal
at current β:

1) Determine Nα using air scans
2) Use the result of the calibrated and corrected sinogram

lα of a scan with tube current α, just before it enters
the reconstruction algorithm.

3) Unlog lα to get ŷα,
4) Use a Poisson noise generator (for example in Numer-

ical Recipes [13], page 293) to make
P
(

β
α−β ŷ

α
)

,

5) Divide the result of 3) by β
α−βNα,

6) log the result of 4),
7) Save.
Indeed, since Nα and Nβ relate to one another as Nβ =

β
αNα, we have

β

α− β
Nα =

α

α− β
Nβ .

Obviously, the variable ŷα→β is not a Poisson random
since it does not take integer values, but its mean and
variance are precisely Nβe

−l, which means that its prob-
ability mass function agrees with Poisson on the first two
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moments. Also, the value of the result of this algorithm is
− ln ŷα→β

Nβ .
One obstacle is that for β low enough, the result of

the step 4) can be zero. In that case, logarithm will not
be defined, and to accommodate this, we adopt a strategy
when detector happen to count zero, which we believe is
commonly used in practice: if the result of the step 4) is
zero, it shall be replaced by a small positive value.

V. COMPARISON TO OTHER METHODS

Other works that promise to simulate low dose scans
from higher dose scans report a great match of their low
dose simulations when compared to the real scans (clinical
or those of phantoms). However, we think that the approx-
imations encountered in these methods are not appropriate
for ultra low dose simulations, which are important for the
research of low dose scanning strategies, be it optimization
of the existing protocols or development of new noise
reducing algorithms and reconstructions. We will overview
these concerns in this section and compare them to our
results.

If we assume that no electronic noise is present in the
system, method described in Benson and De Man’s work
[4] attempts to simulate low current (β) scan as

ŷα→β
1 =

β

α
ŷα + P0

(
βα− β2

α2
ŷα

)
,

where

P0

(
βα− β2

α2
ŷα

)
= P

(
βα− β2

α2
ŷα

)
− βα− β2

α2
ŷα.

In other words, the noise is added to the signal using the
Poisson variable from which the mean of that variable is
then subtracted. The authors claim that, by approximating
the noisy variable ŷα with its mean yα, the variance of
ŷα→β
1 is Nβe

−l. Unfortunately, in ultra low dose situations,
it is not easy to justify yα ≈ ŷα unless α is sufficiently
high since due to the noise, the two variables can differ
by a large percent, which is particualry problematic when
converting these values to line integrals.

On the other hand, we also have a strategy developed by
Frush et. al. [1]. There, the Poisson noise is replaced with
noise added to the data using a Gaussian approximation. A
high current signal lα is first “unloged” by finding pα =
e−lα , and then the low current signal is approximated using
the following strategy:

pα→β = pα +

(
α− β

β

)1/2

G2, (6)

where the variance of the added Gaussian noise G2 is σ2
2

and is derived as:

σ2
2 =

e−lα

Nα
.

Similar to the method of Benson and De Man [4], the
derivation of the variance σ2

2 assumes that the noisy signal

p̂α approximates the noiseless mean pα, which as we
already discussed, can be problematic for as the current
α becomes sufficeiently small.

In the work of Amir et. al. [3], the noise is added to the
line integral lα (instead of the intensity) using a Gaussian
noise realization G3, with variance σ2

3 :

lα→β = lα +

(
α− β

β

)1/2

G3, (7)

where the variance σ2
3 of the random variable G3 is derived

to be

σ2
3 =

el
α

Nα
.

Using the additive rule for the filtered backprojection
based algorithms, this method involves separate reconstruc-
tion of G3, which is later blended in the image domain
with the original image from lα. This is a very good
practical solution for the evaluation of filtered backpro-
jection algorithms, since user does not have to perform
a separate reconstruction whenever the new β is selected,
but it loses its practical value in some other reconstruction
strategies, for instance, in statistical iterative reconstruction
algorithms. Moreover, derivation of σ2

3 also assumes that
the noisy signal lα can be approximated by the noiseless
signal l. Another, more important issue with approximating
Poisson noise in the intensity domain with Gaussian noise
in line integrals, is that the Poisson noise model inherently
introduces bias in the line integrals. Fessler [14] shows
using the Jensen’s inequality that the following holds:

Mean(lα) ≥ l. (8)

The inequality (8) says that the line integrals are system-
atically overestimated on the average. This was previously
reported in several papers on transmission tomography [15],
[16], [17]. One has to be aware of this bias when developing
reconstruction algorithms for very low dose scans or when
processing data of large objects – in other words, when the
attenuated number of photons becomes very low.

We end this section by illustrating how approximating
the signal obtained with the current α with the noiseless
signal creates an issue when it comes to the accuracy of
the state-of-the-art low dose simulation tools. The phantom
used in our analysis consists of the outer ellipse with the
long axis of 350mm, short axis of 210mm and HU of 0. The
circle at the top has diameter of 70mm and 750HU. Circle
at the bottom has diameter of 50mm and HU of 1000. As
we see in in Figures 1, 2 and 3, the state-of-the-art methods
significantly underestimate or overestimate both mean and
the variance of the synthesized line integrals. On the other
hand, our approach is the most accurate in that sense.

VI. CONCLUSION

The low dose simulation strategy presented in this paper
has an advantage over the state of the art methods in that it
makes fewer approximations in the statistical model of the
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Fig. 1. Figure shows: a) noiseless reconstruction of the phantom described in the text. Figure b) is the average of 1000 direct noise
simulations each equivalent to a 150mAs scan. The rest of the figures represent the mean of 1000 Poisson simulations of 50mAs using:
c) direct realizations and d) the method from section IV. Figures e)-g) represent three different state of the art methods: Benson’s [4],
Frush’s [1] and Amir’s [3] respectively. See Section V for more details on these three methods. We consider image c) to be the ground
truth in this experiment, in order to compare low dose simulation tools to a direct Poisson method. We observe that the mean levels
are correctly estimated by our method, underestimated by the methods in e) and g), and overestimated by the method in f). A small
bias in g) is due to the bias in the 150mAs direct simulation which was used as a source point for the corresponding projections. This
state-of-the-art method simply maintained that mean. Biases in e) and f) are due to the errors when approximating Poisson random
events. Images are in HU, they are centered at 25 and represented in window of 150. The yellow horizontal line represents the profile
level used in Figures 2 and 3.
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Fig. 2. Figure represents the profile mean of the central row in
reconstructed volumes for direct noise simulation (full blue line),
method from section IV (dashed green line), Benson’s method [4]
(dashed gold line), Frush’s method (dashed blue line) method [1]
and Amir’s method [3] (dashed red line). Mean levels are most
closely calculated by our method.

X-ray attenuation. Because the X-ray event portion of our
noise simulation tool agrees with the Poisson probability
mass function on the first two moments (mean and vari-
ance), it has a potential to be used as a very accurate tool
in practice, but that requires the electronic detector noise
to be incorporated into the complete model (Poisson plus
detector noise). The results of the full model, with noise
simulations compared to real low dose data will also be
presented at the conference. We skipped it in this summary
due to the space constraints.
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Abstract – The aim of this research is to develop a 
complete CT/human-model simulation package by 
integrating (1) a realistic 4D digital model of human 
anatomy and motion -- the 4D eXtended CArdiac-Torso 
(XCAT) phantom, and (2) an accurate CT projection 
data simulation program -- the DRASIM (Siemens 
Healthcare) simulator. Unlike other CT simulation tools 
which are based on simple mathematical primitives or 
voxelized phantoms, this new simulation package has 
the advantages of utilizing a realistic model of human 
anatomy and physiological motions without voxelization 
and with accurate modeling of the characteristics of 
clinical CT systems.  First, we incorporated the 4D 
XCAT anatomy and motion models into DRASIM by 
implementing a new library which consists of functions 
to read-in the NURBS surfaces of anatomical objects, 
their overlapping order, and material properties of the 
XCAT phantom. Second, we incorporated an efficient 
ray-tracing algorithm for line integral calculation in 
DRASIM by computing the intersection points of the 
rays cast from the x-ray source to the detector elements 
through the surfaces of the multiple XCAT anatomical 
objects along the ray paths. To evaluate the new 
integrated software package, we simulated a number of 
sample CT projection data for different body parts 
using the new integrated simulation package. Image 
reconstruction was performed by uploading the 
projection data back to scanner or own reconstruction 
program followed by beam hardening correction. In our 
initial results, the package shows its capability in the 
generation of clinically realistic CT images for different 
human body parts at different doses, x-ray spectra, and 
pathological conditions. This unique CT/human-model 
simulation package has great potential as a tool in the 
design and optimization of CT scanners, and the 
development of scanning protocols and image 
reconstruction methods for improving CT image quality 
with reduced radiation dose.         

I. INTRODUCTION  

Tremendous research activities have been conducted to 
develop methods and techniques to further improve image 
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quality and minimize the radiation dose to the patient in the 
field of x-ray Computed Tomography (CT). With the 
advancement of multi-detector CT (MDCT) or other 
technologies, CT scanners become exceedingly complex 
and any optimization becomes a challenge. It is impractical 
to optimize the large number of parameters of existing 
imaging protocols and design settings available in modern 
CT systems for human patients due to the prohibitive high 
cost and unnecessary radiation concerns. In additional, the 
heterogeneity in patient size and pathological conditions 
multiplying with the large number of technical parameters 
in modern CT systems forbid the optimization studies 
performed with human subjects. On the other hand, it is 
equally impractical to do optimization studies by 
performing experiments on physical test objects that cannot 
realistically mimic the true clinical scenario. It is due to the 
prohibitively high cost in fabricating physical phantoms to 
simulate a range of patient sizes and pathological conditions 
with a range of physiologic motion. Therefore, the most 
promising practical approach to these optimization 
problems is through realistic computer simulation [1] with 
realistic human-model phantom and accurate CT simulator. 
The main advantage of using computer generated phantoms 
in simulation studies is that the exact anatomy and 
physiological functions of the phantom are known, thus 
providing a ground truth from which to quantitatively 
evaluate medical imaging instrumentations, imaging and 
image processing techniques.  

In this research, we develop a complete CT/human-
model simulation package by integrating the 4D eXtended 
CArdiac-Torso (XCAT) phantom, a computer generated 
Non-Uniform Rational B-Spline (NURBS) surface based 
phantom that provides a realistic model of human anatomy 
and respiratory and cardiac motions, and the Deterministic 
RAdiological SIMulation (DRASIM) (developed by 
Siemens Healthcare) CT projection data simulation 
program. Unlike other CT simulation tools which are based 
on simple mathematical primitives or voxelized phantoms, 
this new simulation package has the advantages of utilizing 
a realistic model of human anatomy and physiological 
motions without voxelization and with accurate modeling 
of the characteristics of clinical CT systems. We have 
further enhanced various parts of our initial concept-
proving implementation [2], such as program 
parallelization, projection data format conversion for data 
upload to CT scanners, and beam hardening correction for 
polychromatic x-ray CT simulation.    

II. METHODS 

Essentially, the simulation package consists of multiple 
components: XCAT phantom, DRASIM simulator, ray-
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tracing algorithm, and image reconstruction. The schema 
and data flow diagram of the integration is depicted in 
Figure 1. 

A.  Realistic human-model digital phantom 

The 4D XCAT phantom [3] is a whole-body computer 
model of the human anatomy and physiology based on 
NURBS surfaces. Unlike other phantoms based on simple 
mathematical primitives or voxelized phantoms, the 4D 
XCAT provides an accurate representation of the complex 
human anatomy and has the advantage that its organ shapes 
can be changed to realistically model anatomical variations 
and patient respiratory and cardiac beating motions. The 
XCAT phantom, as well as its predecessor, the NCAT 
phantom, have been widely used for medical imaging 
simulation. The XCAT phantom includes a detailed human 
anatomy consisting of over 2,000 objects defined by 
NURBS surfaces. The parameters of the XCAT phantom 
are adjustable in order to model different patient anatomy, 
motions and other variations. To make the phantom 
applicable to CT imaging research, we previously 
developed a simplified CT projector specific to the XCAT 
phantom previously [4]. This projector could calculate x-
ray projections directly from the NURBS surface definition 
of the phantom in a very efficient manner. However, this 
projection algorithm is generic and can only handle 
simplified CT system geometries and basic scanner specific 
design parameters. Advanced scanner parameters, such as 
flying focal spot, detector response, bowtie filter setting, 
found in commercial CT systems, could not be modeled.  

B.  Accurate CT projection simulator 

The DRASIM software package [5], developed by 
Siemens Healthcare, is a CT projection data simulation 
program which allows simulation of x-ray transmission data 
based on a narrow beam assumption. Since DRASIM is 
developed by the research department of the manufacturer, 
it has all the necessary parameters that need to accurately 
reproduce the projection data generated by actual Siemens 
clinical CT scanners. DRASIM can accurately model a 
detailed list of CT scanner specific parameters, such as 
focus size and the detector aperture with oversampling, the 
motion of the focal spot on the anode plate, and the 

polychromatic x-ray beam. However, DRASIM only works 
with simple geometric phantoms composed of multiple 
simple geometric primitive objects, such as spheres, 
ellipsoids, and cylinders.  

C.  Efficient ray-tracing algorithm for NURBS surfaces 

For the simulation of high spatial resolution x-ray 
projection data, it is essential to calculate directly from the 
NURBS surface definition without voxelization of the 
phantom in order to avoid alias artifact. We need to define 
the projection rays which are the lines cast from the x-ray 
source connecting to the detector elements. Without sub-
sampling at source and detector element, there is one 
projection ray that joins the source to each detector element. 
We previously developed an efficient ray–tracing algorithm 
for NURBS surfaces as part of the development of the CT 
projector for the XCAT phantom [4]. The NURBS ray-
tracing algorithm calculated the intersection points of each 
projection ray with the object surfaces defined in the XCAT 
phantom. It is known that the computation cost for 
intersection point calculation of projection rays on NURBS 
surfaces is high. Therefore, an efficient implementation of 
the ray-tracing algorithm is necessary since large number of 
projection rays and NURBS surfaces are employed in our 
application. First, the NURBS objects of the XCAT 
phantom were converted into cubic Beizier surfaces by 
inserting multiple knots using accepted methods [6]. Then, 
a Bezier clipping method was used to recursively subdivide 
the Bezier surfaces into smaller and smaller sub-surfaces in 
order to determine the intersections of the surface with the 
projection ray. A bounding volume hierarchy representation 
[7] and fast ray-box intersection calculations [8] were 
implemented to speed up the calculation. Further details of 
this implementation could be found in [4]. Due to the 
extremely high spatial resolution of the projection rays, 
additional work has been performed in fine-tuning the 
stopping tolerance for the recursive subdivision process in 
Bezier clipping method in order to achieve highly accurate 
ray-sum calculation. Additional logic has been designed to 
keep track the incident and exit sequence of the casting ray 
through a surface using the surface normal at intersection 
point in order to achieve highly robust ray-sum calculation.   

 

Figure 1. The schema and dataflow diagram of the XCAT/DRASIM integration 
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D.  Projection data generation and image reconstruction  

We employed the dynamic-link library (DLL) approach 
to integrate the 4D XCAT phantom and the DRASIM 
software programs.  The new NURBS-based DLL is loaded 
into the DRASIM program when it is called at runtime 
only. It has two advantages: the performance of the 
individual DRASIM and XCAT programs are not affected 
by the integration; and, if the new integration features are 
not used, the integrated programs work exactly the same as 
before the integration and the changes are transparent to 
users.  

The simulation involved multiple steps. First, the 
required anatomic, physiologic, and pathologic parameters 
were defined in the parameter input files for the XCAT 
program. Instead of generating a voxelized XCAT phantom 
as is typically done, we switched the XCAT program to 
generate NURBS surface files for the objects in XCAT 
phantom as output. Second, the required source, detector, 
geometric and other parameters of the CT scanner were 
defined in the DRASIM script. A new phantom type called 
“NURBS” was allowed to enable DRASIM to read in the 
NURBS surfaces from the specified files, the material 
properties of the objects, and the overlapping order of the 
XCAT anatomical objects. Third, this process trigger the 
NURBS ray-tracing algorithm in DLL, as described in 
section II.C, was used to compute the intersection points of 
the rays cast from the x-ray source to the detector elements 
through multiple XCAT objects. The calculated intersection 
points and the materials of the objects were passed to 
DRASIM for line integral calculation for each detector 
element. By concatenating the linear integrals of all the 
detector elements of different channels, rows, and views, 
the raw projection data were generated.  

The simulated project data can then be processed by 
standard or advanced reconstruction algorithms, or 
imported back to the console for image reconstruction. 
However, there were no direct ways to generate a “virtual” 
projection file from the XCAT/DRASIM tool directly. We 
needed to do a test scan using the targeted protocol and 
export the raw projection data in a proprietary format. 
Then, through a proprietary program, we replaced the 
original projection data with our simulated ones. The 
modified projection data file was uploaded back to scanner 
console for reconstruction with desired kernel, FOV, and 
other reconstruction parameters as shown in Figure 2.      

  
(a)            (b) 

Figure 2. (a) A screen capture and (b) a photo of a CT 
image reconstructed from simulation data on a CT console. 

E.  Sample simulation datasets 

The integrated simulation package was tested on a 
series of simulations of multiple x-ray projections from 
different views followed by image reconstruction. The 
scout scans of the torso, and the abdominal, head, coronary, 
and cardiac scans were simulated. The data acquisition 
parameter settings of DRASIM were based on the 
Definition Flash dual-source CT scanner (Siemens 
Healthcare). The geometry settings, including source to 
center distance, center to detector distance, number of 
detector channels, number of views per rotation, fan angle 
of the detector, filters, and many other were specified. 
Unless otherwise stated, a polychromatic x-ray source of 
120 kVp and tube current setting of 230mAs per rotation 
were employed for all simulations. Subsampling on focus 
and detector elements was employed. The CT image 
reconstruction was performed by the console station of our 
CT scanner using the uploaded “virtual” projection data 
file.  

III. RESULTS AND DISCUSSIONS  

We performed a number of simulations using the new 
integrated XCAT/DRASIM simulation package followed 
by a CT scanner control console or standard filtered 
backprojection reconstruction. These simulations included: 
(1) anteroposterior and lateral topograms of the torso (Fig 
3), (2) abdominal scans at normal and reduced doses (Fig 
4), (3) head scans of monochromatic and polychromatic x-
ray sources without beam hardening correction (Fig 5), (4) 
coronary scans without plaques and with calcium and soft 
plaques (Fig 6), (5) dual-energy abdominal scans with uric 
acid and calcified stones (Fig 7), and (6) cardiac scan with 
and without cardiac motion (Fig 8).   

In Fig 3, the realistic anatomy of the human torso, 
including all the major organs, are clearly identified in the 
x-ray scout views of the torso of the XCAT phantom. As 
shown in Fig 4, the abdominal images acquired at reduced 
dose has higher noise magnitude compared to the one at 
normal dose. In Fig 5(a), no beam hardening artifacts were 
found when a monochromatic x-ray source was employed, 
while, in Fig 5(b), beam hardening artifacts are clearly 
visible (arrows) when a polychromatic x-ray source was 
employed.  In Fig 6, normal coronary and diseased 
coronary with calcified and soft plaques were simulated 
with contrast enhanced blood. In the 80kVp image (Fig 
7(a)), both bone and contrast-enhanced aorta show higher 
CT numbers than those in 140kVp with tin filter image (Fig 
7(b)). Higher mAs was used for 80kVp scan 140kVp with 
tin scan in order to achieve similar noise level (~1.85 
times). Finally, we showed that our new simulation package 
can be used to study motion artifacts caused by the beating 
heart using the 4D XCAT phantom that includes cardiac 
motion. In Fig 8(a), the motion-free image of the XCAT 
cardiac phantom is shown. In Fig 8(b), the motion artifacts 
of the right coronary artery (RCA) and the left circumflex 
artery (LCX) are clearly shown as compared to phantom 
image at the corresponding heart phase. These initial 
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simulation results demonstrate the great potential of the 
CT/human-model simulation package.  

 

  
Figure 3. (a) Anteroposterior and (b) lateral simulated 

topograms of torso. 
 

  
Figure 4. The simulated abdominal images at (a) high 

radiation dose (460 mAs/rot) and (b) reduced radiation dose 
(115 mAs/rot). 

  

   
Figure 5. The simulated head images using (a) 

monochromatic (80keV) and (b) polychromatic (120kVp) 
x-ray sources.  

 

   
Figure 6. The reconstructed coronary images (a) without 

plaques and (b) with plaques 
 
 

  
Figure 7. The simulated dual-energy abdominal scans with 

kidney stones using (a) 80kVp and (b) 140kVp with tin.  

 
Figure 8. (a) A motion-free sample transaxial slice of the 

4D XCAT phantom and (b) the simulated cardiac images of 
the beating heart (courtesy of Dr. Jochen Cammin).  

IV. CONCLUSION  

In conclusion, we have developed a unique CT/human-
model simulation package that can provide a valuable tool 
in the design and optimization of CT scanners, and the 
development of scanning protocols and image 
reconstruction methods for improving image quality and 
reducing dose. Quantitative evaluation of the simulated data 
in comparing with the experimental data using CT scanners 
and a physical phantom is currently underway. 
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Abstract—Dedicated breast CT is being actively investigated 
to overcome the tissue superposition problem present in 
mammography.  Tissue superposition can result in missed 
cancers due to the masking effect of the anatomic background 
or can mimic the presence of a lesion resulting in additional 
imaging and potentially unnecessary biopsies.  In this study, the 
anatomic power spectrum of coronal slices, parallel and 
adjacent to the chest wall was computed from 75 subjects, all 
women, who were scheduled to undergo tissue sampling 
(biopsy).  The anatomic power spectrum at low spatial 
frequencies was observed to follow a power-law dependence of 
the form k/fβ, where the value of the exponent β was found to be 
1.581.  The standard error in estimate of β was 0.163.     

I. INTRODUCTION 

HE success of mammography as a screening tool is 
well-established in literature [1-3].  Mammography 

provides a two-dimensional (2-D) image of the three-
dimensional (3-D) breast resulting in tissue superposition.  
This can result in missed cancers due to the masking effect 
of the anatomic background or can mimic the presence of a 
lesion resulting in additional imaging and potentially 
unnecessary biopsies.  Chakraborty and Kundel [4] and 
Burgess et al. [5] independently showed that the anatomic 
power spectrum in mammography for spatial frequencies 
less than ~1 cy/mm follows a power law dependence of the 
form k f  , where the exponent 3  .  Further, human 

visual studies conducted by Burgess et al. [5] showed that 
the lesion detection is impaired by the anatomic power 
spectrum.  Recently, Reiser et al. [6], noted that the 
anatomic power spectrum in mammography while following 
a power-law process was non-isotropic.   

We and others are actively investigating dedicated breast 
CT as an imaging tool to overcome the tissue superposition 
problem present in mammography [7-13].  In addition to the 
inherent improvement in contrast with tomography, the lack 
of physical compression of the breast and the ability to 
display the imaged breast in any desired orientation using 
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multi-planar reconstructions are distinct advantages.  In 
order to understand the effect of background anatomic 
structure on lesion detection and characterization and for 
task-specific optimization of dedicated breast CT, it is 
essential to quantify the anatomic power spectrum.  The 
frame-work for task-specific optimization and the 
importance of including the anatomic power spectrum have 
been described in literature [14, 15].  In dedicated breast CT, 
Metheany et al. [16] theoretically derived an expression 
relating the exponent of the anatomic power spectrum in the 
projections to that of the reconstruction.  Also, the power 
spectrum of transverse (coronal) slices from 43 subjects was 
estimated and the exponent 1.86  was observed in the 

frequency range of 0.07 to 0.45 cy/mm [16].  The exponent 
of the power-law fit was determined to be 2.32 for 
mastectomy specimens [17].  In this work, we estimated the 
anatomic power spectrum of coronal slices, parallel and 
adjacent to the chest wall from 75 subjects, all women, who 
were scheduled to undergo tissue sampling (biopsy).  

II. METHODS AND MATERIALS 

A. Dedicated Breast CT System 

A prototype cone-beam dedicated breast CT system was 
used in this study.  The system features an amorphous 
silicon flat-panel detector with Thalium-doped Cesium 
Iodide (CsI:Tl) scintillator (PaxScan® 4030CB, Varian 
Medical Systems, Salt Lake City, UT) and a 4-inch tungsten 
target rotating anode x-ray tube (RAD 71SP, Varian Medical 
Systems, Salt Lake City, UT) powered by a high-frequency 
x-ray generator (Sedecal USA) [18].  Detailed description of 
the system has been previously published [18]. The clinical 
acquisition parameters used in this study are summarized in 
Table 1.   

B. Clinical Study 

The clinical study was conducted in accordance with a 
protocol that was approved by the human subjects review 
board from both institutions.  All study participants provided 
written informed consent.  Recruitment, all imaging 
including the breast CT exam, tissue sampling (biopsy) and 
histopathology were conducted at the Highland Hospital, 
University of Rochester Medical Center, while analysis of 
the image data was performed at the University of 
Massachusetts Medical School.  While the study enrolled 
150 subjects, all women, image data from 75 women were 
included in this analysis.  All women included in this 
analysis were assigned BI-RADS® 4 or 5 as per the 
American College of Radiology assessment categories [19].  
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These categories correspond to either suspicious abnormality 
or highly suggestive of malignancy.  All women included in 
this analysis had a dedicated CT exam of the breast(s) with 
the finding(s) that was/were assigned BI-RADS 4 or 5 and 
prior to biopsy.  For this analysis, ramp-filtered FDK [20] 
reconstructions of the projections were used.  The 
reconstructions provided an isotropic voxel size with 
dimensions of 155 μm.   

C. 2-D Power Spectrum 

In order to determine the coronal slice appropriate for 
estimating the anatomic power spectrum, one author (S.V.) 
reviewed the reconstructions.  The criteria used for selection 
were that the coronal slice should be as close to the chest 
wall as possible, should not contain the pectoralis major 
muscle and should not contain visually discernible artifacts.  
This slice was chosen as it represents a cone angle that is 
near-zero so that the cone-beam artifacts, if present, are 
minimized.  Thus, from each subject one slice was selected.  
For each selected slice, a 128 x 128 region of interest (ROI) 
centered to the reconstructed field of view was obtained and 
used for estimating the anatomic power spectrum. 

The anatomic power spectrum was determined in two 
ways: one inclusive of any non-stochastic noise that may be 
present, and one excluding the non-stochastic noise 
component. The anatomic power spectrum inclusive of non-
stochastic noise is represented as ( , )IS u v , where u  and v  

represent the spatial frequency coordinates, and was 
determined as: 

  2
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i i
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      (1)    

In equation (1), ( , )iROI x y  represents the mean value of 

the i-th ROI,   represents the Fourier transform, x  and 
y  represent the voxel dimensions in the x and y-directions, 

respectively, and N  the number of regions of interest 
(ROIs) used in the analysis.  In our analysis, 

0.155 mmx y     and 75N  .  The anatomic power 

spectrum excluding the non-stochastic noise component 
represented as ( , )ES u v  was determined as: 
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In equation (2), ( , )ROI x y  represents the 2-D average 

ROI obtained by averaging all 75 ROIs. 

D. 1-D Power Spectrum 

The one-dimensional (1-D) power spectrum was 
determined by radially averaging the 2-D power spectrum 
after excluding the axes and the rows/columns immediately 
adjacent to the axes. The 1-D spatial frequency f , was 

computed as 2 2f u v  .  The resulting 1-D estimate was 

resampled to 64 spatial frequency bins over the range 

 0, Nf , where Nf  is the Nyquist frequency, which in our 

case is 3.23 cy/mm. 

E. Estimation of the power-law exponent 

Previous work by Benitez et al. [18], showed that the 
noise power spectrum (NPS) with a uniform water phantom 
demonstrated a monotonic increase in amplitude from low to 
mid-spatial frequencies, followed by a monotonic decrease 
in amplitude from mid to high-spatial frequencies.  They 
observed that the peak NPS amplitude occurred at ~0.6 
cy/mm [18].  Hence, 1-D anatomic power spectra 
corresponding to spatial frequencies between 0.1 and 0.45 
cy/mm were fitted with a power-law equation.  This was 
achieved by linear fitting (OriginPro 8.6.0, OriginLab 
Corporation, Northampton, MA) after logarithmic transform 
of the spatial frequency and the anatomic power spectrum. 

TABLE I 
DEDICATED BREAST CT ACQUISITION PARAMETERS 

Description Value 

 
Applied tube voltage  

 
49 kVp 

1st half-value layer of x-ray beam 1.4 mm of Al
X-ray pulse width 8 ms 
Number of projections 300 
Angular range 360° 
Binned pixel pitch 388 μm 
Scan time 10 seconds 

Fig. 2.  One-dimensional power spectrum determined by radially 

averaging  after excluding the axes and the rows/column 

immediately adjacent to the axes. 

   
A         B        C   

Fig. 1.  The two-dimensional anatomic power spectrum inclusive of 
non-stochastic noise (A) and excluding the non-stochastic noise (B).  
The non-stochastic noise component (C) was determined by 
subtracting (B) from (A).  For display purposes, all spectra are shown 
in log-scale with the origin set to spectral mean. 
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III. RESULTS 

Figure 1 shows the two-dimensional anatomic power 
spectra inclusive of non-stochastic noise (A) and excluding 
the non-stochastic noise (B).  The non-stochastic noise 
component was determined as ( , ) ( , )I ES u v S u v , i.e., by 

subtracting (B) from (A), and is shown in (C). 
Figure 2 shows the one-dimensional anatomic power 

spectrum determined by radial averaging ( , )ES u v  after 

excluding the axes and the rows/columns immediately 
adjacent to the axes.  

Figure 3 shows the linear fit of the one-dimensional 
anatomic power spectrum as a function of spatial frequency 
after logarithmic transform of the spatial frequency and the 
NPS. The slope of this fit corresponds to the exponent of the 
power-law,  .  The determined value of   was 1.581.  The 

confidence intervals and the standard error are summarized 
in Table II.  

IV. DISCUSSION 

The presence of non-stochastic noise component was 
observed in Figure 1.  The two-dimensional anatomic power 
spectrum shown in Figure 1 exhibited good radial symmetry.  
Hence the use of radial averaging to estimate the 1-D power 
spectrum is appropriate.  Comparing the 1-D anatomic 
power spectrum shown in Figure 2 to that reported in Figure 
13 of Benitez et al. [18], it is apparent that for spatial 
frequencies less than 0.5 cycles/mm, the anatomic noise is 

the dominant factor.  Hence, NPS corresponding to spatial 
frequencies between 0.1 and 0.45 cycles/mm were fitted 
with a linear curve after logarithmic transform.  Good 
correspondence was observed between the empirical values 
and the linear fit (adjusted r2=0.94).  Considering the 95% 
confidence intervals of our estimate of the power-law 
exponent the determined value is in reasonable agreement 
with that reported by Metheany et al. [16].   Importantly, the 
exponent with breast CT was substantially lower than that 
reported for mammography.  Following the analysis 
provided by Burgess et al. [5], the aforementioned 
observation suggests that the threshold size for lesion 
detection would be less impaired by the anatomic noise in 
breast CT than in mammography.   
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Abstract— Efficient optimization of CT protocols demands a 
quantitative approach to predicting human observer 
performance on specific tasks at various scan and 
reconstruction settings. The goal of this work was to 
investigate how well a channelized Hotelling observer (CHO) 
can predict human observer performance on 2-alternative 
forced choice (2AFC) lesion-detection tasks at various dose 
levels and two different reconstruction algorithms: a filtered-
backprojection (FBP) and an iterative reconstruction (IR) 
method (SAFIRE, Siemens Heathcare). A stadium-shaped 
phantom filled with water was used to represent an average-
sized patient. Three rods with different diameters were placed 
in the phantom to simulate low-contrast lesions with different 
sizes. The phantom was scanned 100 times each at 5 dose 
levels. Twenty-one 2-alternative forced choice (2AFC) studies 
were created, including 15 for FBP (5 mAs settings × 3 lesion 
sizes) and 6 for IR (2 mAs settings x 3 lesion sizes). A CHO 
with Gabor channels was used to predict the percent correct 
for each 2AFC task. The performance predicted by the CHO 
was compared with that obtained by 4 medical physicists. The 
human and model observers were highly correlated at each 
dose level for each lesion size for both FBP and IR. The 
Pearson’s product-moment correlation coefficients were 0.985 
for both methods. Bland-Altman plots showed excellent 
agreement for all dose levels and lesions sizes with a mean 
absolute difference of 1.2%±1.0% for FBP and 2.3%±2.4% 
for IR). Therefore, the CHO model observer has a potential to 
accurately predict the human observer performance in CT at 
different radiation dose levels and reconstruction algorithms. 

Keywords: Computed tomography (CT), model observer, 
image quality, radiation dose, iterative reconstruction 

I.  INTRODUCTION  

Optimizing scan protocols to achieve adequate 
diagnostic capability with the lowest reasonable dose is an 
important task in CT. Clinical evaluation by interpreting 
physicians is the most commonly used approach to 
determining the lowest possible radiation dose in CT 
protocols. However, this approach is very laborious, 
produces results that cannot be readily generalized to other 
scanner models and reconstruction algorithms. A more 
efficient and quantitative method is desired by the CT 
community in order to meet the ever-growing need for 
radiation dose and protocol optimization in CT. The key to 
a quantitative method for dose optimization is to determine 
image quality metrics that can be accurately measured in 
phantoms and that are highly correlated with interpreting 
physicians’ performance for a specific diagnostic task.  

Currently, many physical metrics, including modulation 
transfer function (MTF), slice-sensitivity profile (SSP), 
noise level, and noise power spectrum (NPS) are used to 
quantify or monitor various aspects of CT image quality. 
These metrics are not complete descriptors of image quality 
and do not directly reflect the diagnostic performance for a 
given task. Improving quality according to each of these 
metrics will not necessarily increase diagnostic accuracy. In 
addition, with the wider employment of iterative 
reconstruction, traditional simple physical metrics may have 
some difficulty in characterizing image quality. One 
example showing that MTF is not an ideal metric is the 
difficulty when it is used in quantifying spatial resolution 
for iterative reconstruction. Due to the non-linearity of the 
regularization process in most of the iterative reconstruction 
algorithms, the spatial resolution varies with the object 
contrast. Traditional MTF measurement with high-contrast 
wires would deliver incorrect information about the 
resolution in low-contrast situation. 

Task-based image quality metrics using model 
observers have been studied extensively over the past 3 
decades [1, 2]. Various model observers have been applied 
to different imaging modality areas to assess or optimize 
image quality, including nuclear medicine imaging, 
mammography, x-ray dual-energy imaging, tomosynthesis 
and flat-panel cone-beam CT, and MRI.  

Relatively fewer studies have been done in clinical CT 
[3-6]. Boedeker et al used a non-prewhitening (NPW) 
model observer calculated from spatial frequency–based 
metrics (MTF and NPS) to quantify the influence of 
reconstruction kernel and radiation dose on the signal-to-
noise-ratio (SNR) in a simple detection task [3]. The signal 
in that study was generated by simulation, whereas NPS 
was measured from repeated phantom scans. Wunderlich 
and Noo derived the analytical formula of image covariance 
in direct fan-beam CT reconstruction and used a 
channelized Hotelling observer (CHO) for modeling the 
performance in a simulated lesion detection task [6]. 
Richard et al investigated the relationship between model 
observers and human observer performance for detection 
tasks in multi-slice CT [5]. In their study, the model 
observers were Fourier-based metrics using NPS and MTF 
and a computer simulation was employed to generate the 
lesions in the detection task. 
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Before a model observer can be applied to clinical CT 
as an image quality metric to optimize radiation dose and 
parameter settings of various reconstruction algorithms, it is 
important to quantify how well the performance of the 
model observer is correlated with human observers in 
realistic CT scans. Once a set of model observers is 
determined to be highly correlated with or be able to predict 
the human observer performance, they can be used 
clinically to efficiently and accurately optimize scanning 
protocols and radiation dose levels in CT. To the best of our 
knowledge, there has been no such study performed in 
realistic CT scans without invoking any computer 
simulation. Furthermore, image-based model observers are 
required to overcome the difficulty of Fourier-based 
methods in iterative reconstructions.  

The purpose of this work was to investigate how well a 
channelized Hotelling observer (CHO) can predict human 
observer performance on 2-alternative forced choice 
(2AFC) lesion-detection tasks at various radiation dose 
levels and two different reconstruction algorithms: a 
filtered-backprojection (FBP) reconstruction and an 
iterative reconstruction method (Sinogram AFfirmed 
Iterative Reconstruction or SAFIRE, Siemens Heathcare or 
SAFIRE, Siemens Heathcare). 

II. METHODS AND MATERIALS 

A. Data Acquisition and image reconstruction 
A 35 × 26 cm stadium-shaped phantom filled with water 

was used to simulate the abdomen of an average-sized 
patient. Three rods with different diameters (small: 3 mm; 
medium: 5 mm; large: 9 mm) were placed in the center 
region of the water tank. The contrast relative to water 
background was -15 HU at 120 kV. The phantom was 
scanned 100 times each at 60, 120, 240, 360, and 480 
quality reference mAs on a 128-slice scanner (Definition 
Flash, Siemens Healthcare). The tube current modulation 
was on (CAREDose4D, Siemens Healthcare). The 
corresponding scanner radiation outputs, expressed as 
CTDIvol, were 2.8, 5.7, 11.4, 17.1, and 22.8 mGy. After 
removing the 3 rods, the water phantom was again scanned 
100 times to provide signal-absent background images. 
Images were reconstructed using the traditional 3D 
weighted filtered backprojection algorithm available on the 
scanner (B40 kernel) with a slice thickness of 5 mm and an 
interval of 5 mm. Images were also reconstructed with an 
IR algorithm available from the scanner (SAFIRE) for the 

two lower mAs levels: 60 mAs and 120 mAs. The kernel of 
the IR was I40 with a strength setting of 3.  

B. Creation of 2AFC tasks  
By extracting regions of interest (ROI) around the 3 

rods and on the signal-absent images, we generated 21 2-
alternative forced choice (2AFC) studies, including 15 
studies for FBP reconstructed images (5 mAs settings x 3 
lesion sizes) and 6 studies for IR reconstructed images (2 
mAs settings x 3 lesion sizes). The 2 mAs settings (60 mAs 
and 120 mAs) for IR were intentionally selected to be the 
two lower dose settings because this can demonstrate if the 
IR can improve the performance of the 2AFC task. 

Each 2AFC study had 100 trials, with each trial 
consisting of a signal-present image and a signal-absent 
image side-by-side in randomized order. In total, 2100 

 
Figure 1. Phantom setup on a 128-slice CT scanner. 

 
Figure 3. Twenty-one 2AFC studies (FBP: 5 mAs settings × 3 
lesion sizes; SAFIRE: 2 mAs settings x 3 lesion sizes) were 
generated by extracting a small region of interest around the 
lesion and at the corresponding location on the background 
image. Each 2AFC study had 100 trials obtained from repeated 
scans, totaling 2100 trials. 

 
Figure 2. A collage of images with no, small (3 mm), medium (5 
mm), or large (9 mm) lesions at different mAs settings. 

The second international conference on image formation in X-ray computed tomography Page 75



50%

60%

70%

80%

90%

100%

0 60 120 180 240 300 360 420 480

mAs

P
er

ce
nt

 C
or

re
ct

 in
 2

A
FC

 T
as

k Small+FBP (human)

Medium+FBP (human)

Large+FBP (human)

Small+FBP (model)

Medium+FBP (model)

Large+FBP (model)

 
Figure 5. Percent correct in each of the 15 2AFC tasks obtained by 
human observers (rectangular symbols) and predicted by the CHO 
model observer (triangular symbols). The 15 2AFC tasks were 
generated at 5 mAs levels (60, 120, 180, 240, 360, and 480 mAs) and 
3 lesion sizes (small, medium, and large). 

trials were presented to both the model and human 
observers.  

C. Human psychophysical experiments 
Four medical physicists acted as human observers. 
Observers were first trained using the training datasets for 
each experimental condition so that lesion characteristics 
(size, shape, contrast, location) were known for observers.  
They then participate in the formal sessions for each task. 
Monitors were calibrated according to the DICOM 
standards. Experiments were conducted in a darkened 
room with a consistent ambient light. Observers were 
instructed to view the images binocularly from a distance 
of approximately 40 cm and have unlimited time to reach a 
decision. The image review was limited to 2 hours per 
session to avoid fatigue. Percent correct was calculated for 
each 2AFC study. The overall performance for each study 
was averaged over the 4 observers. 

D. Channelized Hotelling Observers 
The general form of the test statistics for a linear model 
observer is the inner product between the observer 
template and the image, which yields a scalar response 

given by ∑ =
==

2

1

N

n nn gωλ gωt , where the 

vector g denotes an image and ω  a template, each being 

an N × N matrix expressed in a column vector format with 
a dimension of N2. The template is different when selecting 
different model observers: An NPW observer’s template is 
the expected signal, filtered by the square of the contrast 
sensitivity function of the human visual system when an 
eye filter is incorporated. CHO uses a set of channels to 
reflect the response of neurons in the primary visual cortex 
[2]. The template in the CHO observer is given by 

[ ]bcscc ggS −= −1
CHOω , where [ ]bcscc KKS +=

2
1  is the 

intraclass channel scatter matrix (average of the channel 
output covariance matrix when the signal is present and 

absent: UKUK s
T

sc = , UKUK b
T

bc = ) and scg  and bcg  

are the channel output means of signal plus background 

and background: s
T

sc gUg = , b
T

bc gUg = .  

We used a CHO with Gabor channels, which involves 
6 channel passbands: [1/128, 1/64], [1/64, 1/32], [1/32, 
1/16], [1/16, 1/8], [1/8, 1/4], and [1/4, 1/2] cycles/pixel. 
The center frequencies were 3/256, 3/128, 3/64, 3/32, 3/16, 
and 3/8 cycles/pixel, respectively. Five orientations (0, 
2π/5, 4π/5, 6π/5, and 8π/5 radians) and 2 phases (0 and 
π/2) were also used, leading to a total of 60 channels in the 
CHO implementation. Figure 4 shows the 30 channels at 
one phase. 

In addition, internal noise is a known component of 
human inefficiency in perceptual tasks and it is necessary 
to be included in visual detection models. We added the 
internal noise to the decision variables by sampling the 
noise from a normal distribution with zero mean and the 
standard deviation was proportional to the decision 
variable’s standard deviation caused by external noise.  

 

III. RESULTS 

A. Performance correlation between model and human 
observers for FBP reconstruction at various dose levels 

The performance in terms of percent correct predicted by 
the CHO was compared with that obtained by 4 medical 
physicists for the 15 2AFC studies involving images 
reconstructed with the FBP method. The human and model 
observers were highly correlated at each dose level for 
each lesion size (Figure 5). The Pearson’s product-moment 
correlation coefficients were 0.983, 0.987, and 0.958 for 
small, medium, and large lesions, respectively. The overall 
correlation coefficient was 0.985. Bland-Altman plots 
showed excellent agreement for all dose levels and lesions 
sizes with a mean absolute difference of 1.2%±1.0% 
(Figure 6). 
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Figure 4. Garbor filters with 6 channel passbands, 5 
orientations, and 2 phases. Only the 30 channels when phase 
equals zero are displayed. 
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Figure 6. Bland-Altman plot of percent correct difference 
between human and model observers in the 15 2AFC tasks. The 
two blue lines (-3% and 3.3%) indicate the average difference ± 
2σ, where σ is the standard deviation of the differences. 

B. Impact of iterative reconstruction on performance 
correlation between human and model observers 
Figure 7 compares the performance predicted by the 

CHO with that obtained by the human observers for the IR 
reconstructed images at the two lower mAs settings (60 
mAs and 120 mAs). As a reference, the performance with 
the FBP reconstruction was also shown on the same figure. 

One can see that, with the use of IR, the percent correct 
predicted by the model observer is still in excellent 

agreement with that measured by the human observer with a 
mean absolute difference of 2.3%±2.4%. The highest 
discrepancy occurs for small lesion at 120 mAs, where the 
difference between the two was 7.1%. In this setting, all 
human observers performed much worse than expected 
(even worse than a lower dose setting at 60 mAs). The 
reason is still unclear. Excluding this unexpected 
exceptions, the mean absolute difference of other five 
predictions were 1.3%±0.5%. 

C. Does iterative reconstruction improve performance? 
From Fig. 7, one can see that the performance achieved 

by human observers and predicted by model observers both 
did not show a clear sign that IR (SAFIRE, Siemens 
Healthcare) improves the performance in the 2AFC tasks 
for every dose and lesion size setting. It is interesting to 
note that for medium lesion size (5 mm in diameter), there 
is an improvement by human observers, from 88.3%+/-
3.7% to 91.5%+/-3.5% at 60 mAs (p=0.14) and from 
92.5%±2.5% to 98.3±0.5% at 120 mAs (p=0.028). The 
improvement at 120 mAs was significant. Such a trend of 
improvement was predicted correctly by the model 
observer. For large lesion size (9 mm), the performance was 
almost identical for both human and model observers, 
maybe due to the fact that the percent correct is close to 
saturation (100%). For small lesion size (3 mm), however, 
the performance became unexpectedly worse at 120 mAs 
for human observers when IR was applied (from 
79.8%±4.1% to 68.8±2.9%, p=0.021). Model observer 
predicted a slight drop from 77.0%±4.0% to 75.8%±3.8%, 
but not as significant as human observers. The prediction by 
model observers appeared to be more reasonable because 
60 mAs did not show significant changes for any observer.  
The reason for this unexpected substantial drop in human 
observers remains to be investigated.  

IV. CONCLUSIONS AND DISCUSSIONS 

We investigated how well a CHO model can predict 
human observer performance on simple 2AFC lesion-
detection tasks using repeated and realistic CT scans. An 
excellent agreement of performance was achieved between 
human and model observers at various dose levels for both 
FBP and an iterative reconstruction method. These results 
imply that the CHO model has a potential to be employed in 
clinical CT for optimizing radiation dose and scanning 
protocols.  

In the current study, the 2AFC lesion detection task 
consists of a uniform water background. How realistic 
anatomical background affects the agreement of model and 
human observers remains to be investigated. The model 
observers may need to be modified in this situation in order 
to achieve a reasonable agreement. Phantoms representing 
realistic background need to be constructed to accurately 
simulate realistic diagnostic tasks. More complicated tasks 
such as lesion classification and lesion detection with signal 
known statistically (SKS) in realistic background also 
remain to be evaluated.  
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Figure 7. Performance comparison between human observers 
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for the 6 2AFC tasks when IR reconstruction (SAFIRE, Siemens 
Healthcare) was applied. The 6 2AFC tasks were generated at 2 
mAs levels (60 mAs and 120 mAs) and 3 lesion sizes (small, 
medium, and large). The performance for the 2AFC tasks when 
FBP reconstruction was used was also displayed as a reference. 
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Abstract 
 
The use of dual-energy CT (DECT) for accurate 
attenuation correction of PET and SPECT data in 
PET/CT and SPECT scanners has been proposed. 
Using synthesized monoenergetic images at the 
appropriate photon energy would allow for accurate 
attenuation correction where there is both bone and 
confounding high-Z materials (e.g. contrast or 
implants) in the CT image. DECT methods, however, 
are known to increase image noise. Methods: We 
used joint PET and CT simulation studies of the 
NCAT phantom to evaluate the energy dependent 
noise and bias properties of monoenergetic 
attenuation images synthesized from dual-energy 
CT (DECT) acquisitions. The monoenergetic images 
were then used to estimate attenuation correction 
coefficients for the PET emission data. The noise 
and bias of PET tracer uptake in a variety of lesions 
(soft tissue, bone) was evaluated as a function of CT 
technique and CT image noise suppression 
parameters. Results: In general there was a trade 
off of increased noise but reduced bias when 
attenuation correction was determined from DECT 
acquisition when compared to single-kVp CT based 
attenuation correction. Sinogram smoothing can 
dramatically reduce noise in the DECT-derived PET 
attenuation image without increasing PET image 
bias. Through appropriate selection of tube currents 
for the high and low kVp scans, DECT delivered 
roughly the same amount of radiation dose as that of 
a single kVp CT scan, but could be used for PET 
attenuation correction with reduced bias in contrast 
agent regions by a factor of ~2.6 and a reduced 
RMSE for the total object. Conclusions: With 
careful optimization of DECT techniques, DECT-
based attenuation correction for PET can deliver the 
same radiation dose as that of a single spectra CT, 
while also leading to reduced bias and RMSE for 
PET imaging of high-Z materials. 
 
Introduction 
 
Quantitative imaging with positron emission 
tomography (PET) and single-photon emission 
computed tomography (SPECT) is receiving 
increased attention for clinical applications (1,2). In 
quantitative PET and SPECT, correction for the 
effect of photon attenuation is of paramount 
importance. The X-ray Computed Tomography (CT) 
component in a PET/CT or SPECT/CT system not 
only provides precise anatomical localization of 

regions identified on the tracer uptake images, but is 
also used for attenuation correction of the PET or 
SPECT emission data (3,4). At the energies of X-ray 
CT, attenuation is due to Compton scatter and 
photoelectric absorption, while at SPECT energies, 
and particularly PET energies, Compton scatter is 
the dominant process for biological materials. 
 
Table 1. Photon energies of common isotopes used 
in PET/CT and SPECT/CT Imaging. 
 

Mode Isotope Energy (keV) 
PET All (F-18, C-11, etc.) 511 
SPECT Xe-133 80.9 
SPECT Tc-99m 140 
SPECT I-123 160 
SPECT Ga-67 185 
SPECT In-111 171, 245 

 
A list of energies of interest are given in Table 1, and 
Figure 1 plots the mass attenuation coefficients of 
common materials over the energy ranges relevant 
to PET/CT and SPECT/CT imaging. 
 

  
Figure 1. Mass attenuation coefficient as a function 
of energy for different materials. 
 
The most common method for transforming CT 
images to SPECT or PET energies is 
Multilinear/Hybrid Scaling (3.4). In these methods, 
different scaling factors (for water and air, and for 
water and bone respectively) are used to calculate 
the attenuation values for CT numbers H for which -
1000 < H < 0, and for H >0. The multilinear scaling 
method and other hybrid methods have been shown 
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to give reasonable results for low-Z biological 
materials in practice. However, for high-Z materials 
such as contrast agents there is possibility for 
significant bias (4). 
 
Dual energy CT (DECT) (5-7) has been proposed as 
a method to estimate material properties using either 
photoelectric and Compton components or physical 
basis materials such as plastic and aluminum.  
DECT has been proposed to remove the bias from 
the CT-based attenuation correction (CTAC) image 
for SPECT and PET (6.7).  
 
A challenge with the use of DECT is the significant 
noise amplification due to the poorly conditioned 
inverse problem of estimating the component 
sinograms, leading to excessive noise amplification. 
It has already been shown in the literature that the 
noise amplification is energy dependent in the 
diagnostic CT energy range, but the noise and bias 
at SPECT or PET energies is largely unknown. 
Another potential drawback of dual energy is the 
additional patient radiation dose required to acquire 
two separate energies and to reduce noise. 
 
To address these issues with DECT-based 
attenuation correction, we evaluated the energy 
dependent noise properties of synthesized mono-
energetic attenuation images in the energy range 
appropriate for nuclear imaging (140-511 keV). We 
also evaluated the impact on corresponding PET 
images. 
 
Methods 
 
CT-based attenuation correction was provided by 
either single-kVp CT scans (3,4) or dual-kVp (i.e. 
dual-energy CT (DECT)) CT scans (5-7). We used 
simulation studies to evaluate the bias and noise of 

synthesized monoenergetic images of a modified 
NCAT phantom from 40 to 520 keV, a range suitable 
for SPECT and PET energies. In addition we 
evaluated strategies of noise suppression by 
sinogram smoothing and dose minimization by 
optimization of tube currents. We compared the 
impact of DECT-based attenuation correction with 
similar dose single-kVp based attenuation correction 
on PET quantitation for an NCAT phantom with hot-
spot regions representing tumors in soft tissue, 
bone, and also with iodine based CT contrast agent 
enhanced soft tissue. The simulations used the 
Catsim (8) and ASIM (9) simulation tools for CT and 
PET. The overall data flow is illustrated in Figure 2. 
 
Results 
 
Both analytic calculations and simulations showed 
the expected minimum noise value for a synthesized 
monoenergetic image at an energy between the 
mean energies of the two spectra. In addition we 
found that the normalized coefficient of variation in 
the synthesized attenuation image plateaued near 
the 160 keV energy of I-123 (i.e. SPECT) and then 
remained constant with increasing energy up to 511 
keV and beyond (i.e. PET). As a check, the linear 
attenuation coefficients of the synthesized 
monoenergetic images were within 2.4% of the 
known true values across the entire energy range. 
Compared with no sinogram smoothing, sinogram 
smoothing can dramatically reduce noise in the 
DECT-derived attenuation image.  Through 
appropriate selection of tube currents for high and 
low kVp scans, DECT can deliver roughly the same 
amount of radiation dose as that of a single kVp CT 
scan, but could be used for PET attenuation 
correction with reduced bias in contrast agent 
regions by a factor of ~2.6 and slightly reduced 
RMSE for the total image.  

 

 
 

Figure 2. Data flow for evaluating use of DECT for PET attenuation correction. 
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Figure 3. Comparison of CT-based attenuation images of the modified NCAT phantom at 511 keV. 

 
 

 
 
Figure 4. Comparison of PET images of the modified NCAT images using the different CT-based attenuation 
images shown in Figure 3. 
 
Table 2. Bias in noisy PET images with DECT and single CT based attenuation correction for different ROIs in the 
NCAT phantom as shown in Figure 4. 
 

Methods ROI 1 ROI 2 ROI 3 ROI 4 ROI 5 ROI 6 Entire 
object 

True PET value 6.0 5.9 5.8 1.0 1.0 0.5 n/a 
PET image with DECT-AC  6.9% -1.2% -3.3% 0.6% -1.2% 11.7% 21.0% 
PET image with single-kVp CT  17.8% -5.4% -1.1% -16.7% -4.3% 42.9% 23.3% 
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Figure 5. Profiles through the modified NCAT PET images shown in Figure 4. 
 
 Conclusions 
 
If DECT is used for attenuation correction of 
emission tomography, there is a noise amplification 
that is dependent on the energy of the synthesized 
mono-energetic image of linear attenuation 
coefficients. For SPECT and PET imaging the bias 
and noise levels of DECT based attenuation 
correction is unlikely to affect image quality. 
Sinogram smoothing can be used to reduce the 
noise amplification in DECT-derived attenuation map 
without undue increase of PET image bias. With 
careful optimization of DECT techniques, DECT 
could deliver the same radiation dose as that of a 
single spectra CT, and lead to reduced bias and 
RMSE for PET imaging of high-Z materials. 
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On the statistical analysis of image quality metrics
based on alternative forced choice experiments

Frédéric Noo, Adam Wunderlich, Dominic J Heuscher, Katharina Schmitt, Zhicong Yu

Abstract—Task-based image quality assessment is a valuable
methodology for development, optimization and evaluation of
new image formation processes in CT. Such an assessment can be
performed by building a receiver-operating characteristic (ROC)
curve, or variants of it, such as the localization ROC (LROC)
curve or the free-response ROC (FROC) curve. For comparisons,
it is common to reduce the entire curve to a single scalar that
is generally chosen as the area under the curve. In this setting,
building the entire curve is not necessary: a two alternative forced
choice (AFC) experiment can be performed to directly obtain the
desired scalar. In this work, we discuss statistical inference for
comparisons of image formation processes using multiple AFC
studies.

I. I NTRODUCTION

Significant effort is currently spent on the development of
statistical iterative reconstruction methods for CT imaging,
particularly for the aim of enabling CT exams with a lower
dose. To be successful, this effort needs to be accompanied by
a careful methodology for assessment of image quality. Such
an assessment should be task-based [1], particularly because
the algorithms that are under development are non-linear, so
that resolution, contrast and anatomical background effects are
tangled and thus cannot be analyzed each on their own.

A popular methodology for task-based image quality assess-
ment is the construction of a receiver operating characteristic
(ROC) curve [1], [2]. The main idea behind this approach
is to evaluate how well an observer (also called a reader) can
differentiate images from two separate classes. Typically, these
two classes are chosen as sets of images with signal (lesion)
either present or absent, but the theory is not limited to such
a type of classes. For example, the ROC curve can be used to
evaluate the ability of an observer to distinguish lesions with
fuzzy boundaries from lesions with sharp boundaries.

Two other popular methodologies for image quality assess-
ment are the localization ROC (LROC) curve, and the free-
response ROC (FROC) curve. When the task is defined as
that of detecting a signal with unkown location, these two
methodologies are often preferred over the classical ROC
curve. This preference is due to the fact that, unlike the ROC
methodology, the LROC and FROC curves do account for
the visual search process. (When the lesion location is not
specified, the ROC approach suffers from the fact that an
observer may rate an image as containing a lesion and be
correct while basing its decision on a reconstruction artifact.)

The authors are with the Department of Radiology, University of Utah, Salt
Lake City, Utah, USA. E-mail: noo@ucair.med.utah.edu

This work was partially supported by NIH grants R01 EB007236 and R21
EB009168.

Note that the FROC curve is more powerful than the LROC
curve as it does not require telling the observer how many
instances of the signal are present in an image.

Whether ROC, LROC or FROC curves are used, it is typical
to reduce all information brought by the curve to a single
scalar. For ROC and LROC studies, this scalar is generally
chosen as the area under the curve. For FROC studies, the
area under the curve is not defined, and no single metric has
yet been universally accepted.

Interestingly, the area under the ROC or LROC curve has
a clear probabilistic meaning: it is the probability of correct
decision. In the ROC case, correct decision means correct clas-
sification. In the LROC case, correct decision means correct
classification together with correct localization [3]. Given this
probabilistic meaning, it was noted that the area under the
ROC or LROC curve can be estimated without seeking the
curve, using the concept of Bernoulli trials. In the context of
image quality assessment, this trial is often referred to as a
two alternative forced choice (2-AFC) experiment. Whereas
the ROC or LROC curve involves only two choices, AFC
experiments do not need to be limited to two choices. Multiple
AFC experiments (MAFC) can be as easily implemented,
and they can be advantageous over a 2-AFC experiment by
allowing more stringent testing of image formation processes.
However, note that the MAFC experiment does not have an
ROC-curve interpretation.

The primary aim of a 2-AFC or MAFC experiment is to
evaluate a proportion that serves as an estimate of the probabil-
ity of correct decision. To achieve this aim, the experimentalist
creates a numbern of independent trials (cases), present these
cases one after the other to an observer and records the number
of times when the observer succeed to make a correct decision;
this number divided byn is the sought proportion.

As presented above, the probability of correct decision
in an MAFC experiment is a quantity that depends on the
observer. To reduce this dependence, the mean probability of
correct decision over a set of observers is often preferred as a
figure-of-merit. Moreover, the proportion obtained for a given
observer in an MAFC experiment depends on the selected
cases as well as their number. The larger the number of cases,
the closer the proportion is to the desired probability of correct
decision. However, there are practical limits on the number of
trials an observer can be subjected to. Hence, it is important to
realize that image quality assessment results based on MAFC
experiments include variability due to randomness in cases as
well as in the reader pool. An MAFC experiment is inherently
a so-called multi-reader multi-case (MRMC) study.

There are four different ways of reporting results from an
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MRMC study: the cases can either be seen as a fixed or a
random effect, and the observers can also either be seen as
a fixed or a random effect. Naturally, treating the readers
and also the cases as a random rather than a fixed effect
enables more general conclusions. However, it is important
to realize that generality comes with a cost: error bars are
increased. If only 3 or 4 observers are available, there is
virtually no hope to make any useful conclusion between
image formation processes while treating the readers as a
random effect. In this paper, we are interested in the statistical
analysis of MRMC results obtained with alternative forced
choice experiments under the condition that the readers are
seen as a fixed effect, and the cases as a random effect. Our
results are primarily relevant for image quality assessment
studies related to development and optimization of image
formation processes, for which generating a large number
of cases is typically easy whereas readers are scarce due to
limited availability and high cost.

Technically speaking, the statistical analysis we are in-
terested in amounts to making inferences based on a set
of correlated proportions. Proper handling of correlations is
where the complexity lies. In practice, correlations can be
induced through a number of mechanisms. For example,
a study involving two observers that read the exact same
cases from one image formation process yields two correlated
proportions. Similarly, comparing two image reconstruction
algorithms using the exact same data sets with a single
observer will yield two correlated proportions. Hypothesis
tests have been developed for comparing two [4] or more [5]
correlated proportions. Here, we extend on these results in two
ways: first, we enable comparisons using confidence intervals
rather than hypothesis testing, and second, we enable these
comparisons to be performed between linear combinations of
proportions, instead of proportions, which is crucially needed
to compare reader-averaged proportions.

II. T HEORY

The problem we consider is that of drawing statistical
inferences fromK correlated proportions that are each the
result of one MAFC experiment. The difference from one
experiment to another may either be a change in the observer,
or a change in the image formation process used to define the
cases. In this section, we first give a mathematical formulation
for this problem. Then, we derive the covariance matrix
for the vector of correlated proportions, and we introduce
a robust estimator for this matrix. Together with properties
of asymptotic normality, this covariance matrix estimator is
essentially all that we need to build confidence intervals for
any function of theK correlated proportions.

A. Mathematical formulation

Let θk with k = 1, . . . K denote the probability of correct
decision associated with thek-th MAFC experiment, and let
θ̂k be the proportion used as estimate of this probability.

As discussed earlier, eacĥθk is obtained from a numbern
of independent Bernoulli trials. LetXik be the outcome of
the i-th trial in thek-th MAFC experiment. This outcome is

equal to one in case of success, and equal to zero otherwise.
By definition,

θ̂k =
1

n

n
∑

i=1

Xik . (1)

Also, the expected value ofXik, denoted asE(Xik), is θk,
and consequently,E(θ̂k) = θk.

Now, let θ and θ̂ be the two vectors in theK-dimensional
Cartesian space that have theθk and θ̂k values as their
components, respectively, and letui be the vector that has
the Xik as components for any fixed value ofi. Using this
vectorial notation, we can writeE(θ̂) = θ and

θ̂ =
1

n

n
∑

i=1

ui . (2)

In our setting, vector̂θ is a multivariate random variable
with covariance matrixC. If there were no correlations be-
tween the MAFC experiments,C would be a diagonal matrix.
However, here, we consider that correlations are present and
thusC is not diagonal. In any case, the diagonal elements of
C are each given by the variance expression for a proportion
based onn Bernoulli trials, i.e.,

C(k, k) =
θk (1 − θk)

n
. (3)

B. Covariance matrix

Theorem 1. Let prs be the probability of jointly reaching a
correct decision in the experiments of indicesr and s with
r 6= s. Then,

C(r, s) =
prs − θr θs

n
. (4)

This theorem is proved as follows. First, recall that, by
definition

C(r, s) = E((θ̂r − θr)(θ̂s − θs))

= E(θ̂r θ̂s) − θr θs . (5)

From (1), we get

E(θ̂r θ̂s) =
1

n2

n
∑

i=1

n
∑

l=1

E(Xir Xls)

=
1

n2

n
∑

i=1

∑

l6=i

E(Xir Xls) +
1

n2

n
∑

i=1

E(Xir Xis) .

(6)

Given that the cases correspond to independent trials,
E(Xir Xls) = θr θs whenl 6= i. Moreover, from the definition
of prs, we haveE(Xir Xis) = prs for any value of i.
Therefore,

E(θ̂r θ̂s) =
n (n − 1)

n2
θrθs +

1

n
prs

= θr θs +
1

n
(prs − θr θs) . (7)

Direct combination of this last result with (5) yields the
announced result.

Note, as expected, that (3) and (4) are fully consistent with
each other, sinceprs = θr whenr = s. In addition, when the
proportions are independent,prs = θr θs and thusC(r, s) = 0.
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C. Estimator for the covariance matrix

Theorem 2. Let

p̂rs =
1

n

n
∑

i=1

Xir Xis . (8)

Then,

Ĉ(r, s) =
1

n − 1

(

p̂rs − θ̂r θ̂S

)

(9)

is an unbiased and consistent estimator ofC. Furthermore,Ĉ
is definite positive with probability one.

The unbiasedness ofC is proved as follows. First, we note,
from its definition, thatE(p̂rs) = prs. Second, we observe
that

E(θ̂r θ̂s) = C(r, s) + θr θs . (10)

Consequently,

E(Ĉ(r, s)) =
1

n − 1
E(p̂rs) −

1

n − 1
E(θ̂r θ̂s)

=
1

n − 1
prs −

1

n − 1
(C(r, s) + θr θs)

=
1

n − 1
(prs − θr θs) −

1

n − 1
C(r, s)

= C(r, s) (11)

where the last equality comes from (4).
To prove consistency, we need to evaluate the behavior of

Ĉ(r, s) as a functionn. Given thatĈ(r, s) is expressed as the
sum of two random variables, we have

Var
(

Ĉ(r, s)
)

≤





√

Var

(

p̂rs

n − 1

)

+

√

√

√

√Var

(

θ̂r θ̂s

n − 1

)





2

≤
1

(n − 1)2

(

√

Var(p̂rs) +

√

Var(θ̂r θ̂s)

)

≤
1

(n − 1)2

(
√

p̂rs (1 − p̂rs)

n
+

√

Var(θ̂r θ̂s)

)

. (12)

Also, by the delta method, we know that

Var(θ̂r θ̂s) ≃
W

n
(13)

for n large whereW is a constant. Therefore, Var(Ĉ(r, s))
decays at least asn−5/2 with n, which proves consistency.

Last, to prove thatĈ is definite positive with probability
one, we first note that the following equality holds:

n Ĉ =
1

n

n
∑

i=1

ui uT
i − θ̂ θ̂

T
. (14)

Thus, for any vectorx, we have

n xT Ĉx =
1

n

n
∑

i=1

(xT ui)
2 − (xT θ̂)2 . (15)

Furthermore, sincêθ = 1

n

∑n

i=1
ui, this last equality is

equivalent to

n2 xT Ĉx =

n
∑

i=1

(αi)
2 −

1

n

(

n
∑

i=1

αi

)2

(16)

with αi = xT ui. However, Cauchy-Schwartz’s inequality
implies that

(

n
∑

i=1

αi

)2

≤ n

n
∑

i=1

(αi)
2 . (17)

Therefore,
n2 xT Ĉx ≥ 0 , (18)

which demonstrates that̂C is semi-definite positive.
Last, we examine the condition under which the equality in

(18) can hold. Because the inequality in (18) was found using
Cauchy-Schwartz’s inequality, the condition is simple: equality
only holds only whenxT ui is equal to a constant for alli.
Since this constraint corresponds to a set of measure zero for
any givenx, the strict inequality holds with probability one.

D. Asymptotic properties

Theorem 3. The random vector̂C−1/2(θ̂ − θ) converges in
distribution to a multivariate normal vector with mean zero
and identity covariance matrix.

This theorem is a direct consequence of the following two
results. First,Ĉ converges towardsC with probability one,
becauseĈ is a consistent estimator ofC with a converging
rate of n−5/2. Second, equation (2) and the central limit
theorem for multivariate random variables imply together that
Ĉ−1/2(θ̂−θ) converges in distribution to a multivariate normal
vector with mean zero and identity covariance matrix.

E. Summary

Thanks to the asymptotic properties of Theorem 3, the
covariance matrix estimator defined by (9) can be used to build
confidence intervals (or regions) for any linear combination of
components of̂θ. More precisely, letd̂ = F θ̂ whereF is a
matrix of non-random coefficients, and letΩ = FCFT be the
covariance matrix of̂d. Our results imply that̂Ω = FĈFT is a
consistent unbiased estimator ofΩ and thatΩ̂−1/2(d̂−E(d̂))
is asymptotically distributed as a multivariate normal vector
with mean zero and identity covariance matrix.

III. E XAMPLE OF UTILIZATION

In this section, we illustrate how the results of the previous
section can be utilized for comparison between image recon-
struction algorithms using results from 2-AFC experiments.

A. Reconstruction algorithms

The algorithms selected for our example perform image re-
construction from fan-beam data collected in two dimensions.
The first two algorithms, called algorithms A and B, use a full-
scan of data, whereas the third algorithm, called algorithm C,
only uses a short-scan of 240 degrees. Algorithms A and C are
both implementations of the fan-beam filtered-backprojection
(FBP) formula with different weighting schemes: algorithm
A weights all measurements with a factor of 1/2, whereas
algorithm C invokes a Parker weighting so that only data over
a short-scan are needed. Algorithm B is an implementation of
the parallel-beam FBP formula that is applied after rebinning
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Fig. 1. Image display for a 2-AFC experiment that assesses thearea under
an LROC curve.

the fan-beam data to the parallel-beam geometry. Like algo-
rithm A, algorithm C assigns a weight of 1/2 to handle all
data redundancy.

B. Task description

Image quality was assessed using two-AFC experiments
corresponding to LROC analysis. The LROC task was to
detect a small lesion within a uniform brain phantom. Both
the position of the lesion and the contrast of the lesion were
random ([25, 35] HU), whereas the lesion size was fixed (5 mm
diameter). The lesion was always within the gray-matter area
of the brain, and was not allowed to overlap with the skull.

In our context, the Bernoulli trial corresponded to presenting
the observer with a pair of images as shown in Figure 1. One
of the images always contained exactly one lesion whereas
the other image did not contain any lesion. The observer was
asked to insert a mark within one of the two images (see the
red cross). A success was recorded when the mark identified
the lesion within 10 pixels, otherwise a failure was recorded.
In Fig.1, the lesion is indicated with a green square, showing
that the mark was inserted at the wrong location.

C. Study design

We decided to assess performance using four observers
reading each 250 pair of images (in two sessions of 125
images, with 40 training images before each session). To
optimize statistical power, the exact same data sets were used
for all three reconstruction algorithms, and different cases
were used from one reader to another. Hence, the computed
proportions were only correlated between algorithms.

Denote the proportions for algorithms A, B and C and reader
j asAj , Bj andCj , and letĈj be the3×3 covariance matrix
for these three proportions. This matrix was estimated for each
reader using (9). Next, define the reader-averaged proportions
for the three algorithms asA = (A1 +A2 +A3 +A4)/4, B =
(B1 +B2 +B3 +B4)/4, C = (C1 +C2 +C3 +C4)/4. Given

that the cases were independent from one reader to another,
the covariance matrix for these reader-average proportions was

Ω =
1

16

4
∑

j=1

Cj . (19)

Confidence intervals were estimated forA, A−B andA−C;
A was included to provide a reference value. Letd̂ = [A, A−
B, A−C]. The covariance matrix for̂d was obtained fromΩ
and the diagonal elements of this matrix were used to find a
98.33% confidence interval for each entry of̂d, by relying on
asymptotic normality. The confidence intervals found forA,
A − B and A − C were [0.7909, 0.8491], [−0.0199, 0.0359]
and [0.1141, 0.1819] respectively. By Bonferroni’s inequality,
the joint probability for the three intervals together is at least
95%. As expected, we observe that AlgorithmA significantly
performs better than Algorithm C, due in particular to the
extra amount of data involved in the reconstruction process.
On the other hand, the difference between algorithms A and
B is relatively small, and no conclusion can be made in favor
of one method versus the other.

IV. CONCLUSION

We have presented a nonparametric methodology to evaluate
the statistical variability of image quality assessment results
based on MAFC experiments with multiple readers and cases.
Our methodology views the readers as a fixed effect and the
cases as a random effect. This setting is ideal for development
and optimization of image formation processes, where using a
large number of readers is impractical. For studies that invoke
many readers, we recommend evaluating the variability due to
the reader pool as well as that due to the cases, which may
be done using the results in [6].

Although not discussed here, it can be shown that our theory
also enables simple sample size calculations. The procedure to
follow is very similar to that presented in [3] for LROC studies.
Moreover, it turns out that there exist interesting links between
our covariance matrix estimator, Jack-knifing techniques, and
maximum likelihood estimation. These links will be discussed
in the future.
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Abstract— Partial scan reconstruction (PSR) is used in 
cardiac CT imaging to improve temporal resolution. 
Artifactual CT number variations over time, named PSR 
artifacts, are observed during myocardial CT perfusion 
(CTP) due to different angular range of projections used. 
The purpose of this study was to evaluate a novel 
noninvasive method to reduce PSR artifacts, which is 
based on the temporal interpolation of partial scan 
sinograms (TIPS). The TIPS method estimates the 
projection data missing to complete a full scan (2π) from 
each partial scan of a myocardial CTP sequence. The 
TIPS method was evaluated using a stationary 
anthropomorphic phantom and data from two in vivo 
myocardial CTP experiments using pigs.  Scan protocols 
used 80 kVp, 350 mAs/rot, and 24 x 1.2 mm collimation 
using a dual-source CT scanner. PSR artifacts were 
quantified by measuring the temporal standard deviation 
of CT numbers in selected regions-of-interest. PSR 
artifacts were reduced up to 75% in the phantom when 
the partial scans were processed with TIPS. Likewise, 
PSR artifacts were reduced on average of 50% for the in 
vivo data, facilitating the analysis of myocardial time-
attenuation-curves from which myocardial perfusion 
estimates can be derived. Further, because images 
reconstructed from TIPS processed data use more 
projections, image noise was reduced by about 30%. In 
conclusion, the TIPS method was effective reducing the 
PSR artifacts while at the same time reducing image noise. 
The use of TIPS can promote the clinical utilization of 
myocardial CTP for appropriately selected patients, by 
providing more accurate myocardial perfusion estimates, 
and also by reducing the radiation dose of this 
examination.  
 

Index Terms— Image Artifacts, Myocardial CT 
perfusion, Partial Scan Reconstruction.  
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I. INTRODUCTION 

major technical challenge to myocardial CT 
Perfusion (CTP) imaging is temporal resolution. 
Faster rotating gantries, partial (or short) scan 

reconstruction, and dual source CT are three major 
approaches to improve temporal resolution in 
multidetector row CT.  
 In myocardial CTP several consecutive partial scans 
are used to follow the transient arrival and washout of 
intravascular contrast agent through the myocardium. 
To reduce radiation dose the myocardial CTP technique 
is performed with prospective ECG triggering, thus x-
ray exposure is limited to a predefined cardiac phase 
which is typically selected in mid diastole (i.e. 70% of 
the RR interval).  

When using prospectively ECG triggered 
acquisitions in myocardial CTP, it is not possible to 
guarantee that the angular data range, corresponding to 
a specific anatomic location and phase in the cardiac 
cycle, consistently uses the same angular source 
position. It has been shown that small variations in 
beam hardening and scatter as a function of source 
position leads to artifactual temporal variations in CT 
numbers, since different angular ranges are covered 
from one partial scan to another [1].  Such fluctuations, 
different from statistical noise, can compromise the 
quantitative accuracy of myocardial CTP, and have 
been characterized as partial scan reconstruction (PSR) 
artifacts.  

PSR artifacts are considered to belong to 
multidetector row CT but not to the electron beam CT 
(EBCT) technology used earlier on for myocardial 
CTP. EBCT provided a temporal resolution in the range 
of 50 to 100 ms by magnetically steering an electron 
beam around a 210o stationary tungsten target. Hence, 
by its design, the EBCT ensured that the partial scans 
always covered a consistent angular range [2].  

Existing strategies to reduce PSR artifacts include 
both invasive and noninvasive approaches. Primak and 
colleagues demonstrated that guaranteeing consistent 
angular data ranges (such as in EBCT), PSR artifacts 
were avoided. In their study, the gantry rotation was 
synchronized with an animal’s heart rate driven by a 
pacing device. While the technique effectively avoided 
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PSR artifacts, its invasiveness precluded clinical use 
[1]. Noninvasive approaches to reduce PSR artifacts 
include the use of an a priori  full scan dataset to 
correct subsequent partial scans [3]. Stenner et al. used 
an approach in which the projection data of several 
consecutive partial scans are averaged to obtain both an 
artificial full scan and an artificial partial scan, the later 
coinciding with the angular range of the actually 
acquired partial scan [4]. The artificial scans are 
reconstructed to estimate an artifact image that is 
substrated from the acquired partial scan. While 
Stenner’s method was very successful in stationary 
phantoms, disadvantages include that it requires several 
image reconstruction steps (3 instead of 1), and the 
required superposition operations are potentially error 
prone in vivo due to the rapid heart motion (i.e. 
variations in position from one heart beat to another). 
Recently, another noninvasive method was proposed, 
which is  based on a targeted spatial frequency filter 
(TSFF) that requires the acquisition of 360o degrees of 
projection data (a full scan), from which also a partial 
scan image can be also reconstructed  [5,6]. The TSFF 
uses the low frequency components of the full scan 
(with no PSR artifact) and superimpose it with the high 
frequency components of the partial scan (which has 
better temporal resolution). The TSFF method 
effectively reduced PSR artifacts in a stationary 
phantom. TSFF was also validated in vivo using a 
reference (and invasive) method. Limitations of the 
TSFF include a small increase in radiation dose needed 
(~14% if tube current is modulated to 20% to complete 
a full scan), and the use of the low frequency of the full 
scan can degrade temporal resolution.  

Here, we evaluate a novel noninvasive method to 
reduce PSR artifacts based on the temporal 
interpolation of partial scan sinograms (TIPS). The 
TIPS method relies in the use of consecutive phase-
correlated partial scans, as Stenner’s method; however, 
it does not average them. Instead, the TIPS method 
preserves the partial scan sinogram data acquired in an 
angular range of (π + fan angle α), and uses an 
interpolation method to estimate the projections in the 
(π – α) angular range that is missing to complete a full 
scan. Here, we demonstrate the method using a 
stationary phantom and with in vivo data. 

II.  MATERIALS AND METHODS 

A. Formulation of TIPS 

Consider a sequence of partial scan sinograms pπ(β,θ,ψ, 
t) acquired at a constant position z (i.e. cine mode),  
where β is the detector index, θ the projection angle, ψ 
the detector row position, and t the time of each partial 
scan in a myocardial CTP scan sequence. For 
convenience we will not state the dependence of 
detector index and detector row position. Let’s also 

consider that for each partial scan we record the initial 
and final angular position θ1(t) and θ2(t), respectively, 
where θi(t) Є [0,2π] and |θ2(t) - θ1(t)| = π + α. 

The formula that TIPS uses to estimate 
corresponding full scans p2π(θ, t) is as follows: 
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where ωi is a weighting scheme of phase correlated 
partial scans pπ(θ, ti)  based on interpolation (i.e. cubic 
splines) or a suitable weighing scheme. Note that Eq. 1 
maintains the originally acquired projection data over 
angles θ1(t) to θ2(t), and the remaining angular 
projections to complete a full scan  (π–α)  need to be 
estimated.  

The TIPS method relies on the assumption that the 
angular range covered by each partial scan during a 
myocardial CTP sequence changes continuously, such 
that data from all projection angles over 2π can be 
collected within a few consecutive partial scans.  
Primak et al. [1]  described the following equation to 
characterize the angular range change ∆θ in a sequence 
of ECG triggered partial scan acquisitions: 
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where TRR is the R-R interval time, Trot is the gantry 
rotation time, and the function floor(X)  rounds X to the 
nearest integer less than or equal to X. Primak et al 
demonstrated that to eliminate the PSR artifacts it is 
necessary to ensure that the source trajectory does not 
change from one heart cycle to the other ∆θ = 0°. This 
is achieved when TRR = Trot x N, where N is an integer 
number.  In practice however, exact periodicity of the 
heart cycle with respect to the gantry rotation, leading 
to ∆θ = 0°, is very unlikely. On the contrary, the 
probability of acquiring projection angles over the 
whole 360° is very high. And, if the unlikely event of 
the heart rate naturally synchronizing with the gantry 
rotation, because ∆θ ~ 0°, then PSR artifacts will be 
minimized as was achieved by pacing the heart directly 
as shown by Primak et al. in the animal model with no 
PSR artifact correction needed [1].  
 

B. Phantom Experiment 

An anthropomorphic thorax phantom (QRM, 
Möhrendorf, Germany) with the cardiac calcium insert 
was scanned using a dual-source CT scanner (Somatom 
Definition, Siemens Healthcare, Forchheim, Germany). 
The phantom was placed 5-cm off isocenter in the 
vertical direction with the purpose of increasing 
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anisotropy and hence exacerbating PSR artifacts [1]. 
The phantom was scanned using two CTP protocols, in 
a constant position (cine mode), using either full or 
partial scan acquisitions. The full scan protocol used a 
330 ms temporal resolution and 145 mAs/rotation, and 
the partial scan protocol used 83 ms (using dual source 
reconstruction) and 350 mAs/rotation. The tube current 
time settings were chosen such that image noise values 
of the corresponding reconstructions were 
approximately the same. All other acquisition 
parameters were identical (Table 1).   

 
Table 1. CT scan protocol. 
 

 Parameter Value 
Tube potential [kVp] 80 

Collimation [mm] 24 x 1.2 

Automatic Exposure Control Off 

Scan frequency [s] 0.75 

Scan duration [s] 40 

Rotation time [ms] 330 

C. Image reconstruction and TIPS  

Data corresponding to the four inner collimated 
detector rows were used for reconstruction to avoid 
potentially confounding cone-beam artifacts. Image 
slice thickness was 4.8 mm. Fan-beam filtered 
backprojection was employed. Partial scans were also 
processed with the TIPS method using cubic spline 
interpolation resulting in three datasets of images: full 
scans, partial scans, and partial scans corrected with the 
TIPS method. All algorithm code and data processing 
was performed using Matlab 7.11®.  
 

D. Animal Data  
Data from two myocardial CTP acquisitions using 
female pigs were used. Animals were scanned under 
anesthesia and mechanically ventilated. Before each 
perfusion scan, the animal was hyperventilated. 
Ventilation was suspended for 30 to 40 seconds during 
scanning to minimize spontaneous respiratory thoracic 
motion.  The myocardial CTP scan parameters were 
similar to the scans performed with the phantom (Table 
1), with the exception of scan frequency that depends 
on the animal heart rate (one scan per heart beat). 

III.  RESULTS 

A. Phantoms 

The use of TIPS method resulted in decreased PSR 
artifacts by about fourfold, as quantified by the 
temporal standard deviation of CT numbers in a 
selected ROI (Figure 1 and Table 2).  The use of TIPS 
method also decreased image noise values from 20.1 
HU to 14.3 HU (Table 2). The noise reduction with the 
TIPS algorithm is achieved because it uses more 
projection data for image reconstruction (i.e. full scan 

reconstruction instead of partial scan reconstruction). 
Image noise values for the full scans were 19.8 HU, but 
as previously indicated the tube current was adjusted 
with respect to the partial scans to match image noise. 

 
B. Animal data 
PSR artifacts were reduced when using TIPS leading 

to a smoother myocardium tissue TAC (Figure 2), 
which facilitates dual gamma-variate curve fitting for 
perfusion estimations. The TIPS method reduced the 
temporal standard deviation of CT numbers in selected 
ROIs under the animal skin from 3.8 HU to 2.1 HU. 
The TIPS method also reduced image noise from 24 
HU to 18 HU in the selected ROI within the 
myocardium (Figures 2 and 3). 

 
Table 2. Quantitative assessment of temporal CT number 
variations in the phantom study before and after the use of the 
temporal interpolation of partial scan sinograms (TIPS) 
method.  
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Figure 1. Phantom evaluation of the temporal interpolation 
of partial scan sinograms (TIPS). Partial scan image (A) 
before and (B) after TIPS correction, and (C) corresponding 
temporal CT number variations in identical regions-of-
interest (ROI) as noted in figure (A). 

IV.  DISCUSSION 

The main advantages of the TIPS method are: (1) PSR 
artifacts are decreased by using the TIPS-estimated full 
scans. (2) No additional radiation dose is required. (3) 
The scanner’s best temporal resolution (in either single 
or dual source CT) is used. (4) Image noise in 
reconstructed images is decreased because each 
reconstruction uses a larger number of projections, 
potentially offering an alternative for dose reduction. 
(5) While the TIPS method uses several consecutive 
partial scans (similar to Stenner’s method), only one set 
of sinograms (rather than 3) need to be reconstructed.  

Standard deviation of 
PSR artifacts  [HU] 

  Image Noise [HU] 

Location 
Full 
Scan 

Partial 
Scan 

Partial 
Scan 

+TIPS 
 

Full 
Scan 

Partial 
Scan 

Partial 
Scan 

+TIPS 
Selected 

ROI  
1.8 4.0 0.9  19.8 20.1 14.3 
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Temporal interpolation of sinogram data was 
previously proposed by Montes and Lauritsch with the 
purposes of dose reduction and improving temporal 
resolution in slowly acquired CTP data [7]. They later 
studied its utility for brain CTP [8]. Hsieh and 
colleagues also proposed a method in which only a 
fraction of the projection data is acquired in each 
acquisition during a brain CTP sequence, with full scan 
data estimated by linear interpolation of the sinograms 
with the major purpose of reducing dose [9]. Neither of 
the aforementioned approaches however was 
considered for reducing PSR artifacts and nor to reduce 
dose in myocardial CTP. 

In conclusion, the TIPS method was effective 
reducing the PSR artifacts while at the same time 
reducing image noise. The use of TIPS can promote the 
clinical utilization of myocardial CTP for appropriately 
selected patients, by providing more accurate 
myocardial perfusion estimates, and also by reducing 
the radiation dose of this examination.  

REFERENCES 

[1] A. N. Primak, et al., "A technical solution to avoid 
partial scan artifacts in cardiac MDCT," Med Phys, vol. 
34, pp. 4726-37, Dec 2007. 

 

[2] C. H. McCollough and R. L. Morin, "The technical 
design and performance of ultrafast computed 
tomography," Radiol Clin North Am, vol. 32, pp. 521-
36, May 1994. 

[3] J. A. Meinel, et al., "Reduction of Half-Scan Shading 
Artifact Based on Full-Scan Correction1," Academic 
Radiology, vol. 13, pp. 55-62, 2006. 

[4] P. Stenner, et al., "Partial scan artifact reduction (PSAR) 
for the assessment of cardiac perfusion in dynamic 
phase-correlated CT," Medical Physics, vol. 36, pp. 
5683-5694, 2009. 

[5] J. C. Ramirez-Giraldo, et al., "A strategy to decrease 
partial scan reconstruction artifacts in myocardial 
perfusion CT: Phantom and in vivo evaluation," Medical 
Physics, vol. 39, pp. 214-223, 2012.  

[6] R. Raupach, et al., "A novel spatiotemporal filter for 
artifact and noise reduction in CT," in European 
Congress of Radiology, Vienna, Austria, 2009. 

[7] P. Montes and G. Lauritsch, "A temporal interpolation 
approach for dynamic reconstruction in perfusion CT," 
Medical Physics, vol. 34, pp. 3077-3092, 2007. 

[8] P. Montes, et al., "Low-Noise Dynamic Reconstruction 
for X-Ray Tomographic Perfusion Studies Using Low 
Sampling Rates," International Journal of Biomedical 
Imaging, vol. 2009, 2009. 

[9] J. Hsieh, et al., "Fractional scan algorithms for low-dose 
perfusion CT," Med Phys, vol. 31, pp. 1254-7, May 
2004. 

10 20 30 40 50 60

200

300

400

500

600

700

Time [s]

C
T

 A
tte

nu
at

io
n 

[H
U

]

 

 

Partial Scan
Partial Scan + TIPS

0 10 20 30 40 50 60

70

75

80

85

90

95

100

105

110

Time [s]

C
T

 A
tte

n
u

at
io

n
 [H

U
]

 

 

Partial Scan
Partial Scan + TIPS

0 20 40 60 80 100
65

70

75

80

85

90

95

Time [s]

C
T

 A
tte

n
u

a
tio

n
 [H

U
]

 

 

Partial Scan
Partial Scan + TIPS

A

C D

B

ROI D

ROI C

ROI B

10 20 30 40 50 60

200

300

400

500

600

700

Time [s]

C
T

 A
tte

n
u

a
tio

n
 [H

U
]

 

 

Partial Scan
Partial Scan + TIPS

0 10 20 30 40 50 60

70

75

80

85

90

95

100

105

110

Time [s]

C
T

 A
tte

n
u

at
io

n
 [H

U
]

 

 

Partial Scan
Partial Scan + TIPS

0 20 40 60 80 100
65

70

75

80

85

90

95

Time [s]

C
T

 A
tte

n
u

a
tio

n
 [H

U
]

 

 

Partial Scan
Partial Scan + TIPS

A

C D

B

ROI D

ROI C

ROI B

 
Figure 2. Effect of TIPS method in time attenuation curves (TACs) (A) Sample regions-of-interest (ROI) location at the left 
ventricle (ROI B), the myocardium (ROI C) and a reference region with minimal enhancement (ROI D). Corresponding time 
attenuation curves with and without TIPS method processing in (B) ROI B, (C) ROI C, and (D) ROI D. 
 

A CBA CB
 

Figure 3. TIPS method effect on image noise. Partial scan image (A) before and (B) after TIPS processing. (C) 
Difference image A-B with window level [-100 100]. 
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A New Registration Algorithm for

Motion–Compensated Computed Tomography for

Image–Guided Radiation Therapy
Marcus Brehm, Pascal Paysan, Markus Oehlhafen, Patrik Kunz, and Marc Kachelrieß,

Abstract—In image–guided radiation therapy (IGRT) beside
the linear particle accelerator an additional kV system provides
information for an accurate patient positioning. However, the
acquisition time of the system is much longer than the patient’s
breathing cycle due to the low gantry rotation speed. Severe
artifacts like blurring or streaks are the consequence.

A novel method is proposed for the motion–compensated
reconstruction of high quality respiratory–correlated 4D volumes
from flat panel detector cone–beam CT (CBCT) scans with
slowly rotating gantry. The reconstruction is done without the
application of knowledge of a planning CT with the intent to
reduce the influences of intra– and inter–fractional variations
in patient motion and tissue. Instead a strategy how to apply a
deformable registration method is developed based on the small
motion assumption widely used inside registration algorithms.
Within this strategy temporal restrictions like the cyclic motion
patterns of respiration are incorporated. Thus, a common spatial
registration algorithm is enhanced to be spatiotemporal.

The proposed method is verified applying simulated rawdata
obtained by deforming a clinical patient dataset using realistic
deformation vector fields. Furthermore, we successfully processed
patient data and the results will be presented at the meeting. The
method outperforms the phase–correlated Feldkamp reconstruc-
tion regarding undersampling artifacts with a temporal resolu-
tion only slightly lower at the same time. In addition, the results
show noise levels comparable to 3D standard reconstructions.

Index Terms—IGRT, cone–beam CT, motion compensation,
deformable registration

I. INTRODUCTION

IN radiation therapy accurate patient positioning is of great

importance to assure success of treatments with small

irradiation margins. Due to motion and tissue variation be-

tween planning and treatment session on–line or off–line

corrections are required. In image–guided radiation therapy

(IGRT) adjustment information is provided by an on–board

kV flat panel cone–beam computed tomography (CBCT) unit

which is mounted orthogonal to the MV linear accelerator

(LINAC). By design the LINACs are rotating slowly in

comparison to clinical CT scanners. For this very reason on–

board CBCT–imaging in the thoracic region is handicapped by

the respiratory motion in particular and suffers from motion

artifacts.
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To deal with motion–contaminated projections the respira-

tory motion is assumed to be cyclic. This respiratory cycle

C = [0%, 100%] is separated into small subsets with size

∆c by amplitude or by phase gating. Consequently a standard

reconstruction like the filtered backprojection is applied not

on the entire dataset but for each subset on the associated

projections. But the classification into subsets results in an

enlarged angular spacing of the projection bins. Due to the

Nyquist–Shannon theorem the enlarged angular spacing leads

to prominent streak artifacts.

Compensating for motion is an interesting option. Here, the

entire data set with all projections is used at any time and

the motion is compensated by the additional information from

motion vector fields (MVF). In references [1], [2] the MVFs

are estimated from the 4D planning CT under the assumption

that motion over all respiratory cycles is identical both in

CBCT and planning CT. To allow for inter–fractional motion

and tissue variation, the registration has to be performed on

the phase–correlated Feldkamp reconstructions. But a high

number of projections is needed. Otherwise the undersampling

artifacts make a precise registration impossible for the applied

registration approaches.

The purpose of this work is a motion–compensated recon-

struction of low sampled on–board CBCT scans. The motion

vector fields are extracted via deformable registration. In this

case, no a priori knowledge is used from prior acquisitions

like planning CTs. Instead a registration strategy is developed

based on the small motion assumption. With this strategy

a spatial registration is enhanced to act as a spatiotemporal

registration by taking temporal restrictions into account.

II. MATERIALS AND METHODS

A. Phase–Correlated Feldkamp (PCF) Reconstruction

As our standard reconstruction algorithm we use the well–

known Feldkamp–Davis–Kress (FDK) filtered backprojection

[3]. But patient motion during the acquisition is not considered

by FDK. In this work the projections were associated to the

respiratory cycle by a retrospective phase gating. A phase–

correlated Feldkamp (PCF) reconstruction considers the re-

lation between projection and respiratory phase by an FDK

reconstruction just using the projections associated to one

subset and discarding all the others. The operator is denoted

as X
−1

PCF such that the PCF image fPCF is given by

fPCF = X
−1

PCFp.

Here p are the projection data.
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B. Motion–Compensated Reconstruction Algorithm

Under the assumption that the patient’s appearance is the

same for each single respiratory phase, a gating is performed

to resort the acquisition into the respiratory cycle. This cycle

is divided up into NPhases subsets. Motion between two phases

can be represented by a transformation

T : (x, y, z)→ (x, y, z) + u(x, y, z)

which consists of the identity mapping and a displacement

field u. Hence, the motion between two phases can be com-

pensated by a transformation according to the corresponding

MVF. We assume that the transformations Ti,j and Tj,i for

each phase pair (i, j) are known, with i, j ∈ [1, NPhases]. The

way how to find the displacement fields by deformable reg-

istration will be discussed later on. Our motion–compensated

reconstruction fMC(i) at a respiratory phase i is given by

fMC(i) =

NPhases
∑

j=1

(

X
−1

PCF(j)
p
)

◦ Ti,j .

C. Spatial Registration

We apply the so–called demons algorithm to obtain the

MVFs between respiratory phases [4]. As an iterative approach

the demons algorithm is working under the assumptions of

intensity conservation and small motion. For a single iteration

step, the displacement of a voxel r := (x, y, z) in the model

image m is thus given by intensity matching on the linear

approximation of the scene image s in r. The displacement

shift u(r) is accordingly described by

u(r) :=
m(r)− s(r)

‖∇s(r)‖2
∇s(r)

with ∇s being the gradient image of s. The formula can addi-

tionally be enhanced by step width control [5] and symmetric

forces [6]. This results in the finally used equation including

transfer to iterative context, written as

u =
1

2
(m ◦ T− s) (∇s+∇ (m ◦T))

∥

∥

1

2
(∇s+∇ (m ◦ T))

∥

∥

2

+ α2 (m ◦ T− s)
2

with maximum step width 1/α, current vector field T and its

displacement update u. By starting with T as identity mapping

or a prior estimation, the update of T is given by composition

with its displacement update u

T← Gpost ∗ (T ◦ exp (Gprior ∗ u))

with Gpost and Gprior being Gaussian convolution kernels [7].

To speed up the registration and to meet the small motion as-

sumption the registration is applied hierarchical. More details

on the multi–resolution approach will be given at the meeting.

D. Spatiotemporal Registration

Motion–compensated reconstruction of a specific phase

n ∈ [1, NPhases] requires the MVFs of the phase n to be

reconstructed, and all other phases. These vector fields can

be directly estimated by a deformable registration of the

predetermined images of each phase to the one of phase n.

But instead we propose to identify the MVFs between adjacent

phases first, like illustrated in figure 1. For predetermined

phase images I and the sought–after vector fields T the

relation is given by

Ij+1 ← Ij ◦ Tj

with j ∈ [1, NPhases − 1]. The ring is closed by the last

remaining adjacent phase pair and its vector field

I1 ← INPhases
◦ TNPhases

.

In the following we consider the ring property to simplify the

notation. Thus gives us that index NPhases + j is synonymous

with index j, i.e. INPhases+j is equivalent to Ij . Furthermore,

we denote by
∏

the noncommutative concatenation of several

vector fields, i.e.
∏NPhases

n=1
:= T1 ◦ T2 ◦ . . . ◦ TNPhases

.

One benefit is the direct applicability of additional knowl-

edge like temporal restrictions. With the estimated MVFs

between adjacent phases and the resulting ring closure it is

possible to draw conclusions on errors of single vector fields.

Fig. 1. Illustration of the ring–registration: Ij denotes the predetermined
phase images with j ∈ [1, NPhases]. The motion vector fields Tj describe
the corresponding motion in–between two adjacent phases. The ring is closed
with the motion vector field between phase 1 and NPhases denoted by TNPhases

.
The approach can also be applied in reverse order.

An example for prior knowledge is the assumption of

periodical breathing motion. Hence, the concatenation of all

vector fields in an appropriate order is expected to result in

the identity mapping. To obtain vector fields appropriate for

motion compensation the registration algorithm has to keep

the error from the concatenations

E :=

NPhases
∑

k=1

‖Ek‖
2
:=

NPhases
∑

k=1

∥

∥

∥

∥

∥

NPhases+k
∏

n=k+1

Tn − Id

∥

∥

∥

∥

∥

2

sufficiently small. The differences Ek, in the following called

concatenation error vector fields, can be determined directly

from the estimated vector fields Tn itself.

To remove an error E we propose a temporal correction

step to correct each single approximated vector field Tn by the

concatenation error vector fields Ek. The vector fields Tn as

well as Ek are given for different images and thus on different

grids. For applying the error field information both have to

be defined on the same grid. In our following approach the

required inverse of the MVFs are not calculated directly via
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an additional registration but are estimated from the already

approximated Tj . For this in a first step we assume the error

E to be small, i.e.

Id ≈
NPhases+k
∏

n=k+1

Tn

for all k ∈ [1, NPhases]. From the assumption above we directly

yield an appropriate approximation of the inverse vector fields

and their concatenations




NPhases+k
∏

n=j+1

Tn





−1

≈

j
∏

n=k+1

Tn

for all j ∈ [k + 1, NPhases + k − 1]. Hence, each Ek can be

transformed to be defined on the same grid as an arbitrary

vector field Tj with j, k ∈ [1, NPhases] and j 6= k. In case

of j = k the grid is already the same and a transformation

becomes thus obsolete. The continuity of breathing motion

and scanner rotation as well as the equidistant phase windows

allow us to divide each Ek between all single motion vector

fields of adjacent phases in equal parts. With the aid of the

inverse approximation and the uniform error distribution the

temporal correction step is given by

j = k : Tj ← Tj −
Ek

NPhases

j < k : Tj ← Tj −
Ek ◦

∏NPhases+j

n=k+1
Tn

NPhases

j > k : Tj ← Tj −
Ek ◦

∏j

n=k+1
Tn

NPhases

.

However, the correction of all the Tj is done for just one Ek

at a time. Rather the optimization is done step by step and

the next Ek is determined by incorporating the resulting Tj

of previous correction steps. The correction in parts requires

the vector fields to be smooth. This assumption is ensured by

the regularization term of the registration algorithm and its

smoothing behavior.

Nevertheless motion compensation requires also vector

fields for non–adjacent phases. Theoretically, they are given by

concatenation of vector fields from adjacent phases forming a

path from the start phase to the end phase, i.e.

Ii ← Ij ◦
i−1
∏

n=j

Tn

with j ∈ [1, NPhases] and i ∈ [j + 1, NPhases + j − 1]. In the

following the vector fields of adjacent phases are denoted by

T1

j := Tj and for non–adjacent phases by Tm
j with Ij+m ←

Ij ◦ Tm
j , j ∈ [1, NPhases] and m ∈ [2, NPhases − 1]. Despite

small motion left in–between adjacent phases the deformable

registration yields only an approximation of the true vector

fields with some minor errors left. For a single vector field

these errors are insignificant. But that may not be true in the

case of a more sophisticated MVF yielded by concatenation.

To consider the error propagation of the concatenation,

we apply a further registration for each non–adjacent phase

pair. While the registration for adjacent phases starts with

the identity mapping, this re–registration is initialized by

the concatenation of the already determined vector fields.

Instead of using longer concatenations of several vector fields,

the results from former re–registrations, performed on lower

levels (smaller m), are incorporated to reduce the propagation

error (c.f. figure 2). Hence, the re–registrations are done with

T1

j ◦ T
m−1

j+1
as starting vector fields.

Fig. 2. Illustration of the re–registration: First a registration between adjacent
phases with no prior information, i.e. starting with the identity mapping, is
performed to determine T

1
j

. On the second level vector fields of phases with

one phase in–between are determined with the concatenation of results from
level one as prior. One vector field from the second and one from the first level
are used next to yield a prior via concatenation with minimum propagation
error for calculations on the third level. The procedure is continued with
further levels up to a given level M < NPhases. In cases of M < m < NPhases

all Tm

j
are given by the concatenation of results from lower levels without

an additional re–registration step.

The re–registration approach can also be stopped at a

previous level M < NPhases−1 or some levels can be skipped,

if the remaining propagation error is sufficient small. In this

case all Tm
j with M < m < NPhases are obtained by the

starting vector fields for a possible re–registration itself, i.e.

Tm
j := T1

j ◦ T
m−1

j+1
.

E. Simulations

For evaluation we carried out simulations. The geometry of

the On–Board Imager’s R© and TrueBeam’sTM integrated kV

imaging unit (Varian Medical Systems, Palo Alto, CA) forms

the basis of the scan configuration. To simulate projection

data we used a clinical CT reconstruction of a patient thorax

as a phantom. We created realistic motion vector fields to

simulate respiration. The deformation intensity is direction

sensitive with a maximum of 11 mm in posterior–anterior

and 20 mm in superior–inferior direction. The deformation

is directly coupled to the RPM signal, which was set to be

continuous with a rate of 29 respirations per minute. The

detector was laterally shifted by 160 mm. The rotation speed

was limited to 6◦ per second, i.e. about 60 s per rotation.

Quantum noise was added to the simulated projections to

obtain an image noise level of 70 HU in the FDK images.
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III. RESULTS

Phase–correlated and motion–compensated reconstructions

were conducted for 20 overlapping subsets with size ∆c = 0.1.

This classification results in the fact that only every tenth

projection account for each PCF reconstruction.

For evaluation two motion–compensated reconstructions

were performed. Each estimates the required MVFs in a differ-

ent way from the phase images, which are the PCF reconstruc-

tions in our case. A standard motion compensation was applied

on the one hand, where the MVFs are obtained directly from

their corresponding phase pair images via spatial registration.

On the other hand there is the proposed motion compensation,

where the MVFs are extracted by the registration approach

in section II-D. In both cases the demons algorithm from

section II-C was used for the spatial registration. The motion

compensation results of the simulation study are shown for

end–exhale as well as end–inhale (figure 3). The results for

patient data will be presented at the meeting.

The results of the standard method are strongly deteriorated

by streaks and suffer partially from a low temporal resolution.

This arise from the fact that the PCF reconstructions are also

strongly influenced by streak artifacts. In consequence there

is an additional contribution to the vector field not originating

from the patient’s breathing in case of the standard motion

compensation. The fact is taken into account by the proposed

method and its temporal correction step. Thus, the rotating but

not cyclic motion of streak artifacts inside the PCF images

is successfully corrected, and streak-free images with high

temporal resolution are achieved by the proposed method.

IV. CONCLUSION AND DISCUSSION

A new algorithm is proposed to compensate for motion

in case of on–board kV imaging units in radiation therapy.

It was proven by simulation that the method is capable of

compensating the motion on basis of the PCF reconstructions.

In this case, no a priori knowledge is used from prior acqui-

sitions like planning CTs. The influences of intra– and inter–

fractional variations in patient motion and tissue are conse-

quently reduced. The proposed algorithm shows significantly

improved image quality in comparison to a standard motion

compensation in case of a MVF estimation based on the PCF

images.
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Abstract—Multidetector-row CT has been developed 
and widely used in cardiac imaging, recently. 
Comparing with traditional cardiac imaging 
modalities, such as single photon emission computed 
tomography (SPECT) and Magnetic resonance 
imaging, multi-detector CT imaging can provide rapid 
noninvasive diagnostic and prognostic evaluation of 
patients with acute myocardial infarction (MI). In this 
work, we develop a method for cardiac CT to provide 
comprehensive assessments of regional wall motion 
(RWM), ventricular function, and dys-synchronization 
of wall motion. The proposed motion estimation and 
motion analysis method has two steps: First, four-
dimensional (4D) cardiac motion is obtained by 
performing non-rigid image registration on 4D 
Electrocardiogram (ECG)-gated cardiac CT 
reconstructions; then, the obtained 4D cardiac motion 
was analyzed to produce diagnostic assessments.    

Index Terms—MI, ME 

I. PURPOSES 

ARDIAC diseases such as myocardial ischemia, infarction 
and stroke are one of the leading causes of death in the 
United States. Early detections of abnormalities in cardiac 
anatomy, global and regional left ventricle function, and 
PDs are crucial for clinical diagnosis and treatment, and a 
rapid noninvasive diagnostic and prognostic evaluation for 
acute MI is required [1].   
     Currently, cardiac imaging modalities are including 
transthoracic echocardiography (TTE), MRI, SPECT, 
PET, and invasive coronary angiography [2-5]. These 
traditional modalities have several disadvantages. First, 
each of them cannot provide both static and dynamic 
diagnostic information. SPECT, PET, MRI can only 
provide information of PDs, coronary angiography shows 
the anatomical abnormalities, and TTE can be used to 
diagnose motion defects but not PDs. To perform 
comprehensive clinical evaluation, results from two or  
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even more modalities need to be integrated. Second, high 
spatial and temporal resolutions cannot be achieved. The 
spatial resolution of SPECT and PET is about 1 cm, and 
data acquisition time is about 15 minutes; MRI has a good 
spatial resolution, but the scanning time is around 40 
minutes; TTE is real time imaging, but the spatial 
resolution is worse. Finally, SPECT and PET give a 
relatively large radiation dose to patient. 
     Recently, ECG-gated cardiac CT imaging has been 
developed for evaluation of MI [5]. It can provide both 
static and dynamic diagnostic information, which cannot 
be achieved by traditional cardiac imaging modalities. 
Due to its fast scanning speed (around 300 ms per 
rotation), 3D image of interested cardiac phase or 4D 
cardiac image can be obtained with ECG-gated 
reconstruction in several seconds. After administrating 
contrast agent, the myocardial PDs can be detected with 
reconstructed images. By comparing the end-diastolic and 
end-systolic volume image, the global left ventricular 
functions and ejection function can be measured. Also, 
RWM assessment is performed by evaluating the 4D 
image. Finally, the treatment plan of acute PD is 
determined based on the results from all these evaluations. 
Therefore, cardiac CT imaging is an excellent rapid one-
stop shopping technique [5].      
      The ejection fraction and RWM calculated from pixel 
values may not reflect the true heart motion. In this study, 
we improve a method that provides comprehensive 
cardiac function/motion analysis for cardiac CT. The 
proposed method has two steps: First, 4D cardiac motion 
vector field (MVF) is obtained by performing non-rigid 
image registration on 4D ECG-gated cardiac CT 
reconstructions [6]; then, cooperating with myocardial 
segmentation analysis; cardiac motion is assessed with the 
4D MVF.     

II. METHOD 

    In this section, we outline three main tasks for the 
proposed method: to obtain 4D cardiac image; to obtain 
4D MVF; and to analyze cardiac motion with 4D MVF. In 
this work, the 4D cardiac image is acquired by ECG-gated 
reconstruction; 4D MVF is obtained by performing non-
rigid image registration on the 4D cardiac image; and 
cardiac motion is evaluated with MVF in the way of 
bullseye map of myocardium.  

A. 4D cardiac image 

Currently, ECG-gated cardiac CT imaging reconstructs 

Cardiac function analysis with four dimensional CT image 
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volume image of quite cardiac phase using only the 
corresponding part of the acquired data and throws away 
the rest of “off-phase” data. In this work, images of all 
cardiac phases are reconstructed with all the acquired data. 
First, the whole cardiac cycle is divided into different 
cardiac phases using ECG signal, which is recorded 
synchronously with the acquisition of projection data; 
second, projection data of each cardiac phase were 
selected by a given gating window; finally, the image of 
each phase is reconstruct from the corresponding 
projection data.     

B. 4D MVF 

    We perform non-rigid image registration on 4D cardiac 
image to obtain 4D MVF. The ME algorithm was 
developed in our previous work [6], which is briefly 
described in convenience.  
Deformation model: A volume at the least motion phase is 
chosen as the reference,  , and we assume that 
moving volumes are all deformations of the reference 
volume as follows: 

, 	 , , .                       (1) 

The deformation ,  can be modeled by a finite 
number of knots using cubic B-splines as 

, ∑ ∑ , ∆ |∆ |
,

     

(2) 

where |∆ |  and ∆  are the knot spacing in the spatial 
domain and the temporal domain, respectively;  and  are 
discrete sampling indices in the spatial and temporal 
domains, respectively; ,  is the cubic B-spline 
coefficients at knot positions;  is the number of knots in 
time;  is a 1D cubic B-spline, and  is a 3D tensor 
product of cubic B-splines.  
Cost function: We estimate the deformation parameters 

, 	by minimizing a regularized sum of squared weighted 

difference ∅ ,  between the warped reference volume 
and the target volumes:   

      , arg
,
Φ , ,                            (3) 

Φ , 	 , , ,                       (4) 

where ,  denote a similarity metric 

∑ ‖ , , , ‖,…, ,  (5) 

and ,  denote a quadratic penalty term [12]   

, ∑ ∑ 	 , ∑ ∑ 	 , .  (6) 

In Eq. (5),  is the number of voxels in a 3D image, m is a 
phase index, and M is the number of discrete phase points 
in one heart beat, and ,  is a weighting function; In 
Eq. (6), S is the number of 4D knots,	  and  are the 
weighting factors for the spatial and temporal smoothness 

terms, and  and  are differencing matrixes in the 
spatial and temporal domains, respectively. 
Optimization: An iterative nested conjugate gradient (CG) 
method is used to minimize the cost function; in the inner 
loop, MVF between a pair of volumes, one at the 
reference time, , and the other at one of the other phases, 

’s, 1,… , , was updated one and only one time. 
Note that the knots number in time is chosen to be the 
same as the number of discrete phase points in this study, 
that is, . We choose conjugate gradient because it 
often provides fast convergence and does not require an 
inversion of the Hessian matrix. From the current 
estimation , , the next estimation , can be obtained 

by a conjugate vector (searching direction)  as 

	 , , ,                                 (7) 
where 

,                                (8A) 

∑ ,                         (8B) 

.                                   (8C) 

Here,  is the transpose operator,  is the iteration 

number,  is 
∅

,
 evaluated at , , and  is 

∅

,
 

evaluated at , , which is similar to Zeng and Fessler’s 
method [7].  

C. Cardiac motion analysis 

In this step, cardiac motion/function is comprehensively 
investigated with MVF in the way of bullseye map, which 
is often used in nuclear imaging. Three main procedures 
are involved: to obtain the long and short-axis images; to 
segment the myocardium; and to generate polar map.  

As the heart tilts in the chest, long and short-axis 
images are not acquired directly by CT imaging. 
Therefore, the long and short axes (principle axes) of heart 
are first obtained from the volume image. Then, the 
volume images and vectors of MVF are rotated according 
to the long and short axes (rotated coordinates). And, a 
new (cylindrical) coordinate system, which consists of 
radial, tangential and longitudinal axes, is defined. The 
radial and tangential axes are in short axis image, and 
longitudinal axis is perpendicular to the short axis image.  

The rotated 4D MVF are then analyzed by calculating 
the following three indices: (1) The magnitude and three 
directional motion; (2) the peak (maximum) velocity; (3) 
time-to-peak or phase-to-peak velocity; (4) timing-to-
initiate systole; and (5) timing-to-initiate diastole. The last 
three indices may reflect mechanical cardiac function 
related to electro-physiology much better than simple 
indices such as ejection fraction or RWM.        
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Once the apex and base of left ventricle are determined, 
the myocardium of left ventricle is segmented by tracing 
epicardial and endocardial contours in the stack of short-
axis images. Myocardium mass and ventricular volumes at 
different phases are then measured. Rotated MVF related 
to the myocardium is then segmented as well as the three 
components: radial, circumferential, and longitudinal 
motions. 
    Polar maps of the segmented volume image and MVF 
are finally obtained. The segmented ring of short-axis 
image is averaged along radial direction, then each short 
axis image is corresponding to one circle of the polar map. 
The apex of left ventricle corresponds to the origin of the 
polar map, and the base of left ventricles to outer most 
circle of the polar map. Based on all these polar maps, the 
cardiac motion is assessed.          
        

III. EVALUATIONS 

A. Data acquisition 

    Patient data were obtained by a 64-slice CT scanner 
(Sensation 64; Siemens Healthcare; Forchheim, Germany) 
with the following standard cardiac protocol was used: 
detector collimation of 2 × 32 × 0.6 mm with z-flying 
focal spot technique, helical pitch of 0.29/rot., gantry 
rotation speed of 330 msec/rot, and 1160 projections/rot. 
ECG signals were also acquired during the scan. The 
average heart rate during the scan was 52.2 beats-per-
minute. Results from only one patient are shown in 
following because of space limitation. 
We used 20 phases with a 5 % R-R interval in this 
experiment; the volume size at one phase was 
512×512×321. The quiescent cardiac phases with least 
motion were determined manually as 5% of the R-R 
interval (end-diastole), 40% (end-systole), and 75% (mid-
diastole), and they are chosen as reference phases for this 
patient.  
In our study, there are 16 16 11 knots in x, y, and z-
axes and 20  knots in temporal axis, respectively. The 
knots spacing are ∆ 14.6 mm, ∆ 14.6 mm, ∆ 16 
mm, and  ∆ 5% of one cardiac cycle (or R-R interval).  

B. Results 

  Figure 1 shows the results of motion estimation. The 
three short and long-axis images are of mid-diastole. The 

arrows show the estimated MVFs from mid-diastole to 
end-systole. It can be seen that the magnitudes and 
directions of the estimated MVFs physiologically sounded 
and agreed with subjective findings. Expansion and 
contraction of ventricles were estimated well, and so were 
those of atria, which were off-synchronized from 
ventricles. 

Figure 2 shows the segmentation of myocardium of left 
ventricle. It shows that the segmentation of myocardium 
was accurate.   

Figure 3 shows the polar maps of the estimated MVF 
from MD to ES after the global heart translation are 
corrected, and (a), (b), (c), (d) are the norm of vectors, 
circumferential, radial, and longitudinal components of 
vectors. It shows that, during the systole, this heart had a 
large circumferential motion in the ventricular septa, a 
large radial contraction in inferior wall, and a symmetric 
contraction between apex and base. 

 
Figure 4 shows the polar maps of time-to-peak 

velocities during systole (a) and diastole (b) with time 
measured from a global reference time. It indicates that 
during systole, this heart had a moderate delay laterally 
between the ventricular septa and the lateral wall, and a 
significant delay from the anterior wall to the inferior 

 
Fig. 1 The estimated MVFs from mid-diastole to end-
systole superimposed on (a) short-, (b) vertical-long-, (c) 
and horizontal-long-axis images at mid-diastole.  

Fig. 2 The segmentation of 
myocardium in short-axis image. 
The red and blue lines are the 
epicardial and endocardial 
contours, respectively. 

Fig. 3 Polar maps of the estimated MVF from MD to ES 
after the global heart translation are corrected. (a) The 
magnitude of deformation (the norm of vectors); (b) 
circumferential, (c) radial, and (d) longitudinal components 
of vectors.  

(b)(a) (c) 
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wall. The motion during diastole was synchronized. 
Figure 4(c) and 4(d) are the polar maps of timing-to-
initiate systole and timing-to-initiate diastole, respectively. 
It shows that systolic motion of the ventricular septa and 
lateral wall started later than that of anterior and inferior 
walls.   

 

IV. CONCLUSIONS 

    In this work, we develop a two-step method for 
cardiac CT to provide comprehensive assessments of 
cardiac motion/function. The first step is using previous 
developed motion estimation method to estimate cardiac 
motion; the second step is analyzing cardiac motion with 
the estimated MVFs. The method was verified by patient 
data. The results show that MVFs estimated by our 
method are physiologically agreed with subjective 
findings. Expansion and contraction of ventricles were 
estimated as expected, and so were those of atria, which 
were off-synchronized from ventricles. The polar maps of 
the circumferential, radial and (d) longitudinal 
components of MVFs from MD to ES also show the 
accuracy of the estimated MVFs. They also show the 
relative motion between each part of the left ventricle, 
which is also agree with the physiological and clinical 
understandings. Finally, the polar maps of dynamic index 
of cardiac motion, such as time-to-peak velocities, initial-
time-of-systole and initial-time-of-diastole, are obtained. 
They show the important synchronization information of 
cardiac motion, which are very helpful for diagnosis the 
myocardial infarction. In all, a cardiac motion estimation 
and motion analysis method was developed and its 
feasibility and contribution to clinical evaluation was 

verified by study with patient data.   
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Fig. 4 (a, b) Polar maps of time-to-peak velocities during 
systole (a) and diastole (b) with time measured from a 
global reference time; (c) and (d)  are polar maps of 
timing-to-initiate   systole and  timing-to-initiate diastole, 
respectively.  
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High-speed Dynamic Imaging with a Real Time
Tomography System

William M. Thompson1, William R. B. Lionheart1 and Edward J. Morton2

Abstract—The Real Time Tomography (RTT) system is a new
type of fast cone beam CT scanner, using fixed rings of multiple
sources and detectors in an offset geometry. We demonstrate the
potential of this system for use in the imaging of high speed
dynamic processes, such as moving fluid flows. Through the use
of a simple temporal regularisation term, we show that temporal
resolution can be further increased, at the expense of a slight
loss in spatial resolution.

Index Terms—Cone beam CT, dynamic imaging, real-time
tomography

I. INTRODUCTION

Conventionally, X-ray tomographic imaging systems have
used a single X-ray source and an array of detectors which
together rotate around the object of interest to form a set of
X-ray projections through the object. These projections can
be reconstructed to form an image of the object in 2D or 3D,
depending on whether the detector configuration is single row
fan beam or multi-row cone beam.

Due to the mechanical motion involved in this scanning
process, scan rates are restricted to only a few source revolu-
tions per second. The latest dual source medical CT scanners
are able to perform just over 3 per second [1]; this gives a
reconstructed image frame rate of less than 10 per second. In
some applications, such frame rates are too slow to provide the
required temporal resolution; for example in the visualisation
of the flow of liquids in pipes.

The main factor limiting the speed of conventional rotating
gantry cone beam CT scanners is the physical rotation of
the source [2]. To address this problem, it is necessary to
eliminate the mechanical scanning motion, replacing this with
an electronic equivalent comprising a circular array of X-ray
sources which can be selected individually under computer
control. Through the choice of a suitable source scanning
sequence, the impression of movement can be generated
without physical motion of any component of the system.

A Real-Time Tomography (RTT) system has been devel-
oped to solve this technological problem ([3], [4]), in which
an approximately circular array of X-ray sources over an
angular distribution of 180 degrees plus fan angle is matched
with a corresponding array of X-ray detectors to provide
a no-moving-parts X-ray tomographic scanning system. The
plane containing the X-ray sources is offset from the plane
containing the X-ray detectors to avoid attenuation of the

1. Henry Moseley X-ray Imaging Facility and School of Mathematics,
University of Manchester.

2. Rapiscan Systems.
Corresponding author: William R. B. Lionheart, E-mail:

bill.lionheart@manchester.ac.uk.

primary beam before it is transmitted through the object under
inspection.

The X-ray sources comprise an array of electron guns, each
of which is controlled by an independent electronic switching
circuit. These switching circuits can be pulsed in microsec-
ond timescales. The electron beam from a given source is
accelerated through a high potential difference to a tungsten
coated anode to produce X-rays. A single distributed anode
is arranged in a circular configuration such that each electron
gun irradiates a different region of the anode around the cir-
cumference of a circle or polygon, resulting in an effective X-
ray focus when viewed from the detectors of typically 1mm2.
The electron gun control electronics can be programmed to
irradiate the electron guns in any given sequence. Therefore,
this is a flexible data acquisition platform and is capable of
generating tomographic scan data at theoretical source rotation
rates of up to 480 frames per second.

II. THE RTT20 SYSTEM

RTT20 is a small-scale prototype RTT system which has
been acquired by the University of Manchester. A two-
dimensional cross-section of the RTT20 geometry is shown
in figure 1; the sources are arranged in 8 blocks of 32, with
two ‘missing’ blocks of sources at the bottom, creating an
incomplete source ring. The incomplete ring is part of the
original design to enable a small scanner to be easily fixed onto
pipes for imaging flowing fluids. The two blocks adjacent to
the gap also do not use their outermost 4 sources, giving a total
of 248 sources. There is one full ring of detectors arranged
in 21 blocks of 16, giving 336 detectors in total; this is offset
from the source plane by 5.48mm in the z direction. The tunnel
diameter is 20cm (hence RTT20) giving the reconstruction
region of interest (ROI) as a circle of diameter 200mm.

The machine is capable of acquiring a complete set of
projections from all 248 sources 60 times per second, enabling
imaging of very fast moving processes. Sources may be fired
in almost any order we desire; for a general RTT system with
N sources, this is defined by a bijective function

φ : [1, N ] −→ [1, N ], (1)

known as a firing order. The firing order used for collection
of the RTT20 experimental data is defined for 256 sources by
the function

φ(i) =
[(
32(i− 1) +

⌊
(i− 1)/8

⌋)
mod 256

]
+ 1. (2)

The first and last 4 sources in the sequence are simply removed
to reduce this to 248 sources.
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Fig. 1: The RTT20 geometry

III. THE RECONSTRUCTION PROCESS

The reconstruction of an RTT20 dynamic data set forms
a sequence of images, each of which is referred to as a
frame. The simplest method of reconstruction is to regard each
complete set of 248 projections as representing a frame and
reconstruct each one of these independently. For applications
where the motion of the object is slow compared to the
data collection rate this should be adequate. However, if the
firing order is chosen appropriately, so that the distribution of
projection angles is even for smaller subsets of projections,
then we may divide each full set of projections to represent
multiple frames. This effectively trades spatial for temporal
resolution. The firing order described by equation (2), whilst
not optimal, satisfies this condition to a reasonable extent.

The process of reconstructing each two-dimensional frame
is simple and well-understood; however, the construction of
RTT20 presents some problems. Firstly, the polygonal nature
of the source and detector rings means that the distribution of
projection angles, and the angles of rays within each projec-
tion, are highly uneven. This, combined with the incomplete
source ring, causes an uneven sampling of the two-dimensional
Radon transform; this is shown in figure 2. Secondly, the offset
detector means that we do not really measure rays in a plane
through the object. However, compared to the x-y resolution of
the system, the effect of the offset is considered small enough
to ignore within the reconstruction region of interest.

IV. RECONSTRUCTION ALGORITHMS

A. Analytical Algorithms

Analytical reconstruction algorithms based on filtered back
projection (FBP) for the 2D fan beam geometry are well-
known [5]. However, these assume an equal spacing of the
projection angles, and either an equiangular or equally spaced
linear sampling scheme for the rays within each projection.
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Fig. 2: Distribution of sampling points in the 2D Radon
transform domain

Due to the construction of RTT20, with its polygonal source
and detector rings, neither of these conditions are satisfied.
For applications where low reconstruction time is important,
such as real time observation of flow through an oil pipe
for example, taking all 248 projections per frame and using
a simple interpolation to the parallel beam geometry gives
adequate results. However, for fast moving objects, motion
artefacts will be observed.

B. Algebraic Reconstruction

For applications where the data acquisition and image anal-
ysis processes are separate, such as the scientific applications
the machine will be used for at the university, the problem
is small enough to enable solution by algebraic methods in
a reasonable amount of time. Algebraic methods make no
assumptions at all about the system geometry, so in theory
should be capable of better reconstructed image quality. Per-
formance of algebraic algorithms with reduced numbers of
projections is also better, which should allow fewer projections
per frame, resulting in better temporal resolution.

We let the matrix A represent the projection process for
each complete set of 248 projections; this may represent more
than one frame, and is simply re-used for each projection set.
Elements of A are calculated using the ray tracing algorithm
of Jacobs et al. [6], which is itself a development of Siddon’s
algorithm [7]. In order to take the offset geometry into account,
ray tracing is performed in 3D; to ensure only a single slice
is considered, the voxels are simply defined to be long in
the z direction. This has been implemented in MATLAB
as a C .mex routine, with output in the MATLAB double
precision sparse matrix format. Using 1 × 1mm pixels and
covering the entire circular ROI, storage requirements for A
are approximately 100MB.

For each complete set of projections, the system of equa-
tions Ax = b is solved using the conjugate gradient least
squares (CGLS) algorithm. We use the MATLAB implemen-
tation of CGLS provided in Hansen’s Regularisation Tools
package [8].
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C. Regularisation

Although with CGLS, the number of iterations plays the role
of a regularisation parameter, it is unclear how many iterations
should be performed in order to provide the correct degree of
regularisation. We may therefore apply additional systematic
regularisation by solving the augmented system[

A
αL

]
x =

[
b
0

]
, (3)

in the least squares sense, where α is a regularisation parame-
ter, L is some finite difference approximation to a differential
operator, for example the Laplacian, and 0 is the zero vector
of length equal to the total number of image pixels. This gives
the least squares solution

argmin
x
{‖Ax− b‖22 + α2‖Lx‖22}. (4)

D. Temporal Regularisation

By considering the data set as a whole, rather than as a set
of discrete independent frames, we can also add regularisation
in the temporal dimension. The matrix Atotal, representing the
whole system, is formed from A by a Kronecker product with
the identity matrix of size equal to the number of complete
projection sets. We can then solve an augmented system of
equations as in (3). This is a simple process and can be
implemented efficiently.

Regularisation has been performed by taking L to be the
three-dimensional discrete Laplacian. By incorporating the
regularisation parameter into the matrix L, it is possible to
choose differing amounts of regularisation in the spatial and
temporal dimensions. Letting m and n be the number of image
pixels in the x and y directions respectively, and letting p be
the number of frames, L has the following Kronecker product
decomposition:

L = αsIp⊗In⊗Dm+αsIp⊗Dn⊗Im+αtDp⊗In⊗Im, (5)

where Im is the m × m identity matrix, Dm is the one-
dimensional discrete Laplacian on m points and αs and αt are
respectively the spatial and temporal regularisation parameters.

V. RESULTS

A. Simulated Data

Simulated data were generated for a ball of radius 10mm,
moving horizontally along a line through the centre of the
scanner in a sinusoidal motion of frequency 0.5Hz and am-
plitude 80mm. Ray integrals were calculated analytically, with
the object position being re-calculated for each projection. The
simulation was performed at the scanner’s standard speed of
60 full sets of 248 projections per second, and using the firing
order described by equation (2). 1% Gaussian noise was added
to the calculated data.

Figure 3 shows a frame from reconstructions of the simu-
lated data using differing values of the temporal regularisation
parameter, comparing a full set of projection data per frame
with 31 projections per frame (8 frames per full projection set).
In all cases, the spatial regularisation parameter was chosen
empirically as αs = 5. Figures 4 and 5 show respectively the

Fig. 3: Reconstructed images of a single frame from the
simulated data (left, 248 projections; right, 31 projections; top–
bottom, reference image, αt = 0, αt = 5, αt = 25)
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Fig. 4: Data error for the simulated data reconstructions

2-norms of the data error, and the error from the reference
image at each iteration.

We see that by reducing the number of projections per
frame, the motion between subsequent frames is reduced so
that it makes sense to smooth in the temporal dimension. By
doing this, streak artefacts are reduced and temporal resolution
has increased by a factor of 8.

B. Real Data

Real experimental data were available for a mixture of oil,
water and air moving in a bottle. The data set consists of 61
full projection sets representing 1 second of the motion, and
was collected during the machine’s initial testing process. The
scanner settings used were a voltage of 120keV, and current
of 10mA. Three of the sources in the prototype scanner were
defective, resulting in a total of 245 sources.

Figure 6 shows a frame from reconstructions of the data,
again using differing values of the temporal regularisation
parameter, comparing a full set of projection data per frame
with 49 projections per frame (5 frames per full projection
set). Again, in all cases, the spatial regularisation parameter
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Fig. 6: Reconstructed images of a single frame from the oil
and water data (left, 245 projections; right, 49 projections;
top–bottom, αt = 0, αt = 5, αt = 25)

was chosen empirically as αs = 5. Figure 7 shows the 2-norm
of the data error at each iteration.

The motion in this case is not as fast as the simulated data,
and reasonable results are obtained by simply using all 245
projections per frame. However, by using only 49 projections
per frame and applying temporal regularisation, temporal
resolution has increased by a factor of 5; this improvement is
very noticeable when viewing the full dynamic reconstruction
as a movie. Although the 49 projection temporally regularised
images are noticeably softer than those using the full set
of projections per frame, they compare well, and in certain
applications the gain in temporal resolution may be more
important.

VI. CONCLUSIONS

The RTT system has the potential to produce some novel
visualisations of rapidly moving processes such as fluid and
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Fig. 7: Data error for the oil and water data reconstructions

granular flows. Problems caused by the highly uneven sam-
pling generated by the RTT20 geometry have been solved
by using algebraic reconstruction and regularisation, rather
than the more widely used filtered back projection based
algorithms. By implementing a simple temporal regularisation
process, we have shown that temporal resolution can be
increased in real world applications by at least a factor of
5, with only minor impact on reconstructed image quality.
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View-Based Noise Modeling in the Filtered 
Backprojection MAP Algorithm  

Gengsheng “Larry” Zeng 
 
Abstract—The goal of this paper is to extend our recently 
developed FBP (filtered backprojection) algorithm, which has the 
same characteristics of an iterative Landweber algorithm, to an 
FBP algorithm with the same characteristics of an iterative MAP 
(maximum a posteriori) algorithm. The newly developed FBP 
algorithm also works when the angular sampling interval is not 
uniform. The projection noise variance can be modeled using a 
view-based weighting scheme. The new FBP algorithm with view-
based noise modeling has the same computation time as the 
conventional FBP algorithm. 

I. INTRODUCTION  

The filtered backprojection (FBP) algorithm is simple and fast, 
and can be used to reconstruct images in Nuclear Medicine, X-
ray CT [1]. Compared with iterative reconstruction algorithms, 
the FBP algorithm generally produces noisier images, even 
when the iterative algorithm (e.g., the iterative Landweber 
algorithm) does not model the projection noise or does not 
model the projection noise correctly [2][3].  As a result, the 
FBP algorithm has gradually been replaced by iterative image 
reconstruction algorithms. Recently, we have developed a 
windowed FBP algorithm that is able to produce similar 
images to those reconstructed by the iterative Landweber 
algorithm [4]. One goal of this paper is to modify this 
windowed FBP algorithm so that it can produce similar 
images to those reconstructed by the iterative Landweber 
MAP algorithm. Another goal of this paper is to extend the 
windowed FBP algorithm to model the projection data noise. 

Iterative MAP algorithms can produce noise/resolution 
balanced images and have wide applications [5]-[8]. Due to 
their huge projection operator matrix size, MAP algorithms 
use iterative methods to optimize the objective function. 
Recently Cao et al proposed a special representation of the 
huge sparse projection matrix so that the condensed projection 
matrix can be stored in a computer and a non-iterative 
reconstruction becomes possible [9]. However, this sparse-
matrix transformation approach is not easy to implement. 
Three new methods of the FBP algorithms are presented in the 
next section. The new methods are practical and can include 
some noise information and image prior information in the 
FBP reconstruction. 
 
________________ 
 
Gengsheng Zeng is with the Utah Center for Advanced Imaging 
Research, Department of Radiology, University of Utah, Salt Lake 
City, UT 84108, USA, Phone: (801) 581-3918, E-mail: 
larry@ucair.med.utah.edu 

II. METHODS 

A. A new FBP algorithm that emulates an iterative MAP 
algorithm  

A typical MAP (maximum a posteriori) algorithm is to 
optimize the Bayesian estimation as 

}{minargˆ 2
RXXAXPX T

X
 .  (1) 

In the context of tomography, A in (1) is the projection matrix, 
X is the image array written as a column vector, P is the 
projection array written as a column vector, and  is a relative 
weighting factor that adjusts the importance of the Bayesian 
term XTRX relative to the fidelity term ||P-AX||2.  The square 
matrix R in (1) can be understood in such a way that X is 
modeled by a Gaussian random field with a covariance matrix 
R-1. In practice, X is not random, the matrix R is used to 
enforce some smoothness of the image so that the 
reconstruction is not too sensitive to noise. One way to 
promote the smoothness is to suppress the difference between 
the central pixel value and its neighbors.  

The problem (1) has a quadratic objective function, so the 
solution can be obtained by the Landweber algorithm: 

])([ )()()()1( kkTkk RXAXPAXX   , (2) 

where AT is the backprojection matrix, X(k) is the estimated 
image at the kth iteration, and  is the step size. This 
relation can be re-written as a non-recursive expression as 

])([ )()()()1( kkTkk RXAXPAXX    

)0(1

0

)(])([ XRAAIPARAAI kTT
k

n

nT 



   .   (3) 

If the initial image X(0) is set to zero, the result from k 
iterations of the Landweber algorithm is 

PARAAIX T
k

n

nTk ])([
1

0

)( 




  .  (4) 

This non-iterative expression of the Landweber algorithm 
resembles a “backproject first, then filter” algorithm, in the 
sense that the projection data P are first backprojected by the 

operator AT and then filtered by . 

When the step size  is small enough, the Landweber 
algorithm will converge and we have 
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if  exists, otherwise  is replaced 

by a generalized inverse. For a finite k, we have 

1)(  RAAT  1)(  RAAT 
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The proofs of the above equations are available in a review 
paper by Schafer et al[10]. 

If the projection operator A is the line-integral in 2D space 
and AT is the the backprojection transform, the combined 
operator of ATA is the 2D convolution of the original image 

with a 2D kernel 1/r, where 22 yxr  in the x-y Cartesian 

coordinates [11]. The 2D ramp filter is able to cancel the 1/r 
blurring effect [10]. In this ideal situation, the (ATA) operation 
is a 1/r convolution, the (ATA)-1 operation is 2D ramp filtering, 

and  in (6) can be treated as a 

window function in the frequency domain: 
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where x and y are the frequencies with respect to x and y, 
respectively,   = (x, y) is the 2D frequency vector, and h is 
the Fourier transform of R when R is expressed as a 
convolution kernel. Thus, the conceptual shift-invariant 
Landweber algorithm is equivalent to: first, backprojecting the 
data into the image domain; second, filtering the 
backprojected image with a 2D windowed ramp-filter defined 
in (7). 

B. Implementation  

  In fact, a “backproject first, then filter” algorithm is 
equivalent to an FBP algorithm, which filters the projections 
first, then backprojects[4][11]. The 1D frequency-domain 
filter in the FBP algorithm is the 1D profile of the 2D filter in 
the “backproject first, then filter” algorithm [4][11]. Therefore, 
an iterative-Landweber-MAP-equivalent FBP-MAP algorithm 
can be obtained, and the implementation steps are: Step 1: 
Perform the 1D Fourier transform of the projection at each 
view. Step 2: Filter the frequency domain data with a 1D 
windowed ramp-filter 
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where t is the frequency with respect to the linear variable on 
the 1D detector. Step 3: Perform a 1D inverse Fourier 
transform of the filtered data. Step 4: Perform the 
backprojection. When k = ∞ and  = 0, (8) is the ramp filter in 
the conventional FBP algorithm.  

C.  Noise variance weighted FBP algorithm 

 In order to make the derivation more clearly, we turn off 
the Bayesian term in the objective function by setting  = 0. 
When noise is modeled, (1) becomes 

)}(){(minargˆ AXPWAXPX T

X
 ,  (9) 

where W is a diagonal square matrix with weighting factors as 
the diagonal elements. In principle, a larger weighting factor is 
assigned to a less noisy measurement and a smaller factor for a 
noisier measurement. For example, the weighting factors can 

be chosen as a function of the noise variance of the 
corresponding projection. Since an FBP algorithm has a shift-
invariance PRF, we require that the weighting factor has the 
same value for all projections in each view. In x-ray CT 
imaging, this weighting factor assignment strategy is 
reasonable. When the x-rays travel in the direction from 
shoulder to shoulder, the projections are noisier than when the 
x-rays travel in the direction from the front to the back of the 
torso. If an iterative Landweber algorithm is used to solve (9), 
following the similar derivation as in Part A and replacing ATA 
by ATWA everywhere, the result of the kth iteration is given as 

WPAWAAWAAII

WPAWAAIX

TTkT

T
k

n

nTk

1

1

0

)(

)]()([

])([









 



.  (10) 

In this symbolic derivation, we assume that 

 exists. Thus, (10) is simplified as 1111 )()(   TT AWAWAA

PAWAAIIX kTk 1)( ])([   .  (11) 

Following the same steps as in Part B, (11) can be turned into 
an FBP algorithm and the windowed ramp filter is given as 
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where wview is the weighting factor for the projection at a 
particular view.  
 

III. COMPUTER SIMULATION RESULTS 

A. FBP-MAP 

 The Shepp-Logan phantom [1] was used in computer 
simulation studies. A 1D parallel-hole detector was rotated 
over 180° with 120 views and 128 detector bins on the 
detector. The images were reconstructed in a 256x256 array 
and the central 128x128 array was used for display and image 
comparison studies.  
 In all computer simulations, both the iterative MAP 
algorithm and the new FBP-MAP algorithm used the same 
step-size =0.5, the same parameter  (=0.3) and the same 
iteration indices k = 2, 20, and 200, respectively. The 
requirement of choosing parameter  is that 1/ t  in the 

newly developed FBP-MAP algorithm and 1/  tvieww   in 

the newly developed noise variance weighted FBP algorithm, 
where wview is a noise weighting factor.  In order to use the 
same parameter =0.5, we scaled the iterative algorithm’s 
projection/backprojection operator ATA by 0.00005, that is, 

])(00005.0[ )()()()1( kkTkk RXAXPAXX   . (13) 

This value of 0.00005 and the parameter were selected by 
trial-and-error. If the step-size  was chosen to be too large, 
the iterative algorithm would diverge and the FBP algorithm 
would produce unreasonable images. The Bayesian operator R 
was a Laplacian, whose convolution kernel is {-0.5, 1, -0.5}.  
The discrete Fourier transform of this kernel is h(n).  
 Images in Table 1 used noiseless projections, and they are 
used to illustrate the resolution improvement as the index k 
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gets larger. The profiles are drawn horizontally at the center of 
the images. The images almost converge when k = 200.  
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Table 1. Iterative MAP vs. FBP-MAP with  = 0.3 using noiseless data 
 Iteration index k = 2 k = 20 k = 200 

Iterative result 

   
FBP result 
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Reconstruction by conventional FBP 
 

 
 

Reconstruction by proposed FBP with noise weighting 
 

Figure 1: Cone-beam reconstruction of a low-dose cadaver torso X-ray CT study (Raw data courtesy of Leiden University 
Medical Center). One non-central transverse slice is shown. The upper image is reconstructed with the normal FBP 
(Feldkamp) algorithm. Severe streaking artifacts can be observed horizontally across the torso. The lower image is 
reconstructed with the proposed FBP (Feldkamp) algorithm with view-based noise weighting. At each view, the noise 
variance is determined by the largest line-integral in this view. It is clear that the severe streaking artifacts have been 
successfully suppressed or removed while the resolution is maintained. 
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Abstract— In CT imaging, a variety of applications 

exist where reconstructions are SNR and/or resolution 

limited. However, in some cases the measured data 

provide additional information capable of creating 

composite image volumes with high SNR. These 

composite image volumes might be a mixture with 

respect to spectral information and/or spatial resolution 

and/or temporal resolution.  

Examples: in Dual Energy CT, the resolution has to be 

compromised to provide good SNR for material 

decomposition. Perfusion CT is a high dose application, 

and dose reduction is highly desirable. However, if the 

time frames are too noisy, a meaningful evaluation of 

perfusion parameters might not be possible. On the 

other hand the SNR in the composite of all time frames 

is extremely high.  

These observations bring us to the idea of transferring 

high SNR of the composite image volume to low SNR 

(but high resolution) ‘source’ image volumes. It has 

been shown that the noise characteristics of CT data can 

be improved by iterative reconstruction. In case of data 

dependent Gaussian noise they can - in a 

mathematically equivalent manner - be modeled with 

image-based iterative reconstruction [1].  

We present a generalized update equation in image 

space, consisting of a linear combination of the previous 

update, a correction term which is constrained by the 

source image data and the composite data, and a 

regularization prior, which is initialized by the 

composite image volume. 

For different CT applications, we show that - at 

constant patient dose - SNR can efficiently be 

transferred from the composite image to the source 

image data, while maintaining resolution properties of 

source data.  

 

Index-Terms: Regularization, regularization prior, dual 

source CT (DSCT), dual energy CT, cardiac CT, 

perfusion CT, Ultra-high resolution CT. 
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I. INTRODUCTION 

 

In the past few years, iterative reconstruction methods have 

received increased attention in the CT reconstruction 

community. The advantage of iterative methods is that they 

allow for an easy modeling of system optics. Another 

successful application is the suppression of artifacts caused 

by approximations in direct reconstruction methods [2].  

A general approach to iterative reconstruction methods is 

statistical iterative reconstruction. While traditional 

reconstruction methods assume Gaussian noise with data 

independent variance, statistical reconstruction methods 

employ the more realistic Poisson noise model or the 

Penalized Weighted Least Squares (PWLS) objective 

function, corresponding to a simplified Gaussian noise 

model with data dependent variance. PWLS methods have 

been shown to improve image quality in terms of contrast to 

noise ratio [3]. 

The fundamental limiting factor for practical use of 

statistical reconstruction methods and most iterative 

reconstruction methods, is the computational effort they 

require. Therefore, it was of great interest to find new 

equivalent, or approximately equivalent, update steps that 

are computationally less expensive than currently existing 

ones. It was been shown [4] that statistical data weighting 

and regularization can be transferred to non-linear image 

processing if the noise model is known. Due to the image-

based nature of this type of Iterative Reconstruction, the 

algorithm is computationally much less expensive as raw 

data based Iterative Reconstruction.  

In this paper we present a generalized image-based update 

equation, which supports a variety of  clinical applications 

(section II). It is termed: “Bi-modal CT Reconstruction 

(BMR)”. 

In CT imaging, a variety of clinical applications exist, 

where image data are SNR and/or resolution limited. Here, 

we denote them as ‘source’ image data. In some situations 

additional measurement data are available which do not 

suffer from these limitations. Also, different reconstruction 

modes might provide ‘composite’ image data with 

beneficial characteristics regarding SNR and/or resolution. 

The question is: how can we transfer the beneficial 

characteristics of composite image data into the source 

image data, while maintaining the beneficial characteristics 

of the source image data?  

In section III a variety of potential CT applications is 

discussed, which can profit from the novel reconstruction 

Bi-modal CT Reconstruction (BMR) 

Herbert  Bruder, Rainer Raupach, Martin Petersilka, Johan Sunnegårdh, Karl Stierstorfer  
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technique. We conclude with a final discussion in chapter 

IV.  

II. METHOD 

A. Regularization based Iterative CT - Reconstruction 

 

In [1] an image based Iterative Reconstruction scheme was 

derived approximating under certain, very general 

conditions Statistical Iterative CT – Reconstruction to a 

high degree of accuracy. The update equation is given by 
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Here, f represents the vector of image grey values at the 3D 

voxel grid. Eq. (1) introduces prior knowledge about 

correlation of voxels in the immediate neighborhood of 

central voxel i with adjacent nodes ij  . N counts the 

total number of voxels. The domain filter dij denotes a high 

pass filter and may be chosen as the inverse distance of 

node vertices  j to central voxel i. Adjacent grey values are 

weighted using the influence function H. )i( denotes the 

local background noise at voxel i. It can be estimated by 

computing the variances in direction of the neighborhood 

voxels, e.g. taking the minimum value. The influence 

function H is conveniently defined as a function of local 

contrast-to-noise ratio 

i

j,i




in the image domain. Hence, 

we have an instrument to establish contrast dependent 

sharpness by correlating adjacent image voxels using the H-

weight. The anisotropy factor
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  accounting for anisotropic 

image noise, is estimated from projecting the image data in 

angular direction j  to data space in parallel geometry. 

Further, p0 denotes a normalization signal, e.g. the 

attenuation in 30cm water disk with the corresponding 

noise variance 
2
0 . 

B. Bi-modal CT-Imaging 

 

Bi-modal CT reconstruction uses a generalized version of 

update eq. (1) by additionally introducing a correction term: 
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The initial loop is started with the regularization R

operating on the composite image volume
Compositef . 

21  , , and  are scalar constants that individually control 

the contribution of different terms in the update equation 

(3) and thus determine the characteristics of the final image 

(k ). The operator  describes a complementary split 

of the frequency contents of image data.  denotes the low 

pass part of this weighting in frequency space. For most 

applications the cutoff frequency of   should be identical 

to the cutoff frequency of the convolution kernel used for 

reconstruction of source data. 

III. EVALUATION 

In this section we discuss a variety of CT applications 

(sections III A-D), which might benefit from Bi-modal CT 

reconstruction. 

A. Spectral CT imaging 

 

In Dual Energy CT (DE) imaging, the quality of material 

decomposition is largely influenced by image noise. In 

addition: the decomposition is obtained by matrix inversion, 

which for some materials might have eigenvalues on a 

different scale. In turn, this further increases image noise of 

reconstructed image volumes. Currently, the problem is 

combated by improving SNR of spectral images using 

smooth CT convolution kernels. At the same time, 

however, the spatial resolution is affected.  

In Bi-modal reconstruction of spectral CT data the spectral 

images are used as source images. Composite images are 

calculated as a weighted sum of the spectral images, with 

weights that optimize SNR. 

We expect the bi-modal image data f  to preserve the 

spatial resolution and the spectral contrast at a significantly 

higher SNR. This is well-demonstrated in Fig. 1. The 

spectral images of bi-modal reconstruction show a 

significantly improved SNR with 70% noise reduction 

compared to the source images. The spatial resolution is 

well preserved. Also the spectral information is largely 

preserved which is well demonstrated evaluating the iodine 

filled region (red circle). 
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Fig. 1: FBP reconstructions of clinical DE image data measured 

with a SIEMENS Definition FLASH scanner (top left) 100kV 

image with 100% image noise. The average grey value of iodine in 

the red circle area is 555HU (middle left) 140kV image with 100% 

image noise. Average grey value of iodine in red circle area 

280HU (bottom left) Composite image as average of 100kV 

and 140kV image data with 71% image noise. (top right) 

BMR of 100 kV data with 31.8% image noise. Average grey 

value of iodine in red circle area 550 HU (middle right) 

BMR of 140 kV data with image noise of 32.2% Average 

grey value of iodine in red circle area 289HU. Image 

window (C = 0, W = 500 HU) 

 

B. CT Perfusion imaging 

   

CT Perfusion imaging is a high dose CT application. Dose 

reduction is highly desirable. However, the acquired time 

frames (source images) need high SNR to derive 

meaningful perfusion parameters. Low noise composite 

data can be obtained by averaging all time frames. It will be 

shown that the high SNR of the composite image can be 

transferred to the time frames while preserving the spatial 

and temporal resolution of each specific time frame. This 

gives us control of the applied radiation exposure. We will 

demonstrate dose reduction potential down to 15% of 

typical reference mAs  

 

 

C. Cardiac CT 

 

In cardiac CT imaging the temporal resolution is improved 

by decreasing the range of projection data used for image 

reconstruction down to the limit of a half rotation dataset 

(after parallel resorting of fan-beam data). Optimization of 

best cardiac phase of retrospective image reconstruction 

requires redundant data acquisition. In addition, the 

temporal range of high radiation exposure has to be flexible 

controlled to account for heart rate variability. Full dose 

utilization in the retrospectively, phase-correlated 

reconstructions (source images) is highly desirable. 

Composite images can be provided by extending the 

reconstruction range to the entire range of high radiation 

exposure. It will be demonstrated, that significant SNR 

improvement of the source images is possible, while 

preserving the high temporal resolution of the time frames. 

D. Ultra- high resolution Imaging (UHR) 

 
Ultra high resolution acquisition data are measured using a 

comb grid placed over on the detector elements. Thus the 

aperture of each detector element is smaller, which 

increases sharpness while reducing noise equivalent quanta 

(NEQ). In Dual Source CT [5] a second X-ray source – 

detector system mounted on the CT-gantry with a 90 deg 

offset provides additional data measured with a wider 

aperture. We denote the reconstructions of these data as 

fComposite, whereas the reconstructions of low aperture data as 

fSource. Applying eq. (3) final image volumes f with high 

spatial resolution and increased SNR compared to the 

source image volume, are obtained (Fig. 21). However, in 

this study a detailed analysis of the NoisePowerSpectrum 

(NPS) is needed to correctly design the frequency split 

function Λ. 

 

 
 
Fig. 2: FBP reconstructions of the high resolution CATPHAN 

phantom (top left) STD Composite image with 71% image noise. 

STD COMPOSITE UHR SOURCE 

BMR 

73% 100% 

55% 
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The normalized detector pitch was 1. 18lp/cm are visible (top 

right) Ultra High Resolution source image with 100% image 

noise. The normalized detector pitch was 0.5, hence the NEQ were 

reduced by the factor 2. 23 lp/cm are visible (bottom left) Bi-

modal reconstruction with 55% image noise. Notice, the spatial 

resolution is preserved (23 lp/cm are visible). Image window 

(C = 1200, W = 200 HU) 

E. ROC analysis 

 

An ROC analysis was employed (Fig 3), to demonstrate the 

improved noise statistics in BMR reconstructions. Based on 

the observer task: signal known exactly (SKE) and 

background known exactly (BKE) a channelized Hotelling 

Observer study using 4 channel Gauss-Laguerre 

polynomials was performed. This study uniquely supports 

the assumption that in BMR SNR can efficiently be 

transferred to low SNR source data  
 
 

 
 
Fig.3: ROC analysis of BMR reconstruction.100 noise samples of 

SKE / BKE observer task (for details see text) have been evaluated 

using a Hotelling observer study with 4 channel Gauss-Laguerre 

polynomials. (green curve) FBP reconstruction (blue curve) BMR 

reconstruction (red curve) Regularization on source data  

(α1 = 0, α2 = 0). 

 

IV. CONCLUSION 

 
We presented a novel image based Iterative Reconstruction 

scheme, the Bi-modal CT Reconstruction. It is governed by 

an update equation, containing a linear combination of the 

previous update and specific low pass and high pass terms. 

Depending on the set of coefficients of this linear 

combination, the iteration loop converges to different fixed 

points. Future work has to focus on properly adjusting this 

set of coefficients for different CT applications.  

The Bi-modal Reconstruction can be utilized to transfer 

beneficial characteristics of high SNR/low resolution 

composite images to low SNR/high resolution source 

images. Several applications have been investigated 

regarding the efficiency of the method. The current 

implementation seeks to preserve the low frequency content 

of the source images and transfers high pass signals from 

the composite image and the regularization filter.  

In cardiac case, however, the benefit might be limited due 

to motion artifacts showing up in the composite images. 

Unfortunately, the spectrum of motion artifacts is not 

localized. Therefore, low frequency signals of motion 

artifacts might remain in the final image. From this, major 

benefits of BMR in the cardiac field can only be expected 

in cardiac Dual Source imaging. In this case composite data 

also have sufficient temporal resolution. A variety of 

further CT applications like multi-phase liver, neuro DSA 

etc. are thinkable, which can also benefit from the novel 

reconstruction scheme. 
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Database-Assisted Low-Dose CT Image Restoration 
Wei Xu, Sungsoo Ha and Klaus Mueller, Senior Member, IEEE 

    Abstract– The image quality of low-dose CT scans typically 
suffers greatly from the limited utilization of X-ray radiation. 
Although the harmful effects to patient health are reduced, the 
low quality of the reconstructions makes diagnostics difficult. In 
previous work, we have demonstrated a method that can restore 
a low-dose image by ways of a database of reference images. This 
database stored a set of pre-aligned non- and pre-corrupted 
reference CT images to support a matched-reference non-local 
means (MR-NLM) filtering approach. While effective, the need to 
store images with many different types of corruptions and 
alignments greatly impeded system scalability. In this current 
work, we have significantly simplified the database which now is 
comprised of just a set of regular-dose patient scans. Our present 
scheme performs both alignment and artifact generation on the 
fly and uses a sophisticated image and feature matching scheme 
to find good candidates to support our MR-NLM filtering scheme. 

I. INTRODUCTION 

n recent years a growing amount of research has been 
dedicated to low-dose CT, motivated by the need to 

minimize the radiation exposed to patients while maximizing 
the clarity of the reconstructed images to facilitate accurate 
diagnoses. The adverse low-dose conditions greatly challenge 
conventional CT reconstruction algorithms, both analytical 
and iterative. They usually result in images with severe noise 
artifacts and reduced feature detail. To solve this conundrum, 
one type of approach enforces better image quality directly in 
the reconstruction process [6][12][17], while another improves 
the image quality in a post-processing de-noising step [7]. Our 
paper belongs to the second category. 

Neighborhood filters, in particular non-local means (NLM) 
[1] have shown great promise for the restoration of noisy low-
dose CT imagery [17]. To filter a pixel pi with NLM, its 
updated value is determined by the values of pixels pj inside a 
local neighborhood around pi, called search window. Here, the 
contribution of a pj to pi depends on the similarity between 
small regions around them, called patches. Recently, to extend 
the search space beyond the current image, some medical 
imaging researchers have devised schemes that utilize prior 
scans of the same patient to search for high-quality updates 
[7][15][16]. We extended these ideas in [18], proposing an 
approach that utilized an image database of different patients 
which eliminated the need for a prior patient scan. The scheme 
achieved good artifact mitigation for low-dose scans acquired 
from only 45 noise-free projections or 60 noisy projections 
with SNR=10. The database itself contained pairs of artifact-
free and artifact-matched reference images. We found that 
much better filtering results could be achieved by using the 
latter to find good NLM matches for a contaminated target 
pixel, but then replacing the noisy target pixel by the 
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corresponding value from the artifact-free counterpart. We 
therefore called this method Matched Reference-Based Non-
Local Means (MR-NLM). A shortcoming of this 
implementation was that the database could grow rather large 
since all images needed to be pre-aligned to the target image 
and also had to contain all possible types of artifacts for 
matching. In the current paper, we have aimed to reduce these 
problems and establish a more general framework.  

Our present framework embodies a database of regular-dose 
patient CT scans with no pre-alignment and prior artifact 
simulation needed. Such scans are commonly available in 
clinical practice. For image restoration the only assumption we 
make is that the low-dose CT condition is known. This is 
reasonable since CT scans are typically obtained following a 
known reconstruction routine under some geometry 
configuration with a specific number of projections and 
mA/kV setting. In the current work we use fan-beam filtered 
backprojection (FBP) with a limited number of projections 
with Gaussian noise to simulate the low-dose conditions, but 
in practice any reconstruction setting can be supported. Our 
new method still applies the effective MR-NLM scheme, only 
now we perform alignment and artifact generation on the fly, 
assisted by a much more sophisticated image and feature 
matching scheme. We therefore call our framework simply 
Database-Assisted CT Image Restoration (DA-CTIR). 

The overall workflow of our method is illustrated in Fig. 1. 
It consists of three major components: 
• Offline database construction: given an image database, 

we create the global image feature descriptor G for each 
image and build up the global feature database. A visual 
vocabulary V is also learned. 

• Online prior search: for the input image I, generate G(I) 
with V and use it to query the global feature database to 
find the M nearest neighbors (NN) as regular-dose priors. 
The priors have the most similar artifact-free content to I.   

• Online de-noising: align the regular-dose priors to the 
input image as registered priors (CRP) and corrupt them 
with the low-dose condition (DRP) to form the prior pairs 
<CRPi, DRPi>. Finally a refined MR-NLM is performed. 

    The organization of the paper is as follows. In section II, we 
describe the methodology including all technical details. 
Experimental results are presented in section III, followed by 
conclusions and future work in section IV.  

II. METHODOLOGY 

A. Local Image Feature Descriptor 

Image matching is a fundamental operation in computer vision 
and image processing and is often used for scene matching 
and object recognition. An image is usually represented as a 
high dimensional vector to describe the distinct salient 
properties of the image. In other words, an image feature 

I
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Figure 1: Workflow of the framework:  offline database construction, online prior search and online de-noising. 

descriptor is employed to map one image from 2D image 
space to high-D image feature space where image matching is 
performed. For instance, the GIST descriptor [11] is an 
aggregated multi-scale oriented edge histogram of the image 
in a coarse spatial resolution. The Haralick texture features [5] 
describe the global image statistics based on co-occurrence 
matrices with different pixel distance values. Although these 
methods have been shown to work effectively in many 
applications, they are sensitive to image rotation, distortion 
and appearance of noise which usually occur in our case. 
    The scale-invariant feature transform (SIFT) feature 
descriptor [9], on the contrary, solves these concerns. It 
captures the histogram of edges in a local neighborhood at 
multiple levels of scale, characterizes salient local and 
transform-invariant image structures and encodes contextual 
information. A SIFT feature descriptor is usually a 128-D 
vector encoding 8-orientation histograms of edges over 4×4 
blocks with each block of size 4×4, serving as a local 
descriptor of the image. In its original definition, only 
keypoint locations are selected. However, it was shown that 
dense SIFT vectors on a regular spaced grid work better and 
are more robust [8][10]. Here we also exploit this dense 
feature scheme so that each image is represented by a fixed 
number of SIFT vectors.  
    In this work, we chose a grid spacing of 8 pixels. So for 
image size 2562, 32×32 SIFT vectors are generated while for 
image size 5122 there are 64×64 SIFT vectors. 

B. Spatial Pyramid Based Global Image Feature Descriptor  

To form a global image feature descriptor, traditional dense 
SIFT algorithms follow the bag-of-feature method [3]. It 
includes the following steps to combine the local feature 
vectors into a single one:  
• Extract the local feature descriptors. Generate a set of 

SIFT local feature descriptors {S0, S1, .., SN-1} to represent 
each image. 

• Build the visual vocabulary. Randomly select the local 
feature descriptors of all images in the database and 
perform k-means clustering to learn K cluster centers as 
visual words {V0, V1, …, VK-1} and so form the visual 
vocabulary V of the database. 

• Label the local feature descriptors to the visual words. 
For each image, its local feature descriptors are assigned 
to their corresponding closest visual words.  

• Perform vector quantization to generate a global 
feature descriptor. Quantize each image’s visual words 
to form histogram series {H0, H1, ..,, HK-1} of that image. 
By concatenating the weighted histogram series, a global 
descriptor is formed.   

One drawback of this method is that the feature’s location 
information in the original 2D image space is discarded. To 
make use of the spatial information and keep track of it in 
multi-resolution, we exploit a spatial pyramid scheme [8] to 
implement a “stronger” feature description. The multi-
resolution layers are formed by recursively subdividing the 
image space into a×a blocks. In a layer L, for each block, only 
the feature vector extracted from that block is aggregated to 
the histogram of its specific visual word. In this way, the 
clustering is still performed in the feature space while the 
histogram pyramid is built in 2D image space. The weight to 
each histogram is inversely proportional to its block width. 

In this work, for clustering we tried several k values and 
empirically chose k=50 for all databases. This number is 
relatively small compared to other papers (where k=200) 
which is due to the fact that CT scans are not as complicated 
as natural images. We set L=1 (two layers) and a=5 to prevent 
the splitting of significant body structures [4]. Therefore, for 
image size 2562 its global vector dimension is 1,300 while for 
image size 5122 it is 2,600. 
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C. Histogram Intersection and Multiple kd-Trees Based 
Vector Matching 

In the online prior search, given the learned visual vocabulary 
V and the computed local features of the target scan, the task 
of the visual word assignment is to find the nearest visual 
word Vj for each local feature Si in SIFT vector space (128-D). 
When processing a set of query images with a large number of 
dense SIFT vectors, this process could be time consuming. To 
speed up, we exploit the commonly used kd-tree as the nearest 
neighbor searching data structure. A kd-tree is a binary tree 
that recursively partitions and stores the nodes in k-
dimensional space. Counting the number of visited tree nodes 
is used to measure the complexity of querying the tree. 

To handle the query for high-D nodes such as a SIFT vector 
and reduce backtracking, we employ a multiple principal 
component kd-trees method denoted PKD-trees to perform fast 
approximate search [13]. In essence, data is first projected 
onto a PCA-reduced sub-space and arbitrary rotations to data 
are applied to create multiple trees with different structures. 
The search order among trees is organized by multithreading. 
The maximum number of visited nodes is pre-set. We use a 
Householder matrix as the transformation matrix to speedup 
arbitrary rotations, and 6 trees are built to accommodate data 
reduced to 30 dimensions for SIFT vectors. 

In the same part, after generating a global feature vector for 
the target scan, vector matching is performed to search for 
similar priors in the database that anatomically characterize 
the same content as the target scan but may contain scale, 
rotation, and deformation variance. We found that histogram 
intersection performs better than a Euclidean distance measure. 
Therefore we implemented the matching with spatial pyramid 
based histogram intersection which is counted block-wise and 
visual word-wise and summed up to form a single value [8].   

D. Online Denoising 

Once the regular-dose prior (or reference) scans have been 
found, the online de-noising process can be executed. We first 
register the prior scans with the target scan using the SIFT-
flow registration algorithm [10] to make sure the 
neighborhoods of any pixel position are roughly aligned. Then 
we reconstruct the artifact matched prior images using the 
same low-dose condition.  
    The MR-NLM follows the standard NLM filtering scheme 
but using a pair of artifact-free and artifact-matched registered 
prior images <CRP, DRP> [18]. More specifically, the weight 
generation is conducted by comparing patches from the target 
image and artifact-matched prior images, while the pixel value 
summation is performed in the corresponding locations in the 
artifact-free reference images using the weights. The equation 
of MR-NLM is as follows: 
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Here x is the location of the target pixel and y are the locations 
of the candidate pixels with values py. Wx is the search window 
around x, and P is the patch size of each pixel. The patch 
similarity is measured by the Gaussian weighted L2 distance 

between two patch vectors with t representing the index within 
a patch and Ga being a Gaussian kernel with standard 
deviation a. h controls the overall smoothness of the filtering. 
The superscript crp indicates that the pixels originate from the 
artifact-free registered prior CRP, while drp denotes the 
degraded artifact matched registered prior DRP. 

In order to further improve de-noising accuracy and enable 
more efficient computations, we use three refinement 
strategies. The first two are redundancy control methods 
designed originally for traditional NLM: (1) reduce patch 
redundancy by applying PCA to high-D patch space and 
project patches to a lower dimensional sub-space accordingly 
[14], (2) reduce search window redundancy by discarding 
unrelated pixels whose mean and variance values are different 
enough from the central pixel of the search window in the 
target image [2], and (3) consider multiple pairs (3 in the 
experiments) of reference images to broaden the search range. 

 In this paper, both search and patch windows are of size 
7×7. For the Gaussian kernel, its standard deviation a = 1 and 
the smoothing parameter h is chosen to bring best results. 

III.   RESULTS 

We constructed two databases: a head database (48 2562 

images) by mixing the NIH Visible Human Head (15 images) 
with a CT cadaver head (33 images) and a human lung 
database of two patients (150 5122 images). The images were 
not pre-aligned. Their original reconstructions were utilized in 
three different ways. (1) They served as the basis for a high-
quality projection simulation in fan-beam geometry (fan angle 
= 20°). We then picked a subset of these projections with 
Gaussian random noise propagated and reconstructed them 
under the current low-dose condition. (2) We used them to 
generate an experimental target scan subject to restoration. To 
create a new scan different from any image in the database, 
the selected scan was first deformed or rotated (to mimic a real 
clinical situation), projected, and then reconstructed with the 
studied low-dose condition. (3) We used the deformed 
uncorrupted scan to represent the gold standard for evaluation.  

A. Performance of the Global Image Feature Descriptor 

This experiment was conducted to test the performance of the 
global image feature descriptor under low-dose conditions. In 
Fig. 2, both a head scan and a human lung scan were 
simulated (neither was in the database). I(b) was created by 
reconstructing a CT head scan after a twirl-like deformation 
(see I(a)) with 45 projections of SNR 15, and II(b) was created 
by reconstructing a human lung scan after rotation 5º ccw (see 
II(a)) with 60 projections of SNR 20. Ideally, the adjacent 
slices in the same dataset should be found as reference images. 
The three matched prior images for the head scan are shown as 
Fig. 2 (c), (d) and (e) and are consistent with our expectations. 
The case for the lung scan is similar. It confirms that moderate 
deformations and low-dose artifacts (both streak and noise) do 
not affect the global feature descriptor to express the 
underlying anatomical content of the CT images. 

B. Performance of PKD-trees Data Structure 

For the visual words learned in the first experiment, 6-PKD-
tree data structures were created for matching dense SIFT 
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Figure 2: Results with (I) a CT head database and (II) a human lung database. 

I: (a) ideal                     (b) input                 (c) prior 1                (d) prior 2                  (e) prior 3         (f) basic DA-CTIR        (g) refined  

II:      (a) ideal human lung                          (b) input scan                                (c) basic DA-CTIR                    (d) refined DA-CTIR 

  

 

Figure 3: 6-PKD-tree error rate. 

vectors to the visual words. Two configurations for reducing 
the dimension of the vectors were set: full 128 and 30. By 
generating a head scan with various changes such as rotation, 
resizing, Gaussian noise and affine transform, we extracted 
100,000 SIFT vectors from it. As an approximated search, the 
error rate versus the maximum number of visited nodes M was 
tested for both dimension settings and is plotted in Fig. 3. 
When M is above 200, the error rate is lower than 10%. We 
also observe that dimension reduction of the data does not 
affect the querying accuracy when the vector is sparse. 

C. Performance of Refined MR-NLM 

We tested the de-noising effect for both a head image and a 
human lung scan. In Fig. 2, I(f) and I(g) are the de-noised head 
image without and with refinement. The lung results are 
shown as II(c) and II(d) for without and with refinement 
respectively. For both cases, the basic method restored fine 
details well. The refined result keeps the same (sometimes 
better as the area labeled in the box) quality level but reduces 
the computational complexity greatly. 
 

IV.  CONCLUSIONS AND FUTURE WORKS   

In this paper, we proposed a general framework for high 
quality restoration of low-dose CT scans with a general CT 
image database. A spatial pyramid based global image feature 
descriptor, a local feature matching PKD-trees and a refined 
MR-NLM scheme were presented. As future work, PKD-trees 
used for global feature vector, GPU acceleration for faster 

execution and a more complete database will be tested.   
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CT Dose Reduction Using Dynamic Collimation 
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UCAIR, University of Utah, Salt Lake City, Utah

 Abstract– This paper demonstrates how a transverse dynamic 

collimator can significantly reduce dose in CT scans and briefly 

reviews our earlier results on motion analysis of dynamic 

collimators.  Today, helical scans already use the axial collimator.  

A separate transverse dynamic collimator is proposed that would 

be used for both helical and axial scans.  The leaves of both the 

helical and transverse collimators move such that only those x-

rays that intersect a predefined VOI are exposed to the patient.  

Our earlier work has already demonstrated the feasibility of 

implementing a transverse dynamic collimator.  By moving the 

collimator close to the source and upgrading the collimator 

motor controller to handle leaf velocities up to 90 cm/sec ( less 

than 4 times the leaf velocity of a helical collimator), a 12 cm ROI 

can be targeted up to 18 cm from scan center.  Elliptical models 

were utilized to calculate the skin exposure for heart and kidney 

scans, with and without transverse dynamic collimation.  The 

results translate to a significant skin dose reduction in both cases: 

A 3.7:1 reduction in skin exposure is calculated for the whole-

heart scan.  A 1.6:1 to 2.1:1 reduction in skin exposure is 

calculated for a kidney scan and a 3.6:1 reduction for a whole 

organ kidney scan, even when both kidneys are included in the 

target ROI. 

 

I. INTRODUCTION 

-ray dose to the patient can be greatly reduced not only in the 

axial direction using a dynamic helical collimator [1], [2], but 

also in the transverse direction using a  dynamic collimator shown in 

Fig. 1.  The first limits exposure to only the ends of a cylindrical 

volume of interest (VOI) scanned during a cone-beam helical CT 

scan.  The second limits exposure to an arbitrary volume of interest 

within the cylindrical VOI.  An example of this is shown in Fig. 2 for 

a VOI defined by the outline of the heart.  The leaves of the 

transverse collimator move in and out independently such that x-rays 

are limited to the region defined by the outline of the heart, which is 

typically located well off-center of the scan isocenter.  How fast the 

leaves need to move depend on how far off-center a given cross-

sectional region of interest (ROI) is located from scan center. 

We have already presented [4] an analysis of the velocity 

requirements of the transverse collimator for off-center ROIs within 

the field of view (FOV) and compared this with the known velocity 

requirements of today’s helical collimators.  This analysis concluded 

that a transverse collimator can handle a 12 cm ROI up to 18 cm off-

center, provided the collimator is positioned 12 cm from the source 

and the collimator motor controller is upgraded to handle leaf 
velocities approximately 4 times that of the helical collimator 

(less than 90 cm/sec). 
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Fig. 1.  Dynamic collimator positioned at 0 and 90 degrees for an 8 cm off-
center ROI. 

 

   

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.  Cardiac VOI defined by both the dynamic transverse and helical 

collimators. 

II. METHODOLOGY 

To demonstrate the reduction in skin exposure that can be 

achieved using a transverse dynamic collimator, both heart and 

kidney scans were analyzed.  We believe the corresponding clinical 

applications, namely coronary CT angiography and kidney perfusion, 

would greatly benefit from a reduction in dose. 

For the heart, the dynamic collimation follows the outline of the 

heart defined by an ellipse representing the target ROI (shown in the 

following 3 out of 5 sequence of images in Fig. 3).  The body outline 

was approximated also with an ellipse, from which the skin exposure 

values were calculated.  The five sections of the heart are equally 

spaced.  In the un-collimated case, all sections are fully exposed, 

while in the collimated case, the exposure is limited to the target 

VOI, with the first and last sections fully collimated down to a 0 cm 

diameter circle.  Reference lines are shown that intersect scan center, 

the body ellipse, and target ROI. 
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Fig. 3.  Middle three out of five heart cross-sections showing body outlines 

and target ROIs approximated by ellipses with reference lines. 

 
The average un-collimated skin exposure relative to the average 

exposure at the center of the target ROIs is compared to the average 

collimated skin exposure over the five slices again relative to the 

average exposure at the center of the target ROI. 

For the exposure analysis of the heart, reconstructions of an XCAT 

phantom [6] were used with an X-ray source radius S of 57 cm.  A 

compensator in front of the X-ray source, generally used in most CT 

scans today, provides a more uniform signal to the detector and 

reduces the overall dose to the patient.  We therefore modeled a 

compensator that perfectly compensates for a disc with a radius rc of 

24 cm and an attenuation coefficient equal to water (.183/cm at 80 

KeV, approximately the average energy for a typical CT system 

performing 120 KeV scans). 

As an initial approximation, the water attenuation value of .183/cm 

was also assumed for all path lengths throughout the body.  The 

exposure for each of 100 points equally spaced in angle β on the 

surface of the body ellipse was calculated for 1000 angular views, θ, 

of the source covering 360 degrees. Rays emanating from the source 

pass either just through the compensator (Fig. 4), or both through the 

compensator and the body (Fig. 5).  These exposure values were then 

averaged over the 1000 views.  Likewise, the exposure at the center 

of the target ROI (Fig. 6), was averaged over 1000 views.  This 

provided a reference for the skin exposure values. Thus all skin 

exposure values are measured as a ratio with respect to the exposure 

at the center of the target ROI.  

For the scans utilizing a dynamic collimator, the fan angles for 

which the collimated x-rays intersect tangentially to the target ROI 

are calculated for each x-ray source position and used to exclude all 

exposure from the x-ray source that falls outside the corresponding 

angular range.  Again, all skin exposure values are averaged over 

1000 views. 

In the case of the heart, 5 equally-spaced sections of the heart were 

used to define the cardiac VOI, with the first and last sections fully 

collimated.  The relative skin dose for the center section was 

compared with and without dynamic collimation.  The final skin 

exposure values were then averaged over the five sections, both with 

or without dynamic collimation. 

The boundaries of the ellipses are defined by specifying 6 user-

defined points around the periphery of both the body outline and 

target ROI.  A least-squares solution to the parameters of each 

ellipse, (a, b, r0, t0, tr) = (major axis, minor axis, polar radius of the 

origin of the ellipse, polar angle of the origin, and angular 

orientation of the ellipse), is then obtained given the (R,T) polar 

coordinates of these 6 points along with the following constraints: 

 

 
 

where: 

 

 

 
 

(R,T) correspond to the polar coordinates of the 6 points 

 
and the following initial values are provided: 

 
(a, b, r0, t0, tr) = (TOL, TOL, com(R,T), mean(T), TOL) 

 
where: 

 

 
 

 
 
 Given both the body and target ellipses along with the 

compensator attenuation as a function of the fan angle, the skin 

exposures could then be calculated.  For all ray angles up to the 

tangent to the body ellipse, the exposure is simply the attenuated 

exposure through the compensator* (Fig. 4).  For all other angles for 

which the rays pass through the body to the selected point on the 

ellipse, the x-ray exposure is further attenuated by the path length 

through the body.  Given the source radius, source angle, and point 

on the body ellipse, the path length p relative to the distance p0 (Fig. 

5) can be calculated as a solution to a quadratic equation resulting 

from the condition that the entrance point of the ray also satisfies the 

equation for the body ellipse [5]. 

 

 
 

Fig. 4.  Geometry for a ray at angle α directly exposing the skin, emanating 
from the x-ray source located at angle θ.  The ray is only attenuated by the 

compensator as a function of angle α. 

 
*Note:  A point on the skin is treated like any other point within the body 

ellipse.  In the case of a point on the boundary of the ellipse directly exposed 

by the x-ray source, the path lengths through the body converge to zero at all 
angles up to those angles tangent to ellipse. 
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Fig. 5.  Geometry for a ray at angle α indirectly exposing the skin, emanating 
from the x-ray source located at angle θ.  The ray is further attenuated by the 

body path length (1-p)ˑp0 

 
The resulting skin exposure is then calculated as an average value 

over 360 degrees of the angular position (θ) of the x-ray source: 

 

 
where: 

 
β = the angle of the point on the body ellipse 

θ = the source angle 

α = fan angle of the ray intersecting the point on the body ellipse 

 

 
p is the path length to the entrance point on the body ellipse relative to p0 

p0 is the path length to the selected point on the body ellipse 
 

The average skin exposure is then the average of the exposure for 

all points around the body ellipse.  For the average collimated 

exposure, the same exposure equation is used, but with the intensity 

set to zero for all ray angles whose fan angle exceeds that of the 

range of angles spanned by the two rays that intersect the tangents to 

the target ellipse, i.e.: 

 

 
 

AC is the clockwise angular position of the collimator leaf for source angle θ 
ACC is the counter-clockwise angular position of the collimator leaf 

 

 
 

Fig. 6.  Geometry for a ray at angle α exposing the center of the target ROI.  

The ray is further attenuated by the body path length (1-p)ˑp0 

Finally, the exposure at the center of the target ROI is calculated 

as a reference for the skin exposure values.  In this case, p0 

corresponds to the path length to the point at the center of the target 

ellipse and p is calculated as the relative path length to the point on 

the body ellipse (Fig. 6).  As this is the center of the target ellipse, the 

same value applies whether or not dynamic collimation is used. 

For the kidneys, ellipses were again used to outline the target ROI 

and body of the patient.  A single multi-slice scan was used to acquire 

the kidney perfusion images with the central image shown in Fig. 7.  

The average relative (un-collimated) skin dose was compared to the 

average relative (collimated) skin dose. 

 

 
 
Fig. 7.  Kidney study I:  Central kidney cross-section showing ellipses 

defining the outline of the body and target ROI including both kidneys with 

reference lines. 

 

 

 

 
 

Fig. 8.  Kidney study II:  Five equally-spaced kidney cross-sections showing 

body outlines and target ROIs including both kidneys with reference lines. 

 

 A second kidney study was used to not only corroborate the results 

of the first study, but to demonstrate the additional dose savings that 

would be achieved for a whole-organ kidney study.  Five equally-

spaced sections (Fig. 8) were selected spanning the entire kidney with 

the first and last sections fully collimated when utilizing dynamic 

collimation.  The central section was used to compare with the central 

section of the previous study and the overall whole-organ un-

collimated (relative) kidney dose was compared with the overall 

dynamically collimated (relative) kidney dose. 
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III. RESULTS 

The reduction in skin exposure that can be achieved using 

transverse dynamic collimation of heart and kidney scans was 

calculated using the above-described elliptical models. 

The results are summarized in Table I below: 

 
 Un-collimated 

Exposure 

Collimated 

Exposure 

Exposure 

Reduction 

 

Heart 

 

Whole Organ 

 

 

2.61 
 

2.605 

 

1.2 
 

.704 

 

2.1:1 
 

3.7:1 

Kidney Study I 

Kidney Study II 

Whole Organ II 

2.545 

2.1 

2.1 

1.58 

1.0 

.584 

1.61:1 

2.1:1 

3.6:1 

 
Table I.  Collimated and un-collimated exposure values relative to the 

average exposure calculated at the center of the target ROI. 

IV. DISCUSSION 

The reduced skin exposure calculated for heart and kidney scans 

demonstrates the significance of providing transverse dynamic 

collimation, especially if whole organ studies are performed.  Skin 

exposure values are 2.1 to 2.6 times higher than the exposure at the 

center of the target ROI, even with an x-ray compensator.  This 

demonstrates how important it is to keep skin exposure values as low 

as possible. 

With regards to defining the VOI encompassed by the dynamic 

collimators, either a previously-acquired very low dose scan of the 

same region or two orthogonal localizer scans could be used.  In 

either case, the operator can outline the VOI both in terms of the 

extent of the scan as well as the width and location of each ROI along 

the axial direction.  This is similar to what is already done in defining 

a helical scan, except that instead of specifying a single zoomed ROI, 

an outline of the entire VOI is drawn from two orthogonal views, e.g. 

sagittal and coronal views. 

As in the case of the helical collimator, the couch position 

determines the position of the collimator leaves.  However, in the 

case of the dynamic transverse collimator, as the couch moves in the 

axial direction, the rotation angle must also be used to determine 

where the current ROI is situated with respect to the source.  

Therefore, given both the couch position and rotation angle, the 

leaves continuously follow the outline of the overall VOI.  For 

example, in the case of the cardiac scan shown in Fig. 2, the 

collimator leaves follow the illustrated ROI located along the cardiac 

volume based on the couch location of the ROI as well as the rotation 

angle of the x-ray source. 

In the case of a sequence of axial or circular scans, one ROI would 

be determined for each scan in the sequence.  For each scan, only the 

rotation angle would be used to determine the motion of the 

collimator leaves, adjusting for an off-center and/or non-circular ROI. 

With regards to the local reconstruction, attenuation information 

for the material outside the collimated VOI needs to be acquired.  

This can be accomplished in two recommended ways: 1) Use the 

previously-acquired very low dose scan mentioned above, using 

image registration if necessary to accurately measure the attenuation 

outside the VOI.  2) Use heavily-attenuated rays [3] through the outer 

portions of the collimator.  This provides an estimate of the 

attenuation outside the VOI, provided the collimator attenuation is 

previously calibrated. 

V. CONCLUSION 

Dynamic collimation to target the VOI can greatly reduce patient 

dose (up to 4:1 reduction in skin exposure for whole organ cardiac 

and kidney scans).  This reduction in dose may enable coronary CT 

angiography to be used on a much more routine basis.  Likewise, 

significantly reducing the dose for CT perfusion scans and whole 

organ kidney scans will greatly benefit the clinical use of such scans.  

Our future efforts will be directed towards demonstrating how 

dynamic collimation can greatly reduce dose for other clinical 

applications as well. Also, similar to the measurements previously 

made to validate the dose savings achieved using interior computed 

tomography [7], we plan to validate our analysis with actual CT dose 

measurements performed on phantoms. 
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Fluence Field Modulated Computed Tomography 

Steven Bartolac and David Jaffray 

 

Abstract ---- Dose management in CT is an increasingly 

important issue as the number of CT scans per capita continues 

to rise.   One proposed approach towards optimal dose 

management is to allow the pattern of X-ray fluence delivered to 

the patient to change spatially across the incident field, and 

independently for each projection angle. This approach is 

referred to as fluence field modulated CT (FFMCT).  In this 

work, dose and image quality benefits of FFMCT are evaluated 

using an experimental CT system and a small cylindrical 

phantom comprised of acrylic spheres, water and teflon rods. 

Modulated fluence profiles are synthesized from projection sets 

taken at various tube current settings.  SNR patterns and 

predicted dose outcomes are compared against that of a bowtie 

filter.  FFMCT resulted in improved SNR outcomes with 

integral dose reduction on the order of 30%. The results of this 

study suggest that given a suitable collimator approach, fluence 

field modulated computed tomography could reap significant 

benefits in terms of reducing dose and optimizing image quality.   

I.  INTRODUCTION  

 
   Advancements in computed tomography (CT) continue to 

grow in terms of increased speed, resolution, image quality 

and volume coverage capabilities.   These advancements have 

been met with a corresponding rise in the number of CT 

scans per capita and have led to concern regarding the 
increased radiation risk to the population [1].  A key factor in 

minimizing the risk to patients is the appropriate management 

of radiation dose depending on the task and patient.      

 

   Various ways for decreasing dose to the patient while 

maintaining or bettering image quality have been explored by 

means of modulating the incident X-ray beam.  Some 

approaches, including automatic exposure control [2] and the 

addition of bow-tie filters [3-5], have made great strides 

towards more efficient management of the X-ray fluence.  

However, the ideal allocation of X-ray fluence would take 

into account both patient-specific anatomy as well as the 
imaging task.  Previous work [6-8] has shown that optimizing 

the incident X-ray fluence, allowing its pattern to change 

spatially across the X-ray beam, and independently for each 

projection, has the potential to improve or maintain image 

quality where it is required, and allow for poorer image 
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quality elsewhere. An illustration of this technique is shown 

in Figure 1.  Such an approach could potentially yield great 

dose sparing to the patient without cost in the utility of the 

images, reaping benefits that would extend across both 

diagnostic and image-guided techniques.  The methodology 
shares parallels with fluence planning and delivery used in 

intensity modulated radiation therapy (IMRT), and so was 

previously referred to as intensity modulated CT (IMCT). 

However, to avoid confusion with other tube current 

modulation techniques and to emphasize that changes can 

occur over the entire incident fluence field,  the authors prefer 

to call this approach fluence field modulated CT (FFMCT).      

 

While previous work in FFMCT showed large potential dose 

benefits could be possible, these evaluations were restricted 

to simulated data sets.  The purpose of this study is to 
evaluate dosimetric and image quality benefits of FFMCT 

using real data from an experimental CT system.    

 

II.  THEORY AND METHODS 

Implementation of FFMCT proceeds initially by specifying 

target image quality objectives and/or dose constraints for the 

patient.  The incident fluence pattern is then optimized as a 

function of angle and detector position using a chosen 

optimization algorithm.  Implicit to this method is that some 

a priori information of the object is available, either from a 

previous scan or a patient population model.    

  
 

FIGURE 1: Schematic of FFMCT illustrating that the incident pattern of 

fluence can change both across the field of view and between projections.    

 

 

 

 

 

 

 

 

Imaged Object

Incident Fluencet
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Experiments to evaluate the dose and image quality benefits 

of FFMCT were performed using a cone-beam CT benchtop 
in circular geometry, collimated to 64 detector rows about the 

central plane for simulation of a single slice CT acquisition.  

In this setup, an amorphous silicon flat panel detector 

(Paxscan 4030A, Varian, Palo Alto) with 194 m pixel pitch, 
and a 600 kHU x-ray tube (Rad-94, Varian, Palo Alto) were 

fixed in position, with the phantom mounted on a precision 

rotation stage.  A cylindrical water phantom (5 cm diameter) 

was constructed containing acrylic spheres and teflon rods,  

and is illustrated in Figure 2. Acrylic spheres were chosen 

because of their low contrast with respect to water simulating 

soft tissue lesions, while teflon simulates high contrast 

material such as bony anatomy. The phantom size was kept 

small relative to the full field of view in order to avoid scatter 
artifacts from the object; the small size of the object also 

allowed the use of a simplified parallel ray assumption in the 

optimization script for noise propagation (described below). 

 

In order to generate a projection with a modulated fluence 

pattern, multiple scans of the object were taken of the 

phantom at different mAs settings (from 0.4 – 4 mAs per  

projection).  A set of synthesized modulated projections were 

then constructed from the available projection sets.  The noise 

in the projection data is modelled in the optimization routine 

as having two primary components: Poisson noise (based on 
photon counting statistics) and electronic noise.  The noise 

model was taken from Kak and Slaney’s derivation, which 

assumes a parallel ray model and a filtered backprojection 

reconstruction algorithm [9].    

 

Optimization was performed utilizing a simulated annealing 

algorithm which searches for a solution to the target image 
quality objective in an iterative way. This approach has been 

used previously in simulation studies of FFMCT and is 

discussed in detail elsewhere[6].  The main objective is to 

minimize a cost function, here defined as:  
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where WS and WD are regionally varying weights on the 

desired signal to noise ratio, SNR , and dose, D, 

respectively, subscript m denotes dependence on the selected 

modulation profile, subscripts 0 and n denote the initial and 

current iteration number respectively, and subscripts x,y 

denote the dependence of the variables on the spatial 
coordinates in the z=0, x,y plane.  The weighting terms can be 

set depending on task-specific priorities. In this study, WD  

was set to unity, and the weights in Ws were chosen to   boost 

the priority of a selected high SNR region. The target SNR   

values and corresponding priority weighting is shown in  

Figure 3.  Note that the first term in (2) requires updating the 

SNR values at each iteration of the optimization algorithm, 
which can be achieved by application of (1) using an a priori 

model of the object.  Here, the input model was derived from 

a reconstruction of the object using a 1 mAs/projection 

protocol.    

 

The optimization was constrained such that modulation of the 

incident fluence was restricted to 64 detector bins (where 

each bin represents 8 pixels in a row), and was further 

constrained to allow only one of 11 modulation factors.  The 

first constraint aids in reducing optimization time while 

maintaining sufficient resolution for achieving desired SNR 

patterns.  Although not meant to represent a particular 
collimator design, the number of bins also coincidentally 

corresponds to the number of intervals currently applied in 

tomotherapy where fluence profiles are similarly modulated 

for radiation therapy delivery.  The second constraint was due 

to the limited number of mAs settings permitted using pulsed 

radiographic mode on the control console.  

  
FIGURE 3: (a) prescribed SNR patter within water phantom (b) priority 

weighting applied to the specified SNR values within the optimization 

script.   Warm colours correspond to higher values.   
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FIGURE 2: Image of phantom used in the study with enlargement of 

spheres and teflon rod constituents, and with relative dimaters indicated.      
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SNR and dose outcomes predicted from the optimization 

algorithm were compared to that of a bowtie filter that would 

produce on average the same SNR values in the priority 

weighted SNR region of interest. The shape of the bowtie 

filter was designed to match that of the small cylinder rather 
than a standard bowtie filter that might be used for patients. 

The optimized fluence modulation profile was then used to 

dictate the generation of the FFMCT projection sets (as 

indicated above).  FFMCT reconstructions of the phantom 

were created using a 120 µm voxel size and compared to a 

reconstruction of the same slice reconstructed using a non-

modulated, 1 mAs/projection tube current setting.    

 

III.  RESULTS AND DISCUSSION 

The optimized fluence modulation profile is shown in Figure 

4 as a function of projection angle and detector bin.  The 

resulting SNR map for the FFMCT case is also compared to 
the case of a bowtie filter in Figure 5. Of the two regions 

specified for high SNR in the FFMCT case, the prioritized 

region achieved much better agreement with the objective 

than the low priority region.  However, increased SNR with 

respect to the surroundings is also evident to a more limited 

extent for the low priority region. Another observation is 

made that the contour changes in the high SNR target region 

were smoother than those specified in the target SNR 

prescription.    This result suggests a limitation in the target 

delineation capabilities of the system when attempting to 

meet prescribed SNR targets, particularly when there are 
‘kinks’or sharp changes in the plan, although reducing the 

constraints on the system could possibly achieve better results.  

Compared to the case of the bowtie filter,  FFMCT achieved 

results much closer to the target distribution, such that the 

region of high SNR was well localized to the priority region 

of interest. 

 

Figure 6 shows a ratio of the dose map using FFMCT to that 

of the bowtie filter.   Local dose decreases reached as high as 

60%, although some regions close to or within the region of 

the priority high SNR region experienced increases as much 

as 20% relative to the bowtie filter.  Overall, a decrease in the 

integral dose was on the order of 30% for this object. Figure 

7 shows a comparison of the reconstructions of the cylinder 

using synthesized FFMCT projections versus a reconstruction 

using an unmodulated beam.   The comparison shows better 
image quality within the localized region of interest for the 

FFMCT case, with reduced quality elsewhere.   

 

Advantages of the approach used for creating modulated 

projections in this study are that it allows for testing a 

modulation approach prior to construction of the modulator, 

and secondly that it allows for testing under idealized 

circumstances which can be treated as a benchmark for future 

studies; note that since no collimator was used, no correction 

was required for either beam hardening nor scatter 

contributions from the collimator which could be modelled 
separately.  

 

Limitations of this study were principally with inaccuracies 

with respect to the scatter effects from the object itself since 

(a) 

  
FIGURE 6: Ratio of dose map produced using FFMCT to that of the 

bowtie filter. Dose is decreased for the majority of the object using 

FFMCT except near the prescribed high SNR region.     
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FIGURE 5: Comparison of SNR maps predicted using FFMCT (left) 

versus that of the bowtie filter (right). FFMCT is superior in approaching 

the desired SNR distribution (see Figure 3).   

 

 

 

 

 

 

 

 

 

 
FIGURE 4: Ratio of dose map produced using FFMCT to that of the 

bowtie filter. Dose is decreased for the majority of the object using 

FFMCT except near the prescribed high SNR region.     
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the modulated projections were synthesized from a series of 

individual projections rather than using an actual modulator. 

Typically, one would expect that reduction of fluence outside 

some region of interest would reduce the scatter-to-primary 

ratio within that region, which could not be observed when 
synthesizing FFMCT projections in the manner indicated. 

However, this issue was circumvented by utilizing a small 

cylinder, and collimating to the central plane, which is 

expected to have greatly reduce scatter contribution. Potential 

artifacts due to abrupt scatter to primary ratio changes in the 

field of view [10] were also avoided using this technique. The 

small cylinder also permitted the simplification of using a 

parallel beam model for noise propagation.  Larger objects 

would require a more accurate fan-beam noise propagation 

model, such as the one derived by Zhu et al.[11] for modeling 

variance maps in the optimization routine.   
 

 

 

IV.  CONCLUSION 

 

The outcomes of this study suggest that FFMCT could 

potentially be applied with success in real clinical CT 

systems, provided that a suitable method for modulation be 

found.  Dose outcomes show superior management of dose 
for achieving local high SNR performance in the presence of 

both high and low contrast materials.   
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(a) 

 
 

FIGURE 7:  (a) Reconstruction of cylindrical phantom at setting of 1 

mAs/projection. (b) Reconstruction using modulated projections ranging 

from 0.4 – 4 mAs.  The prescribed SNR distribution is shown in colour in 

the bottom right corner for comparison.   
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Evaluation of a Tight Frame Reconstruction
Algorithm for Perfusion C-arm CT Usinga

Realistic Dynamic Brain Phantom
Michael Manhart∗†, Andreas Fieselmann∗† and Yu Deuerling-Zheng†

Abstract—This work introduces and evaluates an iterative,
compressed sensing (CS) reconstruction algorithm based on tight
frame regularization for perfusion C-arm CT with a high C-arm
rotation speed acquisition protocol. To allow a realistic evaluation,
a digital 4D brain phantom was created by extending a recently
published phantom emulating time attenuation curves (TACs)
inside a virtual brain segmented from clinical MR data. We
additionally incorporated MR data to vary perfusion parameters
all over the brain to avoid unrealistic homogeneous structures
favoring CS algorithms. The iterative algorithm is compared to
the Feldkamp algorithm by evaluating the root mean square
error of the reconstructed TACs and Pearson correlation of
the reconstructed perfusion maps to the ground truth. The
results indicate that the tight frame algorithm qualitatively and
quantitatively improves reconstructed perfusion maps compared
to the Feldkamp algorithm.

I. I NTRODUCTION

Perfusion CT (PCT) is an important imaging modality for
diagnosis in case of an ischemic stroke event. Time attenuation
curves (TACs) in tissue and vessels are extracted from a
time series of brain volumes acquired after a contrast bolus
injection. Perfusion parameter maps calculated from TACs,
such as cerebral blood flow (CBF), cerebral blood volume
(CBV), and mean transit time (MTT), provide information
about the extent of the affected tissue. They can be used to
identify potentially salvageable ischemic tissue that could be
reperfused by catheter-guided stroke therapy procedures such
as intra-arterial thrombolysis. For this purpose the patient is
transported to an interventional suite with C-arm angiography
systems, where perfusion measurement is not yet available.
Perfusion measurement using C-arm systems would allow
assessing the perfusion parameters directly before and dur-
ing the interventional procedure and help to determine the
treatment success and endpoint. Yet the low rotation speed of
common C-arm systems, which typically need∼ 5 s to acquire
one volume, makes perfusion C-arm CT (PCCT) challenging.
Future C-arm systems with an increased rotation speed of up to
100◦/s (Artis zeego, Siemens AG, Forchheim, Germany) will
enable protocols with reduced acquisition time. In this study a
potential protocol with fast C-arm rotation speed is simulated.
The protocol consists of two acquisition sequences: the first
sequence acquires one sweep in forward and one in back-
ward rotation direction before bolus injection to reconstruct

∗Pattern Recognition Lab, FAU Erlangen-Nürnberg, Germany
†Siemens AG, Angiography & Interventional X-Ray Systems, Forchheim,

Germany
Email: michael.manhart@cs.fau.de

baseline volumes with static anatomical structures. The second
sequence acquires seven consecutive sweeps with alternating
forward and backward rotation direction after bolus injection.
Each sweep acquires 133 projections in a 200◦ angular range
and requiresTr = 2.8 s for data acquisition with a pause
of Tw = 1.2 s between sweeps. Thus TACs can be sampled
with a temporal resolution ofTs = Tr + Tw = 4 s. However,
using the well-known FDK algorithm [1] for reconstruction of
the acquired volumes, the limited number of 133 projections
leads to streak artifacts. Furthermore, the peaks of the tissue
TACs typically lie in a range of∼ 5 – 10 HU, thus perfusion
imaging is very sensitive to noise. An important challenge
is to find algorithms capable of reliably reconstructing tissue
TACs at a higher noise level to limit the radiation exposure to
the patient. Recently, new iterative reconstruction techniques
have been proposed with a promising application to these
challenges: exploiting the idea of CS that the volumes have a
sparse representation under a certain transformation. A well-
known example for such a transformation is the total variation
(TV) norm which is applied by the ASD-POCS [2] and iTV
[3] algorithms. In the context of perfusion imaging the TV
norm was proposed in combination with a prior image in
the PICCS [4], and additionally with a non-convex extension
of the TV norm in the NCPICCS algorithm [5]. Another
example for a transformation is the tight frame (TF) wavelet
based approach presented in [6]. Also special model-based
iterative [7] and analytical [8] algorithms have been proposed
for reconstruction of dynamic projection data from slowly
rotating acquisition systems by using temporal basis functions
to approximate the TACs. The scope of this work is the
realistic evaluation of an iterative algorithm using a modified
version of the TF regularization suggested by Jia et al. [6] with
an extension of the realistic digital brain perfusion phantom
by Riordan et al. [9]. As discussed in [6] the TF approach
has been found to have higher computational efficiency and
maintains image contrast better than TV minimization, which
are important features in interventional perfusion imaging. The
brain phantom data and tools are published online to improve
the reproducibility of this and future studies [10].

II. M ATERIALS AND METHODS

A. Reconstruction Algorithms

1) TF Shrink: The iterative CS algorithm applies the GPU-
based Algebraic Reconstruction Technique with Ordered Sub-
sets (OS-ART) presented in [11] to ensure data consistency
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between the measured projection datap and the reconstructed
volumef(x) : N3 → R with respect to the acquisition system
matrixA. The projections are partitioned into 10 disjoint sets,
the relaxation factor is initialized withβ = 0.8 and reduced
by multiplication with βr = 0.95 after each iteration. After
processing one subset of projections, all negative values inf

are set to zero to obtain a physically correct solution. To reduce
noise the wavelet based tight frame regularization proposed
by Jia et al. [6] is used. The volumef is decomposed into
27 wavelet coefficientsαi(x) = Ψi(x) ⊗ f(x), i = 0...26 by
convolving the volume with the discrete version of a redun-
dant, piecewise linear 3D TF basis [12] consisting of a low-
pass filterΨ0(x) and high-pass filtersΨi(x), i = 1...26. For
simplifying notation, we denote this decomposition byα(x) =
Df(x). Then a vector-shrinkage operation is applied to the
coefficients, where thel2 norm of the high-pass coefficients

τh(x) =
√

∑

26

i=1
αi(x)2 determines whether thehigh-pass

coefficients are kept or discarded. The shrinkage parameter
µ controls the level of suppressing the high-pass coefficients.
In practice the regularization has shown to smoothen out the
high contrast vessels, which can lead to underestimation of
the contrast attenuation inside the vessels and blurring of
the vessel into the encircling tissue. Thus, the shrinkage step
is modified by excluding voxels containing vessel structures
from the regularization. A vessel maskV (x) : N3 → {0, 1}
was created by simple thresholding a baseline subtracted FDK
reconstruction of a sweep with high contrast attenuation. The
vector-shrinkage operatorT V

µ is then defined as:

T V
µ αi(x) =







αi(x) i = 0 or V (x) = 1,

αi(x)max
[

τh(x)−µ

τh(x)
, 0
]

otherwise.
(1)

After the shrinkage step the volume is recomposed from the
new coefficientsf(x) =

∑

26

i=0
Ψi(−x)αi(x), for simplicity

denoted byf(x) = DTα(x). The iterations stop when data
consistency has not improved after one full iteration.

Algorithm 1 TF Shrink

1) Initialize: f0 = 0, ǫ0 = ||Af0 − p||2, k = 0
2) Do
3) foutput = fk, k = k + 1
4) fk = OS-ART(fk−1) (3 Iterations)
5) Shrinkage:fk = DTT V

µ Dfk

6) ǫk = ||Afk − p||2
7) While (ǫk < ǫk−1)

2) FDK: The iterative algorithm is compared to standard
FDK reconstruction with Parkershort-scan weights [13]. The
filtering step uses a Shepp-Logan filter kernel multiplied with
a Gaussian of varianceσ2 controlling smoothness and noise
level in the reconstructed volumes.

B. Realistic Dynamic Brain Phantom

Classical digital CT phantoms usually consist of homoge-
neous structures and have a very sparse representation in TV or

wavelet transformation. This highly favors CS reconstruction
algorithms, which exploit sparse representations. Thus, simple
extensions to 4D dynamic phantoms do not allow for an
authentic evaluation. We adopted the dynamic head phantom
from [9], which was originally used for evaluation of perfu-
sion parameter calculation methods, to create an appropriate
phantom for evaluating the reconstruction algorithms. Simi-
larly to what is proposed in [9], we segmented brain MRI
scans from a human volunteer into white and gray matter,
cerebrospinal fluid (CSF), and arteries. White/gray matter and
CSF segmentation was done from T1 weighted MRI data using
the Freesurfer software [14]. Arteries were segmented from
a time-of-flight acquisition by thresholding and manual post-
processing. The segmentations were combined into a volume
consisting of 150 slices with 256x256 voxels of isotropic size
1 mm3. Inside the volume two different tissue classes were
annotated using ellipsoid ROIs: tissue with reduced CBF (2
ROIs, altogether 13197 mm3) and tissue with severely reduced
CBF and CBV (2 ROIs, altogether 5761 mm3). Furthermore,
a ROI of healthy tissue (87949 mm3) around the stroke
affected areas was annotated for evaluation purposes. Figure
1a shows an example of an annotated brain slice. Tissue
that was not annotated was simulated like healthy tissue.
Different perfusion parameters were assigned to the annotated
ROIs as shown in Table I. To further reduce the sparsity
of the brain phantom, the MR data was used to vary the
perfusion parameters. The parameters were varied according
to the intervals shown in Table I. Details of this variation are
provided at the phantom web page [10]. The tissue TACs were
created as described in [9] by convolution of a real measured
arterial input function (AIF) from clinical PCT with a residual
function with exponential decay. For vessel structures the
TACs were simulated by the real measured AIF. To incorporate
the anatomic tissue structures into the phantom, appropriate
constant HU values were added to the TACs like in [9].
Also, the HU values of the anatomic structures were varied
using the MR data to reduce sparsity. Finally the dynamic
C-arm projection data was created by forward projecting the
4D phantom according to the high C-arm rotation speed
acquisition protocol. Poisson-distributed noise was added to
the projections assuming an emitted X-ray density of2.1 ·106

photons per mm2 at the source-to-detector distance as in [7].

C. Perfusion Parameter Calculation and Comparison

To compute perfusion parameters from the reconstructed
data, the baseline volumes were subtracted from the dynamic
volumes to extract the contrast attenuation. Then the TACs
were created from the subtracted volumes. Each volume repre-
sents TAC samples at the mid time point of its acquisition. By
linear interpolation the TACs were resampled to 1 s temporal
resolution. A TAC inside the internal carotid artery was
selected as AIF and the perfusion parameters were calculated
using a deconvolution approach based on indicator-dilution
theory [15]. For quantitative comparison of the reconstruction
algorithms the root mean square error (RMSE) over time
between the reconstructed and the ground truth time curves
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of the AIF and inside the annotated tissue was computed. To
compare the resulting perfusion maps thePearson correlation
(PC) between maps created from the reconstructed TACs and
maps created from the ground truth TACs was computed. Two
types of PC have been calculated: the first PC value takes
only the annotated tissue into account. It is focused on the
regions inside and close to the stroke affected tissue, stating
how well it is separated from the healthy tissue. The second
value represents all values of the stroke affected slices. This
PC value incorporates the higher blurring of vessels in the
perfusion maps of smoother reconstructions.

III. R ESULTS

Figure 1 shows the resulting CBF, CBV, and MTT perfusion
maps from FDK reconstruction withσ = 1.25 mm, TF Shrink
reconstruction withµ = 0.0001, and the reference images
for comparison. Table II shows the quantitative results for
different parameters, where the best result for each measure is
shown in bold. The reconstructions were performed on a laptop
computer with an Intel i7 M 620 2 x 2.7 GHz CPU, 8 GB
RAM and an Nvidia Quadro FX 880M graphic chipset. The
GPU-based implementation required∼ 50 s for one complete
TF Shrink iteration, the complete reconstruction of 9 volumes
of size 256x256x180 varied between∼ 30 – 75 min depending
on the shrinkage parameterµ. Complete reconstruction with
FDK took ∼ 1.5 min.

IV. D ISCUSSION

The perfusion maps in Figure 1 show that the maps created
from the TF Shrink reconstructions have a qualitatively good
correspondence with the reference maps for CBF and CBV.
Stroke affected areas are well separated from the healthy
regions. In the TF Shrink MTT map the areas with reduced
CBF are well visible. However, the areas with severely reduced
CBF/CBV are not visible. Since MTT= CBV

CBF and both CBV
and CBF valuesare very low in these regions, it is very
challenging to estimate under noisy conditions. In the maps
generated from the FDK reconstructions the affected regions
are still visible in the CBF and CBV map but not as well
separated from the healthy tissue as in the TF Shrink maps.
The FDK MTT map does not allow for a reliable location of
the stroke affected areas. This corresponds to the quantitative
results in Table II. The TF Shrink algorithm has the best PC
for most maps withµ = 10−4, e.g. the PC of the CBF map
can be increased from 0.79 for the best FDK reconstruction
to 0.86. The results also show the advantage of excluding the
vessels from regularization, which reduces blurring of vessels
and underestimation of contrast attenuation values in vessels.
The RMSE of the AIF estimation is improved from 155 HU
to 86 HU forµ = 5 · 10−4.

V. CONCLUSIONS

This work shows that iterative reconstruction with tight
frame regularization has significant potential to improve per-
fusion C-arm CT with a fast acquisition protocol. Qualitative
and quantitative comparisons of the reconstructed perfusion

maps were done using a realistic brain phantom that avoids the
sparse structure of classical CT phantoms. Visual impression
and correlation of the reconstructed maps to the ground truth
is significantly improved compared to the FDK reconstruction
results. However, computation time is increased compared
to FDK reconstruction, which is critical in interventional
applications. Nevertheless, further code optimization and the
rapid development of hardware will likely make this approach
clinically applicable in the foreseeable future.
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(a) Annotation (b) Reference CBF (c) Reference CBV (d) Reference MTT

(e) TF Shrink CBF (f) TF Shrink CBV (g) TF Shrink MTT

(h) FDK CBF (i) FDK CBV (j) FDK MTT

Fig. 1. Perfusion maps (Annotationlegend: yellow: reduced CBF area, red: reduced CBF/CBV area, blue: healthy tissue area used for evaluation).

Healthy Reduced CBF Reduced CBF/CBV
WM GM WM GM WM GM

CBF [ml/100 ml/min] 25± 14 53± 14 7.5± 4.25 16± 4.25 2.5± 1.4 5.3± 1.4

CBV [ml/100 ml] 1.9± 0.9 3.3± 0.4 1.7± 0.9 3± 0.7 0.42± 0.2 0.71± 0.12

MTT [s] 4.6± 0.7 3.7± 0.7 14± 0.75 11± 0.75 10± 1 8± 1

TABLE I
PERFUSION PARAMETERS(WM = WHITE MATTER, GM = GRAY MATTER).

Algorithm FDK Tight Frame Regularization w.o. vessel mask

Parameter σ = 0.5 0.75 1.0 1.25 1.5 µ = 5 · 10−5
1 · 10−4

5 · 10−4
5 · 10−4

RMSE Tissue [HU] 7.26 4.27 3.08 2.54 2.29 2.52 2.21 2.15 2.20

RMSE AIF [HU] 78 119 156 184 204 53 58 86 155

PC CBF (annotated tissue) 0.68 0.75 0.78 0.79 0.78 0.84 0.86 0.84 0.80

PC CBV (annotated tissue) 0.54 0.62 0.68 0.71 0.72 0.77 0.79 0.77 0.76

PC MTT (annotated tissue) 0.35 0.47 0.58 0.66 0.73 0.81 0.81 0.80 0.80

PC CBF (complete tissue) 0.65 0.69 0.68 0.64 0.61 0.73 0.76 0.71 0.64

PC CBV (complete tissue) 0.52 0.59 0.62 0.61 0.59 0.67 0.72 0.69 0.64

PC MTT (complete tissue) 0.32 0.43 0.55 0.64 0.71 0.70 0.75 0.78 0.78

Iterations/Volume N/A N/A N/A N/A N/A 4 6 10 4

TABLE II
QUANTI TATIVE RESULTS.
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Phase–Correlated Perfusion Imaging of

Free–Breathing Rodents
Stefan Sawall, Jan Kuntz, Michaela Socher, Sönke Bartling, Michael Knaup, and Marc Kachelrieß

Abstract—Mouse models of cardiac diseases have proven to
be a valuable tool in preclinical research. The high cardiac and
respiratory rates of free breathing mice prohibit conventional
in–vivo cardiac perfusion studies even if gating methods are
applied. This makes a sacrification of the animals unavoidable
and only allows for the application of ex vivo methods. To
overcome this issue we propose a low dose scan protocol and
an associated reconstruction algorithm that allows for in vivo
imaging of cardiac perfusion and associated processes that
are retrospectively synchronized to the respiratory and cardiac
motion of the animal. The scan protocol encompasses a repetitive
injection of contrast media within several consecutive scans while
the ECG, respiratory motion and timestamp of contrast injection
are recorded and synchronized to the acquired projections.
The iterative reconstruction algorithm employs a six-dimensional
edge-preserving filter to provide motion artifact-free images with
low noise of the animal examined using our low dose scan
protocol. The reconstructions obtained show that the complete
temporal bolus evolution can be visualized and quantified in
any desired combination of cardiac and respiratory phase in-
cluding reperfusion phases. The proposed reconstruction method
thereby keeps the administered radiation dose at a minimum
and thus reduces metabolic inference to the animal allowing
for longitudinal studies. Our low dose scan protocol and our
phase-correlated dynamic reconstruction algorithm allows for an
easy hence effective way to visualize phase-correlated perfusion
processes in free-breathing mice and in the laboratory routine.

I. INTRODUCTION

C
EREBRAL and cardiac perfusion studies are a common

tool in clinical practice. In case of small rodents, how-

ever, and in preclinical research in general perfusion imaging

is difficult due to the rapid heart rates (up to 600 beats

per minute) and respiratory rates (up to 300 respirations per

minute) as well as the consequent technical requirements, e.g.

the required detector framerate. By now, no phase–correlated

perfusion imaging of rodents is possible as this requires a

triple–phase correlation to visualize the flow of contrast media

in desired positions within the cardiac and respiratory cycle.

Any reconstruction would have to be correlated to three tem-

poral signals: respiratory, cardiac and perfusion. Unless not ac-

quired with very high dose the reconstructed phase–correlated

images show severe streak artifacts, image noise is very high
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and anatomical details vanish in the noise [1]. Several methods

have been proposed in the literature to provide perfusion data

of mice that are either not compatible with the Animal Use

and Care Protocols in several countries (e.g. due to the amount

of contrast media adminstered [2]) or are not able to provide

phase–correlated volumes [3], [4]. However to keep dose at a

reasonable level we propose a scan protocol including a novel

injection technique and a reconstruction method that allows

us to perform triple–phase correlated perfusion studies of free

breathing small animals and to significantly improve image

quality of the reconstructed volumes compared to standard

phase–correlated reconstructions.

II. MATERIALS AND METHODS

A. Animal Handling and Extrinsic Gating

The wildtype mice used in our studies are subcutaneously

administered with an analgetic (Metamizol, 200 mg/kg) prior

to all examinations. The animals are placed in a box of plexi-

glas and anesthesia is delivered via inhalation of Isoflurane

(2 %+O2). As soon as the required depth of anesthesia is

reached the mice are placed on the acquisition table where

a constant delivery of Isoflurane is ensured using a breathing

mask. Contrast media is conventionally delivered via the tail

vein. Previous studies however revealed that the injection of

highly viscous, iodinated contrast media results in a retrograde

blood flow from the inferior caval vein to the liver veins

near the diaphragm and thus the delivery to the heart is not

sufficient for imaging [5]. To overcome this issue we use a

retro–bulbar injection technique. A needle is placed in retro–

bulbar position to deliver the contrast agent (Ultravist 300,

Bayer Schering Pharma, Berlin, Germany). Contrast media

injected to the retro–bulbar sinus is delivered to the heart

from the superficial temporal vein, the inferior palpebral vein

and the ocular angle vein to the external jugular vein merging

to the subclavian vein and superior caval vein [6]. Note that

also other possible injection routes exist in rodents, e.g. by

direct injection into the jugular vein. However, we did not

make use of these alternatives. The needle is connected to a

custom–made, high–precision injector that is controlled using

MatLab (Mathworks, Natick, USA). To lower the viscosity

of the contrast media from 8.7 mPa·s to 4.6 mPa·s, to prevent

thermal shock and to ease injection the syringe is heated in a

water bath to the body temperature of the mouse (about 37◦C).

Note that all animal studies were approved by the ethical

committee at the German Cancer Research Center (DKFZ),

Heidelberg, Germany.

The extrinsic respiratory signal is derived using a pressure

sensor beneath the mouse and the ECG is derived using small
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animal electrodes attached to the paws. These signals are

recorded using a dedicated small animal monitoring system

(Small Animal Instruments, Stony Brook, USA). Furthermore

the timepoint of contrast media injection is recorded. This

allows for a retrospective synchronization of all three gating

signals with the acquired projection images. To acquire all data

necessary for image reconstruction ten consecutive scans and

hence ten consecutive injections of boli with a size of about

25µL are performed similar to reference [3].

B. Measurements

Several perfusion imaging studies have been performed at

the DKFZ. The results of one mouse shall be presented in more

detail here. The datasets were acquired using a volume CT

(VCT) prototype (Siemens Healthcare, Forchheim, Germany)

consisting of a standard slip–ring CT gantry equipped with a

flat detector. This flat detector with its CsI scintillator provides

a matrix of 2048×1536 pixels, each of size 0.388µm allowing

for a theoretical spatial resolution in the center of rotation

of 238µm. To increase the detector frame rate from 20 to

100 projections per second only an area fraction of 1024×192

pixels in the detector center is read out. The x–ray source

providing a focal spot size of about 570µm is mounted at

a distance of 570 mm from the isocenter and the flat–panel

is mounted at a distance of 360 mm from the isocenter. The

scans were conducted with a tube voltage of 80 kV and a

tube current of 50 mA. Each scan consists of 2000 projection

images acquired in a single gantry rotation over 20 s thus the

scanner rotates with a speed of 18 ◦/s.

The mean respiratory rate of the mouse was 190 rpm (respi-

rations per minute) and the mean heart rate was 350 bpm (beats

per minute). Using an integration time of 10 ms per projection

implies that about 16 projection images where acquired during

one cardiac cycle and similarily about 33 projections were

acquired within a single respiratory cycle. This implies that

the cardiac–temporal resolution is limited to about 7 % of

the cardiac cycle and the respiratory–temporal resolution is

limited to about 3 % of the respiratory cycle. However recent

works show that a cardiac window of ∆c = 20% and a

respiratory window of ∆r = 20% are sufficient to reconstruct

volumes without noticeable motion artifacts. The usage of

this phase window configuration with a perfusion window

width of ∆p = 5%, assuming 10 scans with 2000 projections

each, in turn implies that only about 40 projection images

are available for the reconstruction of a volume in a desired

cardiac, respiratory and perfusion phase.

C. Image Reconstruction

Our standard image reconstruction is the Feldkamp algo-

rithm which we denote with X
−1

Std and which results in the

standard image fStd = X
−1

Std
q based on the measured rawdata q

[7]. The standard Feldkamp algorithm is not phase–correlated.

We make use of it below to define the McKinnon–Bates

algorithm.

To perform phase–correlated image reconstruction we use

a phase–correlated Feldkamp algorithm X
−1

PC that filters and

backprojects only those projections that lie in the desired

temporal window. The temporal window itself is defined by

specifying the respiratory phase r, the cardiac phase c and

the perfusion phase p. All of these values are between 0

and 1 and count relative to one motion period in case of

cardiac and respiratory motion and relative to one scan in

case of perfusion, respectively, and by specifying the widths

∆r, ∆c and ∆p of these temporal windows. The respiratory,

cardiac and perfusion phase–correlated image is denoted as

fPC = X
−1

PC q.

Since only few projections fall into the desired temporal

window, streak artifacts may occur unless a very large number

of projections at very fine angular increments is acquired. The

McKinnon–Bates (MKB) algorithm can be used to address

this issue [8], [9]. It works as follows. First, a standard

reconstruction is performed to obtain a prior image. This prior

image is blurry in those regions where motion is present,

and it is of high image quality elsewhere. Then, a forward

projection of the prior image is performed and subtracted from

the measured rawdata. These subtracted data are then used for

a phase–correlated reconstruction which is added to the prior

image. Mathematically:

fMKB = fStd + X
−1

PC
(q̂ − XfStd) (1)

Due to the several injections contrast media is accumulated

in the participating tissue and thus the rawdata are not consis-

tent between different scans. To compensate for the contrast

media take–off we preprocess the rawdata q as follows to

obtain q̂:

q̂ = q − X

(

BX
−1

PCq0 − BX
−1

PCqn

)

(2)

Therein q0 are the rawdata obtained from the first scan and

qn are the rawdata obtained in scan n. X
−1

PC denotes a phase–

correlated reconstruction that neglects the perfusion phase and

only recognizes the cardiac and respiratory phases. B is a

bilateral filter operator used to reduce noise and to suppress

streak artifacts [10]. In case of the preprocessing step the

filter is applied in five dimensions (three spatial dimensions,

two temporal dimensions: cardiac and respiratory). In case of

the final MKB images the filter is applied in six dimensions

(three spatial dimensions, three temporal dimensions: cardiac,

respiratory and perfusion). To define the bilateral filter let us

restrict to one dimension, for convenience. The filtering of a

function f(x) is then defined as

Bf(x) =

∫

dtD(x, t)R(x, t)f(t)
∫

dtD(x, t)R(x, t)
(3)

with

D(x, t) = exp

(

−

(

x− t

σx

)2
)

(4)

R(x, t) = exp

(

−

(

f(x)− f(t)

σf

)2
)

(5)

being the domain and the range filter, respectively. The pa-

rameters σx and σf are the widths of the Gaussian domain

and range filters, respectively. Note that other shapes of range
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Fig. 1. Phase–correlated digital subtraction angiography.

Fig. 2. Coronal slices of a mouse perfusion series. c = 0%, ∆c = 20%, r = 0%, ∆r = 20%, ∆p = 5% and step size δp = 2.5% in perfusion direction.
The red arrow marks a part of the lung that is contrast–enhanced once the contrast agent passes the pulmonary circulation. (C/W=1300/1200 HU)

and domain filters may be used as well. In this study, however,

we restricted ourselves to considering Gaussian–shaped filters.

Since respiratory, cardiac and perfusion gating yields six–

dimensional volumes f(x, y, z, r, c, p) we can apply bilateral

filtering in up to six dimensions. The corresponding domain

filter parameters are denoted as σx, σy , σz , σr, σc and σp,

respectively.

III. RESULTS

A. Digital Subtraction Angiography

Before any tomographic projections are acquired a phase–

correlated digital subtraction angiography in anterior–posterior

direction is performed to validate the correct placement of the

needle. Similar to the tomographic scans ECG and respiratory

signals are recorded during image acquisition. The DSA scan

comprises 2000 projections within 20 s at a tube voltage

of 80 kV and a tube current of 50 mA. The contrast bolus

injection is started 10 s after the scan start ensuring that a

sufficient amount of cardiac and respiratory phases have been

acquired for a phase–correlated subtraction. The DSA images

are obtained by subtracting a projection image acquired post

injection from an appropriate projection image acquired before

contrast injection within the same cardiac and respiratory

phase. Such a digital subtraction angiography is shown in

figure 1. The contrast agent in form of a bolus with a volume of

about 25µL is injected into the retro–bulbar sinus and arrives
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Fig. 3. Time–density curve in the left ventricle over 14 s.

in the right ventricle after about 1 s. The contrast media is

further transported into the pulmonary circulation resulting in

a contrast enhancement of the lung. The arrival of the contrast

media in the left ventricle can be noted about 2 s post injection.

After 3 s a contrast enhancement of the aortic arc and the aorta

is clearly visible.

B. Reconstructions

Figure 2 shows coronal slices of a reconstructed perfusion

scan using a cardiac window of ∆c = 20%, a respiratory

window of ∆r = 20% and a perfusion window of ∆p = 5%.

Volumes were reconstructed in all temporal directions using

step sizes of ∆c/2, ∆r/2 and ∆p/2, respectively, to further

limit the influence of the finite temporal resolution. The

figure shows a perfusion series starting at p = 0%, ending

at p = 27.5%. The flow of the contrast agent is clearly

visible from the figure. The contrast media arrives in the right

ventricle, is transported to the respiratory circulation (note the

enhancement of lung tissue during this process – red arrow)

and arrives in the left ventricle.

Image noise was measured in the difference images between

to adjacent slices in z–direction to provide a fair comparison

and to limit the influcence of artifacts. The noise evaluation

showed that image noise is no greater than 70HU in any of

the reconstructed volumes.

Figure 3 shows the grey values in an ROI placed in the

left ventricle. The first pass enhancement due to the contrast

agent bolus appears after about 2 seconds and provides an

enhancement of about 700HU. Further reperfusion peaks can

be found after 5 s, 8 s and 11 s.

IV. CONCLUSION AND DISCUSSION

The proposed scan and injection protocol in combination

with the proposed reconstruction method allows for the recon-

struction of phase–correlated volumes in any desired cardiac,

respiratory and perfusion phase. The resulting images show no

obvious streaking artifacts and image noise is at a reasonable

level to easily allow for the identification of anatomical

structures. The used contrast media administration technique

is further minimal invasive allowing for a full recovery of the

animals under examination and thus for longitudinbal studies.

This boosts preclinical research as for the first time an easy

and practical way of performing perfusion studies using small

rodents was proposed.
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Abstract—On-board 4D cone-beam computed tomography 

(CBCT) is being actively pursued to help guide radiotherapy 

treatments of lung tumors. Among the existing 4D-CBCT 

methods, the McKinnon-Bates (MKB) reconstruction algorithm 

has the advantage of being computationally efficient and not 

requiring additional scan time much beyond a typical 1 minute 

3D acquisition. The resulting images, however, can suffer from 

temporal hysteresis and ghosting artifacts that hinder tumor 

delineation and determination of motion trajectories. This work 

describes how the MKB algorithm can be improved by 

destreaking the prior image thus reducing ghosting artifacts and 

improving lung tumor conspicuity. 

 
Index Terms—Computed tomography, Cone-beam, Dynamic 

imaging, Reconstruction algorithms  

 

I. INTRODUCTION 

S the precision of delivering a high intensity radiotherapy 

dose to a local target increases, the need for “on-board” 

imaging techniques to accurately localize the target also 

increases.  This particularly applies to cases where intra- and 

inter-faction motion is significant, as for thoracic treatments. 

On-board 4D-CBCT has the potential to appreciably 

improve motion management during radiotherapy treatment of 

lung tumors. 4D-CBCT can be used to determine a tumor’s 

“trajectory-of-the-day” that, when correlated with an external 

surrogate, enables real time beam gating or multi-leaf 

collimator (MLC) tracking to be performed. This may allow 

for a reduction of treatment margins thus reducing normal 

tissue toxicities. 

CBCT acquisition times in a radiotherapy environment are 

typically on the order of 1 minute due to slow gantry rotation 

times and flat panel detector readout limitations. This creates a 

challenge for lung tumor imaging where sub-second temporal 

resolution is required to resolve respiratory-induced motion. 

A workaround is to assume that respiratory-related motion 

is periodic, and to sort and group the projections according to 

their respective phases in the respiratory cycle. Each 

projection group is reconstructed separately and the resulting 

images are combined to form a 4-D image. However, since 

only a limited number of breathing cycles occur in a typical 
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acquisition, sparse angular sampling patterns are created, 

which cause severe streaking artifacts in the final 

reconstructions. One means of reducing these view aliasing 

artifacts is to further decrease the gantry rotation speed 

thereby increasing the total number of breathing cycles in a 

scan [1] which, unfortunately, increases scan times and 

radiation dose. Recently, it has been shown [2, 3] that the 

computationally efficient McKinnon-Bates algorithm (MKB) 

[4] has the potential to significantly reduce view aliasing 

artifacts for 1-minute acquisition times, but that temporal 

resolution can be compromised. In this work, an inherent 

shortcoming in the original MKB algorithm is identified and a 

solution to overcome this limitation and restore temporal 

resolution is proposed. 

II. METHOD 

The original MKB algorithm is outlined in Figure 1. A 

time-averaged prior image is first reconstructed, from which 

reprojections are computed at the same angles as the original 

projections. Differences are taken between the original 

projections and the reprojections, and a difference image is 

reconstructed for each motion phase bin. Each difference 

image is then added to the time-averaged prior image to create 

each phase image. 

 
 

Fig 1. The Mckinnon-Bates (MKB) 4D reconstruction algorithm. A motion-

blurred prior image is reconstructed with the FDK algorithm using all 

projections belonging to all respiratory phases. The prior is then forward-

projected and the resulting projections are subtracted from the original 

projections to create motion-enhanced difference projections. These 

projections are convolved and backprojected to create difference images (one 

for each respiratory phase), which are then added to the prior image to create 

the final streak-reduced phase-correlated images. 
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Figure 2 shows simulation results from a digital lung 

phantom [2] containing an object moving horizontally. As 

shown in Fig. 2c, a single-phase image reconstructed by the 

original MKB algorithm exhibits ghosting near the moving 

object. This ghosting results because a key assumption in the 

algorithm is not fulfilled, which is that the prior image is a 

time-averaged representation of all phases. As shown in Fig 

2b, the FDK-reconstructed prior contains streaks caused by 

motion-induced inconsistencies. These streaks, which after 

being forward-projected, encode unwanted motion-related 

information into the re-projections are the cause of the 

undesired ghosting artifacts. When a streak-free prior (Fig 2d) 

is used, ghosting is eliminated and the moving object is well 

defined (Fig 2e). 

 
 

 

 
Fig. 2. a) Digital motion phantom. b) Reconstructed prior showing streaks 

emanating from the moving object (an example is shown by the arrow). c) A 

single phase of the MKB reconstruction showing ghosting (indicated by the 

arrow). d) Ideal time-averaged prior with no motion streaks. e) MKB 

reconstruction of a single-phase image based on the streak-free ideal prior 

showing no ghosting. f) MKB single-phase image based on the destreaked 

prior using the proposed algorithm. 

 

These results suggest that the key to improving the MKB 

algorithm is to remove motion-induced streaks from the prior 

image. Our proposed prior destreaking method is based on a 

combination of segmentation and boundary erosion 

operations, and is designed to make the prior more uniform 

while minimizing discontinuities.  

A. Prior image de-streaking 

The destreaking method we propose, named threshold 

erosion, is outlined below: 

1) Select a set of CT number (HU) thresholds that best 

separate key target segments - air, lung, soft tissue, and 

bone. 

2) Apply the thresholds and segment the corresponding 

structures accordingly.  

3) For each structure, erode its boundary by and amount 

ranging from 2-5 mm. 

4) Replace the un-eroded pixels in each structure with the 

mean HU value of the structure. This fills the inner region 

of each segment with a constant value, thus removing the 

streaks. The erosion and replacement operation creates a 

transition zone between neighboring segments. By 

preserving the original intensity values at these tissue 

boundaries, discontinuities that introduce streaking in the 

difference images are prevented. 

 

The threshold plus erosion process is graphically illustrated 

in Fig. 3. 

 

 
Fig. 3. Destreaking method. a) original prior; b) segmentation into bone, air, 

lung tissue, muscle/fat; c) boundary erosion (example shown by arrow). 

 

We choose HU-based thresholds to segment key tissue 

types since the mean intensities of air, lung, soft tissue, and 

bone differ significantly. For a well calibrated system with 

stable performance, air has an intensity of -1000 HU, 

 lung values are in the range of -750 to -650 HU, other soft 

tissue values (fat, muscle etc) range between -150 to 100HU, 

and bone values are generally above 700 HU. Thresholds 

could thus be simply set to -800 HU, -300 HU and 300 HU, 

for example, to safely separate one tissue type from another. 

However, due to the existence of image artifacts from motion 

and other sources, as well as patient-to-patient variations in 

anatomy, we have found it impractical to use the same 

thresholds for all cases. It is thus desired to determine optimal 

thresholds for the 3D prior image in a robust fashion. Here we 

describe an efficient automatic thresholding algorithm. 

B. Adaptive thresholding 

One of the methods commonly used for automatic 

thresholding is the k-means algorithm [5], which is well suited 

to problems that have a fixed number of segments or classes. 

In our case, there are four segments - air, lung, soft tissue, and 

bone, and three thresholds separating these four classes. 

The k-means algorithm makes an initial guess as to the 

thresholds and evolves them iteratively until convergence is 

reached: 

 

k-means algorithm: 

1)  Initialize thresholds to default values 

2)  Segment the image. 

3)  Calculate the mean of each segment. 

4)  Set the new thresholds so that they are halfway between 

the mean values of adjacent classes. 

5)  Check for convergence.  

6)  If convergence has not been achieved, then repeat steps 

2-5. 

 

There are several important considerations in the 

segmentation process that are unique to thoracic CBCT 

applications. First, of the four segments, bone occupies only a 

a b c 

d e f 

a b c 
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small fraction of the total voxels in typical lung scan. Thus, its 

presence in the intensity histogram may be too small to 

provide an accurate measure of its mean value. As a result, we 

set the soft tissue-to-bone threshold to be a fixed offset 

relative to the mean soft-tissue intensity.  

We have also observed that the air-lung threshold should be 

set closer to the air intensity value than the lung intensity 

value to ensure that, after thresholding, the lung voxels do not 

contain abnormal amounts of “air” (-1000HU). In this way, 

the destreaked lung is more uniform, reducing noise in the 

individual phase images. 

For computational efficiency and for purposes of simplicity, 

we apply the algorithm only to the central slice of the volume. 

In addition, because the prior image can be larger than the 

scanned field-of-view, particularly after de-truncation 

operations are performed, only the central region of the central 

slice is used.  

Considering all the above points, the entire auto-

thresholding procedure is described as follows: 

1) Extract the central slice of the prior image volume  

2) Mark a central ROI with a diameter of 44 cm. Mask out 

everything outside the ROI. 

3) Apply the modified k-means algorithm with k=4 to the 

data in the ROI as follows: 

a. Initialize the thresholds based on standard tissue 

intensity values. 

b. Calculate the means for air, lung, soft-tissue, and 

bone. 

c. Set the new thresholds midway between each of 

the adjacent mean pairs. 

d. Adjust the soft tissue-to-bone threshold to be 

equal to the soft tissue mean + 300 HU. 

e. Check for convergence. If the difference between 

the thresholds from this and the previous iteration 

is within 1 HU, assume that convergence is 

reached. If not, go to step b. 

4) Reset the air-to-lung threshold so that it is not halfway 

between the lung and air values, but 3 times further from 

the lung mean than the air mean, i.e. to a value equal to 

0.75 mean(air) + 0.25 mean(lung) 

 

Note the algorithm can be applied to more than one slice or 

a significant portion of the volume. 

C. Experimental study 

The prior destreaking method was tested on simulated data 

and in vivo data sets from lung tumor patients imaged with 

either the Varian OBI or Varian TrueBeam systems. The in 

vivo scans were acquired using the offset-detector geometry 

where the detector is laterally offset by 16cm to increase the 

FOV. Approximately 660 projections were taken over 360 

degrees with a 1-minute rotation time.  After reconstruction, 

assessments of the sharpness of the moving objects and 

accuracy of motion were made, and comparisons were 

performed between the original MKB algorithm, the improved 

MKB algorithm, and the standard phase-correlated (PC) 

reconstruction approach. 

 

III. RESULTS  

  Application of prior destreaking produced substantially 

improved images compared with those from the original MKB 

algorithm and from the traditional phase-correlated algorithm. 

The digital phantom results in Fig. 2 show that ghosting from 

the moving sphere is removed after application of the 

proposed modification (Fig 2f).  

Typical results from a patient scan are shown in Figure 4. 

Without prior destreaking, there is almost no change in 

diaphragm position between the inhale and exhale phases (Fig 

4a). With prior destreaking, diaphragm motion is well 

resolved and measured at +/-7mm and +/-6mm for the left and 

right sides respectively (Fig 4b). These displacement values 

match those seen in the standard phase-correlated (PC) 

reconstructions (Fig 4c). However, unlike in the PC 

reconstruction, the improved MKB reconstruction has 

sufficient SNR to visualize the tumors (arrows).  

 

 

 
Fig. 4. a) Traditional MKB reconstruction without prior destreaking shows 

little difference in the diaphragm position between the inhale (left column) 

and exhale phases (right column) b) After prior destreaking, diaphragm 

motion is evident. Motion is measured at +/-7mm and +/-6mm for the left and 

right sides, respectively. c) Standard phase-correlated (PC) reconstruction 

verifies the diaphragm motion amplitudes measured in b), but are too noisy to 

visualize the tumors (arrows). 

 

The ability to adaptively adjust the thresholds for a given 

data set makes the destreaking technique more robust to HU 

inconsistencies which can result from, for example, data 

truncation, object scatter, or system miscalibration. To 

investigate the robustness of the algorithm, we applied a 20% 

HU scaling error and a 500 HU offset to one of the in vivo 

data sets. As shown in Figure 5, the auto-thresholding 

algorithm yields virtually the same destreaked image quality 

in the miscalibrated images as in the calibrated images, 

demonstrating that, although the algorithm is based on a 

global thresholding approach, HU inaccuracies and errors in 

the prior image are well-tolerated. 

a) 

b) 

c) 

The second international conference on image formation in X-ray computed tomography Page 133



 
Fig 5.  The autothresholding algorithm is robust to HU scaling and offset 

errors. The left column contains the auto-thresholding result when starting 

with accurate HU values. The right column shows results after a 20% HU 

scaling error and 500 HU offset were first applied to the images. The top row 

shows the respective histograms (threshold boundaries are in red) while the 

bottom row shows the respective slices. The two destreaked slices are of 

equivalent quality. 

 

As shown in Figure 6, the automatic thresholding algorithm 

is also robust to metal artifacts. We surmise that this is 

because the algorithm uses the soft tissue intensities to infer 

the soft tissue-to-bone threshold rather than segmenting the 

bone itself, a process that could be confused by the presence 

of metal. 

  

 
Fig 6.. Autothresholding is robust to metal artifacts. The top row contains 

images before destreaking is applied while the bottom row contains images 

that have been destreaked. Metal is present in the images in the right column. 

 

IV. CONCLUSIONS 

The MKB algorithm is enhanced by destreaking the prior 

image before reprojection, resulting in increased motion 

conspicuity and elimination of ghosting in the final 4-D 

images. The proposed destreaking technique is shown to be 

efficient and robust to anatomy variations , metal artifacts, and 

systemic HU errors. 

Of note is that, while the destreaking operation improves 

the image quality of moving objects, it also can increase noise 

in the final images when compared to images produced by the 

traditional MKB algorithm. The increased noise can be 

addressed by applying a 4-D bilateral nonlinear filter to the 

final phase images [6]. When implemented on a GPU, the 

computation time required is minimal. 

In summary, we describe an important enhancement to the 

McKinnon-Bates algorithm that improves spatial and temporal 

resolution for 4-D CBCT. The approach allows for images to 

be acquired and reconstructed in a sufficiently short period of 

time to enable essential image-guided radiotherapy 

applications such as patient set-up. 
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Temporal Resolution and Motion Artifacts in
Dual-Source Cardiac CT and Single-Source CT

with Iterative Reconstruction
Harald Schöndube, Thomas Allmendinger, Steffen Kappler, Herbert Bruder and Karl Stierstorfer

I. INTRODUCTION

The temporal resolution (TR) of an image has become
an important property in computed tomography (CT) when
examining organs whose motion can not be stopped for the
duration of the CT scan, such as in cardiac CT. In this context,
“higher TR” conventionally means that the raw data from
which a given image was reconstructed was measured within a
shorter time interval than the raw data of a similar image with
a lower TR value. Since object motion during data acquisition
will inevitably lead to artifacts in the reconstructed image,
and “more motion” usually also means “more artifacts”, there
are typically less motion artifacts visible in a high TR image
of a moving object than in an image with lower TR of the
same object. One essential property of TR is that it is not
necessarily constant within a given image. The stated quantity
therefore usually refers to the value in the isocenter (i.e., at
the intersection point of the image plane with the rotation axis
of the CT system) [1], [2].

For single-source CT (SSCT) and conventional filtered
backprojection (FBP) reconstruction, the topic of TR in CT
images has been extensively studied (see, e.g., [1], [2] and
references therein). For the case of dual-source CT (DSCT)
some practical experiments exploring the TR of reconstructed
images either in the isocenter or in the full field-of-view
(FOV) have been published [3], [4], but to our knowledge
a theoretical analysis of raw data usage within the FOV and
its implications on the resulting TR has never been performed
so far. Another important point that has so far not been studied
is the question if “same TR” also necessarily implies “same
amount of motion artifacts in the reconstructed images” in
the context of SSCT and DSCT. The same question can be
raised in the context of iterative reconstruction methods with
enhanced TR such as TRI-PICCS [5] and TRIM [6]. The
purpose of this paper is to address these topics. We will begin
our considerations with an introduction into cardiac CT and a
comprehensive review of the TR properties in conventional
SSCT. From there, we will discuss the extension of these
properties to iterative reconstruction methods. Finally, we will
explore the application of our results to DSCT. For brevity and
simplicity, our discussions will be limited to two-dimensional
data acquisition and reconstruction. However, all our results
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Fig. 1. Relative projection weights that each fan-beam projection receives in
a short-scan FBP with Parker weighting at different pixel locations: isocenter
(black), at the edge of the FOV located away from the short-scan segment
(red) and at the edge of the FOV located closest to the short-scan segment
(green)

presented in this paper are also directly applicable to both
circular and helical cone-beam CT.

II. TEMPORAL RESOLUTION AND MOTION ARTIFACTS IN
SINGLE-SOURCE CT

The goal in cardiac CT is to maximize the TR of the
reconstructed image. In conventional SSCT this amounts to
using just as much raw data as necessary for a stable (approx-
imate or theoretically-exact) image reconstruction. Since for
each image pixel a relative data angular coverage of at least
180° as viewed from the location of the pixel is necessary
to achieve this goal [7], two approaches are commonly used:
either a direct short-scan fan-beam FBP reconstruction using
the Parker weighting scheme [1] or an algorithm employing
a rebinning step to parallel beam geometry followed by a
180° parallel-beam FBP reconstruction.1 In this section, these
two approaches and their respective TR distributions will be
reviewed and compared.

A. Fan-beam FBP with Parker weighting

As mentioned above, for each image pixel an angular
coverage of at least 180° as viewed from the location of the

1In the past the so-called multi-segment reconstruction, in which raw data
segments from several consecutive heart beats are combined, has also been
used extensively to maximize TR [1], [2]. In the optimal case, its properties
with respect to TR are similar to the case of DSCT discussed below. A further
analysis of this topic is, however, beyond the scope of this paper.
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Fig. 2. Total TR of fan-beam FBP with Parker weighting (left), FWHM-TR of both fan-beam and rebinned FBP (center), total TR of rebinned FBP with
20° of transition weight (right).

Fig. 3. Images reconstructed from SSCT data using a direct fan-beam FBP with Parker weighting (left) and a parallel-beam rebinning FBP with no transition
weight (center) and 30° transition weight (right).

pixel is required to ensure a stable image reconstruction. To
cover the complete FOV, a data range of 180◦ + 2 · γmax,
where γmax denotes the maximum fan angle, is therefore
necessary. However, for all pixels in the FOV besides the one
at maximum distance from the short-scan source trajectory
this means that a certain degree of redundancy in the data has
to be taken into account. For this task, the Parker weighting
scheme [7], [8] is commonly employed. The resulting relative
weights that each projection receives for the reconstruction of
a given image pixel are displayed in fig. 1 for three different
representative pixel locations [1].

At this point, we need to refine the term “temporal reso-
lution”. Relative to the weight that each projection receives
during backprojection, two definitions are commonly adapted:
either, the total time interval from the first to the last projection
that contribute to a given pixel is considered, or only the full
width at half maximum (FWHM) of the weight function is
used as TR measure. As can be clearly seen in fig. 1, the
two quantities can potentially differ significantly. For clarity
we will use the terms “total TR” and “FWHM-TR” in the
remainder of this paper. Both quantities will be stated in terms
of the angular range of fan-beam FBP projection data required
to achieve a stable reconstruction at a given location to enable
a representation that is independent of gantry rotation times.

In the case of a fan-beam FBP with Parker weighting,
total TR is constant within the full FOV and corresponds to
an angular range of 180◦ + 2 · γmax of fan-beam data. In
contrast, FWHM-TR is location-dependent, with the value in

the isocenter corresponding to 180° of fan-beam data. The
distributions of the TRs for γmax = 27.5◦ within a typical
cardiac FOV of about 25cm diameter are displayed in fig. 2
(left and center). Note that in these as well as all other plots of
this kind in this paper, the center of the short-scan vertex path
was assumed to be located at the three o’clock position relative
to the image. An example reconstruction of a simulated object
which features a continuous linear motion of the high contrast
“vessels” away from the image center is shown in fig. 3 on
the left, with the center of the short-scan again being located
at the three o’clock position relative to the image.

B. Rebinning to parallel-beam geometry
A different approach for cardiac CT reconstruction is to

rebin the data into the parallel-beam geometry first and then to
perform a parallel-beam FBP reconstruction over a data range
of 180° of rebinned data. Due to the properties of the rebinning
operation, this procedure ensures that only the amount of
the original fan-beam data that is minimally necessary for
a stable reconstruction is used at each pixel location. The
relative weight that each of the original fan-beam projections
receives for the same three representative pixel locations as
above is plotted in fig. 4. From the plot, it is intuitively
clear that both total TR and FWHM-TR are identical in this
case. Interestingly, both are also identical to the FWHM-TR
of images reconstructed using a fan-beam FBP with Parker
weighting (cf. fig. 2, center).

However, when looking at the example reconstruction
shown in fig. 3 in the center, the result is disappointing:
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Fig. 4. Relative projection weights that each fan-beam projection receives in
a parallel-beam rebinned FBP with no transition weight (solid lines) or with a
transition weight equivalent of 20° (dashed lines) at different pixel locations:
isocenter (black), at the edge of the FOV located away from the short-scan
segment (red) and at the edge of the FOV located closest to the short-scan
segment (green).

even though the motion artifacts compared with the case of
direct fan-beam FBP are slightly reduced (cf. fig. 3, left), new,
so-called “quickscan” artifacts stretching over large distances
are visible in the image. These artifacts result from the fact
that due to the object motion opposing parallel projections
do not match. To remove these artifacts, the transition at the
beginning and the end of the reconstruction range needs to
be softened by extending the reconstruction data range by a
certain amount (e.g., 30°) and employing transition weights
to account for the newly added redundancy. For the case
of a transition range of 30°, the relative weight that each
of the original fan-beam projections receives is plotted in
fig. 4. As can be discerned by comparing the plots with and
without transition weight, the FWHM-TR does not change
by employing the transition weight while the total TR is
reduced proportional to the amount of redundant data added.
The resulting distribution of the total TR is displayed in fig. 2
on the right, an example image is shown in fig. 3 on the right.

In conclusion, images both from fan-beam FBP with Parker
weighting and from parallel-beam rebinned FBP share the
same distribution of FWHM-TR. Total TR, however, is bet-
ter when employing the parallel-beam rebinning, even when
adding a moderate transition range to remove quickscan arti-
facts.

III. ITERATIVE RECONSTRUCTION METHODS

One way to further improve the TR of a fan-beam FBP
image with Parker weighting is to apply an algebraic iterative
algorithm such as SART or SIRT: One can use the fan-beam
FBP image as start image and then perform the iteration using
only the first or the second half of the fan-beam data. The
resulting image looks very similar to the image reconstructed
with parallel-beam FBP from 180° of rebinned data with no
transition weight (see fig 5, center-left, reference image in
the same figure on the left). This effect can be explained by
visualizing the iterative process in the case of redundant data:
For projection directions where redundant projections are used
to reconstruct the image the forward projected data will be a
weighted average between the two projections. This forward

projected data will then be compared to only one of the input
projections and the difference is used to update the image.
Since only part of the original input data (and therefore no
redundant data) is used for the iteration, all redundancy is
removed from the image after some iterations.

An interesting observation can be made when comparing
this result to the TRI-PICCS algorithm proposed by Chen
et. al. [5]. In TRI-PICCS, the SART iteration as described
in the previous paragraph is complemented by an additional
iterative step which aims to minimize a linear combination
of the TV norm of the target image and the TV norm of the
difference between the target image and the Parker-weighted
input image. TRI-PICCS uses exactly the same iteration range
as the linear SART approach above, but due to the additional
TV step constitutes a non-linear iterative algorithm. In the
resulting image (cf. fig. 5, center-right), the level of motion
artifacts is about the same as when employing the linear
iteration approach or the parallel-rebinned FBP. In contrast
to the latter two, however, there are somewhat less quickscan
artifacts visible in the TRI-PICCS image. An even better result
can be reached when employing the (also non-linear) TRIM
algorithm [6] (cf. fig. 5, right). It is interesting to note that
although all three iterative approaches are using the same
iteration data range the output image differs significantly. This
confirms an observation earlier made by Maass et. al. [4] that
in the context of iterative reconstruction the data input range
alone does not allow definite conclusions about the TR or the
motion artifact level of the resulting images.

IV. DUAL-SOURCE CT

In DSCT a parallel-rebinned FBP is commonly used for
reconstruction; due to space constraints we will only discuss
this case. The two source-detector systems are mounted such
that the angle between them is 90°. The minimum range
for a stable FBP reconstruction is thus two times 90 ° of
rebinned data. Due to the linearity of the FBP, the DSCT
reconstruction can be imagined as first reconstructing a sub-
image by applying a FBP over 90° of rebinned data from each
of the source-detector systems and then adding the two sub-
images to obtain the final reconstruction. The DSCT FWHM-
TR can thus be computed at each pixel location as the average
of the individual FWHM-TR of the two sub-images, whereas
for the total TR the maximum value of the total TR of the
sub-images must be taken. The resulting distributions of the
FWHM-TR and the total TR are displayed in fig. 6 both for
the case with no transition weight and for a transition weight
of 20°. Note that at each pixel location the value of FWHM-
TR is exactly half the one of SSCT with a parallel-rebinned
FBP (cf. fig 2).

The better TR of DSCT is also reflected in the reconstructed
images. Fig. 7 shows an image reconstructed from SSCT
data on the left and a DSCT image at the center. Both
data sets were simulated with the same gantry rotation time,
yet the motion artifacts in the DSCT case are significantly
smaller. An unexpected observation can be made, however,
when examining the image in the same figure on the right,
which was reconstructed using two times 180° of rebinned
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Fig. 5. Images reconstructed from simulated data: using a fan-beam FBP with Parker weighting (left), using fan-beam FBP with an SART approach to
improve the TR (center-left), using TRI-PICCS (center-right) and using TRIM (right).
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Fig. 6. FWHM-TR (left), total TR with no transition weight (center) and total TR with 20° transition weight (right) for DSCT.

DSCT data instead of the usual two times 90°. One would
naïvely expect the TR being equivalent to the SSCT case, with
a deeper analysis confirming that the distribution is indeed
very similar2. However, the motion artifact level is much lower
than in the SSCT case. Apparently, seeing the same motion
from two different angles and therefore adding a certain degree
of redundancy can help suppressing motion artifacts. It is
therefore important to note that when comparing SSCT and
DSCT, “same TR” does not necessarily imply “identical level
of motion artifacts”.

V. CONCLUSION

In this paper, we have examined the distribution of the
TR in DSCT and compared it to the SSCT case. Our results
show that in terms of its FWHM, DSCT exactly doubles the
TR compared to SSCT at each pixel location. However, our
experiments also show that one needs to be very careful when
assessing TR, as even for the same theoretical TR the motion
artifact level can differ significantly. The same holds true
for approaches aiming to enhance TR via iterative methods:
even when using the same input data, the resulting images
show significant differences in terms of motion or quick-scan
artifacts. Consequently, metrics which do not only simply
measure the TR but also take the motion artifact level into
account appear to be necessary for a qualified comparison of
cardiac CT reconstruction algorithms (cf. [4]).

2Further details are omitted here due to space constraints

REFERENCES

[1] J. Hsieh, Computed Tomography - Principles, Design, Artifacts and
Recent Advances, ser. SPIE Press monograph. Bellingham, WA: SPIE
Press, 2003.

[2] B. M. Ohnesorge, T. G. Flohr, C. R. Becker, A. Knez, and M. F. Reiser,
Multi-slice and Dual-source CT in Cardiac Imaging, 2nd ed. Berlin:
Springer Verlag, 2007.

[3] C. H. McCollough, B. Schmidt, L. Yu, A. Primak, S. Ulzheimer,
H. Bruder, and T. G. Flohr, “Measurement of temporal resolution in
dual source CT,” Medical Physics, vol. 35, no. 2, pp. 764–768, 2008.
[Online]. Available: http://link.aip.org/link/?MPH/35/764/1

[4] C. Maaß and M. Kachelrieß, “Quantification of temporal resolution and
its reliability in the context of TRI-PICCS and dual source CT,” in
Medical Imaging: Physics of Medical Imaging, N. J. Pelc, E. Samei,
and R. M. Nishikawa, Eds., vol. 7961, no. 1. SPIE, 2011, p. 79611M.
[Online]. Available: http://link.aip.org/link/?PSI/7961/79611M/1

[5] G.-H. Chen, J. Tang, and J. Hsieh, “Temporal resolution
improvement using PICCS in MDCT cardiac imaging,” Medical
Physics, vol. 36, no. 6, pp. 2130–2135, 2009. [Online]. Available:
http://link.aip.org/link/?MPH/36/2130/1

[6] H. Schöndube, H. Kunze, H. Bruder, and K. Stierstorfer, “Using the posi-
tivity constraint to enhance temporal resolution in CT,” in Proceedings of
the first international Conference in X-ray Computed Tomography (Salt
Lake City, USA), June 2010, pp. 189–193.

[7] A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imag-
ing. IEEE Press, 1998, available online at http://www.slaney.org/pct/pct-
toc.html.

[8] D. L. Parker, “Optimal short scan convolution reconstruction for fan
beam ct,” Medical Physics, vol. 9, no. 2, pp. 254–257, 1982. [Online].
Available: http://link.aip.org/link/?MPH/9/254/1

Page 138 The second international conference on image formation in X-ray computed tomography



Fig. 7. Images reconstructed from 180° SSCT data (left), 2×90° DSCT data (center) and 2×180° DSCT data (right).
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Abstract—The purpose of this study was to evaluate the 

feasibility of using a fixed ex vivo porcine liver to 
systematically evaluate dose reduction strategies in 
computed tomography perfusion (CTP). A biological 
phantom was created with a fixated liver and connected to 
a continuous flow pump. The liver was submerged in a 
body-shaped acrylic phantom of 32 cm diameter, and filled 
with water. Four cine-mode CTP scans were performed 
using 80 kVp and 400, 400, 100 and 20 mAs. Frequency 
was 1 scan per second, and total scan time was 50 s. Two 
seconds after each CTP scan, 4 cc of iodine contrast agent 
(300 mg/ml) were injected at 1 cc/s. Images were processed 
with commercially available software to estimate 
perfusion parameters such as blood flow (BF), blood 
volume (BV) and mean transit time (MTT). Selected 
regions-of-interest (ROIs) were traced to assess the 
agreement of time-attenuation-curves and to compare the 
perfusion parameters estimates. The percent RMS error in 
the time-attenuation-curves between the first 400 mAs 
scan and subsequent scans at 400, 100 and 20 mAs were 
1.0%, 2.9% and 4.3% (input function) and 2.8%, 8.4%, 
15.5% (tissue ROIs), respectively. The average error 
across three tissue ROIs were 12.1%, 25.5%, 85.5% for 
BF, 6.45%, 7.1%, 68.2% for BV, and 10.5%, 36.9%, 
31.4% for MTT, for the 400, 100 and 20 mAs acquisitions 
respectively. It was found that the biological phantom was 
highly reproducible as demonstrated by the small 
differences in time-attenuation-curves. Quantitative 
perfusion estimates of BF, BV and MTT agreed within 
12% for identical CTP acquisitions. Low dose acquisitions 
revealed lower perfusion parameter accuracy. The 
developed biological phantom can be used to determine the 
lowest dose CTP scan protocols that provide accurate 
perfusion estimates. 

Index Terms— CT perfusion, Phantom, Radiation dose 
reduction.  
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I. INTRODUCTION 

HE use of CT perfusion (CTP), provides an 
opportunity for functional assessment of vascular 
and oncologic diseases [1, 2]. A primary concern 

however with CTP that precludes its widespread use in 
clinical practice is the radiation dose. Higher radiation 
dose is expected in CTP because multiple time-resolved 
images of the same anatomic section are required to 
track the transient arrival and washout of contrast 
media. The signal is then used to fit a model to 
ultimately estimate perfusion. 

Several strategies exist that can help in decreasing 
radiation exposure in CTP examinations. First,  it is 
advantageous to use a lower tube potential of 80 or 100 
kVp, instead of the typical 120 kV employed commonly 
in routine anatomical CT scanning, given the 
appropriate body habitus [3, 4]. Likewise, it is possible 
to reduce the tube current time product, since the 
functional task is different from the one required for 
anatomical CT scanning [5]. A challenge that results 
from reducing both the tube current and tube potential 
is the increase of image noise in the data and potential 
increase of susceptibility to artifacts. Several strategies 
have emerged to address the excessive noise of low 
dose acquisitions including iterative reconstruction 
methods [6], as well as processing of either the x-ray 
projections [7] or the image datasets [8]. Dedicated 
algorithms to reduce image noise in time-resolved CT 
sequences have also been developed [9, 10].  

Another approach to spare radiation dose pertains to 
the reduction of the scan frequency and total acquisition 
time [11, 12]. The advantage of this approach is that the 
image quality is preserved in each individual image. 
However, a potential shortcoming of this approach is 
that insufficient temporal sampling might lead to 
inaccurate perfusion estimates. A further complication 
is the existence of various perfusion models such as 
deconvolution [13] and the maximum slope [14], 
without consensus on which one to use [15, 16]. 

With the exception of brain CTP [17], there exists no 
consensus or explicit guidelines on acquisition 
parameters (tube potential, tube current), scan 
frequency, total scan time or perfusion model. Further, 
this task will probably be application dependent (i.e. 

T 

 

Evaluation of Low Dose CT Perfusion Using a 
Reproducible Biological Phantom 

Juan C. Ramirez-Giraldo, Scott Thompson, Bruce Knudsen, Lifeng Yu, David A. Woodrum                                                   
Mathew R.. Callstrom, Cynthia H. McCollough  

Page 140 The second international conference on image formation in X-ray computed tomography



 

 

organ and disease of interest) as well as patient 
dependent (i.e. body habitus, age, disease). Hence, 
working under the ALARA (As Low As Reasonable 
Achievable) principle, there exists a critical need of 
methodologies to systematically establish CTP 
protocols that use the lowest dose possible while at the 
same time confidently providing perfusion parameter 
estimations. Unfortunately, due to the potential higher 
doses of CTP, repetitive patient scans are undesirable. 
Animal experimentation is a good alternative but 
expensive.  

In the literature there are reports of physical and 
engineered phantoms that have been used for perfusion 
imaging [18, 19]. The main strength of this approach is 
reproducibility. But, physical phantoms are mostly 
limited blood flow of larger vasculature rather than 
perfusion (microvasculature level blood flow). 
Recently, biological phantoms that consist of organs 
extracted from animals and then fixated for preservation 
have been proposed [20, 21]. Thompson et al. used a 
porcine liver that showed homogenous perfusion in all 
lobes. Further,  microvasculature was exquisitely 
preserved as confirmed by histological analysis [21].  

This work used a liver phantom as in [21]. The 
purpose of this study was to demonstrate a methodology 
for systematic comparison of radiation dose reduction 
approaches in CTP.  

II.  MATERIALS AND METHODS 

A. Preparation of the ex-vivo liver phantom 

A fresh porcine liver was perfused with formalin to 
preserve the specimen and ensure patency of the 
vascular structures [21]. The portal vein was connected 
to a continuous flow pump (Bio-Medicus® 560, 
Medtronic Inc., Minneapolis, MN), allowing control of 
input pressure and flow. Flow rate was adjusted and 
fixed at 250 ml/min for all experiments. Only single 
input perfusion was pursued using the portal vein.  

B. Scan protocols  

Scanning was performed using a 64-slice CT scanner 
(Somatom Definition, Siemens Healthcare, Forcheim, 
Germany), using 80 kVp and 24 x 1.2 mm collimation, 
hence expanding 28.8 mm range. The scans were 
repeated four times using 400, 400, 100 and 20 mAs. 
Frequency was 1 scan/s, with a total scan time of 50 s. 
Images were reconstructed using 5 mm slice thickness 
and a medium-soft kernel (B30). A total of 4 cc of 
iodinated contrast (300 mg/ml), was injected at 1 cc/s 
for each scan. All scans were performed consecutively, 
with at least 10 minutes in between scans with 
continuous flow of saline, to allow for clearance of 
contrast media from the vasculature.   

C. Analysis 

Perfusion image data was analyzed in two steps. First, 
we selected regions of interest (ROI) within the 

phantom, from which time attenuation curves (TACs) 
were obtained by taking the mean CT numbers. The 
procedure was repeated for the four scanning 
conditions. Taking the first CTP acquisition (400 mAs) 
as reference, percent root mean square (RMS) error 
between TACs was calculated with respect to maximum 
CT attenuation minus the background. Second, image 
data was processed using commercially available 
perfusion software (syngo volume perfusion CT Body, 
Siemens, Forchheim). Using a maximum slope method, 
we calculated voxel by voxel perfusion maps, 
corresponding to parameters such as blood flow (BF), 
blood volume (BV) and mean transit time (MTT). 
Parameters were averaged in selected ROIs, and 
resulting values were compared with estimations from 
the first performed CTP scan (400 mAs).  

III.  RESULTS 

A. Vasculature preservation in the phantom 
Portal venous CT angiograms, performed prior to the 
CTP scans, demonstrated homogeneous enhancement 
through several vascular branches down to the 
periphery of all the lobes in the liver (Figure 1).  
 

B.  Image noise 
The image noise values, measured as the standard 
deviation of CT numbers within uniform regions-of-
interest, were 17.3, 16.5, 26.0 and 70.8 HU, for the 
400, 400, 100 and 20 mAs acquisitions, respectively. 
The image noise values were severely affected by the 
tube current employed, as expected (Figure 2).  
 

C. Time attenuation curves (TACs) 
The TACs showed excellent agreement at all mAs 
levels (Figure 3). Correspondingly, the percent RMS 
error in TACs between the first 400 mAs scan and 
subsequent scans at 400, 100 and 20 mAs were 1.0%, 
2.9% and 4.3% for the input function, and 2.8%, 8.4%, 
15.5% for the tissue ROI, respectively.  
 

 

Figure 1. CT angiogram depicting enhancement of the portal 
vein branching and vasculature across all the lobes. Arrow 
points to a piece of tubing, that does not belong to the liver 
phantom, but that was used to hold the liver static within the 
water phantom.  
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Figure 2. Sample images corresponding to CTP acquisitions using (A) 400 mAs, (B) 400 mAs, (C) 100 mAs, and (D) 20 mAs.  
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Figure 3. Reproducibility of the biological phantom as reflected with the remarkable agreement of TACs (A) ROI locations (B) 
TACs of input functiona at portal vein, (C) TACs of tissue perfusion at ROI 1, (D) TACs of tissue perfusion at ROI 2. FD = Full 
dose (400 mAs), LD = Low dose (100 and 20 mAs).  
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Table 1. Measurements of perfusion parameters at selected regions of interest (ROI). BF = blood flow in [ml/100g/min], BV = blood 

volume in [ml/100g], and MTT = mean transit time in [sec]. 

BF BV MTT BF BV MTT BF BV MTT BF BV MTT
400 mAs 31.8 7.8 19.4 49.8 7.9 13.2 37.1 2.7 24.3 0.0 0.0 0.0
400 mAs 30.6 7.7 21.1 39.0 7.8 13.3 33.1 2.3 19.1 12.1 6.4 10.5
100 mAs 27.7 6.6 29.3 28.4 7.9 10.3 29.4 2.5 33.4 25.6 7.1 36.9
20 mAs 6.8 1.6 28.5 0.8 2.1 8.8 7.6 4.1 27.7 85.5 68.2 31.4

Average Difference (%)
Condition

ROI 1 ROI 2 ROI 3

 

 

D. Perfusion parameter accuracy 

The average difference of perfusion estimates increased 
with lower mAs acquisitions (Table 1). The average 
difference between the two identical 400 mAs acquisitions 
was 12.1%, 6.4% and 10.5%, for BF, BV and MTT, 
respectively.  At 100 mAs, the average difference of 
perfusion estimates was up to  
36.9%, while at 20 mAs they were as large as 85.5 %.  

IV.  DISCUSSION 

Under identical CTP scanning conditions, the calculated 
percent RMS errors were below 3% for the evaluated 
TACs, while quantitative perfusion estimations of BF, BV 
and MTT agreed within 12%, demonstrating a high degree 
of reproducibility of the phantom when scanned under 
identical conditions. The TACs corresponding to low dose 
acquisitions (100 and 20 mAs) had a good 
correspondence with the reference acquisition (400 mAs), 
showing moderate RMS error, however, the accuracy of 
perfusion estimates was compromised.  
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Guiding decisions in CT image reconstruction
algorithm design via the Hotelling template

Adrian A Sanchez1, Emil Y Sidky1, and Xiaochuan Pan1,2

Abstract—In this work, ideal observer performance is com-
puted on a single detection task. The modeled signal for
detection is taken to be very small – size on the order
of a detector bin – and inspection of the accompanying
Hotelling template is suggested. We hypothesize that improved
detection on small signals may be sensitive to the reconstruction
algorithm. Further, we hypothesize that structurally simple
Hotelling templates may correlate with high human observer
performance.

Description of purpose

The main goal of this work is to adapt model observer
technology for use as a tool to aid in image reconstruc-
tion algorithm design. In particular, we investigate the
Hotelling template (see chapters 13 and 14 in [?]). For
the present case, the Hotelling observer is equivalent to
the ideal observer, and the Hotelling template is the image
with which the observer masks the reconstructed image in
order to make the optimal decision between signal-absent
and signal-present. Therefore, by inspecting the Hotelling
templates that correspond to different implementations of
the reconstruction algorithm, we expect to be able to draw
conclusions about human observer performance based on the
structure of the Hotelling template and its apparent similarity
(or lack thereof) to the signal in question. Specifically, we
hypothisize that a Hotelling template that is structurally
simple and similar to the signal will result in better human
observer performance on the detection task. A Hotelling
observer model for detection is designed, and the Hotelling
templates computed for the case of circular cone-beam
CT image reconstruction. The method is demonstrated on
alternative derivative filter designs.

Methods

a) Synopsis of relevant image reconstruction algorithm
theory: : The particular image reconstruction algorithm used
is the back-projection filtration (BPF) image reconstruction
algorithm developed by our group [?]. In this algorithm,
the imaging volume is decomposed into individual chords
of the scanning trajectory, along which the reconstruction
takes place. Although this algorithm is developed based on a
continuous-to- continuous model, in practice the reconstruc-
tion is performed using discretized versions of the various
continuous inversion operations that comprise the algorithm.
In general terms, we consider a linear image reconstruction

1The University of Chicago, Department of Radiology, Chicago, IL
60637

2The University of Chicago, Department of Radiation and Cellular
Oncology, Chicago IL 60637

algorithm A that takes a discrete set of data g⃗ and produces
a discrete representation of an image in the form of voxel
coefficients f⃗ :

f⃗ = Ag⃗. (1)

As the BPF algorithm consists of many linear processing
steps, it is useful to consider A as the product of matrices
representing each processing step:

A =
∏
i

Ai. (2)

The BPF algorithm can be said to consist of eight distinct
processing steps as follows:
(1) Derivative filtration of the projection data
(2) Back-projection onto the chords comprising the image
volume
(3) Computation of boundary terms for back-projection
(4) Weighting of chord profiles
(5) Inverse Hilbert transform of chord profiles
(6) Evaluation and addition of constant offset to chord
profiles
(7) Inverse weighting of chord profiles
(8) Interpolation onto 3D Cartesian grid.
In our case, the final step is trivial, as we consider recon-
struction onto a set of chords defined on a Cartesian grid,
but it is included here for completeness.

In particular, for this work, we focus on Aderiv which is
the discrete implementation of the directional derivative of
projection data P (u, v) measured at the detector:

Pt̂(u, v) ≡ t̂ ·
(
∂P (u, v)

∂u
,
∂P (u, v)

∂v

)
. (3)

We consider Aderiv such that

∂P (u, v)

∂u
= F−1{Ku · F{P (u, v)}} and

∂P (u, v)

∂v
= F−1{Kv · F{P (u, v)}},

where F represents the discrete Fourier transform, and
Ku and Kv are the discrete Fourier transforms of the
convolution kernels representing derivatives in the u and
v directions, respectively. For example, K corresponding to
forward differencing would be given by K = F{[1,−1]}.
In this formulation, it is helpful to consider the various
implementation options for Ku and Kv as being analogous
to filters employed in conventional filtered backprojection
algorithms. For instance, the imaginary component of the
filter corresponding to forward differencing will be a sine
wave in the Fourier domain, since the discrete Fourier
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transform of an antisymmetric impulse pair is an imaginary
sine wave. In this work, we consider this implementation of
the forward differencing filter, and a similar implementation
of a symmetric differencing filter, where the derivative by
symmetric differencing is, for example, given by

f ′
i =

fi+1 − fi−1

2∆
(4)

We then consider a linear filter, since in the continuous limit
we have F{δ′ (x)} = νx, where δ′ (x) is the derivative
of the Dirac delta function and νx is the spatial frequency
variable corresponding to x. This linear filter can be seen as
being analogous to the ramp filter in conventional filtered
backprojection. Finally, we consider a linear filter modu-
lated by Hanning apodization windows of various cutoff
frequencies. These four filters are shown in Fig. ??. Note
that only the finite differencing filter has non-trivial real and
imaginary parts, while the other filters are purely imaginary.

b) Synopsis of relevant model observer theory and
strategy: : We seek a metric for image quality that is
easy to compute, is sensitive to the image reconstruction
algorithm, and may have some generality by being corre-
lated with a range of imaging tasks. We have previously
investigated the use of the Hotelling observer for a signal-
known-exactly/background-known-exactly (SKE/BKE) de-
tection task [?]. The idea of using the Hotelling observer,
which will be equivalent to the ideal observer for the
present data model, is that we seek the image reconstruction
algorithm that best preserves in the reconstructed image, the
detectability of a signal inherent in the sinogram data. In
previous studies, we have found the efficiency of the recon-
struction algorithm, the square of the ratio of the SNR for
detection before and after reconstruction, a useful metric [?].
We have employed this metric to find optimal combinations
of circular, cone-beam CT images obtained through different
algorithm implementations. This efficiency, however, has
potential shortcomings in terms of artifact removal, because
the detection task for a given signal and noise model may
be insensitive to commonly occurring artifacts in CT.

In this work, we propose to employ as an evaluation
tool the Hotelling template, the image with which the ideal
observer masks the reconstructed image in order to make the
optimal decision between signal-present and signal-absent.
The detection task is performed on a small object, a uniform
disk of width 2 ∆, and the noise model in the data is taken
to be independent, Gaussian-distributed noise. This noise
model closely approximates the actual CT application and
preserves the equivalence between the Hotelling and ideal
observers. The use of a small signal for the detection task is
important because of: sensitivity, the image reconstruction
algorithm can have a big impact on this task performance;
and generality, we speculate that better performance on
small signal detection will improve the performance of the
CT image reconstruction algorithm on many other tasks.
We believe the latter, because many CT classification tasks
do rely on detection of components of the image, e.g.
small spiculations of a tumor. We speculate further that

(a) A linear filter corresponding to F{δ′ (x)} and a sinusoidal filter
corresponding to the forward differencing algorithm

(b) A linear filter corresponding to F{δ′ (x)} and a sinusoidal filter
corresponding to the symmetric differencing algorithm

(c) A linear filter along with Hanning filters of cutoff frequencies 1
2∆x

,
1

∆x
, and 2

∆x

Fig. 1. The four derivative filters considered in this work. Note that the
above plots correspond to the imaginary component of each filter unless
otherwise stated.

examining the Hotelling template will provide an even more
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sensitive tool for algorithm design. The reasoning is that if
the Hotelling template for this simple signal is also simple
and resembles the signal, it may be that human performance
will be closer to that of the ideal observer.

In order to illustrate the computation of the Hotelling
template performed in this work, we begin by inspecting the
CT data model, the noise properties of which are essential
to the Hotelling observer model. The CT data model relates
the object function f (r⃗) to the data vector gi via a line
integral over f (r⃗) along the ith ray, defined by the source
position si and the ray direction θ̂i:

gi =

∫ ∞

−∞
f
(
si + lθ̂i

)
dl + ni, where i ∈ [1, N ] (5)

where ni represents data noise and gi and ni are random
variables. The data noise is taken to be independent and
Gaussian-distributed. This implies that the data covariance
vector Kg is diagonal such that

(Kg)i,j =

{
α : i = j

0 : i ̸= j
(6)

where we take α to be a constant for our purposes.
Given Eqn.??, it is clear that the reconstructed image

covariance matrix will be given by

Ky = AKgA
T = αAAT . (7)

Hence knowledge of the transpose of the reconstruction
matrix implies knowledge of the reconstructed image co-
variance. Now utilizing the fact that

Kyw
(Hot)
y = ∆y (8)

where ∆y = A∆g is the reconstructed signal, we can solve
for the Hotelling template in reconstructed image space.
However, while the corresponding equation in data space
is easily solvable given that Kg is diagonal, various steps
in the reconstruction and its transpose (e.g. back-projection)
lead to Ky being non-diagonal. Further, Ky can be very
large (e.g. 109 × 109). Fortunately, as long as ∆y is in the
range of Ky, Eqn.?? satisfies the necessary conditions to be
solved iteratively via conjugate gradients.

c) Synopsis of imaging and reconstruction configura-
tions and geometries: : The CT geometry used to generate
the noise-free simulation data in our study is circular cone-
beam. Fig. ?? illustrates this geometry, in which the x-ray
source and flat-panel detector follow a circular orbit. 512
views were acquired over a full 2π trajectory. The (unitless)
relative dimensions of the acquisition were a 6x2 detector,
a trajectory radius of 5, and a source-to-detector distance of
8. The chords upon which the reconstruction is performed
are parallel to one another so that the reconstruction mimics
that of conventional FDK reconstruction onto a Cartesian
grid.

Fig. 2. The circular cone-beam geometry used to generate the noise-free
simulated data used in this study. This acquisition configuration was chosen
for its ubiquity in clinical settings.

Fig. 3. Midplane reconstructions corresponding to various implementa-
tions of the directional derivative filter. The associated derivative filters are
as follows: top row (from left to right): forward differencing, symmetric
differencing, and linear (analogous to ramp filter); bottom row (from left
to right): Hanning window of cutoff 1

2∆x
, Hanning window of cutoff 1

∆x
,

and Hanning window of cutoff 2
∆x

. Note that the only obvious difference
among any of the implementations is the blurring achieved by the low
frequency cutoff Hanning filter.

Results

We have obtained the Hotelling template for detection of
a small signal in images reconstructed from circular, cone-
beam CT data onto a Cartesian chord grid with six different
implementations of the projection data derivative. Shown
in Fig. ??, are the reconstructed signals from the linear,
Hanning, symmetric differencing and forward differencing
kernels. The corresponding Hotelling templates are shown in
Fig. ??. The fact that the various reconstructed images do not
appear substantially different gives a sense as to how small
a difference there is between the three image reconstruction
algorithm implementations. On the other hand, the Hotelling
templates are noticeably different. The implementations us-
ing finite differencing and the low-frequency cutoff Hanning
filters show considerably more structure than the linear filter
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Fig. 4. Midplane Hotelling templates corresponding to various implemen-
tations of the directional derivative filter. The associated derivative filters
are as follows: top row (from left to right): forward differencing, symmetric
differencing, and linear (analogous to ramp filter); bottom row (from left
to right): Hanning window of cutoff 1

2∆x
, Hanning window of cutoff

1
∆x

, and Hanning window of cutoff 2
∆x

. Again, we see little perceptible
change in the reconstructed images, while the Hotelling templates are quite
different. In this case, the templates corresponding to the linear kernel and
to the widest of the three Hanning windows appear to have a structure
most closely resembling the signal. We therefore hypothesize improved
human observer performance for these implementation of the derivative
filter, relative to the finite differencing filters, or Hanning filters with lower
cutoffs.

and the Hanning filter with cutoff 2
∆x . We hypothesize

that the simplest Hotelling template will result in better
detection performance for human observers, and may result
in improvement on other imaging tasks.

Conclusions

The Hotelling template may prove as a useful tool for
linear image reconstruction algorithm design. Our results
show that these templates can be quite sensitive to algorithm
implementation. Future work will investigate the conjecture
that a simple Hotelling template for simple signals implies
better human observer performance. If there is such a cor-
relation, the use of the Hotelling template will be developed
into a summary metric. In sum, inspection of the template is
potentially useful for discrete implementation decisions, i.e.
which particular implementation of the discrete directional
derivative to use.
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CT image assessment by low contrast signal

detectability evaluation with unknown signal location
Lucretiu M. Popescu and Kyle J. Myers

Abstract—In this paper we investigate new methodologies for
CT image quality evaluation based on measuring the detectability
of small, low contrast signals at locations unknown to the observer.
We propose a phantom design that facilitates human observer
studies in the condition of unknown signal locations. The setup
allows for the random selection of regions of interest (ROI) around
each signal, so that the relative signal location is unknown if the
ROIs are shown separately. With such setup one can perform
signal detectability measurements with a variety of image reading
arrangements and data analysis methods. In this work we test the
use of the localization relative operating characteristic (LROC)
method. The design allows also for efficient image evaluation,
utilizing an automatic signal search technique and a recently de-
veloped nonparametric data analysis method using the exponential
transformation of the free response characteristic curve (EFROC).
Here we present the application of these methods by performing
a comparison between the filtered back projection algorithm and
a polychromatic iterative image reconstruction algorithm. The
results demonstrate the ability of these methods to determine
signal detectability indices with good accuracy with only a small
number, of the order of few tens, of image samples. The expected
improved performance of the iterative reconstruction technique is
confirmed.

I. INTRODUCTION

Iterative image reconstruction techniques are increasingly

gaining acceptance in X-ray computer tomography (CT) appli-

cations. The nonlinear nature of the image reconstruction, with

markedly different noise patterns, challenges the way image

quality is traditionally evaluated in CT, and makes it difficult

to appreciate the improvements of this type of algorithms com-

pared to the more traditional analytical reconstruction methods.

The aggregation of signal to noise ratio (SNR) metrics from

modulation transfer function (MTF) and noise power spectrum

(NPS) measurements relies strongly on the assumption of

system linearity. This state of affairs points us to the need to

evaluate the images by using task-based methods. One such

type of task is the detection of a small low-contrast signal.

In this category we can distinguish the detection of a signal

at a known location [1]. However, it can be argued that the

metrics based on the known-signal-location approach do not

fully capture the noise properties of the image, since they do not

account for the extreme, random occurrences of noise clumps

in images, more likely to be mistaken for true signals. For these

Food and Drug Administration, Center for Devices and Radiological Health,
Office of Science and Engineering Laboratories, Division of Imaging and
Applied Mathematics, 10903 New Hampshire Ave., Silver Spring, MD 20993,
E-mail: lucretiu.popescu@fda.hhs.gov

reasons, the more general problem of detection of a signal at an

unknown location has received increased attention in the recent

years [2]–[4].

In this work we propose to address one of the practical

difficulties of carrying out such studies with human observers.

The commonly used CT image quality phantoms, such as ACR

or Catphan, present a closely packed pattern of signals of

different sizes and contrast values. This setup is very efficient

for a subjective evaluation of image quality. A medical physicist

just has to identify the size and contrast below which the

phantom features become harder to recognize. However, this

compact phantom setup makes it difficult to perform an objec-

tive evaluation of signal detectability, because the signal pattern

is well known to the human readers. Therefore, we propose

a phantom arrangement in which the signals are separated

by large enough distances so that a region of interest (ROI),

significantly larger than a signal, can be randomly delimited

around each signal without overlap. With the ROIs shown

separately, this approach hides from the readers the signal

arrangement pattern, and allows for easy generation of multiple

ROI samples, thus enabling an objective quantitative evaluation

of signal detectability.

We will study the feasibility of this image quality evaluation

setup by using an automatic signal searching technique and

simulating the reading arrangement of a localization relative

operating characteristic (LROC) study [5], [6]. In addition we

will analyze the data using a recently developed nonparamet-

ric method based on the exponential transformation of the

free response operating characteristic (EFROC) [7]. We will

apply these techniques for comparing images obtained with

the filtered back projection (FBP) algorithm and an iterative

polychromatic transmission reconstruction algorithm.

II. METHODS

A. Phantom design

The phantom design we propose is illustrated in Fig. 1. It

has a diameter of 15 cm and 5 signal locations equally spaced

at 4.5 cm from the center. The ROIs should be selected so that

the signal could be found at any position within an ROI. The

signals can be arranged in modules, each module containing a

slice with signals of the same size and contrast. A background-

only module should be available in order to obtain signal-

absent images. The size and the contrast of the signals should

be chosen so that they are moderately difficult to identify for
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Fig. 1. Example of signal placement and random selection of 4×4 cm2 ROIs
on a simulated image reconstruction using a 15 cm diameter phantom.
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Fig. 2. Spatial distribution of the random signal location within the ROI.
Results obtained from 200 image samples based on the setup shown in Fig. 1.

the devices, the doses, and the image reconstruction algorithms

studied.

The phantom is imaged multiple times, each time the phan-

tom is randomly rotated so that the pentagonal formation of

signals is in a different position relative to the horizontal axis.

For each image realization a different random selection of the

ROIs is used. As shown in Fig. 2 this procedure assures a

fairly uniform distribution of the signal position within the

selected ROIs. With such an imaging setup one can perform

signal detectability studies using a variety of image reading

arrangements and data analysis methods.

B. Simulation setup

For our study we simulated the phantom design presented

in Fig. 1. Around it we placed an exterior shell so the total

phantom diameter is 24 cm. For the background we used a water

equivalent composition. The results presented in this summary

paper are based on cylindrical shaped signals of 4mm diameter

and contrast of 1%. For the generation of images we considered

a two-dimensional parallel ray scanner with a polychromatic X-

ray source and an energy integrating detector. Different noise

levels were obtained by considering a Poisson process for the

number of photons incident on the detector, with the average

depending on the source intensity. An additional intra-detector

energy deposition fluctuation modeled using a Gaussian with

a 3% standard deviation was considered. The images were

reconstructed using FBP and an iterative image reconstruction

algorithm that will be described in more detail elsewhere [8].

The doses (or the tube current intensities) emulated were chosen

so that they span the full performance range for both algorithms,

from very poor signal detectability to virtually certain signal

detectability.

C. The image scanning procedure

The signal detection was done using a signal search (or image

scanning) algorithm, following a similar scheme as the one

described in [3]. The procedure comprises two main steps. The

first step is analogous to a filtering procedure. For each image

point, xi, a measure of the match between the pixels around

that location and the signal is computed according to a given

signal template,

zi =
∑

||xi+k−xi||<Rt

wkf∗
i+k , (1)

where {f∗
j } are the image values corrected for the slowly vary-

ing background inhomogeneities (such as the cupping artifact

due to beam hardening in FBP case). If the weights {wk} are
uniform, the procedure simply determines the local contrast of

the disk of radius Rt centered at the point xi. The output of

this step is the auxiliary scan image {zi}. In the second step
we start by determining the maximum point of the scan image.

Once this point is found, the value is entered in a list and the

pixels in the disk of radius double the signal radius around that

position are masked. The procedure continues with the rest of

the unmasked image pixels as long as the local maximum found

exceeds a given stopping limit z0. In this manner a list with

non-overlapping signal-sized local maxima is obtained in the

decreasing order of their score values.

For both algorithms studied we used images represented by

pixels of 0.5mm size. In order to assure a more fine positioning

of the scanning window and to better account for the signal

shape in the scanning procedure, we have oversampled the

images up to a pixel size of 0.3mm, by interpolating. Also

because of the small signal size we employed a simple local-

contrast evaluation template. The combination of oversampling

and uniform signal template has a similar effect as using a

template on the original image with weights that account for the

partial volume effect. Several signal template sizes, Rt, were

tested in order to study the stability of the results. Examples of

image-scan results (with Rt = 0.24 cm) are shown in Fig. 3.

D. Free-response data analysis

The results returned by the image scanning procedure de-

scribed above correspond to a free-response image reading

methodology in which the image observer is allowed to mark
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n x y score status

1 -1.74 4.08 9.25 true

2 -1.89 1.14 7.91

3 3.39 2.91 7.83 true

4 -1.05 -4.35 6.89 true

5 3.87 -2.46 6.72 true

6 0.39 -1.38 6.35

7 5.07 -3.03 5.98

8 -3.54 -1.05 5.82

9 0.09 -4.47 5.80

10 0.18 4.08 5.76

11 -4.50 -0.36 5.76 true

12 4.17 3.24 5.63

13 1.32 -6.33 5.56

14 -5.07 -1.62 5.51

15 1.74 -3.30 5.48

16 -2.61 0.78 5.29

n x y score status

1 -1.74 4.11 7.48 true

2 -0.96 -4.41 6.67 true

3 3.42 2.94 5.91 true

4 3.90 -2.34 5.61 true

5 -1.83 1.11 4.56

6 -4.50 -0.33 4.37 true

7 0.45 -1.38 4.36

8 -4.56 3.45 3.91

9 -2.52 3.12 3.67

10 -0.99 1.95 3.56

11 -3.54 -1.05 3.56

12 0.12 4.08 3.56

13 1.35 3.03 3.37

14 2.43 4.38 3.27

15 -0.81 3.90 3.12

16 -0.51 -1.11 3.09

Fig. 3. Example of scan results for images obtained from the same data set,
dose point I = 300, with FBP and the iterative algorithm (itr-C). The second
row of images shows the suspicious signal locations, the true signals (marked
with small red circles), and the ROIs randomly selected for LROC analysis.

and score all potentially suspicious locations. Such results can

be conveniently analyzed using the an exponential transfor-

mation of the free-response characteristic (EFROC) method

[7]. This transformation addresses the main drawback of the

regular FROC, which is the lack of a well-defined right-side

limit. The area under the transformed curve, called EFROC,

is well defined, and represents an overall signal detectability

performance index.

For a given set of image samples the scanning procedure

returns the results {xi}, the scores of all I true signals present,
and {yj}, the scores of a total J of false marks retrieved from
N signal-absent images. From these data the area under the

EFROC can be estimated in a nonparametric fashion using the

formula

ÂFE =
1

I

I
∑

i=1

e−
1
N

PJ
j=1

H(yj−xi) , (2)

where H(z) =







1 ; z > 0
1

2
; z = 0

0 ; z < 0
.

The properties of this estimator are studied in [7], where the

equations for the variance calculation are provided.

A very useful property of the EFROC estimator is its scalabil-

ity with the search area size. For homogeneous regions we can

express the results relative to a given reference image size Ω by
takingN = ΩT /Ω, where ΩT is the total searched area for false

signals. This rescaling property is particularly advantageous

for phantom experiments containing large background volumes

that can be scanned for false signals, enabling the retrieval of

statistically relevant data with only a few image samples, as is

the case with the phantom design proposed here.

E. ROI reading and LROC data analysis

With human readers we cannot perform a full free-response

reading of the images, as above, because the presence of

the signals in a well-known pattern would easily betray their

presence. Therefore we hide the signal locations by randomly

selecting ROIs around each signal, so that the signal position

can be anywhere inside the ROI, and show the ROIs separately

for reading. In an LROC experiment the reader is asked to score

the ROI shown and mark only one (the most) suspicious signal

location.

We emulate this reading arrangement by selecting form each

ROI (as shown in Fig. 3) the maximum suspicious location.

If no scan value is above the threshold, the ROI is assigned

the minimum score available in the rating scale. Thus from

M signal-present ROIs we obtain the maximum-scan scores

{Xm}, as well as the localization success values {qm}; 1 if the
maximum scan value corresponds to a true signal, 0 if not. From

the N signal absent ROIs we obtain the maximum-scan scores
{Yn}. With these notations we have the following performance
index estimator

ÂL =
1

MN

M
∑

m=1

N
∑

n=1

qmH(Xm − Yn) (3)

corresponding to the area under the LROC curve [6].

The relations between EFROC and LROC, as well as other

metrics, are discussed in [7], in conditions that are fairly well

satisfied in this type of phantom experiment. The LROC index,

AL, ideally should be equivalent to the EFROC metric, AFE,
expressed for a search area size twice the size of the ROI area.

The departures from the ideal case are mainly introduced by

the finite size of the signal and the search area size. For the

comparisons of the two methods we will report AFE values
scaled for a search area of size Ω = 32 cm2, given the fact that

we used 4 × 4 cm2 ROIs.
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Fig. 4. Comparison between the FBP and the iterative algorithm (itr-C)
signal detectability as function of dose, as measured by the EFROC and LROC
indices. The results were obtained from 20 signal-present and 20 signal-absent
image samples. The error bars correspond to one standard deviation.

III. RESULTS

In Fig. 4 we compare the signal detectability performance of

the FBP and the iterative algorithm (itr-C) as functions of dose,

as measured by the EFROC and LROC indices. The results

were obtained using only 20 signal-present and 20 signal-absent

image samples. The LROC results show greater uncertainty

compared to the EFROC results, however the error bars are

small enough to clearly differentiate the performance of the

two algorithms around the 80% signal detectability index point.

Because the images obtained with the two image reconstruction

algorithms originate from the same data sets, the performance

values are correlated; therefore the standard deviations of the

differences between the two reconstruction methods should be

even smaller than the error bars indicate.

The difference in precision between EFROC and LROC is

chiefly due to the difference in the size of signal-search area the

two methods are using. The EFROC method takes advantage

of the full scanned area, the interior disk of radius 7.3 cm of

area 167 cm2, while the LROC uses only the five ROIs with a

total of 80 cm2.

In Fig. 5 we study the stability of the results with the

variation of the scanning template radius,Rt. We find very good

stability, for both algorithms and evaluation methods, once the
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Fig. 5. EFROC and LROC results variation with the size of the scanning
template radius, Rt.

scanning template size exceeds the signal size, but not much

more more than a full pixel size, Rt ∈ [0.22, 0.26]. Poorer
performances are obtained for small scanning templates, as

result of the increased probability for the appearance of smaller

noise clumps in the background that are not smoothed out in a

small template.

IV. CONCLUSIONS

In this work we have tested via simulations a phantom design

that allows for signal detectability evaluation studies for the

signal at unknown location problem, both in an automated

reading setting, and with human observers. We have demon-

strated the application of an automatic signal searching method

in conjunction with the EFROC data analysis method. Also

we have tested a reading arrangement using regions of interest

randomly delimited so that the signal location will be unknown

to the human observers, in a LROC setting.

The results show that the EFROC method is more precise and

versatile than the ROI arrangement used for LROC. However,

both methods provide good discrimination ability with only

a few tens of image samples. This result is encouraging and

allows us to move towards the next phase of this project

using human readers. Both evaluation methods unambiguously

confirm the better performance of the iterative reconstruction

algorithm compared to FBP.
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New Results for Efficient Estimation of CHO Performance
Adam Wunderlich, Frédéric Noo and Marta Heilbrun

Abstract—Task-based assessments of image quality constitute a
rigorous, principled approach to the evaluation of imaging system
performance. To conduct such assessments, it has been recognized
that mathematical model observers are very useful, particularly
for purposes of imaging system development and optimization.
One type of model observer that has been widely applied in the
medical imaging community is the channelized Hotelling observer
(CHO). Since estimates of CHO performance typically include
statistical variability, it is important to control and limit this
variability to maximize the statistical power of image quality
studies. Previously, we demonstrated that by including prior
knowledge of the image class means, a large decrease in the bias
and variance of CHO performance estimates can be realized.
Here, we present refinements and extensions of this estimation
theory, which was limited to point estimation with equal numbers
of images from each class. Specifically, we present minimum-
variance unbiased point estimators for observer SNR that allow
for unequal numbers of lesion-absent and lesion-present images.
Also, we develop both exact and approximate confidence intervals
for commonly-used CHO performance measures.

I. INTRODUCTION

Because they can be implemented efficiently using com-
puters, mathematical model observers are a valuable tool for
task-based image quality assessments, particularly for imaging
system development and optimization [1], [2]. One type of
model observer that has been widely utilized in the medical
imaging community is the channelized Hotelling observer
(CHO) [1]. Due to nice optimality properties and flexibility
afforded through the selection of channels, CHOs have been
shown to track both human and ideal observer performance
[1]. Consequently, CHO methodology has been applied in
many areas of medical imaging research.

Although CHO performance can be calculated accurately
from analytical models in some cases [3], [4], this is not
usually feasible due to complexities in the image formation
process. Instead, most practical evaluations must be carried out
by estimating CHO performance from a finite set of images,
and the results necessarily suffer from statistical variability.

One way to reduce variability in CHO performance esti-
mates is by utilizing prior knowledge of the channel output
means for each class of images, which can be obtained
from the image means. Fortunately, the image means turn
out to be available in many practical situations. Specifically,
when evaluations are performed with simulated tomographic
data, the image means can often be accurately estimated
by reconstructing the data means. This is clearly true for
linear reconstruction algorithms, and it is often a very good
approximation for nonlinear iterative reconstruction algorithms
[5]–[7]. In addition to simulated-data evaluations, accurate
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estimates of the difference of image class means can also be
produced for some types of real-data experiments [2], [8].

In [9], we proposed and characterized point estimators for
CHO performance when either the image class means, or their
difference, is known. Our evaluation demonstrated that a very
large statistical advantage can be realized by utilizing prior
knowledge of the class means. The estimators in [9] were
based on three assumptions: (i) the class means of the channel
outputs, or their difference, is known, (ii) the channel outputs
follow a multivariate normal distribution for each image class,
and (iii) the covariance matrices for the channel outputs are the
same for each class. These assumptions are generally satisfied
for a CHO applied to the detection of small, low-contrast
lesions at a known location.

Here, we present refinements and extensions of the theory in
[9] in four useful ways. First, we develop minimum-variance,
unbiased estimators of SNR, improving on [9], which was
limited to unbiased estimation of SNR2. Second, while the
estimators in [9] require equal numbers of images from each
class, the theory presented in this work allows for unequal
numbers of lesion-absent and lesion-present images, with the
practically convenient option of zero images from one class.
Third, we propose and characterize exact confidence intervals
for commonly used CHO performance measures. Fourth, we
present robust, approximate confidence intervals that can be
used as simple alternatives to the exact confidence intervals.
For conciseness, the proofs of our results are omitted.

II. CHO PERFORMANCE MEASURES

The present work concerns estimation of CHO [1] perfor-
mance for any binary discrimination task at a fixed image
location. Consider a binary discrimination task in which an
observer attempts to classify each image as belonging to one of
two classes, denoted as class 1 and class 2. A CHO generates
a rating statistic, t, for each image, and classifies the image
by comparing t to a threshold, c. If t > c, then the image
is classified as belonging to class 2, otherwise, the image is
classified as belonging to class 1.

Before generating the rating statistic for an image, a CHO
applies channel weights to reduce the image to a p×1 channel
output vector, denoted v. Let the means of v for classes 1
and 2 be µ1 and µ2, respectively, and let their difference be
∆µ = µ2 − µ1. Also, denote the covariance matrices of v
for class 1 and class 2 as Σ1 and Σ2, respectively, and their
average as Σ = (Σ1 + Σ2)/2. Once the channel outputs for
an image are obtained, a CHO computes the rating statistic as
t = wTv, where w = Σ

−1
∆µ is the p× 1 CHO template.

Let the channel outputs for classes 1 and 2 be denoted as
v(1) and v(2), respectively. Throughout this work, we assume
that v(1) ∼ Np(µ1,Σ) and v(2) ∼ Np(µ2,Σ), i.e., v(1) and
v(2) are multivariate normal vectors with the same covariance
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matrix. In this setting, the CHO template is w = Σ−1∆µ,
and the CHO is optimal among all observers that act on the
channelized images [1].

The performance of an observer on a binary classification
task is fully characterized by the observer’s receiver operating
characteristic (ROC) curve [1]. Under the aforementioned
distributional assumptions for the channel outputs, the area
under the ROC curve is AUC = Φ(SNR/

√
2), where Φ(x) is

the cumulative distribution function for the standard normal
distribution and SNR =

√
∆µTΣ−1∆µ is the CHO signal-

to-noise ratio [1]. In the present setting, both SNR and AUC
are suitable figures-of-merit for CHO performance [1].

III. SNR POINT ESTIMATION

Here, we introduce our unbiased SNR point estimator. To
allow for zero images from one class, we use the notational
convention that a summation is zero if its upper limit is zero.
Throughout, we assume that we have m independent, identi-
cally distributed (iid) measurements of the class-1 channel out-
puts, denoted as v

(1)
1 ,v

(1)
2 , . . . ,v

(1)
m , and n iid measurements

of the class-2 channel outputs, denoted as v(2)
1 ,v

(2)
2 , . . . ,v

(2)
n .

A. Estimator Definition

Two scenarios can be considered: (1) known µ1 and µ2

with unknown Σ and (2) known ∆µ with unknown µ1, µ2,
and Σ. We have extended the results in [9] for both scenarios.
However, for brevity, we only present the results for scenario 2,
which is less constraining and thus more practical.

To build our SNR estimator for scenario 2, we first define
a sample covariance matrix estimator that incorporates ∆µ as

S̃ =
1

m+ n− 1

[ m∑
i=1

(v
(1)
i − ṽ1)(v

(1)
i − ṽ1)

T

+
n∑

j=1

(v
(2)
j − ṽ2)(v

(2)
j − ṽ2)

T
]

(1)

where ṽ1 and ṽ2 are the unbiased sample mean estimates

ṽ1 =
[ m∑

i=1

v
(1)
i +

n∑
j=1

v
(2)
j − n∆µ

]
/(m+ n) , (2)

ṽ2 =
[ m∑

i=1

v
(1)
i +

n∑
j=1

v
(2)
j +m∆µ

]
/(m+ n). (3)

The SNR point estimator for scenario 2 is then defined as

ŜNR2 = γ2

√
∆µT S̃−1∆µ, (4)

where γ2 =
√
2π/(m+ n− 1)/B((m + n − p − 1)/2, 1/2)

and B(x, y) is the Euler Beta function.

B. Sampling Distribution and Optimality

It turns out that the sampling distribution of our SNR esti-
mator is closely related to the inverted gamma distribution. If
a random variable, X , follows an inverted gamma distribution
with parameters α and β, we will write X ∼ IG(α, β). The
following theorem characterizes ŜNR2.

Theorem 1. Under our assumptions, if m+ n− p > 2, then
(i) (ŜNR2)

2 ∼ IG(α, β) with α = (m + n − p)/2 and
β = η2 SNR2 where η2 = (m+ n− 1)γ2

2/2

(ii) ŜNR2 is the UMVU (uniformly minimum variance unbi-
ased) estimator for SNR

(iii)
√

Var[ŜNR2] = τ2 SNR with τ2 =
√

2η2

(m+n−p−2) − 1 .

From the above theorem, we can make several observations.
First, the distribution of ŜNR2 only depends on two inde-
pendent parameters: m + n − p and SNR. We will rely on
this fact later in our confidence interval evaluations. Second,
our SNR estimator is optimal in that it is the minimum
variance estimator among all unbiased estimators of SNR
under scenario 2. Last, the ratio of the mean of ŜNR2 to its
standard deviation only depends on m+ n− p. This property
enables quick sample-size estimates when setting up a study.
Later, in Section V, we will see that part (iii) can also be used
to construct useful approximate confidence intervals.

IV. EXACT CONFIDENCE INTERVALS

Remarkably, ŜNR2 can be used to construct confidence
intervals for SNR and AUC with exactly-known coverage
probabilities. This original result is stated in the next theorem.

Theorem 2. Let X = (ŜNR2)
2 and let ω1, ω2 ∈ (0, 1) with

ω1 + ω2 = ω ∈ (0, 1). Then, under our assumptions,
(i) For each observation x of X , there exist unique

values βL(x) and βU (x) in (0,∞) satisfying
FX(x ; α, βL(x)) = 1−ω1 and FX(x ; α, βU (x)) = ω2,
where FX(x ; α, β) is the cdf of the inverted gamma
distribution with α = (m+ n− p)/2.

(ii) Let η2 = (m+ n− 1)γ2
2/2, then[√

βL(X)/η2,
√
βU (X)/η2

]
and[

Φ(
√
βL(X)/2η2 ), Φ(

√
βU (X)/2η2 )

]
are exact 1− ω confidence intervals for SNR and AUC.

Thus, we can calculate confidence intervals with a coverage
probability of 1−ω for both SNR and AUC from a realization
of ŜNR2, by numerically solving the equations in Theorem 2(i)
for βL and βU and then inserting these values into the relations
of Theorem 2(ii). Plots of mean confidence interval length
(MCIL) for the exact AUC confidence intervals of Theorem 2
are shown in Fig. 1. For these plots, MCIL was computed
with an accuracy of 10−6 using numerical integration and our
knowledge of the distribution for (ŜNR2)

2.

V. APPROXIMATE CONFIDENCE INTERVALS

While being exact, the confidence intervals introduced in
the previous section require sophisticated numerical machinery
for their computation. In this section, we introduce simpler,
but approximate, confidence intervals that are robust and
straightforward to compute. These confidence intervals are
constructed by using part (iii) of Theorem 1 together with
assumptions of asymptotic normality, as described next.
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Fig. 1. Mean confidence interval length (MCIL) plotted versus m+ n− p
for the AUC confidence intervals of Theorem 2. The solid curves are for 95%
intervals with ω1 = ω2 = 0.025, and the dashed curves for 99% intervals
with ω1 = ω2 = 0.005. Left: AUC value of 0.6. Right: AUC value of 0.9.

Assuming that (ŜNR2−SNR)/(τ2ŜNR) approximately fol-
lows a standard normal distribution, the usual Wald-style 1−ω
confidence interval is found to be[

ŜNR2

(
1− τ2zω/2

)
, ŜNR2

(
1 + τ2zω/2

)]
, (5)

where zω/2 = Φ−1(1 − ω/2) is a standard normal quantile.
Alternatively, the explicit dependence of the variance of ŜNR2

on SNR enables construction of a Wilson-style confidence
interval [10]. Namely, supposing that (ŜNR2−SNR)/(τ2SNR)
approximately follows a standard normal distribution, we
obtain the Wilson-style 1− ω confidence interval[

(ŜNR2)/(1 + τ2zω/2), (ŜNR2)/(1− τ2zω/2)
]
, (6)

where we assumed that 1− τ2zω/2 > 0.
Note from (5) and (6) that the endpoints for the Wald and

Wilson style intervals for SNR are both strictly positive and
well-defined if 1− τ2zω/2 > 0. For 95% and 99% confidence
intervals, this condition is satisfied if m+ n− p is at least 5
and 6, respectively.

Since AUC is related to SNR through a strictly increasing
transformation, we can obtain approximate 1−ω intervals for
AUC from the above Wald and Wilson intervals by transform-
ing them accordingly. Moreover, the coverage probabilities of
these AUC intervals are exactly the same as the SNR intervals.

Because we know the sampling distribution for ŜNR2,
we can analytically calculate the coverage probabilities for
the approximate Wald and Wilson-style intervals; we omit
the details here for brevity. It turns out that the coverage
probabilities for the Wald and Wilson intervals have the unique
property of being independent of SNR, which enables easy
evaluations. The coverage probabilities for the approximate
95% and 99% Wald and Wilson-style confidence intervals are
plotted in Fig. 2. They indicate that both types of confidence
intervals are highly accurate and quickly approach the desired
coverage probability. They also show that the Wald-style
intervals generally have more accurate coverage probabilities.
The same conclusion applies to AUC confidence intervals
obtained as strictly increasing transformations of the Wald and
Wilson SNR intervals.

The plots in Fig. 3 compare the relative differences in MCIL
of the Wald and Wilson AUC intervals to the exact AUC
confidence intervals introduced in Section IV with ω1 = ω2.
We have observed that the 95% and 99% Wald intervals are
always slightly larger than the exact AUC confidence intervals,
with the discrepancy increasing with AUC value. For the
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Fig. 2. Coverage probabilities of approximate 95% (Left) and 99% (Right)
Wald and Wilson confidence intervals for SNR.
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Fig. 3. Relative difference in mean confidence interval length for 95% AUC
confidence intervals. Left: AUC value of 0.6. Right: AUC value of 0.9.

Wilson intervals, the situation is more complex. Specifically,
the Wilson intervals are larger than the Wald intervals for small
AUC values, with the difference shrinking until the Wilson
intervals become smaller for AUC values greater than 0.8.

The approximate Wald and Wilson AUC confidence inter-
vals are both simple alternatives to the exact AUC intervals
of Section IV. From our evaluations, it appears that the Wald
intervals are slightly more attractive than the Wilson intervals
when AUC is smaller than 0.8. Whereas the Wilson intervals
may be preferred when AUC is larger than 0.8.

VI. EXAMPLE

To illustrate our theory, we now present an image quality
comparison of three fan-beam CT image reconstruction meth-
ods. This example involves a known-location, background-
variable classification task in which a CHO is applied to
discriminate between two types of kidney stones.

According to Kambadakone at al. [11], knowledge of kidney
stone composition is an important factor influencing patient
management. In particular, CT attenuation measurements have
been found to be valuable for differentiation of uric acid stones
from other stone types [11]. Motivated by this knowledge,
we selected the task to consist of discriminating between
a uric acid stone (450 HU) and a struvite stone (600 HU)
at a fixed location in the left kidney (recall that the left
kidney is commonly displayed on the right side of transverse-
plane CT images). For our observer, we used a CHO with
three symmetric difference of Gaussian (DOG) channels [12]
centered on the kidney stone.

To generate kidney images, we used the XCAT phantom
slice shown in Fig. 4. All images were reconstructed for a 96×
96 region of interest (ROI) centered on the left kidney, with a
pixel size of 1 mm by 1 mm. Since the XCAT phantom kidneys
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are relatively simple, we added additional realism to the left
kidney as follows. First, a circular disk of fat with a random
radius between 5 mm and 10 mm was added to the kidney,
near the ureter. Second, a random background was added to
the kidney to simulate texture. This variable background was
modeled as colored Gaussian noise following a power law
model with an exponent of two, as described in [13], with
an amplitude of ±6 HU. Last, a kidney stone of diameter
4 mm was added at a fixed location, with attenuation values
of 450 HU for class 1 and 600 HU for class 2; see Fig. 4. Once
a realization of the phantom was defined, fan-beam sinograms
were computed as in [4]. Poisson noise with a photon level of
20,000 was added to the data with additional models for tube
current modulation and a bowtie filter [4].

We compared three fan-beam filtered backprojection (FBP)
image reconstruction algorithms: A: Noo et al. [14] for full-
scan data, B: Dennerlein et al. [15] for full-scan data, and
C: Noo et al. [14] for short-scan data (240◦). All algorithms
were implemented so that resolution was matched near the
field of view center. Algorithms A and B were expected to
yield comparable CHO performance, whereas algorithm C was
anticipated to be worse since it uses less CT data.

To carry out the evaluation, 150 class-1 sinograms and
100 class-2 sinograms were generated. Every sinogram was
reconstructed with the three algorithms to yield three sets of
250 images, i.e., one set for each reconstruction method. In
addition, the difference of image class means was calculated
for each reconstruction algorithm by reconstructing the two
types of kidney stones without noise and then taking their
difference. Finally, AUC confidence intervals describing CHO
performance were estimated for each reconstruction algorithm.

Multivariate normality of the channel outputs was validated
at the 10% significance level with the Henze-Zirkler normality
test [16]. To account for correlations, the coverage probability
for each confidence interval was selected to be 98.33% so
that the joint coverage probability for the three intervals was
at least 95% by the Bonferroni inequality. Since the AUC
values were all above 0.8, the Wilson-style AUC confidence
intervals were used. The results, given in Table 1, indicate
that algorithms A and B were both better than algorithm C
with statistical significance. However, there was no statistically
significant difference between algorithms A and B. These
observations are consistent with our expectations.

VII. DISCUSSION AND CONCLUSIONS

We have presented refinements and extensions of the results
in [9] that make CHO performance estimation with known-∆µ
more attractive. In particular, we have developed an unbiased
SNR point estimator, extended our theory to unequal numbers
of images from each class, and proposed both exact and ap-
proximate confidence intervals. Naturally, the results presented
here retain the statistical advantage that was observed in [9],
since our theory is based on an SNR point estimator that is
closely related to an SNR2 estimator in [9]. The practical
use of our theoretical results was demonstrated with a task-
based image quality evaluation of three fan-beam CT image
reconstruction algorithms.

Fig. 4. (Left) Slice of the XCAT phantom. (Middle) ROI centered on left
kidney. (Right) A noisy reconstruction. Grayscale: [-150, 250] HU

A: [0.915, 0.956]
B: [0.912, 0.953]
C: [0.817, 0.869]

TABLE I
WILSON-STYLE 98.33% AUC CONFIDENCE INTERVALS FOR THE THREE

RECONSTRUCTION METHODS.
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A B-spline based and computationally performant
projector for iterative reconstruction in tomography

Application to dynamic X-ray gated CT
Fabien Momey, Loı̈c Denis, Catherine Mennessier, Éric Thiébaut, Jean-Marie Becker, Laurent Desbat

I. INTRODUCTION

ITERATIVE reconstruction methods for tomography have
long proven their potential to enhance reconstruction qual-

ity, compared to the filtered backprojection (FBP) [2]. The
drawback of iterative methods is their expensive computation
time. However ongoing researches on algorithms and recent
enhancements in computational power, call for a re-evaluation
of the potential of iterative reconstruction in this domain.

Such methods require an accurate numerical modelization
of the data acquisition process: the so-called projector. The
representation of the object of interest (image) is the starting
point of the projector. It is assimilated to a continuous function
decomposed on a discrete basis of functions. The choice of
this basis is essential for an accurate representation of the true
function. Standard models such as voxel driven or ray driven
[5] are based on raw samples, yielding modelization errors and
artifacts on the reconstructed image. More advanced models,
such as the recent distance driven [1] projector, define the
function at any point considering staircase voxels, and thus
make a better modelization. However such a basis of functions
provides a coarse representation of the image because of its
anisotropic behaviour, causing large modelization errors. Such
issues can be dealt with the spherically symmetric volume
elements, mostly known as blobs [7] [8] [9] [10] [11], but at
the cost of increased complexity. Finally, for implementation
purposes, the projection of the staircase voxel, in the distance
driven model, is approximated, increasing its modelization
errors.

We propose the use of B-splines as an alternative to both
staircase voxel and blob approaches. B-splines are well known
piecewise polynomial functions, and are characterized by the
degree of their constituting polynomials. Recent works in
sampling theory [18] [19] [15] have shown their efficiency
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Université Jean Monnet, Saint-Étienne, France (telephone: +33 478 868 546,
e-mail: author fabien.momey@univ-lyon1.fr).

Loı̈c Denis is with the Laboratoire Hubert Curien.
Catherine Mennessier is with the Laboratoire Hubert Curien, and with the

engineer school CPE, Lyon, France.
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in representing a continuous signal, with a good recovering
accuracy. Increasing their degree makes them more and more
similar to the 3D Gaussian functions, with a quasi-isotropic
behaviour, while keeping local influence and separability prop-
erty.

This gives us clues to develop a new efficient numerical pro-
jector for iterative reconstruction. One of the most important
improvements we get is the reduction of the angular sampling
of projections without any loss of quality.

Such an improvement is particularly of interest in the case
of dynamic gated X-ray CT, which can be considered as a
tomographic reconstruction problem with very few projection
data, and for which we show some preliminary results.

II. MATERIALS AND METHODS

A. Use of B-splines for image representation

Let f : x 7→ f(x), with x = (x1, x2, . . . , xn) ∈ Rn, be the
n-dimensional continuous function modelizing the true image
to be reconstructed. Its decomposition on a discrete basis of
functions gives:

f(x) =
∑
k∈Zn

ckϕk(x) =
∑
k∈Zn

ckϕ(x− xk) (1)

where this discrete shift-invariant basis is assumed to be com-
posed of the compact atom function ϕ(x), regularly spaced on
a n-dimensional grid of N samples. k = (k1, k2, . . . , kn)T ∈
Zn corresponds to indexes of the N samples of the discrete
grid in the n-dimensional space, xk = (xk1 , xk2 , . . . , xkn)T ∈
Rn are the coordinates of this discrete grid.

For numerical purposes, f is described as a vector of its N
coefficients:

c = (c1, c2, . . . , cN )T ∈ Rn (2)

The choice of the atom function ϕ of the basis is essential
for warranting consistency with the image intrinsic continuity.
It will be a key point for the design of the projector which
has to modelize accurately the data.

B-splines are piecewise polynomial functions with degree d,
continuously differentiable up to order d− 1 [18]. Let β0(x)
be the rectangular pulse. Thus βd is a B-spline of degree d,
constructed by d convolutions of β0.

βd(x) = β0 ∗ · · · ∗ β0︸ ︷︷ ︸
d+1 terms

(x) (3)
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Hence going back to the formulation of the image representa-
tion in (1), we choose B-splines as our basis of functions ϕ,
leading to:

f(x) =
∑
k∈Zn

ckβ
d
k(x) =

∑
k∈Zn

ckβ
d(x− xk) (4)

Classical basis functions used by some existing projectors
are the simple staircase voxels. This is the case for the distance
driven projector [1]. These functions are advantageous for
being the most compact B-splines (of degree 0), easy to manip-
ulate. However, staircase voxels suffer from a high anisotropic
behaviour. They constitute a too coarse basis of representation
of a continuous object, leading to large modelization errors. A
finer sampling rate lowers these errors, but at the cost of an
increased computational burden.

The accuracy of the model can be improved using B-
splines of higher degree. Indeed B-splines are close to a
Gaussian function when their degree d is large. Thus they tend
to spherically symmetric function, while preserving a local
support. As a result we can deal with quasi-isotropic functions.
We also get a better approximation order in the modelization
of f(x). These two properties are related by the fact that B-
splines are the shortest and smoothest scaling functions for a
given order of approximation [19].

B. Projector

We consider a general tridimensional system with coordi-
nates x = (x, y, z) linked to the object of interest. The regular
sampling grid is therefore identified by the samples positions
xk, corresponding also to the center of each basis function βdk.
Then we consider a flat detector, with coordinates u = (u, v).
The detector acquires the projection with a given orientation
denoted θ. Let c be the vector of coefficients of the image,
defined in (2). The numerical data modelization at orientation
θ is:

gθ = Rθ · c , gθq =
∑
k∈Ωθq

Rθqk · ck (5)

where Rθ is the projector and gθ is the resulting data vector,
the elements of which are noted gθq . The coefficient Rθqk of the
matrix Rθ is the contribution of the voxel function k on the qth

data element. Ωθq is the set of voxels k impinging the θ-oriented
detector pixel q. Let Pq : u 7→ Pq(u) = β0(u − uq) be the
qth detector pixel response, assumed to be a 2D rectangular
pulse, centered at position uq . This response is shift-invariant
over each detector pixel. Thus:

Rθqk =

∫ ∫
F θk(u) · Pq(u) du (6)

F θk is the footprint of the basis function βdk. It is nothing else
than the X-ray transform of this function on the θ-oriented
detector, along each ray trajectory {S(θ), ~r(θ,u)} crossing it,
and impinging the detector plane at the position u.

F θk(u) =

∫
x∈{S(θ),~r(θ,u)}

βdk(x) dx (7)

A given projector Rθ determines the expression of this
footprint F θk . Obviously, F θk depends on the chosen basis of
functions. Moreover some approximations are often made in
the calculation of this footprint and its contribution to detector
pixels, in order to lower the computation cost.

Our approach uses the quasi-isotropy property of B-splines
of higher degree, stated in section II-A, to suppose that the
footprint is identical whatever the orientation θ. As a result, we
first state that the footprint of βdk, in parallel beam geometry,
is a n − 1-dimensional B-spline of degree d, separable over
the detector axis. For the 3D case, this gives:

F θk(u) = βd(u− uk) · βd(v − vk) (8)

where (uk, vk) = uk is the position, on the detector, of the
projection of the center xk of βdk.

In the case of cone beam geometry, the magnification effect
has to be taken into account, as well as the distorsion effect
depending on the position of the voxel in the field of view.
For the 3D case, this gives:

F θk(u) = βd
(

u

ΓθS · δuk

− uk
)
· βd

(
v

ΓθS · δvk
− vk

)
(9)

ΓθS is the magnification factor; δuk et δvk are the distorsion
factors.

A study of modelization and approximation errors of our
model, compared with the distance driven model, has been
done previously in [12], and has proven its better accuracy. We
have shown that the use of cubic B-splines (degree 3) already
reaches almost the best accuracy. However such a gain is at
the cost of an increase of the required number of operations,
due to the larger footprint of a given voxel as a function of
the B-spline degree, as shown in Fig.1. But at the degree 3, it
is only about 6 times larger, which remains is the same range
of computational burden. Moreover our projection scheme,
as well as the staircase voxel based approaches, is highly
parallelizable, making possible to optimize the implementation
for speeding up the calculation.
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Fig. 1. Number of operations involved in the calculation of the 3D B-spline
based projector, as a function of the B-spline degree and the number of voxels
in each direction, compared with the distance driven projector.

III. RESULTS ON 2D FAN BEAM RECONSTRUCTIONS

A linear detector, linked to the fan beam source, is consid-
ered. The set source-detector rotates around the 2-dimensional
object of interest. The B-spline coefficients of the image c,
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are reconstructed from the set of projections g = {gθ|θ ∈ Θ},
where Θ is the set of projection angles, by minimization of:

c = argmin
ĉ

∑
θ∈Θ

||gθ − Rθ · ĉ||2W︸ ︷︷ ︸
data residuals

+ µ ·Ψ(Φ · ĉ)︸ ︷︷ ︸
regularization term

(10)

where || · ||2W corresponds to the weighted least squares term.
The weighting matrix W is the inverse of the noise covariance.
Ψ : f 7→ Ψ(f) is a regularization operator applied to the image
in the samples space. The interpolation operator Φ, which
transforms the B-spline coefficients in samples values, can be
applied using fast digital filtering operations [16] [17] [18], as
well as its inverse. Thus the additional computational burden
is negligible. The regularization we use is a relaxed total
variation prior [14]. The minimization of (10) is performed
with a quasi-Newton optimization algorithm: the L-BFGS
method [13].
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Fig. 2. (a) Reconstructions of a Shepp-Logan phantom 256×256, from a set
of 60 projections with 512 detector pixels, with both the B-spline projector
using cubic B-splines and the distance driven projector. Visualization in
Hounsfield units. Reconstructions from noisy data (additional non-stationary
Gaussian noise with a signal to noise ratio of about 3000), obtained with
the value of µ giving the best visual image quality. (b) Normalized root
mean square error in 2 regions of interest (ROI) of the reconstructed image,
for various values of the hyperparameter µ (logarithmic scale). The ROIs
are indicated on the image, with the corresponding color on the graphs.
Solid curves : reconstructions with the B-spline projector. Dashed curves :
reconstructions with the distance driven projector.

Fig.2 shows some of the previous results obtained in [12].
We had reconstructed a 256×256 Shepp-Logan phantom, from
a set of 60 projections with 512 detector pixels, calculated
analytically. The sampling rate was the same for both voxels
and detector pixels. The reconstructions were performed with
both our B-spline based projector, using cubic B-splines, and
the distance driven projector, for comparison. The data were
corrupted by a non-stationary Gaussian noise, with a signal to
noise ratio approximately 3000.

Fig.2(a) displays some reconstructed images, obtained in
[12]. The best value of the hyperparameter µ is found, which
gives the best qualitative visual quality of the reconstructed

1 7 13 19

Fig. 3. Dynamic Shepp-Logan phantom 512× 512. A 5 seconds period of
motion is chosen and 25 frames are extracted. The frames 1, 7, 13 and 19
are represented. The position of each frame’s date in the temporal sinusoidal
signal is indicated. The red ellipse corresponds to the trajectory of the small
circular insert in the left big ellipse distorted over time.

image. Our B-spline based projector leads to a better im-
age quality than distance driven, without regularizing a lot.
Fig.2(b) shows curves of the normalized root mean square
error (RMSE), calculated on 2 regions of interest (ROI) taken
on the image, as a function of the hyperparameter µ, using
both the B-spline based projector using cubic B-splines (solid
curves) and the distance driven projector (dashed curves). The
curves show that, for each ROI, the B-spline based projector’s
RMSE is always lower than the distance driven projector’s
RMSE. Thus for this given evaluation metric, our projector
shows again the best performances.

IV. APPLICATION ON SIMULATED 2D DYNAMIC X-RAY
GATED CT

We experiment our projector in the context of dynamic
X-ray tomography. More precisely we simulate a 2D case
of gated iterative reconstruction of a Shepp-Logan phantom,
some ellipses of which see its parameters periodically moving
over time (semi-minor or major axis, center’s position). Hence
the motion of the phantom’s ellipses can be either translations
or distorsions. The temporal signal associated to the periodic
variation of the parameters is a sinus function, that is to say
that the speed of motion is not constant over a period. Fig.3
shows frames of the simulated object. Each frame’s size is
512 × 512. The speed of the motion is almost the fastest for
frames 1 and 13, and almost the slowest for frames 7 and 19.
For instance the trajectory of motion of the small circular insert
in the left big ellipse is indicated on Fig.3 for illustration. The
position of the frame’s date in the temporal sinusoidal signal
is also indicated.

The geometry of the acquisition system is the same as in III,
but now a period is defined for a whole rotation of the detector
around the object. We choose this acquisition time to be equal
to 120 seconds. During this period, 600 projections, regularly
spaced in time, and on 360◦, are simulated analytically from
the state of the object at the corresponding date. The period
of motion lasts 5 seconds. As a result 24 periods of motion
occur during the acquisition. We want to be in gated mode, so
we reconstruct 25 frames of a period of motion of the object,
such that a given projection is exactly registered to a given
frame. Hence we have 25 frames, each one repeated 24 times
during the acquisition, thus associated with 24 projections
regularly spaced on 360◦. It is very important to notice that
this problem results in reconstructing each frame from very
angularly undersampled data.
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Fig. 4. Frame 13 of the reconstructed gated 128 × 128 Shepp-Logan
sequence, with both the B-spline projector using cubic B-splines (right)
and the distance driven projector (left). The reconstructed images are re-
interpolated on a finer 512× 512 grid, using cubic B-spline interpolator.
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using cubic B-splines (right) and the distance driven projector (left). The
reconstructed images are re-interpolated on a finer 512 × 512 grid, using
cubic B-spline interpolator.

From this set of projections, we perform gated reconstruc-
tions of the 25 frames. The reconstruction of this sequence is
performed globally, each frame reconstruction following the
same optimization scheme as in Eq.10, for the data residuals’
part. A global spatio-temporal regularization is performed
on the ”2D + time” sequence, which consists in the same
regularizer used in III, but extended to 3 dimensions to take
into account the temporal correlation between frames.

Fig.4 shows preliminary results of reconstructions, with
both our B-spline based projector, using cubic B-splines, and
the distance driven projector, for comparison. We focus our
visualization on a single frame, the 13th, at which the speed
of the motion is faster. The reconstructed 128 × 128 images
are re-interpolated on a finer 512 × 512 grid, using a cubic
B-spline interpolator, for a better image quality. We can see
the better visual quality of the frame reconstructed with our
B-spline projector.

Fig.5 shows profiles of the reconstructions shown in Fig.4,
for a more precise evaluation. Again the superior ability of
our projector to recover finer details is visible.

V. CONCLUSION AND FURTHER WORKS

We have presented a new type of numerical projector for
iterative reconstruction in tomography. It is based on the use

of a basis of separable 3D B-splines, which is much more
adapted for data modelization than the staircase voxels.

We have demonstrated the better accuracy of our projec-
tor based on cubic B-splines, on 2-dimensional regularized
iterative reconstructions, from simulated data, using a small
number of projections, compared with the distance driven
projector.

We also have studied its behaviour in the context of dynamic
gated X-ray tomography. The fact that the temporal dimension
has to be included in the reconstructed image, i.e. it becomes
a ”2D + time” image, reduces drastically the number of
projections available for a given temporal frame. Preliminary
results have again shown that the accuracy of the projector is
a key point to deal with this lack of data in the reconstruction
process, and to make the best use of available information.
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Toward quantifying admissible undersampling of
sparsity-exploiting iterative image reconstruction

for X-ray CT
Jakob H. Jørgensen, Emil Y. Sidky, and Xiaochuan Pan

Abstract—For the discrete-to-discrete X-ray CT imaging model
we propose a sufficient sampling condition (SSC) in order to
establish existence of a unique and stable solution. We demon-
strate in a numerical simulation modeling breast CT how the
SSC can be used to quantify the undersampling admitted by TV-
minimization. Our results indicate a direct connection between
the sparsity of the image and the admitted undersampling. Also,
the SSC reveals an asymmetry between view- and detector bin-
undersampling, which explains differences in obtainable recon-
struction quality.

Index Terms—Compressed sensing, total-variation, sampling
conditions, undersampling, iterative image reconstruction

I. INTRODUCTION

In recent years, the field of compressed sensing (CS) [1],
[2] has motivated much development in sparsity-exploiting
iterative image reconstruction (IIR) for X-ray computed to-
mography (CT). CS promises accurate reconstruction from
less data than is required by standard IIR methods, such as
the algebraic reconstruction technique (ART). This is made
possible by exploiting sparsity, i.e., few non-zeros in the
image or of some transform applied to the image. What
is seldom discussed, however, is that the theoretical results
from CS do not extend to the CT setting. CS only provides
theoretical guarantees of accurate undersampled recovery in
case of random or certain special measurement matrices, not
deterministic matrices such as CT system matrices. Neverthe-
less, sparsity-exploiting methods, such as total-variation (TV)
minimization and the use of wavelet-expansions, have been
shown empirically to allow accurate reconstruction, both from
simulated ideal data, as well as clinical scanner data [3], [4].

One fundamental problem in uncritically applying sparsity-
exploiting methods to CT is that there is no quantitative notion
of full sampling: While results exist for analytic inversion
methods based on the continuous-to-continuous (CC) imaging
model [5], no similar results exist for the discrete-to-discrete
(DD) model, which is the one employed in most IIR, including
sparsity-exploiting methods. As is well-known, and as we will
demonstrate, it is not sufficient to have a square system matrix
for ensuring that there is a unique well-defined solution image.
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Furthermore, CT-matrices can be numerically ill-conditioned,
which makes the solution unstable w.r.t. noisy measurements.

The present paper proposes a sufficient sampling condition
(SSC), which is to serve as a reference for quantifying
the undersampling sparsity-exploiting reconstruction methods
allow for, here TV-minimization. The SSC is based on the
condition number of the CT system matrix. The use of the SSC
is demonstrated in a numerical simulation modeling breast CT,
and leads to a possible explanation of the potential in few-view
reconstruction using TV-minimization.

In Sec. II we define the DD imaging model, in Sec.
we present our SSC, and in Sec. IV we demonstrate the
application in a breast CT simulation study.

II. DISCRETE-TO-DISCRETE IMAGING MODEL FOR
CIRCULAR FAN-BEAM GEOMETRY

A. Continuous-to-continuous and discrete-to-discrete models

Analytic reconstruction algorithms, e.g., filtered-back pro-
jection (FBP), rely on inversion formulas for the continuous-
to-continuous (CC) cone-beam or X-ray transform model

g[~s, ~θ] =

∫ ∞

0

dtf(~s+ t~θ), (1)

where g, the line integral over the object function f from
source location ~s in the direction ~θ, is considered data.

For IIR algorithms, the CC imaging model is discretized
by expanding the object function in a finite expansion set,
e.g., in pixels/voxels. The digital sampling of the CT device
is accounted for by directly using the sampled data without
interpolation. The discrete-to-discrete (DD) imaging model

~g = X ~f, (2)

is hereby obtained. ~g is a finite set of ray-integration samples,
~f the object expansion coefficients, and X the system matrix
modeling the ray integration. (2) is solved by an IIR method,
such as ART, expectation-maximization (EM) or variants.

B. Circular fan-beam geometry

As an example, we use the most common setup: circular
fan-beam CT with equi-angular projection spacing. In the CC
model, we have the source location specified by the scalar
(angular) parameter λ, ~s(λ) = R0(cosλ, sinλ), where R0 is
the distance from the center-of-rotation to the X-ray source.
The detector bin locations are given by

~b(λ, u) = (R0 −D)(cosλ, sinλ) + u(− sinλ, cosλ),
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Fig. 1. Condition numbers for system matrices (line intersection) modeling circular fan-beam projection data from the 812 pixels circular FOV contained
within a 32×32 pixel square. Left: number of bins is fixed at 64. Right: the number of views is fixed at 64.

where D is the source-to-detector-center distance, and u
specifies a position on the detector. We divide the 2π arc
into Nviews arranged at equally spaced angular intervals, so
that the source parameters follow λi = i2π/Nviews, and
i ∈ [0, Nviews − 1]. The detector is subdivided into Nbins,
uj = umin + (j + 0.5)∆u, where DL is the detector length,
umin = −DL/2, ∆u = DL/Nbins, and j ∈ [0, Nbins − 1].
The detector length is determined by requiring it to detect
all rays passing through the largest circle inscribed within
the square N × N image array. Only this central circle is
visible from all views and only pixels within are considered
variable. The resulting number of unknown pixel values Npix
is Npix ≈ (π/4)N2. The dimensions of the projector X are
M = Nviews × Nbins rows (number of ray integrations) and
Npix columns (number of variable pixels). The elements of X
are computed by the line-intersection method, where Xm,n is
the intersection length of the mth ray with the nth pixel.

III. SUFFICIENT SAMPLING CONDITIONS

The basic sufficient sampling condition (SSC) is that the
null space of X is empty, because if it is not, then multiple
images yield the same data. For the matrices typically used
in CS, such as random matrices or partial discrete Fourier
transform matrices, an empty null space is obtained when the
number of rows in X equals the number of columns. For CT,
however, this is not necessarily true, as we will demonstrate,
and hence, more samples are needed. This means that we can
not directly use M = Npix as SSC. Even if X has an empty
null space, it might be numerically ill-conditioned leading
to an unstable solution in presence of noise. The condition
number κ(X) = σmax/σmin, i.e., the ratio of the max. and
min. singular values of X , reveals both a non-empty null
space, by κ(X) being ∞, and ill-conditioning, by κ(x) � 1.

To gain intuition on the dependence κ(X) on the number
of views and detector bins for a fixed image representation,
we carry out the following experiment: We set up a small
N = 32 image array, with a total of Npix = 812 pixels, and
generate system matrices X for different numbers of views and
detector bin sampling: Nviews ∈ [8, 128] and Nbins ∈ [8, 128].
Our first observation is that at Nviews = 64 and Nbins = 13,
we have M = 832 > 812 = Npix, but κ(X) is infinite.
This confirms that it is not enough for SSC to have more
rows than columns in X . In Fig. 1, we have mapped out

κ(X) for fixed Nbins = 64 and Nviews ∈ [32, 128] as well
as for fixed Nviews = 64 and Nbins ∈ [32, 128]. Each sampling
configuration in the shown range leads to a well-posed linear
system (2), but it is clear that the more sparsely sampled
end of the study has relatively large condition number. Going
to more samples, the condition number decreases, however,
the decrease is asymmetric in Nviews and Nbins. The decay
with Nviews is quite gradual while that of Nbins is step-like at
Nbins = 48. It would be mathematically tidy to define SSC
as simply the values of Nbins and Nviews where κ no longer
decreases, but we must take into account the practical issue
that adding views to the data scan is expensive. Based on
Fig. 1, we therefore select the sampling condition

Nviews = 2N and Nbins = 2N, (3)

as values that provide a reasonable balance between sampling
and condition number. While the presented results are for N =
32, we found a similar behavior of κ(X) for larger N , and
hence we can use Nviews = 2N , Nbins = 2N as a simple, yet
useful, definition of sufficient sampling.

In the remaining part of the paper, we carry out a numerical
simulation for evaluating the proposed SSC. While the exam-
ple is breast CT, the approach is not limited to this application.

IV. NUMERICAL SIMULATIONS

A. Breast CT background

Breast CT is considered a possible screening or diagnostic
tool for breast cancer. System requirements are challenging
as total exposure must be similar to the two full-field digital
mammograms used in screening exams. Breast CT acquires
on the order of 500 X-ray projections, i.e., 250 times more
projections sharing the same exposure. Sparsity-exploiting IIR
algorithms can potentially reconstruct from fewer views and
hence allow for an increased exposure per view.

We employ the breast phantom displayed in Fig. 3 (left),
which consists of Npix = 51468 pixels within the circular
image region, contained in a 256× 256 array. A small region
of interest (ROI) contains 5 tiny ellipses modeling microcal-
cifications. The gray values are in units of the attenuation of
water: 1.00 (fat), 1.10 (fibroglandular tissue), 1.15 (skin) and
1.9−2.3 (microcalcifications). The sparsity, i.e. the number of
non-zeros, in the gradient magnitude image is approx. 10,000,
or roughly one fifth of Npix.
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Fig. 2. Image RMSE for `2-TV and `2-magnitude reconstructions with ε = 10−5. Left: Fixed Nbins = 2N = 512, and Nviews ∈ [32, 512]. Right: Fixed
Nviews = 2N = 512, and Nbins ∈ [32, 512].

Fig. 3. Left, upper: 256×256 pixelized breast CT phantom. Microcalcifications are seen in the upper right quarter and magnified in the ROI inset. Left,
lower: the gradient magnitude image, which has a sparsity of approx. 10,000 non-zero pixel values. Right, top and bottom: `2-magnitude and `2-TV with
ε = 10−5 reconstructions, respectively. From left to right 32, 40, 48, 64 view data, with the number of detector bins fixed at 512. The gray scale window
for the complete image is [0.95, 1.20], and for the ROI insets [0.9, 1.8].

B. Simulation setup
A common sparsity-exploiting IIR is total-variation (TV)

minimization, which exploits that typical CT-images consist
of fairly well-separated regions of constant gray-level, i.e., are
sparse in the image gradient magnitude. We consider here TV-
minimization subject to the constraint

1

NviewsNbins
‖X ~f − ~g‖22 ≤ ε2, (4)

i.e., the data residual norm (normalized to facilitate compar-
ison of different sampling levels) is to be smaller than a
parameter ε. For a non-sparsity-exploiting reference method,
we employ Tikhonov regularization, here in the equivalent
constrained formulation:

`2-TV: ~f∗ = argmin
~f

‖~f‖TV s.t. (4), (5)

`2-magnitude: ~f∗ = argmin
~f

‖~f‖22 s.t. (4). (6)

Here, ‖~f‖TV is the discrete TV of ~f ,

‖~f‖TV =

Npix∑
j=1

‖Dj
~f‖2, (7)

where Npix is the number of pixels and Dj is the forward
difference approximation to the gradient at voxel j.

Both problems are solved by converting to the equivalent
Lagrangian formulation and applying an optimal gradient-
based optimization algorithm described in [6].

C. Simulation results

We fix Nbins = 512 and vary the number of views Nviews ∈
[32, 512], evenly distributed over a 2π scanning. Similarly, we
fix Nviews = 512 and vary Nbins in the same range. Ideal data
is generated from forward projection of the discrete phantom.
No noise is added. While ideal data would call for ε equal
to zero, we use ε = 10−5 since we are interested in the
ideal case behavior of an optimization problem that allows for
reconstruction from noisy data. The root mean square error
(RMSE) of the reconstructed images relative to the original
discrete phantom are shown in Fig. 2, and selected images are
shown in Fig. 3. To help in the interpretation of the results,
two reference lines are drawn in the graphs. The vertical line
indicates the smallest number of views, Nviews = 101, for
which the number of samples Nviews ×512 is larger than Npix.
For fewer Nviews the null space is non-empty; for ensuring
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emptiness, we typically need slightly more samples, due to
possible linear dependence, as we saw earlier. The horizontal
line shows the minimum gray level contrast, 0.05, in the
phantom and provides a reference for the RMSE. A much
smaller RMSE indicates visual closeness of the reconstructed
image to the original phantom.

For varying Nviews, the `2-magnitude RMSE decays grad-
ually w.r.t. Nviews until becoming nearly flat at our proposed
SSC, Nviews = 2N = 512. It seems reasonable to have SSC be
at a point where no further improvement is obtained. `2-TV
shows a much faster transition to low RMSE images already
at Nviews ≥ 50, much lower than `2-magnitude, and, in fact,
also than the vertical reference line. For fewer views, quality
quickly deteriorates, and the RMSE approaches that of the `2-
magnitude at Nviews = 32. The step-like shape for `2-TV at
Nviews ≈ 50 indicates that this number of views is sufficient for
accurate `2-TV reconstruction for the present phantom image.

For varying Nbins, both `2-magnitude and `2-TV need a
larger number of samples before no more improvement can
be obtained. Moreover, and somewhat surprisingly, the `2-TV
behavior is quite different, in that the transition is much more
gradual and the flat portion does not extend to nearly as low
a sampling rate. This demonstrates an asymmetry in sampling
of the two parameters of X . A possible explanation is found
in the condition number dependence on Nviews and Nbins from
Fig. 1, where a similar asymmetry was seen. It seems that if
we decrease Nbins below 2N the condition number increases
quickly leading to the reduced reconstruction quality. For
reducing Nviews, where the condition number increases more
gradually, there is a more limited loss in reduction. Clearly,
we need to make the distinction between view undersampling
and bin undersampling.

From Fig. 3, it may be argued that 32 views would suffice
if we are solely interested in the microcalcifications and dis-
regard the prominent artifacts of the background. For visually
accurate `2-TV reconstruction Nviews ≈ 50 suffices, while at
this point `2-magnitude still shows clear artifacts.

D. Connection between undersampling and sparsity
Using the SSC of Nviews = Nbins = 512 as a reference,

we can now quantify that `2-TV admits a view undersampling
of 50/512 ≈ 0.1. Central to CS is connecting the number
of samples and the sparsity, here, of the gradient magnitude
image. Nviews = 50 corresponds to approx. 25,000 samples or
roughly 2.5 times the gradient magnitude sparsity.

We repeat the study for a phantom of same dimensions
but with a gradient magnitude sparsity of approx. 2,500, i.e,
4 times lower than the breast phantom. The `2-magnitude
RMSE decay is almost identical, and for `2-TV, we see again
the step-like decay, however, already at Nviews = 12, i.e. an
undersampling of 12/512 ≈ 0.025. This is the same factor of
4 lower as was the case for the sparsity. There appears to be
a direct connection between the sparsity of the image and the
sufficient number of views for accurate `2-TV reconstruction.

We conclude that while undersampled reconstruction is in-
deed possible with `2-TV, the actual admissible undersampling
depends on the sparsity of the phantom. To avoid an over-
optimistic estimate of the sufficient number of views, it is

essential to consider phantoms with similar sparsity to what
might be encountered in a given application.

V. DISCUSSION AND CONCLUSION

We have argued that a quantitative notion of a sufficient
sampling condition (SSC) for X-ray CT using the DD model
is necessary in order to evaluate potential of sparsity-exploiting
methods. We proposed an SSC at Nviews = Nbins = 2N
for the circular, fan-beam, full angular range geometry as a
compromise between ensuring a unique and stable solution and
the impracticality of an infinite number of views and detector
bins. The SSC allows quantification of admissible undersam-
pling, i.e., for the breast CT example we saw accurate `2-
TV reconstruction at an undersampling of 0.1. With an SSC,
such as the proposed, we can then compare undersampling
admitted by other sparsity-exploiting reconstruction methods,
such as wavelet-based, as well as explore the connection
between sparsity and undersampling. Also, the effect of using
other discretizations for the system matrix, such as ray-tracing,
as well as the influence of the problem size N can be
studied. The SSC also allows us to distinguish between view
undersampling and bin undersampling. For the considered
model, we saw an asymmetry in condition number decay
with number of views and number of detector bins, which
can possibly explain the more promising reconstruction results
seen for view undersampling compared to bin undersampling.

It should be emphasized that the presented results are only
for the circular fan-beam 2π scan arc geometry, and for ideal
simulated data. As such, the results serve as a best-case bound
for the undersampling level at which similar sparsity images
can be reconstructed accurately by TV-minimization. However,
the same methodology can be applied to other geometries and
other variants of sparsity-exploiting IIR.
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A Preliminary Study of Optimization-based Image
Reconstruction from Offset-Detector CBCT

Junguo Bian, Jiong Wang, Xiao Han, Emil Y. Sidky, Lingxiong Shao, and Xiaochuan Pan

Abstract—In this work, we have performed a preliminary
study on image reconstruction by using optimization-based
algorithms from data containing partial redundancy collected
with an offset-detector CBCT. We have modified ASD-POCS
algorithm to accommodate the partially redundant data and
studied the effect of weighting functions that are used for
normalization of the data redundancy. The results suggest
that, when data contain components inconsistent with the
imaging model, smooth weighting functions can be designed
for reducing the artifacts.

I. I NTRODUCTION

In advanced single-photon emission computed tomogra-
phy (SPECT), cone-beam computed tomography (CBCT) is
added for acquisition of anatomic information of the imaged
subject. For example, a CBCT with a flat-panel detector
has been developed for isotropic volume CT imaging in a
SPECT/CT unit (XCT system) [1]–[6]. Due to cost and geo-
metric considerations, the size of the flat-panel detector used
in added CBCT is often smaller than the cross section of
imaged patient, and, when used in a conventional geometric
configuration, it yields a field of view (FOV) smaller than
the cross section of the patient, resulting in data truncations
and image artifacts. In an attempt to increase the FOV, an
approach has been developed [7] in which the detector is
offset by some amount along an appropriate direction. It
can be shown that, as long as the detector offset is less than
a half of the detector size, although truncations occur at
each projection view, data collected over an angular range
of 2π contain information sufficient for reconstruction of
CT images without suffering truncation artifacts.

The CBCT unit promises added values for SPECT-based
studies through providing information about patient anatomy
and attenuation correction. However, radiation dose involved
in CBCT scans constitutes a health concern to the imaged
patient. One potential approach to reducing CBCT imaging
dose in SPECT/CT is to reduce the number of projections
acquired. It has been demonstrated recently in both simu-
lated and real-data studies [8]–[11] that optimization-based
reconstruction approaches have the potential to reconstruct
images from projections collected at views fewer than what
are used currently as required by conventional analytic-
based algorithms such as the FDK algorithm [12].
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In this work, we carry out a preliminary study on the de-
velopment and application of optimization-based algorithms
for image reconstruction from data collected in CBCT with
an offset-detector. In particular, as data collected contain cer-
tain amount of “redundant” information, we investigate the
exploitation of such data redundancy in optimization-based
approaches to minimize artifacts in images reconstructed
from simulated- and real-data.

II. OFFSET-DETECTORCONFIGURATION

As shown in reference [7], the FOV of CBCT can be
enlarged by use of an offset-detector configuration. Under
continuous condition, it can be shown that, as long as the
offset is less than a half of the detector size, data collected
over an angular range of 2π contain information sufficient
for accurate image reconstruction. Moreover, redundant in-
formation can be identified in the data, and it has to be
normalized adequately in analytic-based reconstruction and
can be exploited for controlling reconstruction quality in the
presence of discrete error and noise.

The CBCT unit of the XCT system under consideration
composes an X-ray source and a flat-panel detector. The
distances of the X-ray source to detector and to the center-
of-rotation are 133.2 cm and 88.1 cm, and the detector
panel consists of 1024×386 detection elements of sizes
0.388×0.776 mm2 under a 2×4 binning mode. The detector
panel has an offset ofL = 17.7 cm.

Using this system, we collected cone-beam data at 720
projection views evenly distributed over 2π with a circu-
lar trajectory from a physical pelvis phantom. Data were
corrected for scatter and other physical factors. From the
720-view data set, we subsequently extracted a data set con-
sisting of projections acquired only at 360 views uniformly
distributed over 2π. From this data set, we reconstructed
images and compared them with a reference image recon-
structed from the 720-view data set.

III. D ISCRETE IMAGING MODEL AND

OPTIMIZATION-BASED ALGORITHMS

A. Continuous imaging model and analytic-based algo-
rithms

As mentioned above, data collected with an offset-
detector geometry contain redundant information. Analytic-
based algorithms such as FDK have been developed based
upon a continuous-to-continuous (C-C) imaging model in
which data is an integration of the object function along a
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line. However, these algorithms cannot be applied directly
to data containing only partial redundancy collected with,
e.g., an offset-detector geometry, and appropriate weighting
functions have to be used for normalizing data redundancy
before the algorithms can be applied. Different weighting
[13], [14] have been investigated based upon the C-C model.

B. Discrete imaging model

In offset-detector CBCT, the imaging process can also be
modeled as a discrete linear system, which we refer to as a
discrete-to-discrete (D-D) model,

g0 = Hf , (1)

whereH is a system matrix modeling the cone-beam X-ray
transform, and vectorsg0 andf indicate the model data and
image to be reconstructed. An element ofg0 or f denotes
the value on a detector bin or an image voxel. It should
be noted thatg0 differs from the actual measured datag.
In practical CBCT applications, it is only possible to solve
the linear system in Eq. (1) by use of optimization-based
approaches, which include the design of an optimization
program and development of algorithms for reconstructing
images through solving the optimization program.

C. Optimization program

In this work, we consider an optimization program that
has been discussed previously [8]–[11], [15]:

f∗ = argmin||f ||TV s.t. DW (f) ≤ ǫ and fn ≥ 0, (2)

where||f ||TV denotes the total variation (TV) of imagef , fn
the image value on voxeln, DW (f) a weighted Euclidean
data divergence between measured data and the imaging
model,W a diagonal matrix in which each diagonal element
represents a weighting factor for each measurement ray that
can be selected to control image reconstruction, andǫ > 0 a
given parameter for accommodating inconsistency between
measured data and imaging model. The data divergence
can be zero only in a simulation study in which data are
generated by use of the same imaging model for describing
the imaging process. A focus of the study is to demonstrate
the selection ofW and its implication for image recon-
struction. WhenW is an identity matrix, the optimization
program in Eq. (2) becomes the one for a conventional
CBCT configuration with no detector offset that has been
studied previously [9]. A necessary convergence condition
similar to that in reference [9] has been derived for the
optimization program specified by Eq. (2).

D. Optimization-based algorithm

We develop an algorithm to reconstruct imagef by
solving the optimization problem in Eq. (2). Specifically,
the algorithm is a modification of the adaptive steepest
descent-projection onto convex sets (ASD-POCS) algorithm
that solves the optimization program in Eq. (2) whenW is

an identity matrix [9]. The key modification to the ASD-
POCS algorithm is the introduction of the weighting factor,
which is the diagonal element ofW , in the POCS step so
that the partially redundant information can be appropriately
normalized. In the work, we refer to the weighted POCS
algorithm as the W-POCS algorithm. The W-POCS algo-
rithm is used to lower the data divergence until reachingǫ.
For achieving a necessary convergence condition, one can
use other algorithms such as gradient descent for further
calculation of the weighted data divergence. We have also
modified other iterative algorithms such as the expectation
maximization (EM) [16]–[18] and simultaneous algebraic
reconstruction technique (SART) [19] so that they can
be applied to offset-detector data containing only partial
redundancy .

IV. SELECTION OF WEIGHTING FUNCTION

For the C-C imaging model, partial-data redundancy has
to be normalized so that the analytic-based algorithms
can be applied. However, it has been shown that multiple
weighting functions can satisfy the normalization condition.
Under ideal imaging condition, different weighting functions
yield identical reconstructions. However, in the presence
of inconsistencies between imaging model and measured
data, reconstructions with different weighting functions can
yield different reconstructions. On the other hand, for a D-
D imaging model, even if data contain “redundant” infor-
mation, the optimization-based algorithms can reconstruct
images from data with or without normalization of such
data redundancy. However, as shown below, in the presence
of data inconsistencies, artifacts in images obtained with
optimization-based algorithms can be minimized by use of
an appropriately selected weighting functions. Therefore, we
investigate the impact of different weighting functions on
image reconstructions for both analytic- and optimization-
based algorithms.

We first consider reconstructions directly from data with-
out applying weighting (or, equivalently, with an identity
weighting matrix.) In this study, the optimization-based
algorithms can reconstruct images accurately from data
containing no inconsistencies, whereas the analytic-based
FDK algorithm cannot. In the second study, we investi-
gate several weighting functions satisfying a normalization
condition with “continuous” and “discontinuous” properties.
Specifically, we consider a continuous weighting function

W1(u, λ) =

{

cos2
(

π
4
( γ
γm1

− 1)
)

−um1 ≤ u ≤ um1

1 um1 < u ≤ um2

(3)
whereγ = atanu

S
, γm1 = atanum1

S
, andS is the source-to-

detector distance. We assume that the origin of the detector
is the intersection of detector and the line connecting source
and iso-center. The two detector edges are at−um1 and
um2, andum1 < um2. It can be observed that the weighting
function is continuous inu. This weighting function has
been widely used.
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We also consider two discontinuous weighting functions

W2(u, λ) =

{

1

2
−um1 ≤ u ≤ um1

1 um1 < u ≤ um2

(4)

and

W3(u, λ) =







1

4
−um1 ≤ u ≤ 0

3

4
0 < u ≤ um1

1 um1 < u ≤ um2

(5)

The weighting functions above are in continuous form
and need to be discretized so that they can be applied to
discrete data. However, once the weighting functions are
discretized, the normalization conditions are only approxi-
mately satisfied.

V. NUMERICAL STUDIES USING SIMULATED DATA

For the case involving the C-C model and analytic-
based algorithms, mathematically exact reconstruction can
be achieved only by applying the analytic-based algorithms
to data generated with the same imaging model. We refer
to such a study as an inverse-crime study [20]–[22] based
upon a C-C imaging model, which has been carried out
previously.

In the study below, instead, we consider an inverse-crime
study based upon a D-D imaging model by demonstrating
(numerically accurate) image reconstruction from data that
are completely consistent with a D-D imaging model. For
such an inverse-crime study, discrete data can be generated
by applying the imaging matrixH to a discrete image,
and the optimization algorithm uses the same matrixH to
reconstruct a discrete image from the discrete data. The
value of inverse-crime studies lies in the fact that they
can evaluate whether the optimization-based algorithm can
achieve the reconstruction specified by the optimization pro-
gram in Eq. (2) within the computer numerical precision and
that they can verify how close the achieved reconstruction
is relative to the image that is used to generate the discrete
projection data.

A. Simulation-data generation

We have generated simulation data with a geometry
identical to that of the XCT system. A discrete image of
the physical phantom that is reconstructed on an image
array with a pixel size of 0.3 cm by use of the FDK
algorithms from real data is used as the “truth” image.
In the panel specified by row 1 and column 1 of Fig. 1,
we display a region of interest (ROI) within the discrete
truth image. From the discrete truth image, we generated
projection data at 720 views uniformly distributed over 2π,
with a detector consisting 256 bins each of which has a size
of 0.1552 cm. From the 720-view data, we extracted a data
set with 360 views uniformly distributed over 2π. Because
these data sets are generated by use of matrixH from the
discrete truth image, and because the same matrixH is used
in the optimization-based algorithm, image reconstruction
from these data sets constitutes an inverse-crime study. We

reconstruct images on the same image array of the discrete
truth image and show below reconstruction details within
the ROI obtained with different weighting functions.

B. Reconstructions from simulation data

We first performed an inverse-crime study without weigh-
ing from the 360-view data set. The algorithm was shown
to converge in terms of the necessary condition derived,
thus suggesting that the algorithm can achieve the de-
signed solution. Also, the data divergence approaches 0, and
differences between reconstructions and the discrete truth
image decreases to 0, as the iteration number increases,
thus indicating that the designed solution in the optimization
program in Eq. (2) approaches the discrete truth image. In
Fig. 1, we display intermediate and final reconstructions and
their differences relative to the discrete truth image.

We also performed studies in which data are normalized
with the weighting functions in Eqs. (3), (4), and (5). As
the results in Fig. 1 show, observation similar to that for the
study without weighting can be obtained. Specifically, the
algorithm was shown to converge in terms of the necessary
condition derived, thus suggesting that the algorithm can
achieve the designed solution. Also, the data divergence
approaches 0, and differences between reconstructions and
the discrete truth image decreases toward 0, as the iteration
number increases, thus indicating that the designed solution
in the optimization program in Eq. (2) approaches the dis-
crete truth image. In Fig. 1, we display intermediate and final
reconstructions and their differences relative to the discrete
truth image. It can be observed that different weightings,
representing different optimization paths, impact only on the
intermediate, but not final, reconstructions.

The inverse-crime studies above show that, unlike
analytic-based algorithms, the optimization-based algorithm
can reconstruct accurate images directly from discrete data
in which “redundant” information is not normalized. They
also demonstrates that, like analytic-based algorithms, the
optimization-based algorithm can reconstruct accurate im-
ages from discrete data in which “redundant” information
is normalized.

VI. N UMERICAL STUDIES USING REAL DATA

Following the simulation studies above that evaluate the
algorithm properties in terms of its convergence to the de-
signed reconstruction and its difference relative the discrete
truth image, we also conducted studies on the algorithm’s
reconstruction from data of a physical pelvis phantom
collected at 360 views over 2π. Unlike the simulation data
that are consistent with the imaging model in the inverse-
crime studies above, the real data collected contain various
physical factors such as scatter that are inconsistent with the
imaging model used in the algorithm. In this case, we expect
that the selection of different weighting functions can lead
to reconstructions with different artifacts. Again, we studied
image reconstruction from data without weighting and from
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Figure 1. Truth ROI image (column 1) and ROI images (columns 2-5) at iteration 5 (row 1), and their differences from the truth ROI image (row 2); and
final ROI image (row 3) and their differences from the truth ROI image (row 4) reconstructed from 360-view data normalized with different weighting
functions by use of the modified ASD-POCS algorithm: no weighting (column 2),W1 (column 3),W2 (column 4), andW3 (column 5). The grayscale
window for rows 1 and 3 is[0.1, 0.25] cm−1, whereas grayscale windows for rows 2 and 4 are[−0.2, 0.2] cm−1 and [−0.00001, 0.00001] cm−1.

data with each of the three weighting functions in Eqs. (3),
(4), and (5). In Fig. 2, we display the ROI images within
the reconstructions without and with different weighting
functions. For cases without weighting and withW2 and
W3 weighting functions, ring artifacts can be observed in
the reconstructions. This is because the discontinuity in data
without weighting or in data normalized byW2 and W3,
which are discontinuous functions ofu.

Because there is no truth available for this real data
study, we use the FDK reconstruction from the 720-view
data, normalized withW1, as a surrogate truth image. In
the second row of Fig. 2, we show ROI images difference
between reconstructions and the surrogate truth image. It
can be observed that reconstruction with the weightingW1

contains much reduced artifacts than reconstructions with
other weightings, asW1 is a smooth weighting function that
can reduce the artifacts resulted from data discontinuity in
u. This observation is also consistent with that in analytic-
based algorithm studies in whichW1-type smooth weighting
functions are used. Similar results can be obtained for

other iterative algorithms such as SART and EM algorithm
designed for offset-detector configuration.

VII. D ISCUSSION

In this work, we have performed a preliminary study
on image reconstruction by using optimization-based algo-
rithms from data containing partial redundancy collected
with an offset-detector configuration in CBCT. In particular,
the ASD-POCS algorithm has been modified to accommo-
date partially redundant data for achieving accurate image
reconstruction; and the effect of weighting functions that are
used for normalization of the data redundancy has been stud-
ied. The results suggest that, when data contain components
inconsistent with the imaging model, different weighting
functions can result in reconstructions with different artifacts
and that smooth weighting functions can be designed for
reducing the artifacts.
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Reference No weighting W1 W2 W3

.
.

Figure 2. Row 1: The surrogate truth ROI image (column 1), and ROI images reconstructed by use of the ASD-POCS algorithms from 360-view
data of the physical pelvis phantom normalized by different weighting functions: No weighting (column 2),W1 (column 3),W2 (column 4), andW3

(column 5). Row 2: differences of ROI images in row 1 from the surrogate truth ROI image. The grayscale window for row 1 is[0.1, 0.25] cm−1,
whereas the grayscale window for row 2 is[−0.05, 0.05] cm−1.

VIII. A CKNOWLEDGMENTS

The authors would like to thank Dr. Dan Xia and Profes-
sor Chien-Min Kao for helpful discussions. This work was
supported in part by the National Institutes of Health (NIH)
under Grants CA120540, CA158446 and EB000225. The
work of X. Han was supported in part by the Department
of Defense (DoD) Predoctoral training Grants PC094510.
Some computation in the work was performed on a cluster
partially funded by the University of Chicago for Compre-
hensive Cancer Center.

REFERENCES

[1] B. H. Hasegawa, E. L. Gingold, S. M. Reilly, S. C. Liew, and
C. E. Cann, “Description of a simultaneous emission-transmission
CT system,” inProc. SPIE, vol. 1231, 1990, p. 50.

[2] T. F. Lang, B. H. Hasegawa, S. C. Liew, K. J. Brown, S. C. Blanke-
spoor, S. M. Reilly, E. L. Gingold, and C. E. Cann, “Description of
a prototype emission transmission computed tomography imaging,”
J. Nucl. Med., vol. 33, pp. 1881–1887, 1992.

[3] M. Bocher, A. Balan, Y. Krausz, Y. Shrem, A. Lonn, M. Wilk, and
R. Chisin, “Gamma camera-mounted anatomical X-ray tomography:
technology, system characteristics and first images,”Eur. J. Nucl.
Med. Mol. Imaging, vol. 27, pp. 619–627, 2000.

[4] J. A. Patton, D. Delbeke, and M. P. Sandier, “Image fusion using
an integrated, dual-head coincidence camera with X-ray tube-based
attenuation maps,”J. Nucl. Med., vol. 41, pp. 1364–1368, 2000.

[5] B. Hasegawa, K. Wong, K. Iwata, W. Barber, A. Hwang, A. Sakd-
inawat, M. Ramaswamy, D. Price, and R. Hawkins, “Dual-modality
imaging of cancer with SPECT/CT,”Techno. Cancer Res. Treat.,
vol. 1, pp. 449–458, 2002.

[6] D. Sowards-Emmerd, J. Vesel, L. Shao, J. Timmer, M. Bertram, J. Ye,
and H. Hines, “Flat Panel X-ray Detector Based Volume Imaging
SPECT/CT,” inSeminars in Nuclear Medicine. Elsevier, 2009.

[7] W. Chang, S. Loncaric, G. Huang, and P. Sanpitak, “Asymmetric fan
transmission CT on SPECT systems,”Phys. Med. Biol., vol. 40, pp.
913–928, 1995.

[8] E. Y. Sidky, K.-M. Kao, and X. Pan, “Accurate image reconstruction
from few-views and limited-angle data in divergent-beam CT,”J. X-
Ray Sci. and Technol., vol. 14, pp. 119–139, 2006.

[9] E. Y. Sidky and X. Pan, “Image reconstruction in circular cone-beam
computed tomography by constrained, total-variation minimization,”
Phys. Med. Biol., vol. 53, pp. 4777–4807, 2008.

[10] J. Bian, J. H. Siewerdsen, X. Han, E. Y. Sidky, J. L. Prince, C. A.
Pelizzari, and X. Pan, “Evaluation of sparse-view reconstruction from
flat-panel-detector cone-beam CT ,”Phys. Med. Biol., vol. 55, pp.
6575–6599, 2010.

[11] X. Han, J. Bian, D. R. Eaker, T. L. Kline, E. Y. Sidky, E. L. Ritman,
and X. Pan, “Algorithm-enabled low-dose micro-CT imaging,”IEEE
Trans. Med. Imag., vol. 30, pp. 606–620, 2011.

[12] L. A. Feldkamp, L. C. Davis, and J. W. Kress, “Practical cone-beam
algorithm,” J. Opt. Soc. Am. A, vol. 1, pp. 612–619, 1984.

[13] D. L. Parker, “Optimal short scan convolution reconstruction for fan
beam CT,”Med. Phys., vol. 9, pp. 254–257, 1982.

[14] P. S. Cho, R. H. Johnson, and T. W. Griffint, “Cone-beam CT for
radiotherapy applications,”Phys. Med. Biol., vol. 40, pp. 1863–1883,
1995.

[15] X. Pan, E. Y. Sidky, and M. Vannier, “Why do commercial CT
scanners still employ traditional, filtered back-projection for image
reconstruction?”Inverse Probl., vol. 25, p. 123009, 2009.

[16] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,”J. R. Stat. Soc. Series
B Stat. Methodol., vol. 39, pp. 1–38, 1977.

[17] L. A. Shepp and Y. Vardi, “Maximum likelihood reconstruction for
emission tomography,”IEEE Trans. Med. Imag., vol. 1, pp. 113–122,
1982.

[18] H. H. Barrett and K. J. Myers,Foundations of Image Science. John
Wiley Sons, Inc., 2003.

[19] A. H. Andersen and A. C. Kak, “Simultaneous algebraic recon-
struction technique (SART): a superior implementation of the ART
algorithm,” Ultrason. Imaging, vol. 6, pp. 81–94, 1984.

[20] D. L. Colton and R. Kress,Inverse acoustic and electromagnetic
scattering theory. Springer-Verlag, Berlin, 1992.

[21] A. Wirgin, “The inverse crime,”arXiv:math-ph/0401050v1, 2004.
[22] J. Kaipioa and E. Somersalob, “Statistical inverse problems: dis-

cretization, model reduction and inverse crimes,”J. Comput. Appl.
Math., vol. 198, pp. 493–504, 2007.

The second international conference on image formation in X-ray computed tomography Page 169



Spatial Variations
in Reconstruction Methods for CT

Linda Plantagie,
Willem Jan Palenstijn, Jan Sijbers, and Kees Joost Batenburg

Abstract—In both Filtered Backprojection and algebraic
reconstruction algorithms for tomography, the reconstruction
of an object can depend on the position of the object within the
discretized region, even if the object is aligned perfectly with
pixel boundaries. In this paper, we investigate this effect and
report on a simulation study concerning spatial dependencies
in these reconstruction methods. We demonstrate that for
algebraic methods, these dependencies are influenced not only
by the discretization within the reconstruction region, but also
by the shape of the reconstruction region itself.

Index Terms—algebraic reconstruction, reconstruction re-
gion, artefacts.

I. INTRODUCTION

Most reconstruction algorithms for CT can be assigned
to either the class of analytical reconstruction methods,
which are based on analytical inversion formulas of the
Radon transform, or to the class of algebraic reconstruction
methods, which start with a discretized inverse problem and
then apply a numerical solver [1]–[3].

One of the fundamental differences between these two
classes relates to the spatial locality of the reconstruction
properties. Analytical inversion formulas are usually spa-
tially invariant, in the sense that the value of a particular
point in the reconstruction only depends on the measured
values relative to the position of that point. If this depen-
dency is known for a single point, it can be applied to all
image points (e.g., pixel centers) to obtain a full reconstruc-
tion. Also, there is no pre-defined window outside which
the reconstruction must be zero. The well-known Filtered
Backprojection (FBP) algorithm is obtained by discretizing
an analytical inversion formula of the Radon transform, and
can therefore be expected to have approximately similar
properties.

For algebraic methods on the other hand, there is no
intrinsic reason why the reconstruction should be spatially
invariant, and the reconstruction is constrained a priori to a
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reconstruction region, which is discretized and represented
by a collection of basis functions. Outside this region, the
reconstruction is automatically set to zero, as the exterior
region is not covered by the support of the basis functions.

For both FBP and algebraic methods, there may be differ-
ences in the way projection values are sampled to determine
the value of an image pixel, depending on the position of that
pixel, due to discretization and interpolation effects within
the projection model. As a consequence, reconstructing an
object centered at one position within the reconstruction
region may yield a different result from reconstructing this
same object centered at another position. We refer to these
variations as discretization-effects.

For algebraic methods, the shape and position of the
reconstruction region with respect to the object can also
influence its reconstruction. For example, if a line intersects
the reconstruction region as a short segment in a corner,
noise that is present in the projection for that line can have
a strong impact on the values of the pixels on the small
segment. For a line segment that has a longer intersection
with the reconstruction region, the noise can be distributed
among many pixels on that segment. We refer to these local
reconstruction variations, which depend on the shape of the
reconstruction grid, as shape-effects.

In this paper, we report on a case study that was car-
ried out to investigate both discretization-effects and shape-
effects for the FBP method and the Simultaneous Iterative
Reconstruction Technique (SIRT), respectively. By moving
an object across the reconstruction region and observing how
its reconstruction changes with position, we keep track of
both effects and obtain error maps that can be interpreted
visually and analyzed quantitatively.

This paper is structured as follows: In Section II, we
briefly review the discretization approach followed for FBP
and SIRT, respectively. Section III describes the simulation
experiments performed. The results of these experiments are
presented in Section IV, mainly by providing a sequence
of images that represent two different error measures, as a
function of the position within the reconstruction region. In
Section V, the observations are discussed and future work
in this direction is briefly outlined.

II. METHOD

The Filtered Backprojection (FBP) algorithm is obtained
by discretizing the following inversion formula of the Radon
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transform (see Section 3.3.2 of [1] for details):

f(x, y) =

∫ π

θ=0

∫ ∞
τ=−∞

p(θ, τ−x cos θ−y sin θ)g(τ) dτ dθ,

(1)
where f : R2 → R denotes the unknown image, p(θ, τ)
denotes the measured line projection at angle θ and detector
coordinate τ , and g denotes a filter, which determines how
the detector values are weighted before backprojection to
form the value at position (x, y). If we assume that p corre-
sponds to the Radon transform of a certain original object,
it is easy to see that translating this object over (∆x,∆y)
leads to a corresponding translation in the reconstruction
over (∆x,∆y). As a consequence of the discretization
step in FBP, interpolation steps are required to compute
an approximation of Eq. (1), leading to violations in this
translational property, which we refer to as discretization-
effects.

In algebraic reconstruction methods, the image is repre-
sented as a finite weighted sum of basis functions (see, e.g.,
Chapter 7 of [1] or Section 6.3 of [2]). For this paper, we
limited ourselves to the reconstruction of 2-dimensional (2D)
slices from 1D parallel beam projections using a standard
pixel basis, yet the general methodology can be applied
to 3D volume reconstruction using various types of basis
functions, and various acquisition geometries.

When setting up an algebraic method, it is assumed that
a certain reconstruction region is known, which completely
contains the scanned object. Typically, this region is chosen
to be either square or rectangular, while sometimes it is
modelled as a disk. This region is then discretized along
with the projection operator, leading to the following relation
between the unknown image x and the measured projection
data p:

Wx = p, (2)

where W = (wij) ∈ Rm×n denotes the projection matrix,
x = (xj) ∈ Rn is a vector representation of the pixel values
in the unknown image, and p = (pi) ∈ Rm represents the
full set of measured detector values in all projections.

The exact projection matrix W depends on the selection
of the reconstruction region, the choice and distribution of
basis functions to represent the image within this region, and
the model used for the projection operator.

The system in Eq. (2) is typically solved using iterative
numerical solvers, as it is both very large and sparse. In
this article, we consider one such iterative method called
SIRT [4], [5], which converges to a weighted least-squares
solution of the equation system.

Note that not all individual linear equations in Eq. (2) have
the same algebraic structure. Each equation corresponds to
a projected line. Depending on the intersection properties
of that line with the discretized reconstruction region, the
number of unknown pixel values that occur in the equation
can vary, as well as their coefficients. As a consequence,
the shape of the reconstruction region can influence the
reconstruction of an object, depending on its location within

that region, referred to as shape-effects of the reconstruction
region.

III. EXPERIMENTS

To investigate discretization-effects and shape-effects for
both FBP and SIRT, we performed a simulation study on
the reconstruction of a small object that is placed at varying
positions within the reconstruction region. All experiments
were carried out using two different choices for the recon-
struction region: (a) a square region of size 63×63 square
pixels of unit size; (b) a pixelated circular region that is
circumscribed around the square region of (a).

We compare the results for Filtered Backprojection (FBP)
using the ramp-filter, which exhibits only discretization-
effects, with the Simultaneous Iterative Reconstruction Tech-
nique (SIRT), which is expected to show both discretization-
effects and shape-effects. For SIRT, 200 iterations are per-
formed with a relaxation factor of 1. This iteration number
ensures that convergence has been reached.

Projection data were simulated for a parallel detector
geometry, using a detector consisting of 91 bins of unit
size, thereby ensuring that the full reconstruction region
is covered by the detector. The simulation was performed
using a ray-driven projector based on the Joseph kernel
to determine the contribution of an image pixel to each
ray [6], implemented as a parallel operation on the GPU
[7]. The projection angles of the parallel beam projections
are regularly distributed between 0 and 180 degrees. The
number of projection angles is kept fixed at 64. For the
SIRT reconstruction, a forward projector based on the Joseph
kernel was used.

As test objects, the square and cross images in Fig. 1a
were used. The reconstructions of these objects, when placed
in the center of a square reconstruction region, are shown in
Fig. 1b and 1c.

(a) (b) (c)

Fig. 1. Test objects and their reconstructions when placed in the center
of the reconstruction region; (a) original, (b) SIRT, (c) FBP.

A. Experiments without noise

In the first experiment, based on noiseless projection data,
the test objects were moved across the reconstruction area.
For each position of the object, its forward projection was
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computed and the object was reconstructed. The reconstruc-
tion within a small window around the object (a surrounding
square, containing a boundary layer of one pixel thickness)
was then shifted, placing the reconstructed object in the
center of the reconstruction region. A comparison was made
with the reconstruction for which the object was placed in
the center, using the following two error measures: (a) the
root mean square error (RMSE) for all pixels in the window;
(b) the absolute value of the difference in average intensity
within the object (AIE).

B. Experiments that include noise

In the second experiment, the test objects were again
moved across the reconstruction area. Poisson distributed
noise was applied to the projection data based on a flatfield
photon count of 106 per detector pixel. As the exact noise
realization depends on the simulated photon counts, which
in turn are affected by discretization issues, we chose to
compare the reconstructions to the actual test object, instead
of comparing to its reconstruction in the center. The recon-
struction within a window around the object (a surrounding
square, containing a boundary layer of five pixels thickness)
was compared with the original object, using the following
two error measures: (a) the root mean square error (RMSE)
for all pixels in the window; (b) the absolute value of the
difference in average intensity within the object (AIE).

IV. RESULTS

In this section, we examine the discretization and shape
effects of SIRT and FBP for two test objects and two
different shapes of the reconstruction grid.

A. Noiseless projection data

In the first series of experiments, the reconstructions of the
noiseless projection data of a shifted object are compared
with the reconstructions of the same object placed in the
center of the reconstruction region. Reconstructions of the
phantoms contain a variety of intensity levels within the
reconstructed object. These intensity levels can be visualized
by an intensity profile along a horizontal line through the
center of the reconstructed object. In Fig. 2, the intensity
profiles are shown for SIRT reconstructions of the test
objects placed in the center of the reconstruction region and
placed near the left boundary of the reconstruction region.

(a) (b)

Fig. 2. Intensity profile of an object at the center (blue line) and centered
at pixel (32, 8) (dashed red line); (a) square object, (b) plus object.

The reconstructions of the test objects clearly depend
on their position in the reconstruction grid. The root mean
square error for all pixels in the window is used to examine
these spatial variations. In Fig. 3 the RMSE are shown for
SIRT and FBP reconstructions of both test objects in a square
reconstruction grid. The results are similar for the circular
grid. Since the discretization-effects of SIRT and FBP appear
to be very similar, we subtract the RMSE of FBP from that
of SIRT to obtain an approximation of the shape-effects
for SIRT. The absolute value of this difference is shown
in Fig. 4. Note that some scaling was required to enhance
the visibility.

(a) (b) (c) (d)

Fig. 3. RMSE of reconstruction of the test objects using a square
reconstruction grid without noise; (a) SIRT, square object, (b) SIRT, plus
object, (c) FBP, square object, (d) FBP, plus object.

(a) (b) (c) (d)

Fig. 4. Absolute value of the difference of RMSE between SIRT and FBP
of the reconstruction of the test object; (a) square phantom, square grid,
(b) square phantom, circular grid, (c) plus phantom, square grid, (d) plus
phantom, circular grid.

For square reconstruction grids, reconstructions of an
object near the edge can differ substantially from a recon-
struction of the same object placed in the center of the
reconstruction grid. Fig. 4 shows that, at least in some cases,
these shape-effects can be reduced by choosing a different,
for example circular, reconstruction grid. These results are
also supported by the second error measure (AIE), as is
shown in Fig. 5 and 6.

(a) (b) (c) (d)

Fig. 5. AIE of reconstruction of the test objects using a square recon-
struction grid without noise; (a) SIRT, square object, (b) SIRT, plus object,
(c) FBP, square object, (d) FBP, plus object.

B. Noisy projection data

In the second series of experiments, Poisson noise is
applied to the projection data of the shifted object. An
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(a) (b) (c) (d)

Fig. 6. Absolute value of the difference of AIE between SIRT and FBP
of the reconstruction of the test phantom; (a) square phantom, square grid,
(b) square phantom, circular grid, (c) plus phantom, square grid, (d) plus
phantom, circular grid.

(a) (b)

Fig. 7. Reconstruction of the shifted square test object with Poisson noise
applied to the projection data; (a) SIRT, (b) FBP.

example of a SIRT and FBP reconstruction of the shifted
square test object is shown in Fig. 7.

As mentioned in section III the reconstructions are com-
pared to the original shifted image instead of the reconstruc-
tion of the object placed at the center of the reconstruction
region. The spatial variations of SIRT due to shape-effects
are again visualized by comparing both the RMSE and AIE
measures of SIRT and FBP; see Fig. 8 and 9 for the RMSE
and AIE measure, respectively.

(a) (b) (c) (d)

Fig. 8. Absolute value of the difference of RMSE between SIRT and
FBP of the reconstruction of the test object with Poisson noise; (a) square
phantom, square grid, (b) square phantom, circular grid, (c) plus phantom,
square grid, (d) plus phantom, circular grid.

(a) (b) (c) (d)

Fig. 9. Absolute value of the difference of AIE between SIRT and FBP of
the reconstruction of the test object with Poisson noise; (a) square phantom,
square grid, (b) square phantom, circular grid, (c) plus phantom, square grid,
(d) plus phantom, circular grid.

Apparently, as suggested by Fig. 9, the total intensity
within the object is invariant under the position of the

test object. Fig. 8 shows that, also in the case of noisy
projection data, SIRT reconstructions of an object depend
on the position of the object in the reconstruction region.
These spatial variations are influenced by the shape of the
reconstruction region.

V. DISCUSSION AND CONCLUSIONS

The results of our case study demonstrate that significant
discretization-effects can be observed in both FBP and SIRT
reconstructions. Moreover, this effect is highly similar for
both algorithms. For SIRT, the shape-effects also comes into
play, yet mainly near the corners of a square reconstruction
region. It appears that this effect can be mitigated by using a
disk-shaped reconstruction region. The magnitude of shape-
effects is increased by the influence of noise in the projection
data, which can cause serious artefacts near the corners of
the reconstruction region.

The actual position dependency may well depend strongly
on the particular projection model used for the reconstruc-
tion. Here, we only considered the Joseph’s method, which
is broadly used in tomographic algorithms. In ongoing
and future research, we are now focusing on the influence
of different types of discretizations (e.g., blobs, wavelets)
on the spatial dependencies, along with various projection
models (e.g., lines, strips).
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Abstract—In Computed Tomography, scatter effect of X-ray 
photons imposes artifacts which affect quality of images 
significantly. Many of studies have done to model the 
scattering nature to reduce the artifacts. Widely used methods, 
however, demand trade-off between speed and accuracy. We 
present effective single scattering algorithm, based on bi-
directional path tracing. We implemented the code optimized 
for a general-purpose GPU (GPGPU) and the result is showing 
effective mark on the demonstration. 
 

Keywords- CT Scattering; Bi-directional ray-tracing; GPU; 
Parallel Processing  

I.  INTRODUCTION 
 

In Computed Tomography (CT), scatter effect of X-ray 
photons significantly impact to quality of output images, 
such as CT number inaccuracy, contrast difference, and 
artifacts. To minimize scatter effect, many researches have 
been done in an effort to model and simulate the 
characteristic of scattering X-ray photons. 

Simulating scatter effect at all portion of a target object 
involves extremely heavy computation. So far, to achieve 
fast computation time, one must reduce the number of 
samples that contribute to scatter effect. Generally two 
methods are widely used; these are, deterministic and Monte 
Carlo. Deterministic method uses down-sampling with 
interpolation algorithm, and Monte Carlo method relies on 
repeated random sampling [1], [2]. There is also hybrid 
approach combining two methods to compensate drawbacks 
of each method [3]. In consequence, all methods have to 
confront speed-accuracy trade-off. 

In advance of general-purpose GPU, we can take 
advantage of high performance parallel processing with 
relatively low cost. While implementations of classical 
scatter simulation method on a GPU can achieve some 
speed-ups, compromise between speed and accuracy is still 
unavoidable.   

We present an effective model for simulating single 
scatter effect of X-ray beams. Our method is based on bi-
directional path tracing, a novel approach of evaluating 
scatter effect of photons. Our implementation of the 
algorithm is especially optimized to multi-processors on a 
GPU. Simulation is showing effective mark, even with the 
large-scale resolution images. 
  

The remainder of the paper is organized as follows: 
section II, we depict background of algorithm, and section III, 
we describe methodology used to simulate the scattering. In 
section IV, experiment result of the GPU code is shown with 
time and memory performance evaluations.  

 

II. BACKGROUND 

A. Characteristics of X-Ray Photon 
When X-ray photons travel from beam source through 

the matter, the energy of photos is attenuated exponentially. 
The simple model of this property is modeled 

  
 𝐼𝑑 = 𝐼0exp (−∫𝜇(�̂�)𝑟�̂�), (1) 

 
where 𝐼𝑑 is energy intensity at the detector, 𝐼0is intensity at 
the source, �̂�  is ray path vector from source to detector. 
Attenuation function 𝜇  is probability function determining 
amount of energy attenuated by absorbance of the matter. 

Portions of a scanned matter undergo Compton scattering. 
Compton scattering is scattering of X-rays and gamma rays. 
Photon collision in matter results in decreased energy and 
increased wavelength.  

 
 𝜆 − 𝜆′ =  ℎ

𝑚𝑒𝑐
(1 − 𝑐𝑅𝑂𝜃), (2)  

 
where λ is initial wavelength, 𝜆′is wavelength after scattering, 
ℎ/𝑠𝑒𝑐 is Compton wavelength of the electron.  
 

B. Bi-directional Path Tracing 
In Computer Graphics, Ray tracing is technique that used 

to simulate the effects of light encountering with objects. 
Classical ray tracing method has, however, difficulty to 
model reflected or refracted ray.  

 

 
Figure 1. Bi-directional Path Tracing Technique – it traces rays from the 
light source as well as from the eye. 
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In order to overcome the problem, bi-directional path 
tracing was developed [5]. Bi-directional method traces two 
rays from different directions. To sample each transport path, 
we generate one sub-path starting from a light source, and 
another sub-path starting from eye, and join them together. 
As a result, the method applies more than one importance 
sampling. Using this property, bi-directional path tracing 
technique is also applicable to model and simulate scatter of 
X-ray photons. 

C. Parallel Processing on GPU 
High-performance modern GPUs, which are equipped 

with a lot of small processors (threads), have enabled 
parallel processing for graphical purpose.  NVIDIA CUDA 
is C-like API, and has been available to make parallel 
processing on a GPU easier. GPU is an external device in 
CPU(host)’s view, thus GPU cannot access main memory 
directly. Memory transfer operation between device and 
host machine is expensive. Optimization is mainly focused 
on memory operation bottleneck. 

III. METHODOLOGY 
 
The implementation consists of two phases. In first phase, 

the simulator build attenuation layer, by method of a source 
to pixel ray casting. In the next step, for every bin of detector, 
add up all computed scattered energy from pixel in the 
region of interest (RoI).   

A. Variables and Symbols 
We set simple 2-D cone-beam CT model and its variable. 

Beam source has beam angle 𝜃. To cover entire region of 
the object, the position of source (𝑆𝑟𝑐𝑥, 𝑆𝑟𝑐𝑦)  is set 
according to beam angle, i.e. for narrower beam angle, 
source position is farther from the object. (𝑅𝑟𝑅𝑥,𝑅𝑟𝑅𝑦) 
indices sampling position as ray marching through object. 
Scatter angle φ is difference between source-to-pixel angle 
and pixel-to-detector angle, and being used to index scatter 
coefficient at phase function.  Each bin has its region of 
interest, or 𝑅𝑅𝐼𝑗 , a Boolean filter determines pixels that 
contribute to scatter.   

 

 

 

 
Figure 2. Simple 2-D CT Model and Variables  

B. Attenuation Layer of Source-to-Pixel 
We assume that all pixels in the object potentially 

contribute to scattering and assume that we have only one 
beam source. Pre-computation of attenuation from X-ray 
source to all pixels is more advantageous, in terms of 
computational efficiency at GPU threads.  

 

 
Figure 3. GPU Pseudo Code of Generating Layer of Cross Section 

 

  

  

 
For each (𝑇ℎ𝑟𝑟𝑟𝑟𝑥 ,𝑇ℎ𝑟𝑟𝑟𝑟𝑦) 

    �𝑃𝑃𝑥𝑥,𝑃𝑃𝑥𝑦� = (𝑇ℎ𝑟𝑟𝑟𝑟𝑥,𝑇ℎ𝑟𝑟𝑟𝑟𝑦) 
    𝐴𝐴𝐴𝐴 = 1.0 

    For �𝑅𝑟𝑅𝑥 ,𝑅𝑟𝑅𝑦� = �𝑆𝑟𝑐𝑥 , 𝑆𝑟𝑐𝑦� to (𝑃𝑃𝑥𝑥,𝑃𝑃𝑥𝑦) 

           𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴 ∗ 𝑂𝑂𝑂𝑟𝑐𝐴�𝑅𝑟𝑅𝑥 ,𝑅𝑟𝑅𝑦� ∗ 𝜇(𝑅𝑟𝑅𝑥 ,𝑅𝑟𝑅𝑦) 
    End 

    𝐴𝐴𝐴𝑟𝐴𝐴𝑟𝑅𝑟𝑟�𝑇ℎ𝑟𝑟𝑟𝑟𝑥 ,𝑇ℎ𝑟𝑟𝑟𝑟𝑦� = 𝐴𝐴𝐴𝐴 

End 
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Figure 4. Examples of Cross Section Layer 

C. Computing Scattering from Contributor Pixels 
Computing Scattering consists of three steps. For the 

first step, a thread in the RoI takes one pixel and compute 
attenuation from the pixel to detector bin. In the next step, 
combine two attenuation (source to pixel and detector to 
pixel), and phase function τ(φ). Finally, to extract a final 
value of 𝐵𝑃𝐴𝑗, sum up all values in RoI.  

 
Figure 5. GPU Pseudo Code of Computing Scatter at All Pixels 

IV. EXPERIMENT AND RESULTS 

 
For the implementation, we have used Intel Core i7-

2640M CPU with 8GB of RAM, and NVIDIA GT 525M 
GPU, has 96 CUDA Cores and 2GB of video memory. 
We set phase function 𝜏(𝜑) and attenuation coefficient 
𝜇(𝐴) equally for all pixels. In this way, we can take the 
simulation to full throttle to acquire upper limit of time 
complexity. 

Phase function of each pixel decides how much 
energy is scatter to certain direction. In practice, it is 
decided by types of matter and energy spectra of X-ray 
beam. We chose simple probability function, as shown in 
Figure 6, for simplicity. 

 
Figure 6. Phase Functions for Experiments 

We simulated with two modes of operation: (i) 
iteration and (ii) 3-D grid. In iteration mode, scatter is 

computed in 2-D GPU kernel at 𝐵𝑃𝐴𝑗 one by one. This 
mode requires less memory and computation time is 
increased significantly as image size larger. In 3-D grid 
mode, on the other hand, number of threads in GPU 
kernel is increased by 𝑁𝐵𝑖𝑛 times, where 𝑁𝐵𝑖𝑛 is number 
of bins in the detector. All threads in the kernel have to 
write outputs at different address of memory to prevent 
race condition of parallel processing. As a result more 
GPU memory consumption is unavoidable. For high-
resolution images we can use hybrid approach; iterating a 
smaller 3-D multiple times.  

 

 

Figure 7. Scattering computation time average versus object resolution 
(upper) and minimum required memory vs. object image resolution 

(lower).  

The result of scatter is shown in Figure 7, showing 
original image (300x300 pixels), projection without 
scattering, and two different types of phase functions: 
𝑐𝑅𝑂30(𝑥), and 𝑐𝑅𝑂150(𝑥), respectively. Source angle is 
20° with 500 bins of detector. Note that former phase 
function represents much higher reflective material, and 
later one represents absolving material. In phase function 
τ(φ), scatter coefficient is higher as angle smaller. Due 
to cone-beam source CT has one point source at the top-
middle, bins at the middle of detector have higher value 
and bins at each side have relatively lower value. We can 
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For each  𝐵𝑃𝐴𝑗 
    For each (𝑇ℎ𝑟𝑟𝑟𝑟𝑥 ,𝑇ℎ𝑟𝑟𝑟𝑟𝑦) in ROI 

        �𝑃𝑃𝑥𝑥,𝑃𝑃𝑥𝑦� = (𝑇ℎ𝑟𝑟𝑟𝑟𝑥 + 𝑂𝑂𝑂𝑂𝑟𝐴𝑥 ,𝑇ℎ𝑟𝑟𝑟𝑟𝑦 + 𝑂𝑂𝑂𝑂𝑟𝐴𝑦) 
        𝐴𝐴𝐴𝐴 = 1.0 

        For �𝐴𝑟𝑅𝑥 , 𝐴𝑟𝑅𝑦� = (𝑃𝑃𝑥𝑥 ,𝑃𝑃𝑥𝑦) to �𝐵𝑃𝐴𝑗𝑥 ,𝐵𝑃𝐴𝑗𝑦� 
            𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴 ∗ 𝑂𝑂𝑂𝑟𝑐𝐴�𝐴𝑟𝑅𝑥 , 𝐴𝑟𝑅𝑦� ∗ 𝜇(𝐴𝑟𝑅𝑥 , 𝐴𝑟𝑅𝑦) 
        End 

        𝑅𝑅𝑃𝑗�𝑃𝑃𝑥𝑥,𝑃𝑃𝑥𝑦� = 𝐴𝐴𝐴𝐴 ∗ 𝐴𝐴𝐴𝑟𝐴𝐴𝑟𝑅𝑟𝑟�𝑃𝑃𝑥𝑥,𝑃𝑃𝑥𝑦� ∗ 𝜏(𝜑) 

    End 
    𝐵𝑃𝐴𝑗 = 𝑂𝑠𝑠(𝑅𝑅𝑃𝑗) 
End 
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tune the RoI at each detector bin to reduce under-estimate 
or over-estimate of scatter effect.   
 

V. CONCLUSION AND FURTHER WORK 

 
In this study, we modeled an algorithm and 

implemented code for simulating effective X-ray photon 
scattering. While Monte Carlo technique is widely used 
to estimate photon scattering, it has to confront speed-
accuracy trade-off.  

To overcome the problem, we exploited bi-directional 
path tracing method, a novel algorithm to model one or 
more scatter (or reflect). We implemented and optimized 
code for general purpose GPU, which supports parallel 
processing with multiple threads. We have achieved 
satisfactory computation time that linear to slice (2-d) 
image size. Our further research will focus on finding 
accurate photoelectric and Compton scattering coefficient 
determined by materials and other factors for more 
sophisticated simulation, which will later be used for 
minimizing artifacts in CT images. 

 

  

  
 

  

  
 

Figure 8. Scatter Result. Original Data (top left), Projection without 
Scatter (top right), Scatter at high-reflective material (𝑐𝑅𝑂30(𝑥)) 

(bottom left), Scatter at less reflective material (𝑐𝑅𝑂150(𝑥)) (bottom 
right).  
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Abstract— In recent years the GPU has become an increasingly 

popular tool in various fields. In this paper, we will introduce 

our preliminary work on first-order scatter simulation in 

X-ray imaging accelerated by GPU. As this is preliminary 

work, we explore the GPU accelerated scattering simulation in 

2D space and test it with physics-based simulated data. The 

results are promising. 

I. INTRODUCTION 

here has been much research on investigating the fast 

simulation of scattering effects in various fields. It is 

now well established that restricting efforts to single scatter 

and simulating it based on ray tracing techniques make it 

possible for the simulation to be done in a short time [1][2]. 

Several research groups have proposed hybrid approaches by 

adding stochastic properties into the deterministic 

approaches to achieve physical accuracy [3][4]. 

Furthermore, some have also introduced parallel 

implementations of scattering simulations to overcome the 

tremendous amount of computations in the simulation [5][6]. 

We have pursued the latter where we seek to overcome the 

challenge by GPU-acceleration [7][8], using their massively 

parallel computations to meet this challenge.  

     In general, mapping a CPU-based algorithm to the GPU 

and achieving 1-2 orders of speedup is not straightforward. It 

requires a deep understanding of the GPU architecture and 

its programming model. Furthermore, the CPU-based 

algorithm often needs to be reordered or decomposed to fit 

into the GPU. In our case, the ray-tracing based deterministic 

scattering algorithm [4] is divided into two blocks of 

separate stages and executed as follows. We first compute 

the attenuation from the x-ray source to object layers and 

then use the result in the second stage to perform the 

scattering simulation. This avoids a lot of redundant 

attenuation computations that occur when similar rays 

scatter at different locations in the object.  

The outline of this paper is as follows. In section 2, we 

present a brief background on x-ray interaction as well as 

GPU. In section 3, we provide a detailed explanation of our 

methods for the first-order scattering simulation on GPUs. 

The test results are presented in section 4 and section 5 

concludes our paper and points to future work. 

 
Sungsoo Ha, Jaewoo Pi, and Klaus Mueller are with the Center for 

Visual Computing, Computer Science Department, Stony Brook University, 
NY 11794 USA (e-mail: {sunha, jpi, mueller}@cs.sunysb.edu). 

II. BACKGROUND 

A. X-ray Interaction with Matter 

The number of x-ray photons,     , is attenuated as it 

passes through matter in an exponential fashion: 

             [∑        

 

] 
 

(1) 

Here,       refers to the number of photons emitted from 

the x-ray source,       is the linear attenuation coefficient 

associated with the material   at energy  , and    is the total 

path length through the material  . The linear attenuation 

coefficient can be re-written as the sum of three individual 

interaction mechanisms:                       
which are the probabilities of photoelectric absorption ( ), 

Rayleigh scattering (  ), and Compton scattering (  ). In 

photoelectric absorption, the incident x-ray photon transfers 

its energy to an inner shell electron in the absorbing atom 

that has a binding energy similar to but less than the energy 

of the incident photon. In Rayleigh scattering, an incident 

x-ray photon interacts with an electron and is scattered with a 

small angle but without loss in energy. Finally, in Compton 

scattering the scattered photon travels in any direction, but 

with loss of energy. More information on the three 

interactions can be found in [9]. The form-factor (FF) 

approximation and the incoherent scattering function (ISF) 

approximation is the model of Rayleigh- and 

Compton-scattering, respectively, and most widely used in 

photon transport simulation [4].  

B. NVIDIA GPU and CUDA 

We have accelerated the first-order scattering simulation on 

a NVIDIA 480 GTX GPU with 1.5GB off-chip memory. 

This GPU has 480 CUDA cores organized into 15 streaming 

multiprocessors (SM) of 32 processors each. Its theoretical 

computing power is about 1.3 TFLOPS. This GPU, like all 

modern GPUs, has off-chip memory and on-chip caching 

mechanisms. Off-chip memory includes global, texture and 

constant memory and incurs hundreds of cycles of memory 

latency. It is often the bottleneck of a GPU application. 

However, texture and constant memory can be cached, 

replacing the hundreds of cycles of latency with only a few 

cycles for on-chip cache access. The GTX 480 has a peak 

memory bandwidth of 177.4 GB/s for its 1.5 GB DDR5 

device memory.  

     The CUDA (Computer Unified Device Architecture) is a 

C-like API used to program the NVIDIA GPUs. Execution 

GPU-Accelerated First-Order Scattering Simulation 

for X-Ray CT Image Reconstruction 

Sungsoo Ha, Jaewoo Pi, and Klaus Mueller, Senior Member, IEEE 
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of a task by a CUDA kernel is organized into thread blocks. 

Thread blocks are organized into a grid. The GTX 480 can 

have a maximum of 1,024 threads per thread block. Once a 

thread block is assigned to a streaming multi-processor, it is 

further divided into 32-thread units called warps and each 

warp is following same instruction (SIMT: Single 

Instruction Multiple Thread).  

III. METHODOLOGY 

Our current implementation serializes the computations for 

the different energy windows, but it parallelizes the 

computations for the detector bins by assigning each bin a 

different set of CUDA blocks. The following description 

refers to one bin and one energy window. To simulate the 

first-order scattering in a 2D macroscopic object, the object 

is divided into small pixels. The simulation is comprised of 

two major stages: (1) the pre-attenuation from the x-ray 

source to each pixel is computed and stored in memory, and 

(2) the post-attenuation from each pixel to each bin is 

computed and combined with the pre-attenuation to obtain 

the number of Rayleigh- and Compton-scattered photons for 

the detector bin (Fig. 1). We now describe how the scattering 

simulation is parallelized. 

A. Early termination in 1
st
 and 2

nd
 stages 

All x-rays from source to pixels (or pixels to a bin) are 

parallelized. To reduce the amount of computation in the ray 

traveling, we terminate the sampling of a ray when the 

current sampling point is outside of the object. The 

attenuation from the rest of the x-ray is computed based on 

pre-defined background material and the remained length.   

     From the view of CUDA programming, the CUDA kernel 

has 256 (16x16) threads per a thread block. A grid contains 

                                                 
     of thread blocks. The configuration is found by 

considering the tradeoff between processing speed and code 

scalability. Each pixel in the object has a pre-defined unique 

object ID such as air (0) and iron (5), and is stored in a 2D 

texture which is specifically designed to allow fast 2D 

memory access and hardware accelerated linear 

interpolation. The texture memory is also used to store 

material attenuation coefficients, FFs, and ISFs. This helps 

to get the data values at a specific energy efficiently. The 

attenuation coefficient data are obtained from [10] and the 

FFs and ISFs are from EPDL97 [11]. Before binding these 

data to texture memory, they are uniformly sampled over a 

1keV~1MeV energy range by means of logarithmic 

interpolation. The constant memory is used to store 

(effective) atom number and density.  

B. Sum reduction in 2
nd

 stage 

After each thread has computed the number of scattered 

photons from a pixel to the bin, it stores this number in 

shared memory. This allows communication of the results 

among all threads in a thread block. Next we need to 

combine these pixel photons to obtain the total number of 

photons arriving in the bin. We use a two-staged approach. 

First, we use parallelizable sum reduction for computing the 
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𝑏𝑗 

< 2nd  stage of scattering simulation > 

𝒏𝑑𝑒𝑡 

𝑠: point source  
𝑥𝑖: ray path length in material 𝑖 

𝒖𝑝𝑠: unit vector from a pixel to point source 

      

 

𝑏𝑗: j-th bin of 1D virtual detector 

𝒖𝑝𝑏𝑗
: unit vector from a pixel to j-th bin 

𝒏𝑑𝑒𝑡: normal vector of 1D virtual detector 

: material i 

: a region of interest for a j-th bin 

Fig. 1. The first-order scattering simulation method consists of 

two stages. The first stage computes the attenuation from 

source to pixels (top). The second stage scatters photons into 

bins in a 1D virtual detector (bottom). For convenience 𝑥𝑖 only 

reflects the path length in different materials not the actual 

length. 

 

    
    
    

  
    

          

SI = 790 mm 

IJ = 10 mm 

Point source 

100 kVp  

s I J 

Sample object: iron wedge 

100 x 100 mm 

pixel size 1 x 1 mm 

Detector: 100 bins 

bin size 1 mm 

Background: dry air 

Fig. 2. Simulation of first-order scattering. A 1D virtual 

detector is placed behind the sample object. The schematic 

view of the test setup is not to scale.  

The second international conference on image formation in X-ray computed tomography Page 179



 

 

total number of scattered photons for each thread block. 

Then we transfer each block result to the CPU and combine 

them into the total number of bin photons. This turned out to 

be faster than a GPU-based block-summation.   

C. Region of interest for a bin at 2
nd

 stage 

To save overall computation at the second stage, we restrict a 

region of interest (ROI) of the object for a bin (Fig. 1). This 

can be regarded as a virtual collimator in the detector. 

Assuming that bins are uniformly distributed over the 

detector and have the same acceptance angle (between      

and    , Fig. 1), only a single ROI needs to be computed at 

the center of the detector. The ROI is repeatedly re-used for 

all bins with proper translation. The typical time for 

computing the ROI takes about 1ms, which is considerably 

less than the time consumed in the two major stages (Table. 

I). The total number of thread blocks used in the second stage 

is reduced to                       , where the size of 

the ROI refers to the number of pixels within the ROI and it 

is typically much less than the total number of pixels of an 

object. 

D. Parallelizing all bins at 2
nd

 stage 

As the final optimization, the computations for all bins are 

parallelized so that the first-order scattering simulation with 

a given x-ray energy window can be done in one GPU kernel 

invocation. To enable this parallelization, the number of 

thread blocks is increased. A thread block computes a 

portion of the number of scattered photons for a bin. This 

allows to reduce memory transfer from GPU to CPU to the 

order of                           .        

IV. EXPERIMENT AND RESULTS 

A. X-ray source 

To generate a discrete x-ray source, we used the SpekCalc 

x-ray spectrum generator program [12]. In this study, we 

only adjust the peak energy (kVp) and the energy bin size  

(keV) of the x-ray spectrum. The other parameters of the 

software are kept as default settings. There are 8 energy 

windows between 20 and 100 keV (Fig. 3) and the total 

number of scattered photons is computed as the sum of the 

photons from all windows. The total time for the simulation 

is computed as the sum of the time spent in all windows in 

x-ray spectrum. 

B. Test configuration 

The x-ray source is located at the origin of the 2D space and 

the sample object stands 790 mm apart from the source. The 

detector is placed behind the sample object with 10 mm 

distance. An iron step wedge is selected as the test sample 

object. The dimensions of the wedge are 100 x 100 mm. The 

step width is varying from 20 mm to 100 mm with 20 mm 

intervals. Dry air is selected as the background material. The 

detail of this test configuration is illustrated in Fig. 2.  

TABLE I. TIME PERFORMANCE [SEC] 

 Value ROI 
Avg.  

stage 14 

Avg.  

stage 24 Total5 

Angle1 

1 0.001 0.003 0.015 0.149 

3 0.001 0.003 0.039 0.349 

5 0.001 0.003 0.064 0.542 

Pixel 

Size2 

1x1 0.001 0.003 0.082 0.687 

0.5x0.5 0.001 0.007 0.294 2.425 

0.1x0.1 0.015 0.131 5.578 45.766 

Bin 

Size3 

1 0.001 0.003 0.082 0.687 

0.5 0.001 0.003 0.161 1.322 

0.1 0.001 0.003 0.799 6.429 

1. Unit of degree, and fixed 1 x 1mm pixel and 1mm bin  

2. Unit of millimeter, and fixed 7 degree angle and 1mm bin 

3. Unit of millimeter, and fixed 7 degree angle and 1x1 mm pixel  
4. Average time to complete a given task 

5. Time to finish scattering simulation with x-ray spectrum 

 (8 windows) 

Fig. 4. The mass attenuation coefficient for dry air and iron 

Fig. 3. Discrete x-ray spectrum generated by SpekCalc (100 

kVp with 10 keV bin size) 

1
st
  

2
nd

  

3
rd

  
4

th
  5

th
  

6
th

  

7
th

  

8
th

  

Fig. 5. Profile of pre-attenuation values from 1st stage of the 

first-order scattering simulation with the test setting at 60~70 

keV intervals of x-ray source. Each curve is the profile at the 

center of a stair of the iron wedge.   
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C. Test results 

Fig. 5 shows the pre-attenuation values obtained from the 1
st
 

stage of the first-order scattering simulation. The value at 

each pixel indicates the sum of attenuation values along a ray 

path from the pixel to x-ray source. As a ray travels further 

and passes through a wider step, the value is increasing. We 

can also observe that the attenuation value increase more 

rapidly as the path travels in iron than in air; this is what we 

can expect in this experiment from Fig. 4.  

     There are three factors which can affect the time 

performance and the simulation result: the acceptance angle, 

pixel size, and bin size. We measure the time performance 

and the result by varying those parameters. The time 

performance is shown in Table I. Fig 6 provides comparisons 

of the total number of detected photons at the detector with 

different parameter values as shown in Table I. When 

increasing the acceptance angles, the contrast at the detector 

decreases which is symptomatic of the scattering effect (Fig. 

6 top); while increasing resolution for the detector or the 

object, does not yield an improved quality of the scattering 

simulation result (Fig. 6 center and bottom). It is worth 

noting that in order to compare different numbers of bins, the 

number of photons in the bins within the coarsest level size is 

summed.     

V. CONCLUSION AND FUTURE WORKS 

In this study we implemented and simulated first-order 

scattering in 2D space using the GPU. We tested our code 

with different acceptance angles and different pixel- and 

bin-sizes. Increasing the acceptance angle to 5º gave better 

scattering effects, while decreasing either pixel or bin size 

beyond 1.0 was less influential. Using these settings, the 

measured time performance was about 0.067 seconds for one 

specific x-ray energy window. For future work, we plan to 

extend our framework to 3D space and we also plan to verify 

our results with a well proven scattering simulator and also 

with directly measured data from real x-ray scanners.  
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Fig. 6. The number of detected photons with different 

acceptance angles (top), pixel size (middle) and bins size 

(bottom). The number is normalized with maximum value at 

each simulation result for comparison purpose. 

Varying acceptance angle 

Varying pixel size 

Varying bin size 

The second international conference on image formation in X-ray computed tomography Page 181



Searching Effective Parameters for Low-Dose CT 

Reconstruction by Ant Colony Optimization  

Ziyi Zheng, Eric Papenhausen and Klaus Mueller 

 

 
Abstract— Low-dose Computed Tomography (CT) has been 

gaining substantial interest, due to the growing concerns with 

regards to the X-ray dose delivered to the patient. To cope with 

the limited data collected at 30% of standard radiation, low-dose 
CT reconstruction algorithms generally involve several iterations 

of forward projection, back-projection and regularization, 

requiring many parameters to achieve desirable quality and 

speed. The interactions among these parameters can be complex, 

and thus effective combinations can be difficult to identify for a 
given scanning scenario. Non-optimized parameters can result in 

increased reconstruction time or reduced image quality.  As a 

result, the parameter choice is often left to a highly-experienced 

expert. In this work we focus on an automatic parameter 

optimization framework. In the pre-computation step of our 
parameter learning framework, effective parameters are learned 

with the access of a known gold-standard. As these domain-

specific and algorithm-dependent parameters are obtained, they 

are applied in the similar incoming data. In addition, an edge-

enhancement component is introduced and automatically tuned 
to increase the sharpness in iterative reconstruction. The 

preliminary results with the non-local mean filter indicate that 

our parameter optimization scheme can identify effective 

parameters resulting in sharper results than those results 

generated by popular iterative reconstructions algorithms.  

Index Terms—Iterative reconstruction, low-dose CT, ant colony 
optimization, non-local mean filter 

I.  INTRODUCTION 

Cone-beam CT has become to be a major imaging technique 
thanks to its image-fidelity and scan time. The traditional cone-

beam CT reconstruction method is the FDK [1] algorithm, 
which provides high resolution results but requires several 

hundreds of X-ray pro jections. With the growing concern about 
the potential risk of X-ray radiat ion exposure to the human 

body, low-dose CT has become a significant research topic. 

Dose reduction usually involves lowering the X-ray energy per 
projection and/or reducing the total number of projections. 

Both methods typically suffer from low signal-to-noise ratio 
(SNR) in the reconstructions. Iterative reconstruction schemes, 

matched with suitable regularization methods have been shown 
to cope well with these few-view or high-noise scenarios.  

Iterative methods typically offer a diverse set of parameters 
that allow control over quality and computation speed, often 

requiring trade-offs. These expert-picked parameters need to be  
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learned from many experiments which are both domain-

specific and algorithm-dependent. Thus the hand-tuning of the 
parameters in iterative algorithm could be very time-

consuming. Researchers have proposed methods to set the 
parameters by monitoring the convergence and updating 

reconstruction parameters on the fly [2]. In this work we focus 

on automatic parameter optimization by pre-computation. We 
propose a two-step method. The first step is the parameter 

learning step; which uses the known gold-standard. After 
parameters are trained, they are re-used in similar data with 

similar scanner settings. Furthermore, our framework can 
incorporate an interleaved un-sharp mask to avoid over-

smoothing on the reconstruction results . We compared our 
results with those obtained by automatic controlled iterative 

reconstructions algorithms and results indicate that our 

optimized parameters can resolve fine structures as good as or 
better than previous methods. 

Our paper is organized as follows. Section 2 d iscusses 
related work. Section 3 describes our framework. Section 4 

presents some initial results, and Section 5 concludes the paper. 

II. RELATED WORKS 

Recent research in iterative reconstruction demonstrates a 
trend of combining forward and back-projection with various 

regularization methods. The regularization algorithm usually 
employed is Total Variation Minimization (TVM) as used in 

the Adaptive-Steepest-Descent-Projection-Onto-Convex-Sets 

(ASD-POCS) algorithm [2]. On the other hand, de-noising 
filters, such as the bilateral filter [3] and the non-local means 

(NLM) filter [4], can also be used in regularization [5][6][7]. 
Compared to the ASD-POCS algorithm which can determine 

the TVM parameters on the fly, de-noising filters based 
reconstruction methods need a special control unit to guide 

regularization parameter during the convergence. Our 

framework fulfills this need and provides optimized parameters 
which can be directly applied on de-noising filter based 

regularization algorithm. 

This work serves as an extension of previous research 

focused on optimizing bilateral filter-based iterative 
reconstruction, using genetic algorithms [8]. The ant colony 

optimization (ACO) [9] algorithm is inherently a path 

searching engine driven by a large number of artificial ants and 
is widely applied to solve many optimization problems. In this 

paper, we utilize the ACO algorithm to find optimal parameters 
in NLM-based iterative reconstruction. In addition, we improve 

the current existing regularization pipeline by adding an edge-
boosting stage with optimized parameters. 
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III. APPROACH 

A. Iterative Reconstruction with Regularization 

We use the OS-SIRT algorithm with GPU-accelerated 
forward projection and back-projection [8]. The forward 

projection operator simulates X-ray images at a certain viewing 
angle φ. The result of this projection is then compared to the 

acquired image obtained at the same viewing angle. Here, the 
weight factor     determines the contribution of    to    and is 

given by the interpolation kernel used for sampling the volume. 

The forward projection is: 

where   and   are the number of rays and voxels, 

respectively. The correction update is computed as: 
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Here,    represents the pixels in the     acquired images 

that form a specific (ordered) subset     where          
and   is the number of subsets. The factor   is the relaxat ion 

factor that scales the corrective update to each voxel. Th is 

factor is important in  balancing quality and speed and will be 
optimized by our framework. The factor   is the iteration 

counter. It will be incremented when all   projections have 

been processed. In the GPU implementation, only the forward 

projection uses a ray-driven approach, where each ray is a 
parallel thread and interpolates the voxels on its path. 

Conversely, the back-projection uses a voxel-driven approach, 
where each voxel is a parallel thread and interpolates the 2D 

correction projections. Thus, the weights used in the projection 
and the back-projection are slightly different but it has 

minimum effect on the reconstruction quality [5][8].  

We use a 2D NLM filter [4] for regularization. The NLM 
filter is a non-linear filter that replaces the pixel located at x 

with the mean of the pixels whose Gaussian neighborhood 
looks similar to the neighborhood of x: 
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Here,  ,   and   are 2D spatial variab les.   is the window 

centered at  .   is the 2D neighborhood centered at   or  . Ga 

is a 2D Gaussian kernel with a standard deviation . The 

variable   acts as a parameter to control smoothing. Thus, the 

NLM filter contains several parameters to achieve best quality. 

For the performance, one observation of NLM filtering is that 

the computational time spend on NLM does not change as like 

it does in TVM regularization.  

At the last stage of our regularization scheme, the un-sharp 

masking is used to avoid over-smoothness in iterative 
reconstruction. The control factor of sharpness is given by later 

optimizations. 

B. Ant Colony Optimization (ACO) 

The ant colony optimization (ACO) algorithm is a swarm 
intelligence method to search for good paths in discrete graphs. 

Intuitively, it launches a large number of artificial ants 
searching for best score. Each artificial ant independently 

moves in the graph and reports the scores it gets. The 

probability for an ant to choose an edge connecting two nodes 
is affected by the moving trend of all ants. More specifically, 

the probability for choosing one choice will increase if a large 
number of high score-ants choose it.  

Iterative CT reconstruction can be modeled as a classic path 
searching problem. In this discrete graph of nodes and edges, 

each node represents a unique state of the volume being 

reconstructed, after a certain number of iterations and tagged 
with a score that encodes a quality metric. Each edge represents 

the computation of a correction pass and a regularization pass. 
The weight on an edge represents the time cost, which in our 

case is treated uniformly as one. The overall goal is to find the 
node having the highest score within a given cost. Since we 

have a uniform cost for NLM filtering, the problem is reduced 

to find the best score after a fixed number of steps. 

We attempt to optimize six parameters including the 

relaxation factor   in Equation (2), the   factor, Gaussian blur 

factor, window size and block size for the NLM filter in 
equation (4) and the un-sharp masking factor. These parameters 

can be different per iteration, resulting in an astronomical 
search space. For example, assuming we allow 100 discretized 

values for each parameter and allow 10 iterations, the search 
space will be      . This search space is so huge that simple 

exhaustive search algorithm will fail to find the optimal 

solution in a reasonable amount of time.  

We adopt a greedy heuristic to prune the search tree. This 

heuristic guides ants with a "best guess" for the path on which 

the solution lies. The greedy ant system only searches the best 
parameter setting for a single iteration, then adopts the best 

setting and moves on to the next iteration. The solution space 
can then be reduced from       to     . Assuming the optimal 

parameters would be similar or slightly adjusted for adjacent 

iterations, we can improve the search efficiency through 
pheromone control. The pheromone for the current iteration is 

re-used in the next  iteration, making ants more likely to choose 
parameters similar to previous best parameters.   

In the following, we describe our version of the ant system 

in detail. The probability for an ant to choose a discretized 
value   for  th parameter is: 
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where    is the pheromone on value   for  th parameter and    

is the discrete resolution of the  th parameter. The value of     

is initially set to one; this will allow ants to make purely 
random decisions. After a small group of ants (in our case it is 

10) fin ishes their moves for all 6 parameters, the pheromone is 

updated as: 

             ∑        
                    (6) 

where    is the normalized score (with         ) of the  th 

ant, as the amount of new pheromone put on   is the 

pheromone evaporation factor (with        ). The range of 

pheromone is clamped within      . The equation (6) updates 

the pheromone such that later ants will be more likely  to follow 
the path of previous high-score ants. If in the current iteration 

no ants report better scores than in the previous iteration, we 

launch another group of ants until better scores are found or the 
maximum number of ants for one iteration is reached. In the 

absence of a human observer,    is generated by a computer 

based on a quality metric. In this paper, we use the correlation 
coefficient (CC) to determine   .   

IV. RESULTS 

In our experiments, we collected two sets of data from a 

cone-beam CT scanner (Medtronic O-arm system). We 
perform the reconstruction algorithms on the central slice only. 

The detector 1D resolution was 1,024 p ixels with pixel-size 

0.388mm. The low-dose case was set as 60 evenly-distributed 
projections and the gold-standard was generated by the FDK 

algorithm with 360 pro jections. In the OS-SIRT scheme, we 
made 40 subsets which contain 1-2 projections. Head phantoms 

were used to test the parameter optimization algorithm and the 
training results are shown in Figure 1. The result from 60 

iterations of the OS-SIRT algorithm with a constant λ=1 is in 

panel (a) and the gold-standard is in panel (b). 60 iterations of 

the ASD-POCS result is displayed in panel (c). We use SART 

instead of ART in this ASD-POCS implementation to make a 
fair comparison. The ASD-POCS result is smooth but has some 

typical cartoon-like structures due to the TVM scheme. On the 
other hand, our trained results (d) are the more similar to the 

gold standard (b) and can preserve sharper details  than ASD-
POCS can (c).  

Figure 2 shows the plot of trained parameters through 60 

iterations with CC scores. We can see that the CC score stops 
improving after 25 iterations. Figure 3 shows the plot of 

relaxation-correction factor in equation (2). The optimized 
parameter suggests starting with a bigger value around 2.0 and 

gradually decreasing to 0.0. Note the overall decreasing trend 
contains a certain amount of perturbation and there was very 

little correction after 40 iterations. 

 

Figure 2. The correlation-coefficient CC through 60 iterations 

 

We tested the learned parameter setting on another similar 
head phantom. Now the central slice was shifted to another 

autonomy region in the head phantom. Figure 4 documents the 

0.975
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0.985

0.99

0.995

1
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Iteration number 

CC 

(a) (b) 

(c) (d) 

Figure 1. A central slice of a reconstruction for a training dataset. (a) low-dose OS-SIRT. (b) gold-standard FDK by 360 projections. (c) low-dose ASD-

POCS and (d) optimized low-dose. (a), (c) and (d) use 60 projections and 60 iterations. 
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image quality of the new dataset with (a) 60 iterations of OS-

SIRT with a constant λ=1, (b) 360 projection FDK, (c) 60 
iterations of ASD-POCS and (d) 60 iterations of optimized 

parameters. We observed that even in another scan, the 
parameters can guide the reconstruction to achieve better visual 

quality than ASD-POCS. 

Figure 3. The λ in Equation (2) through 60 iterations 

All o f our experiments were conducted on an NVIDIA GTX 

480 GPU, programmed with CUDA 3.2 runtime API and with 

an Intel Core 2 Duo CPU @ 2.66GHz. We display the 

reconstruction results simultaneously during the optimization. 

In the implementation, we use shared-memory in the GPU to 

perform prefetching, which enables 4× speedups [6]. Table I 

shows the configurations and performance of our framework. 

The iteration versus time does not scale linearly since later 

iterations will need to launch more ants to improve the score, 

especially in the case when the scores do not increase after a 

large number of iterations . We try to avoid over-fitt ing by 

detecting whether λ becomes close to zero (λ <0.05). 

 
TABLE I 

PERFORMANCE OF ANT COLONY OPTIMIZATION 

Maximum # of Ants Iterations T ime(s) 

1000 10 92 

1000 30 265 
1000 50 1.44k 

V. CONCLUSIONS 

We have devised an efficient framework to optimize various 
parameters for iterative CT reconstruction using an ant colony 

optimization algorithm. Our preliminary results show that the 
learned parameters can be readily applied to similar scans with 

promising results.  

In future work, we would like to employ other perceptual 

quality metrics. We are also planning to extend the current 

framework to 3D reconstruction and study parameter 
optimization in different scanning scenarios, for example, 

patient size, X-ray tube’s voltage and current. 

ACKNOWLEDGMENT   

We thank Medtronic for providing access to their O-arm 
scanner and head phantoms.  

REFERENCES 

[1] L. A. Feldkamp, L. C. Davis, and J. W. Kress, “Practical cone-beam 
algorithm,” J. Opt. Soc. Am. Vol 1, No. A6, 612–619 , 1984. 

[2] E. Y. Sidky and X. Pan, “Image reconstruction in circular cone-beam 
computed tomography by constrained, total-variation minimization,” 
Physics in Medicine and Biology, vol. 53, pp. 4777-4807, 2008. 

[3] C. Tomasi, and R. Manduchi, “Bilateral filtering for gray and color 
images,” IEEE International Conference on Computer Vision, pp. 839-
846, 1998.   

[4] A. Buades, B. Coll, and J. M. Morel, “A non-local algorithm for image 
denoising,” Computer Vision and Pattern Recognition, pp. 60-65, 2005. 

[5] W. Xu and K. Mueller, “A performance-driven study of regularization 
methods for GPU-accelerated iterative CT,” In Workshop on High 
Performance Image Reconstruction, 2009. 

[6] Z. Zheng, W. Xu, and K. Mueller, “Performance tuning for CUDA-
accelerated neighborhood denoising filters,” In Workshop on High 
Performance Image Reconstruction, 2011. 

[7] J. Huang, J. Ma, N. Liu, H. Zhang, Z. Bian, Y. Feng, Q. Feng, and W. 
Chen, “Sparse angular CT reconstruction using non-local means based 
iterative-correction POCS,” Computers in Biology and Medicine, 
41(4):195-205, 2011. 

[8] W. Xu and K. Mueller, “Using GPUs to learn effective parameter 
settings for GPU-accelerated iterative CT reconstruction algorithms”, 
GPU Computing Gems Emerald Edition, Chapter 43, January 26, 2011 

[9] M. Dorigo, G. DiCaro, and L. M. Gambardella, “Ant algorithms for 
discrete optimization,” Artificial Life, 5(2):137–172,1999. 
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Abstract—Computed tomography with photon-counting 

detectors (PCD-CT) is an emerging technology that will decrease 

noise, increase contrast, and enable quantitative and molecular 

CT imaging. Several spectral response effects (SRE) distort the 

energy spectrum recorded by PCDs: finite energy resolution, 

Compton scatter, charge-sharing, K-escape, etc. They lead to 

severe artifacts if left uncorrected. We propose a new SRE 

compensation scheme for PCD-CT that restores the projection 

data and allows for quantitative imaging using material 

decomposition. The performance was evaluated against 

conventional energy-integrating detectors (EID) and applied to 

the clinical task of detecting coronary plaques, in particular soft 

plaque prone to rupture. Simulations using the 4D XCAT 

computer phantom indicate that a contrast-to-noise ratio (CNR) 

enhancement for certain plaques up to a factor of 8 compared to 

EID-CT may be possible, resulting in dose reduction well over 

90%. ROC curves were obtained for the detectability of soft 

plaque with and without a novel Bismuth-nanoparticle contrast 

agent. The area under the ROC curves (AUC) was used as a 

performance index for the various systems and compensation 

methods. In all cases the PCD-CT with the proposed SRE 

compensation scheme outperforms EID-CT by a large margin 

(e.g., for soft plaque vs. tissue: AUC=0.99 for PCD-CT and 

AUC=0.63 for EID-CT). 

 

Index Terms—spectral CT, photon-counting detectors, 

material decomposition, XCAT computer phantom, coronary 

plaque detection, atherosclerosis, ROC curve. 

I. INTRODUCTION 

omputed tomography (CT) has been a valuable diagnostic 

imaging modality since its development by Hounsfield in 

the 1970s. Recent developments in this field aim at exploring 

not only the intensity but also the energy information of the 

transmitted x-ray spectrum. Together with contrast agents and 

K-edge imaging the additional information leads to increased 

contrast, more quantitative data, and opens the field of 

functional and molecular imaging to x-ray CT. 

These new imaging opportunities, however, require a 

paradigm shift in detector technology. Conventional CT 

systems with energy integrating detectors (EIDs) have the 
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following limitations: 1) the contrast between tissue types is 

not sufficient for many diagnostic purposes; 2) images are not 

tissue-specific; 3) some exams require relatively high-dose 

protocols. These limitations can be overcome with photon-

counting detectors (PCDs) which are capable of counting 

individual photons and their energies, thus providing both 

intensity and spectral information. 

In the following two subsections we describe PCDs in 

more detail and then discuss a specific application of high 

significance (coronary plaque detection) that will become 

accessible to CT imaging with the compensation scheme for 

PCDs proposed in this paper. 

A. Computed tomography with photon-counting detectors 

PCDs consist of crystal sensors such as Cadmium Telluride 

(CdTe) to convert x-ray photons into electrical signals. 

Electronic circuits attached to the sensor amplify and shape the 

signal pulse for each photon. Comparators measure the signal 

height which is a measure for the incident photon energy and 

count the photon if the signal is above a given threshold. 

Current PCDs intended for x-ray and CT imaging have 

between two and six separate counters for different energy 

windows and can register up to 150 million photons per 

second per square-millimeter (Mcps/mm
2
).  Some CdTe-based 

PCDs are described in [1-7]. 

Despite significant advancements in detector technology 

PCD data are affected by several inherent degradation factors. 

If these are not accounted for, the resulting CT images will be 

of little value for diagnostic purposes. Count-rate independent 

effects that alter the measured photon energy (spectral 

response effects, SREs) include charge sharing, K-escape x-

rays, and Compton scattering. Count-rate dependent effects 

(pulse-pileup effect, PPE) originate from the limited count rate 

of current PCDs: when the x-ray flux is very high, the detector 

response time is insufficient to resolve individual photons, 

which are then counted as one photon with added energies. 

This leads to a loss of count and wrong energy information. 

In this paper we address the spectral response effects and 

propose a compensation scheme that restores the spectral 

information in the projection data domain. The PPE has been 

addressed by the authors previously [8, 9]. 

B. Coronary plaque 

Cardiovascular diseases remain the leading cause of death 

in the western world with ever-increasing costs on health 

services. Cardiac catheterization to determine a possible 

Spectral Response Compensation 
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J. Cammin*, S. Srivastava, G.S.K. Fung, and K. Taguchi 

C 

Page 186 The second international conference on image formation in X-ray computed tomography



 

stenosis due to plaque deposits is expensive, invasive, and 

connected to certain risks for the patient. A promising non-

invasive alternative is ECG-gated CT [10]. However, the 

limitations of current EIDs described before make it 

challenging to accurately detect and characterize plaques. It is 

especially important to detect soft plaque (atherosclerosis) that 

is prone to rupture and form blood clots (vulnerable plaque, 

high-risk atherosclerosis). 

Spectral CT with PCDs will be able to solve this problem 

due to decreased noise, increased contrast, and the ability to 

reconstruct material specific images for certain tissue types 

and contrast agents. Recently developed nanoparticles that can 

carry high-Z contrast agents such as bismuth or gold and that 

specifically attach to soft plaques will allow to image high risk 

atherosclerosis and help to distinguish different plaque types. 

In this paper we apply the SRE compensation algorithm to 

simulated coronary plaques and study the detectability of 

atherosclerosis using spectral PCD-CT. 

II. MATERIALS AND METHODS 

A. Spectral response effect compensation for PCD-CT 

A new SRE compensation algorithm was developed with 

an efficient conjugate gradient method in which the first and 

second derivatives are calculated analytically. The SRE 

compensation integrates a sinogram restoration approach, 

applies the SRE in the forward projection model, and then 

compensates for the SRE by maximizing a penalized log-

likelihood function. The following subsections describe the 

algorithm in more details: 

1) Forward imaging model 

The forward model can be outlined as follows: a 

polychromatic x-ray spectrum exiting from a bowtie filter is 

modeled by the number of photons in multiple energy bins. 

The attenuation of the photons by the object is modeled using 

a material decomposition approach [11]. The x-ray photons are 

then incident on a PCD pixel, where the x-ray spectrum is 

distorted as described by a parameterized spectral response 

function (SRF). The output of an energy bin is the number of 

counts within the corresponding energy range of the distorted 

spectrum.  

a) Object model based on material decomposition 

The object being imaged is a spatial distribution of the 

energy-dependent x-ray attenuation coefficient: ( , )f x E , 

where x is a location and E is an energy. Using the concept of 

material decomposition, ( , )f x E  can be modeled accurately 

by a sum of L basis materials,  

 
( )

( , ) ( ) ( ),
1

L
f x E a x E

k k k k


   


  

where 
k

 is the density, 
 

 E
k


 is the mass attenuation 

coefficient, and ( )a xk is the coefficient of the kth basis. 

b) Spectral response function (SRF) 

The SRF for monochromatic incident x-rays was measured 

for several input energies, E0, using radioisotopes at a very low 

count rate. The recorded spectrum was normalized to obtain 

the SRF. The SRFs varied gradually depending on the input 

energy E0. The mathematical equation for the SRF, DSRF(E; 

E0), is defined to model the measurements with only a few 

parameters. The SRF for E0 is a weighted summation of two 

normalized functions for the photopeak (DG) and a long tail 

(DT). The photopeak is modeled by a Gaussian curve with a 

parameter (E0) centered at E0. The tail is a constant that 

extends from E0 down to Emin. The SRF can then be described 

as  

 

 0 0 0

2

0
0 2

00

0 0 0

0 min min 0

0

; ( ; ) (1 ) ( ; ),

( )1
( ; ) exp( ),

2 ( )2 ( )

( ) ( ),

1/ ( ), ,
( ; )

0, .

SRF G T

G

T

D E E wD

D

D

E E w D E E

E E
E E

EE

E k E E in keV

E E E E E
E E

otherwise





  


 



  
 


 

There are three parameters that change the SRF: k for the 

width of the photopeak; w for a balance between the 

photopeak and the tail; and Emin for the minimum tail energy or 

noise floor (Emin is fixed in this study). 

2) Spectral response compensation 

The compensation scheme comprises the following 

elements: (a) a cost function computed for each ray, including 

a regularization term; (b) an optimization algorithm that 

estimates line integrals by minimizing the cost function; (c) 

reconstruction of basis materials from the estimated line 

inetgrals using filtered backprojection. A monoenergetic CT 

image at a desirable energy Er, can then be synthesized from 

the density images of the basis materials. 

a) Cost function 

The penalized log-likelihood function is given by 
( ) ( ; ( )) ( ),

( ; ( )) ( ) log ( ),, , ,
1 1

[ , ],
,1 ,

1 2
( ) ( ) ,, ,2 1 1 ( )

l L y y l R l
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L y y l y l y y ln i n i n ii i

l n

l l li i i L

NL i
R l l li k j k

k i j Neighborhood i

    

  
 



  
  

 

where ( ; ( ))L y y l is the Poisson log-likelihood function, 

l is a vector over ,li k  ( ,li k is the line integral of the kth basis 

material along the ith ray),

 

 is the regularization parameter, 

,
y
n i

are the counts in the nth energy bin along the ith ray, 

( )
,

y lin i
are the mean detector counts based on the forward 

imaging model, and ( )R l is a quadratic regularization function 

in the sinogram domain [12]. 

b) Conjugate gradient optimization method 

The optimization method is described in this section. The 

direction of the line search is computed using the conjugate 

gradient (CG) method. Each line search is performed by a 
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quasi-Newton method. The gradient () and Hessian (
2
) 

used by the conjugate gradient and quasi-Newton methods, 

respectively, are computed analytically using the chain rule.  

 The pseudo code of the algorithm is given below: 

* Compute initial guess of l 

* For iteration m=1,…,Niter Do 

* For ray i=1,…,Ni Do 

* Do 

* Compute gradient, g = , using the chain rule 

* Compute search direction, d, using CG 

* Do 

* Update l using quasi-Newton method applied along d 

* While (Wolfe conditions are not satisfied) 

* While (Gradient, g, is large) 

* EndFor 

* EndFor 

B. Nanoparticles for contrast enhancement of vulnerable 

plaque 

Recently, novel nanoparticle contrast agents have been 

developed [13] which combine with fibrins or macrophages of 

the vulnerable plaque. These nanoparticles can carry atoms 

with high atomic numbers like bismuth, yttrium, barium, or 

gold. PCD-CT is especially suited to image these elements 

contained in the nanoparticles using K-edge imaging.  

C. XCAT computer phantom with coronary plaque 

The 4D XCAT phantom (Fig. 1) that was developed in our 

division [14] is a realistic computer model of the human 

anatomy, physiology, and heartbeat motion. The orientation, 

size, and shape of the chest and heart are parameterized, and it 

is possible to simulate various populations of patients. 

Recently, realistic plaque and perfusion defects [15] and 

integration with an accurate CT projection data simulator [16] 

were added. To simulate coronary plaque, we added calcium 

deposits and atherosclerosis with and without a layer of 

Bismuth nanoparticle contrast agent to a coronary vessel as 

shown in Fig. 2. 

D. Plaque Detection 

The performance of the PCD-CT compensation algorithm 

for detection of vulnerable plaque was evaluated using 

simulation studies with the XCAT phantom as described in 

section II.C. Two detection tests were performed: 

 #1: Test for atherosclerosis (soft plaque) 

 #2: Test for high-risk atherosclerosis (vulnerable plaque) 

The detection tests were performed by choosing ROIs in 

various tissues and comparing both the average pixel values in 

the ROIs and also the distribution of pixel values.  

For test #1 the detection test was positive (plaque present) 

if the average pixel value in the ROI is lower than a chosen 

threshold and negative if not (plaque absent). To compare the 

performance between different CT systems and PCD-CT 

compensation schemes, the decision was repeated by sweeping 

the threshold value. In this way a receiver operating 

characteristics (ROC) curve was obtained that expresses the 

true positive rate against the false positive rate. The area under 

the ROC curve, AUC, is a performance index for how well the 

system or compensation scheme could separate the signal from 

the background. Larger AUC values indicate better 

performance and capability to separate two tissue types. 

For test #2 a similar approach was taken but instead of the 

reconstructed CT image, the difference of one image above the 

K-edge of bismuth and one image below the bismuth K-edge 

was used instead. A pixel value larger than a given threshold 

indicated the presence of Bismuth nanoparticles. 

The plaque detectability was compared for PCD-CT 

without energy binning [method (1)],  PCD-CT without SRE 

compensation [method (2)], PCD-CT with SRE compensation 

[method (3)], and for EID-CT. 

III. RESULTS  

A. PCD-CT compensation  for spectral response effects 

The performance of the SRE compensation scheme was 

evaluated using a simulation of a water cylinder containing 

inserts of  I and Gd in various concentrations. An arc detector 

with 768 pixels of size 1mm  1 mm and six energy bins was 

simulated and the simulated phantom was scanned at 120 kVp 

with a 5 mm flat Al filter, 216 mAs dose and 1000 views over 

one rotation. The count rate incident on the detector was 2.1 

Mcps/mm
2
. Images were reconstructed using FBP without 

SRE and with SRE compensation (Fig. 3). Without SRE 

compensation the image is subject to severe cupping artifacts 

and biased pixel values. Accurate material decomposition is 

only possible when SRE compensation is applied (Fig. 4). 

B. Evaluation of Plaque Detection 

The contrast-to-noise ratio (CNR) for the three PCD-CT 

methods normalized to the CNR of EID-CT are shown in Tab. 

1. The CNR is enhanced for all detection tasks using PCD-CT 

with the proposed SRE compensation yielding the best 

improvements up to a factor of 8. This increase in CNR can be 

translated into a possible reduction of the patient dose and is 

also shown in Tab. 1. 

     
Fig. 1: (left) and (middle): The 4D XCAT male anatomy and 

coronary trees. (right): Reconstructed CT image from simulation 

data with pulmonary vessels and bronchi. 

     
Fig. 2: The XCAT phantom with coronary plaque. (a) With calcified 

plaque, adipose with Bismuth contrast agent, and adipose (b) as in 

(a) but without the Bismuth contrast agent. 
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Tab. 1: CNR of the three PCD-CT methods (1)-(3) normalized to 

EID-CT with the same radiation dose and possible radiation dose 

reduction in percent to achieve the CNR comparable to EID-CT. 

  Normalized CNR Dose reduction (%) 

Apps. Tasks (1) (2) (3) (1) (2) (3) 

(A) 
Plaque-tissue 3.4 3.3 8.0 91 91 98 

Plaque-lumen 3.0 3.1 5.6 89 90 97 

(B) 
Bi-tissue 2.5 2.3 3.4 85 80 92 

Bi-lumen 0.9 0.8 2.2 -35 -60 79 

 

The ROC curves for detection task #1 (general 

atherosclerosis) are shown in Fig. 5 for PCD-CT with SRE 

compensation,  PCD-CT without SRE compensation, and for 

EID-PCT. The proposed PCD-CT scheme outperforms EID-

CT by a large margin: the AUC values for the three cases are 

(1) 0.986, (2) 0.833, (3) 0.628. 

The reconstructed images for detection task #2 (including 

Bismuth contrast agent at the vulnerable plaque) are shown in 

Fig. 6. In the PCD-CT image material decomposition allowed 

to separately reconstruct an image for the contrast material 

which is overlaid in color over the CT image. In contrast, the 

EID-CT image is much nosier, does not allow for material 

decomposition, and the enhancement due to Bismuth is almost 

undetectable. The AUC values for detection task #2 are (1) 

0.996, (2) 0.980, (3) 0.541. The EID-CT value is close to 0.5 

(no separation) which confirms the visual impression. 

 
Fig. 5: ROC curve for detection test on rupturing atherosclerosis. 

 

 
Fig. 6: Reconstructed images of the phantom with Bismuth contrast 

agent (a) PCD-CT with regularized compensation and (b) with EID-

CT. The bismuth densities are shown in red (only for PCD-CT). 

IV. CONCLUSION 

We developed a novel sinogram restoration algorithm for 

CT with photon-counting detectors that compensates for 

spectral distortions due to count-rate independent physical 

effects. The algorithm allows to reconstruct quantitative and 

accurate CT images. 

We applied the algorithm to a specific clinical task 

(detection of vulnerable plaque) and evaluated it using 

computer simulations. In contrast to CT with energy-

integration detectors, PCD-CT with our compensation scheme 

allowed to detect coronary soft plaques. Using bismuth 

nanoparticles it was also possible to detect vulnerable plaque 

that may be prone to rupture. 
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Fig. 3: CT images with (left) 

and without (right) SRE 

compensation. 

 
Fig. 4: Basis material images for 

gadolinium with (left) and without 

(right) SRE compensation. 
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Noise Reduction using Coupled Projections in 

Helical Computed Tomography 

Yi Fan, Jianhua Ma, Yan Liu, Hongbing Lu and Zhengrong Liang 

    Abstract –Helical computed tomography (HCT) has 

demonstrated the effectiveness in virtual colonoscopy (VC) or CT-

colonography (CTC).  One major concern with this clinical 

application is associated with the risk of high radiation exposure, 

especially for its use for screening purpose at a large population.  

In this work, we presented an improved Karhunen-Loeve (KL) 

domain penalized re-weighted least-squares (PWLS) strategy 

which considers the data correlations among the projection rays 

mainly due to partially overlap when system rotates.  Two one-

dimensional (1D) projections, which are called coupled 

projections (CPs), are composed according to the geometry.  Each 

element of the 1D projection is carefully selected for a specific 

point within 2π  angular range, along which the system rotates, 

and thus a highly correlation can be observed between any 

specific projection and the CPs.  These highly correlated 

projections can be treated by an adaptive KL-PWLS strategy for 

accurate noise reduction.  This method has been implemented and 

tested on computer simulated sinograms which mimic low-dose 

CT scans.  The reconstructed images by the presented strategy 

demonstrated the potential for ultra low-dose CT applications.  

 

Index Terms—Low-dose computed tomography, noise simulation 

 

I. INTRODUCTION 

Compared to the conventional computerized axial 

tomography scan (CAT scan or CT scan), a helical or spiral 

CT (HCT), can provide greater visualization of blood vessels 

and internal tissues, such as those within the chest and 

abdominal cavities.  This type of scanning is very helpful in 

the rapid evaluation of severe trauma injuries, such as those 

sustained in automobile accidents.  However, the patient will 

be subject to the risks of being exposed to the excessive X-ray 

radiation during CT scanning, which is considered as a reason 

to cause cancer according to the related reports.  One of the 

solutions to minimize the risk can be achieved by reducing the 

mAs or kVP settings applied to the X-ray tube for the CT 

scanning.  However, the CT image quality will be degraded by 
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the excessive noise due to the reduced X-ray photons with 

low-mAs or kVp protocols.  Research efforts have been 

devoted to both hardware optimization and post-processing 

techniques on the acquired data and noticeable progress has 

been made. 

In our previous studies, we investigated a Karhunen-

Loeve (KL) domain penalized re-weighted least-squares 

(PWLS) strategy to restore the sinogram data at low mAs 

levels
1,2

.  In that work, three neighboring projections with each 

of them being a two-dimensional (2D) image acquired along 

the spiral trajectory are considered by the KL-PWLS strategy.  

Promising results have been observed over simulation data 

acquired at low-dose and ultra low-dose levels
3
.  However, due 

to the traverse movements of object in HCT, the blurs will be 

introduced in the reconstructed images, which are not desired 

in clinic applications. 

In this work, we extended our previous works by using the 

correlated information of each projection ray other than 

considering all the projection rays at a specific view angle 

together.  Specifically, for any fixed single X-ray, l, a pair of 

X-rays, l+, l-, which pass through the same route as l but in 

opposite directions and differ from each other in their 

positions along the path as the gantry rotates by a full circle, 

are firstly selected.  Considering the continuous distribution of 

image density of human body and partially overlap between 

the line integrals (l, l+) and (l, l-), which are usually the case in 

most of the clinical applications, a high correlation can be 

expected between the l , l+ and l-.  Running over all the X-rays 

at a specific angle and then two vectors can be composed.  Let 

p be the 1D projection, then the composed  p+,  p-,  are the 

coupled projections (CPs) of p.  Based on our previous works, 

the correlations between  p,  p+  and  p-  can be fully addressed 

by using a KL-PWLS strategy for noise reduction. 

. 

II. METHODS 

A. Coupled-projections in HCT 

 This section describes our method for selecting the 

coupled projections, as illustrated in Fig. 1.  S  indicates the 

current position of the X-ray source at view angle ββββ  in the 

circular trajectory.  
1

t  and 
2

t  are the X-rays emitted from S  

which compose the field-of-view (FOV).  The angle between 

1
t  and 

2
t  is αααα .  For any single X-ray l  acquired at this 
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position, it can be expressed by ( , )S β ϕβ ϕβ ϕβ ϕ , where ϕϕϕϕ  is the 

angle composed by (((( ))))1
,l t .  According to the geometry, one 

specific X-ray which passes through the same route as l  but in 

the opposite direction, l ′′′′ , can be found according to Eqs. (1) 

and (2) below. 

 

Figure 1:  Illustration of calculating pared X-rays for selection of 

coupled rays. 

 

The position of X-ray source where l ′′′′  originated can be 

expressed by ( , )S φ θφ θφ θφ θ′′′′ .  According to the geometry, the 

relationship between ( , )β ϕβ ϕβ ϕβ ϕ  and ( , )φ θφ θφ θφ θ  can be expressed by: 

2 180oφ β α ϕφ β α ϕφ β α ϕφ β α ϕ= − + += − + += − + += − + +                               (1)                                                                             

θ α ϕθ α ϕθ α ϕθ α ϕ= −= −= −= −                                           (2)                                                                                     

When considering the helical modality, l ′′′′  will be 

replaced by l+ and l-, which are also originated from S ′′′′  in the 

circular plane but differ from each other by 360
o
 along the 

direction of system rotation.  Then equation (1) can be 

modified as: 

1,2
2 180

oφ β α ϕφ β α ϕφ β α ϕφ β α ϕ= − + ±= − + ±= − + ±= − + ±                             (3)                                                                           

For all the X-rays originated from 
1 2

( , , , )
n

S l l lLLLL , two 1D 

vectors, 
1 2

( , , , )
n

S l l l+ + + ++ + + ++ + + ++ + + +LLLL  and 
1 2

( , , , )
n

S l l l− − − −− − − −− − − −− − − −LLLL , can be 

obtained according to Eq. (3) and which are the CPs of S.   

  

B. Penalized-weighted Least-square(PWLS) restoration in 

KL domain 

Based on our previous studies, there are strong signal 

correlations between the nearby projections in HCT.  

Motivated by the observation, in this work we use the KL 

transform to consider the signal correlations between S and it’s 

CPs.  The KL transform of the correlated projections can be 

expressed by: 

y Ay=%                                       (4)                                  

where [ ]T T T T
y S S S+ −+ −+ −+ −====  is a 3 N×××× matrix with each row being 

the 1D projection, N is the number of detector bins and T is 

the transpose operation.  A is a 3 3×××× transform matrix which 

can be computed with the give data.  y%%%% is the KL transformed 

components. 

In the KL domain, the PWLS criterion is used to restore 

the sinogram by minimizing the following objective function: 

1( ) ( ) ( ) ( ) ( )
l l l l l l l l

l

y y R
d

γ
λ λ λ λ−′Φ = − Σ − +% % % %%% %   (5)                                                     

where the first term in function (5) denotes the WLS measure, 

l
y%  is the 1N ×  dimensional vector which denotes the l-th 

component of the KL transformed sinogram and 
l

λ%  is the 

1N ×  dimensional noise-free data to be estimated.  
l

∑%  is the 

N N×  dimensional diagonal variance matrix with each 

element being the variance of projection at each detector 

bins
1,2

.  Since the variance depends on the ideal date 
l

λ%  to be 

estimated, which is different from the previous WLS definition 

where the variance is independent from the estimate, so the 

WLS is called re-weighted least squares. 

In the second term of function (5), 
l

d  is the l-th 

eigenvalue defined in Eq. (4) and γ  is the parameter which 

controls the penalty R.  The penalty takes the quadratic form as 

used in our previous reports
1,2

. 

Minimizing the PWLS objective function (5) for 

estimating 
l

λ%  from 
l

y%  in the KL domain could be performed 

by many numerical means
4
.  In this work, we use the GS 

iterative update algorithm
5
. 

C. Algorithm summary 

The implementation of the presented method for low-dose 

helical CT sinogram is summarized as following: 

1. For any 1D projection S acquired at a given angle 

along the direction of gantry rotation, compose the coupled 

projections, S++++
 and S−−−−

, each element in S++++
 and S−−−−

 is 

selected based on the geometrics described in Section A; 

2. Apply the KL transform to S, S++++
 and S−−−−

; 

3. In the KL domain, apply the PWLS criteria to 

restore all the projections, followed by the inverse KL 

transform to obtain the restored projection of S; 

4. Run over all the 1D sinogram data and obtain the 

reconstructions by FBP in 2D case. 

 

αααα ϕϕϕϕ

θθθθββββ

φφφφ

( )l l ′′′′

s

s′′′′

O

1
t

2
t
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III. RESULTS 

We tested the proposed method by phantom studies on an 

array of 512 512 413× ×  cubic voxels.  Projections were 

simulated in helical geometry, where each projection or line 

integral value along a ray through the phantom was computed 

based on the known densities.  A total 1,200 projections, each 

projection contains 1024 detector bins, over 2π  angular 

range were sampled with pitch equal to 1.  For comparison 

purpose, we included the results of using our previous work, 

which considers the 2D neighboring projections to utilize the 

signal correlations.  Figure 2 shows the calculated correlation 

coefficients for: (1) the 1D projections with the CPs over 50
o
 

angular interval, and (2) the 2D projections with the nearest 

2D views along the direction of gantry rotation.  It can be 

observed that the correlation between the 1D projections and 

CPs is higher than that in the 2D projections, which indicates 

the higher signal correlation can be utilized by the proposed 

noise reduction strategy. 
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Figure 2:  Correlation coefficients of using the presented 1D CPs-

based approach and our previous 2D neighboring views approach. 

 

 

The restored sinogram data can be processed by the 

inverse KL transform and FBP algorithm to obtain the 

reconstructions.  Figure (3) shows a reconstructed image by 

using our previous 2D view-by-view KL-PLWS strategy and 

the proposed 1D CPs-based method.  We also calculated the 

standard deviation (STD) in selected regions of interest 

(ROIs).  There are 17 out of 20 calculations indicating better 

noise reduction by using the proposed method than our 

precious algorithm. 

 

IV. DISCUSSION AND CONCLUSION 

In the above presented method, the CPs for each 1D 

projection is composed.  The coupled projections are partially 

overlapped with the processed 1D projection in the HCT 

geometry and thus the signal correlations are further enhanced 

compared with the use of the neighboring projections in our 

previous work.  The signal correlations within HCT sinograms 

can be fully considered by using the KL transform.  In the KL 

domain, the correlations are utilized by the adaptive PWLS 

criteria.  Numerical tests on the presented method show 

significant suppression of the noise for low-dose CT image 

reconstruction.  Improvement for the anisotropic properties in 

the reconstructions is also observed in these preliminary 

results.  More simulation studies and quantitative evaluations 

on the method are under investigation. 

 

 

(a) 

 

(b) 

Figure 3:  Selected slice of FBP reconstructed image by (a) using 

2D KL-PWLS method; and (b) using proposed coupled projection-

based method. 
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PERTURBATION-BASED ERROR ANALYSIS OF ITERATIVE IMAGE RECONSTRUCTION
ALGORITHM FOR X-RAY COMPUTED TOMOGRAPHY

Jung Kuk Kim, Jeffrey A. Fessler, Zhengya Zhang

EECS Department, University of Michigan, Ann Arbor, MI 48109-2122, USA

ABSTRACT
Statistical iterative image reconstruction methods are com-
pute intensive. Fixed-point calculations can substantially
reduce the computational load, but also increase quantization
error. To investigate the effect of fixed-point quantization, we
analyze the error propagation after introducing perturbation
in a diagonally preconditioned gradient descent algorithm for
X-ray computed tomography. The effects of the quantization
error in forward-projection, back-projection, and image up-
date are calculated using the open loop and loop gain of the
iterative algorithm. We derive an analytical upper bound on
the quantization error variance of the reconstructed image
and show that the quantization step size can be chosen
to meet a given upper bound. The analytical results are
confirmed by numerical simulations.

I. INTRODUCTION
Statistical iterative image reconstruction methods for X-

ray computed tomography (CT) have been proposed to
improve image quality and reduce dose [1]. These methods
are based on accurate projection models and measurement
statistics, and formulated as maximum likelihood (ML)
estimation [2]. Iterative algorithms have been designed to
estimate the image by minimizing a cost function [3]–[5].

CT image reconstruction algorithms are usually imple-
mented in 32-bit single-precision floating-point quantization
to provide high image quality. Fixed-point (integer) arith-
metic uses much less hardware resources than floating-point
and can shorten the latency [6], but it introduces quantization
errors and potentially degrades the image quality. Therefore
it is desirable to analyze the quantization effects to assess
the feasibility of a fixed-point conversion.

In this paper, we model the effect of fixed-point quantiza-
tion as a perturbation of floating-point arithmetic by injecting
uniform white noise after the arithmetic [7]. For simplicity of
the analysis, we choose a diagonally preconditioned gradient
descent algorithm with a quadratic regularizer [8], and inject
noise in the three steps of an iterative image reconstruction:
forward-projection, back-projection, and image update. We
derive an upper bound on the quantization error variance

This work was supported in part by a Korea Foundation for Advanced
Studies (KFAS) Scholarship and the University of Michigan. J. A. Fessler’s
effort is supported by NIH grant R01-HL-098686.

of the image update in every iteration and the results are
verified by numerical simulations based on a 40×40×4 test
object over 90 projection views.

II. BACKGROUND

A CT system captures a large series of projections at
different view angles, recorded as sinogram. Mathematically,
sinogram y can be modeled as y = Af + ε, where f
represents the volume being imaged and A is the system
matrix, or the forward-projection model, and ε denotes
measurement noise. The goal of image reconstruction is to
estimate the 3D image f from the measured sinogram y.
A statistical image reconstruction method estimates f , or f̂ ,
based on measurement statistics, which can be formulated
as a weighted least square (WLS) problem [2].

f̂ = arg min
f

1

2
‖y −Af‖2W , (1)

where W is a diagonal matrix with entries based on photon
measurement statistics [2]. To control undesired noise in f̂
of (1), a penalty term is added to form a penalized weighted
least square (PWLS) [2], [8] cost function:

f̂ = arg min
f

Ψ(f) = arg min
f

1

2
‖y−Af‖2W +βR(f), (2)

where R(f) is known as the regularizer and β is a regu-
larization parameter. For simplicity of analysis, we choose
a quadratic regularizer that adds to the cost function the
square of differences among neighboring pixels, or R(f) =
‖Cf‖2/2, where C is the difference matrix.

Using a quadratic regularizer and assuming that (A′WA+
βC ′C) is invertible, the solution to (2) is given by f̂ =
(A′WA + βC ′C)−1A′Wy. However, the practical size of
matrix A for a commercial axial CT scanner is 10 million by
10 million [2], thus evaluating the inverse of A′WA+βC ′C
is inefficient, if not infeasible. Alternatively, iterative meth-
ods have been proposed [3]–[5]. In this paper we consider
a diagonally preconditioned gradient descent method to
solve (2) [5], [8]:

f̂ (i+1) = f̂ (i) −D∇Ψ(f̂ (i))

= f̂ (i) +D
[
A′W (y −Af̂ (i))− βC ′Cf̂ (i)

]
. (3)
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Fig. 2. Iterative image reconstruction with perturbed
forward-projection, back-projection and image update.

Fig. 1 shows a block diagram of this iterative image
reconstruction method. Typically a FBP reconstructed image
is used as the initial image, f̂ (0). In each iteration, a new 3D
image estimate f̂ (i+1) is obtained by updating the previous
image f̂ (i) with a step of the negative gradient of the cost
function Ψ(f̂) scaled by a diagonal matrix D. This algorithm
is guaranteed to converge to the unique minimizer of Ψ when
D is chosen properly [5]. This is a one subset version of the
ordered subsets (OS) algorithm given in [5].

III. PERTURBATION-BASED ERROR ANALYSIS
We analyze the effect of perturbation in iterative image

reconstruction and show that both the maximum and the
mean error variance in an image update are bounded for a
given level of uniform white noise. Hereafter, we define f̂ (n)p

as the nth image update of the perturbed iterative algorithm,
and e(n) as the corresponding image error relative to the
unperturbed version f̂ (n), i.e., e(n) = f̂ (n) − f̂ (n)p .

III-A. Perturbation of forward-projection
We proceed by first perturbing the forward-projection to

model the effect of fixed-point quantization [7]. We add a
random error vector, ε(n)fp , to the ideal forward-projection, as
illustrated in Fig. 2. We further assume that the error samples
are uncorrelated. Specifically, we assume

ε
(n)
fp ∼ U

[
−∆fp

2
,

∆fp

2

]
, cov(ε

(i)
fp , ε

(i)
fp ) =

∆2
fp

12
I,

cov
(
ε
(i)
fp , ε

(j)
fp

)
= 0 ∀i, ∀j, i 6= j, (4)

where ∆fp denotes the quantization step size.

From (3), the first image update of the perturbed algorithm
can be written as

f̂ (1)p = f̂ (0) +D
[
A′W

(
y −

(
Af̂ (0) + ε

(0)
fp

))
− βC ′Cf̂ (0)

]
= f̂ (1) +Kfpε

(0)
fp , (5)

where Kfp , −DA′W is the open loop gain of the error
due to perturbation in forward-projection. Similarly, we have
the second image update as

f̂ (2)p = f̂ (1)p +D
[
A′W

(
y −

(
Af̂ (1)p + ε

(1)
fp

))
− βC ′Cf̂ (1)p

]
.

(6)

Substituting (5) into (6) and simplification yields

f̂ (2)p = f̂ (2) +MKfpε
(0)
fp +Kfpε

(1)
fp ,

where M , I − D(A′WA + βC ′C) is the loop gain of
the error in this iterative method. (Note that M is related
to the Hessian of the cost function [8], which is given by
H = A′WA + βC ′C). By induction, the image update of
the nth iteration and the image update error are given by

f̂ (n)p = f̂ (n) + e(n)

e(n) =

n−1∑
k=0

MkKfpε
(n−1−k)
fp .

Using (4), the mean of e(n) is zero, and the covariance is

cov
(
e(n), e(n)

)
=

∆2
fp

12

n−1∑
k=0

MkKfpK
′
fp

(
Mk
)′
. (7)

Note that a covariance matrix is positive semidefinite [9],
and its eigenvalues are nonnegative [10]. Thus, an upper
bound on the error variance is the maximum eigenvalue, i.e.,
spectral radius, of the covariance matrix of e(n). Evaluating
the spectral radius is nontrivial due to the term Mk. Since
matrix D is a real diagonal matrix with positive diagonal
entries, we can decompose M as

M = I −DH = D
1
2

(
I −D 1

2HD
1
2

)
D−

1
2 .

The Hessian matrix H is a nonnegative definite and so is
I − D

1
2HD

1
2 , by the design of D. Thus by the spectral

theorem [11], there exists a unitary matrix U and a diagonal
matrix Σ such that I−D 1

2HD
1
2 = UΣU ′. Then M becomes

M = D
1
2UΣU ′D−

1
2 . (8)

Similarly, (A′W )(A′W )′ is also nonnegative definite and
can be decomposed using a unitary matrix V and a nonneg-
ative diagonal matrix F [11]. It follows that

KfpK
′
fp = (−DA′W )(−DA′W )′ = D(V FV ′)D. (9)
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Substituting (8) and (9) into (7), we have

cov
(
e(n), e(n)

)
=

∆2
fp

12

n−1∑
k=0

D
1
2UΣkU ′D

1
2 (V FV ′)D

1
2UΣkU ′D

1
2 .

Thus the spectral radius equals the 2-norm and its upper
bound can be derived using the matrix norm property that
‖ AB ‖≤‖ A ‖‖ B ‖ [12]. After considerable simplification,
we have

ρ
(

cov
(
e(n), e(n)

))
= max

x:‖x‖=1

(
x′cov

(
e(n), e(n)

)
x
)

=
∆2

fp

12
max

x:‖x‖=1

(
n−1∑
k=0

‖ F 1
2V ′D

1
2UΣkU ′D

1
2x ‖2

)

≤
∆2

fp

12
ρ(F )ρ(D2)

1− ρ(Σ2)n

1− ρ(Σ2)
. (10)

The spectral radius of the covariance matrix measures
the maximum error variance in the nth iteration. i.e.,
σ2
(n)max , ρ

(
cov

(
e(n), e(n)

))
. Next, we analyze the mean

error variance in an image update, which is related to the
trace, or sum of diagonal entries, of the covariance matrix,
i.e., σ2

(n)mean , tr
(
cov

(
e(n), e(n)

))
/nv, where nv is the

number of diagonal entries in the covariance matrix. Using
the property that tr(AB) ≤ ρ(B)tr(A) [11], we have

tr
(

cov
(
e(n), e(n)

))
=

∆2
fp

12
tr

(
n−1∑
k=0

D
1
2UΣkU ′D

1
2 (V FV ′)D

1
2UΣkU ′D

1
2

)

≤
∆2

fp

12

n−1∑
k=0

ρ
(
Σk
)

tr
(
D

1
2 (V FV ′)D

1
2UΣkU ′D

)
≤

∆2
fp

12
tr(D (V FV ′)D)

1− ρ(Σ2)n

1− ρ(Σ2)
. (11)

To guarantee the convergence of iterative reconstruction
algorithm, the matrix D is always selected such that D−1 �
H , i.e., D−1 −H is positive definite, which implies ρ(I −
DH) < 1, where H is the Hessian of the cost function [8].
It follows that

ρ(Σ) = ρ(U ′(I −D 1
2HD

1
2 )U) = ρ(I −D 1

2HD
1
2 )

= ρ(D−
1
2 (I −DH)D

1
2 ) = ρ(I −DH) < 1.

In steady state as n → ∞, the upper bounds of (10)
and (11) become

σ2
(n)max ≤ ρ(cov(e(∞), e(∞))) ≤

∆2
fp

12

ρ(D2)ρ(F )

1− ρ(Σ2)
,

σ2
(n)meannv ≤ tr(cov(e(∞), e(∞))) ≤

∆2
fp

12

tr(D(V FV ′)D)

1− ρ(Σ2)
.

Therefore, both the maximum and the mean error variance
of an image update are bounded. For example, given ε > 0,
if we choose ∆fp such that

∆fp <

√
12 (1− ρ(Σ)2)

ρ(D2)

√
1

ρ(F )

√
ε,

then
σ2
(∞)max < ε, σ2

(∞)mean < ε.

The result implies that we can make the error due to
perturbation in forward-projection arbitrarily small for this
algorithm by choosing an appropriate quantization step size,
provided quantization noise can be modeled as in (4).

III-B. Perturbation of forward-projection, back-
projection, and image update

Following the derivation from the previous section, we
can also model the effect of fixed-point quantization in the
back-projection and image update by injecting uniform white
noises ε(n)bp and ε

(n)
im , as indicated in Fig. 2. Similar to (4),

we make the following assumptions:

ε
(n)
bp ∼ U

[
−∆bp

2
,

∆bp

2

]
, ε

(n)
im ∼ U

[
−∆im

2
,

∆im

2

]
, (12)

where ∆bp and ∆im denote the quantization step sizes of
back-projection and image update respectively.

Similar to (5), we can express the perturbed image update
of the first iteration as

f̂ (1)p =(f̂ (0) + ε
(0)
im ) +D[A′W (y − (A(f̂ (0) + ε

(0)
im ) + ε

(0)
fp ))

+ ε
(0)
bp − βC

′C(f̂ (0) + ε
(0)
im )]

=f̂ (1) +Kfpε
(0)
fp +Kbpε

(0)
bp +Mε

(0)
im ,

where Kbp , D is the open loop gain of the error due
to perturbation in back-projection. It follows that the image
update error in the nth iteration is

e(n) =
n−1∑
k=0

(Mk(Kfpε
(n−1−k)
fp +Kbpε

(n−1−k)
bp +Mε

(n−1−k)
im )).

We assume independence of the three noise vectors.
Using (4), (8), (9), and (12), the mean of e(n) is zero, and
the covariance can be written as

cov
(
e(n), e(n)

)
=

∆2
fp

12

n−1∑
k=0

(MkKfpK
′
fp(Mk)′)+

∆2
bp

12

n−1∑
k=0

(MkKbpK
′
bp(Mk)′) +

∆2
fp

12

n−1∑
k=0

(Mk+1(Mk+1)′).

Following a similar approach as in the previous section,
we can derive the upper bounds on the spectral radius and
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Fig. 3. Theoretical bound and numerical simulation of stan-
dard deviation of the image updates : (a) forward-projection
with the quantization step size of ∆fp = 27[HU×mm] (b)
forward-projection, back-projection, and image update with
∆fp = 27[HU×mm], ∆bp = 215[mm], ∆im = 2−3[HU].

the trace of the covariance matrix.

ρ(cov(e(∞), e(∞))) ≤
∆2

fp

12

ρ(D2)ρ(F )

1− ρ(Σ2)
+

∆2
bp

12

ρ(D2)

1− ρ(Σ2)

+
∆2

im

12

ρ(Σ2)ρ(D)ρ(D−1)

1− ρ(Σ2)
,

tr(cov(e(∞), e(∞))) ≤
∆2

fp

12

tr(V FV ′D2)

1− ρ(Σ2)
+

∆2
bp

12

tr(D2)

1− ρ(Σ2)

+
∆2

im

12

ρ(Σ2)tr(I)

1− ρ(Σ2)
.

Therefore, both the maximum and the mean error variance
of the reconstructed image are bounded after considering
perturbation in forward-projection, back-projection, and im-
age update. The error can be made arbitrarily small for this
algorithm by choosing an appropriate quantization step size.

IV. RESULTS AND CONCLUSION
To verify the analysis, we performed numerical simu-

lations of an iterative reconstruction of a 40×40×4 test
object in an axial cone-beam arc-detector X-ray CT system
with a detector size of 170×10 over 90 projection views.
The PWLS diagonally preconditioned gradient descent al-
gorithm (3) was simulated with a quadratic roughness reg-
ularizer. We evaluated analytical quantization error variance
and its upper bound in each iteration, which are compared
to measured quantization error variance from simulations by

injecting uniformly distributed error vectors that correspond
to quantization step sizes of ∆fp = 27[HU×mm], ∆bp =
215[mm], and ∆im = 2−3[HU]. Fig. 3 shows the standard
deviation of the image update error due to (a) perturbation
in forward-projection alone and (b) perturbation in forward-
projection, back-projection, and image update. The measured
standard deviation matches the analytical standard deviation
and stays below the upper bound. Due to limited space, we
only show one set of quantization step size, but alternative
choices could be equally used. Both the analytical and simu-
lation results in Fig. 3 point to the conclusion that the error
variance of image updates converges to a fixed level after
a sufficient number of iterations. Note that evaluating the
analytical error variance is not feasible for large object sizes.
Quantizing iterative methods to confirm our perturbation
model and tightening the upper bound remain our future
work.
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One-Dimensional Study of Methods for Improving

Resolution in CT Model-Based Iterative

Reconstruction
Kerkil Choi, Lin Fu, Kai Zeng, Xue Rui, and Bruno De Man

Abstract—We study iterative reconstruction of a CT image
from a data set generated with focal spot wobbles for improving
resolution of a reconstructed image. We present preliminary
results for four selected methods with one-dimensional simu-
lations and reconstructions. These methods include the finite
beamwidth modeling, data interlacing, frequency boosting of the
interlaced data, and model-based deconvolution of the interlaced
measurements. The reconstructions produced by these methods
are compared in terms of MTF numbers and artifacts. Among
these methods, we found that the method that incorporates the
finite-beamwidth modeling produces the largest MTF improve-
ment while maintaining acceptable image quality. Although the
interlacing method combined with frequency boosting can pro-
duce higher MTF numbers, it is observed that the reconstructions
produced by this method are prone to severe artifacts.

Index Terms—computed tomography, model based iterative
reconstruction, MBIR, resolution enhancement, finite beamwidth
modeling, interlacing, sinogram deconvolution.

I. INTRODUCTION

High spatial resolution in CT images is paramount in

several clinical applications. Detecting and visualizing small

airways is a good example that requires improved resolution.

Achieving high resolution while maintaining low noise is

desirable. Model-based iterative reconstruction (MBIR) has

been demonstrated to meet these requirements [1]. This pa-

per presents a preliminary investigation of selected methods

for improving resolution of CT images produced by MBIR

methods.

In this paper, we focus on the case where two data sets are

produced by wobbling a focal spot to two different positions

for a fixed detector position. However, some of our methods

may also benefit MBIR without using the wobble data set.

Several approaches have tackled the problem of improving

resolution in CT MBIR. Our group recently proposed the

concept of enlarged voxel footprints for improving MBIR

resolution [2]. Although the method produces higher MTF

numbers, the reconstructed images are prone to overshoot

artifacts, which the authors addressed by a post-processing

filter.

Finite beamwidth modeling refers to the modeling of the

finite nature of X-ray beams caused by a finite focal spot

size, whereas a focal spot is often modeled by a point source

The project described was supported by Grant Number 1-R01-HL-098686
from NIH. Its contents are solely the responsibility of the authors and do not
necessarily represent the official views of NIH.
The authors are with CT Systems and Applications Laboratory, GE Global

Research, Niskayuna, NY 12309 USA.

[3]. Browne et. al. proposed finite beamwidth modeling for

CT resolution improvement in 2D reconstructions [4] and

presented preliminary results. We consider a similar concept

as a candidate for enhancing resolution in our MBIR method

by modifying the acquisition physics model.

In filtered back-projection, the two data sets from two wob-

bling positions are typically interlaced before a reconstruction

kernel is applied. The reconstruction kernel is often designed

such that the resolution in the reconstructed images is boosted.

Motivated by this, we also study a method of interlacing the

data, which is discussed in Sec. II in details. In addition,

we investigate the performance of the interlacing method

combined with high-frequency boosting methods using either

a boosting kernel (filter) or a (model-based) deconvolution

method.

These methods are compared in terms of reconstruction

quality and MTF numbers by using a simplified 1D simulation.

The objective of the current 1D study is to select the most

promising method for enhancing resolution for CT MBIR.

II. METHODS

A. Simulation model

To simulate a continuous signal, we created a signal with

many samples with a sufficiently small sample spacing; we call

it a true signal. The true signal is then blurred by a rectangle

point spread function (PSF) to model the finite beamwidth

effect. Figure 1 shows the simulated “continuous” 1D signal

of two data sets generated with and without a focal spot

wobble. The focal spot wobble may be effectively modeled

by a detector shift for a fixed focal spot position as shown in

the figure. As illustrated by the arrays of rectangles in the two

diagrams on the top row, the wobble data set is obtained by

translating the detector by a half of a detector pixel size.

B. Baseline: PWLS

Let the forward models generating the wobble and no-

wobble data sets be represented by y1 = A1x and y2 = A2x,
respectively. y1 and y2 signify wobble and no-wobble data,

and x represents a signal we desire to reconstruct. A1 and A2

are matrices representing distance-driven (DD) (re-)projectors

for the parallel-beam geometry [3] while DD back-projectors

represent their transposes. Combining the two systems, we

construct y = Ax, where y = [y1; y2] and A = [A1;A2]
with the semicolon denoting vertical concatenation of the two

vectors and matrices. Note that the data are assumed to be
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prepped, meaning that a negative logarithm was taken for the

original measurements to create y1 and y2; this convention is

used throughout this manuscript, unless otherwise stated. With

this notation, a baseline reconstruction is obtained by solving

a penalized weighted least square (PWLS) problem [1] defined

by

x̂ = argmin
x≥0

1

2
(y −Ax)TW (y −Ax) + βR(x), (1)

whereW denotes a diagonal matrix whose diagonal consists of

statistical weights, and the regularization term R is defined as

the q-GGMRF with p = 2, q = 1.2, and c = 10HU discussed

in [5]:

R(x) =
∑

j,k

wj,kρ(xj − xk),

ρ(∆) =
|∆|p

1 +
∣

∣

∆

c

∣

∣

p−q
. (2)

The minimization was performed by adapting the separable

quadratic surrogate technique [6].

C. Method 1: PWLS with finite beamwidth modeling

In 1D, we model the finite beamwidth effect with a signal

blurred by a kernel representing a focal-spot PSF. This blurring

may be expressed in terms of convolution and can be written

in matrix form as

y = Ax = ABu, (3)

where B denotes a circulant matrix representing the blurring

convolution operation, and u denotes the signal to be recon-

structed that has a higher resolution than x. Note that in 2D

or 3D with a more complicated scanning geometry, B would

not be a matrix representing a convolution, but rather a more

general blurring operation.

The reconstruction is found by solving

û = argmin
u≥0

1

2
(y −ABu)TW (y −ABu) + βR(u). (4)

Again, the separable quadratic surrogate method was adapted

to solve this minimization problem.

D. Method 2: PWLS with interlaced measurements

The measurement interlacing is conducted by placing the

wobble and no-wobble data samples in an alternating man-

ner as described in Fig. 1 on the third row. Let this new

measurement be denoted by yint. By interlacing, the method

treats the data as if the detector pixel size was half of the

actual pixel size. Thus, the system matrix A also needs to be

modified accordingly. Let Aint represent the new matrix for

interlacing. Aint is then simply a DD reprojector contructed by

setting the detector pixel size as a half of the original size. An

illustration of this construction is shown on the bottom row of

Fig. 1. With yint and Aint, a new minimization problem can

be built by replacing y by yint and A by Aint in Eq. (1). The

corresponding reconstruction can then be produced by solving

the new problem involving yint and Aint.
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Fig. 1: An illustration of the process of interlacing wobble and

no-wobble data sets

E. Method 3: PWLS with frequency boosted interlaced mea-

surements

Inspired by a high-frequency enhancing filter routinely used

in FBP [7], we apply a high-frequency “boosting” filter to

the interlaced measurements described in Sec. II-D. The high-

frequency boosting filter is defined in the frequency domain

[8] and has the form of

Hb(f) = 2(α− 1)

∣

∣

∣

∣

f

fc

∣

∣

∣

∣

rect

(

f

2fc

)

(

0.5− 0.5 cos

(

2π
f

fc

))

, (5)

where fc is a user-defined cutoff frequency and rect(x) = 1
if |x| ≤ 0.5 and zero otherwise. This step is applied to yint
as pre-processing before the data is fed into the optimization

problem solved for Method 2. A smoothing filter may be com-

bined with the boosting filter to suppress noise or artifacts. For

example, a smoothing filter may be constructed by modifying

the Hanning window:

Hh(f) = rect

(

f

2fc

)(

0.5 + 0.5 cos

(

2π
f

2fc

))

.(6)

F. Method 4: PWLS with model based sinogram deconvolution

The high-frequency boosting filter used in Method 3 may

be considered as an ad-hoc deconvolution filter. Instead, we

may apply a model-based “sinogram” deconvolution (MBSD)

to enhance the high-frequency contents in yint. The model

can be constructed by considering the scanning and interlacing

geometries, as depicted in Fig. 2. The samples denoted by y1∗
and y2∗ represent the no-wobble and the wobble measurement
samples, respectively. The deconvolved samples are denoted

by z1, z2, . . . and assumed to be measured with smaller non-

overlapping pixels. Then, y11 may be expressed as y11 =
z1 + z2, y21 = z2 + z3, y12 = z3 + z4, and so on. If we

consider proper scaling of the samples, the matrix C that maps

z samples to y samples can be written as specified in Fig. 2.

Considering this, the MBSD part of Method 4 first finds z
by solving the following optimization problem:

ẑ = argmin
z≥0

‖yint − Cz‖2 + γ ‖z‖2 , (7)

where z signifies the deconvolved sinogram. This optimization
can be performed by adapting a gradient-projection algorithm
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Fig. 2: An illustration of the MBSD approach and its associ-

ated matrix construction

[9]. After ẑ is found, the following optimization problem can

be solved to find a reconstructed image:

x̂ = argmin
x≥0

1

2
(ẑ −Aintx)

TW (ẑ −Aintx) + βR(x), (8)

where the projector Aint incorporates the measurement inter-

lacing as discussed in Method 2.

III. RESULTS

This paragraph summarizes the simulation strategy and

parameters. Fig. 3a shows a true signal whose sample spacing

is 0.0156 mm, and its field of view ranges over [-80 80] cm.

The number of signal pixels is 10240. Note that the range

beyond 60 cm that contains an impulse of a large magnitude

is clipped off for displaying purposes. The size of each detector

pixel is 0.625 mm such that each detector pixel contains

exactly 40 true signal pixels. Thus, the number of detector

pixels is 256. The size of a reconstruction pixel is 0.156 cm,

and the number of reconstruction image pixels is 1024. The

focal spot “size” is assumed to be 1 mm. A 1 mm-wide

rectangle whose area is 1 models the focal spot PSF. The

interlaced measurements corrupted by Poisson noise are shown

in Fig. 3b. Recall that the measurements are presented in a

prepped form: yi = − log(λi/bi), where λi = bi exp(−yi) is a
detector raw measurement, and bi is an air scan measurement.
The measurement geometry was a parallel-beam geometry.

The reprojection and backprojection were performed by the

DD projector and backprojector described in [3]. The iteration

stopped when the total relative reconstruction error becomes

less than 10−6.

Sample reconstructions of the methods for various β values

are shown in Fig. 4. The numbers in the legends represent

selected β values. The images in the figure correspond to the

reconstructions of the features in the ranges marked by a small

(red) rectangle. The features are magnified in Fig. 4a.

Baseline reconstructions are shown in Fig. 4b. Interestingly,

for β = 0 and 1, the reconstructions present blocky artifacts

which has the lowest data fit term error if there were no prior.

As β increass, the artifacts are more suppressed. MTF numbers

for reconstructions produced with β = 1000 are presented in

the corresponding table in Fig. 5. For example, MTF50 for the

Baseline method was 6.8 lp/cm. The labels on the top rows

in each table designate the MTF numbers of which method

are summarized in the table. In each table, the indicators

“No”, “Low”, and “High” mean noiseless, low-noise level,

and high-noise level, respectively. For conciseness, we denote

the noiseless, low-level noise, and high-level noise cases by

NN, LN, and HN, respectively.

Method 1 reconstructions are shown in Fig. 4c. Oscillation

artifacts are observed for low β reconstructions. However,

the reconstruction for β larger than 10000, the artifacts are

significantly suppressed while high frequency contents are

recovered remarkably better. For example, Method 1 improves

the reconstruction of the deep valley near the right end of

the range on Baseline. The MTF numbers are improved

upon Baseline by 20 %. Note that the HN MTF numbers

are significantly different from those for NN and LN. This

difference may result from the statistical weighting W in

Eq. (1). As discussed in [1], the diagonal elements of W are

inversely proportional to estimates of measurement variances,

and thus for those HN measurements with large variances,

the regularization becomes stronger, resulting in lower MTF

numbers. Also, note that HN MTF numbers show much

smaller or no improvements compared to the improvements

presented in NN and LN. For example, MTF50 of the Baseline

method is 4.6 lp/cm; it improves to 5.6 for the LN in Method

1. In contrast, the MTF50 number remains as 3.4 for the

HN. We conjecture that for selected β and reconstructions,

the regularization becomes strong enough to be a deciding

factor for the resolution.

Method 2 reconstructions are presented in Fig. 4d. Recall

that the size of a detector pixel for DD re- and back-

projector is set to 0.3125 mm. Method 2 reconstructions are

comparable to Baseline in terms of high-freuqncy contents,

and MTF numbers show no or marginal improvements. This

implies that a mere interlacing of the data generally would not

improve resolution unless it is combined with a high-frequency

boosting or a measurement deconvolution.

Method 3 reconstructions are given in Fig. 4e. The boosting

filter parameter α in Eq. (5) was determined such that the filter

maximum is 10. Note that because of the large boosting mag-

nitude, the reconstructions are prone to strong artifacts. Fur-

thermore, the density values in the reconstructions do not fall

within the original density range shown in Fig. 4a. Although

the MTF numbers show more than 30 %improvements in

some cases, the reconstructions suffer from overshoot artifacts.

However, there might exist efficient boosting filters that can

achieve higher-resolution reconstructions while maintaining

acceptable image quality, but designing such a filter would

be an assiduous task and is out of scope of this paper.

Method 4 reconstructions are shown in Fig. 4f. For MBSD,

γ was set to 0.1 for the presented reconstructions. Note that

γ modifies measurements and thus changes the reconstructed

values as well. Hence, the density range was modified to

better show the related features. With small γ (e.g., 0.01),

Method 4 could produce MTF numbers slightly worse than

those of Method 1. However, in those cases, the artifacts

are stronger compared to Method 1. We may reduce the

artifacts by increasing the regularization strength γ. However,
as expected, it will degrade the MTF numbers as substantiated

by the MTF numbers shown in the table for Method 4.
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Fig. 3: Simulation: (a) a true signal and (c) interlaced mea-

surements corrupted by Poisson noise with bi = 105.

IV. CONCLUSION

Four methods for improving resolution of CT MBIR images

were investigated. A 1D simulated signal containing various

high-frequency features and a large impulse was reconstructed.

Method 1 with finite beamwidth modeling was shown to be the

most powerful method that produces about 20% improvements

in MTF20 and MTF50 numbers, while Method 2 produced

marginal improvements. Methods 3 and 4 produced compara-

ble or even better improvements in some cases. Nevertheless,

the reconstructions with higher MTF numbers suffer from

overshoot artifacts. Thus, considering both the MTF numbers

and artifacts, we conclude that Method 1 would be the most

promising method for improving resolution of MBIR images.

A natural next step is to extend the most promising method

based on the study presented here to 2D and 3D CT MBIR. A

more thorough evaluation of MTF quality and image quality

using clinical and simulated data should be conducted to reach

a more pragmatic conclusion on the resolution improvement

performance of the extended approach.
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Fig. 4: A selected feature of (a) the true signal and of (b)

Baseline, (c) Method 1, (d) Method 2, (e) Method 3, and (f)

Method 4 reconstructions with some selected regularization

strengths (β).
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Estimating X-ray Spectrum of a Clinic CT Scanner 

from Transmission Measurements 
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Abstract - 

Purpose:  In diagnostic CT imaging, multiple important 
applications depend on knowledge of the x-ray spectrum, 
including Monte Carlo dose calculations and dual-energy material 
decomposition analysis. Due to the high photon flux involved, it is 
difficult to directly measure spectra from the x-ray tube of a CT 
scanner. One potential method for indirect measurement involves 
estimating the spectrum from transmission measurements. The 
expectation maximization (EM) method is an accurate and robust 
method to solve this problem. In this paper, this method was 
evaluated in a commercial CT scanner. 

Methods: Two step-wedges (polycarbonate and aluminum) 
were used to produce different attenuation levels. Transmission 
measurements were performed on the scanner, and the measured 
data from the scanner were exported to an external computer to 
calculate the spectra. The EM method was applied to solve the 
equations that represent the attenuation processes of 
polychromatic x-ray photons. Estimated spectra were compared 
with the spectra simulated using software provided by the 
manufacturer of the scanner. To test the accuracy of the spectra, a 
verification experiment was performed using a phantom 
containing different depths of water. The measured transmission 
data were compared with the transmission values calculated using 
the estimated spectra. 

Results: 80, 100, 120 and 140 kVp spectra from a dual-source 
CT scanner were estimated. The estimated and simulated spectra 
were well matched. The differences of mean energies were less 
than 1 keV. In the verification experiment, the measured and 
calculated transmission values were in excellent agreement. 

Conclusions: Spectrum estimation using transmission data 
and the EM method is a quantitatively accurate and robust 
technique to estimate the spectrum of a CT system. This method 
could benefit studies relying on accurate knowledge of the x-ray 
spectra from CT scanners. 

Key words— x-ray spectrum, transmission measurements, 

CT scanner 

1. PURPOSE 

In diagnostic CT imaging, multiple important applications 
depend on the knowledge of spectrum, including Monte Carlo 
dose calculation, beam-hardening correction and dual-energy 
CT imaging. Due to high photon flux, it is very difficult to 
directly measure spectra from an X-ray tube of a CT scanner 
with a spectrometer. Therefore, various methods have been 
developed to estimate the spectra, among which estimating a 
spectrum from transmission measurements is one of the 
promising methods. The expectation maximization (EM) 
method introduced by Sidky et al.1 is an accurate and robust 
method to solve this  problem. The purpose of this paper is to 
implement the EM method to measure the spectra of both X-ray 
tubes in a dual-source CT scanner, which is important for many 
currently used dual-energy applications.  

2. METHODS 

A. Mathematic models 

The transmission measurements of polychromatic X-rays 
can be expressed as 
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where p represents the line integral of linear attenuation 
μ(E,r) and path length L, I0 and I denotes incident and 
transmitted photon intensity, s(E) is the X-ray spectrum and 
D(E) is the detector response. E is the photon energy. We use 
W(E) to represent a system overall spectrum which combines 
the knowledge of X-ray source and the detector (W(E) may also 
include all the filters in the system). 

After discretization, Eq. 1 is converted to a linear system 
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where M is the total number of measurements, N is the 
number of samplings for the spectrum and A is the 
measurement matrix calculated from the phantom parameters.  

The EM method was applied to solve the linear system1 
(Eq.2). Based on statistical models, the EM method is robust to 
noise and it has inherent positivity which results from a 
multiplicative update form, 
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where the index k represents the iteration number. 

B. Phantoms and scanner 

Two step wedge phantoms made of aluminum (Al) and 

polycarbonate (C16H14O3) were used to represent different 
attenuation levels. The parameters of the phantoms are shown 
in Table 1. The aluminum phantom was a standard step-wedge 
phantom which was originally used for quality control of 
radiography. The polycarbonate phantom consisted of pieces of 
plates and each step had three plates. General principles for 
choosing phantoms include known composition, regular 
geometry, convenience to measure dimensions and align, etc. 
Because there are two major mechanisms of X-ray interacting 
with matters in diagnostic energy range: photoelectric effect 
and Compton scattering, using two materials with sufficient 
difference in atomic number (e.g., plastics and metal) gains an 
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improvement of equation stability compared with only one 
material.  

Spectrum measurement was performed on a dual-source 
scanner (SOMATOM Definition Flash, Siemens Healthcare, 
Germany). To position the phantoms stably and accurately, the 
phantoms were directly laid on the gantry to align them with 
laser beams as shown in Fig.1.  In each measurement, only one 
step of the phantom was exposed in the X-ray beam. The tube 
current in the experiment was 300 mA and exposure time was 1 
s. A small collimation (       mm) was used for precise 
alignment and reducing scattering. Three spectra from two 
tubes (A and B) were measured, including 80 kVp and 140 kVp 
at Tube A, and 140 kVp with a built-in tin filter at Tube B. 
These three spectra were used in dual-energy routine protocols. 
In the experiment, the scanner was operated in service mode 
and the measured tube was fixed on the bottom of the gantry (6 
o’clock position). All the raw projection data were exported 
from the scanner to an external computer to calculate the 
spectra. 

The experiment was performed in two steps: 1) after 
transmission measurement all the spectra were reconstructed 
using the EM method; 2) the estimated spectra were validated 
by comparing calculated and measured transmission data 
through different depth of water. 

As mentioned in Sidky et al.’s work, the EM method cannot 
recover the details of the spectrum such as a characteristic peak 
if the initial guess does not contain a peak at the same energy. 
Therefore, the initial guess spectrum for the EM method was 

constructed by multiplying Boone’s spectrum2 by the detector 
response function (Gd2O2S, area mass density 1.05 g/cm2), so 
the spectra contained both the peaks from X-ray tubes and the 
K-edges from the detector. If an estimated spectrum does not 
need to be exactly the same as the true one, i.e., the estimated 
spectrum only needs to match the transmission data, a generic 
initial guess should work well1. 

3. RESULTS 

The estimated spectra are shown in Fig. 2 (a)-(c). The total 
photon counts were normalized to unity and energy interval was 
1 keV. In each figure, three spectra are compared: the initial 
guess for the EM algorithm, the estimated spectrum and the 
spectrum from simulation (DRASIM, Siemens Healthcare, 
Germany). As shown in the figure, the estimated and simulated 
spectra are very close to each other and the differences of the 
mean energy are 0.23 keV for 80 kVp, 0.27 keV for 140 kVp 
and 0.81 keV for 140 kVp with a tin filter. The initial guesses 
are significantly softer than the other two spectra because 
additional filters installed in the scanner were not counted in. In 
Fig. 2 (c) there are two downward peaks at around 130 keV, 
which were introduced by the initial guess. The overall shape of 
the spectrum will gradually approach the correct one as the 
iteration continues, but the locations of spectrum details (peaks 
and edges) will be preserved in the results, even for tiny ones.  

 Fig. 2 (d) shows the convergence curve of the EM iteration. 
The smooth curves indicate the stability of the EM method. The 
error is defined as 

Table 1. Parameters of the phantoms used in the experiment 

Phantom material Chemical formula Mass density (g/cm3) Number of steps Min/max thickness (cm) 

Aluminum Al 2.7 16 0.136/2.54 

Polycarbonate C16H14O3 1.21 12 0.876/10.0 

 

 
(a) (b) 

 
(c) 

Fig. 1 Illustrations of experimental setup. The phantoms were directly placed on the gantry cover and aligned with 
laser beams. (a) Aluminum phantom. (b) Plastic phantom. (c) Water tank for spectrum verification test.   
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where pi is the calculated transmission data from Eq. 2 and 
pmi is the measured data. Because of the existing inconsistence 
in the data, the error curve actually does not monotonically 
decreases in the flat region. The final spectra were chosen with 
the least error in a maximum iteration number (5000 in the 
experiment). The curve of 140 kVp with tin filtration has 
relatively slower convergence. One possible reason is that the 
data set has relatively larger inconsistence because of the 
restriction on Tube B in service mode. The data inconsistence 
may also cause oscillation in the spectrum, e.g., the spectrum 
around 100 keV in Fig. 2 (c). The EM method is robust to noise, 
but the inconsistence of the system such as systematic error and 
scattering may still cause computation difficulty, e.g., 
oscillation in spectrum curves or slow convergence.  

A water tank filled with different depths of water was used 
to validate the measured spectra as shown in Fig.1 (c). 
Transmission were measured for different thickness of water 
(10 thickness, 2.25~20.25 cm). The measured data were 

compared with the calculated transmission data from the 
estimated spectrum. The results are shown in Fig. 3. The 
transmission data from measurement and calculation are well 
matched (the dots and the lines). The average difference 
between the two is 2.36% (standard deviation 16.63%) for 30 
logarithm date point (three spectra, 10 thickness for each). 

4. DISCUSSION AND CONCLUSIONS 

Spectrum estimation using transmission data and the EM 
method is an accurate and robust technique to acquire spectrum 
information. It is also easy to implement in practice. In our 
experiment only two step-wedge phantoms were used and no 
additional instrument was involved.  

For a clinic CT scanner, transmission measurement has to 
be performed in service mode. In our experiment, the 
measurement was implemented in static mode, i.e., neither the 
gantry nor the bed moved. If the mode is not accessible, an 
alternative way is to use the localization features of a scanner, 
e.g. “Scout,” “Pilot,” “Topogram,” or “Preview”. 

In conclusion, spectrum estimation using transmission data 
and the EM method is a promising method, which allows user 
assessment of X-ray spectrum for commercial CT systems. 

 

(a)  80 kVp 

 

(b) 140 kVp 

 

(c) 140 kVp w/ tin filter 

 
(d) Convergence curve 

Fig. 2 (a)-(c) X-ray spectra estimated from the transmission data of the step-wedge phantoms using the EM method. The 

estimated spectra are compared with the initial guess and the simulated one. (d) The convergence curve of the EM iteration.  
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Fig. 3 Comparison of calculated and measured transmission data of the water tank phantom. The dots are 

measured data and the lines are calculated data. 
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4D-CT Reconstrucion Using Sparsity Level
Constrained Compressed Sensing

Haibo Wu, Andreas Maier, Hannes Hofmann, Rebecca Fahrig and Joachim Hornegger

Abstract—4D-CT is an important tool for treatment simulation
and treatment planning in radiotherapy. In order to capture the
tumor and tissue movement over time, 4D-CT has to acquire
more projection images compared to 3D-CT. This leads to more
radiation dose, which is the main concern of the application.
Using fewer projections can reduce the radiation dose. However,
lack of projections degrades the reconstructed image quality
for traditional methods. In this paper, we propose a novel
method based on iterative hard thresholding and compressed
sensing. We combine the prior knowledge from both methods in
our reconstruction problem formulation. In the experiments, we
validate our method with XCAT phantom data. The Euclidean
norm of the reconstructed images and the ground truth are
calculated for evaluation. The results show that our method
outperforms the traditional reconstruction method.

I. INTRODUCTION

Four dimensional computed tomography (4D-CT) plays an
important role in radiation oncology. Besides the 3D informa-
tion, 4D-CT also captures the movement of the body’s organs
over time. With the motion information, the target volume
definition is improved and accuracy during treatment delivery
for patients with tumors in the abdomen or thorax area is
enhanced. [1][2].

In 4D-CT, the projection images are continuously acquired.
An additional respiratory signal is recorded at the same
time. The projection images are then grouped to different
phases according to the amplitude or phase-angle sorting
[3-5]. However, to achieve clinically usable image quality,
hundreds of projections are needed to reconstruct images of
each respiratory phase [6]. Therefore the radiation dose is
of great concern for 4D-CT. In order to reduce the radiation
dose, the number of projections should be reduced. However,
the image quality would be degraded for traditional recon-
struction methods. Therefore, prior knowledge is introduced
to the reconstruction process. The group of Pan developed
the reconstruction method based on compressed sensing [7].
They assume the reconstruction result is smooth and use
total variation to promote the smooth solution. Blumensath
proposes the iterative hard thresholding method [8]. He uses
the sparsity level as the prior knowledge. Both methods can
reconstruct the image with much better quality compared to
the traditional method ART [9] using only a limited number
of projections.

H. Wu, A. Maier, H. Hofmann and J. Hornegger are with Pattern Recog-
nition Lab (LME) of Friedrich-Alexander-University Erlangen-Nuremberg.
H. Wu and J. Hornegger are also with Graduate School in Advanced
Optical Technologies (SAOT) of Friedrich-Alexander-University Erlangen-
Nuremberg. R. Fahrig is with Department of Radiology of Stanford University.

In this paper, we propose a 4D-CT reconstruction method
based on these two methods. We use the prior knowledge from
both methods in our formulation. The details of our method
can be found in section 2. The experiments and results are in
section 3. Conclusion and outlook in last section.

II. PROPOSED METHOD

A. Formulation of our method

The 4D object can be described by a sequence of 3D spatial
images [10]:

~X = {~xj , 1 ≤ j ≤ nt}, (1)

where ~X is the 4D object and ~xj is the image at j-th
respiratory phase. nt is the total number of reconstructed
respiratory phases. Thus, the 4D-CT data acquisition process
can be viewed as:

~Y = {~yj = Aj~xj , 1 ≤ j ≤ nt}, (2)

where ~yj and Aj are the projection image and system matrix.
~Y stands for projection images. Due to the respiratory motion,
we use only the projection images of j-th phase (~yj) to
reconstruct the j-th image (~xj). Therefore, the reconstruction
process can be viewed as solving the linear system:

~yj = Aj~xj + ~γ. (3)

Here ~γ stands for the noise of the measurements. The linear
system is ill-posed. There exist infinite solutions. The tradi-
tional method formulates the reconstruction problem as:

min
~xj

||~yj −Aj~xj ||2. (4)

The method finds the solutions which fit the measurements
best. Although the minimization problem is convex, there
could still be infinite solutions. For example in Fig. 1, the
objective function is convex and there is only one global
minimum, still the number of minimizers are infinite. To
further improve the reconstruction quality, compressed sensing
uses sparsity as prior knowledge to choose the best solution in
the solution set of (4). It formulates the reconstruction problem
as:

min
~xj

||Φ~xj ||1 s.t. ||~yj −A~xj ||2 < λ. (5)

Here, Φ is the sparsifying transform (for example total vari-
ation or wavelet transform) and || • ||1 stands for L1 norm
which calculates the sum of the absolute value of all entries.
λ describes the energy of the noise. Compressed sensing
assumes that medical images can be expressed sparsely by
a certain sparsifying transform. For example, most wavelet
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Fig. 1. Example of convex function with non-unique solution

coefficients of a medical image are zero. Minimizing L1 norm
of the coefficients promotes the sparse expression of the image
under the corresponding sparsifying transform. Total variation
and wavelet are used as sparsifying transforms in compressed
sensing based reconstruction methods [7] [11] [12]. Both
of them improve the reconstruction quality compared to the
traditional reconstruction method, when only limited number
of projection images can be used.

Similar as compressed sensing, Blumensath proposes an-
other idea to select the best solution from the solution set
of (4). The method is called iterative hard thresholding. The
formulation is

min
~xj

||~yj −A~xj ||2 s.t. ||Φ~xj ||0 < α, (6)

where Φ is again a sparsifying transform and || • ||0 is the
L0 norm which counts the nonzero entries. For simplicity, we
call ||Φ~xj ||0 sparsity level. α is a scalar describing the actual
sparsity level which can be estimated by prior knowledge. In
the context of 4D-CT, a prior image can be reconstructed using
all projections. Then α can be estimated from this prior image.

The two methods mentioned above use different prior
knowledge to improve the reconstruction quality. We propose
to combine the prior knowledge in the reconstruction prob-
lem formulation. Therefore, we formulate the reconstruction
problem as:

min
~xj

||Φ1~xj ||1 s.t. ||~yj−A~xj ||2 < λ ||Φ2~xj ||0 < α. (7)

Here, Φ1 and Φ2 are two sparsifying transforms. In practice,
the noise energy (λ) is not known. The related constraint can
be moved to the objective function to make the optimization
problem easier. Thus Equation (7) can be rewritten as :

min
~xj

||Φ1~xj ||1 + β||~yj −Aj~xj ||2 s.t. |||Φ2~xj ||0 < α. (8)

β is a weighting factor balancing the data fidelity and sparse-
ness. We use total variation as Φ1 and haar wavelet as Φ2

in the experiments. Our method promotes a smooth solution
which also obeys the sparsity level constraint.

B. Optimization method

It is challenging to solve the optimization problem (8). First
of all, as shown in Equation (6), it is a nonconvex optimization

problem. Second, in the context of 4D-CT reconstruction, the
dimension of the problem is very high. Blumensath proposed
a fast and accurate method to solve Equation (6) [8]. The
method is proven to converge to a certain local minimum and
the accuracy of the solution is guaranteed to be better than
the solution of the traditional method. The method deals with
the objective function and the constraint separately. It can be
summarized:

• Step 1) One gradient descent step to minimize the objec-
tive function which is ||~yj −Aj~xj ||2 in Equation (6).

• Step 2) Apply the constraint which is ||Φ~xj ||0 < α in
(6).

• Step 3) Repeat 1 and 2 until the Euclidean norm of two
subsquent image estimates is below a threshold.

Blumensath et al. used haar wavelet as Φ. In step 2, they first
transform the image estimate to the wavelet domain. Then
they keep the α largest wavelet coefficients and set the other
wavelet coefficients to zero. Finally they apply the inverse
wavelet transform. Similarly, we develop our optimization
algorithm as:

• Step 1) One gradient descent step to minimize the ob-
jective function which is ||Φ1~xj ||1 + β||~yj − Aj~xj ||2 in
Equation (8).

• Step 2) Apply the constraint which is ||Φ2~xj ||0 < α in
Equation (8).

• Step 3) Repeat 1 and 2 until the Euclidean norm of two
subsquent image estimates is below a threshold.

Due to the high dimension, step 1 would be very time
consuming if we applied directly one gradient descent step.
Pan proposed an efficient method to minimize ||Φ1~xj ||1 +
β||~yj −Aj~xj ||2 [7]. They split the objective function into two
parts which are ||Φ1~xj ||1 and ||~yj − Aj~xj ||2 and minimize
these two parts separately. We use their idea to further speed
up the optimization process and our algorithm can be written
as:

• Step 1) One step of ART to minimize ||~yj −Aj~xj ||2.
• Step 2) Take the result from step 1 as initial, apply k

steps of gradient descent to minimize ||Φ1~xj ||1.
• Step 3) Apply the constraint which is ||Φ2~xj ||0 < α in

Equation (8).
• Step 4) Repeat 1 and 3 until the Euclidean norm of two

subsquent image estimates is below a threshold.

III. EXPERIMENTS AND RESUTLS

We used the digital phantom XCAT [13] to validate our
method and compare against the state-of-the-art reconstruction
method, namely, ART, total variation regularization method
(TVR) [7], wavelet regularization method (WR) [11] and
iterative hard thresholding method (IHT) [8]. TVR and WR
are in fact compressed sensing based reconstruction methods
using total variation and wavelets as sparsifying transforms.
We generated 360 projection images in fan beam geometry,
equally spaced over an entire 360 degree rotation. They
are binned into 15 respiratory phases. Only 24 projeciton
images are used for the reconstruction of each phase. The
reconstructed image size is 256 x 256 The parameter settings
for all methods are chosen to have the best performance. We
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TABLE I
RECONSTRUCTION ERROR OF DIFFERENT METHODS AT ALL PHASES.

LOWER VALUES INDICATE A SMALLER ERROR.

ART TVR WR IHT Our method

Phase 0 954.129 528.115 491.619 502.797 380.308

Phase 1 955.064 530.937 493.409 504.610 383.991

Phase 2 952.191 519.982 489.499 497.777 380.522

Phase 3 924.856 514.082 464.587 475.610 364.402

Phase 4 909.119 509.091 455.989 468.648 353.299

Phase 5 906.057 507.531 453.293 463.976 348.600

Phase 6 899.210 537.518 448.592 460.021 349.38

Phase 7 891.567 501.844 443.407 454.459 341.703

Phase 8 896.414 496.971 447.953 459.659 347.126

Phase 9 892.580 493.052 435.819 447.010 336.634

Phase 10 903.200 520.333 450.953 461.388 354.010

Phase 11 921.861 518.745 461.159 470.909 354.971

Phase 12 940.355 528.281 473.379 483.011 362.820

Phase 13 944.477 527.099 475.758 487.505 364.099

Phase 14 952.982 527.087 488.380 498.830 376.406

Mean 922.938 517.378 464.920 475.747 359.885

use 5 gradient descent steps in step 2. Since we do not know
the energy of the noise, TVR and WR are formulated as
Equation (8) without the sparsity level constraint. The β are
set to 0.1 and 0.001 for TVR and WR, respectively.

The reconstruction results of the different methods are
shown in Fig. 2. In the first row, there are ground truth,
reconstruction results from ART and TVR. In the second row,
there are the reconstruction results from WR, IHT and our
method, respectively. The result from ART contains severe
streak artifacts due to the lack of projections. The streak
artifacts are reduced dramatically in the result from TVR but
the edges are blurred. The results from WR and IHT keep
the edges, but there are still a lot of streak artifacts. Our
result is smooth but preserves sharp edges. To quantitatively
evaluate the result, we calculate the reconstruction error for
each method. The error is calculated as:

Error = ||~x− ~xtrue||2 (9)

It is in fact the Euclidean norm of the reconstruction
result and the ground truth. The evaluation results can be
found in Table 1. The smaller number indicates better image
quality. TVR, WR and IHT all improve the image quality
significantly compared to the traditional method ART. Our
method outperforms all the other methods. The reconstruction
error of our method is less than 50% of the reconstruction
error from ART.

The convergence maps of TVR, IHT, WR and our methods
can be found in Fig. 3. The graph shows that our method
converges faster than the others and the accuracy of our
reconstructed result is the best.

Our method adopts the prior knowledge from TVR and
IHT. Therefore, it keeps the advantages of these two methods.
TVR uses total variation as the sparsifying transform and
minimizes the total variation of the solution. TVR favors a
piecewise constant solution. We also use the total variation
in our formulation. Therefore, our method reduces the streak

Fig. 3. Convergence maps.

artifacts dramatically and reconstructs a piecewise constant
image. IHT uses the sparsity level constraint. IHT assumes that
the energy of the real signal should concentrate in the large
wavelet coefficients and the energy of noise should concentrate
in small wavelet coefficients. Thus, at every iteration step,
IHT keeps the α largest wavelet coefficients and sets the
others to zero, which keeps the sharp edges and removes
the small changes. Our method also uses the sparsity level
constraint. Therefore, our method preserves the sharp edges
in the reconstruction results.

IV. CONCLUSION AND OUTLOOK

In this paper, we have presented a 4D-CT reconstruction
method based on compressed sensing and iterative hard thresh-
olding. The experiments indicate that our method can recon-
struct images of improved quality compared to ART when
only a small number of projections can be used. However, we
only consider prior knowledge in spatial domain in this paper.
Using the sparsity in the temporal domain can also improve
the reconstructed image quality[14][15]. In the future, we will
investigate combining the prior knowledge both in the spatial
and temporal domains.
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An Open Database of Metal Artifact Cases for
Clinical CT Imaging

Jan Mueller, Frederik Kaiser, Yulia M. Levakhina, Maik Stille, Imke Weyers, Thorsten M. Buzug

Abstract—Metal artifacts are a big problem in (medical) Com-
puted Tomography because they severely degrade the diagnostic
value of clinical CT images. During the last decades a large
number of different approaches have been presented in literature.
Unfortunately, until now it was impossible to compare different
results from literature since each research group uses a different
set of projection data and reconstruction methods. Therefore, a
project has been started towards an open standard database of
clinical metal artifact cases from body donors. It will include a
large variety of different metallic implant cases and allows for
evaluating the performance of metal artifact reduction methods in
different situations. To fill the database, each implant is scanned
several times with different scan settings in order to determine
the influence of scan parameters on metal artifacts. To make
the evaluation and comparison as easy as possible, a free and
open source reconstruction software will provided in course of
the project as well. This will enable researches from fields not
directly related to tomography to try ideas on real CT data.

I. INTRODUCTION

Since Computed Tomography (CT) has been transformed
from a brain-only imaging modality into a full body procedure,
metal artifacts in the reconstructed images became a severe
problem in medical applications. Depending on the scanner,
the specific scan protocol and the size and location of a
metallic object inside the patient, important morphological
features are hidden behind metal artifacts. As it can be seen
throughout this publication, these artifacts appear in different
forms and shapes. In almost all cases, fine streak artifacts
originate at the location of the metal and cover large parts of
the image. In addition, bright and dark shadow-like structures
appear around the implant. If more than one metallic object or
some other dense material is present, these objects are often
connected by dark bands.

The main reasons for metal artifacts are i) excessive noise
in the measured intensity data due the high absorption of the
metal, and sinogram inconsistencies resulting from ii) scattered
radiation and iii) beam hardening. While the excessive noise
is the main reason for the streak artifacts (see Figure 1 and 2),
both sinogram inconsistencies result in shadow-like structures
around and between the objects. In the worst case scenario,
a metallic object so thick such that no photons arrive at the
detector. This means that all the information from these beams
is lost and therefore cannot be used for reconstruction. This

J. Mueller and T. M. Buzug are with the Institute of Medical Engineering,
University of Luebeck, Luebeck, Germany (e-mail: buzug, mueller@imt.uni-
luebeck.de)
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University of Luebeck, Luebeck, Germany
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results in even stronger artifacts. The exact amount of influence
each error has on the image artifacts depends on the type of
metal, its thickness and form, the spectrum of the incoming X-
rays, the detector geometry, the presence of anti-scatter grids
and other factors.

Based on this reasons, metal artifacts can be reduced in
theory by increasing the dose, by implementing anti-scatter
grids, and by narrowing the spectrum of the X-ray tube by
strong pre-filtration. Unfortunately, in most situations these
measures cannot be fully applied because of dose concerns
for the patient or for technical reasons.

In combination with the fact that nowadays a large variety
of metal implants like dental fillings, pacemaker, bone screws
and plates, stents, aneurysm coils and artificial joints are likely
to be present in a patient, other ways of metal artifact reduction
have to be found.

One of the first approaches to MAR was introduced by
Kalender et al. in 1987 [1]. It is based on the idea that
all beams intersecting with a metallic object are considered
invalid. The values of these invalid beams are replaced by new
values derived from valid beams in the immediate neighbor-
hood by linear interpolation. Although this removes typical
metal artifacts, it often introduces a large number of new
artifacts. Especially regions far away from the metal where no
artifacts were present in the reconstruction with metal artifacts
are now degraded by those new artifacts.

In order to improve these results, a lot of different methods
of metal artifact reduction have been developed during the last
decades. Some of these methods are direct extensions of the
sinogram repair method. Instead of using linear interpolation,
the missing data is derived via more advanced interpolation
schemes. Some examples are: Wavelets [2], NFFT [3], and
sinogram inpainting [4]. Other approaches extend the sinogram
repair approach even further by introducing a normalization
step [5], [6] which simplifies the interpolation.

In addition to the sinogram repair approach, a lot of concep-
tually different methods have been developed. Some examples
are: the combination of the original and repaired images [7],
tissue classification [8], and adapted iterative reconstruction
algorithms [9], [10].

Most of these metal artifact reduction methods seem to
be able to reduce the amount of metal artifacts. Unfortu-
nately, until now it was impossible to compare the results
from different publications because each research group uses
different datasets, different resolutions, different level/window
settings, and different reconstruction methods and kernels to
demonstrate their results.

Therefore, the initial stages of an open database of medical
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CT scans is presented which can be used in future studies as
a simple way to compare the performance of existing and new
MAR methods in clinical CT applications.

To make this comparison as easy as possible, a free and
cross-platform reconstruction program will provided in addi-
tion to the measured data. It can be used to reconstruct 2D CT
data for all three standard geometries (parallel beam, fan-beam
with curved and flat detector) with different standard recon-
struction methods (FBP, ART, SPS, . . . ). The reconstruction
software is based on a more general 2D CT reconstruction
framework called libct2d which will be available as well.

The paper is organized as follows. The database and the
reconstruction software are described in section 2 and 3. Some
example cases from the database are shown in section 4. The
work is then concluded by an outlook on future developments.

II. THE DATABASE

In its current state, the database consists of a large number
of projection data acquired with a Siemens Somatom Defi-
nition AS. To provide as realistic data as possible, currently
the bodies of 5 body donors have been scanned. In addition,
a custom abdomens phantom1 was scanned with and without
different steel rod inserts in different configurations.

The projection data is available in its original fan-beam
geometry, but it can be rebinned into other geometries with the
help of a command line tool. This will be helpful in situations
in which custom reconstruction algorithms should be tested.

The data is stored in .mat MATLAB files which allows
easy access from the most popular scientific programming
languages (MATLAB/Octave/Freemat, Python in combination
with NumPy/SciPy, and C/C++ with the matio library). For
those languages which do not support .mat files, the data can
also be converted into a well-documented binary format.

A. Body Donor Scans

Currently, the database consists of a large number of scans
done with 5 body donors. Each metallic implant was com-
pletely scanned under different scan settings. All scans have
been acquired with a Siemens Somatom AS scanner. The cases
and the respective scanner settings are described in Table I.
Some legal details on the work with body donors in Germany
can be found at the end of the paper.

B. Abdomen Phantom Scans

The abdomen phantom has a width of 30 cm and a height
of 20 cm. It consists mainly of water equivalent plastic. Two
low-contrast regions simulate organs. In addition an optional
insert simulates a spine. Rods made of stainless steel (5, 7, 10,
and 13 mm diameter) can be inserted into 9 different locations.

This relatively simple phantom has several advantages over
real patient data. Most important, a phantom made out of plas-
tic is the only viable mean to scan an object with and without
metal without deformation between the scans. Therefore, the
scan without metal can be used as the ground truth during an
evaluation. In addition, the simple structure of the phantom

1Made by QRM - www.qrm.de.

Table I: An overview of all available datasets.

Case Metal Scan Settings

1 Dental implants 120 kV, 200 and 550 mAs

2 Pacemaker 120 kV, 200 and 550 mAs
Dental implants 120 kV, 200 and 550 mAs

3 Artificial knee joint 80 - 140 kV kV, 100 - 400 mAs
Artificial hip joints 80 - 140 kV kV, 100 - 400 mAs

4 Pacemaker 80 - 140 kV kV, 150 - 400 mAs
Metal wire in chest 80 - 140 kV kV, 150 - 400 mAs
Artificial hip joints 80 - 140 kV kV, 220 - 550 mAs

5 Artificial knee joints 80 - 120 kV, 100 - 350 mAs
Artificial hip joint 80 - 140 kV, 100 - 400 mAs

makes the task of metal artifact reduction less demanding than
it is for real data. Therefore, this data can be used as a first
step to try new ideas. In addition, the simple structure makes
it easier to find the source of new artifacts, which a metal
artifact algorithm might introduce into the image.

The provided phantom data consists of two parts. In the first
part, different configurations of metal rods have been scanned
with four typical scan settings in order to simulate small and
big metal artifacts. In addition, one configuration was scanned
with a large number of combinations for tube voltage and
tube current. This allows the study of the properties of metal
artifacts under different settings.

Figure 1: Two scans of the same hip implants with different
scan settings. Left image: 80 kV, 550 mAs, right image: 140
kV, 200 mAs. The level/window setting is 300/1500 HU.

III. THE RECONSTRUCTION SOFTWARE

To enable simple reconstruction of the provided data, the
database will include a 2D CT reconstruction software pack-
age. It is based on a new software framework for 2D CT
reconstruction called libct2d.

The main goal of this software project is to provide an
easy to understand basis for the development of new 2D
CT algorithms (for example: reconstruction algorithms, metal
artifact reduction, sinogram and image denoising, . . . ). This
allows researchers from fields outside the topic of CT to
test their image processing methods (image inpainting, image
denoising, . . . ) on real CT data.
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Figure 2: Two scans of the same phantom with different dose.
Left: 50 mAs, right: 550 mAs. The level/window setting is
50/300 HU.

Figure 3: Some example for different rod configuration of the
abdomen phantom. The level/window setting is 300/1500 HU.

The main key features of the library and the reconstruction
software are:

• All software will be provided for free and it will run on
all three major operating systems (Microsoft Windows,
Linux and Mac OS X)

• The entire framework is designed with simplicity in
mind. The source code is easy to understand and well
documented. This will make it easy to start developing.

• It is designed as a standalone library so no external
dependencies have to be installed and configured.

• The library includes the three major 2D geometries:
parallel beam and fan-beam with curved and flat detector
and can be adapted to other geometries.

• It also includes all the standard reconstruction methods:
FBP, ART, and several iterative statistical algorithms.

• For iterative reconstruction it provides the most common
forward- and backprojection operators (pixel-driven, line-
driven, ray-casting, distance-driven, ...).

To reach these goals, the core library and the reconstruction
programs are written in pure C++. To enable cross-platform

support, the software is built with the CMake2 system which
simplifies development on all three major platforms by sup-
porting a lot of different popular compiler and development
environments (gcc/make, Microsoft Visual Studio, XCode,
Eclipse, ...). In addition to the C++ version, wrapper libraries
for Python and MATLAB are in development. This will give
users the best of two worlds: all fast forward-/backprojection
and reconstruction methods written in C++ can be combined
with easy development and rapid development in both script-
ing languages.

In order to simplify the development process and to encour-
age external contributions, the complete software development
is hosted on GitHub3. GitHub is a platform for collaborative
develoment and is built around the version control software
git4. It is used by a large number of well known open-source
software projects.

IV. RESULTS AND DISCUSSION

A. Body donor scans

Since the final configuration of the first public version of the
database is not completed yet, only a few example cases are
shown here. In Figure 1, the same hip implants are scanned
in exactly the same location with two different settings. As it
can be seen, there are more streak artifacts in the 80 kV, 550
mAs image. In addition, the shadow like structures around the
objects are reduced in the 140 kV, 200 mAs scan.

B. Abdomen phantom

In Figure 2 and 3 some example scans of the abdomen
phantom are shown. As it can be seen in the first image,
the streak artifacts can be reduced by increasing the dose. In
addition it can also be seen, that the dark band between the
steel rods objects are not influenced by the amount of dose at
all.

V. CONCLUSIONS AND OUTLOOK

In this work, a short overview over a project for developing
a free and open database for clinical metal artifact cases was
given. Its main goal is to provide a free set of reference
cases for metal artifact reduction to allow a more methodically
comparison between approaches of different research groups.
Because of the open nature of the project it can be used as
a base for new algorithms and it also allows scientists from
completely unrelated areas to apply their image processing
methods on real CT data.

One of the main goals for the future is to provide even more
test and to enlarge the focus into non-medical applications.
Since most non-medical applications are based on 3D cone
beam acquisition the presented software has to be extended
into the third dimension.

2www.cmake.org
3www.github.com
4www.git-scm.com

Page 212 The second international conference on image formation in X-ray computed tomography



NOTE

The human cadavers - respectively bodies/heads/arms/legs
feet etc. as parts of cadavers - were used and dissected in this
examination under permission of the ”Gesetz ber das Leichen-
, Bestattungs- und Friedhofswesen (Bestattungsgesetz) des
Landes Schleswig-Holstein vom 04.02.2005, Abschnitt II, 9
(Leichenoeffnung, anatomisch)”. In this case it is allowed
to dissect the bodies of the donators (Koerperspender/in) for
scientific an/or educational purposes.
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Low–Contrast Visibility in Flat Detector CT:

A Simulation Study
Michael Knaup, Ludwig Ritschl, and Marc Kachelrieß

Abstract—Flat detector CT suffers from a limited visibility of
low–contrast objects. On the one hand this is due to increased
image noise and x–ray scatter, on the other hand this can be
attributed to a limited dynamic range of current flat detectors.
Compared to clinical CT detectors with their energy absorption
efficiency of 90% or more and their dynamic range of 20 bits
or more, flat detectors with their energy absorption efficiency
around 50 or 60% and their dynamic range of 10 to 12 bits
above the noise floor are significantly inferior. Further on, often
intended or unintended over– or underexposure occurs in flat
detector CT systems, resulting in undesired effects on image
quality. To explore the situation we conduct a simulation study
that systematically analyzes the effects of limited dynamic range
and of over– or underexposure on CT image quality in general
and on low–contrast visibility in particular.

I. INTRODUCTION

Low–contrast objects, like cerebral hemorrhages for exam-

ple, often are difficult to reveal with flat detector CT systems.

While clinical CT systems clearly show objects with very low

contrast, say 3 HU, the detectability in flat detector systems is

significantly limited and only medium–contrast details (30 HU

or more) can be seen. There are several reasons of why this

is the case. Scattered radiation in flat detector CT is more

dominant than in clinical CT. The absorption of photons in

flat detectors is much lower than the absorption efficiency of

clinical CT detectors. Both facts yield a decreased contrast

combined with increased image noise (given the same patient

dose as in clinical CT). Furthermore, the dynamic range of

the flat detectors is limited by the capacity of the pixel’s

photodiode or by the capacity of the read–out capacitors [1],

[2]. Under good conditions such detetectors deliver about

10 to 12 effective bits (above the noise floor). Over– or

underexposure often occurs in such systems, with undesired

effects on CT image quality.

For CT systems which are dominated by quantum noise,

it can be shown that an analog square root amplifier results

in an optimal detector sampling [3], [4]. However, in this

study we will concentrate on electronic noise and the detector

dynamic range and therefore assume that quantum noise plays

a subordinate role.

II. SIMULATION

To simulate the effects of limited detector dynamics we

assume a monochromatic 70 keV x–ray spectrum and perform
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the simulations and reconstructions in 2D parallel geometry

with 512 projection angles and 512 rays per projection. Each

ray in parallel geometry is parametrized by the two parameters

ϑ and ξ such that x cos ϑ+y sinϑ = ξ is the line of integration

in the x–y–plane.

Our simulation uses two rawdata sets. One generated by

analytical forward projection of a modified Forbild head

phantom, and one generated by forward projection of a clinical

CT image. Compared to the original Forbild head phantom [5]

we added eight additional 5 mm low–contrast spheres with

positive and negative contrasts relative to the 50 HU brain

matter background. Close to the ±2.5 HU low–contrast inserts

in the posterior brain region of the original phantom these eight

additional spheres of the modified phantom have contrasts of

±5.0 HU, ±10 HU, ±15 HU and ±20 HU. This extended

range of low–contrast objects allows us to easily visualize and

quanitfy the low–contrast detectability.

The line integrals obtained from these simulations are

denoted as p(ϑ, ξ). These rawdata are considered to be ideal

rawdata. In subsequent steps we will deteriorate the data by

adding noise and simulating overexposure and discretization

of AD converters, as explained in the following subsections.

A. Relative Intensities

The simulated line integrals p(ϑ, ξ) are converted into

relative intensities as

q0(ϑ, ξ) = e−p(ϑ, ξ) .

Since these and all following manipulations are done detector

pixel–wise we will drop the dependency on ϑ and ξ in the

following,

B. Scaling

It is interesting to study how the low–contrast visibility

changes as a function of object size. To do so, we introduce a

scale factor s > 0 and use s to convert the relative intensities

as

q1 = qs
0
.

This scaling operation can also be regarded as applying some

kind of gamma function to the relative intensities and therefore

may have significant impact on AD conversion (which is

typically done in intensity domain).

We will below use scaling to convert the data from patient

imaging (s = 1) to small animal imaging (s = 0.2).
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C. Quantum Noise

We now add quantum noise as follows:

q2 = q1 + N()
√

q1/I0.

Here, N() is a normal–distributed random number with mean

0 and standard deviation 1. I0 is the number of detected quanta

if no object was in the x–ray path and if the detector had no

saturation limit. For this study, we chose a fixed I0 = 2.7×107

for all simulations. With this I0, we obtain an image noise

of 5 HU in the soft tissue region of the reconstructed head

phantom in its original size (scale s = 1).

D. Gain Factor

The detector gain factor describes how the signal is am-

plified before it is being converted to digital values. A gain

chosen too high results in detector regions that are saturated

due to overexposure. A gain chosen too low implies that the

dynamic range provided by the detector is not fully used.

Here we define the gain factor g > 0 as follows: Let IS be

the number of x–ray quanta required to bring the detector into

saturation. Then we define g = I0/IS. With this definition,

for g = 1 the x–ray exposure and the detector properties are

well matched: no saturation occurs and the full dynamic range

of the detector is utilized. Typically, one would choose this

optimal case of g = 1. However, we will see below that an

intended overexposure with g > 1 may help to visualize low–

contrast details.

The gain is simulated by multiplying the noisy intensity data

q2 with the gain factor g.

q3 = g q2.

E. AD Conversion and Saturation

Up to now, we performed all calculations in double preci-

sion which can be considered as an infinite precision compared

to the actual detector resolution. In this step, we assume that

the detector has a limited precision of b significant bits, i.e. it

can deliver only 2b distinct values. We simulate discretization

and saturation by the following formulae:

q4 = q3 + U() 2−b,

q5 = ε ∨
⌊q4(2

b − 1) + 1

2
⌋

2b − 1
∧ 1.

Here, U() is a uniformly distributed random number in the

interval [− 1

2
, 1

2
] which simulates noise in the least significant

bit of the AD converter. The maximum function clips to the

small positive ε to avoid q5 gets zero (which would make

trouble when taking the log in the next step). The minimum

function clips the digitized value to the maximum relative

0

5/7 6/7

1

1ε 4/73/72/71/7

Fig. 1. Analog to digital conversion for the example b = 3. Upper line:
Analog signal q4. Lower line: Digital signal q5.

Fig. 2. Left: Standard image with gain factor g = 1. Right: Overexposed
image with gain factor g = 4 as it would look without detruncation. (C/W)
= (50/50).

intensity 1 which corresponds to a saturation at IS = I0/g
quanta. The discretization scheme is illustrated in figure 1.

F. Logarithm

Finally, the logrithm will be taken to convert from intensity

values to line integrals which are needed for filtered back-

projection. Here, one must not forget to account for the gain

factor. In addition, overexposure is detected and overexposed

values are set to zero. This yields

p6 =

{

0 if q5 = 1

ln g − ln q5 if q5 < 1.
(1)

G. Detruncation

For a gain factor g > 1, detruncation should be performed,

since line integrals p6 will be set to zero if the intensity q2

is greater than 1/g. This effect occurs mainly at the borders

of the object where attenuation is small. It is similar to a

truncation effect where the detector is too small to cover the

whole object and attenuation outside the detector is assumed

to be zero (see figure 2).

 0

 0.5
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 1.5
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 2.5

 10  15  20  25  30  35  40

Original

Detruncated

Threshold

ξ  [# Detector element]

p 6

Fig. 3. Detruncation for the case of a gain factor g = 4. The detruncation
must be performed since all attenuation values below a threshold of ln g will
be set to zero in equation (1).
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Fig. 4. Modified Forbild head phantom. Top row: Gain g = 1, scale s = 1 (standard exposure, patient imaging). Middle row: g = 4, s = 1 (intended
overexposure, patient imaging). Bottom row: g = 1, s = 0.2 (standard exposure, small animal imaging). From left to right: Histogram of analog signal q3,
b = 8 bits, 10 bits, 12 bits, 14 bits. (C/W) = (50/50).

For this study, we applied a detruncation algorithm [6]

detector row–wise (figure 3). In case of hollow projections, i.e.

gaps due to overexposure close to the center of a projection,

we propose to bridge these gaps by linear interpolation. In our

simulations, however, hollow projections did not appear.

H. Reconstruction

The final rawdata were reconstructed using parallel beam

filtered backprojection with a RamLak kernel.

III. RESULTS

Figure 4 shows the results for the simulated modified

Forbild head phantom. It compares the situations g = 1, s = 1
(standard exposure, patient imaging), g = 4, s = 1 (intended

overexposure, patient imaging) and g = 1, s = 0.2 (standard

exposure, small animal imaging) for various values of b.

It is interesting, but not surprising, that the images that

are overexposed by a factor of g = 4 taken with b true bits

are comparable to the images without overexposure taken at

b + 2 bits. Obviously, given a certain detector low–contrast

detectability can be improved in certain situations by overex-

posing the detector.

It is also interesting to see, that the change in scale by a

factor of five results in significantly different images. While

the large patient data require a higher detector dynamic range,

the small animal size data can do with less bits. Hence, one

may apply an optimal analog gamma function to the data prior

to doing the AD conversion in order to improve image quality.

Figure 5 shows similar results for patient images. Since

detruncation by detector extrapolation works better for the

mathematical phantom, the preprocessing with gain factor

g = 4 suffers evidently from the truncation effect. On the other

hand, low–contrast visibility is improved again by applying the

overexposure. Again, the small animal size data require less

detector dynamic range.

IV. SUMMARY AND CONCLUSIONS

We analyzed and demonstrated the influence of detector

quantization and of overexposure on low–contrast detectabil-

ity. An analog gain factor will improve low–contrast visibility

at the price of truncation artifacts which must be corrected.
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Fig. 5. Patient images of a cerebral hemorrhage with contrast agent. Same layout as figure 4. (C/W) = (40/100).

Imaging on the scale of small animals requires a lower

dynamic detector range than imaging on the larger scale of a

patient. This might be utilized by applying an analog gamma

amplifier prior to digitalization for patient imaging.
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Optimizing the Antiderivative of X–Ray
Differential Phase Contrast Data for Tomographic

Reconstruction.
Ludwig Ritschl, Stefan Sawall, Sören Schüller, Andre Ritter, Florian Bayer, Thomas Weber, Georg Pelzer,

Lukas Wucherer, Jens Rieger, Karl Gödel, Jürgen Durst, Thilo Michel, Gisela Anton, Wilhelm Haas, Tobias

Bäuerle and Marc Kachelrieß

Abstract— Grating–based differential phase contrast (DPC) imaging is a

promising imaging modality which emerged in the last years. The acquisi-

tion of projection samples of an object from different view angles allows for

tomographic reconstruction. Due to the fact, that the measured projection

values represent the derivative of the phase signal, usually an integration

of the data is performed before reconstruction. In this paper we present a

new approach to do this. Instead of performing an analytic integration we

iteratively solve a constrained cost function. This enables to include some

a priori knowledge into this process, which makes the result less sensitive

to non–idealities in the projection data. Especially larger areas of low vis-

ibility lead to an ill-posed problem for tomographic reconstruction. The

method proposed compensates for these missing data by using redundan-

cies between the absorption images and the integrated phase images. The

reconstructed volumes of the phase distribution show strong improvements

in terms of streak artifacts, which are caused by erroneous phase values in

the projection data. The algorithm is evaluated using experimental tomo-

graphic grating–based DPC data.

I. INTRODUCTION

The refractive index of any material can be expressed by the

complex value n = 1−δ+ iβ. Absorption–based x–ray imaging

only yields information about the imaginary part β. Grating–

based differential phase contrast imaging (DPC) [1] is a promis-

ing way to measure information about the real part δ of the re-

fractive index of an object. Compared to other approaches [2–4]

grating–based DPC imaging using a Talbot–Lau interferometer

also works with conventional x–ray tubes [1] and in compact se-

tups [5, 6]. The use of grating–based DPC data as input data for

computed tomography (CT) was shown in different publications

in the last years [7, 8].

To reconstruct a distribution which represents the real part δ
of an object, the phase information of the attenuated radiation

has to be extracted from the measured intensity data. This pro-

cedure is called phase retrieval. In the grating–based setup this

information can be gained by the so called phase stepping pro-

cedure [1], which yields the first derivative of the phase ϕ, the

transmitted intensity I, which represents absorption effects, and
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the so called visibility V , which relates to the dark field. For to-

mographic reconstruction of δ integration of the phase derivative

has to be performed.

Under ideal conditions this integration of differential phase

data can be directly combined with the reconstruction using a

modified filtered backprojection (FBP). Here the filter kernel

k(u) = sgn(u)/2πi accounts for the differential nature of the

measured phase signal. An equivalent way to reconstruct these

data is performing an analytical integration followed by a stan-

dard FBP as in absorption CT.

There are different effects which make this integration un-

stable and create artifacts in the reconstructed CT volume: In

case of truncated projection data the boundary conditions of the

integration are not well defined. Quantum noise in the projec-

tion data [9] also leads to unknown boundary conditions, even

Fig. 1. This figure shows the three different images acquired with a grating

interferometer. The arrows mark areas of low visibility. In this area the

differential phase image ϕ contains only random values.
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Fig. 2. Here the differential phase image ϕ (upper row), the first derivative

of the absorption image ∂uqA (middle row) and the visibility V (bottom)

are shown. The greyscales of the upper two images are linear scaled to

the interval [−1,1] according to the maximum and minimum values in the

corresponding images. The visibility image is normalized with respect to

the V0 image. The plots show the pixel position (x–axis) and the grey values

(y–axis) across the yellow line. Note the high noise in the differential phase

image in the areas of low visibility V .

in the case of non–truncated data. After integration the noise

behaviour in integration direction is of a different characteristic

than in other directions. This leads to streak artifacts in the in-

tegrated image which can also be present in the reconstructed

CT volume, depending on the dose exposure. An exact descrip-

tion of this noise behaviour can be found in reference [10]. Not

only noise but also the fact that the phase is a cyclic variable can

lead to a wrong phase determination and inconsistent CT data.

A method to correct for this artifact has been presented in [11].

Another aspect is the quality of the phase signal which can

be measured by the visibility V . If V is small, the extracted

phase signal is just a random variable and does not contain any

physical information. This can be explained by a decrease of

beam coherence by scattered radiation. That means, that pixels

with a low visibility do not provide any meaningful information

for the integration process. This effect can be seen in Figure 1

and 2. To show the influence of low visiblity on the differential

phase signal ϕ, we compared ϕ with the first derivative of the

absorption image (Figure 2). Here it can be seen, that reduced

visibility leads to a higher noise level in the estimated phase val-

ues. If these high frequency fluctuations were caused by strong

density variations inside the object, they would also have been

visible in the absorption image, which is not the case. This ob-

servation also goes along with the theoretical relation between

the noise level of ϕ and V [9]. The typically arising artifacts

in the CT volume are streaks, which also degrade areas in the

volume where the phase information is available. From a math-

ematical point of view one has to deal with an ill–posed problem

which can only be solved using adequate a priori information.

The method presented in this paper will focus on handling image

artifacts caused by low visibility areas in the projection images.

In reference [12] Thuering et al. presented an iterative ap-

proach for phase retrieval of differential phase contrast data with

a focus on radiographic projection images. The approach pre-

sented here bases on this framework and extends it by using

some additional a priori information.

II. METHOD

Let ϕ(ϑ,u,v) be the measured differential projection data.

Here ϑ denotes the projection angle. The indices u and v rep-

resent the detector columns and rows. If the gratings are posi-

tioned parallel to the v-axis of the detector, the single phase steps

are performed in u–direction. The corresponding extracted dif-

ferential phase signal is

ϕ(ϑ,u,v) =
∂qP(ϑ,u,v)

∂u
.

Here qP(ϑ,u,v) is the phase signal, which is needed for tomo-

graphical reconstruction, because it can be regarded as a line

integral consisting of phase information. The standard way to

compute qP(ϑ,u,v) is a simple numerical integration along u:

qP(ϑ, û,v) =

u=û∫

u=0

ϕ(ϑ,u,v) du, (1)

while this integral is realized as a summation of the measured

discretized data. The method proposed here will handle this

integration process as an optimization problem which can be

solved iteratively. This enables us to include some prior knowl-

edge which should compensate for the unwanted influence of

the effects mentioned in the previous section. The cost function

we like to optimize incorporates the attenuation information

qA(ϑ,u,v) =− ln
I(ϑ,u,v)

I0(ϑ,u,v)
,

which is the logarithm of the normalized transmitted inten-

sity, and the visibility map V (ϑ,u,v) into the calculation of

qp(ϑ,u,v) in form of a penalized weighted least square (PWLS)

formulation. The cost function

C(qP,qA,V,ϕ) =C1(qP,V,ϕ)+λ ·C2(qP,qA) (2)

consists of two parts. Here

C1(qP,V,ϕ) = ||∂uqP(ϑ,u,v)−ϕ(ϑ,u,v)||2V

= ∑
u,v,ϑ

V 2(ϑ,u,v)(∂uqP(ϑ,u,v)−ϕ(ϑ,u,v))2

is a weighted least square term. The minimizition of this term

with respect to qP leads to a weighted integration of ϕ(ϑ,u,v).
The usage of V 2(ϑ,u,v) as diagonal elements of a weighting

matrix reduces the significance of values with low visibility in

the integrated image. The choice of V 2 can be motivated by the

proportionality σPhase ∝ 1
V

[9] and the fact that weighting by the

inverse variance 1
σ2 is the statistical optimal way to proceed.
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Fig. 3. Here axial, coronal and sagittal views of the reconstructed phase images

are shown. Note the strong artifact reduction of the PWLS method com-

pared to the standard reconstruction. All images are windowed C = 50%

W = 50%. The third row shows the difference images between the PWLS

reconstruction and the standard reconstruction.

The second term is an ℓ1–norm prior as it is known from the

compressed sensing [13] theory:

C2(qP,qA) =(1−α)||∇ϑ,u,v(qP(ϑ,u,v)− γqA(ϑ,u,v))||1

+α||∇ϑ,u,v(qP(ϑ,u,v)||1

The first part enforces a similarity of edges in the absorption

and the integrated phase image. The second part is a total vari-

ation prior [14]. It makes the solution more stable with re-

spect to the unknown boundary conditions of the integration pro-

cess, because the regularization in v– and ϑ–direction supresses

high frequent fluctuations between neighboured detector rows

and neighboured projection images. The factor γ matches the

grayscales of qA(ϑ,u,v) and qP(ϑ,u,v) in a linear approxima-

tion. It was calculated in advance by minimizing

||ϕ(ϑ,u,v)− γ∂uqA(ϑ,u,v)||
2
2.

For a correct calibrated system and a measured object consist-

ing of only one material this factor should represent the mean

relation between the real and the imaginary part of the refrac-

tive index. The parameter 0 ≤ α ≤ 1 is used as a linear weight

between both prior functions. In this study α = 0.6 was used.

The regularization parameter λ is a tuning parameter which

controls the influence of the regularization function C2. In this

study it was evaluated empirically. The cost function was opti-

mized using a standard conjugate gradient algorithm [15].

III. DATA PROCESSING

A. Data Acquisition

The method is evaluated using experimental tomographic

grating–based DPC data. The measurements were conducted in

the Radiation Physics Lab at the Erlangen Centre for Astroparti-

cle Physics of the University of Erlangen–Nürnberg. The object

Fig. 4. Here the same slices as in Figure 3 are shown at a different window level

(C = 50% W = 100%).

scanned is a knee of a rat which was infiltrated by a tumor. The

used tabletop system is a typical grating interferometer setup

with a conventional x–ray tube including an absorption grating.

The tube voltage during the measurements was set to 40 kV.

To extract the phase and visibility information eight phase steps

were performed for each view angle. The number of different

projection views is 601. The exposure time per phase step was

6.6 s at a tube current of 50 mA.

B. Tomographic reconstruction

The reconstruction was performed using the standard

Feldkamp-David-Kress (FDK) [16] algorithm. To compare the

improvement of the PWLS–based integration method in the re-

constructed images, we additionally performed a reconstruction

based on the analytical integration formula (1). The iteration

number of the PWLS integration was set to 100. At this itera-

tion number only minor changes of the cost functional written

in equation (2) were observed.

IV. RESULTS

In Figure 3 and 4 one can see the tomographical reconstruc-

tion of the acquired dataset. Here both integration techniques

were used to enable a comparison. The reduction of streak ar-

tifacts which are caused by the strong scattering behaviour of

the bone is clearly visible. The difference image shows, that

there is no loss in spatial resolution or any corruption of soft tis-

sue contrast. Figure 5 shows an enlarged area of the axial slice.

Here it can obviously be seen, that the PWLS approach makes

soft tissue areas visible which are otherwise corrupted by streak

artifacts caused by the thick bone section aside.

V. DISCUSSION

To verify the robustness of the approach, further evaluations

using different types of data sets have to be done. One assump-

tion of the approach is that areas of low visibility still consist of
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Fig. 5. Here an enlarged version of the axial slice is shown. Note the reduction

of streak artifacts in the PWLS image which makes soft tissue structures

more visible. The windowing is C = 50% W = 50%.

information in the absorption image. In case of very low pho-

ton statistics, for example behind metal objects, this assumption

does not hold any more. Handling such scenarios might be part

of future investigations.

VI. CONCLUSION

To our knowledge the proposed method is the first, which tries

to compensate for uncertainties in grating–based DPC tomogra-

phy caused by partially low visibility of the input data. This

incomplete data problem was compensated by the use of redun-

dancies between the integrated phase image and the absorption

image.

A part of future research will be finding other ways to use the

dark field and absorption image for compensating incomplete or

wrong phase information. One step will be the integration of the

proposed framework into a fully iterative CT reconstruction al-

gorithm which would enable the direct application of the penalty

functions to the reconstructed volume.

We believe that this work is one important step towards in vivo

grating–based DPC tomography of small animals because the

corruption of the phase signal by strong scattering areas cannot

be avoided.
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A multi-modality software platform for image 
reconstruction  

Samuel M. Johnston, G. Allan Johnson, and Cristian T. Badea*
 

Abstract—We have developed a software platform for CT and 
MRI image reconstruction that combines GPU acceleration with 
a MATLAB interface. This platform enables the development of 
modality-general reconstruction algorithms composed of 
modality-specific modules. We describe one such algorithm, 
SART-BF, implement it with our platform, and apply it to data 
collected in simulations and in phantom studies with real CT and 
MRI systems. The results demonstrate that this implementation 
of SART-BF is sucessful at reducing noise while preserving edges 
in the reconstructed images from both CT and MRI data. 

Keywords-CT, MRI, reconstruction, GPU 

I.  INTRODUCTION 
Medical imaging includes a diverse set of technologies, 

such as x-ray computed tomography (CT), positron emission 
tomography (PET), single photon emission computed 
tomography (SPECT), magnetic resonance imaging (MRI), and 
ultrasound (US). These modalities are based on a variety of 
different physical processes, and use sensors that measure these 
processes in a variety of formats. However, the algorithms for 
reconstructing images from the measured data share many 
common features. For example, many algorithms seek to 
iteratively maximize or minimize cost functions that quantify 
the agreement between the reconstructed image and the 
measured data, or the amount of noise or spurious features in 
the image. These algorithms require subroutines that map data 
between the measurement space and the image space, and these 
subroutines typically ev*ince a parallel structure that is an 
attractive target for optimization with parallel computer 
architectures.  

Across all modalities, there is a perennial interest in 
developing new reconstruction algorithms to improve image 
quality, and to enable reductions in scan time, reconstruction 
time, and dosage of radiation and chemicals. However, this 
work is predominantly undertaken in modality-specific or 
device-specific contexts. While certain algorithmic patterns are 
shared by researchers in different modalities, code is rarely 
shared. 

In recent years, there have been several efforts to address 
this problem. Dong et al. [1] present one such technology, a 
Unified Reconstruction Software Framework (URSF), and 
survey several other prior technologies, such as Software for 
Tomographic Image Reconstruction (STIR) 
(stir.sourceforge.net), Image Reconstruction Toolbox (IRT) 
(www.eecs.umich.edu/~fessler/code), and a sparse 
precomputed iterative reconstruction library (ASPIRE) 
(www.eecs.umich.edu/~fessler/aspire). These software 
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frameworks differ in many ways, including their programming 
language, operating system, degree of parallelization, and 
applicable modalities. 

In this study, we present our own work on a software 
platform for medical image reconstruction. This platform is 
written in C/C++ and exploits parallelization with a graphics 
processing unit (GPU). A MATLAB interface enables rapid 
algorithm development. Although originally designed for CT, 
we have used this platform for MRI reconstruction. We 
describe a typical iterative algorithm and measure its 
performance with simulated data and real data from CT and 
MRI.  

II. ALGORITHM 
Image reconstruction is an inverse problem. The interaction 

of the imaging device and the environment is given by a 
function A that maps the image vector x to the measurement 
vector b. 

 A(x)= b  (1) 

The goal of reconstruction is to find x, given measurements b 
and prior system knowledge A. Some imaging modalities, such 
as CT and MRI, are well-approximated as linear systems, in 
which case A is a matrix. 

 Ax= b  (2) 

In general, because of the size, shape, and conditioning of 
A, neither the matrix inverse nor the pseudo-inverse are viable 
options. Instead, this problem can be solved iteratively. If we 
quantify the agreement between x and b with the data fidelity 
cost function K: 

 K = Ax!b
2

 (3) 

then the following sequence is expected to converge to the x 
that minimizes K: 

 x
(n+1)

= x
(n)

+A
T
Ax

(n)
!b( )  (4) 

The first element in the sequence, x(0), can be produced by 
some other approximate reconstruction algorithm, or it can 
consist of some arbitrary values. The closer x(0) is to the true 
value x, the faster the convergence. To control the rate of 
convergence and improve numerical stability, a relaxation 
factor α is included: 

 x
(n+1)

= x
(n)

+!A
T
Ax

(n)
"b( )  (5) 
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This algorithm is generally known as gradient descent, but 
in the context of CT it is referred to as the simultaneous 
algebraic reconstruction technique (SART) [2]. 

While the sequence (5) is expected to improve the accuracy 
of x, it is agnostic with respect to the image statistics of x. In 
biological objects, we often expect to see a set of organs with a 
uniform composition over large regions, but distinct boundaries 
between these regions. For this reason, we introduce a 
regularization step that reduces variation within homogeneous 
regions while preserving boundaries between regions. In this 
study, we employ bilateral filtration (BF) [3], which replaces 
each pixel xi with a weighted average of the neighboring pixels 
xj: 

 F(xi )=

exp !
ri !rj 2
2" d

2

#

$%
&

'(
exp !

xi ! x j
2" r

2

#
$%

&
'(
x j

j

)

exp !
ri !rj 2
2" d

2

#

$%
&

'(
exp !

xi ! x j
2" r

2

#
$%

&
'(j

)
 (6) 

Here, σd is the domain parameter, which weights the 
contributions of the neighboring pixels based on their distances 
r
i
!r

j 2
, and σr is the range parameter, which weights the 

contributions of the neighboring pixels based on differences in 
value xi ! x j . The values of σd and σr are dependent on the 
particular imaging experiment. To control the strength of BF, 
we introduce another relaxation factor, β: 

 x
(n+1)

= 1!"( )x(n) +"F x(n)( )  (7) 

Putting these steps together, we have the following 
algorithm, SART-BF: 

SART-BF 
x := prior reconstruction 
for each iteration 
    bexpected := Ax 
    berror := b - bexpected 
    gradient := ATberror 
    x := x + α*gradient 
    xfiltered := F(x) 
    x := (1 - β)*x + β*xfiltered 

The number of iterations, and the choice of relaxation 
factors α and β, are parameters that must be chosen by the user. 
There are various criteria that can be employed to determine 
optimal values, but we do not address that issue here. 

So far, we have presented this algorithm as modality-
general. However, two of the functions involved are modality-
specific. Usually, A and AT are too large to be represented 
explicitly in memory, and must instead be implemented 
implicitly with functions that duplicate their behavior. In the 
case of CT, A is the projection operation (in our case, cone 
beam), and AT is the backprojection operation. The initial 
reconstruction is performed with filtered backprojection [2]. In 
the case of MRI with Cartesian sampling, A is the Fast Fourier 

Transform (FFT), and AT is the Inverse Fast Fourier Transform 
(IFFT). The initial reconstruction is the IFFT. 

In our implementation, projection, backprojection, Fourier 
transforms, and bilateral filtration are written with CUDA in 
order to run on the GPU, and additional utility functions 
written in C enable input/output, manipulation, and arithmetic 
of large arrays. (The Fourier transforms are implemented by 
CUFFT, a library provided with CUDA.) At the uppermost 
level, the code for SART-BF is implemented in Matlab. The 
GPU used in this study is a GTX 285. 

The SART-BF algorithm and GPU implementation 
presented here is similar to other recent developments in CT 
[4]. The key distinction here is that we can apply the same 
algorithm to both CT and MRI.  

III. SIMULATIONS  
To test SART-BF in simulations, we used the Moby digital 

mouse phantom [5], shown in Fig. 1. The version used here is 
256 × 256 × 256 voxels, with each voxel 0.088 mm × 0.088 
mm × 0.088 mm. A small cyclinder of water was placed next to 
the mouse to facilitate the measurement of image statistics. The 
CT simulation generated 200 projections with a step angle of 
1.8°. The MRI simulation sampled the volume with the FFT. In 
both modalities, a sufficient amount of noise was added to the 
measured data so that a conventional reconstruction would 
produce images with an SNR around 5 in regions comprised of 
generic soft tissue. 

For both modalities, we ran SART-BF for 10 iterations. The 
values used for the various parameters are shown in Table I. 
The total time for both was about 2 minutes. The reconstructed 
images are shown in Fig. 2.   

After the initial reconstruction, and each subsequent 
iteration of SART-BF, we computed the normalized root mean 
squared error (RMSE) of the reconstructed image compared 
with the original phantom. We measured the mean and the 
standard deviation in the the interior of the water cylinder to 
compute the signal-to-noise ratio (SNR). To quantify the 
sharpness of the edges between regions, we calculated the 
modulation transfer function (MTF) from a radial line profile 
of the cylinder, and located the spatial frequency where the 
MTF equals 0.5. These image statistics are plotted in Fig. 3.  

 

 

 

 

 

 

 

 

 

 
 

Figure 1.  A slice from the Moby mouse phantom. 
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TABLE I.  RECONSTRUCTION PARAMETERS IN SIMULATIONS 

 α  β  σd σr 

CT 0.2 0.2 1.5 0.0012 
MRI 1.0 0.05 1.5 0.0012 

IV. EXPERIMENTAL VALIDATION 
To test SART-BF with real data, we scanned a plastic 

phantom containing holes and cylinders of various sizes with 
both CT and MRI. For the CT scan, we collected 200 
projections with 1002 × 667 pixels of size 0.088 mm × 0.088 
mm and a step angle of 1.8°, at 80 kVp, 40 mA, and 10 ms, on 
our custom micro-CT system [6]. These settings were chosen 
to approximate a densely-sampled but low-dose scan that might 
be desirable in the clinic but produces images that are 

unacceptably noisy in conventional reconstructions. For the 
MRI scan, we immersed the phantom in a copper sulfate 
solution. We performed a GRASS scan with an 8° flip angle 
over 512 × 512 × 512 samples on an isotropic Cartesian grid 
with an increment  of 0.1 mm on our 2T GE SIGNA EXCITE 
system. Total scan time was about 4 minutes for the CT scan 
and 40 minutes for the MRI scan.  

We then reconstructed the data with SART-BF. In each 
case 10 iterations were used, and the values used for the 
various parameters are shown in Table II. The CT images were 
reconstructed in a 512 × 512 × 256 volume and the MRI 
images in a 384 × 384 × 384 volume, but both sets were 
rotated, interpolated, and cropped to appear in the same 
orientation. The total time was 5 minutes for CT and 3 minutes 
for MRI. The reconstructed images are shown in Fig. 4. 

 Iteration 0 Iteration 5 Iteration 10 

CT 

   

MRI 

   
Figure 2.   Images reconstructed with SART-BF from simulations 

 
Figure 3.   Image statistics at each iteration of SART-BF in the simulations. 
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TABLE II.  RECONSTRUCTION PARAMETERS FOR REAL DATA 

 α  β  σd σr 

CT 0.2 0.2 1.5 0.012 
MRI 0.03 0.4 1 0.3 

V. CONCLUSION 
The results from the simulations demonstrate that SART-

BF improves the accuracy of the reconstruction, and delivers a 
large improvement in SNR for a relatively modest cost in 
spatial detail. The results from the real data affirm that SART-
BF is sucessful at reducing noise while preserving edges in the 
reconstructed images. This algorithm depends on the user 
choice of several parameters that may vary depending on the 
particular scan. 

But the more important result is that the same modality-
general algorithm comprised of separate modality-specific 
modules can deliver an improvement in the quality of 
reconstructed images in different imaging modalities. Our 
software platform is capable of handling data from both CT 
and MRI, enabling efficient implementations of low-level and 
modality-specific modules on the GPU, and rapid development 
of new modality-general algorithms based on novel 
combinations of these modules in MATLAB. In future work 
we hope to extend this functionality beyond CT and MRI to 
include additional modalities. 
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Figure 4.   Images reconstructed with SART-BF from real data. 
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Super Resolution CT Imaging
Based on the Collimator

Yining Zhu, Defeng Chen, Peng Zhang

Abstract—When the ratio of the focal spot size to the detector
cell size is relatively large, the spatial resolution of CT images is
mainly dominated by the focal spot size. In order to improve the
spatial resolution for such case, we divide a large x-ray focal spot
into a set of discrete small virtual spots by means of a designed
collimator, and propose an corresponding iterative algorithm to
reconstruct a super resolution image from the data scanned under
a set of narrow fan beams. The numerical experiments show that
the proposed approach is validity to increase the resolution of
the CT image significantly.

Keywords—Super resolution; CT reconstruction; Collimator;
Iterative algorithm.

I. INTRODUCTION

The spatial resolution is one of the important indexes of
a CT system, which reflects the capability of a CT system
to distinguish details. The spatial resolution is theoretically
described by MTF (Modulation Transfer Function). But, in
practice, it is often specified in term of line pairs per millimeter
(lp/mm) and directly measured with some typical models
containing bar or hole patterns of various spatial frequencies.
Generally the resolution is determined by the factors including
the x-ray focal spot size, detector cell size, ratio of source-
to-detector distance to source-to-iso distance, field of view,
mechanical precision, reconstruction algorithm and so on.

The approaches of quarter-detector-offset, focal-spot-
wobble [1] and the virtual-detector-based algorithms [2-5]
were proposed to improve the spatial resolution of CT images.
However, when the ratio of the focal spot size to the detector
cell size is relatively large, the spatial resolution of CT images
is mainly dominated by the focal spot size, and the approaches
above become almost invalidation. For instance, the focal spot
size of the x-ray tube for high energy industrial CT is typically
about 3.0 to 6.5 mm as to the standard acc. EN12543, but
the detector cell size is about 0.083 to 0.4 mm. In order to
improve the spatial resolution for such situation, we design a
collimator with a set of slits placed in the front of the x-ray
source. The x-rays passing through the collimator consist of a
set of narrow fan beams emitted from a set of discrete small
virtual spots. We propose an iterative algorithm to reconstruct
a super resolution CT image from such scanned data. The
numerical experiments with typical test models show that the
proposed approach is validity to increase the resolution of the
CT image significantly.

The authors are with The CT Laboratory, School of Mathematics, Capital
Normal University, Beijing, 10048, China; email: zhumilan997@163.com

Fig. 1. Schematic diagram of CT scanning configuration with a bar-shaped
focal spot.

II. DATA SCANNED WITH COLLIMATOR

In an ideal CT model, the x-ray focal spot is treated as
an ideal point. Therefore, in the two dimensional ideal CT
model, the rays emitted from the focal spot to the linear
detector form a fan-beam. In reality, however, the focal spot
size in some situations could not be ignored. In this paper,
we treat the x-ray focal spot in two dimensional CT as a bar-
shaped (i.e. short line segment) spot, because the variance of
the focal spot is very small along the direction vertical to the
detector, compared to the source-to-detector distance. Under
this assumption, the x-rays emitted from the bar-shaped spot
are shown in Fig. 1. In order to improve the spatial resolution,
we place an arc-shaped collimator, shown in the Fig. 2, in
the front of the x-ray focal spot. The collimator is made of
tungsten or plumbum, and is of the arc radius r, the angle
α and thickness k mm. A set of slits with width l mm are
arranged on the collimator with equal radian.

For simplicity, we just consider the mono-energetic x-ray
CT imaging. Then the data scanned with a collimator for a
bar focal spot can be modeled as follows, if the scattering
photons are ignored,

I(β, u) =

∫ s1

s0

I0(s)e

−
∫

y∈L(s,u)

f(R(β)y,E0)+λ(E0)g(y)dL

ds,

(1)
where β denotes the rotation angle of the inspected object,
R(β) the relative rotation matrix, u the detector coordinate
and s ∈ [s0, s1] the position from which an x-ray is emitted
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Fig. 2. Structure of the collimator.

respectively; let I0(s) be the photon intensity distribution with
energy E0 emitted from the position s, L(s, u) an x-ray emit-
ted from the position s to detector coordinate u, and I(β, u)
the remaining photons that penetrate the inspected object;
f(x,E0) is the linear attenuation coefficient distribution of the
inspected object at the point x related to energy E0, λ(E0)
linear attenuation coefficient of the collimator related to energy
E0, and g(s) the thickness distribution of the collimator.

With the collimator described in Fig. 2, we can think that
the x-ray focal spot consists of a set of discrete small virtual
focuses. Then we can discrete the model (1) into the following
form

In =

S∑
s=1

I0,s exp(−
J∑
j=1

an,s,jfj − λgn,s), (2)

where s denotes the index of the small virtual focuses, n the
index of the scanned data, and j the index of image pixels; let
I0,s be the total number of photons emitted from the sth virtual
focus, an,s,j be the contribution factor of the ray emitted from
the sth virtual focus and passing through the jth pixel to the nth

datum, and gn,s be the contribution factor of the ray emitted
from the sth virtual focus to the nth datum. Specially, we can
set n = (n1×N2) +n2, 0 ≤ n1 < N1 , 0 ≤ n2 < N2, where
N1 is the number of sampling angles, N2 is the number of
whole detector cells, and n1,n2 are indexes of detector and
angle respectively.

Due to the obstruction of the collimator, only a narrow part
of a fan beam emitted from a virtual focus can reach the
inspected object. Therefore, the sinogram scanned with the
designed collimator can be treated as a combination of data
scanned under a set of narrow fan beams which are emitted
from the virtual focuses and penetrate the collimator. We can
choose the width of the slits, thickness of the collimator, and
the ratio of the source-to-iso distance to the source-to-detector
distance, to limit the number of the virtual focuses from which
a single detector cell could receive the photons.

III. THE RECONSTRUCTION ALGORITHM

The CT image reconstruction problem for our model is to
reconstruct fj from data (2) under assumption that the Ic0,n,s
are known for any n,s, where Ic0,n,s = I0,s exp(−λgn,s) .

Set
pn,s = − ln

In,s
Ic0,n,s

=
J∑
j=1

an,s,jfj .

Let F be the image vector, M the projection matrix, and P
the projection data vector. Then we obtain the linear system

P =MF (3)

where

P =



P1

...
Ps
...
PS


, Ps =



p1,s
...

pn,s
...

pN,s


;M =



M1

...
Ms

...
MS


,

Ms =



a1,1,1 · · · a1,s,j · · · a1,1,J
...

. . .
...

. . .
...

an,1,1 · · · an,s,j · · · an,s,J
...

. . .
...

. . .
...

aN,1,1 · · · aN,s,j · · · aN,S,J


.

If pn,s are known for any n, s, then we can solve (3) using
SART [6] as follows,

f
(k+1)
j = f

(k)
j +

1
S∑
s=1

N∑
n=1

an,s,j

S∑
s=1

N∑
n=1

an,s,j
δ
(k)
n,s

J∑
j=1

an,s,j

. (4)

where δ(k)n,s = pn,s −mn,s · F (k) is the residual error for the
kth iteration and mn,s is the nth row of matrix Ms. However,
unfortunately, we could not directly measure pn,s, and then
could not calculate δn,s for any n, s.Therefore we could not
apply the formula (4) to reconstruct image F .

What we could measure are Ic0 and In for any n. Denoting
I
(k)
n as the total number of estimate photons calculated by

forward-projection in the kth iteration. Then we can calculate
the total of the residual error of the nth data δ(k)n from Ic0 and
I
(k)
n ,

δ(k)n = − ln(In/I
c
0)− (− ln(I(k)n /Ic0))

= ln(I(k)n /In).
(5)

On the other hand,

δ(k)n =
S∑
s=1

δ(k)n,s.

Setting u is the index of detector cells and

ωu,s = Ic0,u,s/I
c
0 .

As the ωu,s is independence with the object, so

ωn,s = ω mod (n,N2),s

= ωu,s,
(6)
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and we notice that
S∑
s=1

ωu,s = 1. (7)

Now substituting wn,sδ
(k)
n for δ(k)n,s in formula (4), we obtain

a new iterative formula which we call super resolution-SART
(SR-SART),

f
(k+1)
j = f

(k)
j +

1
S∑
s=1

N∑
n=1

an,s,j

S∑
s=1

N∑
n=1

an,s,j
ωn,sδ

(k)
n

J∑
j=1

an,s,j

. (8)

It should be pointed that Ic0,n,s is a key parameter in SR-
SART which is not only relative to the weights of assigning
residual, but also is involved in computing the estimated value
by forward-projection. However, in this paper, we just consider
the ideal condition i.e. there is no error in scanning geometry
and production of collimator. The investigation on estimating
Ic0,n,s indirectly for real CT system will be a further work.

IV. EXPERIMENTS

To validate the effects of our approach, we use the pattern in
Fig. 3 to test spatial resolution by numerical experiment. There
are 4 line-pairs models in the pattern and their resolutions
are: 1.9179 lp/mm (left), 1.4049 lp/mm (two in the middle),
1.1507 lp/mm(right). At the top left corner of the pattern, there
are 5 concentric rings with a same thickness 0.2607 mm and
distance 0.2607 mm between each one and there are some tiny
squares meshed at the bottom right corner, of which width and
interval both are 0.3476 mm.

The simulation parameters are the same as the industrial
CT system in our laboratory: the source-to-detector distance
is 1000 mm (SDD), the source-to-iso distance is 750 mm
(SOD); The total of number of detector cells is 1800, of
which width is 0.127 mm; The number of sampling angles
is 720 and uniformly distribute in full directions. The size
of focus is 6 mm and we divide it into 21 virtual focuses
with the size 0.2857 mm. We assume the intensity of focuses
obeys Gaussian function, according the distance to the centre
of whole focus,

f(x) =
1√
2π

exp(−x2)

and each ray emits 106 photons with the energy 300 KeV.
Here we select tungsten as the materials for collimator with

the density 19.35 g ·cm−3. According to the reference data by
National Institute of Standards and Technology (NIST) [7], the
mass attenuation coefficient of tungsten is 0.3238 cm2 · g−1

for 300 KeV. As mentioned in section 2, the parameters of
collimator are listed in table 1.

TABLE I
THE PARAMETERS OF COLLIMATOR

r k h l α

150 mm 30 mm 120 mm 0.4 mm 12◦

Fig. 3. The pattern for testing spatial resolution.

(a)

(b)

Fig. 4. The image of scanned data: (a) is scanned without collimator; (b) is
scanned with collimator.

First, we process forward-projection at the phantom with
and without collimator, respectively. The data scanned without
collimator seems smooth(Fig. 4(a)) while The data scanned
whith collimator have some band patterns of dark and
light(Fig. 4(b)).

Fig. 5 is reconstructed from the the data scanned without
collimator by Filter Back-Projection (FBP) algorithm. We
zoom in the reconstructed CT image and find that all these
patterns with high frequencies are blurred and unable to be
distinguished such line-pairs and rings. Fig. 6 is reconstructed
from the the data scanned with collimator by using the
SR-SART reconstruction algorithm. Obviously, it has higher
spatial resolution than Fig. 5. In the detail with enlarged
scale, even the minimum line-pair 1.9179 lp/mm still can be
distinguished clearly as well as rings and blocks.

We also did other experiments including low contrast phan-
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Fig. 5. The CT image reconstructed by FBP from data scanned without
collimator.

Fig. 6. The CT image reconstructed by SR-SART from data scanned with
collimator.

tom reconstruction, geometric errors effects and so on. The
results are satisfactory or positive. However, we could not
describe them here, due to the limited space.

V. CONCLUSION

We have proposed a scanning configuration based on col-
limator and the corresponding reconstruction algorithm called
Super Resolution-SART(SR-SART). The result of numerical
experiments show our approach increases the resolution of
CT images significantly. But for real CT system use of our
approach, the estimate method for parameters Ic0,u,s should be
investigated furthermore, since the geometric and machining
errors are inevitable. The computational cost of SR-SART
increases much more than conventional SART for the data
scanned without a collimator. But the new computational
techniques, such as GPU, make it possible for utilization.
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Fat and iron quantification of the liver with dual-
energy computed tomography in the presence of high 

atomic number elements

Benedek J. Kis, Zsolt Sarnyai, Róbert Kákonyi, Miklós Erdélyi, Gábor Szabó

  Abstract Liver fat and iron quantification in human liver is an 
active research area in dual-energy CT imaging. Basis material 
decomposition method can decompose any object into two basis 
materials, and three-material decomposition can be also 
performed with a constraint of volume or mass conservation. The
most accurate technique for material decomposition relies on
lookup tables (LUTs). LUTs can be pre-measured or calculated 
using appropriate material models. Any difference between the 
applied material model and the real sample introduces errors in 
the material quantification. In this paper the ICRU-44 
compositions of soft tissue and adipose tissue were used to 
generate LUTs. The aim of the paper is to estimate the effect of 
further elements in liver, e.g. heavy metals on dual-energy liver 
decomposition accuracy for adipose tissue and iron. A computer 
simulated virtual abdomen phantom was used to test a pre-
reconstruction three-material decomposition algorithm for liver 
fat and iron quantification. Two liver models were used in this 
work: the first contains only iron and ICRU-44 elements for liver 
tissue, which is free of higher atomic number elements. In the 
second model higher atomic number elements were added to the 
liver material composition. Iron and fat were selected as basis 
materials, and three-material decomposition was performed 
using the resulted iron and fat density images.  Results of the 
study demonstrate that three-material decomposition detects the 
heavy metals as iron, thus the iron content will be overestimated 
if the higher atomic number elements are present, but the 
presence of these additional elements does not affect the 
quantification of fat.

I.   INTRODUCTION

Biopsy is the gold standard in the measurement of liver fat 
content. However the main drawback of biopsy is that the 
sample does not represent the entire liver. Cross-sectional 
imaging (CT, MR, and ultrasound) of the abdomen should be 
alternative methods to using liver biopsy, and can be used for 
mapping the whole liver. The main purpose of this paper is to 
examine the accuracy of pre-reconstruction three-material 
decomposition method using dual-energy CT in the presence 
of high atomic number elements in the liver. The compositions 
of soft- and adipose tissue of the ICRU Report 44 contain the 
following elements: H, C, N, O, Na, P, S, Cl, K [1]. Since the 
high atomic number elements have high density and 
absorption efficiency, even if their weight fractions in the liver 
are relative low it is essential to estimate their effect on fat, 
and iron quantification of the liver.

Authors are with the Department of Optics and Quantum Electronics at the
University of Szeged, Szeged, Hungary. Contact: kisjbenedek@gmail.com

II.   MATERIALS AND METHODS

A.    Virtual abdomen phantoms
A computer simulated virtual phantom was generated with 
elliptic geometry and material compositions of ICRU-44. The 
phantom represents the fat layer of the skin (located in the 
subcutaneous layer of the tissue called the hypodermis), the 
ribs, the spine, the air regions close to the spine, and the liver 
region which was made up of fat, soft tissue, and iron. Two 
liver models were implemented: the first model (A) contains 
ICRU-44 elements and iron. In the second model (B) higher 
atomic number elements were added to the liver material 
composition. The phantom geometry contains different 
material regions (Fig.1).

Fig. 1. Virtual abdomen phantom. Liver region a) contains only iron and soft 
tissue, while in regions b) c) and d) there is additional fat and iron with 
different concentrations. Region e) contains only iron and fat. Regions f), g), 
h) and i) contains 100% fat, soft tissue, bone and air, respectively.

To grade hepatic steatosis, pathologists use a five-point 
ordinal scale (0%-, 1%-, 5%-, 33%-, 66%-) [2]. These levels 
were used for the generation of the virtual fatty liver model.

2000 ppm iron was added to each liver region. This value 
corresponds to a liver with severe iron overload. The mean 
concentration of iron atoms present in a healthy liver is around 
300 ppm, but the liver iron content in diseases such as
hemochromatosis or thalassemia can be up to 9000 ppm.in the 
wet liver tissue [3].

The weight fractions of the constituent materials by each 
phantom region of the first liver model are listed in Table I.
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TABLE I ELEMENTS IN THE ABDOMEN PHANTOM WITH THE LIVER MODEL ‘A’

Phantom A 
regions

Soft tissue 
(w%)

Fat
(w%)

Iron
(w%)

Bone 
(w%)

Air
(w%)

a 99.8 - 0.2 - -
b 94.8 5 0.2 - -
c 66.8 33 0.2 - -
d 33.8 66 0.2 - -
e - 99.8 0.2 - -
f - 100 - - -
g 100 - - - -
h - - - 100 -
i - - - - 100

The upper limits (see Table II) of different higher atomic 
number elements in the wet liver were estimated by values can 
be found in the literature. Table II contains the upper limit 
values of different material levels in the liver.

TABLE II HIGHER ATOMIC NUMBER ELEMENTS IN THE HUMAN LIVER MODEL ‘B’

Atomic 
number

Symbol
Density 
[g/cm3]

High level in liver 
[ppm]

Reference

13 Al 2.699 6.7 [4]

14 Si 2.33 29 [4]

23 V 6.11 0.86 [4]

24 Cr 7.18 0.97 [4]

25 Mn 7.44 2.5 [4]

27 Co 8.9 0.17 [5]

28 Ni 8.902 0.72 [4]

29 Cu 8.96 69.4* [6]

30 Zn 7.133 204 [5]

33 As 5.73 5 [4]

34 Se 4.5 2.3 [4]

42 Mo 10.22 1.8 [4]

48 Cd 8.65 2.51 [7]

50 Sn 7.31 1.5 [4]

80 Hg 13.55 1.52 [8]

82 Pb 11.35 1.2 [4]
*value was calculated from dry weight value by dividing the dry weight 
fraction value by 3.6 [4].
The second liver model contains the same levels of fat and 
iron as model ‘A’. The soft tissue levels differ, because model 
‘B’ contains further elements listed in Table II.

B.    Simulation of the computed tomography system
A simplified CT geometry was used during the simulations

with the following parameters (Table III):

TABLE III GEOMETRIC PARAMETERS OF THE SIMULATION

Geometric parameter Parameter value
Source to image distance 949 mm

Source to isocenter distance 541 mm
Field of view 500 mm

Number of detector pixels 912
Number of detector rows 1

Pixel size 1.0267 mm
Fan-beam angle 55.05°

Target-angle 7°

The direct photon flux on the detector was calculated by the 
exponential law of radiation attenuation (Beer-Lambert law). 

During simulations the Institute of Physics and Engineering in 
Medicine spectra of tungsten were applied [9]. The 
simulations were carried out with 80 kVp and 140 kVp 
spectra. The detector response function D(E) was estimated by
the calculation of the absorption of a CsI column with a 
thickness of 500 μm [10,11]. Linear attenuation coefficients of 
the used materials were calculated via the database of XCOM 
from NIST [12]. Prefilters made of 0.1 mm copper and 3.25 
mm aluminum were used to shape the source spectra. Noise-
and scatter-free projections were used for calculations.

According to the Beer-Lambert law, the measured intensity 
signal can be written as

   
 

e L

μ r ,E dl

E

I = S E D E dE





(1)

where  S E is the incident spectrum, D(E) is the detector 

response function, and  
μ r ,E  is the spatially- and energy-

dependent linear attenuation in the sample material. The 

measured intensity without sample    
E

S E D E dE  can be 

termed as the source intensity, 0I . Taking the logarithm of 

Eq. 1. provides a signal linearly related to the exponential 
term.

     0 -


L

ln I = ln I μ r ,E dl (2)

Rearranging the equation it can be seen that

 
0

 
  

 




L

I
ln = μ r ,E dl

I
(3)

This value is referred to as CT signal, and can be normalized 
to the attenuation characteristics of water to obtain the
Hounsfield unit (HU) values.

C.    Three-material decomposition
Pre-reconstruction three-material decomposition was 

performed using the virtual abdomen phantom [13]. The most 
accurate technique for material decomposition is the 
application of pre-generated lookup tables (LUTs) [14].
Projection raw data of the phantom and lookup-tables (LUTs)
for basis materials were simulated. The resolution of the used 
LUTs was 0.1 mm and interpolation was used by retrieving 
the detected signals. The obtained basis material thicknesses 
were used for filtered backprojection (FBP). FBP generated 
the density images, which were the input data of the three-
material decomposition algorithm. Three-material specific 
images were calculated from the reconstructed basis material 
density images using the pre-calculated decomposition 
coefficients and volume conservation assumption.

The steps below (Fig. 2) comprise the basis material method 
using a CT system that can decompose objects into three 
material components.
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Fig. 2. Implementation scheme of pre-reconstruction three-material 
decomposition by means of basis material decomposition

Basis material decomposition method is based on the 
assumption that the attenuation of a material can be calculated 
as the sum of the linear combination of attenuations of the 
preselected two basis materials.

For material decomposition with dual-energy, two 
measurements are done one at high- and another at low-
energy levels. According to the Beer-Lambert-law the 
measured intensities are:

        1 1 2 2e μ E d μ E d
low low

Elow

I = S E D E dE  , (4)

        1 1 2 2e μ E d μ E d
high high

Ehigh

I = S E D E dE  , (5)

where  lowS E  and  highS E  are the prefiltered source 

spectra of the x-ray tube,  1μ E  and  2μ E  are the 

attenuation coefficients of the basis materials.

The measured CT projection values were assigned to the 
selected basis material thicknesses using the lookup tables. 
The resulted thickness values multiplied by the densities give 
the line integrals of the densities. These values were used for 
filtered backprojection to obtain the densities of the basis 
materials in each voxel. These density maps are used for three-
material decomposition.
The mass attenuation of the three constituent materials

(  1μ E ,  2μ E ,  3μ E ) can be decomposed to the linear 

combination of the mass attenuation of the two basis materials

(  aμ E  and  bμ E ) as follows

     1 1 a 1 bμ E a μ E b μ E  , (6)

     2 2 a 2 bμ E a μ E b μ E  , (7)

     3 3 a 3 bμ E a μ E b μ E  . (8)

The linear attenuation of the bases materials can be expressed 
as

               1 a 1 2 a 2 3 a 3a aμ E r a μ E r a μ E r a μ E r     
    ,     (9)

               1 b 1 2 b 2 3 b 3b bμ E r b μ E r b μ E r b μ E r     
    .    (10)

The relation between decomposition coefficients and densities 

can be seen by dividing (9) by aμ  and (10) by bμ :

       1 1 2 2 3 3a r a r a r a r     
   

, (11)

       1 1 2 2 3 3b r b r b r b r     
   

. (12)

Three-material decomposition can be performed with a 
constraint of volume or mass conservation. We applied 
volume conservation assumption, because the fat and soft 
tissue cells are separated in the liver tissue, and the 
concentrations of iron and higher atomic number elements are 
relatively low. In each voxel the sum of the material can be 
expressed as:

     1 2 3

1 0 2 0 3 0

1
, , ,

r r r  
  

  
  

(13)

where 1 0, , 2 0,  and 3 0, are the densities of the three 

materials in their natural forms.

The decomposition coefficients 1a , 2a , 3a , 1b , 2b  and 3b  were 

calculated, and used for calculation of the fractions of the 
three materials.

III.   RESULTS

Material density images of the basis materials (fat and iron)
and volume conservation assumption were used to obtain 
three-material data. Fig. 3 shows the weight fractions of fat, 
soft tissue, and iron of model ‘A’.

Fig. 3. The results of three-material decomposition. Material-specific weight 
fraction images: fat (a), soft tissue (b) and iron contents (c) of the phantom.

The results of the material decomposition are listed in Table 
IV.
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TABLE IV CALCULATED WEIGHT FRACTIONS

Material Fat (w%) Iron (ppm)

Region Real value model A model B Real value model A model B

a 0 0 0 2000 1530 2050
b 5 5.1 5.2 2000 1640 2120
c 33 36.2 36.1 2000 2130 2580
d 66 70.8 70.8 2000 2120 2590
e 100 100 100 2000 2150 2650

The simulation did not contain noise and scatter. Beam 
hardening and the filtered backprojection caused some errors
in the calculation. These effects can be eliminated with the 
subtraction of the resulted values of the two models, because 
the geometry and hence the image artifacts in the two models 
were the same. The difference between the quantification 
results of the two liver models is caused by the presence of the 
higher atomic number elements. Table V contains the biases 
of the measured weight content values between the two 
models.

TABLE V ERROR OF THE MATERIAL QUANTIFICATION IN THE LIVER REGION

Bias caused by the 
added elements

Δ Soft tissue 
(w%)

Δ Fat
(w%)

Δ Iron 
(ppm)

a -0.3 0.2 520
b -0.1 0.0 480
c 0.1 -0.1 450
d 0.0 -0.1 470
e -0.1 0.1 500

IV.   CONCLUSION

It was shown that the applied three-material decomposition 
method detects the higher atomic number elements as iron, 
thus the iron content is overestimated in the presence of the
higher atomic number elements, However these additional
elements do not affect the quantification of fat, because their
attenuation coefficients are more similar to the attenuation of 
iron than the attenuation of soft tissue or fat. 330 ppm heavy 
metal concentration in liver causes ~500 ppm bias in iron 
measurement. These observed effects predict the difficulty of 
iron content measurement by dual-energy CT. To improve the 
accuracy of a future clinically used method, the liver soft 
tissue as one of the basis materials must be modeled with a 
material which contains no iron, but normal level elements 
with higher atomic numbers.

The results show that with an accurate CT system the 
method can be used to predict the condition of the liver.

ACKNOWLEDGMENT

The publication is supported by the European Union and co-
funded by the European Social Fund. (Project title: 
“Broadening the knowledge base and supporting the long term 
professional sustainability of the Research University Centre 
of Excellence at the University of Szeged by ensuring the 
rising generation of excellent scientists.” Project number: 
TÁMOP-4.2.2/B-10/1-2010-0012).

REFERENCES

[1] ICRU (1989), “Tissue Substitutes in Radiation Dosimetry and 
Measurement”, Report 44 of the International Commission on Radiation 
Units and Measurements (Bethesda, MD).

[2] Hamer OW et al. “Fatty Liver: Imaging Patterns and Pitfalls”,
RadioGraphics, vol. 26, pp. 1637-1653, 2006

[3] M. Marinelli et al. “Total Iron-Overload Measurement in the Human
Liver Region by the Magnetic Iron Detector”. IEEE Transactions on 
Biomedical Engineering, vol. 57, pp. 2295-2303, 2010

[4] Y.C. Yoo et al. “Organ distribution of heavy metals in autopsy material 
from normal Korean”, Journal of Health Science, 2002, 48, 186-194.

[5] Y. Muramatsu and R.M. Parr, “Concentrations of Some Trace Elements 
in Hair, Liver and Kidney From Autopsy Subjects -- Relationship 
Between Hair and Internal Organs”, The Science of the Total 
Environment, vol. 76, pp. 29-40, 1988

[6] Ferenci P, Steindl-Munda P, Vogel W, et al. “Diagnostic value of 
quantitative hepatic copper determination in patients with Wilson‘s 
Disease”. Clin Gastroenterol Hepatol vol. 3, pp. 811–18, 2005

[7] J. L. Benedetti et al. “Levels of cadmium in kidney and liver tissues 
among a Canadian population (province of Quebec)”, J Toxicol Environ 
Health A, vol. 56 (3), pp. 145-163, 1999

[8] Poul Johansen, Gert Mulvad,   Henning Sloth Pedersen,   Jens C. 
Hansen,  Frank Riget, Human accumulation of mercury in Greenland, 
Science of the Total Environment , vol. 377, pp. 173-178, 2007

[9] K. Cranley, B. J. Gilmore, G. W. A. Fogarty, and L. Desponds, 
“Catalogue of Diagnostic X-ray Spectra and Other Data”, IPEM Report 
78, 1997

[10] Christoph R. Becker, Maximilian F. Reiser, Konstantin Nikolaou, Gary 
Glazer, “Multislice CT”, Springer-Verlag Berlin Heidelberg, 2009

[11] J. G. Rocha, J. H. Correia,, S. Lanceros-Mendez, “Modeling of the 
Performance of Scintillator Based X-ray Detectors”, Proc of IEEE,  vol. 
3, pp. 1257 – 1260, 2004

[12] M. J. Berger et al. “XCOM: Photon Cross Section Database version 1.3”
(Gaithersburg, MD: NIST), 2005

[13] Lifeng Yu, Xin Liu, and Cynthia H. McCollough:. “Pre-reconstruction 
Three-material Decomposition in Dual-energy CT”, Proc. of SPIE Vol. 
7258, 72583V, 2009

[14] K.S. Chuang and H.K. Huang, "Comparison of four dual energy image 
decomposition methods", Physics in Medicine and Biology, Vol. 33, pp. 
455-466, 1988

The second international conference on image formation in X-ray computed tomography Page 233



 

Evaluation of mA Switching Method with  

Penalized Weighted Least-Square 

Noise Reduction for Low-dose CT 

Yunjeong Lee, Hyekyun Chung, and Seungryong Cho 

Abstract – Computed Tomography (CT) has been increasingly 

used in clinics for many purposes including diagnosis, 

intervention, and prognosis. Its image quality should be 

guaranteed for successful completion of such medical tasks, but at 

a minimal cost of radiation dose to the patients. There exist a host 

of approaches to realizing low-dose CT. For example, a low-dose 

CT can be achieved by lowering the x-ray tube current (mA) 

during a scan. However, lowering mAs may cause the image 

quality degradation owing to excessive x-ray quantum noise. 

Noise reduction techniques such as penalized weighted least-

square (PWLS) method can reduce the quality degradation. In 

this work, we investigated whether mA switching during a scan 

can improve image quality after the PWLS noise reduction under 

a constraint of constant total exposure. A simulation study has 

been conducted, and a Gauss-Seidal update strategy was used to 

minimize the PWLS cost function. Line profiles of the 

reconstructed images were used to compare the performances 

qualitatively, and relative standard deviation and root mean 

square error (RMSE) were computed to quantitatively compare 

the results. In addition, the resolution-noise tradeoff curves were 

acquired using the edge image of a bone in the reconstructed 

images.  

 

Index Terms– mAs switching, low-dose, noise reduction, 

penalized weighted least-square, computed tomography 

 

I. INTRODUCTION 

uch efforts have been made on achieving low-dose X-ray 

computed tomography (CT) for many clinical purposes 

since the risk of radiation damage to the patients due to CT 

scans may not be negligible. One possible way to lower 

radiation dose to the patients is to decrease the x-ray tube 

current (mA) or to make the x-ray exposure time shorter. 

However, reducing radiation exposure in CT will inevitably 

cause increase of the noise level in the sinogram mainly due to 

the excessive x-ray quantum noise, and will eventually degrade 

quality of the reconstructed images.  

There are many approaches to mitigating the degradation of 

image quality [1-5]. Penalized weighted least-square (PWLS) 

noise reduction method is one of the popularly used techniques 

for sinogram denoising. Neighbor pixels in a sinogram are 

used to iteratively update a pixel value in the sinogram. 

Typically, horizontal neighbors and vertical (or angular) 

neighbors are weighted differently. Usually, horizontal 
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neighbors are at the same noise level with the pixel under 

interest, but the vertical neighbors may be prepared to have 

different noise levels for example by modulating the mA from 

view to view. In such a case, the vertical weighting factors can 

be adjusted so that the high quality data are heavily used. 

Tube current modulation techniques are actively used out 

there, which are aiming at low-dose high-quality CT imaging 

taking into account the patient anatomy. The tube current is 

relatively slowly modulated according to the axial and 

transverse anatomical path-length variations. Even in those 

techniques and in most conventional CT systems however, x-

ray tube current time product (mAs) is maintained almost 

constant over many projections during the scan.  

In this study, we numerically simulated mA switching and 

acquired projections: one at higher tube current time product 

setting (e.g., 14 mAs) and the other at lower tube current time 

product setting (e.g., 4 mAs) in an interweaving fashion. For 

comparison, we also acquired projections at a constant tube 

current setting (e.g., 9 mAs). Fast tube current switching is 

currently challenging, but may be readily available when cold 

cathode technique is used in the tube. We investigated whether 

the mA switching method can perform any better than a 

constant mA method under the PWLS algorithm. The PWLS 

cost function was set according to the Gaussian noise 

properties of the sinogram [6]. A theoretical formula that 

describes the relationship between data sample mean and 

variance was used [7], [8]. The minimizing process of the 

objective function follows the Gauss-Seidel update rule [9] 

and the reconstructed images were produced by use of the 

Feldkamp-Davis-Kress (FDK) algorithm [10], [11]. For a 

qualitative evaluation, line profiles of the reconstructed images 

were used and for a quantitative comparison, the relative 

standard deviation and root mean square error (RMSE) were 

computed in the selected regions of interest (ROIs) [12]. Full 

width half maximum (FWHM) of a bone edge image was 

calculated so as to evaluate the resolution of the reconstructed 

images and resolution-noise tradeoff curves [13] were obtained. 

II. METHOD 

A. Acquisition of the data sample 

The XCAT phantom was used to simulate a human torso 

and we focused our study on the reconstruction of 2 

dimensional slice of the abdominal region. 

The CT project program was used and totally 360 

projections were acquired with one rotation. We modified tube 

M 
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current time product (mAs), using 4 mAs and 14 mAs by turns 

in each projection.  We also used 9 mAs in a fixed mode, 

which has the equivalent radiation dose to the mAs modulating 

case. Other geometry conditions are as follow: cone-beam 

projections onto a flat-panel detector with 512 channels and 

half fan-angle of 6.5 degrees. Distance from the x-ray source 

to the detector is 1510.4 mm, and the axis to the detector 

distance is 289.6 mm. We modeled a Poisson noise to each 

projection view according to the number of photons.  

B. Penalized Weighted Least-Squares (PWLS) Noise 

Reduction  

In this study, PWLS algorithm was applied to reducing the 

sinogram noise. The PWLS criterion can be used to estimate 

the corresponding ideal sinogram by minimizing the following 

cost function [6] 

)()ˆ()ˆ()( 1 qRqyqyq                 (1) 

Equation (1) is composed of two terms. The first term 

represents the weighted least-square (WLS) cost function; q  is 

the vector of ideal projection data and ŷ  is the system-

calibrated and log-transformed projection measurements.   is 

the diagonal variance matrix.  

If the line integral of the object attenuation coefficients 

follows a Poisson distribution (if polyenergetic nature is not 

considered), theoretically the data mean and variance relation   

is valid [7], [8] 
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              (2) 

where 
0N  is the numbers of detected photon in the absence of 

phantom in the field-of-view (FOV).  

The second term describes roughness penalty and can be 

shown as follow: 
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, where 
iN  represents the set of four nearest neighbors of the 

ith pixel in the sinogram. The parameter 
imw  was set to be 1 

for the two horizontal neighbors and 0.25 for the vertical 

neighbors [7] when there is no modulation of x-ray tube 

current. We adjusted this parameter so that more weight is 

given to the 14 mAs projection views and less weight to the 4 

mAs projection views. The smoothing parameter  determines 

the relative influence of these two terms. 

We adapted the iterative Gauss-Seidel (GS) update algorithm 

[9] 
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, where index n indicates the iterative number, 1

iN  represents 

the upper and left pixels of qi, 2

iN  denotes the right and lower 

pixels of 
iq . The variance 

i  is determined according to (2). 

In our simulation, 10 iterations were empirically found to be 

sufficient.   

III. RESULTS AND DISCUSSIONS 

Fig.1. shows the reconstructed images from the data 

acquired at 9 mAs scan (a), PWLS noise reduction applied (b), 

and from the data acquired mA switching scan after applying 

PWLS noise reduction (c). Fig.2. shows line profiles along the 

horizontal midline of the reconstructed images; dotted line 

corresponding to (a), solid to (b), and dashed to (c) in Fig.1. 

 

 
Fig. 1.  Reconstructed images of XCAT phantom: (a) from projection 

images acquired with 9 mAs, (b) from PWLS noise reduction for 9 mAs 

projection images, and (c) from PWLS noise reduction for the shuffled 4 mAs 

and 14 mAs projection images. 
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Fig. 2.  1 D profile along the horizontal midline of the reconstructed 

images in Fig. 1. 

 

Fig.1. shows that the reconstructed images are smoothed 

both in 9 mAs and in mA switching case when the PWLS 

algorithm was applied. However, the noise characteristics are 

visually hard to distinguish. 

Comparing the line profiles in Fig.2., it is seen that the 

image reconstructed from the mA switching method has 

different fluctuation tendency from 9 mAs reconstructed image. 

It is still difficult to say which one is less noisy however.  

For a more quantitative analysis, the reconstructed image 

noise was characterized by the relative standard deviation, 

 / , and the root mean square error (RMSE) of uniform 

regions of the phantom as shown in Fig. 3. The RMSE was 

calculated according to (5): 

 
N

i

r

ii ff
N

RMSE 2)(
1          (5) 

, where f  and rf  indicate the reconstructed image and the 

reference image, respectively, and N is the number of pixels in 

each ROI. The computed values are summarized in Table I 

and Table II. 

 

 
 

Fig. 3.  Four regions of interest of the reconstructed image for the 

evaluation of the performance. 

 

 

 

TABLE I.  RMSE FOR REGIONS OF INTEREST  

 

  ROI 1          ROI 2     ROI 3    ROI 4 

 9 mAs 10.695 8.551     10.246    8.644 

 9 mAs, PWLS   6.501 5.426 7.133     4.697 

 mixed , PWLS   6.666 5.203      8.289      4.841 

 

TABLE II.  RELATIVE STANDARD DEVIATION  

FOR REGIONS OF INTEREST ( 210 ) 

 

  ROI 1          ROI 2     ROI 3    ROI 4 

 9 mAs 1.357 1.123     1.305     1.078 

 9 mAs, PWLS   0.825 0.712 0.909     0.586 

 mixed , PWLS   0.845 0.684        1.068      0.604 

 

The results of Table I and Table II represent that the noise 

in every ROI was reduced in both images reconstructed from 

the data acquired by the 9 mAs scanning method and the mA 

switching method after applying the PWLS. However, it 

cannot be said that the mA switching method outperforms the 

constant mA method. 

Due to PWLS denoising, the reconstruction images may be 

blurred. Fig. 4. compares the images that are enlarged in one 

specific organ to check the edge blurring. It appears that the 

image from the data acquired by the mA switching method is 

blurrier. 

 

 
Fig. 4. (a) The reconstructed image from projections acquired at 9 mAs, 

(b) reconstructed image from 9 mAs projection with PWLS denoising, and (c)  

reconstructed image from mixed mAs projection with PWLS denoising. 

 

By varying the smoothing parameter β of the PWLS 

algorithm, we acquired the noise-resolution tradeoff curve for 

the two scanned data sets. The noise-resolution tradeoff curves 

are shown in Fig. 5. We calculated the FWHM of a spinal 

bone edge in the horizontal midline of the reconstructed image.  

In Fig.5., it is observed that the mA switching scan approach 

leads to higher noise levels at given resolutions than the 

constant 9 mAs scan method. 
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Fig. 5.  The noise-resolution tradeoff curves for the 9 mAs CT scan with 

PWLS smoothing approach and the mAs modulated CT scan with PWLS 

smoothing approach: (a) the left bone edge and (b) the right edge of the bone 

in the horizontal midline of the reconstructed images in Fig.1 were analyzed. 

IV. CONCLUSION 

In this paper, tube current switching method for low-dose 

CT was simulated and penalized weighted least-square noise 

reduction approach was applied to improving the quality of 

reconstructed images. In addition, it was analyzed whether the 

mA switching CT scan method would be beneficial with the 

PWLS smoothing approach. Tube current time product of 14 

mAs, which is normally used in conventional cone-beam CT 

based on flat-panel detector, and 4 mAs were numerically 

acquired alternatively at each projection. To better utilize the 

PWLS denoising, we used the data of higher tube current time 

product setting more heavily than those of lower tube current 

time product setting by adjusting the weight parameter. 

Constant tube current of 9 mAs, which has the equivalent dose 

to the previous case, was also simulated to compare the 

imaging performance. 

The relative standard deviation and root mean square error 

at the selected ROIs did not show practical advantage of the 

mA switching CT scan method in terms of denoising. 

Additionally, the resolution-noise tradeoff curves imply that 

the PWLS denoising method does not selectively work better 

for the data acquired by the mA switching.  

In the future study, other denoising approaches will be 

explored to seek better quality images from the data acquired 

by mA switching scan. Edge preserving techniques may be 

incorporated so as to prevent image blurring at the boundaries 

of organs.  
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Ultra-High Resolution Imaging  

by Archimedean Spiral on Radon Space 
1
Synho Do*, 

1
Rajiv Gupta, 
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Tom Brady, and 

2
W. Clem Karl 

 

Abstract—We presents an Archimedean spiral sampling 

method on Radon space to assess improvement in spatial 

resolution. In conventional systems, the system resolution 

is limited by the detector size and the angular step size. We 

hypothesize that the resolution of the proposed method is 

not determined by the detector size, but rather by the 

number of shifts, generating a spiral pattern(s) on Radon 

space. The exact mathematical form of this trajectory is 

derived by a modified Archimedean spiral. We show an 

iterative image reconstruction through accurate system 

modeling of this Archimedean spiral. Initial simulation 

results demonstrate a 16-fold resolution improvement. 

Keywords-component; Ultra-high resolution, Iterative 

reconstruciton technique, Radon space, Archimedean spiral, 

Compressed sensing, Sparse sampling 

 

I.  INTRODUCTION 

There have been many advances in the physics of 
medical imaging systems, especially in X-ray detectors. 
Improvements in spectral sensitivity and the photon 
counting function of new detectors are essential to extend 
the applications of CT. Usually, the size of a prototype 
detector is bigger than the conventional detector element 
due to the additional circuits and physical limitation of 
detector. Thus systems are limited to acquire small Field 
of View (FOV) image or to generate coarse grid image. 
When the size of detector element is fixed, the resolution 
of system is fixed by circular nature of sampling pattern 
even though the quarter shift of detector and the Flying 
Focal Spot (FFS) can improve sampling density of CT 
systems. 

Spiral sampling methods have been studied as a 
possible solution of conventional Magnetic Resonance 
Imaging (MRI) [1, 2], rapid MR imaging [3], and 
improving spatial resolution [4] of MRI. In this paper, we 
assess spiral sampling patterns to gain insights into the 
ultra-high resolution imaging in tomographic systems 
(i.e., SPECT, PET, and CT). Many proposals of the MRI 
image reconstruction aim to reduce data sampling by 
trying to mitigate under-sampling artifacts in k-space. In 
this paper, we try to overcome azimuthally under-
sampling of bigger detector CT system by fractional 

shifts of detector. These fractional shifts of detector are 
modeled by Archimedean Spiral on Radon Space (ASRS).  

In the ensuring sections, we review a general 
Archimedean spiral, derive exact formula for the 
proposed fractional shifts of detectors with modified 
Archimedean spiral, and examine iterative image 
reconstruction method for the proposed method. We 
demonstrate significant resolution improvement with 
simulation data. 

 

II. METHODS 

1) Archimedean Spiral 
The Archimedean spiral, known as the arithmetic 

spiral, is the locus of points corresponding to the 
locations over time of a point moving away from a fixed 
point with a constant speed along a line, which rotates 
with constant angular [5]. The radial distance, r , is 
represented by a general form of Archimedean spiral is: 

 kbar
1

  (1) 

where,   is polar angle, and  a  and b  are constant. 
When k change from -2 to 2, the spiral wraps tightly. 

Figure 1-(a) shows the trajectory of ( , r ) in Cartesian 

grid with 0a , 1b , and 5400  . Figure 1-(b) 
shows zoomed spiral near origin (0, 0). 

 

2) Modified Archimedean Spiral 
We propose to shift detector system by 1/n of detector 

size for n angular sampling positions to create 
Archimedean spiral (k=1) on Radon space. The schematic 
diagram of fractional shift is illustrated in Figure 2. At 
each angular sample, detector system shifts toward one 
direction. This proposed method to produce irregular 
sampling pattern on Radon space for each detector 
element is exactly described by the modified 
Archimedean spiral: 

 knbar
1

)2(   (2) 

where, a is initial detector location, 'b  is detector size, 
and n is rotation/180 degree. We use k=1 for our 
simulation. The modified Archimedean spiral can easily 
model multiple spirals from multiple detector elements. 
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Figure 3 illustrates ASRS generated by each detector 

element with a = [-6, -2, 2, 6] and 'b =4 by changing n 
(i.e., Figure 3-(a): 1, Figure 3-(b): 2, and Figure 3-(c): 3).  

 

III. RESULTS 

The detector shift method is simulated by using 64 by 
64 pixels image as show in Figure 4-(a). We visually 
compare two sonograms in Figure 4. Figure 4-(c) is the 
conventional sinogram collected by 64-element detector 
system and Figure 4-(e) is the sinogram collected by 4-
detector element detector system with fractional shifts, 
which is an unique way to create Archimedean spiral 
sampling on Radon space. 

The sinogram generated by bigger detector element 
looks like compressed version of the normal sinogram. 
This compressed sensing has an under-sampling effect in 
the azimuthal direction. Therefore, the image 
reconstructed from compressed sinogram by 
conventional method results in a blurred image as show 
in Figure 5-(a). In contrast, the reconstructed image in 
Figure 5-(-b) that uses the compressed sinogram data that 
incorporates the fractional shifts in the system model, 
shows almost identical image  resolution compared to 
ideal image in Figure 5-(b). Figure 5-(c) is the error map 
between ideal image and reconstructed image.  

 

IV. DISCUSSIONS AND CONCLUSION 

In this paper, we present a new image reconstruction 
method, which models fraction shifts of the detector 
exactly. The fraction shifts of the detector are derived by 
the modified Archimedean spiral on Radon space.  

The approach to shift the detector and to reconstruct 
image accordingly is novel. The possible applications are:  

 To increase resolution and to improve efficiency of 
detectors for conventional CT and other tomographic 
systems  

 To implement expensive photon-counting detectors 
sparsely without losing resolution 

 To utilize inhomogeneous detector sets (e.g., 
interleaved) for spectral imaging without losing 
resolution 

The same effect of detector shifts can be realized by 
source shift (i.e., continuous FFS system without 
mechanical motion) or by both shifts (i.e., detector and 
source). In dual gamma camera SPECT, each gamma 
camera can create two interleaved Archimedean spirals of 
the same size. Also we can achieve super-resolution PET 
image by gentle motion (i.e. gantry wobbling or table 
motion) with accurate motion modeling.  

In summary, the resolution of tomographic system is 
not limited by the detector size but by the sparseness of 
sampling on Radon space. 
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(a) 

 
(b) 

Figure 1. A generalized Archimedean spiral with k=[-2,-1, 1, 2]: (a) Cartesian grid drawing of Eq.(1) with  a=0, b=1, 

5400  , (b) Zoomed near origin (0,0). 

 

 
Figure 2, A diagram of fractional shift of detector systems. Detector system shifts 1/n of detector size for n angular sampling 

position. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 3, A proposed Archimedean spiral on Radon space with parameters (a) a=[-6 -2, 2, 6], rotation angle=180 deg, n=1, (b) [-

6,-2, 2, 6], rotation angle=360, n=2, and (c) a=[-6,-2,2,6], rotation angle=540 deg, n=3. 
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(e) 

Figure 4. A sinogram comparison from two detector sets (a) Ideal image (64 by 64), (b) 64-detector elements over 64 pixels, (c) 

conventional sinogram collected from detector set (b), (d) 4-detector elements over 64 pixels, and (e) sinogram collected from detector 

set (d), so called compressed sinogram. 

 

 

 
(a) 

 
(b) 

 
(c) 

Figure 5, Reconstructed image (64 by 64) comparison by using the compressed sinogram in Figure 4-(e), (a) conventional TV solution 

without shift modeling in system matrix, (b) TV method with accurate detector shift model in system matrix, and (c) error map 

between Ideal image (Fig. 4-(a)) and (b) 
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Curvelet-based Inpainting for Metal Artifact
Reduction in Computed Tomography

Matthias Kleine, Thorsten M. Buzug

Abstract—We present an algorithm for metal artifact reduction
in X-ray Computed Tomography which is based on an inpainting
scheme. Inpainting tries to complete missing parts of an image by
continuing information from outside consistently. The metal data
is considered as missing part of the sinogram and the algorithm
completes the absent projections. The inpainting scheme uses
the fact that the sinogram can be approximated sparsely by its
curvelet coefficients. Using ideas from compressed sensing, the
sparse solution can be obtained by solving a convex optimization
problem. The results obtained by inpainting are compared to
the results received by linear interpolation. It is shown that the
general error is reduced in the Radon space as well as in the
reconstructed image. Furthermore, the error in the reconstructed
image obtained by the inpainting scheme is smaller in regions of
interest far-off the metal object.

I. INTRODUCTION

The presence of metal objects as dental fillings or implants
in the field of view of a CT scanner can cause severe artifacts
in the reconstructed image. These artifacts can hinder correct
diagnoses or even make the reconstructed images useless.
Therefore, in many cases a strategy to reduce metal artifacts
is needed. To improve image quality, the metal object is
usually considered as opaque and the trace of the metal object
is removed from the measured data. Dependent on the further
processing, one can distinguish between two different groups
of algorithms for metal artifact reduction. Iterative algorithms
such as modified MLEM [1] can deal with incomplete data
whereas interpolation methods try to complete the missing
data by filling in synthetic values. This is required in order
to use standard reconstruction methods like the Filtered
Backprojection (FBP). We will pursue the second approach
of filling in synthetic values here.

Kalender et al. [2] proposed in 1987 linear interpolation
of the missing data in the Radon space. Since then, several
methods have been proposed to replace the metal data in
the sinogram. In the last decade, inpainting techniques have
become very popular to restore missing parts of images.
The original idea behind these techniques is to continue
information smoothly along the isophote directions into the
missing parts of the image. The term was first introduced by

This work is part of MOIN - CC (Molecular Imaging North - Competence
Centre), financially supported by the European Union and the State of
Schleswig-Holstein (grant no. 122-09-053).

Matthias Kleine is with the Graduate School for Computing in Medicine and
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Luebeck, Germany (e-mail: kleine@imt.uni-luebeck.de)

T. M. Buzug is with the Institute of Medical Engineering, University of
Luebeck, Luebeck, Germany (e-mail: buzug@imt.uni-luebeck.de)

Bertalmio et al. [3] when they presented a PDE based method.
Masnou and Morel [4] earlier used a variational approach
for the inpainting problem in the field of computer vision.
In 2005, Elad et al. [5] presented an inpainting algorithm
which decomposes the image into a cartoon layer containing
geometrical information and a texture layer. The different
layers of an image are represented sparsely in dedicated bases.
The problem of completing missing parts of an image is then
formulated as a convex optimization problem. In the presented
work we will follow the ideas from this paper and [6] to use
an inpainting scheme for metal artifact reduction.

In the next section we will introduce the mathematical
framework of the inpainting scheme and present the inpainting
algorithm. The last two sections deal with the presentation and
discussion of the inpainting and reconstruction results.

II. MATERIALS AND METHODS

For our experiments we use one 512x512 pixel slice of the
XCAT Software phantom [7] where we add some artificial
high values representing the metal object. The original slice
serves as a ground truth for the evaluation of our results. We
segment the metal in the image domain by a proper threshold.
For the forward projection we simulate a system with parallel
geometry and 1024 detector elements, rotating from 0 to 360
degrees in 0.5 degree steps. The segmented metal is forward
projected into the Radon space. Afterwards, a binary mask M
is created to exclude the metal data from the sinogram. To
avoid ringing artifacts at the mask borders resulting from the
curvelet transform we enlarge the sinogram by adding the 50
upper lines to the lower end and vice versa.

(a) CT-slice with manually inserted
metal object

(b) The masked sinogram

We will express the sinogram sparsely in a dedicated frame
(the curvelet frame) and formulate the inpainting task as
an optimization problem. The mathematical theory for the
problem of finding the sparsest representation of a signal in
a given dictionary will be developed in the next section. The
optimization problem is stated at the end of the section.

Page 242 The second international conference on image formation in X-ray computed tomography



A. The optimization problem

Let our sinogram of size n1 × n2 be represented by a 1D
vector X of size n = n1 × n2. We assume that we have a
collection of vectors ϕi, i = 1 . . .m with m > n. Therefore,
this set contains more elements than a basis for Rn. We will
call the set {ϕi}i an overcomplete dictionary. The elements
ϕi are called atoms.

We want to express the sinogram X with respect to
the dictionary {ϕi}i by a sparse coefficient vector c =
(c1, . . . , cm), X =

∑m
i=1 ciϕi. Sparse means here that the L0-

norm ||c||0 := #{i : ci ̸= 0} of the coefficient vector is small,
hence the sinogram can be expressed by few coefficients ci in
the dictionary {ϕi}i.

If we arrange the atoms ϕi as columns in a matrix Φ ∈
Rn×m, m > n, we can use matrix-vector notation to formulate
the problem of finding a representation, X = Φc. We can see
that the problem is underdetermined and therefore there is no
unique solution. One has to remark that the transform Φ will
usually not be implemented explicitly.

In order to find the sparsest representation c of our sinogram
X , we have to solve the following minimization problem:

min
c

||c||0 s.t. X = Φc. (1)

Unfortunately, this problem is combinatorial and therefore
computationally intractable for larger signals X . From the
theory of Compressed Sensing [8] it is well known that solving
the convex optimization problem

min
c

||c||1 s.t. X = Φc. (2)

in the L1-norm ||c||1 :=
∑m

i=1 |ci| leads also to the sparsest
representation c̃. As the approach should also deal with noisy
data, we demand only that the back-transform Φc of the sparse
representation c approximates the sinogram X up to a small
error σ (the noise level). A total variation (TV) penalty is
added to suppress noise [9]. The TV term is the L1-norm of the
gradient of the image X and penalizes therefore images with
are not piecewise constant. The TV penalty is implemented as
in [6]: We compute the undecimated Haar wavelet transform
[10] coefficients of our image X and soft-threshold these
coefficients with threshold γ. Afterwards we reconstruct the
image by the inverse undecimated wavelet transform.

We solve the following minimization problem

min
c

{||c||1 + γTV(Φc)} s.t. ||X − Φc||2 ≤ σ (3)

by using the adapted minimization algorithm from [5] or [6]
below. The key step is the application of the soft-threshold on
the coefficients ci. This results in a shrinkage of the L1-norm
of c and therefore delivers a sparse representation of the
sinogram. The component-wise soft-threshold is defined as
follows: For a given threshold λ the update to the coefficient
ci is defined as

ci =


ci − λ, if ci ≥ λ

0, if |ci| ≤ λ

ci + λ, if ci ≤ −λ

Algorithm 1 Minimization algorithm

Given a sinogram X with gap, a binary mask M and a
dictionary Φ.

Choose a maximum number of iterations N , the TV-
parameter γ and the stopping threshold λ.

• Initialization:
– Set X0 = 0.
– Set the residual r0 = X .
– Calculate ∆ = max ||ΦTX||2 and set threshold λ0 =

∆
N−1 .

• Main iteration: For t=1:N
– Update the coefficients by soft-thresholding:

ct = THλt(Φ
T rt).

– Update the sinogram Xt = Φct.
– Apply a TV penalty to Xt.
– Update the residual rt+1 = X −MXt.
– Update the threshold λt+1 by a chosen scheme.

End iteration. Output: Inpainted image X̃ = ΦcN .

As the sinogram contains almost no texture and can be
well approximated by a piecewise smooth image, we use the
curvelet frame to represent the sinogram in a sparse way.

B. The curvelet frame

The curvelet transform is a multiscale transform which
is localized in direction and space. In contrast to wavelets
which are only localized in space, curvelets have pronounced
directions at higher scales. Whereas wavelets provide an
optimal representation of signals with singularities at points,
curvelets allow an almost optimal representation of objects
having singularities along curves. More precisely, curvelets
can represent objects which are in C2 (twice continuously
differentiable) except at singularities along C2-curves in a
sparse way. Two curvelets at two different scales are shown
in figure 1.

(a) Curvelet scale 2 (b) Curvelet scale 4

Fig. 1: Two different curvelets at two different scales in the
image spaces.

The basic idea of the discrete curvelet transform is now as
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follows: the image is transferred into the Fourier-space and
resampled there. The curvelets are constructed by an angular
and a radial window function in frequency space, so that
their support is on a circular wedge. Each of these wedges in
frequency space is now transferred to the origin and wrapped
that it covers a rectangle there. Finally, the 2D inverse Fourier
transform is applied to each of these rectangles. Curvlets can
represent smooth objects in a sparse way as only curvelet
coefficients, which corresponds to curvelets aligned to edges
in the image are large. Coefficients, which corresponds to
curvelets that are not aligned with edges are close to zero.
The curvelet transform is described in detail in [11] and [12].
The implemented curvelet transform is available at [13].

C. Experimental setup

For our experiments we choose a TV penalization parameter
γ = 0.1. The iteration number is N = 500. The curvelet
decomposition was made up to level 8. The threshold λ was
chosen to be constant for all iterations. The stopping threshold
was set to zero in our case.

III. RESULTS

We compare the results obtained by the sparsity-based
inpainting scheme with the linear interpolation results. The
comparison is done in the Radon space as well as in the image
space. We use the root mean square error (RMSE) of two
images U, V

RMSE(U, V ) =

√
1

MN

∑
i,j

(Ui,j − Vi,j)2, U, V ∈ RM×N ,

to compare the sinogram and the reconstructed images to
the references. The visual impression of the sinogram after the
inpainting process is good. In contrast to the results obtained
by linear interpolation the gap is not noticeable anymore. A
zoom of the same region of the sinogram for both interpolation
methods is shown in figure 2.

(a) Linear interpolation (b) Inpainting

Fig. 2: A zoom of the results of linear interpolation and the
curvelet-based inpainting. The contrast is enhanced to make
small structures visible.

The root mean square error between the completed sino-
grams and the reference sinogram is 0.2287 for linear interpo-
lation and 0.1905 in case of the inpainting result. The absolute
error to the reference image is shown in a small part of the
sinogram in figure 3.

(a) Linear interpolation (b) Inpainting

Fig. 3: The absolute error at a small patch between the com-
pleted sinograms and the reference sinogram without metal.
Both images are shown in the same gray value window.

We reconstruct the two sinograms obtained by linear inter-
polation and sparse-representation-based inpainting by using
the filtered backprojection. The reconstructions are shown in
figure 4 and figure 5. At regions farer away from the metal
object artifacts are less visible in the inpainting-based result
than in the result obtained by linear interpolation. However, the
visual impression indicates that the result obtained by curvelet-
based inpainting is worse than linear interpolation close to the
metal object.

Fig. 4: Reconstruction results by linear interpolation

Fig. 5: Reconstruction results by curvelet inpainting
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The root mean square error between the reconstructed
images and the reference image is 2.4529e-3 for the linear
interpolation result and 2.1892e-3 for the curvelet-based in-
painting result.

We compare the reconstruction results at three different
regions of interest. The regions of interest are shown in figure
6.

(a) Reference
images

(b) Linear
interpolation

(c) Curvelet-
based inpainting

Fig. 6: The three different regions of interest. The first column
is the reference reconstruction, the second column is the result
obtained by linear interpolation and the third column is the
curvelet-based inpainting result.

The root mean square errors between the three regions from
top to bottom to the reference regions are shown in table I.

TABLE I: RMSE of three different regions of interest

Linear interpolation Curvelet-based inpainting
Region 1 8.1440e-3 1.1631e-2

Region 2 5.1843e-3 2.6900e-3

Region 3 9.5507e-4 7.6288e-4

The runtime of the inpainting process which is fully imple-
mented in MATLAB takes about 15 minutes for 500 iterations.

IV. DISCUSSION

The results show that compared to linear interpolation the
total error is reduced by the presented inpainting scheme
in the Radon space as well as in the image domain. The
visual impression of the reconstruction results matches the
analysis of the RMSE. Even if the error in the region of
interest close to the metal is smaller in the result received
by linear interpolation, the total error and the error in the
region of interest farer away from the metal is reduced by the

curvelet-based inpainting scheme.

It is expected that the results can be further improved by
optimizing parameters such as the finest scale or the number
of different angles for the curvelet transform. The algorithm is
suitable for a wide class of transforms such as the wavelet or
ridgelet transform and can even deal with multiple transforms,
each representing different layers of the image [6]. It is
therefore planned to compare results obtained by different or
additional transforms which can represent sparsely missing
structures in the sinogram. Finally, the results should be
compared to inpainting results obtained by different inpainting
schemes.
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A Translation-based Data Acquisition for Industrial
Computed Tomography

Tobias Schön1, Theobald Fuchs2, Randolf Hanke3 and Kilian Dremel3

Abstract—We propose a new method for CT data acquisition,
which requires almost no rotational movement of the system,
respectively the object. The new method is derived from the
observation that both the direction (the angle) and the shortest
of each ray with respect to the object change, when the distance
between the X-ray source and the detector changes. Or, in other
words: the rotational movement is substituted by one or more
linear movements of the X-ray source towards the object to be
inspected. We present a theoretical evaluation of the translational
acquisition scheme. The issues of image reconstruction will be
discussed and results from simulations with varying measurement
parameters will be shown.

I. INTRODUCTION

TODAY, X-ray Computed Tomography (CT) is widely
used as a tool for industrial non-destructive testing

(NDT). There is a manifold of applications in the laboratory
[1], [2]. It is important to notice the following fact: Although,
various CT data acquisition methods have been developed to
meet the different applications, almost all systems are based
on a rotation of the object. Alternatively, this can be achieved
by rotating the detector and the source of x-rays around the
object, which is mostly done in medical diagnostics.

Most CT systems use a fan-beam-type geometry and acquire
projection data from several hundred to thousands of directions
by employing multi-row (in 2-D) or flat-panel detectors (cone-
beam for 3-D imaging). As mentioned above, the acquisition
geometry relies on a rotational movement. The most widely
utilized reconstruction algorithms, as for instance the well-
known Feldkamp method [3], are based on filtered back pro-
jection (FBP). These algorithms afford a series of projection
images out of an angular range of 180◦ in parallel geometry.

Nevertheless, in reality there are numerous objects which
are desirable to be inspected by X-ray CT but do not allow for
a rotational movement. These are non-portable or very heavy
objects which cannot be accessed from all directions. For
instance, such an object could be a tube, positioned directly
in front of a wall or a cable channel located inside. (Figure
1).

II. MATERIAL AND METHODS

The new technique [4] is based on a linear, translational-
only movement of the X-ray source (Figure 2). The x-y-
coordinate system is fixed with the object that is positioned

1Process Integrated Inspection Systems, A Dept. of the Fraunhofer Institute
for Integrated Circuits, Fürth, Germany; 2Development Center for X-ray
Technology (Fraunhofer-EZRT), A common Dept. of the Fraunhofer Institute
for Integrated Circuits, Saarbrücken, Germany, and the Fraunhofer Institute
for Non-destructive Testing, Fürth, Germany; 3Chair for X-ray Microscopy,
Julius-Maximilians-University, Würzburg

Fig. 1. A tube located close to a wall. This object is inaccessible to the
conventional 180◦ view angle data acquisition by rotating an X-ray source
and a detector, although it is feasible to insert a sensor into the gap between
the object and the wall.

within a circular field of measurement field of measurement
(FoM). The radius of the field of measurement is RM . The
distance of the source to the edge of the field of measurement
is denoted as xS and is a positive number always. Given a
certain distance of the source xS to the object, each detector
position y defines a different ray angle θ with respect to the
object. This allows for acquiring a set of various view angles.
The t-coordinate describes the shortest distance of the X-ray
to the center of FoM.

Fig. 2. Scheme of the basic principle of the translational CT data acquisition
method. By changing the source-to-object distance xS the angle of the ray
measured at a fixed detector position changes accordingly.

In order to determine the range of ray parameters that is
covered by the translational movement of the source with
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respect to the object the following equation for a single ray
can be found.

The new translational data acquisition scheme is mathemati-
cally described in a 2-D plane by the following two equations:

tan θ =
y

xS + 2RM
,

tθ(xS) = xS sin θ +RM (sin θ + cos θ) (1)

Each single ray is defined by the two parameters, t and
θ. Using the two equations, the region within the complete
parameter space, which is covered by the translational move-
ment, can be determined.

The ray hitting the detector at exactly 90◦ is referred as
the central ray of the X-ray source. The angle of the central
ray with respect to the fixed object does not change while the
source is translated, so no additional information is acquired.
Deliberately, the central ray is shifted to the edge of the FoM.
In consequence, the regions next to the central ray are expected
to yield the poorest image quality.

Fig. 3. The data range within the t-θ-coordinate space which can be filled by
a single translational movement of the source. The parallel beam data of the
full 180◦ angular range is required for a correct reconstruction by the filtered
backprojection algorithm. A single translational movement of the source fills
only a small part of the full 180◦ angular range. Top: data range covered with
equidistant sampling of the focus position xS , bottom: improved sampling

Figure 3 depicts Eq. (1) with 0 < xS/RM < 5. The shaded
area indicates the data range within the t-θ-coordinate space
which can be filled by a single translational movement of
the source. A reconstruction which is mathematically correct
requires complete data from the rectangular region between

θ = 0◦ and θ = 180◦ (the full rectangular area in Fig. 3).
Besides the fact that a single translational movement of the
source fills only a small part of the full 180◦ angular range, the
spacing of data points within this triangular region is obviously
very irregular. An advanced sampling (n = 1, 2, . . . ) of
the source position according to xS(n) = π/2 ∗ cot(n∆Φ)
improves the distribution of the data points acquired by the
single translation (Fig. 3, bottom). ∆Φ is the angle between
two projection datasets in the (t, θ) space belonging to two
source positions in the translational movement.

In order to fill a larger fraction of the full 180◦ angu-
lar range, we implemented several extended data acquisition
schemes employing more than one translation (Figure 4,
Figure 5 and Figure 6). So, projection data can be derived,
that yield almost complete 180◦ CT data.

Fig. 4. Translational data acquisition scheme based on two orthogonal
translations of the source. This method is denoted as ”Two translations 90
degree” (2T90).

Fig. 5. Translational data acquisition scheme based on two translations
parallel to each other (2Tpar).

A phantom was simulation which resembles a pipe with
several details inside (Figure 7. For the simulation, the radius
of the FoM is taken as unit: RM = 1. During each linear
translation of the X-ray source, 200 positions were sampled,
with 0.1 spacing relative to the FoM. So, the source-to-object
distance varied between 0 and 19.9. All simulations used an
equidistant sampling of the source positions for each linear
translation and not the improved non-equidistant sampling of
Fig. 3, bottom. The detector was simulated with 512 pixel and
0.01 pixel size. Thus, the linear dimension of the detector is
equivalent to approximately 2.5 times the object’s diameter.
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Fig. 6. A combination of 2T-par and 2T-90: 2(2Tpar)-90.

In the case of several linear movements (Figure 4, Figure 5
and Figure 6), each movement was generated with identical
parameters, as described above.

For comparison, a complete set of data were simulated in
parallel beam geometry. Explicitly, for each of 200 angular
positions within 180◦ range the FoM (diameter 2 in arbitrary
units) the attenuation profile was sampled by 256 parallel rays
with a distance of 0.01. The reconstruction was made with a
complete 180◦ data set and with reduced angular ranges of
120◦ and 90◦ degree. So, the degradation of image quality can
be compared with the results of the translational technique.

Fig. 7. A virtual tube comprising smaller pipes and cables was used for
simulation.

A state-of-the art ART (algebraic reconstruction technique)
algorithm was used for image, throughout the whole study [5].
All images have 256 by 256 pixels with 0.01 by 0.01 pixel
size relative to the FoM.

III. RESULTS

In Fig. 8 reconstructions from a conventional rotation-based
data acquisition in parallel beam geometry are shown. The
image quality for the complete angular range of 180◦ is
perfect, while rapidly degrading when the range is reduced
to 120◦ and 90◦.

The image quality obtained by a single translation is not
sufficient (Figure 9, left hand side). By adding a second
translation, parallel to each direction of source movement
or shifted by 90◦, the image quality improved significantly
(Figure 9, right hand side and Figure 10 left hand side).
Using translational data acquisition geometry by 2(2Tpar)-90

Fig. 8. Reconstructions in conventional parallel beam geometry angular range
of 180◦, 120◦ and 90◦ (from left to right).

produces an image quality can be obtained with comparatively
high quality.

Fig. 9. Reconstructions in translational data acquisition geometry by one
translation (left) and 2Tpar of Figure 5 (right).

For all images the same standard ART reconstruction was
applied to all data-sets. There has not been made any optimiza-
tion for the translational case, yet. Nevertheless, the results
achieved with two translations are already comparable to a
rotation about 90◦ angular range, which is equivalent to 100
projections according to the parameters used in this study.

Fig. 10. Reconstructions in translational data acquisition geometry by and
2T90 of Figure 4 (left) and 2(2Tpar)-90 of Figure 6 (right).

IV. CONCLUSION AND FUTURE WORK

We proposed a new method for CT data acquisition, which
requires almost no rotational movement of the system, respec-
tively the object. We have shown by simulations that imaging
of sections with Translational X-ray Computed Tomography is
feasible. Substituting the rotational movements of the equip-
ment respectively the object by linear movements of the source
towards or away from the object allows for reconstructing
images with comparatively high quality.
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Several combinations of translational data acquisition
schemes have been evaluated. Nevertheless, the image quality
achieved by Translational CT method is worse compared to
a complete parallel beam data set, measured during a 180◦

rotation of the object or the X-ray source and the detector,
respectively.

Future efforts will be made in improving the quality of the
Translational CT reconstructions by exploring several ways:

- Use of a-priori information about the objects to lead to
further improvement of the image quality

- Further variations of the acquisition scheme will be
implemented and evaluated

- Optimizing the translational scan parameters in general,
i.e. necessary dimensions of the detector and the source
travel distance

- Verification with real data is in progress
- Extension to fully 3-D imaging by investigating the

translation in cone-beam geometry
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GPU Implementation of Exact FBP and BPF
Algorithms for Saddle and Circle-plus-line CT

Minji Lee, Kyung Sang Kim and Jong Chul Ye∗

Abstract—Exact cone-beam reconstruction algorithms have
been developed for various scanning trajectories. Volumes
scanned by saddle and circle-plus-line trajectories can be also
reconstructed exactly with these algorithms. Generally, the exact
cone-beam reconstruction algorithms are divided into two types,
such as filtered backprojection (FBP) type and backprojection-
filtration (BPF) type. For GPU implementation, the scanning
with the saddle trajectory was reconstructed with the FBP
method, and the scanning with the circle-plus-line trajectory was
reconstructed with the BPF method. Usually, the reconstruction
of CT contains repetitive tasks, so by parallelization, the compu-
tational time can be dramatically saved. These two GPU-based
implementations are tested with the three-dimensional Shepp-
Logan head phantom, and we compare the two trajectories both
in terms of reconstruction quality and GPU implementation.

I. INTRODUCTION

For a circular cone-beam CT scanner with a two dimen-
sional detector, the Feldkamp-Devis-Kress (FDK) method has
been used in most. However, it is an approximate reconstruc-
tion algorithm causing cone-beam artifacts. Exact cone-beam
reconstruction algorithms can remove these artifacts though
different scanning trajectories to cover the same field of view
(FOV) with the FDK method. There are two types of the ex-
act cone-beam reconstruction methods; filtered backprojection
(FBP) method [1] and backprojection-filtration (BPF) method
[2]. Both methods consist of same reconstruction steps; deriva-
tive, one-dimensional Hilbert filtration, and backprojection, but
the orders are different. The FBP method reconstructs images
by backprojection of filtered derivative scanning images, and
the BPF method reconstructs images by filtering backprojec-
tion of derivative images. The exact cone-beam reconstructions
with saddle and circle-plus-line trajectories can cover the same
FOV with the FDK method, so these trajectories with the exact
cone-beam reconstruction algorithms can replace the circular
scanning trajectory.

In this paper, we implemented the exact cone-beam recon-
struction algorithms of both FBP and BPF types for the saadle
and circle-plus-line trajectories using graphics processing unit
(GPU) for the case of saddle and circle-plus-line trajectories,
respectively. GPU provides multi-core processors for paral-
lelization and texture memories for fast interpolation [3]. The
reconstruction algorithms need to compute a lot of repetitive
tasks and interpolations, so the GPU implementation can make
the reconstruction much faster than CPU.

M. Lee, K. S. Kim and J. C. Ye are with the Department of Bio & Brain
Engineering, Korea Advanced Institute of Science & Technology (KAIST),
291 Deahak-ro, Yuseong-gu, Daejeon 305-701, Korea

II. EXACT CONE-BEAM RECONSTRUCTION

A. Cone-beam Projection
Projection of cone-beam CT with a three-dimensional den-

sity function f(~r) is given by

D(~a, ~θ) =

∫ ∞
0

f(~a+ t~θ)dt, ~θ ∈ S2 (1)

where S2 is a set of all unit vectors in three-dimensional space.
The parameters of D, ~a and ~θ, mean a source position and a
ray direction.

B. General Formulae of FBP and BPF
For FBP algorithm, the general formula K(~r,~e, λ−, λ+) is

shown by Pack and Noo [1], which is

K(~r,~e, λ−, λ+) = − 1

2π2

∫ λ+

λ−

dλ

|~r − ~a(λ)|
gF (λ,~r,~e) (2)

where

gF (λ,~r,~e) =

∫ π

−π

dγ

sin γ

∂

∂µ
D(~a(µ), ~θ(λ,~r, γ,~e))

∣∣∣∣∣
µ=λ

(3)

with
~θ(λ,~r, γ,~e) = cos γ~α(λ,~r) + sin γ~β(λ,~r,~e), (4)

~α(λ,~r) =
~r − ~a(λ)
|~r − ~a(λ)|

, (5)

~β(λ,~r,~e) =
~e− ~α(λ,~r)(~e · ~α(λ,~r))
|~e− ~α(λ,~r)(~e · ~α(λ,~r))|

. (6)

This formula gives the reconstruction at ~r by the backprojec-
tion of filtered images gF (λ,~r,~e) from λ− to λ+ with given
filtering direction ~e (Eq. (2)). gF (λ,~r,~e) can be obtained by
filtering derivative images with respect to λ (Eq. (3)). To use
this equation, ~e, λ−, and λ+ are decided for a reconstruction
point ~r.

BPF reconstruction formula provides exact reconstruction
on chord using cone-beam projection. A chord is the straight
line connecting two points, ~a(λa) and ~a(λb), on a continuous
trajectory. The BPF reconstruction on chords fc(xc, λa, λb)
are given by [2]

fc(xc, λa, λb) =
1

2π2

1√
(xc2 − xc)(xc − xc1)

×

[∫ xc2

xc1

dx′c
xc − x′c

√
(xc2 − x′c)(x′c − xc1)

× gc(x′c, λa, λb) + C

]
(7)
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where

C = 2π

∫ xc2

xc1

fc(xc, λa, λb)dxc = 2πD(~a(λa), ~ec), (8)

gc(xc, λa, λb) =

∫ λb

λa

dλ

|~r − ~a(λ)|
∂

∂µ
D(~a(µ), ~θ)

∣∣∣∣∣
µ=λ

. (9)

In Eq. (7), xc indicates the position on the chord, and any
xc1, xc2 can be selected satisfying that [xc1, xc2] covers
all backprojection segment. C is a projection value at the
intersection point of the detector with source location ~a(λa)
and the chord line with λa, λb. The result of Eq. (9) is
backprojection of derivative with only interval [λa, λb].

C. FBP Algorithm for Saddle CT

Fig. 1. FBP algorithm for saddle trajectory

The saddle trajectory is defined as [4]

~a(λ) = [R cosλ,R sinλ,H cos 2λ], λ ∈ [0, 2π]. (10)

Here, R is a radius of a horizontal rotation, and H is a am-
plitude of vertical fluctuations. With this scanning trajectory,
the reconstruction at ~r given by [5]

f(~r) =
1

2

(
K(~r,~eAB , λA, λB) +K(~r,~eBC , λB , λC)

+K(~r,~eCD, λC , λD) +K(~r,~eDA, λD, λA)
)
. (11)

If the reconstruction point is at ~r, the plane containing ~r
is determined, which is perpendicular to z axis, and 4 in-
tersection points with the saddle trajectory are made. Then,
the reconstruction at ~r is given by backprojecting filtration
of derivative images with filtering direction ~eAB for scanning
trajectory from A to B, filtering direction ~eBC for scanning
trajectory from B to C, filtering direction ~eCD for scanning
trajectory from C to D, and filtering direction ~eDA for
scanning trajectory from D to A. The filtration with 4 kinds of
filtering directions can be implemented only with the following
two equations [5].

v = − ẑ cosλ
R sinλ

u+
D

R
ẑ, ẑ ≥ 0 (12)

v =
ẑ sinλ

R cosλ
u+

D

R
ẑ, ẑ < 0. (13)

These two equations represents filtering lines on the detector.
Here, D is a distance from the source to the detector, and ẑ
is the parameter of the filtering lines which is decided by the
point (0, 0, H cos 2λ+ẑ). By sampling ẑ, the filtering lines can
cover all detector plans, and the filtered images are computed
by the Hilbert filtration along the filtering lines.

D. BPF Algorithm for Circle-plus-line CT

Fig. 2. Rebinned BPF algorithm for circle-plus-line trajectory

We define the configuration of the circle-plus-line source
trajectory as

~a(λ) =

{
[R, 0, Hφ λ], for λ ∈ [−φ, φ]

[R cosλ,R sinλ, 0], for λ ∈ [2π, 3π + ψ]
(14)

where 0 ≤ φ < 2π, and it is shown in Fig.2.
Now we apply BPF reconstruction algorithm to the circle-

plus-line cone-beam CT. To reconstruct a point on the chord
of ~a(λa) and ~a(λb), derivative images of projections with
source position from ~a(λa) to ~a(0) and from ~a(2π) to ~a(λb)
are required, and the derivative images must be computed
in this direction. After the first step of the BPF algorithm,
backprojection is performed. BPF algorithm requires filtration
along the chords after backprojection, thus the derivative
images are backprojected onto the chords. This way makes
the filtration step simple, but regridding process is required.
The rebinned space can cover all region of interest varying
~a(λa) along the line trajectory and varying ~a(λb) along the
circle trajectory. After the backprojection on chord line, it is
filtered with proper xc1 and xc2 which cover backprojection
segments as Eq. (7). The filtration result on chords is rebinned
again into regularly grided Cartesian coordinate space.

III. GPU IMPLEMENTATION

In both FBP and BPF algorithms, the derivative step using
chain rule is so simple, thus the GPU implementation is not
necessary. For the filtration step, the FBP method needs the
rebinning process for filtering lines, and its forward rebinning
process can be implemented with texture memory providing
fast interpolation of pixel values. The one-dimensional hilbert
filtering was implemented by a fast Fourier transform (FFT)
method, and a one-dimensional data was filtered by a thread.
To avoid an out of memory problem, we copy images from
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Fig. 3. Parallelization of filtration

Fig. 4. Parallelization of backprojection

CPU memory to GPU memory dividing into several parts as
shown in Fig.3. The backprojection step is the most time-
consuming part, but it can be made fast by GPU implementa-
tion because it includes very repetitive tasks and interpolations.
Fig.4 show GPU implementation of the backprojection step.
Similar to the filtration, the GPU memory cannot be enough
for all images and backprojection data, so we divide them into
several parts and repeat the process. The images are copied
to texture memory for fast interpolation, and in a thread, the
images are backprojected into a one-dimensional space. If we
divide all images into N parts and all backprojection space
into M parts, N ×M iterations are necessary.

IV. RESULT

The GPU implementations of the exact cone-beam recon-
struction alorithms were evaluated using three-dimensional
Shepp-Logan phantom. The object size is 2563 voxels, and the
voxel size is 0.53 mm3. For scanning system, R = 400 mm,
D = 700 mm. The GPU implementations were programmed
by using compute unified device architecture (CUDA) which
is a parallel computing architecture developed by Nvidia, and
the implementations were tested with TESLA C1060.

For the saddle CT simulation, H = 64 mm to cover all
object. Because of this pitch, we use the 512 × 1024 pixel
size detector to cover all projections of the object inside the
detector in any source position, and the pixel size is 0.5
mm. We generated 900 cone-beam projections as λ increases
uniformly from 0 to 2π, and Fig.5 shows the reconstruction
result. The reconstruction image quality of the horizontal slice
is clear, but in the vertical slices, there are some artifact lines

Fig. 5. FBP reconstruction result of saddle CT. Horizontal slice image and
its row line profile (top), vertiacl slice image and its row line profile (middle),
and vertical slice image and its column line profile (bottom).

in a diagonal direction. These artifacts come from the pitch of
the saddle trajectory, so it can be reduced by denser scanning.
For the saddle CT simulation, the pitch of line trajectory was
also decided to cover the object, which is about 153 mm, and
the detector size was 512×512 pixels with 0.5 mm pixel size.

In the circle-plus-line CT, the detector does not need to
cover all projections of the object when it was scanned in
the line trajectory, thus it is smaller than the saddle CT. For
simulation, 611 cone-beam projections in the line scanning
part and 280 cone-beam projections in the circle scanning part
were generated. As Fig.6, the reconstruction image quality of
the horizontal slice is as almost same as saddle CT, but the
vertical slices are clearer than saddle CT without artifacts.
Even if the line profiles of the saddle and circle-plus-line
CT are similar, the entire reconstruction image quality of the
circle-plus-line CT is better than the saddle CT.
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Fig. 6. BPF reconstruction result of circle-plus-line CT. Horizontal slice
image and its row line profile (top), vertiacl slice image and its row line
profile (middle), and vertical slice image and its column line profile (bottom).

TABLE I
COMPUTATION TIME

Saddle Circle-plus-line

Derivative 12.948 sec 3.415 sec
Filtration 5.631 sec 1.104 sec
Backprojection 10.172 sec 14.741 sec
Regridding 5.271 sec

total 28.751 sec 24.531 sec

Table I shows the computation time. Even if the number of
projection views of two simulations were similar to each other
(900 views for the saddle CT and 890 views for the circle-
plus-line CT), the saddle CT used the much bigger detector
than the circle-plus-line CT, so the derivative process of the
saddle CT takes more time than the circle-plus-line CT. In the

saddle CT, the filtration requires the forward and backward
rebinning process, so it takes longer than circle-plus-line CT.
For the backprojection step the circle-plus-line CT takes longer
because the chord length in the rebinned space is almost twice
longer than the object width for the filtration. Finally, the total
computational times are similar.

V. CONCLUSION

In this paper, the exact cone-beam reconstruction with the
FBP and BPF algorithms was implemented by GPU. From
GPU implementation point of view, the FBP algorithm can
be considered simpler than the BPF alorithms because it has
no regridding process, but its filtration on the detector needs
the forward and backward rebinning process. So, the FBP
algorithm takes longer in filtering process. In the reconstruc-
tion results with two kinds of trajectories with the similar
number of views, the line profiles looked similar, but the entire
quality of circle-plus-line CT was clearer without artifacts.
Moreover, the saddle CT requires the much bigger detector
area than circle-plus-line CT to cover the object. Thus, the
BPF reconstruction of circle-plus-line CT is more economical
in practise than the FBP reconstruction of the saddle CT.

REFERENCES

[1] Jed D Pack and Frédéric Noo, “Cone-beam reconstruction using 1D
filtering along the projection of M -lines,” Inverse Problems, vol. 21, no.
3, pp. 1105–1120, June 2005.

[2] Yu Zou, Xiaochuan Pan, and Emil Y Sidky, “Theory and algorithms for
image reconstruction on chords and within regions of interest,” America,
vol. 22, no. 11, pp. 2372–2384, 2005.

[3] Kyung Sang Kim and Jong Chul Ye, “Fully 3D iterative scatter-corrected
OSEM for HRRT PET using a GPU.,” Physics in medicine and biology,
vol. 56, no. 15, pp. 4991–5009, Aug. 2011.

[4] Jed D Pack, Frédéric Noo, and H Kudo, “Investigation of saddle
trajectories for cardiac CT imaging in cone-beam geometry,” Physics
in Medicine and Biology, vol. 49, no. 11, pp. 2317–2336, June 2004.

[5] Haiquan Yang, Meihua Li, Kazuhito Koizumi, and Hiroyuki Kudo, “Exact
cone beam reconstruction for a saddle trajectory.,” Physics in medicine
and biology, vol. 51, no. 5, pp. 1157–72, Mar. 2006.

The second international conference on image formation in X-ray computed tomography Page 253



Iterative Image Reconstruction with Variable
Resolution in Diagnostic CT

Zheng Zhang, JunguoBian, Xiao Han, Daxin Shi, Alex Zamyatin, Patric Rogalla, Emil Y. Sidky and
Xiaochuan Pan

Abstract—In tomographic imaging applications, it is not
uncommon that one is interested in detailed information only
about a region of interest (ROI) within an imaged subject, while
rough knowledge outside the ROI may be sufficient. Therefore,
it is of practical merit to develop algorithms that are capable of
reconstructing an image with variable resolution, e.g., an image
consists of high-resolution ROI reconstruction and coarse
reconstruction outside the ROI. In this work, we investigate and
develop optimization-based algorithms for image reconstruc-
tion with variable resolution and apply them to real patient and
animal data collected with advanced diagnostic CT scanner.
The results of our study demonstrate that optimization-based
algorithms can be developed for yielding an image of which
different parts can have different levels of spatial resolution.
The work may have implications for reduction of computation
memory and acceleration of computation speed. In the presence
of data truncation, it may also provide an approach to obtaining
an ROI image of high resolution with minimized truncation
artifacts.

I. I NTRODUCTION

In tomographic imaging applications, it is not uncommon
that one is interested in detailed information only about a
region of interest (ROI) within an imaged subject. For exam-
ple, in image-guided radiation therapy (IGRT) and image-
guided surgery (IGS), one seeks to determine information
about the location, size, shape, and contrast of tumors within
an ROI, while rough knowledge outside the ROI may be
sufficient. Therefore, it is of practical merit to develop a
capability of reconstructing a high-resolution image within
the ROI while yielding only a coarse image outside the ROI.

Based upon continuous-to-continuous (C-C) linear imag-
ing models, analytic-based algorithms such as the FDK-
based algorithms are designed for reconstructing continuous
images from continuous data. Discrete forms of an analytic-
based algorithm can be devised so that it can be applied to
discrete data in realistic tomographic imaging. Because dis-
cretization is applied only to the data space, the algorithms
can still yield continuous image reconstructions. Therefore,
an image with regions of different resolutions can readily
be reconstructed by use of analytic-based algorithms from
discrete data.

Optimization-based (i.e., iterative) algorithms generally
possesses a higher degree of flexibility than analytic-based

Z. Zhang, J. Bian, X. Han, E. Y. Sidky and X. Pan are with the University
of Chicago.

D. Shi and A. Zamyatin are with Toshiba Medical Research Institute
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algorithms in accommodating image reconstruction a wide
variety of imaging conditions of practical significance. With
the rapidly available computation power and significant
advances in optimization theory for linear imaging mod-
els, there have been a substantially increased interest in
developing and applying optimization-based algorithms for
image reconstruction in tomographic imaging, particularly
in computed tomography (CT).

In general, an optimization-based algorithm is developed
based upon a discrete-to-discrete (D-D) imaging model in
which both data and image are represented as discrete
arrays. Since the algorithm reconstructs an image iteratively,
reconstruction at a given iteration thus needs knowledge
about reconstructions at previous iteration(s) on theentire
image array, and current optimization-based algorithms are
designed generally for image reconstruction on an image
array consisting of identical voxels. Therefore, even if an
ROI image of high resolution is desired, an optimization-
based algorithm needs to reconstruct the entire image of
high resolution, represented necessarily by a huge number
of identical, small-size voxels, thus leading to a substantial
demand on the computational memory and time.

In an attempt to minimize such a demand, we investi-
gate and develop optimization-based algorithms for image
reconstructions with variable resolution, and we apply the
algorithms to image reconstruction with variable resolution
from real patient and animal data collected with a Toshiba
320-slice diagnostic CT scanner. We considered in the inves-
tigation well-known iterative algorithms, including project-
onto-convex-set (POCS), expectation-minimization (EM), si-
multaneous algebraic reconstruction technique (SART), and
adaptive-steep-descent(ASD)-POCS algorithms. However, in
this abstract, we include results obtained only with the ASD-
POCS algorithm and will report results of other algorithms
at the conference.

II. M ETHODS

We briefly describe the development of optimization-
based algorithms for image reconstruction with variable
resolution through the use of an image array consisting of
voxels with different sizes.

A. Imaging model

One can obtain discrete representations of continuous data
and image functions by using discrete basis sets to expand
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Figure 1. A variable-resolution array: It includes a rectangle-shaped
ROI, consistingof pixels of sizea, and the region surrounding the ROI,
composing of pixels of sizeb. Whena < b, different levels of resolution
are obtained for the ROI and its surrounding region.

the functions. In this work, data and image functions are
expanded in terms ofM pixels andN voxels, andg

0
and

f denote the expansion coefficients, which we refer to as
model-data and image vectors of sizesM andN . We now
consider below a D-D imaging model for CT:

g
0

= Hf, (1)

where H denotes a system matrix of sizeM × N that
relates data and image vectors. It should be reminded that
elements of system matrixH are determined not only by the
selection of data and image vectors but also by the way as to
how the discrete X-ray transform is calculated. The model
datag

0
, which is consistent with the imaging model, differ

from measured datag, which always contains components
inconsistent with the imaging model.

B. Uniform- and variable-resolution image arrays

In a practical optimization-based reconstruction, an image
array consisting of voxels of identical sizes is generally
used. We refer to such an array asa uniform-resolution
array. In the work, instead, we develop optimization-based
reconstructions that use an image array formed by voxels of
different sizes, and thus refer to it asa variable-resolution
array. In Fig. 1, we display a 2D version of a variable-
resolution array, which includes a rectangle-shaped ROI
consisting of pixels of sizea, and the region surrounding the
ROI composing of pixels of sizeb. Obviously, whena = b,
a variable-resolution array becomes a uniform-resolution
array. However, ifa 6= b, different levels of resolution are ob-
tained for the ROI and its surrounding region. In particular,
whena < b, the array thus includes an ROI with resolution
higher than that in the region surrounding the ROI. When a
variable-resolution array is used, the calculation method of
the system matrix remains largely unchanged except for that
care should be taken for calculations involving voxels along
boundaries between an ROI and its surrounding region.

C. Optimization programs

The inversion of Eq. (1) can be formulated into an
optimization program to be solved by use of optimization-
based algorithms. We first consider an optimization program

f∗ = argmin ‖ D(f) ‖, (2)

where
D(f) =| Hf − g | (3)

denotes the Euclidean-data divergence between measured
datag and imaging modelHf. As discussed below, numer-
ous algorithms can be used for solving this optimization
program.

We then consider an optimization program:

f∗ = argmin ‖ f ‖TV s.t. D(f) ≤ ǫ, (4)

where ‖ f ‖TV, referred to as the image total variation
(TV), denotes theℓ1-norm of the discrete gradient magnitude
of the image, andǫ is a pre-selected, positive parame-
ter for accommodating inconsistencies between measured
data g and imaging modelHf. It should be noted that
the calculation of both system matrixH and image TV
‖ f ‖TV depends critically on the design of an image array
with variable resolution. Also, the often-used non-negativity
constraint on reconstructed images is not considered in the
two optimization programs described above because real
data used in the study contain negative values as a result
of the correction for physical factors by use of the method
installed on the scanner.

We also consider an optimization program in which the
Kullback-Liebler (KL) divergenceD(f)

KL
between mea-

sured datag and imaging modelHf is to be minimized.

D. Optimization-based algorithm

Numerous optimization-based algorithms can be used for
solving the optimization program in Eq. (2). Specifically, in
the absence of inconsistencies between data and imaging
model, the POCS algorithm can solve the optimization
program in Eq. (2). Also, the SART algorithm can minimize
the objective function even in the presence of the inconsis-
tencies. In this work, we have developed both POCS and
SART algorithms for image reconstructions with variable
resolution through solving Eq. (2).

We have also modified the ASD-POCS algorithm to solve
the optimization program in Eq. (4). The main modifications
include the calculation of the system matrix, image TV,
and image-TV gradient when a variable-resolution array
is used. We have also derived a necessary convergence
condition for the ASD-POCS algorithm when an image-
positivity constraint is not considered in Eq. (4).

Finally, it is well known that the EM algorithm minimizes
the KL divergenceD(f)

KL
. Therefore, we have also modified

the standard EM algorithm for a uniform-resolution array
to reconstruct for a variable-resolution array. In the EM
reconstructions, negative values in real data are set to zero.
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III. D ATA ACQUISITION AND IMAGE ARRAYS

A. CT imaging system

In the work, we focus on image reconstruction from
patient and swine data collected with a Toshiba 320-slice
diagnostic CT scanner. In the CT scanner, the distance
between the X-ray source and the center of rotation is 60
cm; the detector consists of 320 rows of bins, each of the
320 rows composes 896 bins, thus forming a fan angle of
49.2◦.

B. Data acquisition

The patient and swine data were collected at 1200 views
over 2π. Specifically, in the patient study, the subject was
scanned with X-ray energy of 135 kVp and current at 100
mAs, whereas for the swine study, the animal was scanned
with X-ray energy of 100 kVp and current at 275 mAs.
The projection data were corrected for scatter and beam-
hardening by use of Toshiba’s standard method installed on
the scanner.

C. Selection of image arrays

In our studies below, without loss of generality, we
consider four variable-resolution arrays determined by the
selection of four different combinations of pixel sizesa and
b, as shown in Fig. 1. Specifically, for the patient study, we
selecta = 0.064 cm to combine withb = 0.064 cm, 0.128
cm, 0.256 cm, and0.512 cm, respectively. Clearly, the first
combination yields a uniform-resolution array, whereas the
other three combinations result in three variable-resolution
arrays with a decreasing ratio betweena and b. Similarly,
for the swine study, four image arrays were determined by
the four combinations ofa = 0.0625 cm with b = 0.0625
cm,0.125 cm,0.250 cm, and0.500 cm, respectively. Again,
the first combination produces a uniform-resolution array,
whereas the other three combinations result in three variable-
resolution arrays, also with a decreasing ratio betweena and
b.

D. Inverse-crime studies

In an attempt to validate the optimization-based algo-
rithms in Sec. II-D and their implementation, we first carried
out an inverse-crime study in which simulation data were
generated by use of a system matrix from a discrete image
and images were reconstructed by use of the same system
matrix in the reconstruction algorithms described above. In
the study, data are completely consistent with the imaging
model, and the same system matrix was used for data
generation and image reconstruction. Therefore, it provides
a validation of the algorithms under the ideal condition. We
have used imaging parameters mimicking the Toshiba 320-
slice diagnostic CT scanner to generate data from discrete
images, and performed reconstructions from the generated
data. Results of the study, which are not included in the
abstract, validate that the algorithms described above can

Figure 2. Patient (left) and swine (right) images reconstructed by use of
the ASD-POCSalgorithm in which ROIs are indicated by the white solid
lines. The pixel sizes of 0.064 cm and 0.0625 cm are used in the uniform-
resolutoin arrays, respectively, for the patient and swine reconstructions.

solve their corresponding optimization programs, respec-
tively. We plan to report the inverse-crime study results at
the conference.

IV. RESULTS

We have used the POCS, SART, EM, and ASD-POCS
algorithms to reconstruct images with uniform and variable
resolution from both patient and swine data. We show below
results obtained only with the ASD-POCS algorithm and will
report results of other algorithms at the conference.

A. Reconstructions from patient data

1) Reconstruction on uniform-resolution arrays: We first
performed optimization-based reconstructions on a uniform-
resolution array consisting of pixels of sizea = 0.064 cm,
and show the ASD-POCS reconstruction in the left panel
of Fig. 2. The ROI image enclosed by the white lines is
also shown in a zoomed-in view in the first rows of Figs.
3-5, and it is used as a gold standard against which ROI
reconstructions on variable-resolution arrays are compared.
We then carried out ASD-POCS reconstructions on three
additional uniform-resolution arrays with pixel sizes of 0.128
cm, 0.256 cm, and 0.512 cm, respectively, and display the
corresponding ROI images in the second rows of Figs. 3-5.
Clearly, reconstruction resolution decreases as the pixel size
increases from 0.064 cm to 0.512 cm.

2) Reconstruction on variable-resolution arrays: We also
performed optimization-based reconstructions on three dif-
ferent, variable-resolution arrays, in the patient study, as
described in Sec. III-C. In row 3 of Figs. 3-5, we display
the respective ROI images reconstructed by using the ASD-
POCS algorithm.

Comparing ROI reconstructions of Figs. 3-5 with the gold
standard in the row of Figs. 3-5, we observe that images
within regions, which surround the ROI, with increased pixel
sizes lose rapidly their resolution, as expected. However, im-
age resolution within the ROI remains virtually unchanged,
and is comparable to the gold standard resolution, even
though the ratio between the pixel sizes within and outside
the ROI has decreased considerably.
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Figure 3. ROI images reconstructed by use of the ASD-POCS algorithm
from patient data on a uniform-resolution array with pixel size 0.064 cm
(row 1), a uniform-resolution array with pixel size 0.128 cm (row 2), and
a variable-resolution array specified by the combination ofa = 0.064 cm
andb = 0.128 cm. A display window [-6, 13] is used.

B. Reconstructions from swine data

1) Reconstruction on uniform-resolution arrays: Again,
we carried out optimization-based reconstructions on a
uniform-resolution array consisting of pixels of sizea =
0.0625 cm, and show the ASD-POCS reconstruction in the
right panel of Fig. 2. The ROI image enclosed by the white
lines is also shown in a zoomed-in view in the first rows
of Figs. 6-8, and it is also used as a gold standard against
which ROI reconstructions on variable-resolution arrays are
compared. We also did ASD-POCS reconstructions on three
uniform-resolution arrays with pixel sizes of 0.125 cm, 0.25
cm, and 0.5 cm, respectively, and display the ROI images
in the second rows of Figs. 6-8. It can be observed that
reconstruction resolution decreases as the pixel size increases
from 0.0625 cm to 0.5 cm.

2) Reconstruction on variable-resolution arrays: We then
performed optimization-based reconstructions on three dif-
ferent, variable-resolution arrays, in the swine study, as
described in Sec. III-C. In row 3 of Figs. 6-8, we display
the respective ROI images reconstructed by using the ASD-
POCS reconstruction algorithm.

Comparison of ROI reconstructions in row 3 of Figs. 6-
8. with the gold standard reconstruction displayed in row 1
of Figs. 6-8 reveals that observations similar to those made
for the patient study above can also be made for the swine
study.

V. D ISCUSSIONS

In this work, we have investigated and developed
optimization-based algorithms for image reconstruction with
variable resolution and apply them to real patient and animal
data collected with a diagnostic CT scanner. The results
demonstrated that ROI images with quality comparable
to that obtained with an image array with uniform, high
resolution can be reconstructed through the use of image

Figure 4. ROI images reconstructed by use of the ASD-POCS algorithm
from patient data on a uniform-resolution array with pixel size 0.064 cm
(row 1), a uniform-resolution array with pixel size 0.256 cm (row 2), and
a variable-resolution array specified by the combination ofa = 0.064 cm
andb = 0.256 cm. A display window [-6, 13] is used.

Figure 5. ROI images reconstructed by use of the ASD-POCS algorithm
from patient data on a uniform-resolution array with pixel size 0.064 cm
(row 1), a uniform-resolution array with pixel size 0.512 cm (row 2), and
a variable-resolution array specified by the combination ofa = 0.064 cm
andb = 0.512 cm. A display window [-6, 13] is used.

arrays with variable resolution by use of, e.g., the ASD-
POCS algorithm. Results of this work may have implications
for practical applications of iterative image-reconstruction
algorithms as they can be exploited for reducing computation
memory and time. They may also find applications for image
reconstruction from severe truncated data.

VI. A CKNOWLEDGMENTS

This work was supported in part by the National Institutes
of Health (NIH) under Grants CA120540, EB000225 and
CA158446. The work of X. Han was supported in part by the
Department of Defense (DoD) Predoctoral training Grants
PC094510.

The second international conference on image formation in X-ray computed tomography Page 257



Figure 6. ROI images reconstructed by use of the ASD-POCS algorithm
from swine data on auniform-resolution array with pixel size 0.0625 cm
(row 1), a uniform-resolution array with pixel size 0.125 cm (row 2), and
a variable-resolution array specified by the combination ofa = 0.0625 cm
andb = 0.125 cm. A display window [-8.5, 16] is used.

Figure 7. ROI images reconstructed by use of the ASD-POCS algorithm
from swine data on auniform-resolution array with pixel size 0.0625 cm
(row 1), a uniform-resolution array with pixel size 0.25 cm (row 2), and a
variable-resolution array specified by the combination ofa = 0.0625 cm
andb = 0.25 cm. A display window [-8.5, 16] is used.

Figure 8. ROI images reconstructed by use of the ASD-POCS algorithm
from swine data on auniform-resolution array with pixel size 0.0625 cm
(row 1), a uniform-resolution array with pixel size 0.5 cm (row 2), and a
variable-resolution array specified by the combination ofa = 0.0625 cm
andb = 0.5 cm. A display window [-8.5, 16] is used.
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Residual Motion Compensation in ECG-Gated
Cardiac Vasculature Reconstruction

Chris Schwemmer, Christopher Rohkohl, Günter Lauritsch, Kerstin Müller and Joachim Hornegger

Abstract—Generating 3-D reconstructions of cardiac vascu-
lature from angiographic C-arm CT (rotational angiography)
data is a challenging problem. Currently, many approaches
depend on a reconstruction from ECG-gated projection data
either as a reference for further processing or as the final result.
Due to imperfect gating, e.g. caused by irregular heart movement,
residual motion corrupts these reconstructions.

We present an algorithm to compensate for this residual mo-
tion. The approach is based on a deformable 2-D–2-D registration
between the acquired projection data and a forward projection
of the initial ECG-gated reconstruction. It does not depend on
an explicit segmentation of vasculature or markers, and works
without user interaction. The estimated 2-D deformation field is
compensated for in the backprojection step of a subsequent re-
construction. The algorithm is evaluated on two clinical datasets,
showing a clear decrease in artefact level and better visibility of
structure in the compensated reconstructions.

I. INTRODUCTION

A. Purpose of this Work

Three-dimensional information during cardiac interventions
can provide improved guidance and easier assessment for
complex interventional procedures [1], [2]. Ideally, this 3-D
imaging should be performed in the interventional suite using
C-arm CT, avoiding the need to move the patient to a CT
scanner or perform a prior diagnostic CT scan. Additionally,
up-to-date information of the current state would be available.
Currently, this approach is limited by the temporal resolution
of available C-arm systems. Due to the long acquisition time
of several seconds, heart motion corrupts a straightforward 3-
D reconstruction. This results in motion blur, streak artefacts
and reduced sharpness and visibility of structure.

Commonly, an ECG signal is recorded during the acquis-
ition. This allows to retrospectively gate the available X-ray
projection data so that only images from a specific heart phase
contribute to the 3-D reconstruction [3]. However, ECG data
does not necessarily correspond to the exact motion state of
the heart [3]. A wider gating window is desirable to get a
high signal-to-noise ratio and little undersampling artefacts,
but then the residual motion in the gated projection data needs
to be compensated for.

B. State of the Art

In the literature, several approaches have been proposed to
account for residual motion due to non-ideal ECG-gating. A

C. Schwemmer, K. Müller and J. Hornegger are with the Pattern Recognition Lab,
Department of Computer Science, and the Erlangen Graduate School in Advanced Optical
Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen,
Germany, email: chris.schwemmer@cs.fau.de. C. Rohkohl and G. Lauritsch are with the
Siemens AG, Healthcare Sector, Forchheim, Germany.
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Figure 1: Illustration of the proposed algorithm.

full 3-D estimation is a strongly ill-posed problem with high
computational demands. However, due to the ECG-gating, the
residual motion inside one window can be assumed to be
reasonably small and an approximate 2-D motion estimation
in projection space might be sufficient. This is demonstrated
both by previous work [4]–[6] and the results shown below.

A model-based learning approach was recently proposed,
that registers a previously learnt motion model to the actual
data [5]. Here, an extensive training phase is needed before-
hand, and the application to patients with very irregular heart
motion is difficult. A projection-based motion compensation
was proposed in [6]. It requires a segmentation of vasculature
centrelines in the acquired projection data, which is difficult
[7].

C. Outline

In this paper, a method for compensation of residual motion
in ECG-gated data is presented. Our method estimates residual
motion by deformable 2-D–2-D registration in projection
space without requiring complex image pre-processing steps.

In the next section, our algorithm and the experimental setup
is discussed in detail. In Section III, the results are presented
and both a qualitative and quantitative evaluation is performed.

II. MATERIALS AND METHODS

In the following, the individual steps of the algorithm as
shown in Figure 1 are discussed in detail. First, an initial ECG-
gated reconstruction is performed. A thresholding operation
removes non-vascular tissue. Then, a forward projection (FwP)
is generated. The original projections are pre-processed by
automatic top-hat filtering and thresholding. The FwP is then
registered to the pre-processed original projection data using
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a deformable 2-D–2-D registration algorithm. The resulting 2-
D motion field is compensated for during the backprojection
step of a subsequent ECG-gated reconstruction. The procedure
may be repeated for additional refinement. In Section II-H, the
experimental setup used for the evaluation is presented.

A. Initial Reconstruction

An initial ECG-gated reconstruction is performed by in-
serting a weighting function λ into a standard FDK-type
algorithm [8], [9]. Let hr ∈ [0, 1] be the heart phase at
which reconstruction shall be carried out. The ECG-gated FDK
reconstruction fhr : R3 7→ R at a voxel x ∈ R3 is given by

fhr
(x) =

N∑
i=1

λ (i, hr) · w (i,x) · pF (i,A(i,x)) , (1)

where N is the number of projection images, w : N×R3 7→ R
is the FDK distance weight and pF (i,u) : N×R2 7→ R is the
filtered and redundancy-weighted projection data of the i-th
image at pixel position u. The pixel position is determined
by the perspective projection of voxel x, A : N × R3 7→
R2, (i,x) 7→ A(i,x) = u. The weighting function λ is a
cosine-window defined by

λ (i, hr) =

{
cosa

(
d(h(i),hr)

ω π
)

if d (h (i) , hr) ≤ ω
2

0 otherwise
, (2)

where h (i) is the heart phase of the i-th projection image
according to the ECG, ω ∈ [0, 1] controls the width and a ≥ 0
controls the shape of the gating window. The distance measure
d is defined as d (h1, h2) = minj∈{0,1,−1} |h1 − h2 + j|.

Additionally, a streak reduction [9] is performed to reduce
undersampling artefacts.

B. Thresholding and Forward Projection

Since the contrasted cardiac vasculature presents a high-
contrast object, a simple thresholding operation can be used
to remove background structure. It retains only the tr ∈ [0, 1]
percentile of the largest voxel values. Then, maximum intens-
ity forward projections pfwp are generated from the thresholded
initial reconstruction using the original acquisition geometry.

C. Pre-Processing of Original Projections

A background reduction is performed on the original projec-
tion data. First, a morphological top-hat filtering using a kernel
of radius r as in [10], then a thresholding that retains only the
tp ∈ [0, 1] percentile of the largest pixel values is done. This
removes most of the non-vascular background while safely
retaining vascular structure. The processed projection images
are denoted pbgr in the following.

D. Registration Method

Registration establishes a mapping between the space of
the pre-processed projection data pbgr and the FwP pfwp so
that pbgr (i,u) is similar to pfwp (i,M(i,u)), where M : N ×
R2 7→ R2 is the motion vector field for the i-th image. We
chose a uniform cubic B-spline as a deformable motion model

[11]. The mapping is parametrised by the number of B-spline
control points c in each dimension. This model is very flexible,
while containing an implicit smoothness constraint that avoids
large local deformations for small values of c.

Mutual information [12] was used as a (multi-modality)
similarity metric for the registration process. Mono-modal
metrics like sum of squared differences cannot be used, since
the grey values of pbgr and pfwp differ due to the maximum
intensity FwP and data truncation. A gradient descent method
was used to drive the registration process.

E. Motion Compensated Reconstruction

Using the motion vector field M, the estimated motion can
be compensated for in the reconstruction step

fhr,M (x) =
N∑
i=1

λ (i, hr)·w (i,x)·pF (i,M(i,A(i,x))) . (3)

Motion compensation applies a 2-D deformation after the
perspective projection instead of a 3-D deformation before the
projection [8].

F. Further Iterations

The process can be repeated for an additional refinement of
the motion compensation by using the output from Step II-E
as input in Step II-B.

G. Considerations on Implementation

The main contribution to processing time is by the registra-
tion process. Since registration is performed on a per-image
basis, the projection stack can be processed in parallel. In
addition, only those images need to be considered that have
a gating weight λ > 0. Using graphics hardware is work in
process. An optimal parameter set for the mutual information
calculation can be found using the methods presented in
[13]. Backprojection can be implemented very efficiently on
graphics hardware [14], as can be B-spline evaluation [15].
Therefore, the motion compensated backprojection can be
carried out completely parallelised on the graphics card.

H. Experimental Setup

For evaluation, two clinical datasets were used, where a
left (LCA) or a right (RCA) coronary artery was contrasted
respectively. Patient heart rates were 103±7.0 bpm (LCA)
and 68±1.5 bpm (RCA). All datasets were acquired using
a five second rotational angiography with selective contrast
agent administration (1-2 ml/s). Source-isocentre-distance was
~80 cm and source-detector-distance ~120 cm. The acquired
133 projection images per dataset had a size of 1240x960
pixels with a pixel size of 0.308 mm. The size of the 3-D
volumes after reconstruction was 256x256 voxels with 224
(LCA) and 186 (RCA) slices and an isotropic voxel size of
0.48 (LCA) and 0.60 (RCA) mm.

The gating parameters were selected as ω = 0.4 and a = 4,
with hr = 0.47 (LCA) and hr = 0.75 (RCA). Therefore,
52 projection images were used for reconstruction of each
dataset after gating. Thresholding was performed at tr = 0.005
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Table I: Estimated noise in HU around coronary tree.

Name Initial One Iter. Two Iter.
LCA 12.02 11.71 10.65
RCA 25.55 21.97 21.80

and tp = 0.2. The size of the morphological kernel was r =
3.4mm. The number of B-spline control points was set to
c = 5 in each dimension. Two iterations of the algorithm
were performed.

I. Evaluation

Qualitative evaluation was carried out visually. For a quant-
itative evaluation, image noise in the region of the reconstruc-
ted vessels was estimated [16] (on a sub-volume of 653 cm3

(LCA) and 387 cm3 (RCA) respectively). Additionally, vessel
sharpness [17] was calculated for five different segments (cf.
Figures 3a, 3d) along the coronary tree. To this end, one
continuous branch of each tree was selected and 40 regularly
spaced measurement sites were placed along each branch. At
every site, 10 cross-sectional profiles equally distributed over
180° in the plane perpendicular to the vessel were used for
the sharpness estimation. The values presented in Figures 3c
and 3f are the average values of all sharpness measurements
in the respective segments.

III. RESULTS AND DISCUSSION

Figure 2 shows an original and a pre-processed projection,
and a chequerboard overlay of a pre-processed projection with
a FwP before and after registration for dataset LCA. The
displacement of vessel sections in the FwP compared to the
original projection is significantly reduced by the registration
step. In Figure 3, the resulting reconstructions both before and
after two iterations of the proposed algorithm are shown. It can
be seen that the artefact level is strongly decreased, while the
visibility and sharpness of structure is increased when using
our proposed algorithm. This observation is confirmed both
by a decrease of image noise (cf. Table I) and an increase
in vessel sharpness (cf. Figure 3c and 3f) after registration.
The second iteration step increases image quality and vessel
sharpness for most segments.

IV. CONCLUSION AND OUTLOOK

Due to non-ideal gating, residual motion corrupts ECG-
gated cardiac reconstructions. We presented an algorithm
that compensates residual motion. Motion is estimated by a
deformable 2-D–2-D registration method. No explicit segment-
ation is needed for registration. Motion is directly compensated
for in the backprojection step of image reconstruction. The
method can be repeated in an iterative loop.

We showed that artefact level is greatly decreased, while
sharpness and detail of structure is increased.
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(a) Original Projection (b) Pre-processed Projection (c) Unregistered FwP (d) Registered FwP

Figure 2: Results of the registration algorithm for dataset LCA.
In Figures 2c and 2d, the pre-processed projection and the FwP are shown combined in a chequerboard pattern to visualise
the registration result.

(a) (b) (c)

(d) (e) (f)

Figure 3: Reconstruction results without and after two iterations of the proposed algorithm.
Top row: LCA, bottom row: RCA. Left column: initial reconstruction (and segments for vessel sharpness measurements),
middle column: compensated reconstruction, right column: vessel sharpness.
All volume renderings show a left sagittal view. The grey scale window was 1000. In the right column, the average vessel
sharpness and standard deviation of the initial reconstruction (�), after one iteration (�) and after two iterations (�) are shown
for each segment.
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Noise Reduction With Low Dose CT Data
Based On a Modified ROF Model

Mengliu Zhao, Yining Zhu, Hongwei Li, Peng Zhang

Abstract—A modified ROF model to denoise low dose CT
measurement data in light of Poisson noise model is proposed.
Experimental results indicate that the reconstructed CT images
based on measurement data processed by our model are in
better quality, compared to the original ROF model and bilateral
filtering.

Keywords—low dose CT; noise reduction; Poisson noise; mod-
ified ROF model.

I. INTRODUCTION

Computed Tomography (CT) is crucial for clinical diag-
nosis. To reduce the risk of cancer [1], low dose CT has
raised many interests in research community as well as in
industry. One difficulty with the low dose CT is that the
noise associated with the projection data is high, which leads
to deterioration of the reconstructed CT images. Traditional
denoising methods, such as FFT, wavelet and spatial filtering
methods like Gaussian filtering and bilateral filtering, usually
bring undesired blurring, and result in loss of resolution for the
reconstructed images. This is the case for some more advanced
denoising methods which are based on partial differential
equations or variational principle, like the popular ROF model
[2]. On the other hand, variational models enjoy some desired
global smoothing properties which is unseen in traditional
filtering methods.

In this paper, we propose a modified ROF model to filter
the projection raw data (measurement data). The original
ROF model has been proven effective for denoising images
corrupted by additive white Gaussian noise. However, the
projection raw data is assumed to obey the Poisson distribution
[3], [4]. For our CT projection raw data, the noise is not
exact Poisson. It’s just poisson-like, which means that if we
model the projection raw data by a random field, then its
mean and variance are related to each other, but not equal.
There are several approaches for denoising Poisson noise in
the literature. Le et al. proposed a model in the framework
of Bayesian inference [5], which fits well to Poisson noise.
Other methods, like PURE-LET [6] and MS-VST [7], are
based on wavelet transformation. However, it’s not apparent
how to adapt those approaches mentioned above to Poisson-
like noise. The modified ROF model we propose here bares
the Poisson nature of the projection raw data in mind, while
it’s easy to extend to Poisson-like noise.

The authors are with The CT Laboratory, School of Mathematics, Capital
Normal University, Beijing, 10048, China; email: zhumilan997@163.com

II. NOISE MODEL AND THE ROF MODEL

For monoenergetic x-ray source, the number of photons
collected by detectors obeys the Poisson distribution

Id ∼ Poisson{I0 exp(−
∫

x∈L

f(x)dx)}, (1)

where I0 indicates the number of emitted photons, Id the
number of photons collected, f(x) the attenuation distribution
of the object under examination and L the X-Ray trajectory.
CT image reconstruction is an inverse problem, which is to
solve f(x) from a series of measurement data {Id1 , Id2 , ...Idn} .
If the measurement data is noise free, we change formula (1)
by logarithmic transformation for linearization

pi = − log(Idi /I0) =

∫
Li

f(x)dx, (2)

and we call pi the projection data. For formula (2), we
usually use the Filter Back-Projection algorithm (FBP) [8] to
compute f(x). We do not intend to deal with pi. Instead,
we deal with the raw data Id, which is named projection
raw data in this paper, since Id is less ”polluted” than pi
because less mathematical computations are involved. For
real CT systems, there are also two kinds of background
noise–electrical thermal noise (i.i.d. gaussian) and round-off
errors. Moreover, the monoenergetic source is just an ideal
assumption. So the Poisson distribution is just an approximate
model. Strictly, we can only say that the noise is Poisson-like.

The ROF model was proposed by Rudin, Osher and Fatemi
[2] in 1992. 

min
∫

Ω
|∇u|dΩ, (3)

1
|Ω|
∫

Ω
(u− f)2dΩ = σ2. (4)

It can be turned into a non-constrained minimization problem,
with a suitable parameter λ

min
u

{
J(u) +

1

2λ

∫
Ω

(u− f)2dΩ

}
, (5)

where (for regular enough of u)

J(u) =

∫
Ω

√
(
∂u

∂x
)2 + (

∂u

∂y
)2 dΩ

In (5), Ω is the image domain, f is the input image which is
assumed to contain additive white Gaussian noise.
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III. THE MODIFIED ROF MODEL - POISSON-ROF

In the ROF model, Gaussian white noise is assumed, e.g.

f(x) = u(x) + n,

where n is a random variable that obeys N(0, σ2). Note that
n doesn’t depend on x. For digital images, it means that if we
regard each pixel corresponding to a random variable, then
all the random variables are independent of each other while
share the same distribution. In this situation, the image pixels
can be thought of as samplings to one single random variable.
So the variance σ can be estimated as

1

|Ω|

∫
Ω

(u− f)2dΩ = σ2,

e.g.
1

|Ω|

∫
Ω

1

σ2
(u− f)2dΩ = 1.

For the projection raw data, each ”pixel” should be regarded as
corresponding to a random variable of Poisson. Suppose u(x)
is the mean of f(x), then the variance should be

√
u(x). So if

we would like to extend the ROF model to deal with Poisson
noise, a heuristic choice for the data term is

1

|Ω|

∫
Ω

1

u
(u− f)2dΩ = 1. (6)

Based on the above data term, we propose the following
denoising model

min
u

{
J(u) +

1

2λ

∫
Ω

1

u
(u− f)2dΩ

}
, (7)

which is named Poisson-ROF in this paper.
Remark 3.1: For our CT projection raw data, u(x) = 0

means that the X-Ray can not penetrate the object from some
trajectory, and the associated information is lost. In this case,
people usually increase the intensity of the X-Ray to avoid its
happening. So for the CT projection raw data, one could think
that u(x) > 0 holds true all the time.

Remark 3.2: It’s easy to verify that if u is strictly greater
than zero, then the minimization problem (7) is strictly convex.
So the problem admits a single solution.

Remark 3.3: The deviation of the Poisson-ROF model is
just formal. Due to space limit, a more strict statistical analysis
is omitted here.

In the Poisson-ROF model, the data term is nonlinear with
respect to u. To easy the problem, we do a iterative lineation
of the data term.

min
un+1

{
J(un+1) +

1

2λ

∫
Ω

1

u?
(un+1 − f)2dΩ

}
,

where u? takes un, un−1 or un−2 etc. The Chambolle’s
algorithm [9] can not be applied to the Poisson-ROF model
directly. So we can introduce another variable v to relax the
problem, just like in [10].

min
{u,v}

{
J(u) +

1

2θ

∫
Ω

(u− v)2dΩ +
1

2λ

∫
Ω

1

fNF
(v − f)2dΩ

}
(8)

Then we solve (8) by solving the following two subproblems
alternatively

1) Minimization with u, for which Chambolle’s method
could be used, or one can adopt some more recently
proposed fast algorithms such as the Split-Bregman [26];

2) Minimization with v, and replace fNF by ū,

1

θ
(v − u) +

1

λū
(v − f) = 0 =⇒ v =

λuū+ θf

λū+ θ
(9)

In our numerical simulations, θ is set to 0.1, v is updated
for each 5 iterations.

The weighting parameter λ in (9) could be estimated in
several ways. If we consider λ as coefficient of the Lagrange
multiplier, then the choice of λ should always ensure that the
Lagrange equation is equivalent. Gilboa et al suggested that
λ should be updated according to the current SNR. However,
fixed λ tends to smooth the image as the iteration number
increases. Here we simply update λ to keep the Euler-Lagrange
equation in equivalence, which means

λ = −
∫

Ω
< div(p), 1

ū (u− f) > dΩ∫
Ω
|div(p)|2dΩ

(10)

IV. EXPERIMENTS

We compare our model with the original ROF and bilaterial
filtering for simulation data as well as real CT data. The
CT images reconstructed from the raw data processed by our
model and other models will be shown and compared.

A. Simulation Data

The simulation data are produced by projecting the Shepp-
Logan phantom using the ray-tracing algorithm. From Fig.
1(a)-(d), we see that the bilateral filtering can preserve the
structures of the phantoms, while suppressing some portion of
the noise. The ROF model could remove most of the noise, but
the structures (edges) are also diffused, which is unacceptable
in real applications. For the Poisson-ROF model, most of the
noise are removed, while the details are also preserved.

B. Real CT Data

We get two sets of projection raw data from an Industrial CT
system. The first group come from scanning some cylindroid
object made of volcanic rock, and the second group are the
results from scanning a line-pair phantom for testing spatial
resolutions. The number of channels per view is 3710 with a
total of 720 views evenly spanned on a circular track of 360
degrees. The length of detector bins is 0.083 mm, the distance
from source to center of turntable is 800 mm and the source
to the detectors is 1050 mm. All these raw data are denoised
and then transformed to images by the famous FBP algorithm.

1) Volcanic rock at low dose: The cylinder of volcanic rock
has a diameter of 100 mm, and we set the x-ray source to 160
KVp to acquire raw data. We first scanned the object with
the current intensity 8 mA and reconstructed it as a high dose
CT image as shown in Fig. 2, and then reduce the current to
1 mA to model a low dose CT, which decreases the dose to
12.5%. The reconstructed images are shown in Fig. 3. One
can see that the bilateral filtering and ROF model tend to blur
the regions that close to the edges, and our model can keep
the fine structures while removing much of the noise.
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(a) (b)

(c) (d)

Fig. 1. (a) the reference image, (b)-(d) are the corresponding reconstructed
images for data filtered by bilateral filtering, ROF model and Poisson-ROF
model respectively.

Fig. 2. The high dose CT image of volcanic rock

2) line-pairs phantom at low dose: To test the spatial
resolution of our algorithm, we use a line-pairs phantom to
scan in CT with 120 KVp and 4mA . The reconstructed
image acts as an ideal resolution, as shown in Fig. 4. Then we
decrease the current to 0.5mA and scan this phantom again.
We then reconstruct images from the low dose data without
denoising as well as denoised ones by the Poisson-ROF model.
The results are shown in Fig. 5. As shown in Fig. 5(a), the CT
image reconstructed from the low dose data without denoising
almost cannot be distinguished by the bars. When the raw data
are prepocessed by the Poisson-ROF model, the reconstructed
images have better quality and resolution (See Fig. 5(b)).

V. CONCLUSION

In this paper, we propose a modified ROF model (Poisson-
ROF) Experimental results compared with the original ROF
and bilateral filtering validate the advantages of the proposed
model.

(a) (b)

(c) (d)

Fig. 3. The (a) is CT image reconstructed without noise reduction in 12.5%
dose of high dose data; from (b) to (d) are reconstructed results from raw
data filtered by bilateral filtering, ROF model and Poisson-ROF model.

Fig. 4. The high dose CT image of line-pairs phantom.
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Robust Automated Regularization Factor Selection
for Statistical Reconstructions

Frank Bergner1, Bernhard Brendel1, Peter B. Noel2, Martin Dobritz2,Thomas Koehler1

Abstract—Statistical, iterative reconstruction techniques
have become a major research topic in the CT sector. These
techniques promise a better system model, which is used
for the inversion of the tomographic problem, and therefore
better reconstruction results. Due to the ill–posedness of these
problems, regularization is required in the cost functions in
order to stabilize the algorithm and to reduce the noise in the
resulting images. The strength of the regularization is usually
changed by using an appropriate multiplicative factor, which in
most cases has to be determined empirically with major efforts.
This paper describes a new automated selection of this factor
by using a quality criterion and a regulator, which controls the
multiplicative factor over the iterations to a desired level. The
method is light–weight, robust and also applicable for other
iterative methods like de–noising.

I. I NTRODUCTION

For the reconstruction of computed tomography (CT)
images filtered–backprojection (FBP) methods, which are
based on analytical derivations, are the gold standard and
well established in the clinical workflow as they offer a fast
processing and acceptable image quality. In the last years
the processing power of the reconstruction hardware has
significantly increased, so also iterative reconstruction meth-
ods can be used in the clinical workflow. These introduce
a better system and noise model compared to the analytic
reconstruction, and therefore promise better reconstruction
results with less noise and artifacts. In the statistical, iterative
methods, which are based on noise models for the detected
photons, regularization terms are used, which make the
methods numerically stable and reduce the image noise down
to some desired level. In most cases a regularization term is
multiplied by a factor and then added to the cost function of
the statistical reconstruction, which compares the projected
image with the measured data. Some examples for these
methods can be found in reference [1]. The main problem
in the current iterative methods is the selection of the factor,
which is data dependent and initially unknown. Most authors
neglect this problem and leave the choice to the user, who,
in the worst case, has to try different values in various
reconstructions [2], [3]. The long reconstruction times make
this approach infeasible for most clinical use cases. The
choice of a correct regularization parameter is not limited
to CT, and some methods have been proposed, which are
depending on the used cost functions and to some extent
hard to evaluate [4], [5]. In this paper a new, light–weight

1 Philips Technologie GmbH, Innovative Technologies, Research Labo-
ratories, Hamburg, Germany

2 Department of Radiology, Technische Universität München, Germany

method for the automated selection for the regularization
factor is proposed, which is independent of the used iterative
method. It does not introduces changes into the cost function
and can also be used for other problems like total variation
de–noising, where the noise reducing term is steered by a
multiplicative factor in a cost functions like

Cost(~µ) = RawdataTerm(~µ) + β RegularizationTerm(~µ)

where~µ is the image vector.
Primarily the method presented here consists of two

elements: A user chosen quality estimate, like the global
noise level, and a controller, which steersβ towards a user–
chosen target quality level.

II. M ETHOD

In many iterative reconstruction methods intermediate
images~µ(n) are available after the updates using the individ-
ual projection subsets. The proposed method examines the
images according to a predefined quality metric and outputs
a scalar valueq(n) which then is used for a controller to steer
β(n) towards the correct level. It is assumed that a reference
image like an FBP image is available, which is used as a start
image for the iterative method and for a reference quality
level. The control flow is illustrated in Fig. 1.

Iterative Reconstruction (1
sub–iteration)

Quality EstimatorController

~µ(n)

q(n)

β(n)

Fig. 1. Control flow of the proposed method. The parameterβ(n) is
controlled in a closed loop of iterations and quality estimations.

A. Quality Measure

One part of the proposed method is the estimation of
the quality of a given image. The quality can be the noise
level or the artifact level, like streaks. In this paper the
noise level is used as a metric. There, especially the noise
within the homogeneous regions of the patient body is of
interest. Edges shall not be part of the noise estimation. In
this paper a simple noise estimation method is used. It uses
a reference image, e.g. the FBP image, in order to extract
the homogeneous regions within the body, in which later the
local standard deviations are calculated as a noise estimate.
The segmentation process and noise estimation is:
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• Denoising of the reference image by a large (7×7×7),
edgepreserving median filter

• Body segmentation by applying a threshold of -250 HU
• Edge removal: Application of the Sobel operator, fol-
lowed by an edge detection using a threshold (10 HU) on
the magnitude of the operator output

• Morphological erosion operation with a small kernel to
further reduce the influence of edges on the estimate

• Calculation of the mean of the local standard deviations
from the voxels within the segmentation

For the noise estimations over the iterations only the latter
step has to be taken.

B. Controller and β Update

Controllers are well known in parts of our daily life, and
can be found in various implementations and variations.
One simple example is the thermostat of a heater, which
tries to regulate the heating depending on the currently
measured temperature and the user chosen temperature. The
difference between both directly controls the heating, e.g.
by a proportional mapping of the difference onto a change
of the heating magnitude. If the difference is zero, then the
controller does not change the heating as it is obviously at
the correct level. In the proposed method a similar controller
is used in a time–discrete manner. One popular example for
such an controller is the so–called proportional-integrating-
derivative (PID) controller, which does not only include the
difference itself in the controlling but also its derivative and
its integral [6]. At first an example for the update ofβ
with a PID controller is given. For the actual algorithm a
proportional–derivative (PD) controller is used.

Let the difference between the current quality levelq(n)
and the desired quality levelqt be

e(n) = q(n)− qt,

then a simple update formula for an PID controller is

β(n+ 1) = c0(e(n) + c1∆e(n) + c2E(n)) (1)

with
∆e(n) = e(n)− e(n− 1)

and

E(n) =

n
∑

m=0

e(m).

The constantsc0, c1, andc2 influence the controlling speed
and accuracy and have to be adopted to the problem. The
main problem that arises in this case is the unknown pro-
portionality betweenβ(n) and e(n), i.e. the correct choice
of c0. This can be circumvented by controlling the order of
magnitude instead of the absolute value ofβ and by using
a new update formula

β(n+ 1) = β(n)2c0(ẽ(n)+c1∆ẽ(n)+c2Ẽ(n)) (2)

where the normalized, relative quality

q̃(n) =
q(n)− qlo

qhi − qlo

is introduced and accordinglỹe(n), Ẽ(n), and ∆̃e(n). In
this caseqlo andqhi are the upper and lower bounds between
which the controller shall reach a certain level. For example
for qhi the quality of the FBP start image can be used. Thus,
the noise estimatioñe(n) naturally lies between 0 (no noise)
and 1 (noise of the FBP image). Other metrics could require
qlo being non-zero if this level cannot be reached.

In the refinedβ update formula (2) all elements of the
controller are unit-less and in a known order of magnitude.
The constantsc0, c1, and c2 can be chosen more easily,
e.g. for c0 = 100 a positive, relative difference of1%
between the current quality and the target quality will double
β. In the refined formulation also an integrating behavior
is introduced by taking the previous value ofβ(n) and
changing it dependent on the errorẽ(n). The integration
via c2 is therefore redundant and might cause undesirable
effects: If the set–point̃qt is not achieved over several
iterations thenẼ(n) will grow and required an overshoot
of ẽ(n) in the other direction in order to reducẽE(n) again.
As c2 is not required in this approach to achieve and keep a
correct level ofβ(n) like in formula (1) it is therefore set to
zero in the following sections resulting in a PD controller.

For a fixed q̃t the initial difference can be quite large,
leading to highβ values if the slope is not limited by using
the c1 constant. Instead of using a fixed target quality the
set point for the controller is exchanged by an iteration de-
pendent set–point function, which the controller shall follow.
By evaluation the quality curves in iterative reconstructions
with fixedβ values it was found that exponentially decaying
curves match the characteristics of the quality over the
iterations quite well. One possible explanation can be the
step lengths of the noise reduction that get smaller with
each iteration towards the minimum of the cost function.
Therefore, an empirical choice for the set–point is

q̃t(n) = d0 + e−d1n

where the constantsd0 and d1 are chosen such that the
relative target level̃qt is reached afterNt iterations up to a
tolerance of e.g. of1%. The constantc1 can be used for a
fine–tuning of the controller response. As there are no fast
set–point changes due to the smooth exponential function,
this constant only plays a secondary role and could also be
set to zero.

C. Test Setup

The proposed regularization controlling method was eval-
uated using an separable paraboloid surrogate (SPS) iterative
reconstruction with Gaussian noise model on the line inte-
grals. Huber regularization withδ =2 HU was used. The
update function was

µn+1

j = µn
j +

∑

i

aij

σ2
i

(li −
∑

j

aijµ
n
j ) + β

∑

k

wkjΨ̇kj (~µ)

∑

i

aij

σ2
i

∑

j

aij + β
∑

k

wkjΨ̈kj (~µ)

where aij are the coefficients from the projection matrix,
li are the projection data,σ2

i the variance estimates for
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each projection value, anḋΨkj and Ψ̈kj the derivative and
the curvature for the Huber regularization functions in each
image position with individual weightswkj .

The FBP image was used as an initial image. The data
for the evaluation are helical CT scans with tube currents of
161 mA and 322 mA at 120 kV of an anesthetized pig using
a Philips iCT and a pitch of 53.12 mm/360◦. The iterations
were done in equally distributed projection subsets (ordered
subset (OS) operation) with 20 projections per360◦. For
the reconstruction spherical, symmetric basis functions, also
known as blobs, were used [7], [8].

For the controlling the upper quality level was the es-
timated noise level from the FBP image while the lower
quality level was zero. The constants for the PD controller
werec0=10, c1=0.01, andNt=580, i.e. after 5 full OS SPS
iterations the target level had to be approximately reached.

III. R ESULTS

Fig. 2 shows the FBP reference image as well as the
result for three controlled, iterative reconstructions with
target noise level of75%, 50%, and25% for the 161 mA
and the 322 mA scan. As expected the images qualitatively
incorporate the noise reduction compared to the FBP images.
The images show only approximately the same sagittal slice
as no registration was applied between the images of the
different scans. The overall image impression of the iterative
reconstruction is much sharper than the FBP image. The
noise in the iterative reconstruction has an artificial salt–and–
pepper appearance in particular for small noise reductions
which is mainly due to the Huber regularization. A better
noise appearance could be obtained by fine–tuning the Huber
parameterδ, which was not done here. In Table I and Table II
noise level estimates for several regions of interest (ROI) in
the reconstructed images are shown. The ROIs are located
in different, homogeneous image regions, so that the noise
can be estimated from the standard deviation within the
ROIs. Apparently the noise levels in the ROIs show some
small deviations compared to the desired target level and
the FBP image noise levels. The quality estimator cannot
take into account the different local noise levels, but it only
sees the mean of the global noise distribution. Nevertheless,
the noise in the ROIs matches the desired noise levels very
well. Plots for the values of̃q(n), (q̃(n)− q̃t(n)), andβ(n)
are shown in Fig. 3. The exponentially decaying curves of
q̃(n) clearly show that the controller behaves as expected.
One can also see that theβ values are different for both
scans. The difference between the set–pointq̃t(n) and the
current, relative quality value shows that, apart from smaller
oscillations, the controlled̃q(n) sticks very tightly to the
set–point. The oscillations get smaller over the iterations and
come to a stable amplitude. They do not vanish but follow
the natural, unequal changes of the quality in the images due
to the ordered subset operation, apparent by the oscillation
period of the number of subsets. The values forβ appear in
inverted order in the bottom plot, i.e. a higherβ corresponds
to a lower noise level. Here also some minor oscillations
are visible after reaching the stable set–point. From the

161 mA

FBP

Iterative (75% Noise)

Iterative (50% Noise)

Iterative (25% Noise)

322 mA

FBP

Iterative (75% Noise)

Iterative (50% Noise)

Iterative (25% Noise)

Fig. 2. Reference image and reconstruction results (sagittal slice) for
75%, 50%, and25% estimated noise level relative to the estimated FBP
noise level (C/W = 50/500 HU) for the 162 mA scan (left column) and the
322 mA scan (right column). The shown images are approximately at the
same position for both scans.

161 mA ROI I ROI II ROI III

FBP 32.2 HU 42.9 HU 40.0 HU
75% 28.7 HU 31.8 HU 27.8 HU
50% 21.8 HU 20.0 HU 19.2 HU
25% 12.4 HU 10.0 HU 9.4 HU

TABLE I
NOISE LEVELS ESTIMATED FROM THE STANDARD DEVIATION IN THE

ROIS SHOWN INFIG. 2 FOR THE161MA SCAN.

descendingβ(n) one can see that the controller initially
enforces a faster convergence to the final set–point by using
higher β values. The iterative reconstruction is capable of
changing the noise level this fast, nevertheless some more
tuning of this behavior could be done by changing the target
number of iterationsNt.
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Fig. 3. Plots of the quality metric, the difference between the target
quality and the iterate image quality, and the correspondingβ values for
the 162 mA scan (left column) and the 322 mA scan (right column).

322 mA ROI I ROI II ROI III

FBP 28.3 HU 31.4 HU 27.8 HU
75% 20.2 HU 22.9 HU 21.8 HU
50% 13.9 HU 15.8 HU 15.4 HU
25% 7.8 HU 8.4 HU 7.8 HU

TABLE II
NOISE LEVELS ESTIMATED FROM THE STANDARD DEVIATION IN THE

ROIS SHOWN INFIG. 2 FOR THE322MA SCAN.

IV. D ISCUSSION

In a practical approach for iterative reconstruction with
regularization one could test different, fixedβs and select
the images one likes best or use analysis methods like L–
curves for this task [4]. Alternatively one could examine
the image after each update and decide whether a bit more
or less regularization is necessary in order to achieve a
certain image quality. The latter approach is exactly what
is done with the proposed controlling scheme. The results
in this paper as well as some further testing with other
datasets showed that the controlling is a robust method to
alleviate the problem of selecting the correct regularization
level throughβ. It mapsβ to a meaningful set of parameters
which can be chosen quantitatively in accordance to the
known capabilities of the selected iterative method. In gen-
eral controllers are parametrized and analyzed with system
models, which also allow a stability analysis of the closed
controlled loop. Unfortunately a modeling of the highly non–
linear iterative reconstruction process of arbitrary datasets is
not possible, but using a controller with mainly proportional
properties (c0 ≫ c1) is known to be very stable for most

applications. In conjunction with the chosen quality set–
points the controller is very unlikely to become unstable.
In the worst case whenc0 is chosen way too large the
controlling process will end up in an on/off–behavior for
the regularization, where only the number of regularized
and non–regularized iterations is steered, which would be
equivalent to an alternating minimization. Assuming that
the subsets are large enough so that the alternating OS
operation does not lead to undesired noise patterns, one
would still get sensible results and the correct noise level.
The reconstruction results showed that the method worked
out–of–the–box and gave the expected mean noise levels.
Local deviations from the mean level can be expected
from the spatially dependent rawdata contributions from
the statistical weighting in the reconstruction. Nevertheless,
the target global noise level is achieved quite well. The
evaluation of noise estimating techniques is out of scope for
this work, but the operation range of the estimator has to be
kept in mind especially if it is combined with a controller.
The same is true for the used regularization method, which
must be capable to change the used quality metric. If the
iterative method cannot achieve e.g. 0% of noise due to some
residual errors in the quality estimator, then the controller
will wind up β to arbitrary high values if 0% is chosen as
the target level. From this example it is also obvious that
sensible, target quality values must be chosen.

V. CONCLUSION

The proposed method is a simple extension for itera-
tive, regularized methods where an image quality can be
estimated and then also changed by the regularization, and
which has some practically known convergence properties.
It is not bound to CT reconstructions, but can also be
used for other applications, as it does not use portions
from the iterative methods themselves. This is the case for
most iterative CT reconstructions, which makes the proposed
method a user friendly tool for the parameter selection in
these algorithm classes.
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The Potential Imaging Performance of Differential 
Phase-Contrast CT – NPS(k), MTF(k) and NEQ(k)  
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Abstract—The grating-based x-ray differential phase contrast 
(DPC) CT is emerging as a new technology with the potential 
for preclinical and clinical applications. Via theoretical 
analysis, modeling and phantom simulation study, we 
investigate the signal and noise transfer properties of the DPC-
CT, which are characterized by its modulation transfer 
function MTF(k), noise power spectrum NPS(k) and spectrum 
of noise equivalent quanta NEQ(k), and compare them with 
those of the conventional CT. Preliminary data show that, there 
exist little difference in the signal transfer behavior between the 
DPC-CT and conventional CT, because their MTF(k) are 
determined by detector cell dimension. Moreover, under the 
framework of ideal observer, even though the NPSp(k) of DPC-
CT is of trait 1/|k| and the NPSa(k) of conventional CT is of 
trait |k|, the signal and noise transfer property of DPC-CT – 
NEQp(k) – is virtually identical to the NEQa(k) of conventional 
CT. Through such a thorough investigation, the imaging 
performance of grating DPC-CT and its potential over the 
conventional attenuation-based CT can be fully understood and 
appreciated, which may provide an insightful guidance on the 
design and optimization of DPC-CT for preclinical and 
eventually clinical applications.  

Keywords-CT; x-ray phase CT; x-ray differential phase 
contrast CT; modulation transfer function; MTF; noise power 
spectrum; NPS; noise equivalent quanta; NEQ 

 
I. INTRODUCTION 

The differential phase contrast CT (DPC-CT) implemented 
with x-ray tube and grating is emerging as a new technology 
to improve the contrast sensitivity in x-ray CT imaging [1-4]. 
The initial exploration was relatively qualitative, and a 
significant improvement in the soft tissue contrast in human 
tissue specimens or very small animals was demonstrated [1, 
2]. Recently, the investigation has become increasingly 
quantitative. The noise property of the x-ray tube and grating 
based DPC-CT, such as the pixel-wise gross variance and 
contrast-to-noise ratio, have been reported [3]. However, it 
has been well acknowledged that the pixel-wise quality 
metrics are fundamentally flawed in assessing an imaging 
system’s performance [5, 6].  The subject contrast of soft 
tissue in the x-ray tube and grating based DPC-CT is 
intrinsically determined by its interaction with the x-ray 
beam, while its imaging performance is dependent on its 
transfer properties of signal and noise [7]. The signal 
transfer property of a DPC-CT is dependent on its 

modulation transfer function MTF(k), while its noise 
property can only be thoroughly characterized by the noise 
power spectrum NPS(k) [8, 9], i.e., the variation of noise 
intensity as a function over spatial frequency k. We have 
recently reported [4] that there exist a radical difference in 
the NPS(k) between DPC-CT and the conventional CT – the 
former manifests itself with the trait 1/|k|, whereas that of the 
latter with the trait |k|. It also has been indicated that the root 
cause for such a radical difference is that the detected signal 
is the projection of the refractive coefficient’s derivative, 
which results in a Hilbert filter, instead of the ramp filter, in 
reconstruction using the filtered back-projection algorithms.  

Recognizing the important role played by the spectrum of 
noise equivalent quanta NEQ(k) in the figure of merit (FOM) 
to assess an imaging system’s performance under the ideal 
observer framework [5, 6], we investigate the NEQ(k) of the 
x-ray tube and grating based DPC-CT in this work. In a way 
analogous to what has been conducted in investigating the 
conventional CT’s NEQ(k), we treat the DPC-CT as a linear 
and shift-invariant system. Furthermore, since a Gaussian 
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Figure 1. The schematic diagram of (a) x-ray tube and grating based 
DPC-CT and (b) the Talbot effect for phase retrieval.  
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distribution approaches the Poisson distribution if the 
number of detected x-ray photons is large, the Poisson noise 
in the DPC-CT can be modeled as Gaussian noise. Under the 
Bayesian ideal observer framework, we derive, analyze and 
evaluate the joint signal and noise transfer property of DPC-
CT and compare it with that of the conventional CT, which 
provides an insightful understanding of the DPC-CT’s 
potential imaging performance and the guidelines on its 
performance optimization for extensive applications. 
 

II. CHRACTERISTICS OF SIGNAL AND NOISE 

A. X-ray DPC-CT and its imaging mechanism 
The architecture of a DPC-CT is shown in Fig. 1 (a). G1 is a 
phase grating and G2 an absorption grating. G1 and G2 work 
together as a shearing interferometer to detect the wavefront 
alteration caused by the object in x-ray beam, and an x-ray 
CCD detector is employed for data acquisition. The key 
component of the imaging chain is grating G1, a diffraction 
interferometer based on the Talbot effect [10]. Fig. 1 (b) 
shows how G1 works by virtually decomposing it into 
absorption gratings A and B [4]. The extra optical path of 
grating B relative to grating A is half wavelength, which is 
equivalent to a 180° or π phase shift. The beams 
corresponding to gratings A and B undergo different optical 
paths before they reach the gratings and recombine after they 
pass through them. An interference fringe appears if the 
refraction is different between the paths.  

According to Fresnel analysis [11], the irradiance I(x, z) in 
the CCD detector at location (x, z) is 
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where ∆x is a displacement in x-direction, and φ(x, y) is the 
phase corresponding to ∆x, which is the projection of the 
refractive coefficient along x-ray path Z  
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    Eq. (1) shows that the irradiance depends on the 
derivative of phase variation along the x-axis. After the x-
ray passes G2, the irradiance at detector D is [12] 
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where (dx, dy) is the coordinate in the detector and g2 the 
period of grating G2. Since the object attenuates the x-ray 
beam, one needs to linearly shift G2 along the x-axis for 
phase retrival. Via Fourier Analysis, one can determine a0(dx, 
dy), a1(dx, dy) ϕ1(dx, dy) from eq. (3). Then, one obtains  
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where a0(dx, dy) and ∂φ(x, y)/∂x  are the foundation of x-ray 
attenuation and DPC CT imaging, respectively. Substituting 
the φ(x, y) defined in eq. (2) into eq. (4), we further get 
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where λ is the wavelength of x-ray beam, zT the fractional 
Talbot distance, and g2 the period of grating G2. This means 
that the phase retrieved through a Fourier Analysis of eq. (3) 
is the projection of the refractive coefficient’s derivative, 
and this is the underlying reason that the CT implemented 
with x-ray tube and gratings is called the differential phase 
contrast CT [1].  Once ∂φ(x, y)/∂x and a0(dx, dy) are 
acquired, the corresponding tomographic images of 
attenuation and refraction can be respectively reconstructed 
using the filtered back-projection (FBP) algorithms [13]. 
Since the reconstruction of refraction image can be carried 
out directly from phase derivative ∂φ(x, y)/∂x, the ramp 
kernel is replaced with the Hilbert kernel [14]. 

B. Noise equivalent quanta NEQ(k) of DPC-CT 
The spectrum of noise equivalent quanta of the conventional 
CT has been given in the literature [8, 9, 15, 16] 

(a) 

(b) 

Figure 2. Transverse images of the contrast-detail phantom acquired 
with (a) DPC-CT and (b) conventional CT (exposure: 5×106 
photons/cm2⋅projection; detector cell: 32×32 µm2).  
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Figure 2. The noise power spectra NPS(k) of (a) DPC-CT and (b) the 
conventional CT(detector cell size: 32×32 µm2).  
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In parallel to eq. (6), we have derived the spectrum of noise 
equivalent quanta and noise power spectrum of the DPC-CT  
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where a is the detector cell pitch and b the cell height.  
q0=N0/(abI0) and I0 is the measured photon flux. Parameters 
ε1 and ε2 are defined as the ratio of magnitude of the 1st- and 
2nd-harmonic wave relative to that of the 0th harmonic wave. 
Both eqs. (6) and (7) show that the spectrum of noise 
equivalent quanta of an imaging system is jointly determined 
by its signal (MTF(k)) and noise (NPS(k)) transfer property.  
Note that factor |k| is on the numerator of NEQa(k), whereas 
it is on the denominator of NEQp(k), owing to that NPSa(k) is 
of trait |k|, whereas NPSp(k) possesses trait 1/|k|.  
 

III. PRELIMINARY RESULTS 

Computer simulation is carried out to evaluate the imaging 
performance of the DPC-CT and compare it with that of the 
conventional CT. The simulated x-ray exposure per 
projection view is approximately 5×106 photon/cm2, which 
is comparable to that of a micro-CT for preclinical 
applications. The x-ray photons detected by each detector 
cell observe Poisson distribution. The simulated detector 
cell size is between 32×32 µm2 and 128×128 µm2. A mono-
chromatic x-ray source with an infinitesimal focal spot at 30 
keV is assumed in the simulation.   

A cylindrical contrast-detail phantom is used to evaluate the 
accuracy of modeling in the DPC-CT. Presented in Fig. 2 (b) 
is the result compared with that of the conventional CT in 
Fig. 2 (a). It is observed that, given identical x-ray exposure, 
the DPC-CT implemented with x-ray tube and gratings 
outperforms the conventional CT in the contrast-to-noise 
ratio at high spatial resolution. It is also observed that the 
noise granularity of DPC-CT is quite different from that of 
the conventional CT, and this is the primary reason 
motivating us to further investigate the signal and noise 
transfer property of the DPC-CT. 

A cylindrical air phantom at 37.68 mm diameter is used to 
study the NPS(k) of DPC-CT and compare it with that of the 
conventional CT. Approximately 360 regions, each at 

128×128 matrix, are used to calculate the NPS(k) via 2D 
Fourier Transform. Shown in Fig. 3 (a) is the NPS(k) of 
DPC-CT, while that in Fig. 3 (b) is that of the conventional 
CT. It is observed that the NPS(k) of DPC-CT is of the trait 
1/|k|, whereas that of the conventional CT has the trait |k|. 
This is a radical difference in the noise property between the 
DPC-CT and the conventional CT.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A cylindrical water phantom at 5.0 mm diameter is used to 
evaluate the modulation transfer function MTF(k) of the 
DPC-CT and conventional CT, in which the strategy of ESF 
(edge spread function) → LSF (line spread function) → 
MTF is exercised. Presented in Fig. 4 are the examples at 
detector cell size 32 µm. It is observed that, though their 
imaging mechanisms are quite different, their signal transfer 
properties characterized by the MTF(k) are actually identical.  

Once the noise power spectrum and modulation transfer 
function of the DPC CT and the conventional CT are 
obtained, their spectrum of noise equivalent quanta can be 
readily attained using eqs. (6) and (7). Presented in Fig. 5 
are examples of the spectra of noise equivalent quanta of the 
DPC-CT and conventional CT at detector cell 32 µm. It is 
observed that the spectra of noise equivalent quanta of the 
DPC-CT and conventional CT are almost the same, i.e., their 
signal and noise transfer properties are virtually identical 
under the ideal observer framework.  
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IV. DISCUSSIONS AND CONCLUSIONS 

Via theoretical analysis and computer simulation, we 
investigate the spectrum of noise equivalent quanta NEQ(k) 
– the characteristics of signal (MTF(k)) and noise (NPS(k)) 
transfer property – in the DPC-CT and compare it with that 
of the conventional CT. To exclude the interference by other 
factors, the imaging chain of the x-ray tube and grating-
based phase CT is assumed ideal. The preliminary data show 
that, given detector cell size, the signal and noise transfer 
property of DPC-CT – NEQp(k) – is virtually identical to 
NEQa(k) of the conventional CT, even though the NPSp(k) of 
DPC-CT is of trait 1/|k|, but NPSa(k) of the conventional CT 
is of trait |k|. The reason underlying this fundamental fact is 
that, as shown in eqs. (6) and (7), under the ideal observer 
framework, the 1/|k| “color” in the NPSp(k) of DPC-CT and 
the |k| “color” in NPSa(k) of the conventional CT are “pre-
whitened” by the factor |k| at the denominator of NEQp(k) 
and the numerator of NEQa(k), respectively. However, it 
should be pointed out and emphasized that, in reality, an 
observer is not ideal, and thus the fact that NPSp(k) of the 
DPC-CT is of trait 1/|k| but NPSa(k) of the conventional CT 
is of trait |k| may result in a substantial difference in the 
square signal-to-noise ratio (detectability index) between the 
DPC-CT and conventional CT in the clinical and preclinical 
applications that demand a high spatial resolution. 
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Figure 3. The modulation transfer function MTF(k) of DPC-CT and 
the conventional CT (detector cell size: 32×32 µm2). 

Figure 5. The noise equivalent quanta NEQ(k) of DPC-CT and the 
conventional CT (detector cell size: 32×32 µm2).  
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Mobile C-arm CT for Minimally Invasive Surgery 

Taylor Braun-Jones, Wendell Duncan, and Arvi Cheryauka 

 

 

Abstract—Cone-beam CT is an emerging imaging mode on the 

mobile C-arm in the operating room, used to reconstruct 3-D 

volumes and enable 3-D surgical navigation. With the use of a 

model-based iterative reconstruction technique, we evaluate 

images and show enhancements in their quality compared to 

the results obtained with the analytical method. Based on 

early experiments for minimally invasive spine and cranial 

surgeries, we demonstrate the feasibility of our solution and 

relate it to the existing solutions.  

 

Keywords- cone beam, computer tomography, mobile C-arm, 

model-based iterative image reconstruction 

 

I.  INTRODUCTION  

Over the past several decades, the mobile C-arm has 

become a central imaging tool and an integrated platform 

for image-guided interventions in the operating room (OR). 

Intraoperative imaging with C-arm systems conventionally 

produces 2-D real-time fluoroscopy data. The emerging 

imaging mode in the OR is cone-beam CT (CBCT) to 

produce 3-D anatomical reconstructions and perform 3-D 

surgical navigation [1]. Despite many advances in mobile 

C-arm design, 3-D imaging and anatomy tracking with a 

compact device poses substantial challenges in image 

formation, X-ray assembly position/orientation tracking, 

and computational performance [2]. We apply iterative 

CBCT image reconstruction techniques to mobile C-arm 

data and provide comparative views with analytical 

reconstruction results as well as with results by a 

conventional 360
0
-degree scanning solution [3-4,6]. 

 

II. CBCT ON MOBILE C-ARM 

A. XRII-mounted C-arm 

A standard full-size non-isocentric C-arm is used to 

produce real-time high-resolution fluoroscopic images of 

human anatomy (Fig. 1). Electromagnetic (EM) navigation 

is used in lieu of mechanical encoders to track the position 

of the acquisition assembly [3].  

 

 

T. Braun-Jones, W. Duncan, and A. Cheryauka are with GE Healthcare-

Surgery, 384 Wright Brothers Drive,Salt Lake City, UT, USA 

 

 

 

 

 
 

Fig. 1: GE OEC 9900 C-arm with integrated EM navigation. 
 

 

B. Anatomical cases 

The potential of cone-beam CT technology on a 

mobile C-arm lies in many surgical areas such as 

orthopedic, extremities, spine, sinus, neck, head, neuro, ear, 

breast, thoracic, interventional, brachytherapy, and pain 

management [2]. For example, minimally invasive spine 

procedures include vertebroplasty, pedicle screw, and cage 

placement. For further references in this paper, schematics 

of human lumbar spine and fluoroscopic image of L2-L4 

pedicles are shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2: Correspondence of L2, L3, and L4 pedicles to their fluoroscopic 

image. 
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C. Methods 

We use an iterative reconstruction technique (SART) 

to compensate for positioning irregularities [5-6]. Applying 

Total Variation (TV) regularization improves image 

quality, particularly with angular ranges that are 

significantly less than a traditional CT short scan. A multi-

resolution scheme that dynamically adjusts the size of the 

voxel space and the pixel space where the reconstruction is 

occurring significantly improves performance time on the 

initial iterations.  

A fast-converging gradient descent iterative 

optimization reduces the number of iterations needed [7]. 

The optimal step size required for the gradient descent 

method of TV minimization varies by orders of magnitudes 

as the SART algorithm converges to a solution. Therefore, 

empirically choosing a fixed value for the step size is not 

practical. To solve this problem, we adaptively compute the 

step size based on the median gradient of the input image. 

The median value is used so that the large gradients at the 

sharp anatomical edges do not skew the statistics. The 

result is good indication of the amount of noise which 

corresponds directly to the optimal step size. Empirically, 

we have found that applying a factor of about 0.15 to this 

median value gives a step size that produces images with 

reduced noise while still preserving edges and small 

anatomical details. 

We implement the SART algorithm on a graphics 

processing unit (GPU) [6]. Reconstruction times of less 

than 60 seconds are feasible in the OR.  

 

D. Results 

Axial images of L3 pedicle obtained with the use of 

XRII-based C-arm and the lumbar spine phantom are 

shown in Figure 3.  

 

 

   
 

Fig. 3: An axial reconstruction slice using C-arm data, EM tracking, and 

Left: Filtered Backprojection (FBP) and an isocentric short scan  

Right: SART+TV iterative technique and 1450 non-isocentric scan. 

 

 

Experiments using alternatives to the asymmetric ray- 

and voxel-driven projectors has shown to reduce image 

artifacts. Figure 4 shows the results of using the distance-

driven method comprising symmetric forward- and back- 

projectors [8]. The small FOV and non-isocentric 

acquisitions magnify the truncation artifacts, which also 

need to be addressed. 

 
 
Fig. 4: An axial reconstruction slice using EM tracking, 1450 non-isocentric 

scan, and distance-driven forward- and back-projectors. 
 

E. FPD-mounted C-arm CT prototype 

FPD-mounted system prototype has been built in our 

laboratory over the last few years (Fig. 5). We refer the 

reader to our earlier publications, where the description of 

the system setup and FBP imaging results can be found [3-

4]. 

 

 
 

Fig. 5: FPD-based C-arm prototype, support stand, and anthropomorphic 

head phantom [4]. 

 

III. SKETCHING NEW TECHNIQUES 

A. System components 

Enhancements in the image acquisition capabilities 

comprise an improved X-ray source, a flat-panel detector of 

very low noise floor, fully integrated EM sensors, direct 

software access to high resolution data from imaging 

components, and GPU computational resources.  

 

B. Iterative algorithm 

Model-based iterative image reconstruction is capable 

of delivering superior image quality [9]. The volumetric 

attenuation function f is solved within a generalized 

deterministic algebraic reconstruction technique (ART) by 

minimizing the energy functional in Eq. 1 that can be 

schematically introduced as follows: 
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where E0 is a data misfit functional, Ej, are specific 

stabilizing functionals, λj are the regularization parameters, 

and Ω is the optimization parameter support [10-12].  

The data misfit term in Eq. 1 is defined, using the least 

squares norm, as follows:  
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where D
θ
 is the forward projection (compression capable) 

operator, P
θ
 is the acquired projection, and W

θ
d is the 

projection weighting matrix, S is the image detection area, 

and θ is the projection index. 

The stabilizing terms, Ej, are introduced to incorporate 

edge preservation, denoising, deblurring, and other image 

enhancement features in to the reconstruction process. We 

use a TV stabilizer that is the popular choice for sharpening 

edges and reducing small-to-middle scale artifacts [6,10-

11,13]. E1 term is constructed, using the minimum norm, as 

follows: 

 

11 fW ∇= mE ,   (3) 

 

where Wm is the attenuation model weighting matrix, and    ∇∇∇∇ 

is the gradient-type operator. Other non-linear stabilizing 

filters are investigated in [13]. 

The set of optimization parameters, Ω, in Eq. 1 

consists of the attenuation vector-function f. Other model 

parameters are considered as prior known inputs. In 

particular, cone-beam projection geometry is independently 

obtained by online EM sensoring or, if gantry motion is 

repeatable, by offline calibration [3-4]. Non-negativity and 

upper bound (if a priori known) constraints are applied to 

the reconstructed data through the iterative process. 

 

C. Sensitivity analysis 

The gradient of the data misfit functional in Eq. 2 is 

calculated for three limited-angle acquisitions. Figure 6 

shows the maps for the data simulated over the digital 

Shepp-Logan phantom. 

 

                (a)                                  (b)                                     (c) 
 

Fig. 6: Data misfit sensitivity maps of the data misfit functional (central 

axial slice) for (a) 180o+cone angle, (b) 145o and (c) 120o acquisitions. 

The results in Figure 6 agree with their finite 

difference versions, and converge as distance between 

projections, pixel pitch, and voxel size are decreased. Since 

the Jacobian data defines direction and step size vectors in 

optimization engine, it provides a basis for formation of the 

weighting matrix Wm. 
 

D. Imaging results 

To evaluate the performance of this algorithm, we use 

the re-processed head phantom data under the selected 

acquisition configurations. These results are compared to 

the results computed by analytic method (FBP). The second 

ones are often used as an initial guess in the iterative 

process [6,10-12]. 

Figure 7 captures the differences in handling of 

quantum noise due to decrease of X-ray current (tube 

voltage of 80 kVp is constant) and, correspondingly, the 

number of photons. The iterative results show less 

graininess versus the FBP results. 
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Fig. 7: Analytic and iterative reconstruction images for 8x 
difference in flux of X-ray photons. 

 

Impact on spatial resolution and artifact appearance in 

the reconstructed imagery is shown in Figure 8.  
 

                              148 proj                               37 proj 

 

 

 
Analytic 

 

 

 

 

 

 

 
Iterative 

 

 

 

 
Fig. 8: Analytic and iterative reconstruction images for 4x difference in 

acquisition density. 
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The original projection dataset is reduced from 148 to 37 

equiangular views (total angular range is kept equal to 

180
0
+cone angle). Iterative reconstruction better reduces 

the aliasing artifacts without degrading the edge details. 

Narrowing the angular range in data acquisition 

generally results in global-scale streaking artifacts across 

the reconstructed imagery [10]. The reconstruction results 

for a complete short scan of 180
0
+cone angle and a limited-

angle scan of 145
0
 (angular projection step of 1.3

0
 is 

constant) are displayed in Figure 9. 
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Fig. 9. Analytic and iterative reconstruction results for 1.4x difference 

in angular coverage. 
 

Iterative approach produces less spatial artifacts and can be 

tuned to recover more object details.  

Also, based on early experiments for minimally 

invasive spine surgery, we analyze side by side the imaging 

results obtained with a conventional 360-degree acquisition 

surgical scanner and a C-arm prototype (Fig. 10). The C-

arm test setup comprises a stationary C-arm gantry and a 

programmable rotating stage enabling a similar 360
0
 

scanning trajectory. 
 

 

 

 

 

 

 

 

 

 
Fig. 10. The enlarged cross-view images of the L4 pedicle of the lumbar 

spine phantom obtained with mobile CT scanner (left) and C-arm 
prototype (right). 

 

In both cases, we use an X-ray technique of 120 kVp/ 10 
mA. Conventional scanner’s high-definition mode consists 
of 340 projections. Our 30-second acquisition with 15 
pulses per second totals in 450 projections, and, then, is 
rebinned to 340 views. We apply the iterative image 
reconstruction technique to our data, and, to match 
volumetric resolution, use 512

2
 voxel dimension in the axial 

plane. The approximately co-registered axial slices of the L4 
pedicle are shown in Figure 10. 

IV. CONCLUSIONS 

CBCT is prototyped on XRII- and FPD-mounted 

mobile C-arm platforms. EM tracking is used in lieu of 

mechanical encoders and offline positioning calibration. To 

handle challenges of performing CT on a low-cost mobile 

device, we apply a regularized iterative image 

reconstruction. The iterative results are compared with the 

analytic results in low power excitation, sparse acquisition, 

and limited-angle coverage scenarios for head and spine 

minimally invasive surgeries. Model-based iterative 

method has good potential in delivering superior and 

sustained image quality for interventional surgical 

procedures. 
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Distortion Correction, Geometric Calibration, and
Volume Reconstruction for an Isocentric C-Arm

X-Ray System: Preliminary Studies
B. Spencer, R. Clackdoyle, C. Mennessier, T. Xu

Abstract—Preliminary evaluations were done on volume recon-
structions attained from 100 projection images acquired from a
C-arm image intensifier. Projection images were first corrected
for distortion using a planar grid phantom before a custom
geometric calibration phantom was imaged to calibrate every
projection of the scan. The geometric parameters were then
passed to an enhanced Feldkamp algorithm to perform shortscan
reconstruction incorporating the known geometric fluctuations.
The preliminary studies established the benefit of applying
angle-dependent distortion correction to the projections before
reconstruction.

I. INTRODUCTION

Obtaining accurate 3D image reconstructions is a neces-
sary component of the positron emission real-time tracking
(PeTrack) project at the Carleton University department of
Physics. The aim of PeTrack is to track objects in real time
using very small implanted positron emission markers [1], with
applications in image-guided radiation therapy and surgery.
Accurate co-registration between the 3D positron tracking
coordinates and a 3D anatomical image is essential.

The 3D imaging device is a Siemens Arcadis Orbic C-arm
x-ray system. This system uses a 9 inch image intensifier (II)
to collect projection images over 190◦ for shortscan image
reconstruction of a (12 cm)3 volume at the isocenter (see
Fig. 1). To co-register the positron tracking system with the
volume x-ray reconstructions we will be using a common
3D reference frame defined by a fixed set of markers. These
markers will provide both global positioning information of
the 3D reconstructed images, and positioning information for
each angular position of the C-arm to also allow co-registration
in fluoro-mode. In the context of the work presented here,
these markers are the essential components of the geometric
calibration phantom.

In this paper we describe only the 3D volume component
of the PeTrack project. The isocentric C-arm system is used
to collect shortscan projection views over 190◦. We have
developed and implemented several automated steps: distor-
tion measurement and correction, geometric calibration, and

B. Spencer and T. Xu are with Carleton University, 1125 Colonel By Drive
Ottawa, Ontario K1S 5B6, Canada (e-mail: bspencer@physics.carleton.ca,
txu@physics.carleton.ca

R. Clackdoyle is with the Laboratoire Hubert Curien, CNRS Unité Mixte de
Recherche 5516, 42000 Saint Etienne, France (e-mail: rolf.clackdoyle@univ-
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C. Mennessier is with the Laboratoire Hubert Curien, CNRS Unité Mixte de
Recherche 5516 and Ecole de Chimie Physique de Lyon, 69616 Villeurbanne,
France (e-mail: mennessier@cpe.fr).

Figure 1. The Siemens Arcadis orbic C-arm Scanner

volume reconstruction. The process of distortion measurement
requires the use of a planar grid phantom imaged directly
on the face of the II. Once this measurement is complete
any image acquired under the same specifications can be
automatically corrected. The process of geometric calibration
uses a special 6-ball phantom to calibrate every projection
individually. Once geometric calibration is achieved any image
can be corrected and reconstructed automatically.

Our previous work [2] described our development of the
distortion correction, calibration and reconstruction steps but
tests were performed with a single projection of the C-arm
with angular positions simulated using a rotating turntable. In
this work, full view-by-view distortion correction was applied
to each of the 100 angular views of the C-arm data. We are
now able to operate the system in production mode, and have
performed some preliminary evaluations.

The 3D reconstructed images obtained by this method have
been compared to images reconstructed without first correcting
for II distortion to give an indication of the effects of image
distortion. Further images obtained using our reconstruction
method have been compared with image reconstructions ob-
tained by the Siemens Arcadis Orbic onboard reconstruction
software. Comparisons of volume images or reconstructed
slices of various phantoms was done to visually asses recon-
structed image quality.

II. DISTORTION: MEASUREMENT AND CORRECTION

Image intensifier distortion is a combination of two effects:
pin-cushion distortion and S-distortion. Pin-cushion distortion
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is simply the result of mapping of the curved input screen
to the flat image. S-distortion on the other hand is dependent
on the II’s orientation and location relative to the earth’s and
other local magnetic fields. Because the II rotates 190◦ during
image acquisition these magnetic fields introduce a signif-
icant amount of angle dependant S-distortion which is not
usually compensated during scanner operation. The Siemens
on-board C-arm software corrects for the (view independent)
pin-cushion distortion but not for S-distortion. However, S-
distortion can in principal be measured and corrected for each
position and orientation.

Image intensifier distortion was measured by imaging a
planar grid phantom placed directly on the front of the II.
The x-ray system acquired 100 projection images of the grid
phantom as it rotated 190◦ around the isocenter (see Fig. 2).
Each of the 100 projections was processed using centroids of
the ball images to define grid locations to subpixel resolution.
The grid then partitions each projection into many small
quadrilateral regions in which distortion can be identified and
parameterized. Using a method adapted from [3], a polynomial
function mapped the interior of each quadrilateral region from
the distorted image to an ideal undistorted image. This method
of distortion correction for a single projection was described in
more detail in reference [2]. Following this procedure, all other
distorted projection images were mapped back to the single
ideal undistorted grid using their own set of polynomials for
each region. The polynomials found for every region contained
in all 100 projection images were stored to be used to correct
the distortion in subsequent production scans.

Figure 2. One of the projections of the planar grid phantom imaged directly
on the II

The distortion correction of a single projection was eval-
uated and presented in [2]. The average RMS error in the
distorted projection image was found to be 1.71 pixels while
the average RMS error in the corrected image was improved
to 0.63 pixels.

To inspect the degree of distortion incurred during a 190◦

scan the 100 projection images of the grid phantom before
correction were observed and the distorted grid points of
each projection were plotted as red circles superimposed on
one of the corrected projection images (see Fig. 3). This
image provides a visual description of the magnitude of the
corrections.

The process of measuring distortion requires ImageJ [4] for

Figure 3. Distorted ball locations plotted on corrected projection image #50
to illustrate the magnitude of the distortion. The Inset shows a magnified view
of the top left corner.

image preprocessing, a non-linear χ2 fitting program to define
the ideal grid, and a Matlab program to find the polynomial
coefficients used for mapping. This process required approxi-
mately 5 minutes of computer processing time and about 10
minutes of operator time for all 100 projection images. The
distortion correction procedure was managed automatically
using a Matlab program, taking approximately 25 seconds of
computation time per projection, or about 42 minutes per scan.

III. GEOMETRIC CALIBRATION

Geometric calibration is the process of determining the
exact detector and source locations and orientations during
the scan. Once the geometry of the scanner is known the cal-
ibration information can be used by the image reconstruction
software to process the projections of the production scans.

Figure 4. Geometric calibration phantom. The object is made from 6 balls
suspended from the faces of a cube by aluminum rods with a thin copper
wire around the center of the cube used for positioning.

The geometric calibration process has been adapted from
reference [5] with a modified calibration phantom designed for
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our C-arm geometry. The phantom was composed of 6 steel
balls extended from the center of a cube by aluminum rods of
differing lengths k: kx = 30mm ky = 40mm kz = 50mm
(see Fig. 4). More information on the design of the cali-
bration phantom and the principles of the calibration can be
found in [6]. The calibration phantom was scanned using our
standard protocol of 100 projections over 190◦ shortscan (see
Fig. 5). The projections were corrected for distortion using
the procedure described in section II above. Each projection
was then processed to obtain 9 geometric parameters for
the corresponding scanner position. These parameters were
obtained in the reference frame defined by the phantom.

Figure 5. One of the projection images of the geometric calibration phantom
suspended in a plastic cylindrical case

ImageJ [4] was again used for automated image processing
to identify each ball and find the (u, v) detector positions for
the 6 balls in each projection. The subsequent extraction of
the 9 geometric parameters per view was performed automat-
ically using direct mathematical formulas from the 6 detector
positions (12 scalars). This geometric calibration process is
fully automated such that the operator interaction time was
negligible and CPU processing times to find the (u, v) ball
locations and extract the geometric calibration parameters was
virtually instantaneous.

IV. VOLUME RECONSTRUCTION

Volume reconstruction was accomplished using the Feld-
kamp algorithm [7] modified to use Parker shortscan
weights [8]. The geometric calibration parameters used for
reconstruction were first re-expressed from the calibration
phantom reference frame to the circular trajectory reference
frame by calculating the best circle through the x-ray source
trajectory using an orthogonal least squares method. After
this rotation, the calibration parameters were directly fed into
the reconstruction program. As described in [9], the filtering
steps of the reconstruction were not adjusted for the small
perturbations measured by the calibration procedure, but each
filtered projection view was backprojected precisely according
to the geometric calibration parameters.

At this stage no compensation for transaxial truncation and
no ROI reconstruction theory [9] was applied.

V. PRELIMINARY EVALUATIONS

Projection images of several phantoms have been acquired,
corrected for distortion and reconstructed using the previously
obtained geometric calibration parameters.

A high resolution image of the geometric calibration phan-
tom has been reconstructed and shown in volume view rep-
resentation to give an indication of the overall validity of the
reconstruction(see Fig. 6). The figure can be visually compared
with a photograph of the phantom in Fig. 4. The phantom
was reconstructed using projection images with distortion
correction as well as without correction to show the effects
of distortion. These reconstructions were compared with the
reconstruction done by the C-arm on-board system of the
same scan. The slice view in the x direction of the three
reconstructions is shown in Fig. 7 in which all reconstructions
have the same voxel size. The on-board reconstruction applied
a heavier smoothing filter, and indicates some truncation
compensation (no bright ring). The effects of distortion can
be clearly seen in both the reconstruction without correction
and in the on-board Siemens reconstruction.

Figure 6. Volume view of a high resolution reconstruction of the geometric
calibration phantom (Voxel size: (0.245mm)3)

A planar resolution phantom was also scanned and re-
constructed using projection images both with and without
distortion correction. Fig. 8 shows the slice view in the x
direction of the phantom reconstructed with high resolution.
The images in Fig. 8 are an average of a series of 23 sequential
x slices in order to show the full depth of the planar resolution
phantom. The vertical resolution pattern does not appear to
have much difference, however, the horizontal pattern and the
clarity of the number scale shows much improved quality in
the reconstruction with distortion correction.

Lastly, a hand phantom was imaged and reconstructed to
give an indication of the quality of the reconstruction of
a clinical object. The hand phantom shown in Fig. 9 is
composed of the bones of a human hand encased in Lucite
to mimic tissue. A slice of the hand phantom reconstructed
with distortion correction and reconstructed by the Siemens
on-board system is shown in Fig. 10. The distortion corrected
reconstructed slice is observed to have more clearly defined
edges around the bones while the Siemens reconstructed image
is visibly smoothed. The same reconstructions can be seen
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Figure 7. X direction slice view of the reconstructed geometric calibration
phantom: (top) Reconstruction with distortion correction, (middle) Recon-
struction without distortion correction, (bottom) Reconstruction done by on-
board system (Voxel size: (0.49mm)3)

in volume view in Fig 11. In these images the same view
of all the slices of the hand phantom are displayed to show
the entire bone structure of the hand. All volume view image
parameters were identical between the two images except the
threshold level which was slightly adjusted to show only bone
with little to no tissue. Improved resolution is apparent as
the intricacy of the bone structure is much more visible in
the distortion corrected reconstruction. The truncation effects
around the edge of the field of view, however, are prominent
in the distortion corrected reconstruction, which is seen as a
bright partial ring around the image. The Siemens on-board
reconstructed image in volume view is again smoothed with
less obvious truncation effects observed as blurring of the
image around its edges.

Figure 8. X direction slice view of the reconstructed resolution phantom:
(top) Reconstruction with distortion correction, (bottom) Reconstruction with-
out distortion correction (Voxel size: (0.245mm)3)

Figure 9. Hand phantom composed of bone encased in Lucite.

VI. CONCLUSION

Our preliminary evaluations have shown that distortion cor-
rection is required in order to achieve the best image quality.
Our method of correcting for S-distortion is a process that the
on-board Siemens system cannot do without a procedure to
measure the local magnetic field strength of each individual
scan. Consequently, improved resolution of reconstructed im-
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Figure 10. X direction slice view of the reconstruction of the hand phantom:
(top) Reconstruction with distortion correction, (bottom) Reconstruction done
by on-board system (Voxel size: (0.49mm)3)

ages has been shown. Additionally, this work marks the first
time this particular geometric calibration method [5] has been
validated with real data.

The distortion correction process is a lengthy and time
consuming procedure which has been reduced to a reasonable
amount of time. The geometric calibration process is fully
automated and the obtained parameters are fed directly into
the Feldkamp reconstruction method. The automated data han-
dling makes the process of distortion correction and geometric
calibration computationally and logistically feasible for all
prospective work.

Future work will involve increasing the speed of the cor-
rection process by using another programming language for
execution. Further work will be done to attempt to reduce
truncation effects by smoothing projection images around the
field of view. The image quality desired for accurate co-
registration and tracking with PeTrack has been achieved.
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Low Dose Perfusion CT 
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 Abstract– Perfusion CT imaging, with today’s multi-detector 

technology and rotation speed, has great potential to become 

extensively used for both diagnosis and treatment of diseases.  

However, high dose and the lack of standardization of protocols 

are limiting this potential.  We would like to show that the x-ray 

dose of CT perfusion scans can be significantly reduced without 

sacrificing clinical accuracy.  This would greatly facilitate the use 

of perfusion CT as a routine diagnostic tool, and would extend 

the applications of perfusion CT where dose is a limiting factor, 

e.g. cardiac perfusion.  To significantly reduce the dose, we 

propose to use a novel dynamic collimator, a predictive sampling 

algorithm, and a predictive exposure algorithm.  Combining 

these three approaches, we will show, as an example, in the case 

of kidney perfusion applications, that a 10:1 reduction in patient 

exposure can be achieved without sacrificing diagnostic accuracy.  

We think that, along with consistent protocols and further 

improvements in CT scan technology, this will enable perfusion 

CT to become a routine diagnostic tool. 

 

I. INTRODUCTION 

ith its widespread availability and experience, accessibility and 

ease of acquisition in acute settings, straightforward 

mathematical modeling, simple protocol modification, along with the 

advent of fast multi-slice scanning, perfusion CT should be in a great 

position to be used in clinical practice.  Applications include stroke 

assessment1, oncology2,3, along with cardiac4 and kidney function5.  

However, primarily due to the high dose, perfusion CT has not been 

routinely used for these applications.  Current perfusion protocols 

scan the patient as often as once per second for a period of 70 

seconds and expose the entire patient volume (up to 16 cm axially). 

  Our goal is to demonstrate that the dose in perfusion CT can be 

greatly reduced without impacting diagnostic accuracy.  Three 

approaches are investigated, including: 

 

1. Use dynamic collimation to expose the patient to just the 

area of interest 

2. Use a predictive sampling algorithm based on the arterial 

input function (AIF) to acquire carefully-selected sparse 

samples of the perfusion curves 

3. Use a predictive scan exposure algorithm based on the AIF 

to minimize the exposure of each scan to what is necessary 

II. METHODOLOGY 

Either repeated large area circular scans or helical scans are used to 

perform perfusion CT.  In the case of helical scans, a dynamic 

collimator that limits the x-ray exposure, axially, at either end of the 
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helical scan is already being utilized6,7.  We propose to add a 

dynamic collimator (Fig.1) in the transverse plane in front of the x-

ray source that further limits the x-ray exposure to just the region of 

interest (ROI), as illustrated in Fig. 2.  Fig. 3 illustrates how this 

dynamic collimator can define the outline of the heart, limiting the x-

ray exposure to just the heart itself. 
 

 
 

Fig. 1.  Dynamic collimator with independent right and left leaves. 
 

 

 
Fig. 2.  Dynamic collimator positioned at 0 and 90 degrees for a 10 cm off-

center ROI surrounding the heart. 

. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3.  Cardiac VOI defined by both the dynamic transverse and helical 

collimators. 

 
After analyzing the dynamics9, we feel it is feasible to build such a 

collimator, provided that it is placed close to the x-ray source (12 cm 

or less) and the motor controller is upgraded (about a factor of four 

faster than the helical collimator). 

As illustrated in Fig. 4, attenuation information is necessary from 

the tissue surrounding the collimated ROI due to the extent of the 

convolution required to reconstruct the image.  This can be 

accomplished in two recommended ways: 

W 

 

 

 

 

48 cm FOV 

16 
cm 

Cardiac VOI 

ROI within 
scanned volume 
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1. Use a previously-acquired very low dose scan  (with 

registration) to measure the attenuation outside the VOI 

2. Use heavily-attenuated rays through the outer portions of the 

collimator.  This provides an estimate of the attenuation 

outside the VOI, provided the collimator attenuation is 

previously calibrated8 

 

 
 

Fig. 4.  To reconstruct the region-of-interest, attenuation values 
surrounding the ROI are required. 

 
 To calculate the reduction in exposure that can be achieved using 

transverse dynamic collimation, we approximate the boundaries of 

both the body and target ROI with ellipses, as illustrated in Fig. 5 for 

a cardiac scan in which the target ROI corresponds to the entire 

boundary of the heart.  The scan is that of an XCAT phantom 

described by Zhicong et al11. 

 The figure illustrates the geometry used to calculate the exposure 

at any designated point in the body, namely points along the 

boundary of the body and the point at the center of the target ROI.  

The boundary points are exposed either directly (top image), or 

exposed indirectly (middle image), with the body attenuating the x-

rays by a path length (1-p) measured relative to the known path 

length p0.  The point at the center of the target ROI (bottom image) is 

also exposed indirectly, with the body attenuating the x-rays by a 

path length (1-p) measured relative to the known path length from the 

source to the center of the ROI. 

 Given the source radius (57 cm), source angle, and point on the 

body ellipse, the path length p relative to the distance p0 can be 

calculated as a solution to a quadratic equation resulting from the 

condition that the entrance point of the ray also satisfies the equation 

for the body ellipse10.  The exposure at the center of the target ROI is 

calculated as a reference for the skin exposure values.  In this case, 

p0 corresponds to the path length to the point at the center of the 

target ellipse and p is calculated as the relative path length to the 

point on the body ellipse.  Since the exposure is measured at the 

center of the target ellipse, the same value applies whether or not 

dynamic collimation is used. 

A compensator in front of the X-ray source, used in most CT scans 

today, provides a more uniform signal to the detector and reduces the 

overall dose to the patient.  We therefore modeled a compensator that 

perfectly compensates for a disc with a radius rc of 24 cm and an 

attenuation coefficient equal to water (.183/cm at 80 KeV, 

approximately the average energy for a typical CT system performing 

120 KeV scans). 

 

 
 

Fig. 5.  Geometry for a ray at angle α exposing the skin either directly (top 

image) or indirectly (middle image), or exposing the center of the target ROI 

(bottom image).  The ray emanates from the x-ray source located at a distance 
S and angle θ with respect to scan center. 

  
As an initial approximation, the water attenuation value of .183/cm 

was also assumed for all path lengths throughout the body.  The 

exposure for each of 100 points equally spaced in angle β on the 

surface of the body ellipse was calculated for 1000 angular views, θ, 

of the source covering 360 degrees.  These exposure values were then 

averaged over the 1000 views.  Likewise, the exposure at the center 

of the target ROI, was averaged over 1000 views.  This provided a 

reference for the skin exposure values. Thus all overall skin exposure 

values are measured as a ratio with respect to the exposure at the 
center of the target ROI. 

The resulting skin exposure is then calculated as an average value 
over 360 degrees of the angular position (θ) of the x-ray source: 

 

                                  

    

   

             

where: 
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β = the angle of the point on the body ellipse 

θ = the source angle 
α = fan angle of the ray intersecting the point on the body ellipse 

                     
                     

                                   
p is the path length to the entrance point on the body ellipse relative to p0 
p0 is the path length to the selected point on the body ellipse 

 

The average relative skin exposure is then the average of the 

exposure for all points around the body ellipse divided by the 

exposure at the center of the target ROI. 

For the average collimated exposure, the same exposure equation 

is used, but with the intensity set to zero for all ray angles whose fan 

angle exceeds that of the range of angles spanned by the two rays that 

intersect the tangents to the target ellipse, i.e.: 

 
                                           

 
AC is the clockwise angular position of the collimator leaf for source angle θ 

ACC is the counter-clockwise angular position of the collimator leaf 
 
 With regards to the predictive sampling algorithm, the number of 

scan samples can typically be reduced by a factor of four as 

illustrated in Fig. 6 by using an algorithm that adaptively varies the 

sampling along the AIF which, in this example, corresponds to the 

Left Ventricular Input curve: 

 

 
 

Fig. 6.  Adaptive sampling using the LV Input curve. 

 
The predictive algorithm is based on the following steps: 

 

1. The first scan takes place at time t=0; proceed to scan 

every two seconds, looking for the rise in the arterial 

curve above a predefined threshold TH, e.g. 35 HU 

2. After the rise in the curve, track the slope of the curve 

(using a finite difference) until the magnitude of the 

slope decreases 

3. Scan every second until after the peak of the arterial 

curve (value of the slope becomes negative), then 

proceed to scan every 2 seconds 

4. After the inflection point (when the magnitude of the 

slope again decreases), double the scan interval after 
each subsequent scan (since this is the slowly 

descending exponential portion of the curve, only very 

sparse sampling is required) 

5. When the end of the predetermined scan period is 

reached, perform one final scan to complete the 

sampling of the arterial curve 

 
The predictive scan exposure algorithm (illustrated in Fig. 7), also 

significantly reduces the overall exposure to the patient: 

 
 

Fig. 7.  Adaptive exposure control based on the LV Input curve. 

 
 Given the maximum and minimum ma allowed, the predictive 

scan exposure algorithm again follows a list of steps as follows: 

 

1. Scan at the maximum current, e.g. 200 ma, until the rise in 

the arterial curve is detected (as described above) 

2. Reduce the applied current (using the predetermined 

contrast detection threshold TH), by multiplying the 

maximum current by the following factor F: 

 

                  

  where: 

C = .25 

(minimum allowable ma)/(maximum ma) < F < 1 

ΔHU = the difference of the Houndsfield Unit value of the 

curve and the baseline value corresponding to the first HU 

value of the curve 

(C is chosen such that if the arterial curve rises 10 times 

above the threshold TH (35 HU), the current is reduced by 

10:1.  For example, if the attenuation is 450 HU and the 

baseline is 100 HU (ΔHU=350), then the current will be 

decreased from a maximum of 400 ma to 40 ma) 

3. Continue using the x-ray current determined by the above 

formula for the rest of the series 

 
To validate the accuracy of the perfusion analysis after applying 

the sub-sampling algorithm, we have chosen to use a kidney 

perfusion study, originally acquired using 60 seconds of 8 cm circular 

scans, repeated every second.  Each scan was acquired with a tube 

current of 200 ma.  The derived perfusion parameters included the 

mean arterial transit time (MTTa), the renal plasma flow (RPF), and 

the glomerular filtration rate (GFR).  The ROIs chosen to generate 

the curves used to calculate these parameters included the cortex of 

the kidney and aorta.  The parameters derived from the original data 

were compared to those derived from the sparsely-sampled data 

(using the above predictive algorithm).  Finally, the overall exposure 

reduction was calculated using the exposure estimate based on the 

dynamically collimated ROI (an elliptical region surrounding both 

kidneys and aorta), the sparse sampling, and the average exposure 

due to the modulated tube current. 

III. RESULTS 

One of the cases used in the evaluation is shown in Fig. 8, 

including (left) the collimated ROI, the ROIs for the cortex and aorta, 

and (right) the 16 subsamples chosen out of 60.  The minimum 

current was 40 ma, occurring at the peak of the AIF curve, and the 

maximum current was 200 ma, used at the beginning of the scan. 
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Fig. 8.  Kidney perfusion evaluation showing ROIs, corresponding AIF and 

tissue curves, scan subsamples (vertical red lines), and dynamic ma values. 

 
 The following tables provide the results for the 2 kidney studies 

that were evaluated (maximum deviation in MTTa|RPF|GFR values 

is 5% and the average overall exposure reduction is 10.5:1): 

 

Table 1a MTTa/RPF/GFR 

Sub-sampling 

(Case I) 

8.5|144|34 

8.3|141|36 

 
Table 1b Case I Case II 

Sub-sampling Exposure 

Reduction 

3.8:1 3.8:1 

Current  Modulation 

Exposure Reduction 

1.5:1 1.5:1 

Dynamic Collimation 1.6:1 2.1:1 

Overall Reduction 9.1:1 12:1 

 
Table 1a.  Kidney perfusion evaluation comparing MTTa/RPF/GFR values for 

fully-sampled (top) versus sub-sampled data (bottom).   Table 1b.  The 

calculated skin exposure reduction due to sub-sampling, current modulation, 

and dynamic collimation.  The average overall reduction is 10.5:1 

IV. DISCUSSION 

The current protocol for the kidney studies used in this evaluation 

is as follows: 

 

1. Perform low dose reference scan 

2. Identify axial location and extent for perfusion series, 

insuring the required ROIs can be identified 

3. Perform 60 second perfusion series, scanning every 

second for 60 seconds 

 

The corresponding new low dose protocol would be as follows: 

 

1. Perform low dose reference scan 

2. Identify axial location and extent as well as the arterial 

VOI used to define the motion of the transverse dynamic 

collimator.  Insure tissue ROI(s) can be identified. 

3. Perform 60 second perfusion series, performing 

predictive sampling and current modulation based on the 

AIF as it is being acquired.  The collimated regions can 

then be reconstructed using attenuation information from 

the surrounding tissue calculated from the original low 

dose reference scan.  

 

Based on our results, this new protocol should provide comparable 

diagnostic results as the original protocol, with one-tenth the dose. 

If possible, we recommend using VOIs that utilize more than one 

slice to provide the best statistics for the perfusion curves.   To take 

care of motion that occurred between the reference scan and 

perfusion series, registration should be performed for the tissues 

containing the VOIs.  Motion correction between all images acquired 

in the series could also significantly improve the quality and accuracy 

of the perfusion curves (note the oscillations in the tissue curve in 

Fig. 7 that repeat approximately every three seconds, most likely due 

to breathing motion).  This should permit lowering the dose even 

further while retaining the statistical accuracy of the perfusion curves 

and achieving comparable diagnostic results. 

V. CONCLUSION 

Based on the techniques proposed, a 10:1 reduction in x-ray dose can 

be expected for kidney perfusion scans.  Future work will include 

extending the evaluation to other perfusion applications, including 

the pancreas, liver, and heart.  Additional dose-saving methodology 

will be explored, including the use of motion-correction to improve 

the accuracy of the low dose perfusion curves.  Faster helical 

coverage using both dynamic transverse and helical collimators, 

along with sparse sampling and dynamic current modulation, should 

enable perfusion CT as a routine diagnostic tool.  
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Analysis of bias induced by various forward
projection models in iterative reconstruction

K. Schmitt, H. Schöndube, K. Stierstorfer, J. Hornegger, F. Noo

Abstract—Discrete representation of the CT image is a major
step in the design of iterative reconstruction algorithms, par-
ticularly because the decision being made at this level affects
both bias and noise properties of the reconstruction, in addition
to choices made later in the algorithm design. In this work,
we examine the bias induced by popular image representation
models, namely Joseph’s method and the basis function approach
relying on B-splines and blobs. Our preliminary results highlight
a common weakness in terms of overshoot and undershoot
artifacts at sharp boundaries. They also show that the Blobs
may perform only as well as the B-spline of order two in terms
of bias, and that Joseph’s method tends to produce results that
are fairly comparable to the B-spline of order one, with a slight
advantage in favor of the latter.

I. I NTRODUCTION

Discrete representation of the CT image is a major step in
the design of iterative reconstruction algorithms. Two com-
monly used techniques to represent the image with a finite
number of unknowns are the sampling approach and the basis
function approach. In the sampling approach, the image is
represented by its values at a fixed number of locations that are
typically equidistantly distributed in the direction of Cartesian
coordinates. In the basis function approach, the image is
represented by a finite linear combination of specific functions
that are often selected as scaled and translated versions of a
single function, called the mother function. Popular mother
functions include the blobs [1] and the B-splines [2].

Since the basis function approach yields a continous model
for the image, the definition of line integrals modelizing the
CT measurements is straightforward when using this approach.
For the sampling approach, the situation is different: defining
line integrals with this approach requires the introduction of
a numerical scheme. One widely-used scheme was suggested
by Joseph [3]. Another more recent scheme that is gaining
interest is the distance-driven technique suggested by De Man
and Basu [4]. Note that both schemes process line integrals
differently according to their slope, with the caveat that the
involved approximation is usually less accurate for lines that
are at 45 degrees relative to the Cartesian grid of samples used
to represent the image.

Naturally, the performance of iterative reconstruction meth-
ods is affected by the choices made to represent the CT image

K. Schmitt, H. Schöndube and K. Stierstorfer are with Siemens AG, Health-
care Sector. J. Hornegger is with the Pattern Recognition Lab, University of
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necesarily represent the official views of the NIH.

and to model the CT measurements from this representation.
Both bias and noise properties of the CT reconstruction can
change dramatically according to these choices, as illustrated,
for example, in [5], for the selection of parameters defining the
blobs. In this work, we are interested in evaluating the bias
induced by such choices. We will compare results obtained
using blobs and B-splines together with results obtained using
Joseph’s method. The study is limited to two-dimensional CT
imaging. In section II, we give a brief review on B-splines
ans blobs. In section III, we present our experimental setting.
Last, in section IV, we present and discuss preliminary results.

II. I MAGE REPRESENTATION USING BASIS FUNCTIONS

Here, we briefly review the basis function approach.
Throughout this section and the rest of this abstract, we
use f(x, y) to denote the function that describes the linear
attenuation coefficient of X-rays as a function of the position
within the field-of-view of the scanner.

A. General concept

In the basis function approach,f(x, y) is approximated by
a linear combination of basis functions denoted asfa(x, y).
When the basis functions are defined from a mother function,
b(x, y), the expression forfa(x, y) is as follows:

fa(x, y) =
∑

k,l

ckl · b((x − xk)/∆x, (y − yl)/∆y) (1)

where theckl are the basis function coefficients to be es-
timated. In this expression, the locationsxk = k ∆x and
yl = l ∆y are samples on a Cartesian grid of sizeNx × Ny

with steps∆x and ∆y in x and y, respectively. Often,∆x
and ∆y are selected to be equal. We make this assumption
here and leth = ∆x = ∆y.

B. Line integrals

When using the basis function approach to represent
f(x, y), the Radon transform off , denoted asr(θ, s), is simply
approximated by the Radon transform offa(x, y), denoted as
ra(θ, s). The linearity of the Radon transfrom yields

ra(θ, s) =
∑

k,l

ckl · g(θ, (s − xk cos θ − yl sin θ)/h) (2)

whereg(θ, s) is the Radon transform ofb(x, y).
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C. B-splines

The B-splines are simple piecewise polynomial functions.
They are defined by a single parameter: the degree,n, of
the polynomial. The centered B-splineβn

h of degreen and
of width h is the (n + 1)-th convolution of the normalized
box function,β0

h, with itself, i.e.,

βn
h (x) = β0

h ∗ βn−1

h (x) = β0

h ∗ · · · ∗ β0

h
︸ ︷︷ ︸

n+1factors

(3)

with

β0

h(x) =

{

1/h, if − h/2 ≤ x ≤ h/2
0, otherwise

(4)

Using B-splines in the basis function approach means that
b(x, y) = βn

h (x)βn
h (y) is chosen. Let the one-sided power

function be defined by

xm
+

=







xm, x ≥ 0 andm > 0
1, x ≥ 0 andm = 0
0, otherwise

(5)

Using this definition, it was shown in [2] that the Radon
transform ofb(x, y) is

g(θ, s) =

n+1
∑

i=0

n+1
∑

j=0

(−1)i+j

(

n + 1

i

)(

n + 1

j

)

·

[

s + (n+1

2
− i) · h1(θ) + (n+1

2
− j) · h2(θ)

]2n+1

+

(2n + 1)! (h1(θ)h2(θ))n+1

(6)

where h1(θ) = h | cos θ| and h2(θ) = h | sin θ|. Note that
using the B-spline of ordern = 0 for image representation is
equivalent to adopting the approach of Siddon [6].

D. Blobs

The blob function is given by the following one-dimensional
expression

γm,a,α(r) =















(

1 − r2

a2

)

m

2
Im

„

α

q

1− r
2

a
2

«

Im(α)
if 0 ≤ r ≤ a

0 otherwise
(7)

wherer is the radial distance from the blob center,a is the
radius of the basis function,α is a parameter controlling the
blob shape, andIm is the modified Bessel function of orderm.

Using blobs in the basis function approach means that
b(x, y) is chosen asγm,a,α(r) with r =

√

x2 + y2. Given
this definition, g(θ, s) is independent ofθ, zero for |s| > a,
and expressed as

g(θ, s) =

„

2a2π

α

«

1
2

„

1 −

s2

a2

«

m

2
+

1
4

I
m+

1
2

»

α
“

1 −
s
2

a2

” 1
2

–

Im [α]
. (8)

for |s| < a. Following the recommendations in [5], we chose
m = 2, a = 2 andα = 10.4.

III. E XPERIMENTAL SETTING

In this section, we describe the setting used for evaluation
of the reconstruction bias and thereby compare the accuracy
of various image representation models.

A. Phantom and data geometry

The FORBILD head phantom was used for all our evalu-
ations. Also, a parallel-beam data acquisition geometry was
assumed. Each CT measurement was simulated as an av-
erage of five line integrals that were calculated each using
analytical expressions. The average was introduced to model
the finite detector response (disregarding non-linearity effects)
and reduce thereby high-frequency errors in the reconstruction
process. The parameters defining our simulations are given in
Table I.

B. Iterative reconstruction technique

Evaluating the bias in iterative reconstruction is not straight-
forward when the algorithm is non-linear. To circumvent this
difficulty, we adopted a statistical model with no prior term.
More specifically, the CT measurements were modelled as
independent Gaussian deviates, and we seeked the maximum
likelihood solution of minimum norm. Also, we assumed that
the noise was stationary, which is a reasonable assumption for
brain imaging with tube current modulation and beam-shaping
bowtie filter.

Let c be the vector of unknown image coefficients, letg
be the vector grouping the CT measurements, and letA be
the matrix that linksc to the CT measurements. Using this
notation, the desired reconstruction can be expressed as the
minimum-norm minimizer of‖Ac − g‖. This reconstruction
was seeked using the Landweber algorithm, i.e., using the
following iterative procedure:

c(k+1) = c(k) + λAT (g − Ac(k)) , (9)

where the convergence-controlling factor,λ, was chosen as
0.95 times2/σ2

max, where σmax is the maximum singular
value of the projection matrixA. Thus, convergence was
guaranteed and nearly as fast as possible. The quantityσmax

was computed using five iterations of the power method.
As it is well-known, resolution improves with the number

of iterations, but discretization errors also increase at the
same time, so that the maximum-likelihood reconstruction is
not satisfactory. Hence, we focused on examining regularized
reconstructions obtained by stopping the iterative process after
a fixed numberm of iterations.

C. Bias evaluation

Bias was evaluated using visual inspection of images and
profiles, and also by calculing the reconstruction error over
pixels located within the large central low-contrast ellipse
within the phantom. The error was computed as the abso-
lute difference between the reconstructed value and the true
attenuation value for this ellipse, which is 1.045 (45 HU ).

D. Resolution measurement

As discussed earlier, resolution in the reconstruction typ-
ically improves with the number of iterations. To evaluate
resolution, we opted for the modulation transfer function
(MTF). Computation of this function was performed with
the following steps: (i) a phantom that consists only of the
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image discretization CT measurement
matrix size 350 × 350 700 × 380

(Ny × Nx) (views × rays-per-view)
sampling step ∆x = ∆y = 0.075 ∆s = 0.075

TABLE I
IMAGE REPRESENTATION AND CT MEASUREMENT PARAMETERS.

low-contrast ellipse within the FORBILD head phantom was
defined, (ii) CT measurements for this ellipse were generated
in the same way as measurements for the full phantom,
(iii) reconstruction was performed from these measurements,
(iv) an edge profile that gives the reconstructed value as a
function of the distance from the ellipse was computed from
the reconstruction, (v) the MTF was obtained as the Fourier
transform of the edge profile.

Given the linearity of the chosen reconstruction method,
the methodology above was suitable for assessment of the
resolution achieved within the neighborhood of the large
low-contrast ellipse in reconstructions of the FORBILD head
phantom.

IV. PRELIMINARY RESULTS AND DISCUSSION

First, we examined the reconstructions obtained using both
a small and a large number of iterations, which were chosen
as 250 and 850. Figure 1 shows the reconstruction results
obtained using 250 iterations, and Figure 2 shows a vertical
profile through these results, which passes through the left
eye. Figures 3 and 4 shows the reconstruction results and
profiles for 850 iterations. These figures highlight significant
differences between the different image representations. They
also show that, irrespective of the selected representation,
increasing the number of iterations amplifies the magnitude
of overshoots and undershoots errors at the sharp boundaries
while reducing their spread; note that these errors are present
despite the low-pass filtering that was applied in the data
simulation process.

Figure 5 shows the MTF curves corresponding to each
image representation for both 250 and 850 iterations. From
these plots, it can be seen that, not unexpectedly, resolution
varies from one representation to the other and also changes at
a different pace for each representation. For a fair comparison,
it is needed to take these differences into account. An attempt
at such a comparison is shown in Figure 6, where the bias
metric discussed in section III.C is displayed as a function of
the mean MTF value.

Under the assumption that the mean MTF value is ac-
ceptable as a summary measure for resolution, the following
observations can be made from Figure 6, some of which were
already well-known:

• The B-spline withn = 0 produces the largest bias.
• Joseph’s method performs almost as well as the B-spline

of ordern = 1, with a slight difference in favor of the B-
spline that is most likely due to Joseph’s method yielding
a reduced accuracy along lines that are at 45 degrees.

• The B-spline of ordern = 2 performs as well as the
blobs.
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Fig. 5. left: Modulation transfer function (MTF) for reconstructions based on
250 and 850 iterations of the Landweber algorithm, using the basis function
approach with the blobs and the B-splines, and also using Joseph’s method.
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Fig. 6. left: Bias-versus-resolution curves obtained by varying the number
of iterations by steps of 5. The bias is expressed in HU.

• The B-spline of ordern = 3 outperforms the blobs.

In future work, we will examine closer the impact of the
summary measure being chosen for the MTF curve, and
we will also extend our study to include the distance-driven
technique [4].
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Fig. 1. Reconstruction using 250 iterations of the Landweber algorithm, using Joseph’s method (top row, left image); using the B-splines of ordern = 0

(top row, middle image),n = 1 (top row, right image),n = 2 (bottom rowm, left image) andn = 3 (bottom row, middle image); and using the blobs (bottom
row, right image). Grayscale: [1,1.1].
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Fig. 2. Profile through the left eye for the reconstructions based on250 iterations. Same arrangement is as in Fig. 1.
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Fig. 3. Iterative reconstruction using 850 iterations of the Landweber algorithm. Grayscale: [1,1.1]. Same arrangement is as in Fig. 1.
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Fig. 4. Profile through the left eye for the reconstructions based on850 iterations. Same arrangement is as in Fig. 1.
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Visualizing the Segmentation Error of a Tomogram
using the Residual Projection Error

Tom Roelandts, Kees Joost Batenburg and Jan Sijbers

Abstract—Tomographic reconstructions are often segmented
to quantify structure parameters. However, to our knowledge,
no efforts have yet been made to visualize the accuracy of the
segmentation result. This paper introduces a way to visualize the
segmentation error, based on the residual projection error, which
is the difference between the recorded data and the forward
projection of the segmented tomogram. From the residual projec-
tion error, a segmentation error tomogram is reconstructed. This
error tomogram allows to detect errors in the gray levels of the
segmented tomogram, or to discriminate between reconstruction
artifacts and actual features of the scanned object. The proposed
technique is independent of the algorithms that were used to
create and segment the tomogram.

Index Terms—Image segmentation, error reconstruction.

I. INTRODUCTION

In many applications of tomography, the final tomographic
reconstruction (the tomogram) must be segmented before the
results can be analyzed. Segmentation amounts to the classifi-
cation of image pixels into distinct classes, based on similarity
with respect to some characteristic. Image segmentation is
a well established field, and a range of methods has been
developed, using diverse techniques such as global or local
thresholding, region growing, and clustering [1], [2].

Most image segmentation methods are not specific towards
the modality that was used to acquire the image. As a
result, such methods do not exploit the raw data (X-ray
radiographs in case of CT imaging) from which the image was
reconstructed. Recently, global and local thresholding methods
were proposed that do use the projection data to improve
the selection of threshold parameters [3], [4]. In addition,
reconstruction methods were recently developed in which the
segmentation was directly incorporated into the reconstruction
algorithm [5]–[8].

In this paper, the projection data is used to examine the
quality of the segmentation. The proposed method assumes
that the scanned object consists of homogeneous regions, and
then determines how well a given segmentation represents that
object. Moreover, the method can also be used to test for
object homogeneity, since it generates large errors for non-
homogeneous objects. The technique is independent of the
reconstruction and segmentation algorithms.
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The structure of this paper is as follows. In Section II,
the method is introduced. Section III describes the simulation
experiments that were performed to validate it. The results are
discussed and a conclusion is reached in Section IV.

II. METHOD

The projection process in tomography can be modeled as a
linear operator that is determined by the projection geometry.
This leads to a system of linear equations,

Wx = p, (1)

where p ∈ Rm contains the projection data and x ∈ Rn

corresponds to the image. The linear operator is represented
by the m×n matrix W , the projection matrix. An approximate
solution x̂ ∈ Rn of (1) can then be computed, in practice often
by minimizing some norm ‖Wx−p‖. The image x̂ can then
be segmented.

A segmentation method essentially partitions the pixels of
an image into sets Y1, . . . , Yd, where d is the number of classes
(or gray levels) in the segmented image. Since we assume
that the scanned object consists of homogeneous regions, the
segmented image should have the same gray level for all pixels
in a set Yk. From x̂, we create a segmented image s ∈ Rn

by assigning a gray level ρk ∈ R to all pixels in a set Yk, for
each k ∈ {1, . . . , d}. The values of ρ1, . . . , ρd are not known a
priori. Moreover, most of the segmentation algorithms that are
commonly used, do not have these gray levels as an output.
In such case, we use the mean of all pixel values in a class
as an estimate,

ρk =
1

|Yk|
∑
ŷ∈Yk

ŷ, for each k ∈ {1, . . . , d}. (2)

We now define the residual projection error. The segmented
image s is forward projected to give ps ∈ Rm, so ps = Ws.
The residual projection error e ∈ Rm is then defined as

e = p− ps. (3)

This projection error is then reconstructed by solving the
system Wy = e, where y ∈ Rn corresponds to the (unknown)
error image. This results in an approximate solution ŷ ∈ Rn,
the reconstructed residual error.

As mentioned in the introduction, this procedure does not
depend on any particular reconstruction or segmentation algo-
rithm. To create the segmented reconstructions, we use filtered
backprojection (FBP), with a Ram-Lak filter, as an example
of an analytical method. We use the simultaneous iterative
reconstruction technique (SIRT) [9] as an example of an
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iterative method. The reconstructions are globally thresholded
using Otsu’s method [10]. The residual projection error is
reconstructed using SIRT.

III. SIMULATION EXPERIMENTS

All simulation experiments were performed on a square
reconstruction grid of 512×512 pixels. Three phantom images
were created, as shown in Fig. 1. The size of each phantom is
2048 × 2048 pixels. The phantoms are much larger than the
reconstruction grid, to reduce the effect of the pixelation on
the reconstructions.

(a) Phantom 1 (b) Phantom 2 (c) Phantom 3

Fig. 1: Phantom images: (a) two gray levels, (b) three gray
levels, (c) continuous grayscale.

A. Optimally Segmented Reconstructions

In the first simulation experiment, the residual projection
error was reconstructed for a dataset with no noise and a
large number of projections. This demonstrates the result of the
proposed technique with minimal hindrance from reconstruc-
tion artifacts. From Phantom 1, which is a binary phantom,
a synthetic dataset was created using 360 parallel beam
projections, evenly spaced at 0.5◦ intervals. A detector with
512 pixels was used, to simulate the practical situation where
the detector pixel size equals the width of the reconstruction
grid. The “ideal” segmented reconstruction was approximated
by binning Phantom 1 to a 512×512 grid, and then segmenting
it using a threshold of 0.5.

The “ideal” segmented reconstruction was then forward
projected, and the difference with the original projections
computed. This results in the residual projection error, which
was then reconstructed using 300 iterations of SIRT. Fig. 2a
shows the result. The true error (Fig. 2b) was computed as
the difference between the original phantom (Fig. 1a) and an
upscaled version of the ideal segmented reconstruction. For
comparison, the true error is shown downscaled to the same
resolution as Fig. 2a. The true error is only nonzero at the
edges of the different structures, where errors are unavoidable,
since the original phantom is not pixelated at the size of the
reconstruction. The reconstructed residual error (Fig. 2a) is
very close to the true error.

B. Reconstructions with Homogeneous Regions

The second simulation experiment is based on Phantom 2
(Fig. 1b), which contains three gray levels. Reconstructions of
Phantom 2 should consist of homogeneous regions, since the
ground truth object is divided into several such regions (com-
pare with Phantom 3 (Fig. 1c), where this is clearly not the
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Fig. 2: (a) Reconstructed residual error for Phantom 1. (b) True
error for Phantom 1, at the resolution of Fig. 2a.

case). From Phantom 2, a synthetic dataset was created using
90 parallel beam projections, evenly spaced at 2◦ intervals.
A detector with 512 pixels was again used. This synthetic
dataset was then reconstructed twice, once using FBP and
once using 300 iterations of SIRT. These reconstructions were
then segmented using Otsu’s method. The final segmented
reconstructions are shown in Fig. 3. Due to the relatively low
number of projection angles, a number of streaks are visible,
especially in the FBP reconstruction of Fig. 3a.

(a) FBP (b) SIRT

Fig. 3: Reconstructions of Phantom 2, segmented using Otsu’s
method.

The segmented reconstructions were then forward projected,
and the difference with the original projections computed,
resulting in the residual projection error. This was then recon-
structed using 300 iterations of SIRT. Figs. 4a (FBP) and 5a
(SIRT) show the result. For comparison, the true error is also
shown, in Figs. 4b and 5b. As before, there seems to be a
close correspondence between the reconstructed error and the
true error. The streaks from the FBP reconstruction are clearly
visible in the reconstructed residual error (Fig. 4a). Hence, the
error tomogram can be used to discriminate between this type
of artifact and actual features of the scanned object. Apart from
these streaks, the largest errors are again situated at the edges
of the different structures. Figs. 4a and 5a further suggest that
the gray levels of the different objects are underestimated,
since the error is clearly positive and relatively uniform inside
the objects. This is also confirmed by the true error.

Table I shows this quantitatively. It contains an overview
of a number of parameters that were determined from the
reconstructions, while the true gray levels were taken from
Phantom 2. The computed gray levels were determined from
the segmented reconstructions (Fig. 3), from which they were
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Fig. 4: (a) Reconstructed residual error for the FBP recon-
struction of Phantom 2. (b) True error for that reconstruction,
at the resolution of Fig. 4a. The scales have been limited to
[−0.2, 0.2] to keep the smaller errors from disappearing.
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Fig. 5: (a) Reconstructed residual error for the SIRT recon-
struction of Phantom 2. (b) True error for that reconstruction,
at the resolution of Fig. 5a. The scales have been limited to
[−0.2, 0.2] to keep the smaller errors from disappearing.

computed using (2). The gray level errors were computed
from Figs. 4a and 5a, using the same procedure. To verify
the accuracy of the gray level errors, the last lines for each
algorithm in Table I show the corrected gray levels, i.e., the
sum of the computed gray levels and the gray level errors. The
last lines show that the gray level error is a good estimate of
the difference between the true gray level and the computed
gray level, and that it can be used to correct the computed gray
level. This result could potentially be improved even further
by recreating the reconstructed residual error, starting with a
segmented reconstruction that uses the corrected gray levels.

TABLE I: Estimated and true gray levels, noiseless dataset.

Algorithm Parameter ρ1 ρ2 ρ3

FBP True gray level 0.000 0.502 1.000

Computed gray level −0.004 0.476 0.979

Gray level error 0.003 0.018 0.017

Corrected gray level −0.001 0.494 0.996

SIRT True gray level 0.000 0.502 1.000

Computed gray level 0.002 0.491 0.994

Gray level error −0.002 0.010 0.009

Corrected gray level −0.000 0.502 1.002

We also ran these experiments with Poisson noise applied
to the synthetic dataset. The results are shown in Figs. 6
and 7, and in Table II. The quality of the FBP reconstruction

(Fig. 6a) has suffered more from the noise than that of the
SIRT reconstruction (Fig. 7a). In the reconstructed residual
error (Figs. 6b and 7b), the noise from the original projections
is apparent. The results in Table II, however, are still largely
comparable with those from Table I. This means that the gray
level errors in Figs. 6b and 7b, which seem drowned by the
noise, are still quite accurate when averaged. This implies that
we can decide, from the reconstructions of the residual error
in Figs. 6b and 7b, that the segmentation from Fig. 7a is more
accurate than that from Fig. 6a.

(a)
 

 

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

(b)

Fig. 6: (a) FBP Reconstruction of Phantom 2, segmented using
Otsu’s method. Poisson noise was applied to the synthetic
dataset. (b) Reconstructed residual error. The scale has been
limited to [−0.2, 0.2] to make it the same as in Fig. 4.
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Fig. 7: (a) SIRT Reconstruction of Phantom 2, segmented us-
ing Otsu’s method. Poisson noise was applied to the synthetic
dataset. (b) Reconstructed residual error. The scale has been
limited to [−0.2, 0.2] to make it the same as in Fig. 5.

TABLE II: Estimated and true gray levels, dataset with noise.

Algorithm Parameter ρ1 ρ2 ρ3

FBP True gray level 0.000 0.502 1.000

Computed gray level −0.006 0.467 0.979

Gray level error 0.002 0.022 0.020

Corrected gray level −0.004 0.489 0.999

SIRT True gray level 0.000 0.502 1.000

Computed gray level 0.002 0.491 0.994

Gray level error −0.002 0.010 0.009

Corrected gray level −0.000 0.502 1.003

C. Reconstructions with Non-Homogeneous Regions
The last simulation experiment is based on Phantom 3

(Fig. 1c), in which some of the homogeneous objects of
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Phantom 2 are replaced by objects with a continuously varying
intensity. Reconstructions of Phantom 3 are not expected
to consist of homogeneous regions, since the ground truth
object is not a collection of such regions. From Phantom 3, a
synthetic dataset was again created using 90 parallel beam
projections, evenly spaced at 2◦ intervals. This synthetic
dataset was reconstructed using FBP and SIRT, and segmented
using Otsu’s method. The result is shown in Fig. 8.

(a) FBP (b) SIRT

Fig. 8: Reconstructions of Phantom 3, segmented using Otsu’s
method.

As before, the residual projection error was computed and
reconstructed using 300 iterations of SIRT. The result is shown
in Figs. 9a (FBP) and 10a (SIRT). Both figures show that the
reconstructed residual error is useful to discriminate between
objects that can be reconstructed as a homogeneous region (the
homogeneous objects from Phantom 3), and those that cannot
(the objects with continuously varying intensity, which have
large structured errors in Fig. 9a and 10a). The reconstructed
residual error is again quite close to the true error (Figs. 9b
and 10b).
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Fig. 9: (a) Reconstructed residual error for the FBP recon-
struction of Phantom 3. (b) True error for that reconstruction,
at the resolution of Fig. 9a.

IV. DISCUSSION AND CONCLUSION

If tomograms are segmented without exploiting the projec-
tion data, which is often the case, the reconstructed residual
error can still provide information on the quality of the
segmentation.

The result for the ideal segmented reconstruction from
Section III-A shows that the reconstructed residual error is a
good approximation of the true error. For objects that consist
of homogeneous regions, the experiments from Section III-B
show that the proposed method can detect errors in the gray
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Fig. 10: (a) Reconstructed residual error for the SIRT recon-
struction of Phantom 3. (b) True error for that reconstruction,
at the resolution of Fig. 10a.

levels of the segmented reconstruction, even if those are quite
small (Fig. 5), and in the presence of noise. The experiment
from Section III-C shows that the technique can discriminate
between homogeneous and non-homogeneous objects, without
this knowledge being available a priori. Several experiments
also show that artifacts that are visible in the segmented re-
construction, are also visible in the reconstructed residual error
(e.g., Figs. 4a and 9a). Together, the simulation experiments
demonstrate that the reconstructed residual error can be used
as a visual map of the errors in the segmentation.

Reconstructing the residual projection error is a simple
way to visualize the segmentation error of a tomogram. The
technique is trivial to implement, since the only necessary
tools are a forward projector and a reconstruction algorithm.
The computational cost is modest, since only a single forward
projection and a single reconstruction are needed.
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Abstract—Multi-slice helical CT is widely used for baggage

inspection in transportation security due to its fast acquisition

speed and large scan coverage. In addition, recent studies indicate

that model-based reconstruction has the potential to improve

image quality and reduce artifacts relative to traditional filtered

backprojection (FBP) method. In this paper, we present the

results of a 3D model-based reconstruction algorithm on a multi-

slice helical scan of actual baggage with high and low density

objects, acquired on a medical CT system. We compared our

reconstruction results to conventional FBP reconstructions and

illustrated the potential value of our algorithm in terms of image

quality and artifact reduction.

I. INTRODUCTION

Computed tomography (CT) is widely used in transportation
security applications [1], [2]. Among various CT scanner
geometries, multi-slice helical CT has come into wide use
due to its fast acquisition and large scan coverage. In fact,
many airports have installed multi-slice helical CT systems
as a central component of baggage screening. However, the
more complex geometry of multi-slice helical CT also poses
challenges in reconstruction. For example, as cone angles
become wider, there is an increasing need to use true 3D
reconstruction methods in order to avoid the image artifacts
introduced by 2D approximations.

Moreover, the task in transportation security is quite differ-
ent from the medical problem. In the medical application, it is
critical to preserve fine details of soft tissue structure; however,
in the security application, typically it is more important to
obtain precise estimates of object boundary and its average
density. Also, in security, the objects typically have densities
that are substantially greater than water.

Recently, model-based reconstruction (MBR) algorithms
have been shown to be effective in the reconstruction of
multislice helical scan CT data [3]. These algorithms have
the advantage that they can incorporate more detailed models
of both the scanner and the objects being reconstructed. In ad-
dition, they offer flexibility in the application of transportation
security since they allow for more accurate reconstruction for
nontraditional geometries, such as with limited view data [4].
Model-based algorithms have the potential to more accurately
account for a wide array of scanner characteristics including

This research was supported by ALERT DHS center Northeastern Univer-
sity.

photon counting and electronic noise, beam hardening, metal
attenuation and scatter, and the detector point-spread function.
More accurate modeling of the scanner can be used to reduce
streaking artifacts from high density objects, which arise in
many CT applications. In addition, the MBR method incorpo-
rates a prior model that can be tuned to the characteristics of
typical objects and the performance metrics of interest.

In this paper, we apply the methods of 3D model-based
reconstruction (MBR) to the problem of transportation security
imaging. Our approach is based on maximum a posterior
(MAP) reconstruction along with the iterative coordinate
descent (ICD) optimization method. We also describe how
our algorithm can be parallelized on multicore processing
hardware.

In our results, we present 3D MBR cross-sections from
real multislice helical scan data of travel bags packed with a
variety of high and low density objects, imaged on a medical
scanner. Our results indicate that MBR has the potential
to produce reconstructions with fewer artifacts than analytic
reconstruction methods.

II. STATISTICAL MODEL FOR IMAGE RECONSTRUCTION

Let x 2 RM be the image vector, and let y 2 RN be the
vector of projection measurements. We assume x and y are
related by a linear sparse matrix operator A,

y = Ax (1)

The matrix coefficient A

ij

reflects the formation of i-th
projection by j-th voxel.

In the Bayesian statistical framework, both x and y are con-
sidered as random, and the reconstruction is most commonly
computed as the maximum a posterior (MAP) estimate given
by

x̂ = argmin

x�0
{� log p(y|x)� log p(x)} (2)

where p(y|x) is the likelihood term corresponding to the
forward projection model and p(x) is the prior distribution
of x. Also notice that we impose a positivity constraint on the
image.

Given the image x, the received photon count �

i

of the
i-th projection follows a Poisson distribution with mean
�

T,i

e

�Ai⇤x where �

T,i

is the photon count of the i-th pro-
jection obtained in an air calibration scan. The line integral
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of i-th projection can then be obtained by y

i

= log

⇣
�T,i

�i

⌘
.

Using the second order Taylor expansion, the log likelihood
term can be approximated by a quadratic function [5],

log p(y|x) ⇡ �1

2

(y �Ax)

T

D(y �Ax) + c(y) (3)

where D is the diagonal matrix with diagonal elements D

i,i

which are proportional to the photon counts �

i

, and c(y)

is a term depending only on y. Notice that in this case, a
smaller value of �

i

indicates that the associate projection is
less heavily weighted.

The prior distribution p(x) incorporates knowledge about
the object being reconstructed, x. We will describe the prior
model in detail in the next section.

III. METHOD AND ALGORITHM

A. 3D Forward Projection Model

To calculate the projection matrix A, we use the distance-
driven (DD) model [6]. Figure 1 illustrates how the 3D
projection geometry is decomposed into the z axis that falls
along the object’s translation direction, and the xy-plane,
which is perpendicular to z [3]. Each voxel is flattened along
the dimension most parallel to the detector, and the coefficient
A

ij

is calculated as the product of xy-plane projection, B
ij

,
and z-direction projection, C

ij

.

A

ij

= B

ij

⇥ C

ij

(4)

The coefficients B

ij

and C

ij

are calculated as the convolution
of the detector response and the flattened voxel profile to yield

B

ij

=

�

xy

�d

c

cos

˜

✓

clip


0,

W

c

+�d

c

2

� |�
c
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c

,�d

c

)
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C

ij

=

1

�d

r

cos�

clip


0,
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r

+�d

r

2

� |�
r

|,min(W

r

,�d

r

)

�

(6)
where W denotes the voxel’s width when projected onto the
detector, �d denotes the detector width, subscript c and r

denote channel and row respectively, ✓ and � are the ray angles
in xy-plane and z-direction, and ˜

✓ is the adjusted ray angle
defined by

˜

✓ =

⇣
✓ +

⇡

4

⌘
mod

⇡

2

� ⇡

4

. (7)

The function clip is defined by clip[a, b, c] =

min(max(a, b), c).

B. Prior Model

We model the image x as a Markov random field, with a
26-point 3D neighborhood and the following distribution

p(x) =

1

z

exp

8
<

:�
X

{s,r}2C

b

s,r

⇢(x

s

� x

r

)

9
=

; (8)

where ⇢ is the positive and symmetric potential function and
C is the set of all pairwise cliques.
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Fig. 1. 3D forward projection geometry used for the distance driven projector.

We studied two different potential functions, given by the
l1 norm prior, which is a special case of generalized Gaussian
MRF (GGMRF) [7] when p = 1,

⇢(�) = |�| , (9)

and the q-generalized Gaussian MRF (q-GGMRF) [3].

⇢(�) =

|�|q

1 + |�/c|q�p

(10)

The q-GGMRF allows more degrees of freedom to control
both low-contrast and high-contrast edge characteristics. If
|�| ⌧ c, ⇢(�) ⇡ |�|q and if |�| � c, ⇢(�) ⇡ |�/c|p
where c is the parameter determining the transition between
the two cases. Normally, we will set q = 2 and 1 < p < q.
It ensures the overall cost to be convex and, therefore, allows
global convergence.

C. Optimization

The overall cost function, obtained by combining the ap-
proximate log-likelihood and the prior, is

x̂ = argmin

x�0

8
<

:
1

2

ky �Axk2
D

+

X

{s,r}2C

b

s,r

⇢(x

s

� x

r

)

9
=

;
(11)

We solve this optimization problem using the iterative coor-
dinate descent (ICD) algorithm [5] in which we scan over all
voxels and sequentially optimize each voxel while fixing the
others. In order to solve the 1D optimization problem resulting
from each pixel update, we design a quadratic substitute
functional q(�;�

0
) that upper bounds ⇢(�) and optimize the

cost with ⇢(�) replaced by q(�;�

0
) [8]. In particular,

q(�;�

0
) =

⇢

0
(�

0
)

2�

0 �

2 (12)

where �

0 denotes the voxel difference before this update.
In this way, the original 1D line search is converted into a
quadratic optimization and the closed form solution can be
derived. Since the substitute cost is always an upper bound of
the original cost, minimizing the substitute will also produce a
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Fig. 2. Parallelized ICD scheme

decreasing sequence of original cost and iterative optimization
will lead to the optimal solution of the original problem.

In order to further speed convergence, we also use the
non-homogeneous ICD (NHICD) method of [8]. The idea
is to focus computation on voxels which tend to generate
significant updates. In NHICD, we alternated between a full
scan and a partial scan which involves only those voxels which
have significant updates at the previous iteration. This scheme
provides a further speedup of approximately a factor of three.

D. Parallelization

To utilize multi-core processing and speed up the recon-
struction for large image volumes, we implemented a paral-
lelized ICD update scheme. In this scheme, the full image
volume is cut into N boxes along the z-direction as shown in
Figure 2 and each processor is responsible for updating voxels
in one box. Different processors are synchronized once they
finish the work; therefore, one synchronization is made per full
scan. This will assign each processor a fairly large amount of
work to do in parallel and workload is roughly balanced for
different processors in order to reduce processor waiting time.
Also, since the image is stored with the index in z-direction
as the fastest-changing variable, the processors update voxels
along z-direction first in order to create better cache efficiency.
Moreover, the voxels being updated are selected to be far
apart so that they do not share the same sinogram entry, and
therefore, can be updated independently.

IV. RESULTS

In this study, we used scan data acquired on a medical
scanner and provided by the ALERT (Awareness and Local-
ization of Explosives-Related Threats) Center, at Northeastern
University, to conduct our experiments. The reconstructed
image is of size 512⇥512⇥840 and the voxel width is 0.975
mm in cross-section in the xy-plane and the slice thickness
is 1.25 mm in z-direction. Figure 3 illustrates some of the
objects contained in the bag used in our experiment.

Figure 6 demonstrates the quality of different reconstruction
algorithms. The FBP reconstruction is blurred, as we can see
on the feet of the toy Mr. Potato Head in (a). The shape of
some objects are distorted. For example, in the center of (a)
and (b), the steel bar, which is of high density and supposed
to be a rectangular shape, has been distorted. Also, we can

(a) (b)

(c) (d)

Fig. 3. Objects contained in the baggage (a) toy Mr. Potato Head (b) gel
pad (c) steel bar (d) box cutter

see the severe streaking artifacts, such as the region around
the high-density objects in (b). The model-based algorithms,
on the other hand, provide better reconstructions. The overall
image is sharper and shapes of objects are more accurately
recovered. Moreover, the model-based algorithm reduces the
structured artifacts as compared to the FBP method. These
advantages suggest that the model-based algorithm has the
ability to provide more detailed and accurate rendering, which
could possibly lead to better detection performance.

We further quantify the reconstruction quality by measuring
the noise variance on the uniform region. In Figure 4, a target
object, which is a plastic bottle of water, is shown. The streak-
ing artifact caused by the nearby high-density metal object
can be easily identified in the FBP reconstruction. In Figure
5, we plot the CT voxel values along the line passing through
the bottle of water vertically. We observe that the curve of
the FBP reconstruction fluctuates more significantly than the
curve of the other two model-based reconstructions. We further
calculate the noise variances with different reconstructions
along the line and the result is listed in Table I. The FBP
reconstruction leads to the largest noise variance, which is the
result of the streaking artifacts. It also shows that q-GGMRF
gives the smallest noise variance. This is due to the fact that
q-GGMRF has more smoothing effects than the l1 norm prior.

TABLE I
NOISE VARIANCE ON UNIFORM REGION

Method FBP l1 norm prior q-GGMRF
Noise variance 3042.8 836.0 496.5

V. CONCLUSION

In this work, we developed a model-based image recon-
struction algorithm and tested it on the data taken from actual
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(a) (b) (c)

Fig. 4. Reconstructions zoomed to the target area using (a) FBP, (b) l1 norm
prior, and (c) q-GGMRF The round object is the plastic bottle of water.
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Fig. 5. CT values for voxels along the line through the center of the target
region in Figure 4

baggage. Our algorithm depends on a statistical framework in-
volving a forward model and a prior model. We compared our
reconstructions using two different priors, l1 norm prior and
q-GGMRF prior, to the standard FBP algorithm. The model-
based algorithms provide better reconstructions and reduce
structured artifacts, which suggests potential advantages over
the FBP approach.
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Fig. 6. Reconstruction of the ALERT baggage security data using (a, b)
FBP, (c, d) l1 norm prior, and (e, f) q-GGMRF. The gray scale is in offset
Hounsfield Unit (HU), where air = 0 HU and the scale range for all results
shown is in [0, 1600] HU.
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Abstract— Design considerations for airport security 

volumetric imaging scanners differ significantly from those for 
medical CT scanners, despite the much they have in common.  We 
describe what drives these differences, then describe how we 
account for these considerations with a combination of an 
innovative “discrete skew” geometry and iterative reconstruction 
in the  new L-3 MV3D security scanner product.   
 

Index Terms— discrete skew, fixed-gantry, image 
reconstruction, iterative algorithms, national security 

I. INTRODUCTION 

While medical CT scanners clearly share crucial overlap with 
airport security scanners, significant differences in the use 
considerations drive differences in design decisions.  Security 
scanners face a variety of challenges relative to medical 
scanners that, from an engineering standpoint, cannot yet be 
considered as fully solved as medical engineering challenges 
[1].  These considerations may make security scanners a 
receptive ground for advanced applications in fully three 
dimensional reconstruction. 
 Medical scanners are designed primarily [1] for a tradeoff 
between cost and generally theoretically well-defined image 
quality metrics[2].  Security scanner design, on the other hand, 
must from the very start consider fiercer compromises among 
cost, “image quality”, bag throughput, and target range with an 
important secondary focus on durability and maintainability.  
Complicating the design is that in security scanner design 
“image quality” cannot as easily be captured by a technically 
well-defined metric. 
 We describe how the skew geometry and the iterative 
volumetric reconstruction of the L-3 MV3D meets the design 
considerations. 

II. DESIGN CONSIDERATIONS 

A. Microbombs Make Microexplosions 

Many medical CT scanner designs are driven by spatial 
resolution, trying to detect ever smaller and smaller features.  
This is one area in which security scanners have an easier task  

than medical CT scanners.  While a microcalcification might 
one day become a cancer [3], a minimum mass of ungrowing 
explosive is needed in order to pose a threat to an airliner. 
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Fig. 1: The central region of a slice through a reconstruction of a bulk object 
of known constant density near water.  The grayscale window is ±35 HU (70 
HU total) around the known density.  The scanner producing this 
reconstruction is certified to detect threats:  voxel-to-voxel variation of tens of 
HU need present no barrier to security effectiveness. 
 

Furthermore, explosive materials must satisfy various 
geometrical requirements in order to actually detonate [4]. 
Fortunately, this minimum mass is sufficiently large that 
typical medical spatial resolutions of hundreds or even tens of 
microns are not required for detection of detonable threats.  
Similarly, because explosive threats are large enough to 
comprise many voxels, individual voxel density resolution is 
very much a secondary consideration, once density is averaged 
over all object voxels.   
 Some of these issues are illustrated in fig. 1.  The image is of 
the central region of a large bulk object of constant density.  
The  image is taken from a machine that has passed regulator 
certification for threat detection.  As the image shows, voxel-
to-voxel variation of tens of HU need present no barrier to 
security detection, even if such variation might have more 
impact in a medical setting. 

B. Patients Per Hour 

 A single one of the worlds largest airports, for instance Hart 
airport in Atlanta, can expect to process 200,000 bags or more 
on a typical day.  Based on estimates of worldwide CT use [5], 
one recognizes that one single such airport already exceeds the 
entire worldwide daily use of medical CT scanners.  In the 
United States, for every patient scanned by a medical CT, 
roughly 60 checked passenger bags undergo volumetric scans 
in airports.  At the same time, only a tiny portion of the cost of 
a single few-hundred-dollar airline ticket can be dedicated to 
scanning costs.  A medical CT scan typically charges 
thousands of dollars per patient.  Given typical machine and 
maintenance costs, the hardware and maintenance cost per bag 
scan is generally held under one US dollar. 

Design of the Discrete Skew Geometry and 
Iterative Reconstruction of the MV3D Scanner 

Andrew D. Foland 
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C. Cancer Can’t Take Countermeasures 

One unyielding challenge of security scanners is that the 
target list can be dynamic; and that the target can take 
countermeasures to any publicly revealed details.  Cancer, on 
the other hand, cannot read specifications or patents.  Machines 
are designed to robust to countermeasures, and regulators 
specifically test the machines against a variety of 
countermeasures.  (This is why, for instance, MV3D images in 
this abstract may have been intentionally degraded to obscure 
our capabilities.) 

This has led the security industry, in general, to rely on trade 
(and governmental) secrecy in design of its machines.  This 
prevents some of the cooperation (such as cross-licensing [6]) 
that has been seen in the medical field.  

D. What’s In a Bag? 

Medical targets consist largely of near-water organ and flesh 
materials, and bones, in relatively predictable configurations.  
Metal, while occasionally present as implants, is generally of 
lesser importance.  Baggage contains significant metal content 
with probability near 1.  Even unremarkable baggage contains 
a very wide array of materials and objects: clothing, shampoos, 
shoes, gels, small electronics, glass bottles, food, and books.  
Less usual but still commonplace are items such as golf clubs, 
ski equipment, prosthetic devices, cookware, power tools, and 
medical equipment. 

E. Who Makes the Call? 

The images produced by a medical CT scanner is generally 
reviewed by a radiologist or other highly-trained medical 
professional, who, with knowledge of patient history and 
possibly in consultation with other experts, can interpret the 
images and decide whether there is any threat. Security 
scanners, on the other hand, generally operate an “EDS” 
(explosion detection system)  algorithm on a computing device 
that renders an automated decision . In general no other 
knowledge about the bag or passenger is known 

F. Are We There Yet? 

 Security scanner quality is defined in the end solely by a 
largely binary regulator test.  The test must demonstrate the 
ability to detect, with a challengingly high regulator-defined 
probability, threat objects, while maintaining at the same time a 
challengingly low false-alarm. The translation of technically 
well-defined measures into PD / PFA on the space of passenger 
bags is in general not straightforward.  For instance, artifacts 
that a human radiologist might judge unacceptable are often 
easily overcome by automated detection algorithms, while 
issues a human eye easily recognizes can require considerable 
effort for an automated detection scheme to resolve.  

G. Baggage Handling 

The baggage handling systems where security scanners are 
installed are typically in exposed conditions on or near the 
runways, and must function over a wide range of temperatures.  
They must be unaffected by an unclean environment, running 
flat out for up to 20 hours a day.  Due to the compact spaces 
into which they must fit, typical baggage handling- conveyor 
systems in airports must divert a suspect bag off of 

 
Fig. 2: A depiction of the skew-angle geometry used in the MV3D system.  As 
the conveyor progresses forward, the skewed rays exiting the X-ray tube 
provide a radiograph taken from a different angle from the normal X-ray 
views.   

 
the main track within seconds of having been scanned.  This 
enforces a very fast processing, reconstruction, and automated 
detection time on security scanning machine, measured in 
seconds. 

III.  DESIGN IMPLICATIONS 

As described in [1], for most purposes, medical CT scanners 
can consider that they have reached a very good compromise 
between cost and the image quality metrics—which, for most 
medical machines, are the main considerations.  While 
specialized medical machines may have other 
considerations[7]-[8], the specialization allows the CT 
engineer to define a narrowly focused design target [9]. 
 Many of the foregoing considerations point towards the 
value of nonrotating gantries, with minimal moving parts and 
high throughput, for security machines.  On the other side, 
rotating gantries are a well-proven technique that is known to 
be effective in security design, and nonrotating gantry 
machines must be judged against that record of success. 
 From an engineering perspective, a three-order-of-
magnitude cost (per scan) differential also forces very different 
design considerations. Three design elements are key to 
meeting the cost goals: simplified operational controls, 
automated decision making, and low cost hardware. A limited 
number of commodity hardware items must be used. 

IV.  THE L-3 MV3D 

A. Device Overview 

 The L-3 machine is a limited-angle, limited-view security 
scanner that iteratively reconstructs three-dimensional images 
of bags that pass through it on a conveyor.  There has been 
considerable recent work on this kind of reconstruction over 
the past five years [11],[12]. Timely reconstruction is made 
possible by recent advances in computational hardware speed 
[13],[14], as well as by proprietary L-3 computational 
methods. 
 The geometrical freedom inherent in iterative reconstruction 
allows for a handful of fixed, unmoving, nonexotic sources, 
making use of “skew” views, to obtain bag information 
sufficient to reconstruct in three dimensions.   
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Fig. 3: A slice through a reconstruction of a bag. (Left) Filtered backprojection 
(see text for details).  (Right) MV3D iterative volumetric algorithm with skew 
views reconstructing the same slice.  The power of the MV3D skew geometry 
combined with iterative volumetric reconstruction is apparent. Note that 
image quality may have been intentionally degraded in the MV3D image. 

 
The nonnecessity of a rotating gantry, and the simplicity of the 
X-ray tube sources, are key to meeting the cost challenges.  Of 
course,  reconstruction of such a geometry is flatly impossible 
using standard direct methods such as filtered backprojection 
[15] or cone-beam techniques [16],[17]. 

B. Discrete Skew Tomography 

The patented L-3 geometry uses views oriented at a substantial 
angle to the direction of belt motion in order to obtain 
additional information about the bag volume.  Though it is not 
perfectly analogous, in some ways it functions similarly to 
having a very large cone beam angle.  A depiction of the 
geometry is shown in fig. 2. The skew angles in the MV3D are 
substantially larger than can be accommodated in any standard 
cone-beam algorithm[15],[16].  For this reason, and because no 
simple factorization of the volume into 2-D slices exists, we 
found the need for an iterative algebraic technique functioned 
on the entire 3D volume at once. 
   The skew geometry is chosen because it allows a single 
source to provide nonoverlapping information in multiple 
views as the bag passes.  This is key to obtaining sufficient 
information to reconstruct the bag from a limited (and therefore 
cost-effective) number of sources. 

The bag is reconstructed iteratively by forward-projecting the 
current volumetric density estimate into line integrals on each 
of the skew and normal view directions.  This is done using a 
geometric model of the machine.  The geometric model is 
modified by calibration measurements of the machine made in 
situ to account for registration imperfection. 

After forward projection of the density distribution onto the 
view directions, the current estimate projection is compared  
(after suitable corrections) to the actual data measured in the 
projection.   Differences are noted and used to produce an 
update to the estimate of the volumetric density.  Many 
different update equations are possible and have been 
described in the literature [18]-[23].   

As an example, letting k be the iteration number, xj be the 
density in voxel j, bi be the ith measurement, and aij be a 
coefficient representing the geometric interaction of the ith ray 
with the j th voxel, a well-known update equation is: 

 
 In this SART equation [24], an average residual of the rays 

is additively projected back into the volume.   

 
Figure 4: A slice through a reconstruction of a bag.  (Left) Reconstruction of 

the bag using the MV3D volumetric iterative algorithm, but using only normal 
views and none of the skew view hardware.  (Right) The MV3D 
reconstruction of the same slice, using all views (same as previous image.)  
Note that image quality may have been intentionally (but identically) degraded 
in these  images.Comparisons left and right, and to previous image, allow 
isolation of relative contributions of skew view geometry and the MV3D 
iterative volumetric reconstruction technique. 
 

The advantage of an iterative reconstruction, from the point 
of view of engineering constraint reduction, is that any  
computable set of aij ’s may be employed.  That said, the  
geometry cannot be wholly arbitrary.  It must nonetheless be 
sufficient to provide reliable inversion of the Radon transform. 

Limited-angle and limited-view machines can suffer from 
precisely this instability in transform inversion [11].  
Regulation is often crucial in limited-angle and limited-view 
reconstructions, where the dimensionality of the volumetric 
space can exceed the dimensionality of the measurement space. 
Many different forms of regulation have been described in the 
literature [11],[25]-[30].  (Note that “compressed sensing” 
schemes [31] can be thought of as a form of implicit 
regulation.)  L-3 considered numerous different forms of 
regulation before a final choice was made for the MV3D 
scanner. 

C. Design Process 

The L3 MV3D scanner geometry was designed in simulation 
first.  The simulation used was a combination of GEANT4 
[32], NIST tables [33], and discrete approximations to generate 
simulated detector readings from discretized phantoms.  Over 
time, modules were added to modify the simulated readings to 
simulate other physics effects.  The simulations were validated 
against data taken on existing L-3 scanners.   
 At the same time, L-3 engineers designed an iterative 
reconstruction engine that could read in simulated data in the 
same format expected to come from the scanner data, and 
render a reconstruction.  In the design stage, the reconstruction 
is of the discretized phantom that was input to the simulation. 
For baggage reconstruction targets, we found exceedingly 
strong differences among the effectiveness of many standard 
forms of iterative schemes, both simultaneous and block 
iterative [18]-[23],[34]. We hypothesize this is due to the very 
wide dynamic range of relevant densities, and prevalence 
inside bags of large low-density voids.  We also considered 
many possible forms of regulation [11],[25]-[31] in order to 
obtain the best possible image quality. 

We were also able, with the simulation suite, to generate 
“data” for consideration of a wide array of geometries.  
Geometry considerations were number of sources and their 
tunnel bore.   Combinations of geometry and algorithm were  
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Fig. 5: Reconstruction examples of two bags.  (Top) a mockup passenger bag, 
(Top Left) a 3-d volume rendering of the reconstruction (Top right) a 
transverse slice (Bottom) a mockup bag containing many sheet-like 
geometries. (Bottom left) a 3-d volume rendering of the reconstruction 
(Bottom right) a coronal slice through multiple of the slices, including a 
speaker cone. Note that image quality may have been intentionally degraded 
in these MV3D images. 

 
evaluated for their ability to yield an acceptable reconstruction 
in the limited seconds alotted.  We found significant variation 
in image quality with arrangement of the sources. 
 Many iterative algorithms work in a block-iterative or subset 
fashion [34],[35].  We (to our surprise) generally found 
negligible dependence of convergence speed on the subset 
ordering, even between a “worst” order and a widely-accepted 
near-optimal ordering choice [34].   

D. Results and Images 

As shown in the following figures, we get more than 
adequate results on even very challenging targets.  In fig. 3 we 
show a comparison of a single slice of a volumetric 
reconstruction of a bag phantom.  The MV3D reconstruction 
makes use of all skew angles.  We also show a single-slice 2D 
filtered backprojection using limited in-plane sources, arranged 
around the bag as the geometry of the MV3D.  The power of 
the MV3D approach is apparent. 

In fig. 4 we show the same slice using an iterative 
reconstruction using only the normal (non-skew) views.  The 
result is intermediate between the two results of fig. 3.  This 
allows the reader to isolate the relative contributions of 
iterative reconstruction and skew view geometry. 

In fig. 5 we show perspective renderings and selected slices 
of a reconstructed mockup bag and a multi-sheet phantom that 
presents sheets at many different positions and orientations. 

We measure that the MV3D system achieves volumetric 
image quality comparable or superior to existing certified CT 
systems, when evaluated on a standard quantity such as PSF on 
standard phantoms. 
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Abstract—Computed tomography (CT) reconstruction of 

objects in luggage is affected by surrounding clutter, which 

can contribute artifacts such as streaking and beam 

hardening.  We have been investigating a constrained 

conjugate gradient (CCG) algorithm for CT reconstruction. 

We have found that the time required to perform each 

iteration of the CCG can be reduced by a factor of 10 or more 

by using an approximation to the error in the minimization 

line search. We have also found that ray weighting can 

alleviate streak artifacts. 

 
Index Terms—Gradient methods, Least squares methods, 

Reconstruction algorithms, X-ray tomography 

 

I. INTRODUCTION 

OMPUTED tomography (CT) reconstruction of many 

objects of interest is affected by surrounding clutter.  

The clutter may contribute scatter, beam hardening and 

photon starvation [1].  This case is particularly important in 

security applications such as checked baggage scanning, 

where quantitative data are used to decide whether a bag 

contains a threat.  Clutter can significantly alter the 

reconstructed attenuation of a material or create false 

alarms. Iterative reconstruction techniques offer a number 

of possible ways to alleviate many of these environmental 

effects, including incorporation of prior knowledge, 

regularization and weighting of rays. 

An example of environmental effects is shielding, which 

occurs when a highly-attenuating material blocks many of 

the projections of a less attenuating material.  An example 

of this effect is a steel bar lying across a bottle of jelly in an 

airport bin (Fig 1).  If reconstructed using filtered back-

projection [2] (as in 1a), beam hardening and photon 

starvation make the bar appear hollow and some of the 

streaks in air have higher image intensity than the jelly.  
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The streaks in the jelly change its mean attenuation.  Many 

of the effects of shielding can be alleviated by using a ray-

weighted iterative reconstruction (as in 1b). 

 
(a)           (b) 

Fig. 1.  (a) Filtered backprojection reconstruction of a steel bar lying over a 

bottle of jelly in an airport bin.  Note that the streaks in empty air have 

points of higher intensity than the jelly, blur the space between the bar and 

the jelly, and that the bar appears to be hollow. (b) Ray-weighted iterative 

reconstruction.  Note that the streaks have been diminished, there is a clear 

separation between the jelly and the bar, and the jelly is more uniform. 

 

Scatter, beam hardening and photon starvation act to 

change the x-ray features of materials in luggage.  If a 

particular set of features is used for explosive detection, 

these changes require enlarging the regions of feature space 

where it is necessary to raise an alarm and thus increase the 

false alarm rate (Fig 2).  The goal of our iterative 

reconstruction work is to show that the effects of containers 

and concealment can be reduced. 

 

 
Fig. 2.  The goal of our iterative reconstruction work is to show a reduction 

in the size of the feature space where an alarm must be raised.  Features 

may include x-ray attenuation coefficients, effective atomic number, 

density, texture, etc.  “Bare” is the object scanned as is without clutter. 

 

One of the drawbacks of iterative reconstruction 

techniques is the amount of computer memory and time 

they require.  We have been examining acceleration 

techniques for constrained conjugate gradient reconstruction 

and have found that using an approximation to the error can 
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accelerate the reconstruction by more than an order of 

magnitude. 

The purpose of this work is to report on our results to 

date using a ray-weighted constrained-conjugate-gradient 

iterative reconstruction technique.  

II. RECONSTRUCTION ALGORITHM 

A. High Level Overview 

We first generate a model to fill space.  This model may 

be comprised of blobs, regular voxels, or pieces (if we have 

prior knowledge of the object to be scanned).  We 

determine the interaction of the model with all the rays and 

prune those parts of the model that are un-attenuating.  The 

reconstruction approach we use is to minimize the mean-

square error function of the model for all attenuated rays.  

We use the adjoint method to find the gradient of the error 

function for every voxel [3].  This gradient is used in a 

constrained conjugate gradient algorithm [4] to determine 

the search direction for error minimization.  An iteration of 

the method consists of: 

 For each ray: 

o Execute the forward model, 

o Determine the mismatch between the forward model 

and the data, 

o Distribute the error gradient to the parts of the model 

that interact with the ray. 

 Generate an appropriate direction given the error 

gradient, regularization, and the previous descent 

direction. 

 Perform line minimization to find the minimum error in 

the chosen direction. 

 If the error is small enough, exit, otherwise perform 

another conjugate gradient iteration. 

B. Adjoint Method as a Source of the Gradient 

We use the adjoint method on the one dimensional ray 

equation to determine the error function gradient for the 

voxels along the ray.  We represent position along the ray 

by s, modeled intensity along the ray at any point by I(s), 

and modeled attenuation at any point along the ray by (s).  

The initial intensity of the ray is given by I(0) = I0.  The one 

dimensional equation for intensity along the ray is 
  

  
                             (1) 

where in this case (s) is a Dirac delta function.  We define 

the error functional of the attenuation distribution as 

        
 

 
                        

 
       (2) 

where sfinal is at the detector and Iobs is the detected 

intensity. 

We want the gradient of the error with respect to the 

modeled attenuation distribution.  This gradient, when 

integrated with the variation in the attenuation, gives the 

variation of the error: 

                                 (3) 

here the  indicates variation.  The variation of the ray 

equation is given by 
   

  
                               (4) 

and the variation of the error is given by 

                                           .   (5) 

The forward ray equation represents forward projection 

through the model.  The adjoint ray equation describes the 

backward projection of the error between the model and the 

observed data: 

 
   

  
                             (6) 

where the source term  sS
~

 is, in effect, an initial 

condition: 

                                             (7) 

and thus the variation of the error is given by 

                    
   

  
               .  (8) 

Using the identity  

  
   

  
    

   

  
 

 

  
                  (9) 

and realizing that we can disregard the right hand term of 

(9) because it is zero at the endpoints, we find (8) becomes 

            
   

  
                       (10) 

Substituting (4) into (10) yields a form of the variation of 

the error from which we can easily extract the gradient: 

                                        . (11) 

The gradient is thus 

                                (12) 

 

Evaluating the Gradient Along a Ray 

Given the gradient of the error as a function of position 

along the ray, how do we evaluate it?  For simplicity, 

assume a uniform attenuation distribution, (s) = .  Over 

the course of the forward projection, the intensity at any 

position is then: 

        
            

   .           (13) 

Suppose the result of the forward projection is not the same 

as the observed intensity.  The difference is the initial 

condition on the back projection.  Over the course of the 

back projection, the intensity at any position is: 

                               
                (14) 

and the resultant product at any position is 

                                                (15) 

Equation (15) holds for any distribution of attenuation along 

the ray for the simple attenuation model. 

 

Evaluating the Gradient Along a Ray for a Voxel 

If the attenuation distribution to be found is represented 

by the sum of N basis functions i(s) with weightings pi 

             
 
                 (16)

 then the finite-dimensional gradient is given by 
  

   
                                           (17) 

where Pi is the projection of the ray through the basis 

function.  
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Evaluating the Total Gradient for a Voxel 

We extend the error for a ray to the error over the entire 

reconstruction as follows: 

         
 

 
                              

 
  

   

                                               (18) 

where m is the ray index,  determines the balance between 

the pure error term and the total variation regularization 

term, and wm is used to weight the rays. The gradient for the 

ith voxel is then 

           
 
                             

                   
        

              
              (19) 

where Pi,m is the projection of the mth ray through the ith 

voxel. 

C. Model Pruning 

In many cases there are regions of the model that are 

intersected by rays that are un-attenuated.  It is a waste of 

computational resources, and a potential source of error, to 

let those parts of the model affect the calculation.  The way 

we determine which parts of the model to eliminate is to 

count both the number of ray interactions that each part of 

the model experiences as well as the number of those 

interactions that occur with un-attenuated rays. 

If the number of un-attenuated interactions is greater than 

a chosen ratio of the total number of interactions (we use 

0.25), then that piece of the model is eliminated.  One 

problem that we have encountered is defining the threshold 

for an un-attenuated ray. 

D. Approximate Error 

One of the most time-consuming steps of many descent 

methods, for example the conjugate gradient algorithm, is 

the search for the minimum in the descent direction.  This 

can involve tens of evaluations of the forward model and 

error function for the problem.  For even a modest problem 

involving 1000 rays in 1000 views interacting with 

approximately 1000 voxels apiece, there are on the order of 

1e9 multiply-adds per forward modeling and error 

evaluation. 

There is a long history in the conjugate gradient solver 

community of trying to cut computational effort by using 

inexact line searches [5,6,7].  In all of these efforts the line 

search is stopped before it finally converges.  Another way 

of using these results is not to stop the line search before it 

converges, but to use an approximation to the error.  If we 

take a random sample of the set of all rays for each 

conjugate gradient iteration and use that to approximate the 

behavior of the error in the minimization step, we can cut 

the computational effort significantly.  The approximate 

error we use is the squared error of a random subset of the 

rays that have at least 0.1% mismatch between the modeled 

ray intensity and the detected ray intensity.  The actual 

value of the approximate error does not matter as long as 

the minimum of the approximate error occurs near the 

minimum of the true error (as defined in [5], [6], and [7]). 

One full forward model and error computation must be 

performed before the line search in order to generate the 

gradient for the entire problem.  This cuts the computational 

effort of the line search down to less than two full 

evaluations of the forward model (and resultant error) and 

consequently speeds the algorithm by a factor of between 

10 and 40 times. 

The problems we have observed using this technique are 

that close to the converged solution it becomes difficult to 

select an appropriate set of rays with which to approximate 

the error.  At this point it is reasonable to switch to the full 

error conjugate gradient.  Depending on when this switch 

occurs it may significantly reduce the time savings of the 

method.  Another drawback is that the same data will yield 

different results depending on which random sets of rays are 

used in the line searches.  This drawback can be alleviated 

by switching to the full error minimization as the problem 

nears convergence. 

E. Ray Weighting 

One of the strengths of iterative methods is that rays can 

be weighted in importance.  A ray that is heavily attenuated 

will have more Poisson noise and be more sensitive to 

scatter and beam hardening.  By adjusting the weights of the 

rays we can incorporate our knowledge of these noise 

sources.  In [8] a case is made for weighting by the ray 

transmission, Iobs/I0.  We examined two ray weighting 

policies: 

    
    

  
 
 

                 (20) 

which weights a ray by the transmission to a power  p, and 

   
 

 
 

 

  
    

 
   

 

 
 

 

 
      

    

  
    

  
    
  

   

 

                      (21) 

which weights rays by a sigmoidal function, erf,  centered 

around x with a sharpness s.  These weighting policies are 

illustrated in Fig. 3. 

 

 
(a)            (b) 

Fig. 3.  (a) Ray weighting by powers of transmission.  Each curve 

represents the weighting by transmission to a different power. (b) Ray 

weighting by a sigmoidal function of ray transmission.  Here x = 0.5 is 

fixed and each curve illustrates the effect of a different s. 

 

We use the situation of the bar of steel suspended over 

the container of jelly (Fig. 1.) as our sample problem.  One 

metric for performance is the difference between the mean 

jelly attenuation in this situation as compared to the mean 

jelly attenuation when it is scanned alone (bare) in a bin.  

Another metric is the flatness of the attenuation along the 

length of the steel bar.  For this problem we are not using 
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regularization, so  = 0.  In this situation we have found that 

ray weighting by powers of transmission yields better 

results than ray weighting by sigmoidal functions.  This is 

illustrated by Figs. 4-9.  In Figs. 5-9 attenuation is measured 

in Livermore Modified Hounsfield Units (LMHU) which 

assigns the attenuation of air to 0 and water to 1000. 

 
Fig. 4.  Lineouts taken along steel bar and through bar and jelly to 

determine the performance of the reconstruction as a function of ray 

weighting. 

 

 
Fig. 5.  Lineouts through steel bar and jelly for analytic and iterative 

reconstruction with transmission power ray weighting.  

 

 
Fig. 6.  Lineouts through steel bar for analytic and iterative reconstruction 

with transmission power ray weighting.   

 

 
Fig. 7.  Mean and standard deviation of jelly as a function of transmission 

power ray weighting compared to jelly alone (bare) in an airport bin. 

 

 
Fig. 8.  Mean and standard deviation of jelly as a function of the strength 

of sigmoidal ray weighting.  The center of the sigmoid was chosen to be 

0.5. 

 

 
Fig. 9. Lineouts through steel bar for analytic and iterative reconstruction 

with signoidal power ray weighting.  The sigmoidal center was set at 0.5 

while the strength was varied. 

III. FUTURE WORK 

There are several directions for future work.  We now 

need to apply these techniques to a wide variety of data to 

determine when they are applicable and whether the effects 

of containment, clutter and concealment can be reduced in 

the feature spaces that automatic threat detection are 

performed in. 
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Abstract—We adapted our novel segmentation method, called 

Stratovan Tumbler, to automatically segment objects from CT 

scans of checked baggage at airports. Our segmentation method 

handles problems with CT scans such as streaking and noise and 

is able to make difficult splitting and merging decisions for 

touching objects. Our methodology produces an object hierarchy 

describing the relationship of baggage objects to one another that 

can be used during the explosive detection stage in airport 

security for the purpose of identifying threats. The main benefits 

of our method are (i) tolerance of CT reconstruction artifacts, (ii) 

works well on objects of any shape, and (iii) can handle both 

homogeneous and heterogeneous materials. 

 
Index Terms—Segmentation, Automatic object segmentation, 

Computed tomography, Baggage screening, Airport security, 

Automated threat recognition, Explosive detection 

 

I. INTRODUCTION 

XPLOSIVE detection in airport security involves 

automatically analyzing x-ray computed tomography (CT) 

scans of checked baggage [6]. The goal of this detection 

process is to identify possible explosive material signatures 

within baggage contents prior to their being transported on a 

plane. The detection process involves numerous steps, with 

one possible step being that of image segmentation to delineate 

individual objects, such as a bottle of liquid, so that object 

characteristics can be extracted and fed into a threat 

recognition system to determine whether or not the object 

matches an explosive signature [5]. The challenge in this 

environment is that x-ray CT scans inherently suffer from 

image quality problems such as low-resolution, noise, poor 

contrast, and streaking artifacts to name a few. These problems 

adversely affect the segmentation step by, for example, 

incorrectly merging touching objects or by splitting an object 

into too many pieces to the extent that extracted characteristics 

are compromised to the subsequent explosive detection step. 
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We adapted a medical segmentation technology called 

Stratovan Tumbler [7] to the problem of delineating objects 

from CT scans of checked baggage. Tumbler is a flexible 

region-growing segmentation method which delineates objects 

irrespective of shape, topology, and orientation. We made no 

assumption in object shape, type, density, or composition in an 

effort to develop a robust system that could automatically 

delineate most objects. The result of this effort is Stratovan 

Decorum, a software tool for automatically delineating and 

analyzing objects from CT scans of baggage. Our work in this 

area was initiated by the Department of Homeland Security 

and focuses on improving segmentation of all objects above a 

minimum intensity threshold, 500 modified Hounsfield units 

(MHU), where water is calibrated at 1000 MHU [1]. 

II. TUMBLER SEGMENTATION 

A.  Overview 

Tumbler uses a kernel that virtually moves in three 

dimensions in a flood-fill manner. The kernel starts inside the 

object and iteratively moves outward until it meets the object’s 

boundary. Tumbler can also simulate the outside-inward 

process with proper setup. 

Our algorithm begins by defining the kernel shape and size, 

and positioning it inside the object being segmented. We move 

the kernel outward in a flood-fill fashion while the newly 

traversed voxel intensities continue to satisfy predetermined 

criteria (e.g., mean value is above some threshold). The size 

and shape of the kernel prevents it from escaping through 

holes in ill-defined boundaries. 

B. Process Details 

We implement the Tumbler process by: 

1. Defining a 3D kernel: in most cases, a sphere suffices. The 

kernel is always smaller than the object to be segmented and 

bigger than any expected holes in the object’s boundary. 

2. Determine movement criteria. Each time the kernel 

moves, we pre-compute the minimum, maximum, mean, and 

standard deviation {min, max, mean, std} of the "to be" 

traversed voxels. Based on these parameters, one must 

determine the criteria required to decide whether or not to 

accept or reject the new position. This can be as simple as 

comparing the mean value to a constant threshold or more 

complicated as needed. 

3. Choose a start location. This can either be done manually 

or by some automatic process. Once established, the 

Automatic Segmentation of CT Scans of 
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neighboring voxel coordinates and direction of movement 

from the current position {i, j, k, dir} are placed in a queue that 

drives the flood-fill process. 

4. Flood-fill process: 

a. Remove a position from the queue and compute the 

{min, max, mean, std} values of the voxel intensities. 

b. Compare the {min, max, mean, std} to the criteria 

established in Step 2 and decide whether these new voxels 

are acceptable or not. 

c. If not acceptable, do nothing more. If acceptable, move 

the kernel to this new position, mark all voxels covered by 

the kernel as the “object,” and add all of its non-traversed 

neighbors to the flood-fill queue. 

d. Repeat Step 4a. 

5. Completion. The process stops when the flood-fill queue is 

empty. The voxels traversed by the kernel represent the object. 

This process is illustrated in Fig. 1. 

  
 

Fig. 1. Illustration of the Tumbler process. In each image, red pixels indicate 

the object's boundary while the white pixels indicate the object. Image (a) 

shows the initial condition having a "+" shaped kernel, as indicated by the 

gray pixels. Image (b) shows that to move the kernel one position to the right, 

pixels 1, 2, and 3 must satisfy some predetermined criteria; such as their 

average value must be below some threshold. Assuming that this criteria is 

met, image (c) indicates the completed move and tries another by evaluating 

the intensity values of pixels 4, 5, and 6. Assuming that the average of these 

intensity values continues to satisfy the guiding criteria, image (d) indicates 

the completed move and now evaluates the average intensity of pixels 7, 8, 

and 9. In case (d) we find that the average value is now above our threshold, 

preventing further movement to the right. (The algorithm would then continue 

in the remaining directions.) 

C. Algorithm Variables 

Parameters that control the Tumbler process are: 

 Kernel size and shape. A bigger kernel is more tolerant to 

noise but can consume fine detail internal to an object and at 

its boundary. A smaller kernel results in better detail but is 

susceptible to noise and, if objects are touching, the flood-fill 

process can spill into neighboring objects. The rule of thumb is 

that the kernel must be smaller than the object of interest yet 

bigger than any holes in its boundary. 

 Start position. The tumbler kernel must start inside an 

object of interest. Choice of start location within the object can 

affect segmentation results in some cases and must be 

evaluated on a case-by-case basis during segmentation training 

in order to determine optimal starting position requirements. 

 Guiding criteria. Each object of interest must be evaluated 

to determine acceptable parameters for {min, max, mean, std} 

voxel intensities. This information constrains the flood-fill 

movement of the kernel at each iteration. 

 Voxel spacing. Tumbler performs better with near uniform 

voxel spacing. Additionally, Tumbler performs substantially 

better with a kernel larger than a single voxel. The spacing 

between each voxel imposes a lower bound on the kernel size 

and ultimately on the smallest extracted objects. Resampling 

data to a finer resolution can, in some cases, better identify 

thin objects. 

D. Adapting Tumbler to Aviation Security 

Our focus during the project period with the Northeastern 

University ALERT CT Segmentation Initiative was to develop 

a fully automated system for segmenting baggage scans. This 

involved automating various steps and refining techniques 

used at various stages to improve segmentation quality. These 

improvements are described in the following sections. 

 

1) Algorithm Automation 

We devised methods for automatic selection of Tumbler 

parameters in order to automatically analyze baggage scans: 

Kernel Shape and Size: We were able to devise a robust 

method for automatically choosing a kernel size for any point 

within a CT scan. This is important since we must choose a 

kernel size that is smaller than the object being delineated yet 

larger than any expected holes in the object boundary. We 

were able to determine kernel size (1-, 2-, 3-, or 4-mm radius 

sphere) based on an analysis of image gradient near each 

voxel, which implies the amount of "clutter" at any given 

point. More clutter demanded a smaller kernel while less 

clutter permitted a larger kernel since the surrounding area 

represented a relatively homogeneous region. 

Start Position: We were able to devise an ordering method 

for each voxel to choose seed points for starting each object 

delineation process. We found that considering the following 

circumstances enabled the automatic determination of seed 

point priority: 

 Run large kernel sizes first and smaller sizes last. 

 Run high-intensity voxels first and low-intensity voxels 

last. 

 Start in the middle of objects rather than on the edges. 
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 Increase the priority of voxels within "thin" objects, since 

thins objects tended to be sorted last, but we still 

needed to delineate them. 

Guiding Criteria: We setup a training process for 

determining guiding criteria used when moving the kernel 

from one voxel to the next. Initially, this consisted of choosing 

minimum and maximum thresholds that bounded the mean 

intensity computed from the kernel when placed at each seed 

point (i.e., choosing 0.98*mean and 1.02*mean for the 

minimum and maximum thresholds, respectively). We were 

able to mature this process by manually improving errant 

segmentations (by either increasing or decreasing the 

thresholds) and adding each improvement to a central training 

file which eventually replaced our initial, crude estimate. We 

fit a polynomial function to the training points while 

considering mean intensity, standard deviation, minimum 

intensity, maximum intensity, and gradient information within 

the kernel as placed at the seed location. The trained 

polynomial was then used to automatically determine guiding 

criteria at any voxel location within the CT scan. Furthermore, 

we tracked error metrics associated with the training function 

to maintain integrity of the system. In general, we found that 

the training process converged quickly with minimal to no un-

intended side effects as training points were added. In total, we 

used just over seventy training points from around twenty 

training bags. 

 

2) Splitting 

We found that our method works rather well at splitting 

objects into distinct and relatively homogeneous parts. We 

also found that our training process converged quickly when 

correcting splitting errors and was able to separate almost any 

touching objects if there existed a gradient boundary between 

them. Also, in many cases, our system is able to separate 

touching objects when there does not exist a gradient 

boundary. This is possible with our multi-voxel kernel since 

the larger kernel does not slip through the touching region. By 

manipulating the kernel size and the guiding criteria we are 

able to separate touching objects, for example, a lotion and gel 

pad, as shown in Fig. 2. 

 

    
(a)            (b)  

Fig. 2. Segmentation result of two touching objects (bottle of lotion and gel 

pad) with kernel radius 2mm (a) and 4mm (b). By using a larger kernel we are 

able to identify the slight gradient boundary between the two objects, as 

indicted by the blue outline. 

 

3) Merging 

Our process tends to split objects into relatively 

homogeneous parts. For example, a cell phone is split into its 

internal electronics, plastic case, leather case, and belt buckle. 

This introduces the problem of object philosophy. The object 

philosophy problem is simply: how does one represent 

something like a cell phone in their segmentation results: Is it 

a single object or is it multiple component parts? 

By determining a tree hierarchy that defines how each part 

relates to the others, the object philosophy problem is averted 

since a cell phone exists both as component parts and a single 

composite object depending upon how one traverses the parts 

tree. 

We computed a hierarchical representation of segmented 

parts by evaluating overlap between each delineated part and 

merging two parts in our tree that meet certain criteria. (We 

initially based this decision on whether two parts overlapped 

by 10% or more voxels which worked well for most cases.) 

Our merging process takes advantage of a side-effect of our 

Tumbler segmentation which results in overlapping object 

segmentations, as indicated by the arrows in Fig. 3. 

 

 
Fig. 3. .Segmentation of a cell phone into overlapping component parts: 

internal electronics, plastic case, belt buckle, etc. Arrows indicate overlapping 

voxels between parts implying connectedness. 

 

Fig. 4 shows the merged components of a candle (wax 

inside a metal container with lid) and a camera tripod 

(constituting over forty individually segmented parts). 

       
(a)        (b)  

Fig. 4.  Results of our merging process on a candle (a) and a tripod (b). 

Page 312 The second international conference on image formation in X-ray computed tomography



 

 

III. RESULTS 

We tested our software on over thirty baggage CT scans 

provided to us by the Northeastern University ALERT CT 

Segmentation Initiative [1]. Each scan was captured on a 

medical grade CT scanner and had a resolution of 0.98 x 0.98 

x 1.29 mm with water calibrated at a value of 1000 MHU. 

Our Tumbler segmentation method is effective in 

delineating many different kinds of objects from CT scans of 

baggage. Bulk or homogeneous objects such as a bottle of 

water, honey, rubbing alcohol, hydrogen peroxide, nylon 

phantom, and rolls of tape are generally composed of a single 

material. We are able to segment nearly all objects in this 

category accurately, as shown in Fig. 5 and Fig. 6. 

 
Fig. 5. Segmentation result of liquids with varying intensities. Examples 

include bottles of rubbing alcohol, motor oil, water, honey, soda, maple syrup, 

and honey. The mean intensities, volume, and mass are computed from our 

segmentation results.  

             
(a)        (b)       (c) 

Fig. 6. Segmentation  results of (a) toothpaste, (b) soap and (c) rubber sheet. 

We are able to delineate all objects that are generally composed of a single 

material with reasonably well defined boundaries (even if these objects are 

touching other objects). 

 

We are able to easily separate touching objects since we use 

a large kernel size allowing us to effectively detect ill-defined 

object boundaries (i.e., the touching region even when there is 

no gradient boundary between objects).     

In the case of heterogeneous objects, including cell phones, 

laptops, hard drives, etc., we delineate the components parts of 

the object and merge those together into a parts tree describing 

the connectedness of the parts (see Fig. 4 and Fig. 7). 

       
(a)          (b)        (c) 

Fig. 7. Segmentation  results of (a) metal pot with lid, (b) harddrive and (c) 

cell phone. Objects that are composed of heterogeneous parts (i.e., materials 

of different density) are delineated as separate parts and later combined in the 

merging step. 

 

Thin objects with low intensity are poorly represented by 

CT due to lower contrast at the lower intensity. Sometimes 

these objects touch high-intensity objects like the neoprene 

sheet sitting on top of a Costco package of 48 AA batteries in 

Fig. 8, which destroys the gradient boundary information 

making it challenging for any segmentation method to 

delineate accurately. Such CT artifacts cause segmentations to 

result in multiple parts, which we recombine later in the 

merging step. 

 
Fig. 8. Segmentation result of neoprene sitting on top of a package of 48 AA 

batteries. Here we are unable to delineate the sheet into a single segmentation 

since streak artifacts from the high-intensity batteries destroy the gradient 

boundary and erroneously changing the neoprene intensity in various regions.  

IV. CONCLUSIONS 

Tumbler segmentation tolerates common problems inherent 

in image segmentation and those caused by CT reconstruction 

artifacts such as noise, streaking, shading, and poor 

representation of object boundaries. It employs a multi-voxel 

kernel which considers several voxel intensities when deciding 

whether to connect neighboring voxels in a region-growing 

step. This allows the Tumbler method to tolerate noise, 

streaks, shading, and most importantly to detect ill-defined 

object boundaries in the case of touching objects. 

We are currently improving performance of our Tumbler 

algorithm (currently runs about 40 min) by adapting it to the 

GPGPU and also improving our parts tree merging process. 

We are also investigating the impact our improved 

segmentation technique has on explosive detection quality. 
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An iterative reconstruction method for spectral CT
with tensor-based formulation and nuclear norm

regularization
Oguz Semerci, Ning Hao, Misha E. Kilmer and Eric L. Miller

Abstract—Spectral computed tomography (CT) has become
possible with the development of photon counting X-ray detector
technology. Energy selective measurement capabilities of these
devices open the doors to many exciting directions in CT research.
In this work we assume perfect energy resolution at detectors,
which results in a family of monochromatic CT problems. We
propose a tensor based iterative algorithm that simultaneously
reconstructs the X-ray attenuation distribution for each energy
level. Specifically, we model the multi-spectral unknown as a 3rd

order tensor where first two dimensions are in space and the
3rd dimension is in energy. This approach allows the design of a
regularizer based on low rank assumptions on the multi-spectral
unknown where we apply tensor spectral norm penalties. The
solution to the convex optimization problem is obtained using the
alternating direction method of multipliers (ADMM). Simulation
results show that the proposed regularizer is applicable to the
spectral CT problem and reliable in recovering a multi-linear
structures in an inverse problem set up. In addition, when
accompanied to TV it enhances the regularization capability and
provide superior reconstructions.

Index Terms—Computed tomography, spectral CT, photon
counting detectors, low-rank modelling, spectral regularization,
tensor rank, inverse problems, iterative reconstruction

I. INTRODUCTION

ACONVENTIONAL computed tomography (CT) imaging
system utilizes energy integrating detector technology [1]

and provides a monochromatic reconstruction of the linear
attenuation coefficient distribution of an object under investi-
gation. The polychromatic nature of the X-ray spectra is either
neglected [2], [3] or incorporated into the model in an iterative
reconstruction method to achieve more accurate results [4], [5].
Energy resolving (photon counting) detector technology [6],
on the other hand, provides the possibility of energy selective
measurement and opens the door to spectral CT technology.
Spectral CT promises improved diagnostic imaging [7], [8]
and applicability to the security domain [9] due to the contrast
enhancement and material characterization capabilities.

In this work, we propose an iterative reconstruction method
for the spectral CT problem where we model the multi spectral
unknown as a low rank 3rd order tensor. Recently, there has
been considerable work on recovering corrupted matrices or
tensors based on low-rank and sparse decomposition [10] or
solely on low-rank assumptions [11], [12], [13], [14]. Our goal

This work was supported by the U.S. Department of Homeland Security
under Award 2008-ST-061-ED0001.

O. Semerci and E.L. Miller are with the Department of Electrical and
Computer Engineering, Misha Kilmer and Ning Hao are with Mathematics
Department of Tufts University, Medford, MA, 02155 USA.

here is to adopt the generalized tensor rank formulation [15]
to regularize the spectral CT problem. Similar studies where
the multi spectral unknown is modelled as a superposition
of low rank and sparse matrices had been conducted for 4D
cone beam CT [16] and spectral tomography [17]. In these
approaches, the multi spectral unknown is represented as a
matrix with row dimension in space and column dimension
in energy. Applying the low rank prior to the multi spectral
matrix is a special case of our tensor model where only the
unfolding in the energy dimension is considered. However,
more powerful regularization can be achieved, especially when
the number of energy bins is limited, if the redundancy in
the spatial dimensions is exploited with the incorporation of
unfoldings in spatial dimensions [14]. One of the purposes of
this work is to investigate the effect of low-rank assumptions
on the unfoldings in the spatial dimensions.

The paper is organized as follows: Section II describes
the measurement and noise model. Section III describes the
multi-spectral phantom and Section IV provides the details of
the tensor based modelling of the unknown and mathematical
details about the nuclear norm regularizer. Section V shows
simulation results and Section VII gives concluding remarks
and future directions.

II. MEASUREMENT MODEL

At the photon counting detectors the photons in the poly-
chromatic spectrum are classified into energy bins. If we
assume perfect energy resolution (i.e., infinitesimal bin width)
the polychromatic X-ray CT problem reduces to NE linear
monochromatic problems :

Axi = yi + ni, i = 1, . . . , NE . (1)

Here A is the CT system matrix discretizing the Radon
transform, xi is the vectorized 2D linear attenuation coefficient
image, ni is the noise1 vector and yi is the measurement vector
for the ith energy bin.

III. THE MULTI-SPECTRAL UNKNOWN AS A TENSOR

Let us define the 3rd order tensor χ ∈ RN1×N2×NE where
N1 and N2 are the number of pixels in spatial dimensions.
Note that xi ∈ RN1N2 can be obtained by lexicographical
ordering of the N1×N2 attenuation distribution (frontal slice)

1Ideally, the measurements in spectral CT should be modelled as Poisson
random variables [8]. However, we assume additive Gaussian noise in this
proof of concept study
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Fig. 1. Multi-spectral phantom and the attenuation curves for existing materials.

at the ith energy. A depiction of the multi-spectral phantom
used in this study along with the corresponding attenuation
curves are given in Figure 1. With this notation we can define
the forward operator K in a block diagonal form as follows:

K(χ) :=

A . . .
A


 x1

...
xNE

 . (2)

IV. PRELIMINARIES ON TENSORS AND THE NUCLEAR
NORM REGULARIZER

We start with the definition of the unfolding (matricization)
operation: For the tensor, χ ∈ RN1×N2×...NK , the mode-k
unfolding X(k) ∈ RNk×

∏
k′ ̸=k Nk is a matrix whose columns

are mode-k fibers, where mode-k fibers are vectors in RNk that
are obtained by varying the index in kth dimension and fixing
the others [18]. It is easy to visualize unfolding operations in
terms of fronral, horizontal and lateral slices. Figure 2 depicts
the 1st and 2nd unfoldings for a 3rd order tensor.

Fig. 2. First two unfoldings of a 3rd order tensor

The nuclear norm of a matrix X is defined as ∥X∥∗ :=∑
i σi(X), where σi’s are the singular values. It is shown

that the nuclear norm provides the tightest convex relaxation
for the rank operation in matrices [12]. Consequently, convex
optimization methods for low-rank matrix completion and rank
estimation via minimization of the nuclear norm [12], [19]
were proposed. This idea has been generalized to tensors for
an N-way tensor [15], [14] as

∥χ∥∗ :=
1

N

N∑
k=1

∥χ(k)∥∗ (3)

We refer the reader to [15] for a thorough discussion about the
relation of (3) to Tucker decomposition and Shatten 1-norm
of matrices.

Except for K-edge materials X-ray attenuation at neighbour-
ing energies are highly correlated. Therefore, for spectral CT,
one expects the third unfolding, χ(3) to be low-rank [17].
However, structural redundancies can also be exploited by
enforcing low-rank structure on other two unfoldings. To this
end, we use a more general form [13] of the tensor nuclear
norm given in 3 as a regularizer:

R(χ) =
3∑

k=1

γk∥χ(k)∥∗, (4)

where γk tunes the importance of each each unfolding.

V. INVERSE PROBLEM FORMULATION

We seek a solution for the spectral CT problem via a convex
optimization problem:

minimize
χ

1

2
∥K(χ)− y∥2 + λ1R(χ) + TV (χ) (5)

The total variation regularizer TV (χ) considered here is the
weighted superposition of isotropic TV operator applied to
frontal slices of χ as

TV (χ) :=

NE∑
k=1

αi

∑
i<N1,

j<N2

|(∇xk)i,j |. (6)

The optimization problem given in (5) can be solved with
alternating direction method of multipliers (ADMM) [20],
where the problem is reformulated as

minimize
χ,Z1,Z2,Z3

1

2
∥K(χ)− y∥2 + λ1

3∑
k=1

γk∥Zk∥∗ + TV (χ)

subject to Zk = χ(k), for k = 1, 2, 3.
(7)

To solve (7) we form the augmented Lagrangian as

Lη(χ, {Zk}, {Yk}) =
1

2
∥K(χ)− y∥2 + λ1

3∑
k=1

γk∥Zk∥∗ + TV (χ)

+
3∑

k=1

< Yk, χ(k) − Zk > +
η

2
∥χ(k) − Zk∥2F ,

(8)
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where Yk’s are dual variables, η > 0 is the penalty term and
< . > is the inner product in the sense of Frobenius norm.
ADMM minimizes (8) for χ and Zk’s in an alternating manner
and then updates the dual variables:

χn+1 := argmin
χ

Lη (χ, {Zk}n, {Yk}n) ,

Zn+1
k := argmin

Zk

Lη

(
χn+1, {Zk}, {Yk}n

)
, for k = 1, 2, 3,

Y n+1
k := Y n

k + η(χn+1
(k) − Zn+1

k ), for k = 1, 2, 3.
(9)

The χ update in (9) can be decoupled and each frontal face
(energy) can be treated separately. We used FISTA [21] to
solve the arising total variation regularized quadratic problems.
With a straightforward reformulation one finds that the Zk

updates can be obtained via proximity operator of nuclear
norm as

Zn+1
k := argmin

Zk

∥Zk∥∗ + η
2λ1

∥∥∥Y n
k

η + χn+1
(k)

∥∥∥
∗

:= prox
∥.∥∗,

λ1
η

(
Y n
k

η + χn+1
(k)

) (10)

which has an analytical solution via singular value shrinkage
operator [11]. Specifically, prox

∥.∥∗,ρ

(X) = USρ(Σ)V T, where

X = UΣV T is the singular value decomposition of X and
Sρ(Σ) = diag({(σi − ρ)+}) is a shrinkage operator with
t+ = max(t, 0) applied to the singular values. Finally, the
dual variable (Yk’s) update with the step length η keeps the
updates dual feasible [20].

VI. RECONSTRUCTION EXAMPLES

We compared following methods in our simulations:

1. Filtered back projection (FBP) [22] algorithm applied to
each energy bin separately.

2. Only TV regularization at each energy bin separately (i.e.,
λ1 = 0 in (5)).

3. Only nuclear norm regularization (i.e., λ2 = 0).
4. TV and nuclear norm regularization.
5. Nuclear norm regularization where only the unfolding in

the energy dimension is considered (i.e., γ1, γ2 = 0).

We simulated multi-spectral data for 12 energies between 20
and 80 keV with 60dB SNR for 16 uniformly distributed
angles between 0 and 180 degrees. We have added some
texture on the objects and a small linear variation to the
background of the phantom (128x128 pixels) given in Figure
1. The ground truth images for 20 and 80 keV bins are given
in Fig. 3.

In all examples we set η, γ1, γ2, γ3 = 1 and λ1 = 0.1
with the exception of the last example where γ1, γ2 = 0.
We let αi’s reduce from 0.1 to 0.03 with a quadratic manner.
Intuitively, X-ray attenuation reduces as energy increases and
it is sensible to reduce the amount of TV regularization in a
similar manner. Fig. 4 shows reconstruction results for 20 and
80 keV images. Firstly, observing the last example, we realize
that relying solely on spectral redundancy is ineffective and
does not provide

VII. CONCLUSIONS

In this proof of concept work, we provided an algorithmic
framework for iterative spectral CT and showed that general-
ized tensor nuclear norm ideas can be used to regularizers.
Ideas presented here can be extended to inverse problems
where a multi-linear description of the unknown is possible.
Future research will be directed to combining the nuclear
norm ideas with quadratic edge preserving regularizer such
as weighted L2 for faster and more accurate reconstructions.
Quantifying redundancy and automatic determination of reg-
ularization parameters of the nuclear norm regularizer is also
an important direction to extend the current approach.
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Dynamic tomography, mass preservation and ROI
reconstruction

Laurent Desbat, Catherine Mennessier and Rolf Clackdoyle

Abstract—In this paper we consider the mass preservation
in dynamic tomography. We present an analytic compensation
of deformations preserving the mass and the acquisition line
geometry. We show 2D ROI reconstructions of truncated dynamic
data.

I. INTRODUCTION

A. Tomography and notations

We consider the attenuation function µ of an object
in Rd, d ∈ N, d ≥ 2 (in practice we restrict the dimension
d to d = 2 for single slice tomography, d = 3 for 3D
reconstruction). We suppose that µ : Rd → R is a bounded
function of compact support Ω. Thus µ ∈ Lq

(
Rd
)
,∀q ∈ N?.

Let ~v ∈ Rd denotes a point (an X-ray source position in
X-ray CT), and ~ζ ∈ Sd−1 a unit vector (in the direction from
the source to the detector in X-ray CT), the Divergent Beam
transform is defined by

Dµ
(
~v, ~ζ
)

def
=

∫ +∞

0

µ
(
~v + l~ζ

)
dl (1)

Generally (in particular in X-ray CT) the data are acquired
from multiple source positions and the source describe a
trajectory, i.e. a curve C = {~v(t), t ∈ T ⊂ R} in Rd. We
will suppose in the following that the curve C is outside
of the convex hull of Ω, the support of µ. In practice, the
source trajectory is sampled. The number np ∈ N of x ray
projections is bounded. Thus we deal with a finite number
of vertexes, ~vi ∈ Rd, i = 1, . . . , np (and ~vi = ~v(ti), ti ∈ T
is the sampling of the source trajectory). In this work, we
concentrate on 2D image reconstruction (µ ∈ Lq

(
R2
)
) even

if many results can be extended to 3D. In 2D, the fan beam
data can be parametrized

d(t, α) = Dµ
(
~v(t), ~ζ(α)

)
(2)

with ~ζ(α) = (cosα, sinα), α ∈ [0, 2π[.

B. Dynamic tomography

In dynamic tomography or 3D reconstruction, we can no
more suppose that the function µ is not changing during the
acquisition. This problem arises for example when measuring
X-ray projections from the thorax region with a relative slow
acquisition system like a C-arm [1] or in nuclear imaging

L. Desbat is with UJF-Grenoble 1, CNRS, TIMC-IMAG, UMR 5525,
Grenoble University ; C. Mennessier and R. Clackdoyle are with LHC,
UMR 5516, St Etienne, France (C.M. is also with CPE Lyon) ; emails:
laurent.desbat@imag.fr, catherine.mennessier@cpe.fr, rolf.clackdoyle@univ-
st-etienne.fr

acquisition (PET or SPECT) . Indeed, respiration motion
and/or patient movements occur. Fast moving organs like the
heart yield also artifacts, see [2], [3].Let t the source trajectory
parameter be also the time, then µ is both a function of
t and the space variable ~x, µ(t, ~x) (and we suppose that
µ ∈ Lq

(
T × Rd

)
,∀q ∈ N?).

Gating methods [4], [5], [6] have been proposed, in particu-
lar to improve cardiac imaging. The assumption that the object
movement is quasi periodic is made (respiration, beating heart)
and information on the object phase at acquisition time t is
collected from external devices (such as an electrocardiograph
in cardiac CT [7]). Then all data acquired at the same phase
are gathered in order to reconstruct the object at this phase.
The drawback of gating methods is their necessity to acquire
complete data for each movement phase to be reconstructed.
In practice, this means high dose to the patient and long time
acquisition compare to static tomography.

When the variations of µ during the acquisition is occurring
just because of movements or time dependent space deforma-
tions, the assumption that µ(t, ~x) behaves like µ

(
~Γt (~x)

)
can

be made, where µ is the attenuation function at a reference
time, for example t = 0, and ~Γt is a time dependent
diffeomorphic1 deformation, i.e. a smooth bijective mapping
on the space Rd, d ∈ {2, 3}:

~Γt : Rd −→ Rd

~x −→ ~Γt(~x)
. (3)

Thus ~Γt(~x) maps ~x at time t to its position at the reference
time. Such kind of modeling was introduced by Crawford et
al [8].Note that this model take care only for space deforma-
tions during the acquisition (for example introduction of new
materials in the FOV during the acquisition is not modeled
this way).

It is reasonable to add the assumption that the deformation
is preserving the mass. The mass is preserved on any set Ω of
Rd when performing the change of variable ~y = ~Γt(~x) thanks
to ∫

Ω

µ
(
~Γt (~x)

)
|det J~Γt(~x)|d~x =

∫
~Γt(Ω)

µ (~y) d~y

where det J~Γt(~x) is the determinant of J~Γt(~x) the Jacobian
matrix of ~Γt at ~x. Thus we define the diffeomorphic deforma-
tion of µ by ~Γt with mass conservation by

µ~Γt (~x)
def
=µ

(
~Γt (~x)

)
|det J~Γt(~x)| (4)

1If ~Γt and ~Γ−1
t are r times continuously differentiable, ~Γt is called a Cr-

diffeomorphism. We will suppose that ~Γt is at least a C1-diffeomorphism
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and we suppose from now that µ(t, ~x) = µ~Γt (~x). Thus, in
dynamic tomography, we have to identify µ from

Dµ~Γt(~v(t), ~ζ) =

∫
R
µ
(
~Γt

(
~v(t) + l~ζ

))
|det J~Γt(~v(t) + l~ζ)|dl

(5)
for some source trajectory ~v(t), t ∈ T , line directions ~ζ ∈
Sd−1 and ~Γt.

An advantage of this model compare to gating methods
is that all the data contribute to the reconstruction of one
function µ~Γt or equivalently µ when ~Γt is known. A (big)
disadvantage is that ~Γt must be measured or estimated from
the available data or extra ones. In all the following approaches
we will assume that ~Γt is known. For general smooth bijective
deformations no inversion formula exists and usually algebraic
approaches are used for general dynamic tomography recon-
struction, see for exemple [9]. Approximate analytic inversions
have also been proposed [10]. Singularity surfaces of µ can
be reconstructed from projections of µ~Γt (~x) (Eq. (5)) and ~Γt,
thanks to an exact local approach, see [11].

In the following we want to reconstruct µ from the knowl-
edge of ~Γt and projections of µ~Γt (~x), see Eq. (5). Follow-
ing [8], we proposed in [12] a generalization of the analytic
deformation compensation to the class of deformations pre-
serving the acquisition line geometry with the restriction to
linear deformations along each line. This last restriction is
suppressed in this work thanks to the mass conservation of
the deformation.

We first consider deformations preserving the projection
line geometry. More precisely we consider ~Γt mapping the
set of convergent measurement lines at time t onto a set of
convergent lines at the reference time. Indeed, preserving the
measurement line geometry allow to stay within tomographic
problems and thus to propose analytic solutions. The parallel
geometry can be treated similarly.

II. DIVERGENT GEOMETRY AND MASS PRESERVATION

A. Divergent geometry preservation

The deformation ~Γt preserves a divergent geometry if it
transforms the acquisition fan lines (respectively conical lines
in 3D) into another set of fan lines (respectively conical lines
in 3D). Let ~v(t) + R~ζ be such a line with ~v(t) the source
vertex and ~ζ ∈ Sd−1 the line direction. First the source
~v(t) is transform into a concurrent point ~Γt (~v(t)) of all the
transforms lines ~Γt

(
~v(t) + R~ζ

)
. Second, each line direction

~ζ is transformed into a new direction denoted ~Σt(~ζ) where ~Σt
is a diffeomorphism on the unit sphere (bi-smooth bijection
on the sphere):

~Σt : Sd−1 −→ Sd−1

~ζ −→ ~Σt(~ζ)
. (6)

Thus a deformation preserving the divergent geometry satisfies

~Γt

(
~v(t) + R~ζ

)
= ~Γt (~v(t)) + R~Σt(~ζ).

We can remark that the divergent line geometry is preserved,
i.e. ∀~ζ ∈ Sd−1 the half line ~v(t) + l~ζ, l ∈ R+ is mapped to an
other half line because ~Σt does not depend on the variable l

(the position on the line). To complete the modeling of the time
dependent deformation preserving the divergent geometry, we
have to precise the deformation along each line. Obviously, it
may differ from line to line, thus it may depend on ~ζ (and t).
We introduce γt,~ζ the deformation function along each half
line ~v(t) + l~ζ, l ∈ R+:

γt,~ζ : R+ −→ R+

l −→ γt,~ζ(l)
. (7)

We have, ∀l ∈ R+, ∀~ζ ∈ Sd−1,

~Γt

(
~v(t) + l~ζ

)
= ~Γt (~v(t)) + γt,~ζ(l)

~Σt(~ζ). (8)

Clearly for ~Γt to be smooth and bijective, γt,~ζ must be a
strictly monotonic smooth function and γt,~ζ(0) = 0.

B. Geometry and mass preservation

Proposition II.1. A time dependent deformation ~Γt preserving
the divergent geometry in the form of Eq. (8) such that

µ~Γt

(
~v(t) + l~ζ

)
=µ
(
~Γt (~v(t)) + γt,~ζ(l)

~Σt(~ζ)
)
|γ′
t,~ζ

(l)||J~Σt(
~ζ)|
γd−1

t,~ζ
(l)

ld−1

(9)

preserves also the mass of µ.

Proof: ~Γt is a change of variable on Rd and
(
γt,~ζ ,

~Σt

)
is

the corresponding change of variable on the spherical variable
(l, ~ζ) ∈ R+×Sd−1 centered on ~v(t) to the spherical variables
(u, ~ϑ) ∈ R+ × Sd−1 centered on ~Γt (~v(t)) with ~Γt (~v(t)) +
u~ϑ = ~Γt (~v(t)) + γt,~ζ(l)

~Σt(~ζ), i.e., (u, ~ϑ) = (γt,~ζ(l),
~Σt(~ζ)).

We have∫
[l1,l2]×ΩS

µ~Γt

(
~v(t) + l~ζ

)
ld−1dld~ζ

=

∫
[l1,l2]×ΩS

µ
(
~Γt (~v(t)) + γt,~ζ(l)

~Σt(~ζ)
)

|γ′
t,~ζ

(l)||J~Σt(
~ζ)|
γd−1

t,~ζ
(l)

ld−1
ld−1dld~ζ

=

∫
[γt,~ζ(l1),γ

t,~ζ
(l2)]×~Σt(ΩS)

µ
(
~Γt (~v(t)) + u~ϑ

)
ud−1dud~ϑ

Because in practice the X-ray source is not really punctual,
it is quite realistic to suppose that the x-ray beam between
the source and the detector is some region Ω~v(t),~ζ of approxi-
mately constant photon flux, in cross section perpendicular to ~ζ
close and around the line ~v(t)+R+~ζ (at least during the travel
in the patient region (and for no attenuation)). ~Γt transforms
the region Ω~v(t),~ζ around the line ~v(t)+R+~ζ into ~Γt

(
Ω~v(t),~ζ

)
around the line ~Γt (~v(t)) + R+~Σt(~ζ). Because we suppose
that the photon flux in Ω~v(t),~ζ in sections perpendicular to the
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direction ~ζ are essentially constant, we can write∫
R+

µ~Γt

(
~v(t) + l~ζ

)
dl

≈ K

∫
Ω
~v(t),~ζ

µ~Γt

(
~v(t) + l~ζ

)
ld−1dld~ζ

= K

∫
~Γt(Ω

~v(t),~ζ)
µ
(
~Γt (~v(t)) + u~ϑ

)
ud−1dud~ϑ

≈
∫
R+

µ
(
~Γt (~v(t)) + l~Σt(~ζ)

)
dl

We remark that in the previous equations the proportionality
coefficients K should be the same in both approximations
because the real photon flux on Ω~v(t),~ζ is the same as on the

virtual transformed on ~Γt
(

Ω~v(t),~ζ

)
. We can deduce from the

previous development that we can assume for deformations
preserving the mass and the the divergent geometry that∫

R+

µ~Γt

(
~v(t) + l~ζ

)
dl =

∫
R+

µ
(
~Γt (~v(t)) + l~Σt(~ζ)

)
dl

(10)
and the following rebinning formula

Proposition II.2 (Dynamic DB rebinning Formula). If ~Γt
preserves both the divergent geometry and the mass (Eq. (9))
then

Dµ~Γt
(
~v(t), ~ζ

)
= Dµ

(
~Γt (~v(t)) , ~Σt(~ζ)

)
(11)

(the equality being strictly verified only for volumic measure-
ment model)

C. Density, mass and acquisition geometry preservation

As solid and fluid can be generally considered as incom-
pressible in many applications (organ movements in CT for
example: soft and hard tissue can be considered as incompress-
ible), the question of deformation ~Γt preserving the density,
the mass and the acquisition geometry is of interest. In this
case we want ~Γt to fulfill (density conservation)

µ~Γt (~x) = µ
(
~Γt (~x)

)
Deformations conserving the mass and the divergent geometry
(Eq. (9)) preserve the density if

|γ′
t,~ζ

(l)||J~Σt(
~ζ)|
γd−1

t,~ζ
(l)

ld−1
= 1 (12)

In 2D (i.e. d = 1), ~ζ is parametrized by an angle α, let say
~ζ(α) = (cosα, sinα) and thus ~Σt is a function on the unit cir-
cle. ~Σt can be represented by a bijective periodic function ψt
from [0, 2π) to ψt([0, 2π)) such that ~Σt

(
~ζ(α)

)
= ~ζ (ψt(α))

with ψt(2π) = ψt(0) + 2π (the functions γt,~ζ and ψt must be
strictly monotonic and for the sake of simplicity we suppose
both of them increasing). Thus Eq. (12) is equivalent to

γ′
t,~ζ

(l)γt,~ζ(l)ψ
′
t(α) = l

integrating over l and considering γt,~ζ(0) = 0 yields

γ2
t,~ζ

(l)ψ′t(α) = l2

From any of both previous equations we remark that for
ψt being independent of l (which is a characterization for
preserving the divergent geometry in 2D) we need to have
γt,~ζ(l) = ct(α)l with ct(α) > 0 thus the deformations along
the lines must be linear and ψ′t(α) = 1

c2t (α)
. As ψt is 2π-

periodic smooth so must be ct(α) and ψt(2π) − ψt(0) = 2π

yields
∫ 2π

0
dα
c2t (α)

= 2π.

Proposition II.3. A time dependent deformation in the form
of Eq. (9) preserving the divergent geometry and the mass
preserves also the density if

γt,~ζ(l) = ct(α)l and ψ′t(α) =
1

c2t (α)
(13)

with ct(α) > 0 some 2π-periodic smooth function such that∫ 2π

0
dα
c2t (α)

= 2π.

III. ANALYTIC 2D RECONSTRUCTION FROM DYNAMIC
DATA

In our numerical experiments we consider dynamic data
combined with ROI reconstruction methods, see [13]. Indeed,
in practical applications such as interventional imaging, de-
tectors are often too small and we have to deal with data
truncations. 2D ROI reconstruction methods, such as Virtual
Fan Beam (VFB) (deriving from the original work [14]) or
Differentiated BackProjection (DBP) (see [15], [16]) can be
quite easily adapted to dynamic tomography with deformation
preserving the fan beam geometry and the mass, i.e., of
the form (8) such that (9) is satisfied. Indeed with (11)
we can rebin the dynamic data Dµ~Γt on ~v(t) and ζ ∈ St
(⊂ Sd−1)), ∀t ∈ T into static data Dµ acquired on a virtual
trajectory ~Γt (~v(t)) with a moving virtual detector described
by ~Σt(~ζ) ∈ ~Σt(St), ∀t ∈ T . To know which ROI of µ can
be reconstructed we have to consider the virtual trajectory
~Γt (~v(t)) , t ∈ T and the virtual available directions ~Σt(~ζ),
see [13].

In our first numerical experiments we have considered
an essentially parallel geometry. The phantom is a sum of
two ellipses (respectively centered on (0,0) and (-0.0147,0),
with long semi-axis 0.736 and 0.6992 with short semi-axis
0.552 and 0.5299 and with density 1 and -0,98) and two
disks of density 1 (respectively centered on (-0.2044, 0.2195)
and (0.62,0), with radius 0.08 and 0.05). The trajectory of
the source is a circle of radius R = 1000 and 386 source
positions were regularly sampled on [0, π[. We define the fan
angle as 2αF with αF = arcsin(1/R). The fan angle was
sampled with 256 values (with a regular angular sampling of
∆α = 2αF /256). However, for the truncated data we suppose
here that only around 60% of the fan angle can be seen from
the detector in the central region with 154 lines (instead of
256 for the complete data) with the same angular sampling
∆α).

The deformation is of type (8). In our simple example
we chose ~Γt (~v(t)) = ~v(t), γt,~ζ(l) = l and ~Σt

(
~ζ (α)

)
=

~ζ (ψt (α)) with ψt is piecewise linear from [−αF , αF ] to
[−αF , αF ] and defined by ψt(−αF ) = −αF , ψt(−αF /2) =
−1.2αF /2, ψt(αF /2) = 1.1αF /2, ψt(αF ) = αF (and
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linear between these 4 control angular knots). We show in
Fig. 1 the effect of the deformation on the phantom and
we show the truncated data and the rebinned truncated data
using (11) (the motion compensated data). We show in Fig. 2
the reconstruction from truncated and complete data from both
motion corrupted data and motion compensated data.

Fig. 1. Phantom and 3 three deformations at projection 0 (first line right)
and (second line) 190 (left) and 285 (right). Third line: motion corrupted
truncated sinogram (left), motion corrected truncated sinogram (right).

Fig. 2. First line: reconstruction from truncated data with the DBP approach
on motion corrupted data (right) and on motion compensated data (left).
Second line: corresponding FBP reconstruction with complete projections.

IV. CONCLUSION

We have shown very preliminary results of ROI reconstruc-
tions from analytic compensation of deformations preserving
the mass and the divergent geometry in dynamic tomography.
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An analysis of motion artifacts in CT and
implications for motion compensation

Jed D. Pack and Bernhard Claus

Abstract—Motion artifacts continue to present a challenge
in diagnostic CT. Algorithmic correction of motion artifacts
is emerging as a valuable tool, but widespread use requires
computational efficiency. An analysis of how the characteristics
of motion artifacts depend both on the reconstruction algorithm
and on the object dynamics is given. The findings are used to
motivate a backproject-then-warp motion compensation strategy
that provides computational advantages over the more traditional
warp-then-backproject approach.

Index Terms—motion compensation, cardiac CT

I. INTRODUCTION

Algorithmic corrections for motion artifacts in diagnostic
CT have long been sought after as such artifacts contribute
to the low positive predictive value (PPV) of coronary CTA.
A solution to the cardiac motion problem, therefore, has the
potential to reduce the number of diagnostic cath procedures
and thus reduce cost and improve quality of cardiac care. Of-
ten, approaches to solve this problem have taken a (sometimes
iterative) two-step approach: i) estimate the motion of the
heart and ii) compensate for the motion [1], [2], [3]. Arguably,
the motion estimation is the more challenging problem, and
advances in motion estimation are the key element in the
success of emerging commercially available motion correction
algorithms. Nevertheless, the choice of compensation approach
can have a very significant impact on computational require-
ments and should, therefore, be carefully considered. This
work begins with an analysis of the cause and nature of motion
artifacts and proceeds to motivate a motion compensation
technique that is computationally efficient.

A. Motion Artifact Analysis

To provide context for our motion artifact analysis, it is
worth a brief review of how the simplest of CT reconstructions
works. Consider a simple backprojection of an unfiltered 2D
parallel-beam 180 degree sinogram. The resulting image is a
blurred version of the original image because the data in each
view is spread uniformly along the paths of the measured rays
during backprojection. For example, if our original image is
a delta function at the origin, our unfiltered backprojection
image (over all 180 degrees) will decay inversely with distance
from the origin. Use of a ramp filter allows each view to
help cancel out the unwanted portions of the backprojection
of every other view. Consider in our example a point that is
sufficiently far from the origin (say on the y-axis). During
backprojection, this point will receive a positive contribution

J. D. Pack and B. Claus are with GE Global Research Center Niskayuna,
NY 12309, Email: pack@ge.com

Fig. 1. Integration on any semicircle centered on the backprojected ramp
filter kernel gives zero. This is why the ramp filter solves the blurring induced
by projection/backprojection over 180 degrees.

only for the view (and a small set of nearby views, depending
on sampling, apodization, etc.) that has rays parallel to the
y-axis since it shares a ray with our delta function only in
this view. For other views, the contribution will be negative.
The sum of all the contributions over a 180 degree range
is zero. This fact is why filtered backprojection works: the
point spread function of forward projection and ramp-filtered
backprojection is zero away from the origin, thus blurring is
eliminated and a good representation of the true image results.

The above framework can be used to analyze how this
cancellation fails when there is motion, but it is useful to first
recast the problem as follows: The summation over view for
our point on the y-axis can also be thought of as an integration
along a semicircle of the (single view) backprojection of the
ramp filter kernel as shown in figure 1–that is to say, rotating
the point is equivalent to sweeping the view angle. Note that
the background image in figure 1 and other similar figures
herein is the backprojection of the ramp filter kernel. It is
worth noting that most of the cancellation for the positive
contribution from the view along the y-axis comes from other
views that are nearby since the highest amplitude negative
taps of the ramp filter are all very close to the positive center.
We can build up the point spread function of our system by
performing the integrations on all semicircles—points farther
from the origin have larger radii and points away from the
y-axis would have different angular centers (as shown in the
figure). All such integrations produce zero (provided the radius
is sufficiently large).

It is now time to ask what would happen if our delta
function moved around somewhat during the data acquisition.
The answer is that the integrations would no longer be over a
semicircle, but over a path that is perturbed from the semicircle
based on the motion of the delta function. Carrying out all

Page 322 The second international conference on image formation in X-ray computed tomography



Fig. 2. Motion corrupts our point spread function by distorting the semicircle
of integration. In this case, there are negative, but no positive contributions
to the integration.

these integrations (over the various perturbed semicircles)
would give us the various values of the point spread function
of the motion corrupted system. As the ramp filter is fairly
flat in most locations the point spread function will still
approximately cancel out in most locations (assuming that the
motion is smooth and not too large). There are two exceptions
to this. Points that are very close to the origin spend a lot of
time in the region of the ramp filter that is very steep since they
move along a perturbed semicircle with a small radius (like the
smallest semicircle in figure 1). Also, points with semicircles
that have endpoints near the central spike of the ramp filter
kernel can be strongly affected by small perturbations of the
semicircular path. Thus, the motion corrupted point spread
function can contain values that are far from zero near the
origin and also along one particular line through the origin.
The direction of this line is the projection direction of the first
(or last) view.

Consider one example. In figure 2 the left image shows
a perturbation (dashed line) of a semicircle (solid line). The
dashed line represents linear motion. At the start of the path
(top) the point is at a smaller radius than it is at the end,
implying that the delta function has moved away from the
point. Also, both endpoints of the dashed semicircle are on
the same side of the ramp filter kernel, which means that
the delta function has also moved to the side. It is useful to
reflect each point in one half of each (perturbed) semicircle
about the origin as shown in the right hand image. This does
not affect the integration since the ramp filter is symmetric.
The (reflected) unperturbed path is still a semicircle, so we
know it integrates to 0 for this (no motion) case. There is
a small range of strong positive contributions at the center
and the contributions are negative elsewhere since the ramp
filter kernel only has positive values near the central tap. In
the case of the dashed line, the negative contributions are
similar, but the entire positive portion of the ramp filter is
skipped over due to the motion. On the other hand if the
motion had been in the opposite direction (this case is not
shown) the positive portion would have been counted twice.
In either case, the integration would clearly not be zero as it
is in the motion-free case. The key observation here is that
although the motion is very smooth in time (it is linear),
it is not smooth when parameterized by backprojection ray
orientation (which is periodic) since there is a discontinuity
between the beginning and the end of the scan. Recall that

Fig. 3. Six images of point spread functions (psf) are shown. Top row (left
to right): psf for a right-then-left zig-zag motion, psf for a motion to the right
only, psf for the stationary case. Bottom row: same as top row, but with a
grayscale window that is 10x tighter.

the bulk of the cancellation for unwanted backprojection from
any particular view is done by the neighboring views. If these
neighboring views see the object in a very different motion
state, this cancellation may not occur properly.

One can conclude from the preceding analysis that our
motion corrupted point spread function will be more compact
if the motion is such that the object returns to its origi-
nal state by the end of the 180 degree acquisition. Indeed,
figure 3 shows the integrals of our ramp image over the
(perturbed) semicircles for an entire grid of pixels. These can
be interpreted as (motion-corrupted) point spread functions.
The images on the left correspond to a delta function that
moves linearly to the right at a fixed rate of speed during
the first 90 degrees and then moves linearly to the left at
the same rate during the last 90 degrees, thus returning to
its original location. The images in the center correspond to
a delta function that moves to the right the entire time at half
the rate such that the maximum displacement is the same. The
images on the right are for a stationary delta function.

B. Backproject-then-warp

Let us now consider what happens if the reconstruction grid
is moved in order to compensate for the motion of the object.
For the simple case of rigid motion during a 2D parallel-
beam acquisition, shifting the grid exactly compensates for
the motion of the object. Furthermore, if the grid is shifted
incorrectly, the motion artifacts that result match those that
would have been seen with no motion compensation had the
motion path been equal to the difference between the true
motion and the assumed motion. For example, if the true
motion were to the right at a rate of 20 mm/sec and the
assumed motion was to the right at a rate of 15 mm/sec, the
result of compensating for the motion by shifting the grid
based on this assumption would be the same as what one
would get without any compensation in the case where the
motion is 5 mm/sec to the right.

Although these observations do not hold true for the case
of non-rigid motion, they are good approximations of what
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Fig. 4. Left: A piecewise constant approximation to linear motion (sampling
every 30 degrees). Right: The residual motion due to sampling.

happens locally. Unfortunately, warping the grid every view
according to a known non-rigid motion field can be quite
computationally intensive. Two modifications can make the
problem much more tractable. First, the motion fields are
approximated as being step-like in time. In other words, the
true (continuous) motion path at any location is sampled
somewhat coarsely in time (for example, six samples might
be taken over the time it takes to acquire 180 degrees worth
of data). At any other time the motion state is assumed
(approximated) to match that of the nearest sampled time
point. Second, the warping is done after backprojection. Each
step along our path must be backprojected into a separate
image. These images can then be warped (each according to
the corresponding motion field) before being added together.
This backproject-then-warp approach to motion compensation
is similar to an idea presented in [4].

The impact of these two modifications can now be analysed
using the framework laid out in the previous section. The
impact of warping after backprojection is theoretically nothing
as these processes are linear and can be switched. With discrete
sampling, however, there is an interpolation required in the
warping in addition to the interpolation in the backprojection.
This may have a smoothing effect, but if a good interpolator
is used (e.g. tri-cubic instead of tri-linear) the impact will be
neglibible, provided that the image sampling is sufficient to
capture the inplane resolution well—it typically is in cardiac
CT. The impact of sampling the motion path is that the
compensation produces an image that is very much like the
image that would have been produced without compensation
had the motion been equal to the residual error in the motion
due to sampling. For linear motion, this residual motion error
is a sawtooth function as shown in figure 4. Note that when
one considers the motion as a function of backprojected ray
angle, the original linear motion was also a sawtooth function
due to the inconsistency in the object state at the beginning and
end of the acquisition. The difference is that the jumps in the
new function are 6 times smaller than in the original function
(and there are 6 times as many). The motion corrupted point
spread function for this new case can be analysed as above.
Our perturbed semicircles will have six small discontinuities.
Wherever these discontinuities cause the semicircles to jump
near the central spike of the ramp filter the integral may be
far from zero. Figure 5 shows the result. The motion has
been exaggerated in the top figure since it would otherwise
be difficult to see the perturbed (dashed) path as distinct from
the non-perturbed (solid) one.

A key improvement to this motion compensation approach
is now introduced. As described briefly in [3], our partial
backprojection ranges (each corresponding to one sample of
our motion path) can be overlapped by a factor of two. An

additional view weight can be incorporated such that each view
is represented in two consecutive chunks and the sum of the
two weights is one. Also, the views near the center of each
chunk should be given the largest weight. For example, the
view weighting can be a triangle function that goes linearly
from 0 to 1 and back to zero. This requires a relatively
modest change to the backprojection routine—it requires far
fewer than twice the number of computations as a standard
backprojection with non-overlapping view ranges. The result
of this modification is shown in figure 6 (the motion magnitude
has again been exaggerated so that the perturbed paths can be
seen). The psf is much cleaner with this improvement and this
will be reflected in reduced streak artifacts in the reconstructed
images. Note that the triangular weighting function essentially
does a linear interpolation to produce a net effect that is
very similar to what a piecewise linear path would produce
(rather than a piecewise constant path). Also, the integration
is now a weighted integration with path segments that overlap
substantially, thus eliminating the opportunity for creating
significant artifacts as a result of sharp changes near the center
of the ramp kernel.

Choosing the number of time samples can be a tradeoff be-
tween matching the performance of the warp-then-backproject
approach (when the sampling is dense) and the computational
efficiency of only needing to warp a small number of image
volumes (when the sampling is sparse). In our experience, the
temporal sampling does not need to be very high to see very
dramatic reductions in motion artifacts, given a good estimate
of the true motion fields. Warping this number of volumes is
not a high computational cost.

It was mentioned above that in the case of non-rigid motion,
the psf computed using the residual motion path may not be
valid far from the point. It is better to compute the psf based
on the difference in the assumed motion of the center point
and the true motion of the point at which the kernel is being
computed. This motion path is generally fairly smooth except
at the transition between the beginning and ending of the data
range (in view angle). One solution is to acquire more data
than 180 degrees and to again introduce blending. In fact, this
is a more realistic scenario than the 180 degree case as it is
common today to reconstruct from a short-scan or more and
use a view weighting to blend out the transition [5]. It should
be pointed out that streaky motion artifacts have been observed
in the past when using exact reconstruction techniques with
fairly discontinuous view weights [7] [8]. Both of these papers
proposed doing multiple reconstructions and averaging them
appropriately (with the purpose of also reducing noise).

It is important to note that while the blending introduced
between the start and end of the scan will eliminate streaks,
there can be residual low frequency artifacts that are induced
at a given location due to an object at another location
that is moving in a different way. This is equally true for
the backproject-then-warp approach and for the warp-then-
backproject approach (it is also true for non-motion compen-
sated reconstruction). Dealing with these artifacts is a topic
that is beyond the scope of this paper, although we believe
the framework described herein to be useful for this problem
as well.
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Fig. 5. Top: Perturbed semicircle. Bottom: psf corrupted by residual motion
for the case of a non-optimized backproject-then-warp compensation. The
grayscale windows used in the two images match those used in other psf
figures (the one on the right is 10x tighter).

Fig. 6. Top: Perturbed semicircle (weighting of the integration is indicated
by different graylevels). Bottom: psf corrupted by residual motion for the case
of a better (blended) backproject-then-warp compensation.

Fig. 7. Illustration of the capabilities of backproject-then-warp (non-rigid)
motion compensation. Nine (partial reconstruction) image volumes were
warped and added to produce the image on the right. Adding these nine
volumes without any warp is equivalent to a standard reconstruction image
(as shown on the left).

II. CONCLUSION

It can be concluded that the backproject-then-warp strategy
for motion compensation is a very good approximation of
the more traditional warp-then-backproject approach. While
neither compensates perfectly for non-rigid motion (particu-
larly at the low frequencies), either one is highly effective
at properly restoring edges and other high frequency content.
Further, the computational advantages of the backproject-then-
warp approach are quite attractive. This is particularly true
when one considers the investments that have been made in
optimizations of the traditional fixed-grid backprojection. For
example, using an inner loop in the z direction can cut down on
the number of operations that each elementary backprojection
requires when the grid is composed of uniform stacks of
voxels along that direction (e.g., a standard Cartesian grid)
[6]. Also, many existing optimizations to GPU code break
down when the grid is warped prior to backprojection. Finally,
if an iterative motion correction framework is used wherein
the compensated images are fed back into the the motion
estimation step in a loop, the backproject-then-warp method
has a further computational advantage over the warp-then-
backproject approach: backprojection only needs to be done
once regardless of the number of iterations used since this step
is not dependent on the estimated motion fields.

The motion artifact analysis is also instructive and highlights
one advantage of continuing to use a smooth view weighting
function like the well known Parker weighting even for non-
compensated 3D reconstruction when scanning objects that are
likely to move. In such cases, the benefits of constraining large
scale motion artifacts to the lower frequencies can outweigh
the benefits of theoretical exactness offered by some of the
approaches that have developed in the past decade (in particu-
lar, those that effectively use a much more discontinuous view
weight).
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A novel motion estimation algorithm
Alexander Katsevich, Alexander Zamyatin and Mike Silver

Abstract—We continue investigation of a novel, simple and ro-
bust motion estimation algorithm proposed in [5]. The algorithm
works with a sufficiently short time window, which is typically
equivalent to that of a short scan. The center of the window is
taken as reference time. The problem is to estimate motion within
the window relative to the reference time. The proposed algorithm
is based on quasi-exact motion-compensated reconstruction. If
there is some uncompensated motion in f , the edges of f and
of the reconstructed function frec in general do not coincide.
Practically this means that if motion is not known (or, is known
incorrectly), edges in the reconstructed image spread out. A single
edge in f produces multiple edges in frec at random locations.
Consequently, the reconstructed image will look “chaotic”. We
can use a measure of chaos in the reconstructed image frec to tell
us whether our motion model is accurate or not. Our main idea
is to iteratively refine the motion model, so that the chaos in frec
is as small as possible. The results of testing the algorithm on
real cardiac data show significant improvement of image quality.

Index Terms—motion estimation, motion compensation, quasi-
exact reconstruction, cardiac CT.

I. INTRODUCTION

Motion estimation is a very important challenge in Com-

puted Tomography (CT). Two major groups of approaches

are available for solving this problem: voxel-based nonrigid

image registration and surface-model-based segmentation [1],

[2], [9], [10], [8]. As pointed out in [10], image registration

methods suffer from strong artifacts. Model-based segmenta-

tion methods are more robust, but they are quite a bit more

complicated.

In this paper we continue investigation of a novel, simple

and robust motion estimation algorithm proposed in [5]. The

algorithm is local in time, because it works with a sufficiently

short time window. The length of the window is typically

equivalent to that of a short scan. The center of the window

is taken as reference time. The problem is to estimate motion

within the window relative to the reference time. Here we

describe some improvements compared to the algorithm in

[5] and show the results of testing on real cardiac data.

II. DESCRIPTION OF THE ALGORITHM

The proposed algorithm is based on a simplified quasi-exact

filtered-backprojection type motion-compensated reconstruc-

tion. Let frec be the reconstructed function. If there is some

uncompensated motion in f , the edges of f and frec in general

no longer coincide [4]. Practically this means that if motion

is not known (or, is known incorrectly), edges in the recon-

structed image spread out. A single edge produces multiple

Department of Mathematics, University of Central Florida, Orlando,
FL 32816. Corresponding author: Alexander Katsevich, E-mail: Alexan-
der.Katsevich@ucf.edu

Toshiba Medical Researc Institute USA, Inc, Vernon Hills, IL 60061.

edges at random locations. Consequently, the reconstructed

image will look “chaotic”. We can use a measure of chaos

in the reconstructed image frec to tell us whether our motion

model is accurate or not. Using this idea, we summarize the

proposed motion estimation algorithm as follows.

1) Assume some motion model;

2) Perform motion-compensated image reconstruction us-

ing the current motion model;

3) Compute the measure of chaos in the reconstructed

image;

4) If chaos is low (i.e., image quality is good), stop. If

chaos is high, change the motion model and go to step

2.

A similar idea was used in [7] for misalignment correction

in circular cone beam CT. The main novelty of our approach is

that we use a new criterion for estimating image quality instead

of conventional entropy. We also came up with a sufficiently

general motion model, that allows a speed-up of the algorithm.

We now describe the algorithm in more detail.

A. Motion model

Let [tl, tr] be a time window, which is used for motion

estimation. The center point t0 = (tl + tr)/2 is taken as

reference time. The primary purpose of the algorithm is to

perform local (in time) motion estimation, thus the width of the

window T := tr−tl is usually rather short. In our experiments

T is typically less than one gantry rotation. Let D denote

the region where motion takes place. We assume that D is a

rectangular parallelepiped, i.e. D := {(x, y, z) : xl < x <
xr, yl < y < yr, zb < z < zt}. To represent motion, we

consider a rectangular grid over D. The grid planes are

x = xi = xl + iΔx, 0 ≤ i ≤ Nx + 1,

y = yj = yl + jΔy, 0 ≤ j ≤ Ny + 1,

z = zk = zb + kΔz, 0 ≤ k ≤ Nz + 1,

(1)

where Δx = (xr−xl)/(Nx+1), Δy = (yr−yl)/(Ny+1), and

Δz = (zt−zb)/(Nz+1). Thus, grid (1) has NxNyNz interior

nodes. Because of motion, the grid planes are deformed over

time:

x = xi + ai(t)φ[(y − yl)/(yr − yl)]φ[(z − zb)/(zt − zb)],

y = yj + bj(t)φ[(x− xl)/(xr − xl)]φ[(z − zb)/(zt − zb)],

z = zk + cj(t)φ[(x− xl)/(xr − xl)]φ[(y − yl)/(yr − yl)],

1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, 1 ≤ k ≤ Nz.
(2)

We assume that motion equals zero at the boundary of D,

so the boundary grid planes (i.e. those corresponding to i =
0, Nx+1, j = 0, Ny+1, and k = 0, Nz+1 do not change. In

(2), the function φ is smooth, defined on the interval [0, 1], and
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equals zero at both endpoints of the interval. Since the time

window T is sufficiently short, we assume that the functions

ai(t), bj(t), and ck(t), are linear:

ai(t) = ai(t− t0)/(0.5T ), bj(t) = bj(t− t0)/(0.5T ),

ck(t) = ck(t− t0)/(0.5T ),
(3)

where ai, 1 ≤ i ≤ Nx, bj , 1 ≤ j ≤ Ny , ck, 1 ≤ k ≤ Nz , are

constants to be determined. Note that substituting t = t0 into

(2) gives rectangular grid (1). Equations (2) and (3) allow us to

describe motion of every point in D. To determine where a grid

node (xi, yj , zk) is located at time t, we find the intersection

of the corresponding i-th, j-th, and k-th deformed grid planes

in (2) at time t. Location of all other pixels is computed using

trilinear interpolation.

B. Motion compensated reconstruction and edge entropy

Let C be a smooth curve in R
3

R � s → rc(s) ∈ R
3, |ṙc(s)| �= 0. (4)

Here the dot denotes the derivative with respect to s. Usually

the source moves along C with constant speed, so we identify

s with time variable. To simplify notations, the model of

motion described in the preceding section is denoted simply

by ψ(s, r), r := (x, y, z). More precisely, r′ = ψ(s, r) is the

position of the particle at time s, which is located at r at the

reference time s = t0. In the absence of motion, theoretically

exact image reconstruction in the case of helical trajectory is

achieved by the formula [3]:

f(r) = − 1

2π2

∫

IPI(r)

1

|r − rc(s)|Ψ(s, r)ds,

Ψ(s, r) :=

∫ 2π

0

∂

∂q
Df (rc(q),Θ(s, r, γ))

∣

∣

∣

∣

q=s

dγ

sin γ
.

(5)

Here IPI(r) is the PI-interval of r, β(s, r) := r−rc(s)
|r−rc(s)| , and

Df (rc, β) is the cone beam transform of f :

Df (rc,Θ) :=

∫ ∞

0

f(rc +Θt)dt. (6)

Also, e(s, r) := β(s, r)×u(s, r), Θ(s, r, γ) := cos γβ(s, r)+
sin γe(s, r), and u(s, r) is a vector function chosen in a special

way (see e.g., [3]). At the stage of motion estimation our goal

is not to come up with the best possible image reconstruction.

Instead, we seek an efficient algorithm, which reproduces

edges accurately. Thus, to speed up the calculations, we make

the following simplifications in (5): (a) Filtering, which is

represented by the second equation in (5), is done along

detector rows, instead of tilted lines determined by the vector-

function u; (b) Motion is ignored during the filtering step,

and is taken into account only during back-projection. More

precisely, the first integral in (5) is replaced by

frec(r) = − 1

2π2

∫

IPI(r)

1

|ψ(s, r)− rc(s)|Ψ(s, ψ(s, r))ds.

(7)

(c) Finally, the interval IPI(r) is replaced by the interval of

the source trajectory corresponding to the time window [tl, tr].
To compensate for the possible artifacts caused by the sharp

truncation at tl and tr, we insert in (7) a smooth cut-off

function, which is based on the idea of PI-partners of [6].

The cut-off function also is computed by ignoring motion.

Next we describe a proposed measure of “chaos” in an im-

age, which we call “edge entropy”. Suppose frec is computed

on a regular grid rmnp := (xm, yn, zp), 1 ≤ m ≤ M, 1 ≤
n ≤ N, 1 ≤ p ≤ P , which covers D. Of course, this grid

should be much more dense than the one in (1). We also

need a shifted grid with nodes r̄mnp := (x̄m, ȳn, z̄p), where

x̄m = xm +Δx/2, 1 ≤ m ≤ M − 1, and ȳn, z̄p are defined

similarly. Introduce the distance function:

dist(r̄m1n1p1
, x̄m2n2p2

) = max(|m1−m2|, |n1−n2|, |p1−p2|).
(8)

Calculation of edge entropy consists of several steps. Let a

parameter κ, 0 < κ < 1, be fixed.

1) Using finite differences, compute the norm of the gradi-

ent |∇frec(xm′ , yn′ , zp′)|, where primes denote a shift

of half a pixel;

2) Compute the empirical histogram of the norm of the

gradient;

3) Using the histogram, estimate the value M such that

|∇frec(xm′ , yn′ , zp′)| > M for 100κ percent of the

pixels (such pixels are called “bright”);

4) By running a sliding window over the image compute

the total number of points r̄mnp whose distance (in the

sense of (8)) to the closest bright point equals either 2,

3, or 4;

5) Divide this number by the total number of nodes in the

grid and multiply by 100 (to get percents). The result is

the edge entropy of the image frec.

C. Remarks on implementation

In this subsection we describe various tricks, that help deal

with instability and improve overall efficiency.

1) Since the filtering step is motion-independent, it is

performed only once at the beginning of iterations;

2) For simplicity, each of the parameters aj , bj , ck in (3)

can take only three values: −h, 0, or h, where h > 0 is

a predetermined constant;

3) The coordinate planes (1), (2) split D into a collection of

smaller sub-regions Dijk. The deformation of each such

sub-region depends only on six parameters, that describe

the planes that form its faces. It does not depend on all

other parameters. Each of the six relevant parameters can

take only three different values. Thus, each sub-cube is

precomputed 36 times and stored;

4) The minimum of edge entropy is found by looping over

all possible combinations of parameters in the following

way. First, we create the volume D by combining the

appropriate versions of the sub-volumes Dijk based on

the current values of the parameters corresponding to

its faces. Note that no image reconstruction needs to

be done at this stage. Then, edge entropy is computed

for D. If it is less than the current minumum, the

new minimum is retained and the current comination

of parameters is called optimal.
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III. EVALUATION

We use clinical data from Charite Hospital, Berlin. The

source trajectory is circular. As a baseline for comparison, we

use an FBP short scan reconstruction. Both FBP and proposed

methods use a subset of 800 views. Number of views per

rotation is 900. Rotation time is 0.35 ms. The heartbeat is 56

bpm for the first patient and 52 bpm for the second patient.

Typically cardiac reconstruction uses cardiac phases where

cardiac motion is minimal, such as end-systole (33% of R-R

interval) or mid-diastole (75% of R-R interval). To illustrate

the potential of our approach, we selected a midsystole phase

(20% of the R-R interval for the first patient and 15% for the

second patient), where the ventricles rapidly contract to pump

blood to the body and lungs. Results are shown in Figures 1

and 2. The proposed approach shows significant reduction

of motion artifacts. In particular, small high-contrast objects

near the center become better localized and less distorted,

organ shape becomes more continuous, and organ boundaries

become clearly separated.

IV. CONCLUSION

We propose a robust motion estimation algorithm. Evalua-

tion shows reduction of motion artifacts and improved image

quality. One of our concerns was performance with noisy

clinical data. Evaluation shows that the proposed approach is

stable to data noise. Currently we are working on evaluation

with more datasets and quantitative measurement of temporal

resolution improvement with the proposed approach.
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Fig. 2. Evaluation of the proposed method with the second clinical dataset.
Top panel: FBP-Short Scan Reconstruction, bottom panel: proposed method.
W/L = 800/200 HU.
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MOTION-COMPENSATED IMAGE RECONSTRUCTION

WITH ALTERNATING MINIMIZATION

Jang Hwan Cho, Sathish Ramani and Jeffrey A. Fessler

ABSTRACT

Cardiac computed tomography (CT) is important for its use

in diagnosing heart disease. Motion artifacts are a signif-

icant issue for cardiac CT image reconstruction. Motion-

compensated image reconstruction (MCIR) has the potential

to overcome the drawbacks of conventional gated recon-

struction methods by exploiting all the measurement data

and using motion information. However, MCIR methods

are computationally expensive: the system matrix has both

the forward-projector and the warp matrices that make it

hard to precondition or to apply block iterative algorithms

such as ordered-subsets (OS). In this study, we propose a

novel approach to solve the image reconstruction part of the

MCIR method more efficiently. We use a variable-splitting

technique to dissociate the original problem into a number

of simpler problems. The proposed method is amenable to

preconditioning, parallelization, and application of block iter-

ative algorithms to sub-problems. We demonstrated through

a phantom simulation that with simple diagonal or circulant

preconditioners, the proposed method shows good conver-

gence rate compared to conjugate gradient (CG) method.

1. INTRODUCTION

Even with the fast acquisition speed of commercial scanners,

motion artifacts such as blurring and streaks are still a signif-

icant issue in CT image reconstruction, especially for cardiac

CT imaging. Various methods have been proposed to address

this problem [1, 2]. Many of these are gated reconstruction

methods that use only the projection data corresponding to

approximately the same motion state. Such methods can pro-

vide promising results in terms of image quality and process-

ing time. However, they suffer from limitations such as dose

inefficiency and limited temporal resolution. Especially for

fast and arhythmic cardiac motion, such methods may be sub-

jected to residual motion artifacts [3].

To overcome the limitations of gated reconstruction, a va-

riety of motion-compensated image reconstruction methods

(MCIR) have been proposed in the literature [3, 4]. MCIR

methods can exploit all collected data and motion information

to obtain reconstructed images with better dose efficiency. In

This work is supported by GE Healthcare.

The authors are with the Electrical Engineering and Computer Science

Department, University of Michigan, Ann Arbor, MI 48109-2122 USA

general, MCIR methods consist of two main steps: estimating

the motion and reconstructing the image using the estimated

motion. The quality of the reconstructed image is signifi-

cantly affected by the accuracy of the estimated motion, and

thus many researchers have focussed on improving motion es-

timates. However, the image reconstruction part is also very

important for practical use of MCIR methods. Since the sys-

tem model in MCIR methods has both the forward-projector

and the warp matrices, it becomes computationally very ex-

pensive to use iterative algorithms for MCIR. Unlike conven-

tional CT image reconstruction problems, designing a proper

preconditioner for MCIR is not trivial due to the complexity

of the system model. Ordered-subset (OS) type of algorithms

are not efficient for MCIR, especially when when warping is

computationally expensive.

In this paper, we propose a novel approach to solve the

image reconstruction part of MCIR method more efficiently.

We use a variable-splitting technique to dissociate the origi-

nal problem into a number of simpler problems that are then

solved individually.

2. MOTION-COMPENSATED

IMAGE RECONSTRUCTION FOR CT

2.1. Measurement Model

Let x(r, t) denote the time-dependent attenuation coefficient

distribution of the unknown object, where r is the spatial lo-

cation and t is time. Let tm be the time of mth frame at

which the measurements, ym, corresponding to the motion-

free state of the objects are acquired. We assume that the

measurements consist of Nf scans, y = [y1, · · · ,yNf
]. The

measurements were assumed to be linearly related to the ob-

ject xm = x(·, tm) as follows:

ym = Amxm + ǫm, m = 1, · · · , Nf , (1)

where Am is the system model for mth frame and ǫm is the

noise. The goal is to reconstruct {xm} from {ym} using a

motion model. Here we assume xm = Tmx where Tm is a

warp matrix based on motion estimates that are determined

separately.
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2.2. Problem Formulation

Consider a penalized-likelihood least squares (PWLS) formu-

lation of motion-compensated CT image reconstruction:

x̂ = argmin
x

{Ψ(x) , L- (x)+R(Cx)}, (2)

L- (x) =
1

2
‖y −ATx‖2

W
, R(Cx) = β

K
∑

k=1

κk ψk([Cx]k),

A = diag{A1, · · · ,ANf
}, T = [T ′

1
. . .T ′

Nf
]′,

where A is the system matrix, x ∈ R
N is the discretized ver-

sion of the object being reconstructed, W = diag{wi} is a

statistical weighting matrix, β is the regularization parameter,

κk is the user-defined weight for controlling spatial resolution

in the reconstructed image, ψk is the potential function, C is

a matrix that performs finite differences between neighboring

voxels, K is the number of neighbors, and T is the warp ma-

trix. The minimization problem (2) is challenging due to the

warp matrix T in the system model.

3. PROPOSED METHOD

We apply a variable splitting approach to the problem. The

basic idea of variable splitting method is to introduce auxil-

iary constraint variables so that coupled parts in the cost func-

tion can be separated [5]. The original problem is transformed

into an equivalent constrained optimization problem, and then

alternating minimization methods are applied to efficiently

solve the problem. Previous works have focussed on splitting

the regularization term and also the statistical weighting [6].

In this work, in addition to those splittings, we focus on split-

ting the warp matrix from the forward-projector in the system

matrix.

3.1. Equivalent Constrained Optimization Problem

We introduce auxiliary constraint variables u, v, z, and s, and

write (2) as the following equivalent constrained problem:

argmin
x,u,v,z,s

Ψ(x,u,v, z, s) =
1

2
‖y − v‖2

W
+ R(z),

s.t. u = Tx, v = Au, z = Cs, s = x, (3)

where u ∈ R
NNf separates the system matrix from the warp

matrix, v ∈ R
M separates the effect of the weighting matrix,

W , on Ax, z ∈ R
NK and s ∈ R

N detach the warp matrix

from the regularizer.

3.2. Method of Multipliers

We used the framework of method of multipliers [7] to solve

(3), and constructed an augmented Lagrangian function as

follows:

L(x,u,v, z, s) ,
1

2
‖y − v‖2

W
+ R(z)

+
µu

2
‖u− Tx− ηu‖

2
+
µv

2
‖v −Au− ηv‖

2

+
µz

2
‖z −Cs− ηz‖

2
+
µs

2
‖s− x− ηs‖

2
,

(4)

where η’s are Lagrange-multiplier-like vectors and µ’s are the

AL penalty parameters (see [6] for details).

Solving (3) using the AL function would require jointly

minimizing (4) with respect to all variables which is compu-

tationally expensive. So we apply to alternating minimiza-

tion [6].

3.3. Alternating Direction Minimization

At the jth iteration, we update each vector in turn as follows:

x
(j+1) = argmin

x

µu

2

∥

∥

∥
u
(j) − Tx− η(j)

u

∥

∥

∥

2

+
µs

2

∥

∥

∥
s
(j) − x− η(j)

s

∥

∥

∥

2

, (5)

u
(j+1) = argmin

u

µu

2

∥

∥

∥
u− Tx

(j+1) − η(j)
u

∥

∥

∥

2

+
µv

2

∥

∥

∥
v
(j) −Au− η(j)

v

∥

∥

∥

2

, (6)

v
(j+1) = argmin

v

1

2
‖y − v‖2

W

+
µv

2

∥

∥

∥
v −Au

(j+1) − η(j)
v

∥

∥

∥

2

, (7)

s
(j+1) = argmin

s

µz

2

∥

∥

∥
z
(j) −Cs− η(j)

z

∥

∥

∥

2

+
µs

2

∥

∥

∥
s− x

(j+1) − η(j)
s

∥

∥

∥

2

, (8)

z
(j+1) = argmin

z

R(z)

+
µz

2

∥

∥

∥
z −Cs

(j+1) − η(j)
z

∥

∥

∥

2

, (9)

η(j+1)

u
= η(j)

u
− (u(j+1) − Tx

(j+1)), (10)

η(j+1)

v
= η(j)

v
− (v(j+1) −Au

(j+1)), (11)

η(j+1)

s
= η(j)

s
− (s(j+1) − x

(j+1)), (12)

η(j+1)

z
= η(j)

z
− (z(j+1) −Cs

(j+1)), (13)

The sub-problems (5) to (8) are all quadratic problems for

which analytical solutions exist. However, (5) and (6) can-

not be implemented explicitly due to the enormous sizes of

the matrices involved. We employ the iterative CG-solver for

these sub-problems.

Sub-problem (5) is an image-registration-type problem,

which has the following analytical solution:

x
(j+1) = H

−1(µuT
′(u(j)−η(j)

u
)+µs(s

(j)−η(j)
s

)), (14)
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Fig. 1. Images in the ROI of (a) XCAT phantom, (b) FBP reconstruction with Hanning filter (also the initial guess x(0)), (c)

Converged Image x
(∞).

where H = µuT
′
T + µsIN . We accelerate the CG-solver

for (14) by using a suitable preconditioner for H . Since H

is much simpler than the Hessian of the original data term in

(2), it is more amenable to preconditioning.

We now consider (6), which is a tomography problem

with the following solution:

u
(j+1) = G

−1(µu(Tx
(j+1) + η(j)

u
) + µvA

′(v(j) − η(j)
v

)),

where G = µvA
′
A+µuINNf

. We preconditioned this term

with a circulant matrix to obtain faster convergence [6, 8].

This sub-problem can be further parallelized into Nf prob-

lems. Each parallelized problem can be efficiently solved by

preconditioned CG or ordered-subsets type algorithms, which

are less efficient for the original problem.

Sub-problems (7) - (9) can be solved much more easily

compared to above two sub-problems. Sub-problem (7) has

a simple analytical solution, and (8) is exactly solvable with

Fourier transform if we use C with periodic end condition.

Finally, (9) can be solved easily with iterative algorithms or

exactly solved for a variety of potential functions. Here, we

consider one of the edge-preserving regularization using the

Fair potential function. For this regularizer, (9) separates into

1D minimization problems and has an exact solution (See [6]

for details). The AL parameters, µ’s, mainly govern the con-

vergence speed of the proposed splitting method [6]; we se-

lected them empirically to achieve good convergence speed.

4. RESULTS

The proposed algorithm was investigated on a 2D CT im-

age reconstruction problem with cardiac motion for simulated

data. We simulated a 3rd-generation fan-beam CT system us-

ing the separable footprint projector [9]. The simulated sys-

tem has 888 channels per view spaced 1.0239 mm apart, and

984 evenly spaced view angles over 360◦. The image was

reconstructed to a 512 × 512 grid of 0.9766 mm pixels. We

generated seven frames of the XCAT phantom for a heart rate

of 75 bpm. The motion between the frames was estimated di-

rectly from XCAT images using nonrigid image registration.
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Fig. 2. Plot of RMSD versus iteration for various settings

of the proposed method compared to the conventional CG

method. For the proposed method, (N10,P5) indicates 10 iter-

ations for sub-problem (5) without preconditioner for H and

5 iterations for sub-problem (6) with a preconditioner for G.

OS60 indicates that ordered subsets method with 60 subsets

was used instead of CG.

Estimating motion parameters from true images is unrealis-

tic, but our focus is not on obtaining reasonable motion es-

timates. We only focus on the image reconstruction part of

MCIR. For the regularizer, we used a Fair potential function

to provide edge-preservation and a certainty-based penalty to

obtain more uniform resolution. The sinogram was generated

with Poisson noise, and the weights in the data-fit term in (2)

were chosen as wi = exp(−[Ax]i). We selected the regular-

ization parameter β such that the target PSF has a full-width

at half-maximum (FWHM) of approximately 1.3 mm.

For comparison, we used the (nonlinear) conjugate gradi-

ent algorithm to solve the original problem (2). To analyze

the convergence speed of the proposed method we computed
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the root mean squared (RMS) difference between the image

estimate at the nth iteration, x(n), with the “fully” converged

solution, x∞. For the Fair potential, the original MCIR prob-

lem is strictly convex and thus has a unique minimizer, x∞.

We numerically approximated x
∞ as the mean of the images

reconstructed (assuming convergence) by running 1000 itera-

tions of CG and 700 iterations of the proposed method with

(10,10) sub-iterations.

Fig. 1 illustrates that the conventional filtered backprojec-

tion (FBP) method gives a reconstructed image with severe

motion artifacts but the motion-compensated image, on the

contrary, contains much less motion artifacts. Some residual

motion artifacts still exist due to imperfect motion estimates

even though they were obtained directly from the true XCAT

images.

Fig. 2 illustrates that the proposed method converges

much faster in iterations compared to the conventional CG

method when we use enough sub-iterations with obvious

computation overhead. This result suggests that if we have

a proper preconditioner for each sub-problem, we can still

obtain fast convergence. We also investigated different op-

tions for the proposed method summarized in Fig. 2. Using

a preconditioner for sub-problems helped reduce the number

of sub-iterations while achieving fast convergence speed.
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Fig. 3. Plot of RMSD versus wall time for the proposed

method compared to the conventional CG method with 3 line-

search iterations. A diagonal preconditioner and a circulant

preconditioner were used for sub-problems (5) and (6) respec-

tively.

In Fig. 3, we provided the proposed method with sub-

optimal preconditioners. We used a simple diagonal precon-

ditioner for (5) based on the diagonal elements of H and

a circulant preconditioner for (6) using the fact that G con-

tains A′
mAm, which is approximately shift invariant [6]. The

proposed method shows faster convergence speed compared

to CG method. While the proposed method as implemented

in MATLAB provides marginal improvement in convergence

speed over CG, we believe its ability to parallelize some of

the update steps can further improve its efficiency.

5. DISCUSSION

We applied a variable splitting approach to the motion-

compensated image reconstruction problem. The proposed

method has faster convergence speed to conjugate gradient

method, and offers the potential for parallelizabilty and pre-

conditioning of sub-problems. Some of the sub-problems

can be solved simultaneously or further divided into smaller

problems. By using more sophisticated preconditioners for

the sub-problems, the performance of the proposed method

can be further improved. In this study, we focussed on the

image reconstruction part of MCIR, but our method also can

be extended to the joint estimation framework. Our future

work will focus on improving the convergence speed of the

proposed method and on applying it to 3-D CT.

6. REFERENCES

[1] M. Grass, R. Manzke, T. Nielsen, P. Koken, R. Proksa,

M. Natanzon, and G. Shechter, “Helical cardiac cone beam

reconstruction using retrospective ECG gating,” Phys. Med.

Biol., vol. 48, no. 18, pp. 3069–84, Sep. 2003.

[2] E. Hansis, D. Schäfer, O. Dössel, and M. Grass, “Projection-

based motion compensation for gated coronary artery recon-

struction from rotational x-ray angiograms,” Phys. Med. Biol.,

vol. 53, no. 14, pp. 3807–20, Jul. 2008.

[3] A. A. Isola, A. Ziegler, T. Koehler, W. J. Niessen, and

M. Grass, “Motion-compensated iterative cone-beam CT image

reconstruction with adapted blobs as basis functions,” Phys.

Med. Biol., vol. 53, no. 23, pp. 6777–98, Dec. 2008.

[4] Q. Tang, J. Cammin, and K. Taguchi, “A fully four-dimensional,

iterative motion estimation and compensation for cardiac x-ray

computed tomography,” in Proc. Intl. Mtg. on Fully 3D Image

Recon. in Rad. and Nuc. Med, 2011, pp. 470–3.

[5] T. Goldstein and S. Osher, “The split Bregman method for

L1-regularized problems,” SIAM J. Imaging Sci., vol. 2, no. 2,

pp. 323–43, 2009.

[6] S. Ramani and J. A. Fessler, “A splitting-based iterative

algorithm for accelerated statistical X-ray CT reconstruction,”

IEEE Trans. Med. Imag., vol. 31, no. 3, pp. 677–88, Mar. 2012.

[7] J. Nocedal and S. J. Wright, Numerical optimization. New

York: Springer, 1999.

[8] N. H. Clinthorne, T. S. Pan, P. C. Chiao, W. L. Rogers, and J. A.

Stamos, “Preconditioning methods for improved convergence

rates in iterative reconstructions,” IEEE Trans. Med. Imag.,

vol. 12, no. 1, pp. 78–83, Mar. 1993.

[9] Y. Long, J. A. Fessler, and J. M. Balter, “3D forward and

back-projection for X-ray CT using separable footprints,” IEEE

Trans. Med. Imag., vol. 29, no. 11, pp. 1839–50, Nov. 2010.

The second international conference on image formation in X-ray computed tomography Page 333



  

Abstract—Advanced reconstruction methods for 

computed tomography include sophisticated forward models 

of the imaging system that capture the pertinent physical 

processes affecting the signal and noise in projection 

measurements. However, most do little to integrate prior 

knowledge of the subject – often relying only on very general 

notions of local smoothness or edges. In many cases, as in 

longitudinal surveillance or interventional imaging, a patient 

has undergone a sequence of studies prior to the current 

image acquisition that hold a wealth of prior information on 

patient-specific anatomy. While traditional techniques tend 

to treat each data acquisition as an isolated event and 

disregard such valuable patient-specific prior information, 

some reconstruction methods, such as PICCS[1] and PIR-

PLE[2], can incorporate prior images into a reconstruction 

objective function. Inclusion of such information allows for 

dramatic reduction in the data fidelity requirements and 

more robustly accommodate substantial undersampling and 

exposure reduction with consequent benefits to imaging 

speed and reduced radiation dose. While such prior-image-

based methods offer tremendous promise, the introduction 

of prior information in the reconstruction raises significant 

concern regarding the accurate representation of features in 

the image and whether those features arise from the current 

data acquisition or from the prior images. In this work we 

propose a novel framework to analyze the propagation of 

information in prior-image-based reconstruction by 

decomposing the estimation into distinct components 

supported by the current data acquisition and by the prior 

image. This decomposition quantifies the contributions from 

prior and current data as a spatial map and can trace 

specific features in the image to their source. Such 

“information source maps” can potentially be used as a 

check on confidence that a given image feature arises from 

the current data or from the prior and to more 

quantitatively guide the selection of parameter values 

affecting the strength of prior information in the resulting 

image.  

Index Terms—CT Reconstruction, Prior Image, 

Penalized-Likelihood Estimation.  

I. INTRODUCTION 

A great deal of effort on the development of advanced 

tomographic reconstruction approaches has focused on 

increasingly sophisticated and accurate models for the 

data acquisition and noise associated with the 

measurements. Statistical methods using such advanced 

forward models have demonstrated a dramatically 

improved tradeoff between radiation dose and image 

quality [3] and such model-based techniques are being 

adopted for more widespread use in clinical diagnostic 
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imaging. Despite these advances, most approaches use 

very little prior information about the anatomical structure 

of the patient. Typical model-based approaches use only 

very general concepts including image smoothness or 

edges [4] to encourage desirable image features. 

 In many cases, a great deal of knowledge about the 

object is available. Consider the case of interventional 

imaging. Prior to an image-guided intervention, a patient 

typically has one or more imaging studies conducted for 

purposes of diagnosis and treatment planning. Other 

sequential imaging situations include longitudinal 

surveillance of disease progression or therapy response. 

Traditionally, imaging systems treat each acquisition in 

isolation even though previous scans contain a wealth of 

patient-specific prior information. 

While such knowledge is typically ignored (even in 

model-based reconstructors), two methods that integrate 

prior images include PICCS [1] and PIR-PLE [2]. Both 

use compressive sensing notions and use prior images to 

construct a sparse domain and apply sparsity encouraging 

metrics (e.g. the llll1 norm). The methods differ in that 

PICCS does not include a noise model and relies on a 

linear constraint related to the data (requiring a 

linearizable forward model); whereas PIR-PLE uses a 

likelihood-based objective and forward model similar to 

other statistical, model-based methods. Both methods 

have demonstrated good image quality even under 

conditions of dramatic data undersampling, and PIR-PLE 

shows promise even under conditions of simultaneous 

undersampling and photon starvation.[5] 

Despite these strengths, methods that integrate prior 

images into the reconstruction should be able to address a 

fundamental question if they are to find widespread 

adoption: to what extent are the features in the image the 

result of the newly acquired data, and to what extent are 

they the result of the prior image? For example, if a prior 

image is included in the reconstruction process, how can 

one determine if a reconstructed feature is “real” and 

supported by the current data collection, versus features 

that appear only because they were in the prior image. 

The question is complicated further in that such methods 

include parameters that can be tuned to adjust the strength 

of the prior images, allowing features to be selectively 

eliminated or reinforced in the resulting image. How, 

therefore, can one quantitatively select or justify these 

parameter values? 

In this paper we investigate a novel framework that 

tracks the propagation of information from both the 

current measurement data and from the prior image 

portions of the reconstruction objective function in an 

attempt to begin answering these important questions. 

This investigation leverages the mathematical form of the 

PIR-PLE objective function where prior images are 
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included as a penalty term and is extensible to PICCS as 

well. The work is somewhat similar in spirit to previous 

regularization analysis [6] where quantitative measures of 

the influence of regularization (e.g., on spatial resolution) 

have been developed.  The current work is distinct, and 

identifies a method by which the contribution of prior and 

current data can be estimated for each image voxel. 

II. METHODS 

A. Review of Prior Image Reconstruction Methods 

 We adopt the following forward model where the mean 

transmission measurements are written as 

 { } ( )expy b rµ= − +D A  (1) 

where D represents an operator that forms a diagonal 

matrix from a vector, b is a vector comprising detector 

pixel-dependent photon levels and detector sensitivity 

effects, µ is a vector of the discretized attenuation volume 
we wish to estimate, r is a vector of the (presumed 

known) scatter contribution, and A represents the so-

called system matrix that carries out the projection 

operation. (Note that A
T
 represents the matched 

backprojection operation.) 

 From this forward model, it is straightforward to adopt 

a noise model and derive a likelihood-based objective 

function to estimate the attenuation volume. Choosing a 

Poisson noise model results in the following log-

likelihood function 

 
( ) [ ]( )

( ) ( ) ( )
;

log i i

i i
i

l l

i i i i i i i

L y h

h l y b e r be r

µ µ
− −

=

= + − +

∑ A
 (2) 

where hi is the marginal log-likelihood for the i
th 

measurement. 

 Consider the general form of the PIR-PLE 

reconstruction technique introduced in [2] but without the 

simultaneous registration of the prior image. This 

estimator may be written 

 ( ) ( )ˆ argmax ;
PR
pp

R R P P PL yµ µ β µ β µ µ= − − −Ψ Ψ
.
(3) 

The objective has three terms: 1) The first term is the log-

likelihood function that enforces a fit between the 

attenuation estimate and the data, and that incorporates 

the relative data fidelity of different measurements. 2) 

The second term is a generalized image penalty that 

typically discourages roughness in the reconstruction 

through the use of a gradient (or other sparsifying) 

operator ΨΨΨΨR applied to the image volume and a p-norm 

metric. 3) The third term encourages similarity with a 

previously obtained prior image, µP, and may also use a 

sparsifying operator ΨΨΨΨP. We have allowed for potentially 

different sparsifiers and p-norms for each of the two 

penalty terms (as indicated by subscripts), and the relative 

strength of the roughness and prior-image penalties are 

controlled by the regularization parameters, βR and βP, 

respectively. The implicit estimator described by (3) does 

not appear to have a closed-form solution, and solutions 

are found iteratively[2]. 

 The PICCS methodology [1] is another promising 

approach that leverages information from prior images. 

Recall the general form of the PICCS objective function 

and constraint: 

 ( ) ( )
( ) ( ) ( )

ˆˆ argmin . .

1 .
p p

P P R

s t l yµ µ µ
µ α µ µ α µ

= Ω =

Ω = − + −

A

Ψ Ψ
 (4) 

Here, the objective is comprised of terms that are 

analogous to the prior image penalty and general image 

penalty terms in (3) with a control parameter α, but the 
data enters through a linear constraint based on an 

estimate of the line integrals. Again, solutions are 

computed iteratively. The relationship between PICCS 

and PIR-PLE can be elucidated somewhat by rewriting 

the PICCS estimator in an unconstrained form: 

( )
( ) ( ) ( ){ }

( ) ( )

2

2

ˆ argmin

ˆlim 1

1ˆlim .

p p

P P R

pp

R P P

l

l

β

β

µ µ

µ α µ µ α µ β µ

α α
µ µ µ µ

β β

→∞

→∞

= Θ

Θ = − + − + −

 −
= − + + − 

 

Ψ Ψ A

A Ψ Ψ

(5) 

Thus, PICCS and PIR-PLE are alike in a sense, but the 

latter uses an unweighted norm for the data fit term, and 

regularization parameters βR = (1 – α)/β and βP = α/β  
with large β values. 
B. Analysis of Prior-Image Reconstruction Approaches 

 Direct analysis of (3) is difficult due to the 

nonlinearities of the likelihood function and the use of p-

norms. One approximation that has previously been 

applied is to use a second-order Taylor approximation of 

the likelihood [7] about an estimate of the line integrals, 

so that the objective may be re-written approximately as 

( )
2
ˆˆ argmin

PR
pp

R R P P Plµ µ β µ β µ µ≈ − + + −
W

A Ψ Ψ  (6) 

where we have adopted a weighted norm for the first term 

and  

 ( ) ( )
2

ˆ ln i i
i

i

y r y r
l y

y b

 −  − 
= = −   

   
W D .  (7) 

The special case of quadratic penalties (pR = 2 and pP = 2) 

yields the closed-form: 

( )

( ) ( )

2 22

1

2

ˆˆ argmin

ˆ .

R R P P P

T T T T T

R R R P P P P P P

l

l

µ µ β µ β µ µ

β β β µ
−

≈ − − − −

= + + +
W

A Ψ Ψ

A WA Ψ Ψ Ψ Ψ A W Ψ Ψ

 (8) 

Equation (8) is interesting since it implies a 

decomposition 

 ( ) ( )ˆ
D PF y Gµ µ= +  (9) 

 ( ) ( ) ( )
( ) ( )

1

1

ˆ

.

T T T T

R R R P P P

T T T T

P R R R P P P P P P P

F y l y

G

β β

µ β β β µ

−

−

= + +

= + +

A WA Ψ Ψ Ψ Ψ A W

A WA Ψ Ψ Ψ Ψ Ψ Ψ

 (10) 

The first term, F(y), is a function of only the current data 

and the second term, G(µP) is a function of only the prior 

image. This additive form suggests two distinct 

attenuation domain volumes whose source can be traced 

to either the current data or the prior image. Analysis of 

these volumes should reflect how information is 

transferred from the two sources to the resulting image. 

The extent to which specific image features arise from a 

given information source can be identified in a spatially 

varying manner – an information source map. Note that 

we differentiate between the approximate 

"decomposition" reconstruction, ˆDµ , and the solution to 

(6), µ̂ . With valid approximations, we expect these 

terms to be nearly identical. 
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 Unfortunately, while the selection of quadratic 

penalties terms in (6) allows for the simple decomposition 

in (10), reconstructions with quadratic penalties provide a 

fairly poor integration of prior image information. That is, 

the real power of PIR-PLE and PICCS approaches lies in 

the use of lower p-values that encourage similarity to a 

prior image, but include a small enough penalty for larger 

differences that significant changes are still permitted in 

the reconstruction.  The following section illustrates a 

decomposition methodology for accommodating 

nonquadratic penalties. 

C. Additional Approximation for Nonquadratic Penalties 

 The additive decomposition in (9) is compelling, but 

raises questions about how to extend the decomposition to 

more general values of p. Consider the typical selection of 

p = 1 that can be difficult for some reconstruction 

algorithms and that is often replaced by a modified norm 

that is "rounded" near the origin and differentiable at 

zero. For example, 

 ( ) ( )
21

1 2

2

i i

i i

i i i

t t
t f t f t

t t

ε
ε

ε
ε

 <
≈ = 

− ≥
∑ . (11) 

As illustrated in Figure 1, given a suitable operating 

point, τ, we approximate the modified norm using a 
quadratic function 

 ( ) ( ) ( )

1
2

2

2

2

i

i i i i i i i

i

i

g t t

ε

ε

τ ε

κ τ κ τ τ
τ ε

τ

 <


= = −
≥



 (12) 

such that 

 ( ) ( ) ( ){ }( )1 T

ii
t g t t tκ τ≈ =∑ D . (13) 

Applying this approximation to (6) for the case of pR = 1 

and pP = 1 yields an approximate decomposition: 

( ) ( ) ( )
( ) ( )

1

1

..

ˆ

...

T T T T

R R R R P P P P

T T T

P R R R R P P P P

T

P P P P P

F y l y

G

β β

µ β β
β µ

−

−

= + +

= + + ⋅

A WA Ψ D Ψ Ψ D Ψ A W

A WA Ψ D Ψ Ψ D Ψ

Ψ D Ψ

 (14) 

It remains to choose an operating point for the 

approximation. In our analysis, we presume that the 

reconstruction in (3) has already been performed, 

allowing us to choose an operating point based on the 

solution, µ̂ . This means the diagonal matrices in (14) 

may be defined as 

 ( ){ }
( )( ){ }
ˆ

ˆ .

R R

P P P

κ µ
κ µ µ

=

= −

D D Ψ

D D Ψ
 (15) 

Note the close relation between (10) and (14) with 

equality if the diagonal matrices in (15) are identity. 

Moreover, it is straightforward to extend this 

methodology for other p-values. We note that the same 

decomposition may be applied to PICCS by leveraging 

the unconstrained form in (5). This necessitates setting 

W = I and choosing a sufficiently large β. 
 Since the system matrix is typically not computed 

explicitly and is too large to store, we adopt a conjugate 

gradient approach for approximating the terms F(y) and 

G(µP) in (14) to decompose a prior-image-based 

reconstruction (PIR-PLE or PICCS) into data- and prior-

image-supported components. 

III. RESULTS/DISCUSSION 

To investigate the data and prior image decomposition 

framework described in the previous section we adopted 

the imaging scenario illustrated in Figure 2. The 

experiment presumes the availability of a reconstructed 

prior image and data for a follow-up image that includes a 

change (viz., enlargement of a nodule feature in the right 

lung). The follow-up acquisition involves highly sparse 

data. We investigate two acquisition strategies using a 

simulated C-arm geometry: 1) a region-of-interest (ROI) 

scan that acquires 60 laterally truncated projections over 

360° (dashed white circle in Fig. 3); and 2) an angularly 

subsampled scan that acquires 20 untruncated 

projections over 360°. All experiments used 0.776 mm 

detector pixels, 0.8 mm isotropic voxels, and a 

Fig. 2. Illustration of the prior image (A) and the true follow-up image 

(B) used to form current acquisition data (i.e., ROI or angularly 
undersampled). The images are the same except for the addition of a 

simulated lung nodule in the follow-up (green circle). 

 

A B 

ε τi 
ti 

 f(ti) 
 g(ti) 

Fig. 1.  Consider a prior image reconstruction that uses the modified 

norm that includes f(ti). Finding a suitable operating point, τi , we may 
approximate f(ti) with a quadratic function, g(ti), that intersects at f(τi). 
 

Colorized Source Map PIR-PLE: µ̂  Prior Term: G(µP) Data Term: F(y) 

Fig. 3.  The information source decomposition applied to the ROI experiment using PIR-PLE. The two decomposition terms F(y) and G(µP) along 

with  their sum (the predicted reconstruction,     ). The colorized source map combining F(y) and G(µP) in a single image conveys which features 
arise mainly from the prior image (red) and which arise largely from the newly acquired data (cyan/gray). The reconstruction is seen to rely more 

heavily on prior image information in regions outside the scanned region-of-interest (indicated by the dashed white circle). 
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monoenergetic x-ray beam with 10
5
 photons per detector 

element in the unattenuated beam. Both PIR-PLE and 

PICCS reconstructions are investigated. 

We illustrate the application of the decomposition 

approach applied to the ROI acquisition experiment in 

Figure 3. A PIR-PLE reconstruction was formed (using 

pR = 2 and pP = 1), and both the data-based (F) and the 

prior-image-based (G) terms of the decomposition are 

shown. Moreover, the sum of the individual terms are 

presented as a check on the validity of the approximations 

leading to (9). (I.e., ˆ ˆ
Dµ µ≈ which is qualitatively 

confirmed by the results.) A colorized information source 

map is also shown that identifies regions of the estimate 

that arise predominantly from either the current data 

(cyan/white) or the prior image (red). As one might 

expect, in this ROI scenario we see increasing 

contribution from the prior image in regions outside the 

scanned ROI. Moreover, the anatomical change (i.e., the 

simulated lung nodule) occurring between the prior image 

and follow-up can be clearly traced to the F term 

representing the newly acquired data. 

A second experiment considered the angularly 

undersampled case in which reconstructions were 

performed using both PIR-PLE (pR = 2, pP = 1) and 

PICCS (p = 1) over a range of reconstruction parameters. 

Specifically, we performed a sweep over the prior image 

penalty strength (βP) for PIR-PLE and a sweep of the α 
parameter in PICCS. The results are summarized in 

Figures 4 and 5, respectively. In both cases, the 

relationship between parameter strength and the strength 

of the prior image is clearly reflected in the 

decomposition. Moreover, the presence of the lung nodule 

is consistently represented in the data decomposition 

term, F. Interestingly, similar image reconstructions do 

not necessarily have similar decompositions – most 

evident in the reconstructions at higher levels of βP and α. 
This suggests that even though the images appear very 

similar, they are actually relying on different sources of 

information transferred from the prior and newly acquired 

data, suggesting different conclusions regarding what 

might have changed in the image, and what is supported 

by the data. 

The ability to trace the source of information offers a 

potentially very important tool in beginning to understand 

how information propagates in prior-image-based 

reconstruction and how data and prior information are 

integrated in the resulting image. It also suggests a 

quantitative method by which one might justify the 

selection of penalty strengths and could even provide a 

basis by which one could design penalties that enforce a 

specific balance of information usage. 

Simiarly, such a framework helps to illustrate the 

relationship between methods like PICCS and PIR-PLE 

and the particular information balance that is reached by 

either approach. Ongoing work includes analysis of such 

a relationship, the extent to which the information source 

map is quantitatively valid, and how such a framework 

could be implemented in systems employing prior-image-

based reconstruction to communicate confidence levels to 

the observer that a perceived image feature arises from 

the prior or from the newly acquired data. 
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Fig. 5.  Information source mapping applied to the angular undersampling case and PICCS reconstruction. Each row represents a different choice of 

α, with larger α yielding increased reliance on the prior image and smaller α yielding increased reliance on the roughness penalty. 
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Abstract—This is the first report on a new fast iterative
CT reconstruction algorithm for helical cone beam scans, ac-
celerated by InstaRecon’s fast O(N3logN) hierarchical cone
beam backprojection and reprojection algorithms. We report on
the results of image quality evaluations for dose reduction on
iterative algorithms, demonstrating that the iterative algorithm
introduced here can provide image quality indistinguishable from
an iterative algorithm using conventional BP/RP operators. We
further show the iterative algorithm providing image quality
comparable to a high-dose FBP reconstruction but with only 25%
of the dose. Finally, run-time statistics are reported for a version
of the algorithm using GPU implementations of the hierarchical
operators. The combined algorithmic and hardware acceleration
provides a reconstruction engine with sufficient throughput to be
viable as the default modality for typical clinical workflow, but
with very modest hardware requirements.

I. INTRODUCTION

Incorporating statistical and physical models of the data ac-
quisition, iterative CT reconstruction algorithms reduce noise
and artifacts in images, which is a key enabler for reduced dose
imaging. However, iterative algorithms are computationally
expensive, as each iteration requires a forward and back-
ward projection operation. These backprojection/reprojection
(BP/RP) operators, which are O(N4) for 3D cone-beam scans,
are the computational bottleneck of iterative reconstruction,
just as the BP operation is the bottleneck of standard fil-
tered backprojection (FBP). Hierarchical algorithms reduce the
complexity of these operators to O(N3logN), offering the
potential to greatly accelerate the reconstruction throughput.
In this paper, we report on the performance of an iterative
algorithm for the 3D helical cone-beam case using fast hier-
archical algorithms [1].

II. ITERATIVE ALGORITHM FRAMEWORK

A. Cost Function

The iterative reconstruction framework plays a key role in
determining image quality, dose reduction, and computational
requirements. There are various methods for implementing an
iterative reconstruction scheme: the choice of a cost function,
regularization, and optimization strategy. For this work we
chose a penalized weighted least squares cost function [?] of
the form

J(f) = ‖y −Rf‖2W + βC(f) (1)

In this cost function, f is the current estimate of the image,
y is the measured projection data, R computes the forward
projection of its argument, and C(f) is a non-quadratic
regularization term that favors smooth regions in f while
preserving sharp transitions, with relative weight β. The W
indicates a weighted norm of the difference between the
measured values y and estimated projections Rf . The form
of this cost function lends itself to conjugate gradient (CG)-
based minimization strategies, which are the most amenable
to acceleration by InstaRecon fast hierarchical operators.

B. System Model

There are many options for the implementation of the
conventional reprojector R that depend on the representation
of the image f. The choice of the image representation (basis
function) has a significant influence on the performance of
the iterative algorithm, both in terms of runtime and resulting
image quality. Based on the ideas presented in [4] we imple-
mented a higher order separable footprint for each voxel. For
computational efficiency, the footprint integration is calculated
not on the detector panel, but rather detector boundaries are
brought to image ‘slabs’ and integration is performed in the
image domain. The choice between x-z or y-z image slabs
is based on which direction is most orthogonal to the line
between the source and center of rotation. Such a voxel
representation is useful in reducing aliasing artifacts in the
reprojection step, which may not be suppressed by an iterative
algorithm. Additionally, reprojectors with a large amount
of aliased energy are more challenging for the hierarchical
algorithms to handle accurately.

III. FAST HIERARCHICAL OPERATORS

The fast 3D conebeam BP/RP algorithms used in this
work reduce the computational complexity from O(N4) to
O(N3logN) by a hierarchical decomposition of the image
volume. The hierarchical reprojection algorithm is briefly de-
scribed here. The hierarchical reprojection algorithm is based
on two main concepts. The first concept is divide and conquer,
in which the volume is successively divided into smaller non-
overlapping volumes, and the reprojection operation is applied
to these subvolumes. An example of this decomposition used
for 3D volumes is shown in Figure 1. By itself this does not
provide any reduction in computational cost.
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Fig. 1: Recursive Pillar Decomposition

Fig. 2: Reprojection Decomposition (1 level)

The second concept invokes sampling conditions, where the
number of views required to accurately sample the projections
of a bandlimited subvolume at the center of the source of
rotation is proportional to the size of the subvolume. For the
projections of a half-size subvolume, the projection data set
can initially be reprojected at a sparser set of P/2 projections
and then angularly interpolated by a factor of 2, yielding
projection data with comparable quality.

These two concepts are combined to form the hierarchical
algorithm. Subvolumes are approximately ‘centered’ through
shifts in the projection data to position the center of the sub-
volume’s shadow with the detector isocenter. This sufficiently
reduces the angular sampling requirements of the subregion
that it can be reprojected at a coarser set of views, then
interpolated to a higher angular sampling rate. Projection data
for groups of neighboring subvolumes are then added together
to form data for larger subvolumes, which is again interpolated
to a higher number of views. This process continues until the
entire volume has been reconstituted.

An example demonstrating one level of this process for a 2D
example is shown in Figure 2. The image is broken down into
small subregions, which are reprojected (R) at a sparse set of
view angles. These projection sets are shifted and interpolated
(S/I) to a larger projection count and merged together to form
projection sets of larger subregions.

The fast hierarchical backprojector is constructed as the
adjoint of this operation, with the appropriate flow reversal
of each step in the algorithm. It is analogous in form to the
fast hierarchical backprojection algorithms [?] that have been
developed for filtered backprojection reconstruction (FBP). An
FBP reconstruction is typically used to form the initial guess
in the iterative algorithm, so this step can also be accelerated
by hierarchical methods.

IV. GPU IMPLEMENTATION

The primary processing element of an Nvidia GPU is
organized as an array of simple processing units (SP) grouped
together into multiprocessor units (MP). A GPU consists of
several such multiprocessors operating in parallel. Typical
GPUs have a combined SP count in the hundreds. Each mul-
tiprocessor contains a small amount of local shared memory
and a set of registers that are shared among all of the simple
processing units in that multiprocessor. Additionally, each
multiprocessor has a dedicated texture unit, which can perform
array lookup and interpolation operations.

While GPUs offer tremendous computational resources,
care must still be taken in programming the computation
kernels. Extracting high performance requires taking into
account architectural features of the GPU. A sufficient number
of parallel threads of execution must be available to keep all
the SP units busy and tolerant of any delays in computation
or memory accesses. The resources (registers and shared
memory) required by each thread must be minimized to enable
a large number of threads to run on an MP.

Conventional filtered backprojection (FBP) has a very obvi-
ous parallel structure, where each voxel can be reconstructed
independently. The GPU is particularly amenable to an FBP
implementation, as a key component of the algorithm is linear
interpolation of projection data. The texture unit serves as
a data cache that provides linear interpolation in hardware,
offloading a good portion of the work required by the FBP
kernel. Implementation on the GPU of a reprojector, on the
other hand, is substantially more complicated and does not
map as elegantly to the GPU, especially for system models
that incorporate some form of basis representation along with
detector integration.

Our approach to implementation of hierarchical operators
on the GPU platform involved looking at the decomposition
in ‘stages’ (e.g. kernel launches). This first stage is comprised
of taking the reconstruction volume and dividing it into the
set of smallest subvolumes (after all recursive decompositions
have been applied), performing the reprojection operation
on each subregion using the conventional reprojector at a
projection set with sparse angular sampling. Each successive
stage then involves interpolation of each dataset to a higher
angular sampling rate, followed by a shifting operation (the
I/S operation from Figure 2). Finally, the projection data for
groups of four subvolumes are added together to form the
projection dataset of the ‘parent’ subvolume.

It turns out that this process does not map to the GPU archi-
tecture as elegantly (or simply) as the traditional FBP. Differ-
ent subvolumes will have different sized decimated projection
datasets (dependent on the rays that intersect the subvolume)
leading to challenges in packing data efficiently and effectively
assigning worker threads to the decimated projection detectors
in a regular manner. We developed a scheduling mechanism to
prevent the creation of idle threads in a thread block due to this
irregularity. Other GPU hardware features are also leveraged to
improve efficiency, including storing intermediate calculations
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in Shared Memory, and using the texture units as a memory
caching mechanism for accessing the decimated projection
data.

One other challenging issue was the data set sizes encoun-
tered in helical geometries, where a scan may consist of many
revolutions. It becomes very easy to exhaust the available
memory on the GPU cards we were using (around 1GB of on-
board memory). We devised a set of strategies which partition
the problem into a sequence of manageable subproblems that
can fit on the GPU. We leverage the asynchronous operational
mode of the GPU to overlap transfers and computation as
much as possible.

V. RESULTS

A. Equivalence of Hierarchical and Conventional Operators

Figure 3 demonstrates reconstructions for simulated data
for a 64 row detector panel with helical pitch 1. The iterative
algorithm is able to reduce noise and suppress artifacts in the
image (i.e. streaks emanating from the air cells in the temporal
bone). The low contrast features are very apparent while the
sharpness of the image (air cells, bone) is maintained. Most
importantly, the good agreement between hierarchical and
conventional operator based iterative algorithms is confirmed.

B. Low Dose Imaging

Figure 4 shows a comparison of reconstruction methods at
different dose levels. Noise was added to the clinical dataset to
simulate a reduction of dose to 25% of the full dose level. The
following reconstructions were performed: FBP using high
dose data, FBP using low dose data, and Iterative using low
dose data. The iterative algorithm is able to bring back the
image quality to a level comparable to that of the high-dose
FBP reconstruction.

C. Iterative Reconstruction Throughput

The CPU platform used here is a quad-core Core i7 pro-
cessor running at 2.66 GHz with 24 GB of RAM. The GPU
used is the nVidia GTX 470, a modest gaming-class graphics
card, with 448 cores running at 1215 MHz and 1280 MB of
on-board memory. The hierarchical BP/RP operators are run
on the GPU, the remaining aspects of the iterative framework
(regularization term, etc) are run on the CPU. The CPU code
is written in C++ and uses thread parallelism to leverage all
available processing cores and when possible extracts data
level parallelism using the SSE vector instruction set.

Table I lists results from two clinical datasets with different
helical pitches and region of interest (ROI) sizes. In both of
these cases we achieve a reconstruction rate of 2 seconds per
slice or better, which is a rate viable for a typical clinical
workflow (6 patients per hour, 300 slices per scan). This
throughput is also competitive with other commercially avail-
able iterative reconstruction packages employing the model-
based techniques used here, but does so on vastly lower
powered hardware.

Further gains in reconstruction rates could be had by porting
the remainder of the iterative framework to the GPU. While

TABLE I: Iterative Algorithm Throughput

Dataset Pitch ROI Diameter Slice Count Sec / Slice
(mm)

896 x 16 x 6840 0.75 220 340 1.35

896 x 16 x 9960 1.00 500 330 2.04

such aspects are fairly minor overhead for an iterative algo-
rithm using conventional operators, after the BP/RP operators
have been accelerated by both the hierarchical algorithm and
the GPU, the extra computation is a non-trivial component
of the total runtime. With a modest 4x acceleration of these
components by running them on the GPU, we estimate poten-
tial improvement of 15-30% in system throughput. The newer
500 series of graphics cards can also provide a significant
performance boost over the GTX 470 used in this evaluation.

VI. CONCLUSION

In this paper, we reported on results in evaluating an
iterative reconstruction framework for dose reduction, accel-
erated by the combination of the algorithmic techniques of
InstaRecon hierarchical backprojection/ reprojection operators
along with hardware acceleration on the GPU platform. This
is the first time that an algorithmically-accelerated iterative
reconstruction engine for 3D CCB/HCB geometries has been
demonstrated.

The iterative reconstruction engine delivers significant de-
crease in dose (a factor of 4 reduction) at a throughput that
enables iterative reconstruction as the default reconstruction
mode without impacting workflow. Further, the modest hard-
ware requirements enables the possibility of including low-
dose scanning in the value segment of the CT market. In
addition, the delivered acceleration enables to incorporate,
with additional development, additional enhanced physical
modeling at reduced cost, to facilitate even greater dose
reductions in the future.
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(a) (b) (c)

Fig. 3: Slices through reconstruction of simulated phantom dataset comparing (a) FBP with (b) Iterative using conventional
operators and (c) Iterative using hierarchical operators

(a) (b) (c)

Fig. 4: Comparison of reconstructions of clinical dataset from FBP with high dose data (a), FBP with low dose data (b), and
iterative with low dose data (c)
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Convex optimization prototyping for iterative
image reconstruction in X-ray CT

Emil Y. Sidky1, Jakob H. Jørgensen2, and Xiaochuan Pan1

Abstract—It is demonstrated how the primal-dual
optimization algorithm developed by Chambolle and
Pock (CP), 2011, can be used as a flexible frame-
work for prototyping a variety of convex optimization
problems of potential interest in computed tomography
(CT) image reconstruction. The algorithm is useful for
investigative purposes, because it covers a wide range
of applicability to convex optimization including non-
smooth functions and the various instances of the CP
algorithm can be derived by well-defined mechanical
operations. As a result, a given convex optimization
problem for CT image reconstruction can be rapidly
prototyped. The CP methodology is reviewed, and its
application to convex convex optimization problems of
interest to CT is illustrated by deriving an algorithm
instance for non-negativity-constrained total-variation-
regularized least squares minimization.

I. INTRODUCTION

Many iterative image reconstruction algorithms for
CT are derived from convex optimization problems,
either minimizing an unconstrained, convex objective
function directly or minimizing a given objective sub-
ject to convex constraints. Investigating the utility of
various optimization problems is often hindered by
the lack of a practical algorithm for solving them.
Simple algorithms such as generic forms of gra-
dient descent, conjugate gradients, and expectation-
maximization may not be directly applicable, partic-
ularly in the case of non-smooth objectives, or they
may be unacceptably inefficient. These well-known
algorithms can often be adapted to a particular problem
of interest, but they may require expert knowledge
on specific methods for attaining efficiency gains and
many weeks of development time. The enthusiasm for
pursuing novel optimization formulations for CT image

1The University of Chicago, Department of Radiology MC-2026,
5841 S. Maryland Avenue, Chicago IL, 60637.

2Department of Informatics and Mathematical Modeling, Tech-
nical University of Denmark, Richard Petersens Plads, Building
321, 2800 Kgs. Lyngby, Denmark.

reconstruction may, as a result, be dampened by this
algorithmic barrier.

Recently, Chambolle and Pock [1] have introduced
a series of algorithms for solving a generic convex op-
timization problem that can cover many specific forms
of potential interest for image reconstruction in CT.
Non-smooth terms can be included, which allows for
constraints and for sparsity-enhancingℓ1-based norms.
The algorithms are primal-dual; namely, they solve
the original primal minimization problem together with
its corresponding dual maximization problem. Accord-
ingly, the primal-dual nature of the algorithm comes
with a generic convergence check that the primal-
dual gap tends to zero as the iterates approach the
solutions of their respective optimization problems. In
a recent report [2] we have found that this algorithm is
very well suited to optimization problem prototyping
for CT image reconstruction because: many of the
optimization problems investigated for this application
fit into the general CP form; it comes with its own
convergence check; and, a specific form of the CP
algorithm with no free parameters suffices to obtain
the solution.

This conference contribution begins by summarizing
the background of the CP algorithm and presenting
the algorithm in a generic form in Sec. II. A specific
instance of the CP algorithm is illustrated for total-
variation (TV) based image reconstruction for CT. A
numerical example is shown in Sec. IV.

II. T HE GENERIC OPTIMIZATION PROBLEM ANDCP
ALGORITHM

The generic CP algorithm, which we investigate
here, solves the following minimization problem:

min
x

φprimal(x); φprimal(x) = F (Kx) + G(x), (1)

where x is a N -dimensional vector;K is a linear
transform fromRN to RM ; andF andG are convex
functions ofRM andRN , respectively. For CT image
reconstruction,x can represent, for example image
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pixel values, and the matrixK could model the X-
ray transform. In addition to this minimization the CP
algorithm solves the associated dual maximization:

max
y

φdual(y); φdual(y) = −F ∗(y)−G∗(−KT y), (2)

whereKT is the transpose ofK; y is a vector inRM ;
and the *-superscript indicates convex conjugation. The
convex conjugate is arrived at through the Legendre
transform:

H∗(y) = max
y′

〈y, y′〉 −H(y′), (3)

H(y′) = max
y
〈y′, y〉 −H∗(y), (4)

where〈·, ·〉 denotes the inner product. Under some not
very restrictive conditions the vectorsx′ and y′ are
solutions, respectively, to the primal minimization and
dual maximization when the primal-dual gap is zero:
φprimal(x

′)− φdual(y
′) = 0, and this gap is always non-

negative.
The generic CP algorithm for solving Eqs. (1) and

(2) is presented in Algorithm 1. This algorithm is

Algorithm 1 Pseudocode for N0-steps of the basic
Chambolle-Pock algorithm. See text for definition of
variables and the operatorsproxσ[F ∗] andproxτ [G].

1: L← ‖K‖2; τ ← 1/L; σ ← 1/L; θ ← 1; n← 0
2: initialize x0 andy0 to zero values
3: x̄0 ← x0

4: repeat
5: yn+1 ← proxσ[F ∗](yn + σKx̄n)
6: xn+1 ← proxτ [G](xn − τKT yn+1)
7: x̄n+1 ← xn+1 + θ(xn+1 − xn)
8: n← n + 1
9: until n ≥ N0

the same as the first algorithm presented in Ref. [1]
with the exception that there are no free algorithmic
parameters. As presented in Ref. [1],σ and τ are
parameters of the CP algorithm, which should satisfy
L2στ < 1 where L = ‖K‖2 is the largest singular
value of the matrixK. The largest singular value of
K can be computed by the power method. We have
found that the choice ofσ = τ = 1/L suffices for
observing convergence in numerical experiments we
have performed for image reconstruction in CT, and
fixing these parameters simplifies the implementation
for the purpose of optimization problem prototyping.
We do point out, however, that this choice technically
does not satisfy the inequality for which the proof
of convergence applies. Despite this, we have not

encountered a case where convergence fails with this
setting ofσ andτ .

The only additional ingredients, needed to realize
CP algorithm instances, are the proximal mappings
proxσ[F ∗] and proxτ [G]. The proximal mapping is
used to generate a descent direction for the convex
function F and it is obtained by the following min-
imization:

proxσ[H](y) = arg min
y′

H(y′) +
‖y − y′‖2

2

2σ
. (5)

This operation admits non-smooth convex functions,
but F needs to be simple enough that the above
minimization can be solved in closed form. For CT
applications the ability to handle non-smoothF and
G allows the study of many optimization problems
of interest. In particular, below, we introduce a CP
algorithm instance TV-regularized least-squares min-
imization with a non-negativity constraint.

Before presenting this CP instance, we need one
more ingredient, which is particularly useful for includ-
ing constraints for the primal minimization. Namely,
the indicator functionδS(x)

δS(x) ≡

{

0 x ∈ S

∞ x /∈ S
, (6)

where S is a convex set, is also a convex function
which fits into the CP framework. Below, we employ
the indicator for enforcing non-negativity by having
S be the set of images with non-negative pixel val-
ues, which is convex. The indicator can be used for
more complex constraints such as a hard, data-error
constraint (see Ref. [2]).

III. A CP ALGORITHM INSTANCE FOR

TV-REGULARIZED, NON-NEGATIVITY

CONSTRAINED, LEAST-SQUARES MINIMIZATION

We take the linear, discrete-to-discrete (DD) model
for the CT model:

Au = g,

where u represents the image pixel coefficients,g

the projection data, andA is the DD approximation
to the continuous X-ray transform. The minimization
problem of interest is

min
u

1

2
‖Au− g‖22 + λ ‖(|∇u|)‖

1
+ δP (u), (7)

where∇ is a matrix representing the discrete form
of the image gradient (theℓ1-norm of the gradient-
magnitude image is the TV semi-norm);|·| is the pixel-
wise Euclidean norm of the gradient components (thus
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|∇u| yield the gradient magnitude image ofu); λ is a
parameter controlling the strength of the regularization;
the setP consists of the non-negative image vectors
so the last term enforces the non-negativity constraint.
Accurate solution of this particular minimization prob-
lem has garnered recent interest for CT. An algorithm
employing parabolic surrogates was reported in Ref.
[3], and another work taking advantage of recent
developments in first-order methods was reported in
Ref. [4]. In order to apply the CP algorithm, we match
this minimization with the generic form in Eq. (1). We
recognize in Eq. (7) that the first two terms involve
a linear transform, while the third term involves the
untransformed image. Accordingly, the first two terms
can be written in the formF (Kx) and the last term
takes the form ofG(x) with the following assignments:

F (y, z) = F1(y) + F2(z),

F1(y) =
1

2
‖y − g‖22, F2(z) = λ ‖(|z|)‖

1
, (8)

G(x) = δP (x), (9)

x = u, y = Au, z = ∇u, (10)

K =

(

A

∇

)

. (11)

Note thatF (y, z) is convex because it is the sum of two
convex functions. Also the linear transformK takes
an imagex, yielding a combined vector containing
a data vectory and an image gradient vectorz. The
transpose ofK, KT = (AT ,−div), produces an image
vector from the combined data vectory and image-
gradient vectorz; −div, the transpose of the matrix∇,
is a discrete approximation to the negative divergence
of an image-gradient, andAT is the back-projector
corresponding to the matrix transpose ofA.

The conjugates ofF and G, obtained through the
Legendre transform, are:

F ∗(p, q) =
1

2
‖p‖22 + 〈p, g〉+ δBox(λ)(|q|), (12)

G∗(r) = δP (−r), (13)

whereBox(λ) indicates the set of image vectors whose
pixel values are bounded in absolute value byλ. Sub-
stituting these conjugate functions into Eq. (2) yields
the maximization problem dual to Eq. (7):

max
p,q
−

1

2
‖p‖22−〈p, g〉−δBox(λ)(|q|)−δP (AT p−div q).

(14)
The dual objective is needed for computing the primal-
dial gap, which provides the convergence check. An
important aspect to computing this gap is to handle

the indicator functions separately, as they are valued at
∞ if their argument is not a member of the indicated
convex set. The final piece needed for putting together
the CP algorithm instance for Eq. (7) is the proximal
mapping:

proxσ[F ∗](y, z) =

(

y − σg

1 + σ
,

λz

max(λ, |z|)

)

, (15)

proxτ [G](x) = pos(x), (16)

wherepos(x) thresholds negative values ofx to 0.
With the necessary pieces in place, the CP algorithm

instance for Eq. (7) can be written down in Algorithm
2. The resulting algorithm will be demonstrated on a
breast CT simulation.

Algorithm 2 Pseudocode for N0 steps of the TV-
regularized,least-squares CP algorithm instance, in-
cluded a non-negativity constraint.

1: L← ‖(A;∇)‖2; τ ← 1/L; σ ← 1/L;
2: θ ← 1; n← 0
3: initialize u0, p0, andq0 to zero values
4: ū0 ← u0

5: repeat
6: pn+1 ← (pn + σ(Aūn − g))/(1 + σ)
7: qn+1 ← λ(qn + σ∇ūn)/max(λ, |qn + σ∇ūn|)
8: un+1 ← pos(un − τAT pn+1 + τdiv qn+1)
9: ūn+1 ← un+1 + θ(un+1 − un)

10: n← n + 1
11: until n ≥ N0

IV. RESULTS

Fig. 1. Breast phantom for CT and FBP reconstructed image for
a 512-view noisy data set. Left is the phantom in the gray scale
window [0.95,1.15] with a blow-up on the micro-calcification ROI
displayed in the gray scale window [0.9,1.8]; and right is the FBP
image reconstructed from the noisy data. The middle panel is the
reference for all image reconstruction algorithm results. The FBP
image is shown only to provide a sense of the noise level.

For the following demonstration of the above CP
algorithm instance, we employ a digital 256× 256
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breast phantom, described in Ref. [5]. For the present
case, wefocus on circular, fan-beam scanning with 60
projections equally distributed over a full 360◦ angular
range. The detector sampling consists of 512 bins. For
this phantom under ideal conditions, we have found
that accurate recovery is possible with constrained, TV-
minimization with as few as 50 projections [6]. In the
present study, we add noise to the data model at a level
consistent with what might be expect in a typical breast
CT scan. For reference, the phantom is shown in Fig.
1. To have a sense of the noise level, a standard fan-
beam filtered back-projection reconstruction is shown
for a 512-view data set simulated for the same exposure
level. Shown in Fig. 2, are two reconstructions from the
above CP algorithm instance for two values ofλ.

Fig. 2. Images reconstructed from 60-view simulated, noisy
projection data. The images result from minimizing the objective
in Eq. (7) forλ = 1× 10

−4, and5× 10
−5.

Although this particular example is motivated by our
recent interest in investigating the trade-off between
number-of-views and noise-level-per-view [5], The re-
sults here are meant to demonstrate the CP algorithm;
thus we do not attempt to assess the quality of the TV-
regularized reconstructed images in comparison with
other methods. We are more interested in the ability
of prototyping the optimization problems for iterative
image reconstruction in CT. To demonstrate that the
images in Fig. (2) are actually solutions of Eq. (7),
we plot the primal-dual gap as a function of iteration
number in Fig. 3. Shown in this figure are the curves
corresponding to the two values ofλ, yielding the
images in Fig. 2. The primal-dual gap is computed
as the difference between the objectives of Eq. (7)
and Eq. (14) ignoring the indicator functions of both
objectives. The non-negativity indicator function of Eq.
(7) is automatically respected; thepos(·) function at
line 8 of the CP algorithm instance guarantees that the
image iteratesu will have no negative components. The
indicator function in the dual maximization is more
complex and it must be checked separately that the

argument does indeed respect non-negativity. For the
present example, we have verified that the image iter-
ates quickly respect this indicator, and as can be seen
in Fig. 3, the primal-dual gap numerically converges
to zero.
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Fig. 3. Convergence of the primal-dual gap for the CP algorithm
instance solving Eq. (7) for different values ofλ.

V. SUMMARY

In summary, we have shown how to apply the
Chambolle-Pock algorithm to solving an optimization
problem of interest for image reconstruction in CT.
Although we have shown only one particular instance
of the CP algorithm applied to TV-regularized least-
squares with a non-negativity constraint, we point
out that the CP methodology can be rapidly applied
to other convex objectives. Indeed, in Ref. [2] we
have derived CP instances using alternative data-error
norms based onℓ1 and the Kullback-Leibler diver-
gence. Moreover, constraints can be incorporated by
designing the appropriate indicator function. The only
requirement of any particular convex objective, is that
the functionsF and G be simple enough that their
convex conjugate and corresponding proximal map-
pings can be computed. Within these restrictions, the
CP framework provides a means for rapid prototyping
of optimization problems for CT image reconstruction
and it comes with a convergence check which is
important for both simulation studies and real data
studies where the underlying object is not known.
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A Hybrid Regularizer Combining Orthonormal
Wavelets and Finite Differences for Statistical

Reconstruction in 3-D CT
Sathish Ramani and Jeffrey A. Fessler

Abstract—Statistical reconstruction methods for X-ray CT rely
on regularization to yield good quality images. We propose and
investigate a specific type of nonquadratic regularization for 3-D
CT reconstruction that corresponds to applying a 2-D orthonor-
mal wavelet transform (OWT) on trans-axial slices and finite
differences (FD) along the axial direction. We use an iterative
variable-splitting-basedalternating direction method of multipliers
(ADMM) reconstruction algorithm that effectively handles the
proposed regularizer. We also present a simple procedure to
incorporate iteration-dependent random shifting to circumvent
the shift-variance of OWT and to reduce block artifacts. The
proposed regularizer requires less memory compared to those
that use FDs and is thus advantageous for ADMM that stores
and manipulates auxiliary variables related to the regularizer. We
demonstrate using simulation with a 3-D XCAT phantom that the
proposed regularizer yields images that are visually comparable
in quality to those obtained using a regularizer composed of FDs.

Index Terms—X-ray CT imaging, statistical image reconstruc-
tion, nonquadratic regularization, alternating direction method
of multipliers, orthonormal wavelet transform.

I. INTRODUCTION
Regularized reconstruction methods for X-ray CT can pro-

vide good image quality at the expense of increased compu-
tation compared to unregularized noniterative methods such
as FBP. Nonquadratic regularizers that preserve edges [1] or
those that promote sparsity are particularly appealing for CT
reconstruction [2]. Such regularizers are usually composed of
shift-invariant operators such as f nite differences (FD) [1] or
frames [2]. Wavelet frames are especially attractive due to their
multiresolution nature and have been employed for CT [2], [3];
they may also be interpreted as multiresolution extensions of
f nite differences. However, for 3-D CT, frames can increase
computation (due to calculation of frame coeff cients during
reconstruction) compared to FDs and would require a signif -
cant memory overhead when used with some algorithms like
iterative shrinkage thresholding (IST) [4], [5] or alternating
direction method of multipliers (ADMM) [2].
An orthonormal wavelet transform (OWT) is a computation-

and memory-eff cient alternative to a wavelet frame. OWTs
retain the multiresolution aspect of wavelet frames and have
been successfully used in reconstruction problems in image
processing [4] and magnetic resonance imaging [5]. In this
work, we investigate the use of OWT for 3-D CT reconstruc-
tion. Specif cally, we propose a hybrid nonquadratic regular-
izer that is composed of 2-D OWTs (applied on the trans-axial

This work was supported by the National Institutes of Health under Grant
R01-HL-098686.
Sathish Ramani and Jeffrey A. Fessler are with the Electrical Engineering

and Computer Science Department, University of Michigan, Ann Arbor, MI,
USA.

slices) and FDs (applied along the axial direction). We used
the ADMM algorithm [2], for performing reconstruction as
it can easily handle the proposed regularizer. Based on our
previous work [6], we also present a simple strategy to inte-
grate iteration-dependent random shifting (IDRS) in ADMM
to compensate for the shift-variance of OWT and to reduce
block-artifacts therefrom. We illustrate using simulations with
a 3-D XCAT phantom [7] that the proposed approach is able
to provide reconstruction results that are qualitatively similar
to those obtained using a regularizer with FDs. Our method
can be easily extended for use with 3-D OWTs and can be
readily applied to axial and helical CT.

II. STATISTICAL X-RAY CT RECONSTRUCTION
A. Problem Formulation
We consider a penalized weighted least-squares formulation

of statistical 3-D X-ray CT reconstruction [1],

argmin
x

{

1

2
‖y −Ax‖2

W
+Ψ(Bx)

}

, (1)

where x ∈ R
N is a vector representing the 3-D volume (of

size N = N1×N2×N3) being reconstructed, y ∈ R
M is the

logarithm of raw transmission data,W ∈ R
M×M
+

is a diagonal
matrix consisting of statistical weights [1], [2], A ∈ R

M×N

is the system matrix so that Ax represents line integrals. We
consider a regularizer of the form

Ψ(Bx) = λ
∑

r

κrΦ(|[Bx]r|), (2)

where B represents the regularization operator, Φ is a potential
function, λ > 0 is the regularization parameter and κr > 0
are weights that govern the spatial resolution [8] in the
reconstructed result.

B. Regularization Operator
While common choices for B in 3-D CT are f nite differ-

ences (FD) along 3 orthogonal directions, or more comprehen-
sively, along 13 nearest-neighbor-directions [1], we explore
the use of an orthonormal wavelet transform (OWT) for
(1) in this work. OWTs posses several attractive properties
including regularity, sparsity / compressibility and their ability
to represent an image at multiple scales and have been widely
used in image-processing applications, e.g., restoration [4], and
magnetic resonance image reconstruction [5]. There are several
ways to incorporate OWTs for 3-D CT reconstruction, e.g., one
could consider (a) an entirely wavelet-based regularizer using
a 3-D OWT, or (b) some combination of OWTs and FDs for B
in (2). The advantage of (b) is that it allows for simultaneous
utilization of wavelet-properties and shift-invariance of FDs,
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so we specif cally choose to investigate the following hybrid-
form for B:

B =

[

V

C

]

, (3)

where V = IN3⊗W, C = R⊗IN1N2 , ⊗ represents Kronecker
product, and IM is the identity matrix of sizeM . The operator
B in (3) thus corresponds to applying a 2-D OWT, represented
by W ∈ R

N1N2×N1N2 , on each trans-axial slice and nearest-
neighbor-differences, represented by R ∈ R

N3×N3 , along
the axial direction (perpendicular to the trans-axial slices).
Moreover, as the axial direction is handled separately in B

(3), it allows for the use of varying regularization strength
along that direction to account for the cylindrical nature of
CT scanner geometries [1].

III. A SPLITTING-BASED ITERATIVE METHOD
IST-type algorithms [4], [5] are a common choice for

solving inverse problems like (1) with entirely wavelet-based
regularizers. However, the inclusion of FDs in B (3) precludes
the use of IST-type algorithms for (1). Gradient-descent algo-
rithms like nonlinear conjugate gradient (NCG) can be readily
applied for (1), but they are diff cult to precondition due to
the highly shift-variant nature of the Hessian, A⊤

WA, of the
data-f delity term in (1) [2] and thus may converge slowly.
Recently, we proposed an iterative variable-splitting-based

ADMM algorithm [2] for solving (1). ADMM employs aux-
iliary constraint variables to separate A from the data-f delity
term and B from the regularization term in (1) [2]. The
resulting effect of these variables is that ADMM involves
simple update steps [2] that correspond to inverting a diagonal
matrix, minimizing 1-D denoising cost functions that can be
achieved analytically and solving a linear system of equations
that is amenable to iterative solvers (e.g., preconditioned con-
jugate gradient) with effective preconditioning using circulant
matrices (e.g., associated with cone-type f lters [2]). These
features enable fast convergence of ADMM compared to
contemporary methods for CT [2] and also allow it to tackle
a variety of regularization criteria [2] including the proposed
one (2)-(3).

A. ADMM Algorithm
For solving (1) using ADMM, we employ constraints of the

form u = Ax and v = Bx, where for ease of analysis, we
decompose v = [v⊤

1
v
⊤
2
]⊤, so that v1 = Vx and v2 = Cx for

B in (3). Through a derivation similar to that in [2, Sec. III],
we obtain the following ADMM algorithm, where at iteration
j, we perform the following sequence of operations:

x
(j+1) = G

−1

ν

(

A
⊤(u(j) − ηηη(j)

u
)
+νV⊤(v

(j)
1
− ηηη

(j)
v1 )

+νC⊤(v
(j)
2
− ηηη

(j)
v2 )

)

, (4)

u
(j+1) = D

−1

µ (Wy + µ[Ax
(j+1) + ηηη(j)

u
]), (5)

v
(j+1)

1
= argmin

v1

{

Ψ(v1)+
µν

2

∥

∥

∥
v1−[Vx

(j+1) + ηηη(j)
v1

]
∥

∥

∥

2

2

}

,(6)

v
(j+1)

2
= argmin

v2

{

Ψ(v2)+
µν

2

∥

∥

∥
v2−[Cx

(j+1) + ηηη(j)
v2

]
∥

∥

∥

2

2

}

, (7)

ηηη(j+1)

u
= ηηη(j)

u
− (u(j+1) −Ax

(j+1)), (8)
ηηη(j+1)

v1
= ηηη(j)

v1
− (v

(j+1)

1
− Vx

(j+1)), (9)

ηηη(j+1)

v2
= ηηη(j)

v2
− (v

(j+1)

2
− Cx

(j+1)). (10)

The Lagrange-multiplier-like vectors ηηη
(·)
u , ηηη(·)v1 and ηηη

(·)
v2 are

associated with the constraint variables u, v1 and v2, respec-
tively. The penalty parameters µ > 0, ν > 0 govern only the
convergence speed of ADMM and were chosen as described
in [2, Sec. III.E], and

Gν
△

= A
⊤
A+ ν(V⊤

V+C
⊤
C) = A

⊤
A+ ν(IN+C

⊤
C), (11)

where we have used the orthonormality of W and V in (11):

W
⊤
W = WW

⊤ = IN1N2 =⇒ V
⊤
V = VV

⊤ = IN . (12)

Since A
⊤
A is “more” shift-invariant than A

⊤
WA [2] and

because C⊤C = R
⊤
R⊗ IN1N2 is shift-invariant (R is a f nite

differencing matrix), a CG-solver for (4) is amenable to FFT-
based preconditioning using suitable cone-type f lters [2]. The
updates corresponding to ηηη

(·)
u , ηηη(·)v1 , ηηη

(·)
v2 (8)-(10) are trivial.

The matrix Dµ
△

= W + µIM is diagonal and can be inverted
exactly in (5).
The minimizations in (6)-(7) each decouple in to 2N scalar

denoising problems in terms of the components {vi,r}Nr=1
of

vi, i = 1, 2, for the regularization Ψ in (2). Writing, ̺̺̺(j)
v1

△

=

Vx
(j+1) + ηηη

(j)
v1 , ̺̺̺

(j)
v2

△

= Cx(j+1) + ηηη
(j)
v2 , we have that

v
(j+1)

i,r = argmin
v

{

Ψ(v) +
µν

2
(v − ̺(j)

vi,r
)2
}

, (13)

̺
(j)
vi,r is the r-th component of ̺̺̺(j)vi

, i = 1, 2, r = 1, . . . , N .
The 1-D problem (13) admits analytical closed-form solution
for a variety of potential functions Φ [2]. For simplicity, we
focus on the Fair potential (smoothed-Laplacian)

Φ(x) = ΦFP(x)
△

= x/δ − log(1 + x/δ), (14)

δ > 0, that has been used successfully for CT [2], [6]. For
ΦFP, (13) leads to [2]

v
(j+1)

i,r = sign{̺(j)
vi,r
}
ζ
(j)
vi,r +

√

(ζ
(j)
vi,r)

2 + 4δ|̺
(j)
vi,r|

2
, (15)

where ζ
(j)
vi,r

△

= |̺
(j)
vi,r| − δ − λκr/(δµν), i = 1, 2.

B. Memory Requirement
Compared to other iterative methods like NCG or IST-type

algorithms, ADMM requires more memory as it needs to
store u(·), v(·) and associated Lagrange-multiplier-like vectors.
Depending on the regularization, memory requirement for v(·)

may overshoot that of u(·) and represent a signif cant memory-
overhead for 3-D CT; this is particularly the case with FDs
when all 13 nearest-neighbour directions are used [2]. As an
alternative, FDs in 3 orthogonal directions may be considered,
which will only require a total of 6 image-volumes for storing
v
(·) and its Lagrange-multiplier vector (signif cantly less than

26 image-volumes required for the 13-neighborhood case). In
comparison, ADMM for the proposed regularization operator
B (3) requires even less memory, a total of only 4 image-
volumes for storing v

(·) and its Lagrange-multiplier vector,
due to the use of the OWT W in B; the proposed B (3) is
thus advantageous for ADMM-based 3-D CT reconstruction.
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IV. ITERATION-DEPENDENT RANDOM SHIFTING
Memory eff ciency of an OWT comes at the expense of

its shift-variant nature that can lead to block-artifacts in
the reconstructed image [5], [6]. Iteration dependent random
shifting (IDRS) [4] is a cost-effective technique for partially
compensating the shift-variance of OWT and has been success-
fully used for image restoration [4] and MRI reconstruction
[5] with iterative shrinkage-thresholding (IST) type methods.
We proposed a simple strategy recently to incorporate IDRS in
ADMM for statistical 2-D CT reconstruction using regulariza-
tion composed entirely of OWT [6]. The basic idea there is to
apply an iteration-varying random translation to the estimate
x
(j) before solving a denoising problem akin to (6) and then

to undo the translation later in the sequence of updates in
ADMM. The same idea can be readily extended to the OWT-
part of the proposed B (3) and the update equation (6) for
corresponding constraint variable v1.
Before proceeding, it is useful to introduce ṽ1

△

= V
⊤
v1 and

ηηη
ṽ1

△

= V
⊤ηηηv1 . Then the updates that depend on V , (4), (6)

and (9), respectively, become

x
(j+1) = G

−1

ν

(

A
⊤(u(j) − ηηη(j)

u
)

+ν(ṽ
(j)
1
− ηηη

(j)

ṽ1
)

+νC⊤(v
(j)
2
− ηηη

(j)
v2 )

)

, (16)

ṽ
(j+1)

1
= V

⊤

(

argmin
v1

{

Ψ(v1)+

µν

2

∥

∥

∥
v1−V[x(j+1) + η̃ηη

(j)
v1

]
∥

∥

∥

2

2

})

,(17)

ηηη
(j+1)

ṽ1
= ηηη

(j)

ṽ1
− (ṽ

(j+1)

1
− x

(j+1)), (18)

where we have used the orthonormality of V in (17) and (18).
Thus the only step in ADMM where V (i.e., OWT) appears
now is (17), so we need only focus on (17) for incorporating
IDRS. Since we want to promote shift-invariance, at each
iteration j, we consider S

(j) △

= diag{S
(j)

1
· · ·S

(j)

N3
}, where

{S
(j)

i }
N3

i=1
areN1N2×N1N2 block permutation matrices, such

that the action of S(j) on x
(j) randomly translates each trans-

axial slice by different amounts. Then applying IDRS simply
amounts to using ˜V

(j) △

= VS
(j) in (17), i.e., ṽ(j+1)

1
=

˜V
(j)⊤



argmin
v1







Ψ(v1)+

µν

2

∥

∥

∥

∥

v− ˜V
(j)

[x(j+1) + η̃ηη
(j)
v1

]

∥

∥

∥

∥

2

2









, (19)

that is, IDRS is f rst applied to the input (x(j+1) + η̃ηη
(j)
v1

)

to the denoising step (19) via ˜V
(j)
, the denoising operation

[minimization in (19)] is performed similar to (13)-(15), and
IDRS is undone later in the same step via ˜V

(j)⊤
. This is

similar to how IDRS is also applied in IST-type algorithms [4],
[5]. We summarize below our ADMM-IDRS scheme for 3-D
CT reconstruction assuming we have a sequence of random
translations represented by {S(j)}.

ADMM-IDRS for 3-D CT Reconstruction
1. Initialization: x(1); Set ηηη(0)u = ηηη

(0)

ṽ1
= ηηη

(0)

v2 = ηηη
(1)

u =

ηηη
(1)

ṽ1
= ηηη

(1)

v2 = 0; Compute u
(1) using (5); obtain ṽ

(1)

1
,

v
(1)

2
, respectively, using (19), (7), (13)-(15); set j = 1.

2. Apply (P)CG for partially solving (16) to obtain x
(j+1).

3. Compute u
(j+1) using (5).

4. Obtain ṽ
(j+1)

1
, v(j+1)

2
using (19), (7) and (13)-(15).

5. Update ηηη(j+1)

u , ηηη(j+1)

ṽ1
, ηηη(j+1)

v2 using (8), (18), (10).
6. Set j←j+1; Repeat Steps 2-6 till stop criterion is met.

IDRS as applied to ADMM above for 3-D CT reconstruction
is computationally eff cient since it only requires trivial trans-
lation operations and provides image quality comparable to
that obtained using FDs as demonstrated next.

V. EXPERIMENTAL SETUP & RESULTS

We performed simulations with a 3-D XCAT phantom [7]
of size 1024 × 1024 × 188. We generated a 888 × 984 × 64
noisy sinogram with GE LightSpeed fan-beam geometry [2]
(axial scan) corresponding to a monoenergetic source with
5 × 105 incident photons per ray and no background events.
We reconstructed 512×512×92 image-volumes (that include
a padding of 28 trans-axial slices to account for the “long
object problem” of the scanner geometry) whose trans-axial
FOV was 50 cm and whose axial FOV of the region of
interest was 4 cm. We used the separable-footprints (SF-
TR) projector [9] (implemented in C) for computing matrix-
vector products such as Ax, A

⊤
u and initialized ADMM

[2] and the proposed ADMM-IDRS with the image-volume
reconstructed using FDK with Hanning f lter. We applied 5
CG iterations with a cone-f lter-type preconditioner [2] for
“solving” (16). We compared reconstruction quality yielded
by the regularizer in (2) with ΦFP [δ = 10 HU (14)] using (a)
f nite differences (FD) in 3 orthogonal directions and (b) the
proposed operatorB (3) employing 3 levels of the orthonormal
Haar wavelet transform forW . Computation times of ADMM
[2] for case (a) and the proposed ADMM-IDRS for case (b)
were dominated by products with A and A

⊤ and were similar
(≈ 3 minutes / iteration in Matlab running on a 12-core PC
with 2.80 GHz Intel Xeon CPUs and 24 GB RAM).
We set κr =

√

[A⊤
W1]r/[A⊤

1]r [8] wherever FDs were
involved (including those in B). For the OWT part in B, we
f rst applied IDRS, i.e., S(·), to κκκ = {κr} and propagated
the resulting vector through the wavelet decomposition tree
without employing the wavelet-f ltering steps to obtain a set
of subband-dependent weights that replaced κr in (15) for
(i = 1) the OWT part of B. We also set the weights
corresponding to the approximation coeff cients to zero (i.e.,
they were not thresholded since they are not sparse in general
[4]–[6]). We chose the regularization parameter λ so as to
roughly compromise between smoothing and reduction of
noise and artifacts. Figs. 1-3 present reconstruction results for
our simulation. Both regularized reconstruction results (third
and fourth columns in all f gures) provide improved quality
over the FDK result along the trans-axial, coronal and sagittal
views. Moreover, the proposed method [ADMM-IDRS with
B (3)] yields reconstructed images (fourth column in Figs. 1-
3) that are visually comparable to those obtained using f nite
differences in 3 orthogonal directions (third column in Figs. 1-
3) indicating the potential of orthonormal wavelets and IDRS
for 3-D CT reconstruction.

VI. CONCLUSION & DISCUSSION

We proposed a hybrid nonquadratic regularizer (2) for statis-
tical 3-D CT reconstruction with an operator B (3) that applies
a 2-D orthonormal wavelet transform (OWT) on trans-axial
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Fig. 1. Simulation with a 3-D XCAT phantom. Zoomed slices in trans-axial view (444 × 242). First row: Slice 26, Second row: Slice 46 and Third
row: Slice 66. First column: Noisefree phantom; Second column:FDK result with Hanning f lter; Third column: ADMM result for ΦFP (14) with f nite
differences in 3 orthogonal directions; Fourth column: ADMM-IDRS result for ΦFP (14) with proposed operator B (3) involving OWT. Images are displayed
in Hounsf eld units in the range of [800, 1200].

Fig. 2. Simulation with a 3-D XCAT phantom. Zoomed slices in coronal view (444 × 50). First row: Slice 197, Second row: Slice 257 and Third
row: Slice 317. First column: Noisefree phantom; Second column:FDK result with Hanning f lter; Third column: ADMM result for ΦFP (14) with f nite
differences in 3 orthogonal directions; Fourth column: ADMM-IDRS result for ΦFP (14) with proposed operator B (3) involving OWT. Images are displayed
in Hounsf eld units in the range of [800, 1200].

Fig. 3. Simulation with a 3-D XCAT phantom. Zoomed slices in sagittal view (242 × 50). First row: Slice 197, Second row: Slice 257 and Third
row: Slice 317. First column: Noisefree phantom; Second column:FDK result with Hanning f lter; Third column: ADMM result for ΦFP (14) with f nite
differences in 3 orthogonal directions; Fourth column: ADMM-IDRS result for ΦFP (14) with proposed operator B (3) involving OWT. Images are displayed
in Hounsf eld units in the range of [800, 1200].

slices and f nite differences (FD) along the axial direction. We
developed a simple scheme to incorporate iteration-dependent
random shifting (IDRS) [4]–[6] in the ADMM reconstruction
algorithm [2] to compensate for the shift-variance of the
OWT part of the proposed operator B (3). Simulations with
a 3-D XCAT phantom indicate that the proposed method,
i.e., ADMM-IDRS with the hybrid regularizer (2)-(3), yields
reconstructed images that are qualitatively similar to those
obtained using a regularizer composed of FDs in 3 orthogonal
directions. We are currently evaluating improved choices for
subband-dependent weights for the OWT part of the proposed
regularizer (2)-(3). The next step is to compare the proposed
regularizer (2)-(3) against one that uses FDs in all 13 nearest-
neighbour directions [1] in 3-D. We also plan to investigate
regularization criteria that use 3-D OWT for 3-D CT recon-
struction with application to helical CT.
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Statistical CT Reconstruction from Limited Views
with Probabilistic Atlas Prior

Essam A. Rashed and Hiroyuki Kudo

Abstract—Statistical iterative reconstruction (SIR) methods
are known to achieve superior image quality compared to
conventional methods derived from analytical inversion formulae.
Effective noise modeling and possibilities to incorporate priors
in the image reconstruction problem are the main advantages
of the SIR methods. The compressed sensing principal provides
an interesting framework for possible reconstruction of artifacts-
free images from highly down-sampled projection data. In this
paper, we introduce a new image reconstruction algorithm from
limited view data based on prior information obtained from
probabilistic atlas. A data set collected from screening chest
CT for several patients was used to construct a 3D atlas with
Laplace mixture model. The mixture parameters are estimated
using the expectation maximization (EM) algorithm. Later, the
prior information obtained from the probabilistic atlas is used to
formulate the image reconstruction cost function. Experimental
studies indicate that the probabilistic atlas prior is a practically
promising approach for low-dose CT imaging.

I. INTRODUCTION

X-ray computed tomography (CT) has evolved into an
essential imaging modality in clinical routines. It is hardly
to find a hospital has no in-duty CT imaging equipment
worldwide. The side effects of the radiation dose generated
from CT scans become an interesting topic to be investigated.
Though, it is not yet strictly proved that regular CT scans
may lead to a malignancy, it is estimated that a rough of 2%
of cancers may eventually be caused by the average radiation
dose currently used in clinical CT [1]. The optimization of
hardware factors such as scanning geometry, tube current and
pitch factor would probably lead to a dose reduction. However,
it is always preferable to obtain standard imaging techniques
that minimize the patient dose with acceptable image quality.
The conventional image reconstruction methods based on
analytical inversion formulae still the fundamental choice for
clinical equipment. Though, statistical iterative reconstruction
(SIR) methods are known to provide a higher image quality
due to noise modeling and possibilities to incorporate prior
information in the image reconstruction problem.

This work investigates the problem of image reconstruc-
tion from small number of projection views (Fig. 1) as a
potential approach for tomographic imaging with diminished
patient dose. The angular sampling rate has a large influence
on the accuracy and stability of the image reconstruction

This work was partially supported by Grant-in-Aid from the Japan So-
ciety for the Promotion of Science (JSPS). Grant for foreign Post-doctoral
fellows (ID No. P10052). E.A.Rashed and H.Kudo are with the Division of
Information Engineering, Faculty of Engineering, Information and Systems,
University of Tsukuba, Tsukuba 305-8573, Japan. E.A.Rashed is also with
the Department of Mathematics, Faculty of Science, Suez Canal University,
Ismailia 41522, Egypt (e-mail: essam@imagelab.cs.tsukuba.ac.jp).

Fig. 1. CT imaging configurations. The positions of x-ray source in data
acquisition for full scan (left) and limited views (right).

inverse problem. While reducing the projection views might
contribute to the patient dose reduction, this assumption is
known to generate streak artifacts in the reconstructed im-
age [2]. This classical problem had been studied since the
invention of tomographic imaging. Nevertheless, the basic
mathematical principal behind this problem concludes that
when the projection data is highly down-sampled, the im-
age reconstruction becomes underdetermined problem and
the achievement of exact reconstruction is not theoretically
possible [3]. Supplementary information, added to the image
reconstruction cost function, would probably lead to a more
accurate reconstruction. Recently, the principal of compressed
sensing [4], [5] becomes the essential framework of several
image reconstruction approaches that handle data limitations
in tomographic imaging (e.g. [6]–[9]).

A principal approach to solve the problem of image recon-
struction from limited views is the incorporation of a priori
known information (e.g. [10], [11]). The cost function and
prior information required for theoretically exact reconstruc-
tion is still unknown [12]. Thus, it is interesting to quanti-
tatively investigate how different types of prior information
contribute to image quality. Generally, we can classify the pos-
sible prior information into the following three categories: (1)
complete reference image (intensity and spatial information),
(2) boundaries and support information (spatial information
only), and (3) attenuation information (intensity values only).
The first category considers the case where the prior infor-
mation is obtained from a reference image generated prior
to reconstruction. The second category includes the use of
prior information corresponding to the boundaries of uniform
regions such as the well-known quadratic smoothing penalty.
The third category corresponds to the case where the prior
information is limited to a set of intensity values representing
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uniform regions inside the object. Recently, we have devel-
oped image reconstruction algorithm from small number of
projection views, named intensity-based MAP (iMAP) [13].
A penalty term based on prior information limited to a small
number of intensity values was introduced. The penalty term,
named intensity prior, is computed using the average intensity
values of uniform regions in the scanned object and it leads
to a considerable improvement of image quality.

In this paper, we propose a new statistical iterative re-
construction (SIR) method using prior information obtained
from probabilistic atlas. First, we use a set of reconstructed
volumes obtained from previous scans of several patients to
construct a probabilistic atlas using Laplace mixture model
(LMM). The mixture parameters are estimated using the
expectation maximization (EM) algorithm. Probabilistic atlas
and mixture model parameters are then used to formulate the
image reconstruction cost function from limited view data.
Although, the use of finite mixture models is a common and
popular approach in the context of image segmentation, to the
best of our knowledge, the use of probabilistic atlas have not
been investigated to solve the concerned problem before. The
developed method can be considered as an extension of the
iMAP algorithm [13] that enable automatic robust estimation
of required parameters. The main contribution of this paper
is to emphasis that the spatial information provided from a
probabilistic atlas leads to a more accurate reconstruction.

II. METHODS

A. Image reconstruction with intensity priors

The transmission x-ray CT imaging can be described in a
discrete form using the following statistical model:

yi = Poisson(bi exp(−〈~ai, ~x〉)), (1)

where ~x = (x1, . . . , xn) is the image vector representing the
attenuation coefficients of the image object, ~y = (y1, . . . , ym)
is a vector represents the raw detector measurements with the
corresponding blank scan ~b = (b1, . . . , bm), A = {aij} is
the m × n system matrix that models the imaging system,
and 〈~ai, ~x〉 =

∑n
j=1 aijxj is the inner product of the ith

row of matrix A and image vector ~x. In iMAP algorithm, the
solution of image reconstruction problem is found through the
following cost function:

min
~x≥0

f(~x) = L(~x) + βD(~x, ~z), (2)

L(~x) =
m∑
i=1

[bi exp(−〈~ai, ~x〉) + yi〈~ai, ~x〉] , (3)

D(~x, ~z) =
n∑

j=1

L
min
l=1

(wl|xj − zl|) . (4)

The term L(~x) is the negative log-likelihood and D(~x, ~z)
is a distance function controlled by a hyper-parameter β,
~z = (z1, . . . , zL) is a set of a priori known intensity
values in ascending order, and w1, . . . , wL represent empir-
ically determined parameters that quantitatively represent the
corresponding intensity values.

Fig. 2. The penalty function in (4) with L = 3, ~z = (0.5, 1.0, 2.0), w1=0.3,
w2 = 0.5, and w3 = 0.2.

An illustration of the intensity prior function in (4) is shown
in Fig. 2. Each value of a priori known intensity values zl
intuitively represents the mean intensity value corresponding
to a uniform region expected in the scanned object. The main
challenge in minimizing the cost function in (2) is that the
penalty term is based on `1-norm distance, which is neither
convex nor differentiable. Therefore it is not possible to em-
ploy ordinary gradient-type iterative method to minimize the
cost function. Instead, the majorizarion-minimization (MM)
strategy [14], [15] is used to derive a separable quadratic
function f̃(~x, ~xk). At each iteration k, the non-separable part
of the cost function is approximated by a separable quadratic
function around ~x = ~xk given by:

f̃(~x; ~xk) =
n∑

j=1

βwl

[
cj,l(xj − pj)2 + |xj − zl|

]
+ T (~xk),

l = {|xj − zl| ≤ |xj , zt|, t = (1, . . . , L)}, (5)

where T (~xk) is the term independent of ~x and pj , cj,l are
computed as follow:

pj = xkj + xkj

∑m
i=1 aij

(
bi exp(−〈~ai, ~xk〉)− yi

)∑m
i=1 aij〈~ai, ~xk〉bi exp(−〈~ai, ~xk〉)

, (6)

cj,l =
1

2βωlxkj

m∑
i=1

aij〈~ai, ~xk〉bi exp(−〈~ai, ~xk〉). (7)

The final form of the iMAP algorithm is as follow:
(i) Initialization: Estimate the intensity prior ~z, set initial

image ~x0 to a uniform value and initialize iteration number
k = 0.

(ii) Majorization: The cost function f(~x) is majorized
around the current estimate ~xk.

(iii) Minimization: The separable cost function f̃(~x; ~xk) is
minimized over ~x ≥ 0 to obtain the image estimate for next
iterate:

q = arg min
~x≥0

f̃(~x; ~xk), xk+1
j = max(qj , ε) (8)

where ε is a small value to guarantee that xk+1
j > 0.

The second international conference on image formation in X-ray computed tomography Page 353



(iv) Iterate condition: Set iteration number k = k + 1 and
repeat steps (i)-(iii) until reaching to a stopping criterion.

The minimization in (8) is implemented through the follow-
ing multi-thresholding function:

qj =


p+j,l (sl−1 < pj < z−j,l)

zl (max(z−j,l, sl−1) ≤ pj ≤ min(z+j,l, sl))

p−j,l (z+j,l < pj ≤ sl)
,

(l = 1, . . . , L). (9)

with p+j,l = pj + 1/(2cj,l), p−j,l = pj − 1/(2cj,l), z+j,l = zl +

1/(2cj,l), z
−
j,l = zl−1/(2cj,l), sl = (ωlzl +ωl+1zl+1)/(ωl +

ωl+1), s0 = −∞ and sL = ∞. The multi-thresholding
function in (9), can be expressed as a combination of multiple
successive soft-thresholding functions, each is implemented
around a single value of the a priori known intensity values
zl, l = (1, . . . , L). The practical interpretation of this thresh-
olding operation is as follows. If the computed pixel value pj
is closed to the intensity value zl, the pixel value is trimmed
to zl. Otherwise, the pixel value pj is shifted softly towards
the closest value of zl.

During the practical implementation of the iMAP method,
we have found the major challenge stationed in how to
estimate the parameters. Moreover, the thresholding function
in (9) is based on the current image estimate with no pixel
spatial information. In this paper, we extend the iMAP al-
gorithm by including additional information obtained from
a probabilistic atlas generated using reconstructed volumes
obtained from different patients.

B. Construction of the Probabilistic Atlas

The probabilistic atlas presented in this paper is used to
provide a complete spatial distribution of probabilities that a
voxel belong to one or more uniform regions (organs). Each
image voxel is assigned to L-vector, where L denotes the
number of regions in the modeling system. To create the atlas,
the LMM is used to segment the data set into L number of
regions. The parameters of the LMM are estimated using the
EM algorithm [16]. Finally, the probabilistic atlas parameters
are used to identify the parameters for image reconstruction
problem in (2).

The LMM is a statistical model for multivariate data mixture
that is widely used in the context of robust clustering such as
image segmentation. The LMM [17], [18] assumes that the
density function at an observation xj is given by:

p(xj) =
L∑

l=1

πlp(xj |Ωl), (10)

where πl is the prior distribution of the pixel xj belongs to
the class Ωl, which satisfy the constraints:

0 ≤ πl ≤ 1 and
L∑

l=1

πl = 1. (11)

Each Laplacian distribution p(xj |Ωl), called a component
of the mixture, and the probability density function (pdf) is
given by:

Fig. 3. Plot of probability Laplacian density function of three components
with parameters (µ, λ) = (0.5, 0.4), (1.0, 0.3) and (2.0, 0.6) is in dotted
lines. The mixture density corresponding to proportions of 0.3, 0.5 and 0.2,
respectively, is in solid line.

p(xj |Ωl) =
1

2λl
exp

(
−|xj − µl|

λl

)
(12)

with λl > 0 is a width control parameter and µl is the median
of mixture component Ωl. An example of the mixture density
function is plotted in Fig. 3.

C. Image Reconstruction with Probabilistic Atlas Prior

Considering the probabilistic atlas, the median value of
mixture components µl is modeled as the known intensity
values zl in the iMAP method. Also, the mixture weight πl is
modeled as the weighting parameter wl. As the probabilistic
atlas is computed from different patients the mixture weight
parameter can be computed as a pixel-dependant value πlj .
The probabilistic atlas prior can be formulated as:

DLMM (~x) =
n∑

j=1

(πlj |xj − µl|) , xj ∈ Ωl (13)

III. EXPERIMENTAL STUDIES

A. Compute 3D Probabilistic Atlas

The data sets used to construct the probabilistic atlas is
obtained from a clinical screening chest CT volumes for
different patients [19]. The data set consists of 68 volumes
each of 25 to 31 slices with slice grid of 320×320 pixels and
pixel size 1×1 mm. A subset of 28 volumes were selected
to create the atlas. A single volume is arbitrarily selected as
a reference and the remanning 27 volumes are registered onto
the reference volume using non-rigid registration with a single
control point located at the center region of the spinal cord.
The EM algorithm is used to estimate the LMM parameters
(λl, µl, πl) and thus the posterior probability function.

B. Image Reconstruction Results

A single volume from the data set, which is not included
in the construction of the atlas, was used to evaluate the
proposed method. The central slice is forward-projected into
48 projection views over 180◦ and reconstruction was imple-
mented using standard filtered back-projection (FBP), iMAP
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(a) (b) (c) (d)

Fig. 4. Central slice of patient number 15 of the chest CT data set. Original slice image in (a) and reconstructions from 48 projection using (b) FBP,
(c) iMAP and (d) proposed methods. A magnification display of marked regions in (a) are shown below each image. Display gray scale is (0.51, 1.55) cm−1.

and proposed methods. The model assumes that the image
is a mixture of six components intuitively represents air,
patient bed, lungs, fatty-tissues, muscles and bones. The LMM
mixture parameters represents the median value of the mixture
components (µl) is used as the known intensity values for
the iMAP algorithm. The same values with other mixture
parameters are used in the proposed method. The iterative
reconstruction was implemented using 500 iterations and the
central reconstructed slices from different methods are shown
in Fig. 4. The FBP image suffers from strong streak artifacts
which is effectively reduced by using the iMAP and the
proposed methods. However, it is observed that image quality
is improved by using additional spatial information in the
proposed method. As the probabilistic atlas used in this study
is roughly computed, a more sophisticated registration is
expected to contribute to image quality.

IV. CONCLUSION

This paper presents a new image reconstruction algorithm
from small number of projection views. The main contribution
is the use of prior information obtained from probabilistic
atlas. The formulation of image reconstruction cost function
is based on the fact that, in many CT imaging applications,
the attenuation coefficients within the same region (organ) are
almost uniform and can be a priori known within a specific
range that slightly varies based on the imaging application.
Reconstructed volumes are used to formulate a probabilistic
atlas using Laplace mixture model. The model parameters
that represent the prior information were estimated using the
EM algorithm. The proposed method is evaluated using chest
screening CT data set and results indicate that the use of
probabilistic atlas prior is a promising approach to reconstruct
a high quality image from limited views data. The spatial
information provided from a probabilistic atlas contributes to
image quality in this limited data problem. ’
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Coding Ants: Using Ant Colony Optimization 

to Accelerate CT Reconstruction 

Eric Papenhausen, Ziyi Zheng and Klaus Mueller 

 

Abstract –There is no one size fits all solution when it comes to 

CT reconstruction. Many different CT reconstruction algo-

rithms and implementations have been devised in an attempt to 

solve the problem of producing an image under a specific set of 

constraints. One optimal CT reconstruction implementation 

can look very different from another optimal implementation; 

depending on the data, quality, and time constraints. In this 

paper, we present a framework that is able to dynamically 

create and compile new implementations that optimize the 

multiple objectives contained in CT reconstruction. We then 

show the results of this framework when applied to a GPU 

accelerated version of the FDK back-projection algorithm. 

Index Terms—CT reconstruction, GPU, ant colony optimization, 

Filtered backprojection 

I. INTRODUCTION 

Any CT reconstruction algorithm can be identified as a mul-

ti-objective optimization problem. The optimal result will 

provide the highest quality reconstruction in the shortest 

time. Many algorithms have been developed and extended, 

and good parameter settings have been identified to solve 

this problem under specific conditions [1][4][7]. However, 

if the boundary conditions change (i.e. noisier projections, 

different numbers of projections, stricter time constraint, 

anatomy and pathology, etc.), the existing implementation is 

rendered sub-optimal, and in some cases, useless. 

In this paper, we use swarm optimization to determine 

an optimal CT reconstruction implementation for any given 

set of parameters. More specifically, we use the ant colony 

optimization algorithm to find an optimal implementation of 

a GPU accelerated FDK back-projection, described in [5].  

In this paper, we begin in Section II by discussing relat-

ed work. Section III gives a brief description of the ant col-

ony system optimization algorithm. Section IV presents the 

details of the coding ants framework. Section V gives a brief 

description of the graphics hardware used in our experi-

ments and the structure of a CUDA program. Section VI 

presents the results of our experiments. Section VII presents 

future work and Section VIII concludes the paper. 

 

Eric Papenhausen, Ziyi Zheng and Klaus Mueller are with the Computer Science 

Department, Stony Brook University, Stony Brook, NY 11777 USA(e-mail: 

{epapenhausen, zizhen, mueller}@cs.sunysb.edu). 

II. RELATED WORK 

Recent work has focused on finding good algorithmic pa-

rameters for iterative CT reconstruction [9]. Parameter tun-

ing is critical in finding a good balance between image qual-

ity and reconstruction speed. The use of GPUs in accelerat-

ing CT reconstruction has also become very popular in de-

creasing reconstruction time [5][8][10]. However, not all 

GPUs are created equally; and there are many parameters to 

consider when creating a GPU accelerated program. 

Whereas [9] focused on tuning algorithmic parameters, 

we focus on tuning system level parameters. Our optimiza-

tions come from creating a framework that will find an op-

timal implementation by directly manipulating source code. 

The optimal implementation may change across different 

machines and this framework will be able to produce a ma-

chine dependent optimal implementation without direct pro-

grammer intervention. 

 

III. ANT COLONY SYSTEM 

The ant colony system optimization algorithm is a part of 

the family of swarm optimization algorithms. It is a modifi-

cation of the ant system algorithm which was designed to 

mimic the way ants find the shortest path from the ant nest 

to a food source. Initially ants will choose paths randomly. 

Once an ant finds food, it will travel back to the nest and 

emit pheromones so other ants can follow that path to the 

food source. As other ants follow the pheromone trail, they 

emit pheromones as well which reinforces the trail. After 

some time, however, the pheromone trail will evaporate. 

Given multiple paths to a food source, the pheromones on 

the shortest path will have the least amount of time to evap-

orate before being reinforced by another ant. Over time, the 

ants will converge to the shortest path. 

The ant colony system was presented in [2] and was ap-

plied to the traveling salesman problem. It modifies the ant 

system algorithm [3] in several ways to lead to a faster con-

vergence rate. After an ant crosses an edge, the pheromone 

value of that edge is decayed according to equation 1:  
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     (   )            

where τij denotes the pheromone quantity on the edge from 

state i to state j.  The pheromone decay coefficient, φ, de-

termines how much pheromone is decayed after an ant 

choses the edge from i to j.  The initial pheromone value, τ0, 

is the value every edge has at the beginning of the program. 

Equation 1 reduces the probability of multiple ants choosing 

the same path.  

After all ants have chosen a path, the pheromone of each 

edge is updated as follows:  

     (   )             
     

The variable τij has the same meaning as equation 1. The 

variable Δτij
best

 evaluates to the inverse of the length of the 

best path if the edge from i to j was taken by the ant with the 

best path; otherwise it evaluates to zero.  The variable ρ 

represents the evaporation rate. This leads to a pheromone 

increase on the edges taken by the ant that produced the best 

solution; while decaying the pheromones on all other edges. 

When transitioning from one state to another, the edge is 

selected probabilistically according to the following proba-

bility:  

   
   

(   
 )(   

 
)

 (   
 )(   

 
)
 

where τij determines the amount of pheromone on the edge 

from i to j, and ηij defines some predetermined desirability 

of that edge (e.g. the inverse of the edge weight).  The vari-

ables α and β are weighting factors for τij and ηij respective-

ly.  The variable pijk is the probability that an ant will select 

an edge that goes from state i to state j during the k
th

 itera-

tion. 

IV. IMPLEMENTATION 

We use the ant colony system described in the previous sec-

tion to find and create an optimal implementation for a spe-

cific set of constraints. In order to do so we define the struc-

ture of a program as a directed graph with a single source, at 

which every ant will start, and a single sink, where every ant 

will finish. The nodes of the graph correspond to source 

code snippets. A path from source to sink corresponds to a 

candidate implementation that can be compiled and execut-

ed. The output of the candidate implementation can then be 

measured and ranked among the other candidate implemen-

tations to find the ant with the shortest path for that iteration. 

The shortest path can be defined as a function of image 

quality and reconstruction time. 

The graph is constructed by creating a super source file. 

This super source file contains annotated sections of code. 

These annotations specify node id and incoming edges. Fig-

ure 1(a) and 1(b) show the graph and its corresponding su-

per source file. Figure 1(c) and 1(d) show a potential path 

through the graph, and the corresponding candidate imple-

mentation. This super source file is then submitted as input 

to our program, which converts it to its graph representation 

and runs the ant colony system algorithm to produce an op-

timal implementation.  

(b) 

(d) 

Figure 1. An illustration of the framework presented in this paper. (a) a graph representing all possible implementations of a program. (b) the super source 

file represented by the graph in (a). (c) a path is selected through the graph. (d) source code corresponding to the path selected in (c). 

/*#{id=1, path=0}*/ 

 If(A==B) 

/*#{end 1}*/ 

/*#{id=2, path=0}*/ 

 If(A!=B) 

/*#{end 2}*/ 

/*#{id=3, path=1:2}*/ 

 A+=B; 

/*#{end 3} 

/*#{id=4, path=2}*/ 

 A*=B; 

/*#{end 4} 

/*#{id=5, path=3:4, sink)*/ 

 return A; 

/*#{end 5}*/ 

  

         If(A!=B) 

      A+=B; 

 

       return A; 

(a) (c) 

(1) 

(2) 

(3) 
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One aspect of our program differs from the traditional 

ant colony system algorithm. There is no predetermined 

desirability, η. There is no way of determining edge weight 

before running the algorithm. We can still apply the ant col-

ony system algorithm by only considering the pheromone 

value, τ, when looking at an edge. This is equivalent to set-

ting η to one, for all edges. Equation 4 shows how edges are 

selected by ants. Our experiments indicate that this still con-

verges to an optimal solution.  

   
   

(   
 )

 (   
 )

 

Since graphics hardware plays such a prominent role in 

CT reconstruction, our framework provides the option of 

expanding the graph provided in the super source file to 

account for different grid and thread block sizes. This is 

done by copying the code snippets that contain the threads 

unique ID and offsetting the ID by the grid dimension. This 

allows the framework to implicitly increase the workload for 

each thread. Figure 2 shows an example of this. The grid 

and thread block dimensions determine the granularity of 

each thread. The smaller the grid and block size, the more 

work each thread will perform.  

 

 

 

 

 

 

 

 

 

 

Figure 2. Sample code demonstrating how thread granularity can be in-

creased implicitly. (a) Source code representing a thread granularity of one 
(e.g. grid = 16, thread block = 16). (b) Source code representing a thread 

granularity of two (e.g. grid = 8, thread block = 16). 

In this specific example a thread in Figure 2b computes two 

final results and stores them into the respective target loca-

tions in memory.  

V. GRAPHICS HARDWARE 

Modern GPUs follow a “Single Instruction Multiple 

Thread” (SIMT) model of parallel execution. In this model 

of execution, every thread executes the same instruction, but 

over different data. The implementation we attempt to opti-

mize in our experiments use a C-like API called CUDA 

(Compute Unified Device Architecture) to program NVID-

IA GPUs. 

The GPU used in our experiments was the NVIDIA Ge-

Force GTX 480. This graphics card contains 15 streaming 

multiprocessors. Each streaming multiprocessor contains 32 

cores. Theoretical computing power of this graphics card is 

1.3 TFLOPS. Like all NVIDIA graphics cards, this card has 

both on-chip and off-chip memory. Off-chip memory in-

cludes global, texture, and constant memory and typically 

incurs a latency of 400 to 600 clock cycles. On-chip 

memory includes shared memory as well as cache for tex-

ture and constant memory and is much faster than off-chip 

memory. The GTX 480 has a peak memory bandwidth of 

177.4 GB/s for its 1.5 GB DDR5 device memory. 

When accessing global memory, it is critical to perfor-

mance that the access is coalesced. A coalesced memory 

access will allow multiple memory addresses to be returned 

with a single memory access; increasing memory band-

width. A coalesced memory access typically requires every 

thread in a warp to access consecutive memory addresses. 

This constraint is relaxed, however, in devices with compute 

capability of 1.2 and higher. As long as the memory access 

of each thread is within a 32, 64, or 128 byte segment, de-

pending on the data type, a coalesced memory access is per-

formed. 

GPU accelerated applications have a large number of pa-

rameters that can be tuned for optimal performance. Occu-

pancy, thread granularity, and memory bandwidth are all 

examples of the types of parameters that can have a large 

impact on performance. Tuning one parameter too much can 

often lead to a sudden decrease in performance in some oth-

er aspect of the application. This is what is known as a per-

formance cliff. 

VI. EXPERIMENT AND RESULTS 

We used the framework presented in this paper to create an 

optimal GPU accelerated implementation of the FDK back-

projection algorithm described in [4]. This back-projection 

implementation is then tested with the help of the RabbitCT 

framework [6]. We chose to compose the graph out of the 

three major implementations presented in [5]. An ant’s path 

from the source to the sink represents either the first, se-

cond, or third configuration presented in [5], or some com-

bination of the three. In this graph we also added a fourth 

configuration in which two projections are loaded per kernel 

call.  

We ran our framework with 30 ants for 5 iterations. Our 

super source file described a graph that contained 25 nodes. 

This graph, however, is replicated for 16 different grid and 

thread block dimensions; creating a graph that contains 400 

nodes. Table 1 shows a comparison of the timings of the 

FDK implementations that were produced through our 

framework with the results presented in [5] which were ob-

tained by manually optimizing the code.  For the 256
3
 im-

plementation we found a faster implementation. This con-

figuration loads two projections per kernel invocation and 

has a thread granularity of two in the x direction. For the 

512
3
 implementation, our framework produced the same 

code as in [5]. Figure 3 shows a slice of the reconstructed 

volume. The quality of the reconstruction for the implemen-

tations produced by this framework was the same as the 

quality produced in [5]. 

int tid = blockIdx.x * blockDim.x + threadIdx.x; 

. 

<code> 

. 

F_L[tid] = result; 

int tid = blockIdx.x * blockDim.x + threadIdx.x; 

. 

<code> 

. 

F_L[tid] = result; 

. 

<code> 

. 

F_L[(blockIdx.x + 8) * blockDim.x + threadIdx.x] = result; 

(a) 

(b) 

(4) 
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TABLE I 

RUNTIMES OF BEST KNOWN AND FRAMEWORK PRODUCED 

IMPLEMENTATIONS 

Configuration Volume Time (s) 

Framework 2563 2.54 

Best Known 2563 2.71 

Framework 5123 6.07 

Best Known 5123 6.07 

 

 

Figure 3. Slice of the reconstructed image. 

The run time of our framework is dependent on the scale 

of the application it is trying to produce. For each ant, 

source code is generated, compiled, and executed. For the 

experiments that we ran, it took approximately 2 hours for 

all 30 ants to complete 5 iterations. The graph could have 

been pruned, however, by eliminating nodes that correlate to 

configurations that we know have bad performance. In our 

experiments, we included the naïve configuration explained 

in [5], as a possible implementation. By pruning the graph 

of bad implementations, we could reduce the number of 

ants; thus greatly reducing the amount of time required by 

our framework. 

 We wish to add that the code produced by the ant colo-

ny optimization can be re-used for any new CT reconstruc-

tion task with the same boundary conditions the code was 

generated for. Therefore the optimization overhead is well 

amortized.   

VII. FUTURE WORK 

One direction of future work for this framework is to de-

velop a visual interface that is much more user friendly. At 

its current state, this framework requires the input to be an 

annotated source file. As the size of this source file grows, it 

can become difficult to keep track of the graph structure. In 

the future, we would like to develop a visual interface that 

clearly shows the graph. Nodes can be easily added or re-

moved from this graph. Source code can be easily added or 

modified inside a node; and the information that is currently 

stored in the annotations can be abstracted away.  

Another direction of future work, involves using this 

framework to build an all-encompassing CT reconstruction 

builder. This would incorporate different CT reconstruction 

algorithms and implementations. Given a set of parameters, 

this CT reconstruction builder would produce an optimal 

implementation.  

 

VIII. CONCLUSION 

In this paper we presented a novel framework for producing 

an optimal code structure using an ant colony optimization 

algorithm. Through our experiments in applying our frame-

work to the RabbitCT platform, we have discovered a better 

implementation for the 256
3
 volume reconstruction, while 

producing the same results as [5] for the 512
3
 implementa-

tion.  

Although we apply this framework to GPU accelerated 

CT reconstruction, it is in no way restricted to that field of 

study. The graph structure that the framework works off of 

ensures that this framework can be applied to produce an 

optimal implementation of any type of application. 
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An inversion formula for the cone-beam transform
for arbitrary source trajectories

Birsen Yazıcı, Senior Member IEEE, Zhengmin Li and Jed Pack

Abstract—We introduce a forward model for the cone-beam
X-ray Computed Tomography projection data measured in
native geometries as a Fourier Integral Operator and present
a corresponding filtered-backprojection type inversion formula.
Our model and inversion formula can accommodate arbitrary
source trajectories, arbitrary detector plane orientation, detector
surface geometries, and other system related parameters. When
the model parameters are chosen such that the forward model
is equivalent to the cone-beam transform with helical or circular
source trajectory, the inversion formula leads to the well-known
Feldkamp’s method with the one-dimensional filtering in the
tangential direction. In the final version of the manuscript we
will present validation of the inversion formula using the cone-
beam projection data generated using GE’s software package
CatSim.

I. INTRODUCTION

In practice, most of the existing cone-beam reconstruction
methods are designed for the circular and helical source
trajectories. They utilize a standard data acquisition geometry,
in which the detector plane is perpendicular to the central
ray, and parallel to the axial-axis. However, reconstruction
methods for more general source trajectories and detector
plane orientations are desirable in various applications [1]
[2] [3]. In this paper, we introduce a new analytic forward
model for the cone-beam projection data obtained in its native
geometries in the form of a Fourier Integral Operator (FIO).
The model reduces to the standard cone-beam transform when
the amplitude term of the FIO is set to a certain function. We,
next, introduce a filtered-backprojection (FBP) type inversion
method for the new forward model. The model and the
associated inversion method can accommodate arbitrary source
trajectories, detector surface geometry and orientation, and
other system related parameters, such as the physical detector
size and the focal spot size. When the source trajectory is
restricted to a helix and when the detector surface is planar
with the cone axis perpendicular to the detector plane, our in-
version formula reduces to the Feldkamp’s (FDK) formula for
the helical trajectory with one-dimensional tangential filtering.

Our approach has several advantages as compared to the
idealized X-ray transform and associated inversion methods:
1) The new forward model can provide a more realistic
representation of the cone-beam CT projection data than the
idealized X-ray transform. As a result, our inversion method
can provide a better reconstruction method than that of ap-
proximate or exact X-ray transform inversion methods. 2)
Our model and inversion method can accommodate arbitrary
imaging geometries including source trajectory, detector sur-
face geometries and orientations. 3) Our model and inversion

formula are both analytic and can be implemented computa-
tionally efficiently with the computational complexity of fast-
backprojection algorithms [4]. 4) The measurement noise and
a priori object statistics can be incorporated into our model
and reconstruction formula [5]. 5) The point spread function
of our reconstruction formula can be studied by microlocal
analysis.

The paper is organized as follows: In Section II, we intro-
duce the cone-beam transform for arbitrary source trajectories
and briefly describe the general FIO-based model for cone-
beam projection data. In Section III, we present our FBP-type
inversion formula. In Section IV, we show the equivalence
of our inversion formula with the FDK’s method for the
circular source trajectory and comment on the relationship
of our method to other methods. Section IV concludes our
discussion. In the final version of the manuscript, we will
present simulation results using the X-ray CT simulation
package CatSim developed by GE.

II. CONE-BEAM TRANSFORM AS A FOURIER INTEGRAL
OPERATOR IN ITS NATIVE GEOMETRY

We consider the imaging geometry shown in Fig.1. We

Fig. 1: Local coordinate system for the cone-beam projection
measurements for a planar detector geometry. Vectors
d̂1 and d̂2 are parallel to the u1 and u2 axis of the
detector plane, and the vector d̂3 is orthogonal to the
detector plane. d̂3 is the unit vector pointing from the
source location γ(s) to the point whose location is
(0, 0) on the detector plane.

assume a coordinate system where the x−axis is perpendicular
to the axial plane spanned by the unit vectors along x1- and
x2-axes shown in Fig.1. We assume that the detector plane is
perpendicular to the axial plane. Furthermore, we assume that
the horizontal axis of the detector plane remains parallel to
the tangent vector of the source trajectory; and the cone axis
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is perpendicular to the detector plane. These assumptions are
all consistent with the practical X-ray CT systems.

Let γ(s) ∈ R3, s ∈ [s0, s1], be a smooth trajectory for the
X-ray source, and S2 be the unit sphere in R3. Let r̂ ∈ S2 be
the unit vector originating from the source position γ(s). We
define the local coordinate system shown in Fig.1 as follows:

d̂1 = Ĥγ̇(s)

d̂2 = [0, 0, 1]T (1)

d̂3 = d̂2 × d̂1

where H =




1 0 0
0 1 0
0 0 0


.

We assume that the detector array consists of Nr × Nc

detector units. We use the pair [u1, u2] to indicate the detector
position, which are signed distances along d̂1 and d̂2. We
assume that the axis of the cone when the source is at γ(s)
intersects the detector plane at the [u1, u2] = (0, 0) of the
detector plane. Let D be the distance between the source and
the detector plane. Given the source location and the distance
D, [u1, u2] can be determined by the rotation angle s.

The line equation of the X-ray, which goes through x and
projects onto [u1, u2] in the detector plane, can be defined as
the intersection of the following two planes:

u1 = D
(x− γ(s)) · d̂1

(x− γ(s)) · d̂3

(2)

u2 = D
(x− γ(s)) · d̂2

(x− γ(s)) · d̂3

. (3)

Thus, we write the cone-beam transform as follows:

d(u1, u2, s) =
∫

δ(u1 −D
(x− γ(s)) · d̂1

(x− γ(s)) · d̂3

)

δ(u2 −D
(x− γ(s)) · d̂2

(x− γ(s)) · d̂3

)

× D2|x− γ(s)|
((x− γ(s)) · d̂1)3

f(x)dx. (4)

To simplify our notation we define

ρ1(x, s) := D
(x− γ(s)) · d̂1

(x− γ(s)) · d̂3

ρ2(x, s) := D
(x− γ(s)) · d̂2

(x− γ(s)) · d̂3

ρ(x, s) := [ρ1(x, s), ρ2(x, s)]

and

u := [u1, u2]

A(x, s) :=
D2|x− γ(s)|

((x− γ(s)) · d̂1)3
.

We rewrite Eq. (4) as follows:

d(u, s) =
∫

δ(u− ρ(x, s))A(x, s)f(x)dx. (5)

Alternatively, we can express (5) as:

d(u, s) = F [f ](u, s)

:=
1

4π2

∫
eiω·(u−ρ(x,s))A(x, s)f(x)dωdx. (6)

Eq. (6) shows that the cone-beam transform F is an FIO
[6] with its phase term equal to

φ(ω,x,u, s) = ω · (u− ρ(x, s)) (7)

and its amplitude term equal to

A(x, s) =
D2|x− γ(s)|

((x− γ(s)) · d̂1)3
.

Since the critical points of the model in (7) are given by
the line passing through the source and the point [u1, u2] on
the detector plane, we define the general forward model for
the cone-beam projection data by the following model:

d(u, s) = F [f ](u, s)

=
1

4π2

∫
eiω·(u−ρ(x,s))A(ω,x,u, s)f(x)dωdx

(8)

where the amplitude factor A is a slowly decaying function
that depends on the underlying system parameters and geo-
metric correction factors. Note that the amplitude factor in (8)
depends not only on x and s, but also on ω and u.

III. A FBP-TYPE INVERSION OF THE CONE-BEAM
TRANSFORM

We form an image by means of a filtered-backprojection
operator as follows:

I(z) = K[d](z)

=
∫

e−iφ(ω,z,u,s)Q(ω, z, s)d(u, s)dωduds (9)

where I(z) is the reconstructed image, K is the filtered-
backprojection operator, and Q is the filter to be determined
below.

Substituting (6) into (9), we obtain

I(z) = KF [f ](z) =
∫

L(z,x)f(x)dx (10)

where

L(z,x) =
∫

ei(φ(ω,x,u,s)−φ(ω′,z,u,s))A(x, s)

Q(ω′, z, s)dωdω′duds. (11)

Applying the method of stationary phase and evaluating the
du integration above, we obtain

L(z,x) =
∫

eiω·(ρ(x,s)−ρ(z,s))A(x, s)Q(ω, z, s)dωds.

(12)

The kernel L of KF is the point spread function (PSF) of
the imaging operator K. L(z,x) represents the reconstructed
image at pixel z due to a point object located at x.

Let
ϕ(z,x,ω, s) = ω · (ρ(x, s)− ρ(z, s)) . (13)
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The main contributions to L(z,x) come from the critical
points of the phase of KF , satisfying the following conditions:

∂ϕ

∂ω
= 0 ⇒ ρ(x, s) = ρ(z, s) (14)

∂ϕ

∂s
= 0 ⇒ ∂sρ(x, s) = ∂sρ(z, s). (15)

Thus, we recover the singularities of the object at the intersec-
tion of the locus points of the two three-dimensional manifolds
defined above.

Assuming that the only contribution to the pixel at z comes
from x, we approximate ϕ as follows:

ϕ(z,x,ω, s) ≈ (z− x) · ∇ϕ(z,x,ω, s)
= (z− x) · ∇ω · ρ(z, s)|z=x. (16)

Let

ξ = ∇ω · ρ(z, s)|z=x. (17)

We now make the following change of variables:

(ω, s) → ξ

and obtain

I(z) ≈
∫

Ωz

ei(z−x)·ξ | ∂(ω, s)
∂ξ

| A(z, s(ξ))

Q(ω(ξ), z, s(ξ))f(x)dξdx (18)

where |∂(ω,s)
∂ξ | is the determinant of the Jacobian that comes

from the change of variables in (17), and s(ξ) and ω(ξ)
represent s and ω in terms of ξ; and Ωz is the data collection
manifold defined as

Ωz = {ξ = ∇ω ·ρ(x, s)|x=z | |∂(ω, s)
∂ξ

| 6= 0 & A(ω, z) 6= 0}.
(19)

We determine the filter Q so that the kernel L of the PSF
is approximately a Dirac-delta function, i.e.,

L(x, z) ≈ δ(x− z).

We set

Q(ξ, z) =
χΩ

A(s(ξ), z)
| ∂ξ

∂(ω, s)
|, ξ ∈ Ωz (20)

where χΩz is a smooth cut-off function that prevents division
by zero.

With this choice of filtering, the inverse map K reconstructs
the visible singularities of the object not only at the right
location and orientation, but also at the right strength.

The ξ vector is given as follows:

ξ = ∇ω · ρ(x, s)|x=z

=
D

C2
3 (x, s)

ω ·
[

d̂1C3(x, s)− d̂3C1(x, s)
d̂2C3(x, s)− d̂3C2(x, s)

]
(21)

= D{ ω1

C3(x, s)
d̂1 +

ω2

C3(x, s)
d̂2

−[
ω1C1(x, s) + ω2C2(x, s)

C2
3 (x, s)

]d̂3}

where Ci(x, s) = (x − γ(s)) · d̂i, i = 1, 2, 3. Note that
C3(x, s) = 0 corresponds to the case when the cone angle is

90 degrees, which is an unrealistic setting for all practical pur-
poses. The vector ξ can be viewed as the Fourier component
that contributes to the reconstruction of the pixel at z when
the source is at γ(s). The vector ξ and the data collection
manifold Ωz determine the resolution as well as many of the
properties of the reconstructed image. Fig. 2 illustrates the ξ
vector.

Fig. 2: The vector ξ represents the Fourier component con-
tributing to the reconstruction of the object at x.

IV. INVERSION FORMULA FOR THE CIRCULAR SOURCE
TRAJECTORY

In this section, we discuss the equivalence of our inversion
method to the existing approximate methods [7] for the
circular source trajectory.

For the circular trajectory, γ(s) is given as follows:

γ(s) = [Rcos(s), Rsin(s), 0], s ∈ R3, (22)

where R denotes the radius of the circle. Substituting Eq. (22)
and its derivative into Eq. (1), we obtain




d̂1

d̂2

d̂3


 =



−sin(s) cos(s) 0

0 0 1
−cos(s) −sin(s) 0


 .

Thus, for the circular trajectory, the filter in Eq. (20) becomes

Q(ω, z, s) =
DR

C3(z, s)|z− γ(s)| |ω1|. (23)

Substituting Q into Eq. (9), we obtain the FBP-type inversion
formula for the circular source trajectory given as

I(z) =
∫

e
i(ω1D

(z−γ(s))·bd1
(z−γ(s))·bd3

+ω2D
(z−γ(s))·bd2
(z−γ(s))·bd3

)

DR

C2
3 (z, s)|z− γ(s)| |ω1|d̂12(ω1, ω2, s)dsdω1

where

d̂12(ω1, ω2, s) =
∫

d(u1, u2, s)e−i(ω1u1+ω2u2)du1du2 (24)

is the Fourier transform of d(u1, u2, s) with respect to u1,u2

variables.
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We rewrite the original FDK’s formula using the local
coordinate system introduced above and obtain:

I(z) =
∫

ei(ω1u1+ω2u2)
RD2

√
D2 + u2

1 + u2
2[R + z · d̂3]2

d̂12(ω1, ω2, s)|ω1|dω1dω2ds (25)

where u1 and u2 indicate the projection location on the planar
detector plane of the reconstructed point z, which are given
as

u1(z) =
Dz · d̂1

R + z · d̂3

u2(z) =
Dz · d̂2

R + z · d̂3

.

We now compare the weighting factor and the one-
dimensional filter of the FDK’s formula to the filter in our
inversion formula. From the CT scanner geometry, we have

C3(x, s)
D

=
|x− γ(s)|√
D2 + u2

1 + u2
2

(26)

|x− γ(s)| = C3(x, s)
√

D2 + u2
1 + u2

2

D
(27)

C3(x, s) = R + z · d̂3. (28)

Inserting the above three relationships into our filter, we obtain
the familiar weighting factor and the one-dimensional filter in
the FDK’s formula:

Q(ω, z, s) =
D

C3(x, s)|x− γ(s)| |Rω1|

=
D2R

[R + z · d̂3]2
√

D2 + u2
1 + u2

2

|ω1|. (29)

V. SIMULATION STUDY OF THE INVERSION FORMULA

To validate our analytic derivation, we performed the re-
construction of the FORBILD-like thorax phantom using our
formula. The simulation results will be included in the final
manuscript.The number of views per rotation: 984; the number
of detector columns: 888; the detector size: 1 mm×1 mm; the
thickness of each slice in z- direction: 0.625 mm; the distance
from source to detector: 949 mm; and the distance from the
origin to the detector plane: 545 mm.

The reconstructed image size is 512×512, and the pixel size
in each slice is 0.25 mm×0.25 mm.

The reconstructed image is are shown in Fig. 3. The
visual comparison and the comparison of the cross section
of the reconstructed images show that t our inversion formula
produce the acceptable images.

Fig. 3: Left: original center slice. Right :the reconstructed
thorax phantom using our formula

VI. CONCLUSION

We present a new model for the cone-beam projection
data in its native geometries and an FBP-type analytic re-
construction method for the model. Our model and inver-
sion formula can accommodate arbitrary source trajectories,
arbitrary detector orientation, detector surface geometry and
other system related parameters. We showed the equivalency
of our inversion formula to the FDK’s formula for the circular
trajectory both analytically and numerically.

In the final version of the manuscript we will present valida-
tion of the inversion formula using the cone-beam projection
data generated using GE’s software package CatSim.
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First Experimental Results on Long-object Imaging
using a Reverse Helical Trajectory with a C-arm

System
Zhicong Yu, Andreas Maier, Manfred Schönborn, Florian Vogt, Christoph Köhler,

Günter Lauritsch, Joachim Hornegger, and Frédéric Noo

Abstract—3D imaging with C-arm systems has become a
crucial tool in the interventional room. In this work, we present
a methodology and first experimental results for long-object
imaging using a reverse helical trajectory with a modified Artis
zeego system. First the raw data was preprocessed by the
Siemens pipeline, and the scan positions were obtained through
a calibration process. After trajectory registration and fitting,
preprocessed data was rebinned, and image reconstructions were
obtained through the Fusion-RFDK method. The reconstruction
results are encouraging and effectively demonstrate that long-
object imaging using a reverse helical trajectory is feasible in
the interventional room.

I. I NTRODUCTION

3D imaging with C-arm systems has become a crucial
tool in the interventional room. It has allowed significant
improvements in clinical workflow, and it has also enabled new
interventional procedures as well as refinements in existing
procedures. In this work, we seek to further improve the
capabilities of this 3D imaging tool by allowing smooth, long-
object scanning using a reverse helix [1] for data acquisition.
The reverse helix is well-suited for C-arm systems, particularly
since such systems are open and do not include slip-ring
technology.

This work presents a methodology and first experimental
results for long-object imaging using a reverse helical tra-
jectory with multi-turns using a modified Artis zeego sys-
tem (Siemens AG, Healthcare Sector, Forchheim, Germany).
The methodology involved the following five steps: i) a
calibration method [2] to assess the exact geometrical position
of the source and the detector during data acquisition, ii)
the computation of a rigid transformation to register these
positions into a conventional reverse helix geometry, iii) a
geometrical fitting process to find an analytical reverse helix
to match the registered trajectory, iv) a rebinning step to in-
terpolate the measured data into the fitted geometry, and v) an
application of the Fusion-RFDK [3] method for reconstruction

Zhicong Yu and Frederic Noo are with Department of Radiology, University
of Utah, Salt Lake City, UT, USA; Andreas Maier, Manfred Schönborn,
Florian Vogt, Christoph Köhler and Günter Lauritsch are with Siemens AG,
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AG, Healthcare Sector and by the U.S. National Institutes of Health (NIH)
under grant R21 EB009168. The concepts presented in this paper are based
on research and are not commercially available. Its contents are solely the
responsibility of the authors and do not necessarily represent the official views
of the NIH.

Fig. 1. Left: TORSO with SAWBONES spine. Middle: CATPHAN phantom.
Right: Siemens Cone-Beam phantom. The CATPHAN and Siemens CB
phantoms were scanned in-line to simulate a single long object.

from the rebinned data. Using this methodology, we were able
to produce satisfactory reconstructions of two physical objects
that extend over a300 mm long volume. These reconstructions
were obtained from real data collected over five turns.

II. DATA ACQUISITION

A. System configuration and data correction

As a prototype, the reverse helical trajectory was success-
fully implemented on the modified Artis zeego system by
rotating and translating the C-arm gantry around a stationary
patient table. We avoided any table motion because patients
are usually connected to several medical instruments so that
translating them poses health risks. The trajectory achieved
in this experiment consists of five turns, and each turn was
configured with the same angular coverage (240◦ of step-size
0.35◦) and the same axial height (60 mm). This configuration
yielded681 projections per turn, with each projection acquired
on a 300 × 400 mm2 flat-panel detector of binned pixel size
0.308mm×0.308 mm. The detector was set in the landscape
mode (shorter side in the axial direction) so as to maximize
the radius of the field-of-view(FOV) (about130 mm) in the
trans-axial direction. The rotation radius was about785 mm,
and the source-to-detector distance was about1199 mm.

Three phantoms were scanned: the anthropomorphic torso
phantom containing a SAWBONES spine [4], the CAT-
PHAN phantom [5] and the Siemens Cone-Beam (CB) phan-
tom [6] (QRM, Möhrendorf, Germany), as shown in Figure 1.
The torso phantom is of length550 mm, width 400 mm and
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thickness200 mm, andthe inserted spine is of length360 mm
and of diameter180 mm. This phantom was placed parallel
to the patient table so that the entire spine was located within
the FOV. Due to the large transversal size, the torso phantom
suffered from trans-axial data truncation, which was not the
case for the CATPHAN and Siemens CB phantoms, since they
had small enough radii to be wholly contained within the FOV.
On the other side, the CATPHAN and Siemens CB phantoms
are too short to test long-object imaging, and thus they were
scanned in-line so as to define a long object.

Preprocessed projection data was obtained by converting the
photon number to line integrals using the Siemens pipeline, the
major steps of which includedI0 correction for the automatic
exposure control (an analog is reported in [7]), beam-hardening
and scatter correction as described in [8], [9]. As an example,
several preprocessed projections of the torso phantom are
shown in Figure 2.

Fig. 2. Illustration of the preprocessed projections of the torso phantom. Top
to bottom:1st to 5th turn. Polar angle from left to right:0◦, −80◦, −160◦

and−230
◦.

B. Trajectory calibration

Due to the open design, a C-arm system is not capable
of producing a perfect source trajectory. To assess the exact
geometrical positions and detector orientations, a calibration
process is necessary. We have solved this calibration problem
by using the robust technique presented in [2] with a new
calibration phantom that was specifically designed to accom-
modate our long-object imaging needs. This new phantom was
designed as an extension of the206 mm long PDS-2 phantom
(see [10] for an illustration), which consists of 108 beads
of various size arranged on a helix with an8-bit encoding
scheme, so that identification of beads in the projection data
is straightforward. The extended PDS-2 phantom is500 mm

and uses beads arranged with a10-bit encoding scheme; see
Figure 3 (upper left). The calibration process provided the
source positions as well as the detector orientations in a
calibration coordinate system, denoted as(xc, yc, zc), which
was attached to the extended PDS-2 phantom. The calibrated
trajectory is shown in Figure 3. Note that the reverse helix
moves downwards opposite to thezc-axis.
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Fig. 3. Upper left: the500 mm Siemens10 digits PDS-2 calibration phantom.
Upper right: calibrated source trajectory in the same Cartesian coordinate
system as that of the calibration phantom. Lower left: projection of the
calibrated trajectory onto the(xc, yc)-plane. Lower right: projection of the
calibrated trajectory onto the(xc, zc)-plane.

C. Trajectory registration

In practice, it is impossible for the axial direction of the
reverse helix to be parallel to thezc-axis of the calibration
coordinate system, since the latter is specified by a simple
manual placement of the calibration phantom on the patient
table. To make the projection data appropriate for the Fusion-
RFDK method, the reverse helix was first registered. This
registration process transformed the trajectory from the cal-
ibration coordinate system to a Cartesian coordinate system
that was defined with the(x, y, z)-axes such that i) the axial
direction of the reverse helix lies on thez-axis, i.e., the
projections of the vertex points onto the(x, y)-plane form a
curve that is close to a circular arc, ii) the first source position
lies in the(x, z)-plane.

The registered trajectory is shown in Figure 4; note in the
right figure that, instead of the configured uniform axial height
of 60 mm for each helical turn, the axial height of the1st, 3rd
and 5th turns is around66 mm and that of the2nd and4th
is about53 mm. Various reasons could be responsible for this
inconsistency, and they will be analyzed in the future. The
registered trajectory is very close to a conventional reverse
helix, as demonstrated in Figure 5 where the rotation radius,
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Fig. 4. Illustration of the registered trajectory. Left: projection of the
registered trajectory onto the(x, y)-plane. Right: projection of the registered
trajectory onto the(x, z)-plane.

the source-to-detector distance, the rotation angle and thez

coordinate of each source position are displayed. Observe
that the noise of both the scan radius and source-to-detector
distance contains two components, i.e., white noise and low
frequency noise, and we believe the former comes from the
calibration process, whereas the latter stems from the effect of
the gravity.
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Fig. 5. Illustration of the parameters of the registered trajectory. The
horizontal axis indicates the index of the source positions along the reverse
helix. Upper left: rotation radius (mm); upper right: source-to-detector dis-
tance (mm); lower left: rotation angle (degree); lower right:z position (mm).

III. I MAGE RECONSTRUCTION THEORY

To create projection data that is suitable for reconstruction
with the Fusion-RFDK method, we determined an analytically
defined trajectory that fitted the registered trajectory as well as
possible, and created projection data for each source position
along the fitted trajectory through a rebinning process using
data from the registered trajectory.

A. Trajectory fitting

Fusion-RFDK performs reconstructions independently for
each helical turn, and the global results are then obtained
by a fusion process. Therefore, the trajectory fitting was
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Fig. 6. Illustration of the curve fitting for the first sweep of the reverse helix.
Upper: 3D view; lower left: relative angular difference for each pair of source
points from the fitted and registered trajectories; lower right: illustration ofz
positions of both registered and fitted trajectories (mm).

achieved by respectively finding an optimal analytical helix
for each turn with constant step sizes in rotation angles andz

positions. The fitting was such that the total distance between
each pair of source points of the fitted and registered helices
was minimized. The fitted result for the first helical turn is
shown in Figure 6. The top and bottom right figures indicate
good agreements between the fitted and registered trajectories.
However, the relative angular difference between the fitted and
registered trajectories was considerable.

B. Rebinning

To create projection data for the fitted trajectory, a rebin-
ning approach was employed for each source position. Let
L(λk, αk), with λk as the rotation angle, be the divergent
beam pointing from the source pointa(λk) on the fitted reverse
helix in the directionαk; and letm be the middle point of
the two intersections betweenL(λk, αk) and the central FOV
cylinder surface, as shown in Figure 7. Also, letb(γi) and
b(γj), with angular positionsγi andγj , be the two points on
the registered trajectory that were closest toa(λk). Then the
line integral alongL(λk, αk) can be obtained through a linear
interpolation (respect to the rotation angle) between the line
integrals along the lines connectingb(γi) and m, and b(γj)
and m. One rebinned slice is shown in Figure 8, note that
the different orientation of the spine in the rebinned slice is
due to different detector coordinate systems being used for the
registered and fitted trajectories.
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Fig. 7. Projection rebinning scheme. Source pointa(λk) belongs to the fitted
trajectory, andb(γi) andb(γj) are two points on the registered trajectory.

Fig. 8. The50th rebinned projection of the torso phantom from the first
sweep. Left: preprocessed; right: rebinned.

C. Reconstruction

A Fusion-RFDK reconstruction consists of four steps: i) CB
length correction and Parker like weighting; ii) horizontal ramp
filtering; iii) backprojection; iv) fusion. For more details, see
Section III-A in [3]. Based upon those four steps, five volumes
were reconstructed using the rebinned data from each turn of
the fitted reverse helix separately, then all those volumes were
combined by a fusion process.

In practice, two aspects need to be specified. First, we have
to define kink planes, which are through the connecting point
of any two successive helical turns and perpendicular to the
axial axis of the reverse helix. In this work, take the kink plane
of the2nd and3rd helices as an example, thez location of the
kink plane for this portion of the reverse helix was chosen to
be the average of thez positions of the last point of the2nd
turn and the first point of the3rd turn. Other kink planes were
defined in a similar way. Second, the fusion length needs to be
defined. Given the radius of the FOV,r = 130mm, the height
of the detector (inz), 300 mm, and the maximum height of all
fitted sweeps,66 mm, a fusion length of30mm was chosen.

IV. RECONSTRUCTION RESULTS

Reconstructions were obtained for both the torso and the
combined CATPHAN and Siemens CB phantoms with a ham-
ming window in ramp filtering and a fusion length of30 mm.
The accuracy of the results was verified using CT images.
The reconstruction of the torso phantom consists of200 ×
200 × 1021 voxels of size0.7910 mm×0.7910 mm×0.3 mm
as shown in Figure 9. For the CATPHAN and Siemens
CB combined phantom, we performed two reconstructions
of different voxel sizes. The reconstruction for the CAT-
PHAN is composed of478 × 478 × 1021 voxels of
size 0.3770 mm×0.3770 mm×0.3 mm (see Figure 10 (a)
and (b)), whereas the reconstruction for the Siemens CB
phantom consists of512 × 512 × 1021 voxels of size

Fig. 9. Reconstruction results of the torso phantom. Display window:
(−1000,−200) HU. The first and second rows: sagittal view of the results
from Fusion-RFDK and CT, respectively. The third and fourth rows: transver-
sal view of the results from Fusion-RFDK and CT.
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(a) (−500, 500)HU (b) (−500, 2000)HU (c) (−300, 500)HU (d) (−300, 500)HU

Fig. 10. Reconstruction results of the CATPHAN (a, b) and Siemens CB phantoms (c, d). Upper row: C-arm; lower row: CT.

0.3477 mm×0.3477 mm×0.3 mm (see Figure 10 (c) and (d)).
Note that the voxel sizes used for Fusion-RFDK were matched
with that of the CT images, and the attenuation coefficients
were brought to the same level for both modalities using a
linear mapping. It is also necessary to point out that the x-ray
beam energy for the C-arm scans was85kVp, whereas the
energy for the CT scans was120kVp.

Figures 9 and 10 indicate good agreement between our
reconstuction results and the CT images. Be aware that the
images from the two modalities are not registered to the same
coordinate system. As preliminary results, the reconstruction
images from all three phantoms are largely encouraging.

V. SUMMARY AND OUTLOOOK

We have demonstrated that long-object imaging using a
reverse helical trajectory in the interventional room is feasible
using a C-arm system with large motion flexibility such as
the Artis zeego system. To process the real data, the cali-
brated trajectory was first registered to the(x, y, z)-coordinate
system, and then an analytical trajectory was found to fit
the registered trajectory and its projections were obtained
through a rebinning process. Reconstruction results of the
torso, CATPHAN and Siemens CB phantoms from the Fusion-
RFDK method are encouraging. Note that the modified Artis
zeego system is capable of producing a reverse helix consisting
of more than five turns, and thus a longer volume is possible.

As mentioned in III-A, the relative angular difference be-
tween the fitted and registered trajectories was considerable,
and this could yield innegligible resolution loss in the data
rebinning step. An alternative approach would be to modify

Fusion-RFDK to allow direct usage of the preprocessed reg-
istered data for reconstruction. A comparison between this
method and the one in this work is the topic of future
investigations.
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Cone Beam X-Ray Luminescence Computed
Tomography: A Preliminary Experimental Study

Shouping Zhu, Dongmei Chen, Huangjian Yi, Xianghan Zhang, Jimin Liang and Jie Tian*

Abstract—The appearance of X-ray luminescence computed
tomography (XLCT) opens new possibilities to perform molec-
ular imaging by X-ray. In this paper, we propose a new cone
beam XLCT method. Compared with the previous narrow beam
XLCT, the cone beam XLCT can more fully utilize the X-ray
dose and the scanning time will be shorten significantly. Photons
scattering in biological tissue makes it an ill-posed problem
to reconstruct the 3D distribution of the X-ray luminescent
materials in cone beam XLCT. In order to overcome this issue, we
use diffusion approximation (DA) model to describe the photons
propagation in tissue, employ the sparse regularization method
for reconstruction and utilize permissible source region strategy
as a priori knowledge to ensure the uniqueness and stability of the
reconstruction result. Phantom experiments have demonstrated
the validity of the new cone beam XLCT method.

I. INTRODUCTION

As the first trans-axial tomography model, X-ray computed
tomography (CT) has revolutionized radiographic imaging and
promoted the development of other tomographic modalities
since its introduction in 1970s [1]. However, the contrast
mechanism of all the mainstream X-ray CT imaging has been
attenuation based, and its use in molecular imaging remains
limited due to lack of high sensitive X-ray molecular agents
[2].

Based on nanophosphors or other similar materials, X-ray
luminescence imaging opens new possibilities for the use of
X-ray imaging in molecular tracers in vivo. When excited
with X-rays, some materials produce visible or near infrared
(NIR) luminescence which can be measured by sensitive photo
detectors [3]. Nanophosphors are able to target with biological
processes specifically. Therefore, such materials can be used
as molecular imaging agents during X-ray imaging. Compared
with optical methods, the use of X-ray excitation eliminates
the autofluorescence in optical fluorescence imaging.

Recently a novel molecular imaging modality, X-ray lu-
minescence computed tomography (XLCT) was proposed
[4][5][6][7]. In such a modality, a selective excitation strategy
has been utilized. The sample is irradiated by a sequence of
narrow X-ray beams, and the X-ray luminescence is measured
by a high sensitive charge coupled device (CCD) camera.
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No matter where the photons are detected, it is known that
those photons were emitted from somewhere on the path of
the X-ray beam. Regarded the CCD camera as a “single-
pixel detector”, a projection sinogram of XLCT is formed
by summing all the pixels together [4]. Reconstructed images
can be obtained by back-projecting the sinogram along the
X-ray beam path, as the conventional CT dose. Since the
projection number is relative small in XLCT imaging, iterative
reconstruction strategy has been adopted for reconstruction. In
such scheme, the reconstruction results are not affected by the
scatting of photons, and the spatial resolution is determined
by the beam size and sampling [4].

As it utilizes a narrow beam, the scanning of XLCT is very
similar to the first generation of CT scanners, which use a
pencil beam and work in a translation-rotation mode. This
results in a long sampling time. In addition, restricting the
X-ray to a narrow beam means most of the X-ray photons
have been wasted during scanning. In order to overcome these
drawbacks, we propose a cone beam luminescence computed
tomography strategy, in which cone beam X-ray is adopted to
illuminate samples and a high sensitive CCD camera is utilized
to acquire luminescent photons emitted from the samples.
Compared with the above narrow beam XLCT, cone beam
XLCT can fully utilize the X-ray dose and the scanning time
will be shorten significantly. However, the scattering of the
luminescent photos will play an important role during imaging,
as is done in bioluminescence tomography (BLT) [8] and
fluorescence molecular tomography (FMT) [9]. In this case,
we employ diffusion approximation (DA) model to describe
the photons propagation in tissue, and the sparse regularization
is adopted to reconstruct the luminescent materials. Permis-
sible source region strategy is adopted to provide a priori
knowledge for the uniqueness and stability of reconstruction
results [10][11].

The paper is organized as follows. The next section presents
our experimental setup, cone beam XLCT imaging model and
reconstruction method. Phantom experiments and results are
shown in Section III to demonstrate the feasibility of the cone
beam XLCT modality. Finally, we conclude the paper and
discuss relevant issues in Section IV.

II. METHODS

A. Experimental Setup

The prototype cone beam XLCT system was built based on
a micro-CT system in our lab. Fig. 1 shows the photograph of
the experimental setup, which consists of a microfocus X-ray
source (Apogee, Oxford Instruments, USA), a X-ray flat panel
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Fig. 1. Photograph of the experimental setup including the CCD camera,
the X-ray source and detector, and the rotation stage.

detector (C7921CA-02, Hamamatsu, Japan), a motorized rota-
tion stage, and a liquid-cooled backilluminated CCD camera
(PIXIS 2048B, Princeton Instruments, USA) with a focus lens
(Micro-Nikkor 55mm f/2.8, Nikon, Japan). A lead-made X-ray
shield is used to to protect the CCD chip from X-ray directly
irradiation.

This system can perform not only cone beam XLCT imag-
ing, but also conventional cone beam micro-CT imaging. Fix
the sample on the rotation stage, and irradiate it by the X-
ray source. If we want to carry out XLCT experiment, we
can collect the emitted luminescence by the CCD camera. If
using the X-ray flat panel detector to collect the transmitted X-
rays, X-ray CT projections will be obtained by the system. An
ideal case is to perform both XLCT and conventional micro-
CT imaging simultaneously. However, limited by the hardware
performances, we have to carry out XLCT and micro-CT
imaging sequentially using the current system. How to perform
these two modalities simultaneously will be studied in future.

B. Imaging Model

The light transport in the biological soft tissue can be
accurately modeled by the radiative transfer equation (RTE).
For the highly scattering and weakly absorbing properties of
the soft tissue in the NIR spectral region, RTE is usually
replaced by diffusion approximation. Considering the X-rays
propagation in tissue, the imaging model can be expressed as

S(r) = εI(r)ρ(r), (1)

−∇ · [D(r)∇Φ(r)] + µa(r)Φ(r) = S(r), r ∈ Ω (2)

where r is the position vector and Ω is the domain under con-
sideration. D(r) = (3(µa(r)+(1−g)µs(r)))−1 is the diffusion
coefficient with µa(r) as the absorption coefficient, g as the
anisotropy parameter and µs(r) as the scattering coefficient.
Φ(r) is the photon flux density and S(r) is the source. I(r)
is the X-ray intensity, and ρ(r) is the nanophosphor density

Fig. 2. Schematic diagram of X-ray propagation in tissue.

at position r. ε is the light yield. Assuming no photon travels
across the boundary ∂Ω into the tissue domain Ω, then the
Robin boundary can be constrained DA as

Φ(r) + 2κ(r, n, n′)D(r)[v(r) · ∇Φ(r)] = 0, r ∈ ∂Ω (3)

where v(r) is the outward unit normal vector on ∂Ω, and
κ(r, n, n′) is the boundary mismatch factor, which depends
on the refractive indices n within Ω and n′ in the surrounding
medium. The measured photon flux on the surface of the object
is expressed as

Φ(r) = −D(r)[v(r) · ∇Φ(r)], r ∈ ∂Ω. (4)

In our imaging model, we assume that the X-rays propagate
along a straight line in tissue, as shown in Fig. 2, then the X-
ray intensity distribution I(r) is expressed as follows

I(r) = I0 exp{−
∫ r

r0
µt(τ )dτ}, (5)

where I0 is the X-ray source intensity, and µt(r) is the X-ray
attenuation coefficient at position r. A more complex X-ray
transport model, which has considered the X-rays scattering
effect, can be found in [12].

C. Reconstruction

The diffusion equation (2) and its boundary condition (3)
can be formulated into a matrix equation using the finite
element method as follows [12]

M ·Φ = F · ρ. (6)

Since the matrix M above is positive definited, we have

Φ = (M−1F) · ρ = A · ρ, (7)

which is a linear relationship between the nanophosphor
distribution and the NIR measurement. The reconstruction
of the luminescence source is to recover the nanophosphor
density ρ from the measured photon flux density Φ on ∂Ω.
Since the ill-poseness of the problem and the measured data
on the surface are usually noisy, it is impractical to solve
for ρ directly in (7). In most biological applications, the
nanoparticles are sparsely distributed in the tissue, hence
the sparse regularization method can be employed to find
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Fig. 3. Experimental phantom. (a) The homogeneous physical phantom; (b)
The 3D view of the single fluorescent target in the cubic phantom; (c) The
x-y view on the z=10mm plane, where the black dots represent the excitation
point source positions. Four degrees show the direction of the CCD camera
during data acquisition.

Fig. 4. Surface images acquired by CCD camera from four views. (a) front
view; (b) right view; (c) back view; (d) left view.

a regularized solution by minimizing the following object
function

min{∥Aρ−Φ∥22 + λ∥ρ∥1}, (8)

where λ is the regularization parameter. Here we solve this
minimization problem by primal-dual interior-point method
[13]. In order to ensure the uniqueness of the reconstruction
result, permissible source region strategy is also adopted in
reconstruction [11].

III. EXPERIMENTS AND RESULTS

In the experiments, an europium (III) oxide (Eu2O3) pre-
cursor was used as a luminescence activator. As [3] reported,
Eu3+ emission peaks were at 597 nm, 615 nm, and 692
nm due to the 5D0 → 7F1, 5D0 → 7F2, and 5D0 → 7F4

transitions under X-ray irradiation, respectively. We used a
polyoxymethylene made cubic phantom with a length of 20

Fig. 5. Micro-CT reconstruction result of the phantom.

Fig. 6. Surface flux density distribution of the phantom.

mm to mimic biological tissue, as shown in Fig. 3(a). The
optical parameters of this phantom is µa = 0.0025mm−1 and
µs = 11.15mm−1. A glass capillary with a 1 mm radius
was embedded in the phantom, which was used to contain
X-ray luminescent materials. The center of the materials in
the capillary was (13.05 mm, 8.25 mm, 10.15 mm) with a
2 mm height, as shown in Fig. 3(b). The X-ray luminescent
materials were excited by X-ray source from four different
directions with 90◦ intervals and the luminescent photons
emitted from the phantom were acquired by the CCD camera.
In the experiment, the voltage of X-ray source was set to
50 kVp, and the current was 1.0 mA. The CCD camera
was cooled to −70◦C to reduce the effect of the electronic
noises, and 4× 4 binning operation was employed to improve
signal noise ratio (SNR). The image acquisition system was
enclosed in a light-tight environment to avoid outside light
effect. Fig. 4 shows fours views luminescence images with the
exposure time 60 seconds and lens numerical aperture NA =
2.8. The micro-CT scanning was also performed (50 kVp, 1.0
mA, 360 views with 1◦ intervals) in the experiment to to get
the attenuation coefficient. The CT result was reconstructed
by filter backprojection (FBP) method [14]. Fig. 5 shows a
longitudinal view of the result, in which the bright parts denote
the luminescent materials.

In the inverse reconstruction, the cubic phantom was dis-
cretized into 24576 tetrahedral-elements and 4913 nodes. Fig.
6 shows the surface flux density distribution of the phantom,
which was mapping from the acquired four images shown in
Fig. 4. From the measured data, the distribution of luminescent
materials can be reconstructed by the method described in the
last section. In the reconstruction, permissible source region
was set to {(x, y, z)|12mm ≤ x ≤ 15mm, 5mm ≤ y ≤
10mm, 8mm ≤ z ≤ 13mm, (x, y, z) ∈ ∂Ω}.

The final results are shown in Figs. 7(a) and (b) with the
maximum reconstructed value at (12.50 mm, 10.00 mm, 10.00
mm) and location error 1.84 mm. Fig. 7(a) is the perpendicular
cross sections of the reconstruction. Fig. 7(b) is the transverse
view of the reconstruction at the z = 10 mm plane, and the
black circle represents the real position of the luminescent
materials.From this results we can see 3D reconstruction the
X-ray luminescent materials distribution by cone beam XLCT
strategy is feasible.
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Fig. 7. X-ray luminescence reconstruction results.

IV. CONCLUSION AND DISCUSSION

In view of the drawbacks of the previous narrow beam
XLCT imaging and the development of the optical 3D re-
construction of BLT and FMT, we propose a new cone
beam XLCT method in this paper, which can improve the
efficiency of X-rays utilization and reduce the scanning time
significantly. In our method, we use diffusion approximation
model to describe the photos propagation in tissue, and em-
ploy the sparse regularization method for reconstruction. The
permissible source region strategy, which is widely used in
BLT reconstruction [11], is also used as a priori knowledge
to ensure the uniqueness and stability of the reconstruction
result. The validity of the method has been demonstrated by
phantom experiments.

Due to the photons scattering in biological tissue, the spatial
resolution of cone beam XLCT is lower than narrow beam
XLCT, in which the spatial resolution is determined by the
beam width and sampling. As the 3D reconstruction of cone
beam XLCT is very similar to BLT and FMT, we believe that
the spatial resolution which can be achieved by cone beam
XLCT should be in the same level as BLT and FMT do, on
the millimetre or sub-millimetre level as reported [9][11]. The
experiment results in our paper has proved this point. Other
imaging strategies, such as adding scanning angles, multi-
spectrum measurement, can be used to improve our spatial
resolution further. In our XLCT imaging, only four angles
cone beam scanning were used, and the exposure time for
each angle was 60 seconds. For the previous narrow beam
XLCT, for example, a phantom scanning needs to translate 26
times and rotate 24 times with 1 second exposure [4]. The
small exposure time in their experiment is caused by the use
of a large X-ray tube current (30 mA). In contrast, X-ray tube
current in our experiment is only 1.0 mA. Nonetheless, our
scanning time is still much shorter than the narrow beam
XLCT strategy. The improvement in scanning speed will
contribute to the practice application of the XLCT technique.

In summary, we propose a novel cone beam XLCT method
and demonstrate the preliminary experimental results in this
paper. The results are valuable to design and implement a cone
beam XLCT system for small animals imaging, which will be
studied in future.
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Abstract—Due to the phase shift x-rays undergo while passing 

through matter, a minute angular refraction occurs. This process 
offers two new contrast modalities in addition to the classical 
absorption contrast: Differential Phase-Contrast Imaging (DPC) 
and Dark Field Imaging (DFI). We developed a compact in-vivo 
CT system with a rotating gantry that relies on Talbot-Lau 
interferometry to extract the three imaging contrasts during a 
single scan. 

Scans of biological samples have demonstrated that phase-
contrast and dark-field contrast x-ray tomography is possible in 
a system with a rotating gantry. The images displayed an 
improved or complementary soft-tissue contrast.   

I. INTRODUCTION 

Standard attenuation-based x-ray imaging of biological 
samples often yields poor soft-tissue contrast. The wave-like 
character of x-rays can be exploited to generate other forms of 
imaging contrast besides the usual absorption contrast. The 
interaction of x-rays with an object is determined by the 
complex index of refraction n(λ) of the material constituting 
the object: 
 

𝑛(𝜆) = 1 − 𝛿(𝜆) + 𝑖𝛽(𝜆)       (1) 
with 

𝛽 = !!!!(!,!)
!!

          (2) 

𝛿 = !!  !(!,!)
!

          (3) 
 
where ρa is the atomic number density, σa is the absorption 
cross-section, p is the phase-shift cross-section and k=2π/λ is 
the magnitude of the wave vector of the incoming x-rays.  The 
imaginary part β is related to the transmission T(x) of x-rays 
through a sample: 
 

𝑇 𝑥 = 𝑒!
!!
! ! !,! !"!

! = 𝑒! ! !,! !"!
!     (4) 

 
where L is the path length through the sample. The real term δ 
relates to the phase-shift Φ(x) the x-rays undergo when 
passing through the material :  
 

Φ 𝑥 = !!
!

𝛿 𝑥, 𝑦 𝑑𝑦!
!         (5) 

 
The impact of the phase shift presents itself as a very small 
angular refraction α of the x-rays: 
 

𝛼 𝑥 = !
!!

!!(!)
!"

          (6) 
 
Combining (5) and (6) yields 
 

𝛼 𝑥 = !"(!,!)
!"

𝑑𝑦!
!          (7) 

 
In addition to absorption and phase shifting, x-rays can also 
undergo small angle scattering and multiple refraction.  In [1] 
it was proposed to describe these processes using a linear 
diffusion coefficient ε. 

II. PRINCIPLE OF GRATING BASED PHASE CONTRAST 
EXTRACTION 

One way of detecting the deflection caused by the phase shift 
is with the aid of a grating interferometer implemented 
according to the scheme described in [2,3,4] (fig 1).   
 

 
 

Figure 1: Scheme of the Talbot-Lau grating interferometer 
 
The set-up consists of three gratings: a source grating G0, a 
phase grating G1 and an analyzer grating G2. When no object 
is in the x-ray beam, an enlarged image of the G1 grating will 
appear at certain distances (Talbot effect). When an x-ray 
detector is placed at a position where the self-images emerge, 
it is usually not possible to image this intensity pattern directly 
because the pitch in the grid image is much smaller than the 
detector pixel size.  To overcome this problem, an absorbing 
analyzer grating is added with the same pitch as the G1 grating 
self-image.  The intensity distribution generated by a Gaussian 
x-ray spot and the combined effect of the G1 and G2 grating 
can be approximated by a sinusoidal function [3]: 
 

𝐼!!,!! 𝑥! ≅ 𝐴! 𝑝! , 𝑝! + 𝐴! 𝑝! , 𝑝! 𝑐𝑜𝑠 !!!!
!!

+ 𝜙 𝑝! , 𝑝!  

(8) 
 

where Ipx,py(xg) is the intensity measured in pixel (px,py) when 
the analyzer grating is at position xg and g2 is the pitch of the 
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analyzer grating (fig. 2a).  When the analyzer grating is moved 
in small steps over a distance of one period g2 (i.e. phase 
stepping) and the intensity Ipx,py(xg) is measured, the three 
unknown parameters A0(px,py), A1(px,py) and φ(px,py)  in eq. 8 
can be determined.  The value of A0(px,py) relates to the 
classical x-ray absorption, φ(px,py) relates to the x-ray phase 
shift and the amplitude A1(px,py) conveys information about 
the small angle scattering.  The latter is usually called the dark 
field signal. 

 

 
 

Figure 2: (a) The combination of a phase grating and analyzer grating 
generates a sinusoidal intensity pattern at specific Talbot distances.  The 
mean, amplitude and phase can be measured by moving the analyzer grating 
over small steps over a distance g2. (b) Introducing an object in the x-ray beam 
creates an x-ray phase shift, resulting in a small deflection α of the x-rays that 
can be quantified by measuring the local phase shift in the sinusoidal intensity 
signal. 
 
These are easily obtained by computing the first two 
components of the discrete Fourier transform of the measured 
data Ipx,py. 
When an object is inserted in the FOV, the x-rays passing 
through the object can undergo absorption, phase shifting and   
small angle scattering.  The refraction angle α of the x-rays 
due to the phase shift they undergo results in a lateral shift of 
the interference pattern (fig 2b).  This lateral shift S is 
observed as a phase shift of the sinusoidal signal obtained 
after a phase stepping procedure: 
 

𝛼 𝑝! , 𝑝! = ! !!,!!
!

= ! !!,!! !!!! !!,!!
!

!!
!!

   (13) 
 
where d is the distance between the G1 and G2 grating and the 
index FF stands for flat-field, i.e. signals measured without an 
object in x-ray beam. 
Small angle scattering and multiple refractions reduce the dark 
field contrast.  The dark field contrast is usually quantified as 
the ratio A1(px,py)/ A0(px,py) and normalized such that the dark 
field contrast in the flat field is 100%.  The relation between 

the dark field contrast V(x) and the linear diffusion coefficient 
is given by [1] 
 

𝑉 𝑥 = 𝑒!
!!!!!
!!

!(!,!)!"!
!       (14) 

 
The projections along an x-ray path of the physical parameters 
responsible for x-ray attenuation, phase shift and small angle 
scattering ε(x,y) are then given by 
 

!!
!
𝛽 𝑥, 𝑦 𝑑𝑦!

! = −log   !! !!,!!
!!!! !!,!!

    (15) 
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 (17) 
 
3D distributions of the absorption coefficients and dark-field 
contrast component can be obtained from resp. eq. 15 and eq. 
17 using the standard Feldkamp reconstruction.  To create a 
3D phase contrast image, the Feldkamp algorithm needs to be 
modified because eq. 16 only yields the projection of the 
derivative of the x-ray phase shift and not the projection of the 
phase shift itself.   This problem can be solved by replacing 
the standard ramp filter with a complex filter h(ν) in the FBP 
reconstruction algorithm [5]: 
 

ℎ 𝜈 =
!
!!"

𝑠𝑔𝑛 𝜈      𝜈 ≤ 𝜐!"#$%&'
0                                           𝜈 > 𝜐!"#$%&'

    (18) 

III. PROTOTYPE SYSTEM 
To study the feasibility of grating interferometry as a means 

of phase shift detection in a small animal in-vivo CT system 
with a rotating gantry, a prototype was built (fig. 3). The 
grating design and their relative positions depend on the mean 
energy of the x-rays. All parameters in our prototype were 
chosen for a design energy of 23 keV [6]. The gratings were 
produced in the LIGA process involving x-ray lithography and 
electroplating. 

The G0 grating consists of 35 µm high Au structures with a 
period of 10.0 µm and is positioned close to the x-ray source  
(RTW, tungsten target, 20-50 kVp, 50 W) to create an array of 
individually coherent cone-beam x-ray sources.  This 
eliminates the need for a micro focus x-ray source.  

The phase grating G1 is made from 4 µm thick Ni structures 
(3.24 µm period) that introduce a phase of π/2 for the x-rays 
passing through them. It is placed 50 mm behind the sample 
stage.   

Finally, the analyzer grating G2 with 25 µm high Au 
structures (period 4.80 µm) is mounted just in front of the 
camera, which is placed at the first Talbot distance. The x-rays 
are detected by a 5 mega-pixel Hamamatsu flat panel device 
(50 µm pixel size). 

The total length of the interferometer is 47 cm and the 
scanner is operated at an x-ray energy of 50 kVp.  The bed of 
the scanner is optimized for mice, with a gantry opening of 70 
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mm. The FOV of 40 mm x 15 mm results in a reconstructed 
volume of 40×40×15 mm3 with an image voxel size of 
30×30×30 µm3. 

 In theory each of the three gratings can be used for the 
phase stepping.  In the prototype the G0 grating was used 
because it has the largest pitch and hence requires the lowest 
accuracy on the stepping movement.  

A shutter was installed in front of the x-ray source. It only 
opens when the camera is actually acquiring images.  During 
all other times (e.g. moving the gratings, rotating the gantry, 
moving the animal in and out for flat-field measurement) it 
shields the animal from the x-ray source.   

 

  
 

Figure 3: Phase contrast CT imaging prototype 

IV. PHASE STABILITY  
Minute changes in the gratings during a scan (e.g. due to 
temperature changes, mechanical vibrations, gravity) cause the 
obtained value of the signal phase φ(px,py) in each pixel to 
drift. This results in a wrong estimate of the differential x-ray 
phase shift 𝜕Φ 𝑝! , 𝑝! 𝜕𝑥 introduced by the object.    
The blue curve in fig. 4 shows the signal phase drift in a small 
air-filled ROI during a rotation over 360o. Ideally it should 
remain constant. Because the signal phase shift drifts smoothly 
as a function of the gantry position, it can be compensated by 
acquiring additional phase flat-fields during the scan. For each 
acquired projection, the flat-fields used in eq. 15-17 were 
interpolated from two flat-field images measured at projection 
angles closest to the projection angle of the projection being 
processed. It was found that the drift was mainly due to 
movement of the G1 grating during gantry rotation.  To 
stabilize the G1 grating, positioning mechanics were preloaded 
by a spring to keep its position and all alignment drives use 
backlash-free motor gear head assemblies.  The red curve in 
figure 4 shows the signal phase drift during a rotation over 
360o after the change.  The maximum drift difference has been 
reduced from about 14π  to 4π.  This reduced drift results in 
fewer flat-fields that need to be acquired during the scan. 
The signal phase also drifts as a function of temperature.  
After the initial warm-up period of the x-ray source, the phase 
fluctuations over a 48-hour period were less then ± 0.5 
radians. 

V. DATA PREPROCESSING 
Once the flat-field corrected signal phase shifts have been 
computed for each pixel, they should be identical when no 
object is in the FOV.  However, a 2D phase ramp was 
observed in the signal phase image (fig. 5).  To remove this 
phase ramp when an object is present, a signal phase gradient 
in the x and y direction was computed from the signal phase in 
“air filled” pixels at the edges of the FOV. The interpolated 
values along the inclined 2D signal phase plane were then 
subtracted from the differential phase projection image.  
Next, the phase of “air filled” pixels is set to zero.  This is 
accomplished by looking for an “air filled” ROI at the edge of 
the FOV in the phase ramp corrected image and subtracting 
the average phase in that ROI from the differential phase in 
each of the pixels. 
Finally the projection of the differential x-ray phase shift is 
computed for each pixel using eq. 16. 
 

	  
 
Fig. 4: Drift of the differential phase during a 360o rotation, without (blue 
curve) and with (red curve) G1 grating stabilization. 
 

 
 
Fig. 5: After subtracting the phase reference of each pixel, a 2D phase ramp 
remains in the image.  

VI. QUALITY OF THE INTERFEROMETER 
The quality of the interferometer is evaluated by the visibility 
of the interference pattern: 
 

𝑄!"# =
!!"#!!!"#
!  !!"#$

= !!!!

!!!!
      (19) 
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This number should be as high as possible.  It depends on a 
number of instrumental parameters such as the grating quality, 
grating alignment and monochromaticity of the x-ray beam.  
Table I shows the visibility that could be achieved at different 
x-ray tube voltages.  The visibility is highest at 30 kVp and 
decreases for high x-ray tube voltages.  This is due to the fact 
that the gratings and the interferometer were designed for a 
mean energy of 23 keV. In addition, the absorption gratings 
become more transparent with increasing energy.  This also 
lowers Qvis. 
  The last column in table I shows the mean energy for each of 
the x-ray tube settings used.  At 30 kVp the mean energy is 
close to the design energy but at 50 kVp the mean energy is 
already 30% higher than the design energy.  This has a clear 
impact on the quality of the interference pattern and is 
reflected by a much lower visibility. 
 
Table I: Visibility and mean x-ray beam energy as a function of the x-ray tube 

voltage 
X-ray tube 

voltage (kVp) 
Qvis (%) Mean X-ray 

energy (keV) 
30 24.8 24.2 
35 18.9 26.0 
40 14.8 27.9 
45 12.7 29.0 
50 10.1 30.2 

 

VII. EXAMPLE IMAGES 
Figure 6 shows one slice of the reconstructed volume of the 
absorption image (left), phase image (middle) and dark field 
image (right) of a gold fish in ethanol.  The images where 
taken at 40 kVp with projections taken every 0.7o. At each 
projection angle, six G0 grating positions were used.  
Intermediate flat-field were acquired every 20 projections. The 
dark field image tends to enhance the edges and sometimes 
shows very small structure that have a low or no contrast in 
the absorption image.  The phase image on the other hand 
improves the contrast in some soft tissue.  This can be seen in 
the area indicated by the green square.  Figure 7 shows an 
enlarged image of this ROI.  The phase contrast image shows 
some additional soft tissue towards the middle of the image.  
This tissue is barely visible in the attenuation image. 
Figure 8 shows 3D rendered images of a spider. The left 
image is the classical absorption image. The middle image 
shows a color-coded representation of the phase shift 
introduced by the spider.  The dark field image on the right 
clearly shows the very thin leg structures that are barely 
visible in the absorption image. 

VIII. CONCLUSION AND FUTURE WORK 
We have built an in-vivo CT system that allows acquiring 
absorption images, phase contrast images and dark field 
images in a single scan. The first reconstruction results from 
this prototype show that a combination of mechanical 
stabilization and data pre-correction makes it possible to 
obtain good phase contrast and dark-field images.   

We are looking into ways to increase the sensitivity such as 
thinning the grating support structure (less absorption).  This 
will help to keep the animal dose to an acceptable level and 
reduce the total scan time. 
Using higher grating structures in G0 and G2 will allow us to 
work at higher x-ray tube voltages while maintaining 
sufficient absorption power.   This will move the mean x-ray 
beam energy closer to the design energy of the gratings and 
consequently improve the visibility of the interference 
patterns. 
 

 
 

Fig. 6: Virtual slices through the reconstructed absorption image (left), phase 
image (middle) and dark field image (right) of a gold fish. 

 

 
 

 Fig. 7: Three orthogonal slices in the green box drawn on the absorption 
image and phase image of the gold fish. 
 

 
Fig. 8: 3D rendering of the reconstructed absorption image (left), color-coded 
phase contrast image (middle) and dark field image (left) of a spider. 
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Improved ordered subsets algorithm

for 3D X-ray CT image reconstruction
Donghwan Kim, Debashish Pal, Jean-Baptiste Thibault, and Jeffrey A. Fessler

Abstract—Statistical image reconstruction methods improve
image quality in X-ray CT, but long compute times are a
drawback. Ordered subsets (OS) algorithms can accelerate con-
vergence in the early iterations (by a factor of about the number
of subsets) provided suitable “subset balance” conditions hold.
OS algorithms are most effective when a properly scaled gradient
of each subset data-fit term can approximate the gradient of the
full data-fidelity term. Unfortunately, this property can fail in
the slices outside a region-of-interest (ROI) of 3D CT geometries
where sampling becomes limited, particularly for large numbers
of subsets, leading to undesirable results. This paper describes a
new approach to scaling the subset gradient for a regularized OS
algorithm so that it better approximates the full gradient outside
the ROI. We demonstrate that the new scaling factors improve
stability and image quality in helical CT geometry, even for a
very large number of subsets.

I. INTRODUCTION

Statistical image reconstruction methods can improve res-

olution and reduce noise and artifacts by minimizing a cost

function that models the physics and statistics in X-ray CT

[1]. The primary drawback of these methods is their computa-

tionally expensive iterative algorithms. Ordered subsets (OS)

algorithms group the projection data into (ordered) subsets and

update the image each sub-iteration using one forward and

back projection of just one subset [2], [3]. OS methods can

accelerate convergence (by a factor of about L, the number

of subsets) in the early iterations, so it is desirable to use

many subsets1. OS methods are most effective when suitable

“subset balance” conditions hold. Unfortunately, the “long

object problem” in CT hampers subset balance, particularly for

large L. This paper describes a new approach that improves

OS methods for helical CT with large L (many subsets).

In CT, the user defines a target region-of-interest (ROI)

for reconstruction. Iterative reconstruction algorithms must

estimate more voxels than the ROI to model the measured data

completely. In particular, in helical CT, extra slices are needed

at each end of the volume (expanding the z dimension) due

to the “long-object problem” [5]. Estimating correctly these

slices outside the ROI is important as they may impact the

estimation of voxels inside the ROI. In helical CT, these extra

slices are only sparsely sampled by the projection views (see
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1Regularized OS algorithms with large L will have increased compute time

per iteration due to repeated computation of the regularizer gradient, but this
problem has been reduced in [4].

Fig. 1(a)). This sparse sampling can lead to very imbalanced

subsets, particularly for large L, which can destabilize standard

OS methods, degrading image quality.

The idea underlying regularized OS algorithms for CT is

to use the gradient of a subset of the data fidelity term to

approximate the gradient of the full data-fit term. Standard

regularized OS algorithms simply scale the subset gradient by

the constant L [3]. This works fine in 2D, but does not account

for the sampling geometry outside ROI in helical CT, leading

to degraded images particularly for large L. Section II-C

proposes new scaling factors that stabilize the regularized

OS algorithm for helical CT. The idea may be translated

to other geometries with non-uniform geometric sampling.

Like standard OS algorithms, the proposed approach is not

guaranteed to converge (except for the one subset version).

OS algorithms can be modified so that they converge by

introducing relaxation [6], reducing L, or by incremental

optimization transfer [7]. The new scaling factors could be

combined with such methods. Unfortunately, such methods

converge slower than standard OS algorithms. Section III

investigates practical methods for improving image quality of

regularized OS algorithms without slowing initial convergence.

Results with real helical CT data illustrate that the proposed

approach provides improved image quality and better conver-

gence behavior than the ordinary OS algorithm in [3].

II. THEORY

We reconstruct an image x = (x1, . . . , xN ) ∈ RN from

noisy measurement data y ∈ RM by minimizing a penalized

weighted least-squares cost function [1]:

Ψ(x) = Q(x) + βR(x) =
1

2
||y −Ax||2W + βR(x)

=

M
∑

i=1

qi([Ax]i) + β

K
∑

k=1

ψk([Cx]k), (1)

where A = {aij} is a projection matrix, C = {ckj} is a

finite differencing matrix, the diagonal matrix W = diag{wi}
provides statistical weighting, and qi(t) = 1

2
wi(t − yi)

2,

each ψk(t) is a potential function, and β is a regularization

parameter.

A. Separable quadratic surrogate (SQS) algorithm

In this paper, we consider OS algorithms for minimizing the

cost function (1) that are based on separable quadratic surro-

gate (SQS) methods [3] that update all voxels simultaneously:

x
(n+1)

j = x
(n)

j −
1

dj

(

[A′W (Ax(n) − y)]j + β
∂

∂xj
R(x(n))

)

,

(2)
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where we use a precomputed denominator dj [3]. The de-

nominator dj = d
Q
j + βdRj consists of d

Q
j = [A′WA1]j for

the data-fit term and dRj = [|C|′Λ|C|1]j for the regularizer

using maximum penalty curvature in [3], where |C| = {|ckj |}

and Λ = diag
{

maxt ψ̈k(t)
}

. This paper focuses on OS-SQS

algorithms, but the proposed ideas are applicable to other OS

algorithms.

B. Ordered subsets (OS) algorithm

An OS algorithm for accelerating the SQS update (2) has

the following lth sub-iteration at the nth iteration:

x
(n+ l+1

L
)

j = x
(n+ l

L
)

j −

1

dj

(

γ̂
(n+ l

L
)

j [A′
lWl(Alx

(n+ l
L
) − yl)]j + β

∂

∂xj
R(x(n+

l
L
))

)

,

(3)

where l is the subset index. We count one iteration when all

subsets are used once.

The update (3) would accelerate the SQS algorithm by

exactly L if the scaling factor γ̂
(n+ l

L
)

j satisfied the condition:

γ̂
(n+ l

L
)

j =
[A′W (Ax(n+

l
L
) − y)]j

[A′
lWl(Alx

(n+ l
L
) − yl)]j

. (4)

This factor would be expensive to compute, so the conven-

tional OS approach is to simply use the constant γ = L.

This “approximation” often works well in the early iterations

when the subsets are suitably “balanced,” but in general the

errors caused by the differences between γ̂
(n+ l

L
)

j and γ cause

OS methods to approach a limit-cycle that loops around the

optimum of the objective function (1) [6], [7]. The next section

describes a new approximation to the scaling factor γ̂
(n+ l

L
)

j

in (4) that stabilizes OS for helical CT.

C. OS algorithm with proposed scaling factors

The constant scaling factor γ = L used in the ordinary

regularized OS algorithm is reasonable when all the voxels are

sampled uniformly by the projection views in all the subsets.

But in geometries like helical CT, the voxels are non-uniformly

sampled. In particular, voxels outside the ROI are sampled

by fewer projection views than voxels within the ROI (see

Fig. 1(a)). We propose to use a voxel-based scaling factor

γj that considers the sampling rather than a constant factor

γ. After investigating several candidates, we focused on the

following scaling factor:

γj =

L
∑

l=1

I{[A′
l
WlAl1]j>0}, (5)

where I{B} = 1 if B is true or 0 otherwise. As expected,

γj < L for voxels outside the ROI and γj = L for voxels

within the ROI.

Fig. 1(b) shows that the OS algorithm using the proposed

scaling factors (5) provides better image quality than the

ordinary OS approach which does not converge outside the

ROI. The instability seen with the ordinary OS approach may

also degrade image quality within the ROI as seen by the noise

standard deviations in Fig. 1(b). Fig. 2 further shows that the

ordinary OS algorithm within ROI is unstabilized due to the

instability outside ROI, whereas the proposed OS algorithm

being robust.

We precompute (5) and the data-fit denominator d
Q
j ,

[A′WA1]j =
∑L

l=1
[A′

lWlAl1]j simultaneously to minimize

the overhead of computing (5). We store (5) as a short integer

for each voxel outside the ROI only, so it does not require

significant memory.

III. FURTHER REFINEMENTS OF OS ALGORITHM

Although the new scaling factors (5) stabilize OS and

improve image quality, the final image quality still is worse

than a convergent algorithm (see Fig. 1(b)) because any OS

method with constant scaling factors will not converge. This

section discusses some practical methods that can improve

image quality while maintaining reasonably fast convergence

rates. These approaches help the OS algorithm come closer to

(a)
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(b)

Fig. 1. Helical geometry and reconstructed images in the geometry: (a) Diagram of helical geometry. A (red) dashed region indicates the detector which
acquires measurement data contributed by both voxels in ROI and voxels outside ROI. (b) Effect of gradient scaling in regularized OS-SQS algorithm with GE
performance phantom (GEPP) in helical geometry: Each image is reconstructed after running 30 iterations of OS algorithm with 328 subsets, using ordinary
and proposed scaling approaches. Standard deviation σ of a uniform region (in white box) is computed for comparison. (Several iterations of a convergent
algorithm as a reference)
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Fig. 2. Mean and standard deviation within an uniform region of end slice
of ROI (See Fig. 1(b)) vs. iteration, showing the instability of ordinary OS
approach compared with the proposed OS approach.

the converged image, reducing the undesirable noise in images

reconstructed using OS algorithms with large L.

We investigated these methods using helical CT scans of the

GE performance phantom (GEPP), shown in Fig. 4. We used

mean and standard deviation of an uniform region to measure

noise, full width at half maximum (FWHM) of a tungsten

wire to measure resolution, and a root mean square difference

(RMSD) between the OS image and a converged reference

image.

A. Transition to small number of subsets

OS algorithm with large L is preferred for faster con-

vergence, but it approaches a limit cycle leading to noisier

images than to a converged solution. Using fewer subsets

leads to images closer to the solution but slower convergence.

A practical solution is to have fast initial convergence with

many subsets and subsequently switch to fewer subsets to

achieve a desirable final image. SQS converges slower for high

spatial frequencies [8], and Table. I shows that an impulsive

wire converges slowly for fewer subsets. Thus, the transition

point must be chosen carefully to achieve fast convergence and

desirable image quality. We found that 20 iterations with 328

subsets followed by 10 iterations with 82 subsets provided a

reasonable balance between resolution and noise.

Because (5) depends on L, the transitioning approach re-

quires computing another set of γj factors for the smaller

number of subsets. For the choice of switching from 328 to 82

subsets, we can precompute both γj,328 and γj,82 efficiently

along with the precomputed data-fit denominator using the

following equations:

γj,328 =

82
∑

p=1

4p
∑

l=4p−3

I{[A′
l
WlAl1]j>0}

γj,82 =

82
∑

p=1

I
{
∑4p

l=4p−3 I{[A′
l
WlAl1]j>0}>0}

. (6)

Because 328 is divisible by 82, each group of 4 consecutive

subsets out of 328 subsets matches one of the 82 subsets.

B. Averaging sub-iterations at termination

To ensure convergence, [7] proposed to average previous

sub-iterations, but the greatly increased memory space re-

quired has prevented its application in 3D X-ray CT. As a

practical alternative, we investigated an approach where the

final image is formed by averaging all of the sub-iterations of

the final iteration of the OS algorithm (after it approaches its

Smoothed Number of subsets Suggested approaches
Conv.

FBP 82 246 328 Trans. Aver. Tr.&Av.

Mean [HU] 1126.2 1126.2 1125.4 1125.2 1126.2 1126.3 1126.4 1126.4
Std. Dev. [HU] 2.22 6.91 7.58 8.02 7.01 7.38 6.97 6.81
FWHM [mm] 1.36 0.72 0.61 0.60 0.61 0.60 0.61 0.59
RMSD [HU] 18.48 2.20 2.99 4.03 1.58 2.31 1.36 ·

TABLE I
NOISE, RESOLUTION AND RMSD BEHAVIOR OF OS ALGORITHM FOR EACH APPROACHES AFTER 30 ITERATIONS, COMPARED WITH SMOOTHED FBP

AND CONVERGED IMAGE.
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Fig. 3. Noise (mean and std. dev.), resolution (FWHM) and RMSD of OS-SQS with three suggested approaches vs. iteration. Three methods improved
image quality of OS algorithm without slowing down the fast convergence rate.
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Fig. 4. Smoothed FBP, converged image and OS-SQS reconstructed images after 30 iterations. We used the uniform region within the white box to measure
the noise level and σ indicates the standard deviation of the uniform region. We computed the FWHM of a wire (red arrow) to measure the resolution.

limit cycle). We ran 30 iterations of 328 subsets and averaged

the 328 sub-iterations of the final iteration. A memory-efficient

implementation of this approach uses a recursive in-place

calculation:

x̄(
l+1
L ) =

l

l + 1
x̄(

l
L ) +

1

l + 1
x(

l+1
L ), (7)

where x̄(1) is the final averaged image.

We also investigated the combination of transitioning and

averaging approaches. We averaged the 82 sub-iterations of

the final iteration, after running 20 iteration of 328 subsets

and 10 iterations of 82 subsets.

C. Results

We examined the effects of the three suggested methods

applied to OS algorithms with 328 subsets. Fig. 4 shows the

smoothed filtered back-projection (FBP) image and converged

reference image, where we use the smoothed FBP image as

the initial condition for the iterative algorithms. Table. I, Fig. 3

and Fig. 4 show that all methods help improve overall image

quality, whereas the resolution slightly degraded compared

with solely using 328 subsets. Both transitioning and averaging

greatly helped reducing the noise in the images.

Transitioning to small number of subsets decreased the noise

level but using fewer subsets impacted somewhat the conver-

gence of high-frequency structures in the image. In contrast,

averaging sub-iterations over the last iteration maintained the

resolution level but the noise did not decrease as much as the

transitioning approach. A combination of both the approaches

compensates for the drawbacks of each and is a feasible

solution.

IV. DISCUSSION

We proposed a new scaling approach (5) for a regularized

OS algorithm that provides an efficient solution for non-

uniformity in the sampling geometry such as in helical CT.

This approach reverts to the standard regularized OS algorithm

in the middle of the ROI where the voxels are all well

sampled, but stabilizes the images in the slices outside of

the ROI where the standard constant scaling factor leads

to over-correction, particularly when using many subsets.

In addition, we investigated some practical approaches for

improving the image quality after OS approaches a limit cycle,

namely, transitioning to fewer subsets and averaging the sub-

iterations of the final iteration. Preliminary results suggest

that these methods can improve the overall image quality of

OS algorithms when using numerous subsets without unduly

affecting the convergence rate. Future work includes seeking

a theoretical justification for the proposed scaling factors (5).
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Distance-driven binning for proton CT filtered
backprojection along most likely paths

Simon Rit and Nicolas Freud and David Sarrut and Jean-Michel Létang

Abstract—We propose to account for curved most likely paths
of protons in proton CT using an approximate adaptation of
filtered backprojection algorithms. The protons are first binned
in several proton radiographies at different distances to the
source of protons. The adequate radiography is then used during
backprojection depending on the distance to the source. The
efficiency of the distance-driven binning on spatial resolution
is demonstrated on a Monte Carlo simulated phantom with a
circular trajectory and a cone-beam of protons.

I. INTRODUCTION

Proton computed tomography (pCT) has been considered
very early in the history of CT [1] with a continuous devel-
opment until the beginning of the eighties. This development
was then slowed down because the ratio between benefits and
cost was too low compared to photon CT scanners. In the
nineties, the development of proton therapy has triggered new
developments on pCT scanners [2].

There are indeed a few advantages of pCT over photon
CT that are foreseen. The main expectation is the reduction
of the uncertainty in the proton therapy planning due to the
lack of accuracy of the proton stopping power computed from
Hounsfield units [3]. Another potential benefit is the reduction
of the imaging dose thanks to the Bragg curve characterizing
the dose deposit of protons in matter [4], [5]. Finally, pCT is
an additional modality which could have its own advantages
for improving the diagnostic [6].

However, pCT has also one major drawback, its lack of
spatial resolution. Indeed, protons traversing matter undergo
multiple deflections due to Multiple Coulomb Scattering
(MCS), resulting in curved trajectories and blurred proton
radiographies [7]. Therefore, in the past decade, most efforts
have focused on improving the spatial resolution of pCT by
constructing most likely proton paths [5], [8], [9]. So far, these
estimates have either been used to reconstruct pCT images
using iterative algorithms [10], or to eliminate protons that
had not followed straight lines before applying filtered back-
projection (FBP) algorithms [4]. Indeed, to our knowledge,
it is always claimed in pCT that FBP can only be applied
to straight acquisition lines, probably because exact FBP has
only been proposed along straight acquisition lines [11].

In this article, we propose a new FBP algorithm for pCT
using curved most likely paths of protons. We have previ-
ously shown [12], as well as others, that approximate FBP

S. Rit, N. Freud, D. Sarrut and J.-M. Létang are with the Université de Lyon,
CREATIS; CNRS UMR5220; Inserm U1044; INSA-Lyon; Université Lyon
1; Centre Léon Bérard, France (e-mail: simon.rit@creatis.insa-lyon.fr). This
work is supported by the grant ProTom of the ITMO Cancer et Technologie
in the Plan Cancer 2009-2013 program.

algorithms for motion compensation along curved acquisition
lines are efficient. The assumption of those algorithms is that
local compensation of the deformation corrects for the motion
blur and improves spatial resolution. In pCT, the problem is
different because one records individual proton information
which requires specific handling. We propose a distance-driven
binning of protons in several radiographies located at different
distances to the source to adapt the binning depending on the
intersection of proton paths with each radiography.

II. PCT RECONSTRUCTION PROBLEM

Along its path, a proton loses most of its energy via inelastic
collisions if it does not undergo nuclear interactions [13]. The
local energy loss dE at point x ∈ R3 is given by

−dE
dx

(x) = η(x)S(I(x), E(x)) (1)

where η : R3 → R is the relative electron density with respect
to a reference medium (water in this study), S : R2 → R is
the proton stopping power in water given by the Bethe-Bloch
equation [14] and I : R3 → R is the ionization potential which
depends on the tissue characteristics.

The ionization potential I varies moderately in human
tissues and has a limited effect on S so, in pCT, it is
typically approximated to that of water, i.e., I(x) = Iwater =
69 eV ∀x ∈ R3 in our simulations. Under this assumption,
integrating Equation 1 leads to the line integral∫

Γi

η(x)dx =

∫ Ein
i

Eout
i

1

S(Iwater, E)
dE = G(Eini , E

out
i ) (2)

with Γi(t) ∈ R3 the curved trajectory of the proton, function
of time t ∈ R, i ∈ I ⊂ Z the proton index, Eini , Eouti the
entrance and exit energies of the proton, and G : R2 → R
the function that computes the energy integral from Eini and
Eouti , defined for simpler notations in the following. Finding
η from Eini , Eouti and an estimate of the path Γi for a set I
of protons is the pCT reconstruction problem.

Proton path estimation is a crucial problem in pCT recon-
struction because it directly influences the spatial resolution
[7]. Several solutions have been proposed to the problem of
most likely path (MLP) estimation [5], [8], [9]. These recent
works on MLP estimation rely on pCT scanners such as the
apparatus described in [2] which measures the position and
the direction of each proton, before and after traversing the
object. Similarly, we assumed a cone-beam pCT scanner with
a proton source following a circular trajectory a(t) ∈ R3

around the axis defined by the isocenter o ∈ R3 and the
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Fig. 1. Schematic top view of the pCT scanner used in this study. The signed
distances wout, win, w and uout

i , uin
i , ui(w) are used in Equation 4, 5 and

6, respectively.

unit axis v ∈ R3, and two pairs of flat panels located before
and after the scanned object to record their entrance and exit
positions and directions xini ,x

out
i , ẋini , ẋ

out
i ∈ R3 (Figure 1).

We define the unit vectors u,w : R3 → R3 depending
on the source position, with w(a(t)) = −a(t)/‖a(t)‖2 and
u(a(t)) = v × w(a(t)), to have a 3D Cartesian coordinate
system {u,v,w} rotating with the source and the detectors.
We also assumed that the convex hull of the object Ω ⊂ R3

was known which can practically be measured with a surface
scanner or a rough initial reconstruction. The algorithm pro-
posed in this work is applicable to any MLP estimation from
measured spatial information (xini , ẋini , xouti , ẋouti and Ω).

III. DISTANCE-DRIVEN BINNING

Our objective is to adapt existing filtered backprojection
algorithms for pCT reconstruction. So far, previous works in
that direction have binned proton information in virtual proton
radiographies. Let j ∈ J ⊂ Z2 be a set of spatial indices
corresponding to a grid of pixels of the exit panel and h :
R2 → R their indicators,

hj(y) =

{
1 if y ∈ R2 is in the jth pixel,
0 else.

(3)

The virtual proton radiography binned at the exit detector for a
subset of protons Ia ⊂ I emitted from a same source position
a is

goutj,a =

∑
i∈Ia

hj(u
out
i , vouti )G(Eini , E

out
i )∑

i hj(u
out
i , vouti )

(4)

with uouti = (xouti −a) ·u(a) and vouti = (xouti −a) ·v (Fig-
ure 1). Repeating this operation for several source positions,
one obtains a typical set of projection images gout that can be
used in a standard filtered-backprojection algorithm.

We observe that one could also use the entrance positions
xini to bin projection images on the exit detector assuming a
straight path going through xini and the source a, i.e.

ginj,a =

∑
i∈Ia

hj(u
in
i , v

in
i )G(Eini , E

out
i )∑

i hj(u
in
i , v

in
i )

(5)

with the distances illustrated in Figure 1{
uini =wout

win

(
(xini − a) · u(a)

)
, win =(xini − a) ·w(a),

vini =wout

win

(
(xini − a) · v

)
, wout=(xouti − a) ·w(a).

The ratio wout

win is the constant magnification from the entrance
to the exit detection plane produced by a cone-beam focused
on a to obtain the coordinates on the exit flat panel. Therefore,
if protons were travelling along straight paths, gin and gout

would be equal. They are actually different due to MCS.
From this observation, we introduce the concept of distance-

driven binning given by

gj,a(w) =

∑
i∈Ia

hj(ui(w), vi(w))G(Eini , E
out
i )∑

i hj(ui(w), vi(w))
(6)

with the distances illustrated in Figure 1{
ui(w)=wout

w ((Γi(ti,w)− a) · u(a)) ,

vi(w)=wout

w ((Γi(ti,w)− a) · v) .

ti,w is the time at which proton i crosses the plane parallel to
the detectors at distance w from the source, i.e. , (Γi(ti,w)−
a) ·w(a) = w. Equation 6 is the extension of Equation 4 and
5 to any distance w using the most likely path Γi of proton i
to interpolate intermediate positions between entrance and exit
positions xini and xouti . Indeed, as the trajectory Γi crosses the
detectors at positions xini and xouti , we have g(wout) = gout

and g(win) = gin.
In practice, g is computed at a finite number of distances in

the w direction and linear interpolation is used between voxels
gj . In combination with bilinear interpolation between spatial
indices j, we obtain a 4D sinogram g : R3 × Z → R instead
of the conventional 3D sinogram, e.g. gout : R2 × Z → R,
where the last dimension is the index of projection images.

IV. DISTANCE-DRIVEN BACKPROJECTION

We use the distance-driven binning in a filtered backprojec-
tion algorithm adapted from the Feldkamp-Davis-Kress (FDK)
algorithm [15]. As in approximate motion-compensated cone-
beam CT [12], we do not modify the 2D processing of
projections in the FDK algorithm (the 2D weighting and the
ramp filtering) but we repeat it for every depth w. We call g̃a
this 3D filtered projection at position source a corresponding
to a source angle θa ∈ R. We use this filtered distance-driven
sinogram by accounting during backprojection for the distance
to the source of the voxel being backprojected to select the
adequate part of the distance-binned sinogram, i.e.

η(x) =

∫ 2π

0

(
‖a‖2
w(x)

)2

g̃a (u(x), v(x), w(x)) dθa (7)

with u(x) = wout

w(x) ((x− a) · u), v(x) = wout

w(x) ((x− a) · v)

and w(x) = (x − a) · w. It is worth noting that both the
backprojection and its FDK weighting are driven by the same
distance to the source w(x).

V. EXPERIMENTS

The algorithm was evaluated with Monte-Carlo simulations
using the latest release of GATE [16], an end-user software
using the Geant4 toolkit [17]. GATE was run on the EGEE
computing grid with the GateLab applet [18]. An ideal pCT
scanner was simulated: a 200 MeV mono-energetic point
source was placed at distance ws = −100 cm from the
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Fig. 2. Experiment 1. Top: drawing of the object. Middle: axial slice at the
isocenter of the distance driven binning. Bottom: profiles along the three lines
drawn on the top image.

isocenter and the characteristics (Eini , Eouti , xini , ẋini , xouti

and ẋouti ) of protons traversing the planes win = −60 cm and
wout = 60 cm were recorded.

Standard 3σ cuts on energy and angle were applied to
eliminate nuclear interactions [13]. Most likely paths Γi were
estimated as straight paths outside Ω and curved paths in Ω ac-
cording to the maximum likelihood formalism of Schulte et al
[9]. The object was assumed to be homogeneous and made of
water. We closely followed their work for its parameterization.

A. Experiment 1

The first experiment was designed to provide the reader
with insights into the effect of the distance-driven binning
by looking at one projection image only. We centered a
spherical shell of water with radii 90 cm and 110 cm around
the proton source, therefore placing the isocenter in the middle
of the water layer (Figure 2, top). Three spherical bone inserts
with identical solid angles were placed in the water sphere
with regular radii from the source (90/92 cm, 99/101 cm and
108/110 cm). Since all objects are portions of hollow spheres
centered on the source, the projection image for particles
travelling along straight lines crossing the source would be
a rectangular function with one rectangle per insert.
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Fig. 3. Experiment 2, full scan. Top-left: axial slice at the isocenter of
the standard FDK reconstruction using the 2D set of projection images
g(110 cm) binned according to the position of protons at the exit of the
object. Gray window: [0.6,1.6]. Top-right: idem with the sinogram g(90 cm)
at the entrance of the object. Bottom-left: distance-driven FDK reconstruction
using the complete set of 3D projections g. Bottom-right: profile along the
three segments drawn on each slice.

B. Experiment 2

The second experiment was designed to evaluate the spatial
resolution of reconstructed pCT images (Figure 3). We used
a resolution phantom similar to the CTP528 high-resolution
module of the Catphan phantom (The Phantom Laboratory,
Salem NY, USA): various resolution gauges made of 2 mm-
thick aluminium sheets were placed on a circle (�10 cm) in
a water cylinder (�20 cm).

VI. RESULTS

A. Experiment 1

Figure 2 is an illustration of the effect of distance-driven
binning in the projection space. The effect of MCS depended
on the distance to the source and the position of the inserts.
The edges of the bone inserts were the sharpest at the distance
which corresponds to their location in space, i.e. at the level
of each line profile (Figure 2, bottom). The loss of sharpness
increased with the distance to their location. We also observed
that the middle insert was not as sharp on the central profile as
the entrance and exit insert on their respective profile because
the uncertainty on the estimate of the proton path was higher
in the middle of the object than on the borders of the object.

B. Experiment 2

The effect on the reconstruction is shown in Figure 3.
The spatial resolution improved with the distance binning
compared to the spatial resolution of reconstruction using a
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Fig. 4. Experiment 2, short scan. Idem as Figure 3 with an additional circle
arc indicating the source trajectory at a false scale (�24 cm on the figure
instead of �200 cm).

standard set of binned projections (Figure 3, bottom left vs.
top). We also observed that using the binning gin according
to the position of protons before the object is more efficient
than using the binning gout according to their exit position
(Figure 3, top right vs. top left).

The effect is emphasized when only a subset of projection
images is used which corresponds to a short scan (Figure 4).
Parker weighting [19] was used to account for the short scan
in the reconstructions of Figure 4.

VII. DISCUSSION AND CONCLUSION

We have proposed an algorithm to use curved most likely
paths in a pCT filtered backprojection algorithm. Our solution
uses a distance driven binning in order to recover sharp edges
at the distance where the edge is located in space (Figure 2).
During backprojection, the spatial position of each voxel is
translated to a distance to the source and the corresponding
position of the distance-driven binning is used so that, at the
location of each edge, its sharpest binning is used.

This FBP algorithm is as approximate as other FBP algo-
rithms used in pCT since there is no exact solution for curved
trajectories. We observed an improved spatial resolution with-
out apparent loss in density resolution (Figure 3) because
the algorithm only modifies high frequencies of the sinogram
without modifying low frequencies. The algorithm is inspired
by our experience in approximate motion compensated FBP
reconstruction where limited differences have been observed
with iterative reconstruction [12]. However, comparison with
existing pCT iterative algorithms will provide a better quan-
tification of the effect of this approximation.

The major advantage of our algorithm over iterative pCT
algorithms is faster and on-the-fly reconstruction. These assets

could become essential for their use in proton therapy treat-
ment rooms when the reconstructed image is required to check
the patient anatomy prior to starting the treatment. In this
context, a short scan could also greatly reduce the acquisition
time and the imaging dose, for which the use of most likely
paths seems crucial.
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Micro-CT Artifacts Reduction Based on
Detector Random Shifting and 3D-Data Inpainting

Yining Zhu, MengLliu Zhao, Hongwei Li, Peng Zhang

Abstract—The scanning data errors will lead to heavy artifacts
in reconstructed CT images. In the micro-CT systems based on
optical coupling detectors, the data errors are mainly caused
by the defects of the scintillator and the CCD-camera. In this
paper, we propose a data preprocessing method that combines
the detector random shifting and the 3D-data inpainting. The
proposed method can effectively reduce the artifacts in micro-
CT images, which is verified by both the simulation and real
micro-CT data.

Keywords—Micro-CT; Detector defects; Artifacts reduction;
Detector random shifting; 3D-Data inpainting.

I. INTRODUCTION

In recent years Micro-CT systems have been applied to
many areas such as biomedicine, materials, MEMS (Micro-
Electromechanical Systems) and CMOS chip, etc. Two kinds
of detectors, flat panel detector (FPD) and optical coupling
detector (OCD) are typically used in Micro-CT systems. The
FPD consists of an x-ray scintillator and amorphous-silicon
photodiodes, while the OCD consists of an x-ray scintillator,
a set of optical lenses and CCD-camera (See Fig.1) [1].
Generally, the resolution of the OCD is much higher than that
of the FPD. However, the efficiency of OCD is much lower
than that of FPD.

In this paper, we consider the OCD-based Micro-CT system.
In an OCD-type detector, the role of the scintillator is to
convert x-ray into visible light, the role of the set of optical
lenses is to magnify the visible light image, and the role of the
CCD-camera is to convert the magnified visible light image
into digital image. In order to obtain a digital image with high
resolution by the OCD, the scintillator slice in the OCD should
be made very thin. Due to technical and material reasons,
there often exist some defects in the scintillator slice. Beside,
the CCD-camera may also have bad cells. The defects of the
scintillator and the CCD-camera can cause heavy artifacts in
the reconstructed 3D CT images.

In this paper, we propose a data preprocessing method
that combines the detector random shifting and the 3D-data
inpainting. Due to the reason that the OCD-type detector
random shifting, the set of the defect areas in 2D images
related to full views could not form regular 3D regions. Hence,
it is complicated to use 3D-based interpolation method to
inpainting the 3D scanned data. The data inpainting algorithm
that we employed in this paper is based on PDE (Partial
Differential Equations), which can inpainting such scanned
in 3D form effectively. The proposed method is verified by

The authors are with The CT Laboratory, School of Mathematics, Capital
Normal University, Beijing, 10048, China; email: zhumilan997@163.com

Fig. 1. The structure of OCD for X-ray imaging.

both the simulation and real Micro-CT data. The results we
obtained by the proposed method are quite satisfied in the
artifact reduction.

II. DATA SCANNED BY OCD-TYPE DETECTOR

In an OCD-based Micro-CT system, the x-ray photons
emitted from x-ray tube first interact with the inspect object,
after penetrating the object the remaining x-ray photons will
hit the thin scintillator slice and produce a visible image on
the thin slice, and then the visible image on the thin slice is
magnified by a set of lens, last is converted into a digital image
by CCD-camera [2]. When the object is rotated on the turn
table step by step, the images are scanned frame by frame,
i.e., the CT data scanned by OCD-type detector.

As mentioned in the introduction, the scintillator may have
some defects, due to technical and material reasons. The CCD-
camera may also have bad cells. These will lead to some
bright speckles when data scanning. In Fig. 2, two images
show the typical speckles. The top one is scanned when no
object is on the turntable, while the bottom one is scanned
when an oil core on the turntable. These speckles will disrupt
the projection data, and result in heavy artifacts in the CT
images reconstructed by the FDK algorithm.

III. METHOD

The scintillator related to the bright speckle areas could not
convert the photons into visible light correctly, which means
that the corresponding projection data may be wrong. The
FDK algorithm [3] is unable to reconstruct a good quality
CT images from such data. The iterative algorithm is flexible
to deal with such data. One way is to avoid using the wrong
data in iterative processing. However, the number of voxels for
a typical 3D CT image are very huge, about 230 to 233. From
such huge data to reconstruct 3D CT images by the iterative
algorithm is still a great challenge to practice applications
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Fig. 2. The imaged by OCD type detector: The top one is scanned when
there is no object on turn table; The bottom one is scanned when an oil core
on turn table in one view.

because of its huge computational cost. Therefore, we have
to choose analytic kind algorithms, such as the FDK, for huge
3D image reconstruction. In order to reducing the artifacts
caused by the defects of the scintillator and CCD, we propose a
data preprocessing method that combines the detector random
shifting and the 3D-data inpainting.

A. Detector random shifting

When the geometric relation between source and the OCD
type detector is fixed, and cone-beam data are scanned with a
circular source trajectory, then the defect areas in 2D images
related to each view will stack some columns in 3D cone-beam
data space (See Fig.3(b)). To inpainting the bad data, only the
2D interpolation method could be used. Then inpainting errors
become large as the bad data areas increase.

In order to avoid the bad data columns, we let the detector
random shift (See Fig.3(a)). But the set of the defect areas in
2D images related to full views could not form regular 3D
regions (See Fig.3(c)). Hence, it is complicated to use 3D-
based interpolation method to inpainting the bad data.

B. 3D-data inpainting

To overcome the difficulty that the defect areas distribute
irregularly (See Fig. 3(c)), we employ PDE (Partial Dif-
ferential Equations) -based data inpainting algorithm in this
paper, which is able to inpainting effectively such irregular
3D bad regions. Digital image inpainting was first introduced
by Bertalmio et al. [5] in 1999. Since then, many methods have
been proposed. One of the most popular methods proposed by
Chan and Shen [6] is TV inpainting, which is close related

(a)

(b)

(c)

Fig. 3. The schematic diagram of detector random shifting.

to the TV restoration model (ROF) [4]. The TV inpainting
method is effective for repairing small holes.

Denote the region to be inpainted by D, the neighborhood
region of D by E, the original image by u0, and the inpainting
image by u. The TV inpainting model could be written as
follows

min

∫
E

[
|∇u|+ 1− χD

2λ
(u− u0)2

]
, (1)

where χD is the characteristic function of D.
The above minimization problem can be solved by running
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Fig. 4. The simulation projection data with a dug region.

the following equation to steady state

ut = ∇ ·
(
∇u
|∇u|α

)
− 1− χD

λ
(u− u0), (2)

where the term |∇u|α is a regularization version of |∇u| ,
which is defined as

|s|α =
√
s2 + α.

IV. EXPERIMENTS

To verify our method, we use two sets of projection data,
simulation and real CT data, to carry out the experiments.

A. Images reconstructed from simulation data

We simulate two set of projection data by using the
FORBILD head phantom [8] with analytical method. One is
simulated with fixed relation between the X-ray source and the
detector, the other is simulated with detector random shifting
vertical to the normal of the detector. As shown in Fig. 4, all
of the projection data are dug a small part with a circle shape.
We make a circular trajectory scanning with 360 views. The
total number of detector bins is 512 × 512, and the bin size
is 10 um × 10 um. The distance from source to object (SOD)
is 30 mm, and from source to detector (SDD) is 60 mm.

Fig. 5 is a comparison that show the images reconstructed
by FDK algorithm from the different scanning modes and data
preprocessing methods. Fig. 5(b) is reconstructed from the
data without processing. With inpainting, Fig.5(d) has a much
better quality. Fig. 5(e) shows the result reconstructed from the
data with both inpainting and random shifting preprocessing,
which is the method proposed in this paper. We can see that
our method produces the most desired image, which reduces
both the ring artifacts and the artifacts caused by the speckles
to a large extent.

B. Images reconstructed from real Data

For the real CT data, the size of projection data is 2048
× 2048 × 720, the SOD is 105 mm, the SDD is 120 mm,
the magnification factor of microscope is 4 and the size of
units in CCD is 13.5 um × 13.5 um (which means the size
of virtual pixel in scintillator is 3.375 um × 3.375 um). We
also scan two set of data for an oil core with the micro-CT.

(a) (b)

(c) (d)

(e)

Fig. 5. The comparison that show the transverse section images reconstructed
by FDK algorithm from the different scanning modes and data preprocessing
methods: (a) ideal image, (b),(c),(d) and (e) are: without processing, detector
random shifting only, inpainting only and detector random shifting plus
inpainting respectively.

One is sacnned with fixed relation between the X-ray source
and the detector, the other is scanned with detector random
shifting within the range of 60 um vertical to the normal of
the detector. The slices of reconstructed CT images are shown
in Fig. 6. It is obvious that the quality of the image (Fig.6(d))
reconstructed from the data preprocessed by our method is
much better than the others.

V. CONCLUSION

We have proposed a data preprocessing method that com-
bines the detector random shifting and the 3D-data inpainting.
The two techniques are complementary in reducing the arti-
facts. The experiment results for both simulation and real CT
data are quite satisfied in artifacts reduction. The PDE-based
inpainting models and especially their fast implementations
need to be investigated furthermore.
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Optimization-based Extrapolation for  
Truncation Correction 

Andreas Maier 1 , Bernhard Scholz 1 , and Frank Dennerlein 2 
 
 

Abstract—A general approach to correct for lateral data 
truncation in cone-beam CT is presented in which the 
correction is achieved by minimizing a specific objective 
function in the projection domain. We suggest an efficient 
objective function and derive, from the general approach, an 
iterative truncation correction algorithm. This algorithm is 
initialized with a water-cylinder-model-based fan-beam 
extrapolation as it is employed in a clinical product. 
Compared to using the model-based extrapolation alone, our 
iterative algorithm improves image quality in the artifact 
regions at the boundaries of the field-of-view, particularly 
where the water-cylinder assumptions are not fulfilled. In that 
case, first quantitative evaluations on a clinical data set 
indicate an improvement in the root mean square error of up 
to 18 %. 

Keywords-image reconstruction; truncation; extrapolation; 
optimization 

I.  INTRODUCTION 
The X-ray dose that the patient receives during a CT 

exam is proportional to the volume that is irradiated during 
the scan. Several medical applications require only a small 
volume to be imaged, so that the irradiated area can be 
highly restricted. Fig. 1 shows a follow-up scan of a 
cochlear implant. In this case, a scan with a full field of 
view was performed although only the small area, indicated 
by the circle, is of diagnostic interest. Hence, a restriction of 
the X-ray irradiation to only that area would have been 
possible to significantly reduce radiation dose.  

 

 
Figure 1: In many diagnostic exams, only a part of the scanned 
volume is of diagnostic interest. The image shows a follow-up scan of a 
cochlear implant. The area of interest is marked with an ellipse. 

Several practical methods have been suggested for 
volume-of-interest tomography. Some of them require prior 
knowledge about the reconstructed object [1] or irradiate 
parts of the scan at a lower dose [2]. In this paper, however, 
we will only focus on methods that are able to reconstruct 
without any other means of prior knowledge. 

Reconstruction from laterally severely truncated 
projection data is an algorithmic challenge. Iterative 
methods are computationally demanding but might provide 
solutions if only a part of the object is truncated [3]. In case 
of bilateral truncation in all views, practically useful results 
are often obtained by estimating the missing data using 
heuristic extrapolation methods, e.g. [4]. A good overview 
on such methods is given in [5]. It is also possible to 
reconstruct without using any explicit extrapolation scheme 
[6]. Results are visually satisfying, but generally also 
approximate.  

In this paper, we follow a different approach to solve the 
truncation problem: We formulate the extrapolation of the 
missing data as an optimization problem in the projection 
domain that may involve data before and after filtering. In 
order to do so, we setup an objective function that describes 
desired properties of this extrapolation. Then we search for 
extrapolation values that minimize this objective function 
using water-cylinder-based fan beam extrapolation values as 
start values [7]. In the following, we will describe a few 
properties of truncated and complete filtered projections and 
will subsequently derive different components of an 
objective function. Using this objective function, we 
calculate extrapolation data, and use them for 
reconstructions and compare their results with 
reconstruction results from the clinically used extrapolation 
algorithm using the water-cylinder-based fan beam 
extrapolation.  At the end of this paper, we discuss the 
properties of the proposed extrapolation algorithm and 
describe future improvements of the algorithm. 

II. EXTRAPOLATION AS OPTIMIZATION PROBLEM 
The limited size of the field of measurement can be 

formulated by a multiplication of the complete row signal 
𝑝∗(𝑢, 𝜆) with a function that describes the size of the field 
of measurement 𝑑(𝑢, 𝜆), where 𝑢 ∈ [0,𝑈 − 1] is the index 
of the detector column, 𝑢𝑚𝑖𝑛and 𝑢𝑚𝑎𝑥 are the smallest and 
the highest detector column indices that are still observed, 
and 𝜆 is the current  projection angle: 

𝑑(𝑢, 𝜆) = �  
 

1         𝑢𝑚𝑖𝑛 ≤ 𝑢 ≤ 𝑢𝑚𝑎𝑥      
0                     𝑒𝑙𝑠𝑒                  

� 
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 The observed row signal 𝑝(𝑢, 𝜆) is then found as the 
multiplication of both: 

 
𝑝(𝑢, 𝜆) =  𝑝∗(𝑢, 𝜆) ⋅  𝑑(𝑢, 𝜆) 

 
The idea of extrapolation adds new coefficients 𝑥(𝑢) to 

the observed values yielding an extrapolated 
projection 𝑝′(𝑢, 𝜆): 

𝑝′(𝑢, 𝜆) = �  
           

𝑝(𝑢, 𝜆)        𝑢𝑚𝑖𝑛 < 𝑢 < 𝑢𝑚𝑎𝑥      
𝑥(𝑢)                     𝑒𝑙𝑠𝑒               

� 

The extrapolated values can be summarized in the 
vector 𝑿  

 
𝑿 = [𝑥(0) …  𝑥(𝑢𝑚𝑖𝑛 − 1) 𝑥(𝑢𝑚𝑎𝑥 + 1) …  𝑥(𝑈 − 1)]. 
 

𝑿 is found as the solution to a minimization problem 
 

𝑿 ← argmin𝑿 𝑓(𝑿). 
 

The challenge to perform an optimal extrapolation is 
thus the challenge to find an objective function 𝑓(𝑿) that 
leads to an extrapolation, which would coincide best with 
the missing data if they could be measured. In the 
following, we describe a few properties that are suitable for 
inclusion in such an objective function. 

 

A. High Frequency Artifact 
The predominant artifact that is caused by truncation is a 

bright ring that is generated at the boundary of the field of 
view of the reconstructed image. The artifact is caused by 
the distortion that is introduced into the signal by the 
convolution of 𝑃∗(𝜔, 𝜆) with 𝐷(𝜔, 𝜆)which are the Fourier 
transforms of 𝑝∗(𝑢, 𝜆) and 𝑑(𝑢, 𝜆).  The filtered projection 
data after extrapolation is denoted by 𝑔′(𝑢, 𝜆)  in the 
following.  

The relevant property of the artifact is that it contains 
high frequencies. We use this to build the following 
constraint: The signal should only have few high frequency 
components in Fourier domain. The amount of high 
frequencies can be described using the 1D frequency 
representation 𝐺′(𝜔, 𝜆) of 𝑔′(𝑢, 𝜆) 

𝑐1 = � � 𝐺′(𝜔, 𝜆)2
 

𝜔∈𝛺ℎ𝑖𝑔ℎ

, 

where Ωℎ𝑖𝑔ℎ represents the coefficients of the spectrum that 
contains the 𝑁 highest frequencies.  

Another relevant property of the filtered projection is 
that the extrapolated values do not introduce additional 
signal. This observation is used to design a second term: 

𝑐2 = �� 𝑔′(𝑢, 𝜆)2
 𝑈−1

𝑢=0

 

B. Constant Extrapolation in Reconstruction Domain 
As we do not know the object outside the field of 

measurement, its shape is difficult to describe in a 
constraint. In most applications, we image objects that are 
homogenous to some extent. Hence, we can assume that the 
average absorption coefficient in reconstruction domain at 
the end of the field of measurement stays in the same range 
during extrapolation. In order to achieve this constant 
behavior after backprojection, we also require the filtered 
projection to be a constant continuation of the known part. 
Furthermore, we assume that there is only little deviation 
from this constant continuation. Subtraction of the average 
value should yield a signal with many zeros, i.e. a sparse 
signal.  

These postulates yield the following constraint: 

𝑐3 = � |𝑔𝑚𝚤𝑛������ − 𝑔′(𝑗, 𝜆)|1

𝑢𝑚𝑖𝑛−1 

𝑗=𝑢𝑚𝑖𝑛−𝑅

+ � |𝑔𝑚𝑎𝑥������� − 𝑔′(𝑗, 𝜆)|1

𝑢𝑚𝑎𝑥+𝑅 

𝑗=𝑢𝑚𝑎𝑥+1

 

with 

𝑔𝑚𝚤𝑛������ =
1
𝑄

� 𝑔′(𝑗, 𝜆)
𝑢𝑚𝑖𝑛+𝑄−1 

𝑗=𝑢𝑚𝑖𝑛

 

𝑔𝑚𝑎𝑥������� =
1
𝑄

� 𝑔′(𝑗, 𝜆)
𝑢𝑚𝑎𝑥 

𝑗=𝑢𝑚𝑎𝑥−𝑄+1

 

where 𝑔𝑚𝚤𝑛������ and  𝑔𝑚𝑎𝑥������� are average values over the left and 
right end of the filtered projection over an area of 𝑄 values 
and |⋅|1 describes the L1 norm that promotes sparsity. 𝑅 
denotes the area in which this constant behavior is required. 

 

C. Optimization 

Using the criteria defined above, we are now able to 
define our optimization problem using the following 
objective function: 

𝑓(𝑿) = 𝛼𝑐1 + 𝛽𝑐2 + 𝛾𝑐3,  

where 𝛼, 𝛽, and 𝛾 are constants that are used to weigh the 
influence of each of the constraints. 

 
Figure 2: The root mean square error was evaluated over the complete 
reconstructable area and in an area close to the boundary. 
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Figure 3:  Truncation introduces additional frequencies into the signal 
that are amplified after filtering. While heuristics can help to reduce 
this effect, they often suffer from the problem that the remaining signal 
has a certain slope as seen in the left side of this example. By definition 
of a constant region at the boundary of the field of view (here 
R=Q=64), this effect is reduced. 

 

III. EXPERIMENTAL VALIDATION 
The scope of this paper is more of an exploratory nature, 

and to investigate the properties of such a compound 
objective function. We involve an iterative coordinate-
descent for optimization and initialize the iterations using a 
water-cylinder based fan-beam extrapolation. This model-
based extrapolation is also used as a baseline result in the 
experimental validation. 

 
Figure 4: The reconstruction with the complete data is shown in 
subfigure a). The effect of the truncation is shown in b). Subfigure c) 
was reconstructed with the heuristic approach. Subfigure d) shows the 
effect of the optimization (𝜶 = 𝟎.𝟓, 𝜷 = 𝟎.𝟎𝟎𝟎𝟓, and 𝜸 = 𝟎.𝟒𝟗𝟗𝟓). 
Subfigures e) and f) show the absolute differences between images and 
a) and c) and a) and d). The darker the image is, the lower the error. 
The top and the bottom of f) show that the match between a) and d) is 
improved by the optimization process. The visualization window in 
Subfigures a-d is [-1000, 2500] HU. In subfigures e) and f) the window 
is [350, 1000] HU. 

 

In order to speed up the computation, we solved the 
problems on a multi-resolution grid that started with a very 
coarse resolution of 64 bins. In each step of the grid search, 
we increased resolution by a factor of 2 and used the result 
of the previous iteration as initial value for the optimization 
problem. In each iteration, we reduced the search space 
towards the boundary of the field of measurement to speed 
up computation time further. The optimization parameters 
were chosen as α=0.5, β=0.0005,  γ=0.4995, and 𝑅 = 𝑄 =
64.  

The reconstruction scenario was the truncated 
reconstruction of the cochlear implant in Fig.1. The scan 
was acquired with 496 projections at 1280x960 pixels. 
Reconstruction was performed at 5123 voxels with a Shepp-
Logan kernel. We chose to evaluate the proposed 
extrapolation with real data that was truncated artificially. In 
this manner, we are able to compare the extrapolation result 
with the reconstruction from the complete signal. The 
reconstructions are evaluated using the root mean square 
error (RMSE) on the reconstructable part of the image (ROI 
1) and within an area close to the boundary of the field of 
view (ROI 2, cf. Fig. 2). 
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In Fig. 3 we show the effect of the extrapolation after a 
Shepp-Logan ramp filter was applied. The optimized signal 
shows the characteristics that were postulated in the 
objective function. The signal remains constant in the 
defined area, has few additional frequencies, and has a low 
norm.  

Fig. 4 shows a comparison between the different 
reconstructions obtained from the signals from Fig. 4. 
Subfigure a) shows the reference signal and Subfigure b) the 
effect of the truncation. In Subfigure c) the reconstruction 
with the heuristic method is shown. Due to the truncation, 
the lateral extent of the projection is small, making the fit of 
a water-cylinder model difficult. The extrapolation is thus 
degraded and all observed values are increased by an offset. 
The RMSE for ROI 1 is 557 HU. In ROI 2, the error is even 
larger with 628 HU. Subfigure d) shows the reconstruction 
with the optimized extrapolation. Its average RMSE is 500 
HU which is lower than in the heuristic extrapolation. At the 
boundary an average RMSE of 531 HU is obtained. This is 
only a little higher than the average of the complete ROI, i.e. 
the reconstruction shows fewer artifacts at the boundary 
than the heuristic method. The absolute difference images 
are shown in subfigures e) and f). The error is reduced at the 
top and the bottom of the image, i.e. in the areas where 
bones are at the edge of the field of measurement in the 

projection images. In these areas, the heuristic water 
cylinder assumption is violated which causes a reduction in 
image quality. The optimization helps to reduce this artifact. 

Fig. 5 shows the effect of the different compensation 
algorithms on vertical and horizontal profiles through the 
reconstruction. In order to diminish the offset error, we 
subtracted the mean values of each of the profiles in the 
visualization. On the vertical profile, the optimally 
compensated reconstruction matches the complete 
reconstruction better. This is especially the case towards the 
end of the field of measurement. In the horizontal profile, 
we do not see an improvement compared to the heuristic 
extrapolation. 

IV. DISCUSSION 
The results indicate that the presented method is able to 

improve image quality. The error introduced by the 
truncation artifact is reduced by 18%. The method seems to 
be able to yield better extrapolation results in cases where 
the assumptions of the water cylinder model are not valid.  
When bone passes through the end of the detector, the 
heuristic truncation correction algorithm is not able to find a 
very good solution since the model assumption is invalid. In 
these cases, the optimization-based method is able to 
outperform the heuristic method.  

 
Figure 5: The graphs display two profiles through the reconstructed image. The vertical profile shows an improvement towards the end of the 
field of measurement. In the horizontal profile no further improvement was obtained compared to the heuristic extrapolation. We subtracted 
the mean value of each profile to reduce the effect of the offset error. 
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In cases that match the water cylinder assumption well, 
it is difficult to find a better solution with the presented 
objective function. The optimization-based method then 
presents the same result as the heuristic method (cf. Fig. 5). 

The presented method has an interesting property: As we 
define parts of the objective function after the filtering step, 
the optimization is dependent on the used filter kernel. If a 
smoother kernel is applied, a different extrapolation result is 
obtained. In the present paper, we employ the method in a 
Feldkamp-type reconstruction method [8]. In principle, the 
same method could also be applied to different analytic 
reconstruction methods that require a completely different 
filtering step. 

The first results indicate that criterion 𝑐2 did not show a 
lot of importance. A value of 𝛽 = 0.0005 was sufficient in 
our first experiments. The other two criteria were almost 
balanced with 𝛼 = 0.5 and 𝛾 = 0.4995. 

The runtime of the algorithm could be reduced to a 
feasible amount as we employed multi-grid methods and 
only applied few iterations (N=5) in the present study.  It 
helped to reduce the search space dramatically, but also 
limited the solution to one that is rather close to the initial 
value. This implies that the result of the computation is 
somewhat dependent on the initialization. At the present 
state, we decided that the investigation of the objective 
function was more important than finding an algorithm that 
is robust of different initializations. We expect this to 
improve with a more efficient optimization strategy. With 
respect to the objective function, we could not observe a 
deterioration that was caused by the method compared to the 
baseline result.  

 

V. CONCLUSION AND OUTLOOK 

We presented a truncation correction method that was 
inspired by the optimization of an objective function. In a 
first investigation, we could achieve an improved image 
quality compared to a water cylinder extrapolation-based 
algorithm. In an area towards the end of the field of 
measurement, a reduction of the truncation error of 18 % 
was obtained. The method could mainly contribute in areas 
where the water cylinder assumption was violated. This is 
quite surprising, as only simple assumptions were used in 
the objective function.  

In future work, we will investigate additional constraints 
that can be used in the objective function. One main concern 
is that the reconstruction still suffers from an offset error 
that needs to be reduced. This could be achieved, if the 
correct size of the object were supplied to the truncation 
correction method. Improvements of the optimization 
method are also scope of our current work. 
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Comparison of Image Features for Misalignment
Correction in Flat-Detector CT

Julia Wicklein, Holger Kunze, Willi A. Kalender and Yiannis Kyriakou

Abstract—Generally the geometrical parameters, which are
essential for reconstruction are provided by preceding calibration
routines. These procedures are time consuming and the later use
of stored parameters is sensitive towards external impacts or
patient movement. The method of choice in a clinical environment
would be a marker-less online-calibration procedure, that allows
flexible scan trajectories and simultaneously corrects misalign-
ment and motion artifacts during the reconstruction process.
Therefore, different image features were evaluated according
to their capability of quantifying misalignment. Projections of
the FORBILD Head and Thorax Phantom were simulated.
Additionally, acquisitions of a head phantom and patient data
were used for evaluation. For the reconstruction different sources
and magnitudes of misalignment were introduced in the geometry
description. The resulting volumes were analyzed by entropy
criteria based on the gray-level histogram and Gabor filters.
Additionally we evaluated total variation approaches.

Index Terms—flat-detector CT (FDCT), misalignment correc-
tion, image quality.

I. INTRODUCTION
For artifact-free reconstruction, precise knowledge of the

detector position and orientation as well as the position of the
x-ray source are required for every projection. It is common
practice to determine the geometry parameters for certain
scan protocols with the aid of dedicated calibration phantoms
and store them ([1]). Later these stored parameters are used
for reconstruction. This procedure is time consuming and
works only on pre-defined scan trajectories. Due to external
impacts, the actual geometry during acquisition might differ
from the geometry used for reconstruction. These geometrical
inaccuracies, the so-called misalignment, as well as patient
movement during acquisition lead to specific artifacts in the
reconstructed volume. Up to now, several approaches for re-
ducing misalignment artifacts were followed. Most algorithms
focus on optimizing the preceding calibration procedure ([2])
or follow a marker-based approach ([3]). The method of choice
in a clinical environment would be a marker-less online-
calibration procedure. This would overcome the drawbacks
of using offline acquired geometry parameters for pre-defined
scan protocols. In Ref. [4], a calibration algorithm which is in-
dependent of the measuring system was introduced. It analyzes
the image entropy inside the field of measurement without
knowledge of spatial characteristics or other a priori knowl-
edge. During an optimization routine, the geometry parameters

Julia Wicklein and Willi A. Kalender are with the Institute of Medical
Physics (IMP), University of Erlangen–Nürnberg, Henkestraße 91, 91052 Er-
langen. Holger Kunze and Yiannis Kyriakou are with Siemens AG, Healthcare
Sector, Forchheim, Germany. Corresponding author: Julia Wicklein, E-mail:
julia.wicklein@imp.uni-erlangen.de.

are adjusted by minimizing the entropy calculated from the
gray-level histogram. Additionally we evaluated an entropy
criterion based on Gabor filters. TV-norm minimization has
become very popular for medical imaging tasks during the
last two decades ([5],[6]). Therefore, we decided to evaluate
TV-norm for misalignment correction. In Ref. [7] the authors
introduces an online-calibration procedure that uses the L 2-
norm of the image gradient to increase sharpness. The back-
projection mismatch (BPM) is used to create the ground-truth
for feature evaluation [8]. It is an object-independent measure
for comparing different geometry parameters.

II. GEOMETRY CALIBRATION

Fig. 1. Perspective projection of a point F on the detector plane (F′). S
is the position of the source and S′ it‘s projection. D is the source-detector
distance.

Fig. 1 shows the basic constitution of the flat-detector CT
geometry. It illustrates the perspective projection of a point
F on the detector plane (F ′). S is the x-ray source and S ′

it’s projection. D is the source-detector distance, O is the
origin point of the detector and u and v it‘s column- and
row-vector. uS′ and vS′ are the detector coordinates of the
source projection S ′. It is common practice to estimate the
intrinsic and extrinsic parameters of the acquisition system
via calibration, providing information about its optical param-
eters, position and orientation (see Ref. [9]). This is done
by calculating a projection matrix for each position of the
trajectory, including the geometrical parameters of the system.
One possibility for the calibration is introduced in Ref. [1]. The
described phantom consists of an empty cylinder with several
markers of known positions. After detecting the 2D marker
positions in the projected image, the 2D/3D correspondences
are used for determining the projection matrix P. This is
done for each projection image of the trajectory and combined
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to one table of projection matrices. The projection matrix P
describes compactly how a 3D point F = (xw

F , y
w
F , z

w
F ), given

in homogeneous coordinates is mapped onto a 2D point on
the detector plane (see Fig. 1).

p(P, F ) =

(

px/pz
py pz

)

=

(

uF ′

vF ′

)

= F ′

defines the projection function of F .

III. HISTOGRAM ENTROPY

The histogram (H) of the intensity values q provides a
global description of an image. Entropy using the gray level
histogram H is calculated according to:

E = −
Q

∑

q=0

(h(q)· log h(q)),

with

h(q) =
H(q)

N
,

where Q is the maximum intensity value, h is the normal-
ized histogram or probability distribution of the image and N
is the number of image pixels.

IV. TOTAL VARIATION

Total Variation (TV) based algorithms became very popular
within the scopes of image denoising ([10],[11]) or image
reconstruction ([5], [6]) during the last two decades. In ([10]),
an iterative, edge preserving method of TV-norm minimization
is introduced to remove noise from images, given the TV-norm
definition for two-dimensional functions:

TV (I) =

∫

Ω

|∇I|dudv =

∫

Ω

√

[

∂

∂u
I

]2

+

[

∂

∂v
I

]2

dudv.

where u, v ∈ Ω are the pixel indices of image I . In most
of numerical implementations, a discrete version of TV-norm
based on the discretization of the gradient opertator ∇ is used.
The simplest gradient operator is defined:

gu =

( −1 1
0 0

)

gv =

( −1 0
1 0

)

,

with ∂
∂uI = gu ∗ I and ∂

∂v I = gv ∗ I .
An automatic alignment by passive auto-focus is presented

in Ref. [7]. The basic procedure includes the reconstruction
of a set of 2D slices of the 3D tomogram to cover the range
of misalignments and selecting the image, that looks the best.
The authors decided to use the L2-norm as fitness function,
representing the sharpness of the image:

S(I) =
∑

u

∑

v

|∇I(u, v)|2.

V. TEXTURE FEATURES BASED ON GABOR FILTERS

Gabor features are commonly used in several image anal-
ysis applications, like texture classification and segmentation
([12]), image registration ([13]), face recognition ([14]) and
motion tracking ([15]). Concerning medical applications, they
have already been successfully applied for content-based mam-
mogram retrieval ([16]). Gabor filters are constructed of a
Gaussian function modulated by a planar cosine. They are
defined by a certain frequency f and orientation θ:

gf,θ(x, y) =
1

2πσ2
exp

(

x2 + y2

2σ2

)

cos (2π(fxcosθ + fysinθ)) .

The reconstructed CT image I is filtered with a set of Gabor
filters gf,θ:

Gf,θ = I ∗ gf,θ.

0 5 10 15 20
0

5

10

15

20
0°

0 5 10 15 20
0

5

10

15

20
45°

0 5 10 15 20
0

5

10

15

20
90°

0 5 10 15 20
0

5

10

15

20
135°

Fig. 2. Gabor filter set with four different orientations θi =

(0◦, 45◦, 90◦, 135◦) and frequency f = 1/4.

Fig. 2 shows the used filter set with frequency f = 1/4
and four different orientations θi = (0◦, 45◦, 90◦, 135◦). A
probability matrix P Gf,θ is calculated from every filter result,
forming the basis for entropy calculation:

PGf,θ(u, v) =
G2

f,θ(u, v)
∫ ∫

G2

f,θ (ũ, ṽ) dũdṽ
.

VI. SIMULATIONS AND MEASUREMENTS

We use the FORBILD head and thorax phantoms (FHP and
FTP) for the evaluation of the features ([17]). Simulations
of two different scan types were adapted to both phantoms,
based on the geometry of FDCT systems ([18]). A circular
360°scan with 360 projections and 616 pixels × 480 pixels
of size 616 μm × 616 μm [see Fig. 3(a)] and a circular
partial scan with an angular range of 200°, performing 133
projections with 1240 pixels × 960 pixels and a pixel size of
308 μm × 308 μm [see Fig. 3(b)] . The radius of the source
trajectory was set to 785 mm and the source-detector distance
to 1200 mm. We reconstructed three transverse slices with a
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Shepp-Logan convolution kernel for images of size 512 pix-
els × 512 pixels. The pixel size was set to 0.5 mm × 0.5 mm
for the FHP, and 1.0 mm × 1.0 mm for the FTP [see Figs.
3(c) and (d)].

Fig. 3. The central transverse slices (z=0) of all evaluated datasets. (a) shows
the simulation of the FHP with 133 projections over 200°. (b) shows the
simulation of the FHP, performed with 360 projections for a full rotation. (c)
shows the reconstruction result of the MHP, performed with 133 projections
over 200°. (d) shows the reconstruction result of the MHP, performed with
496 projections over 200°. (e) shows the reconstruction result of the PAD
with 133 projections over 200°. (f) shows the reconstruction result of the
PAD, performed with 496 projections over 200°. (g) shows the simulation of
the FTP, performed with 133 projections over 200°. (h) shows the simulation
of the FTP, performed ith 360 projections for a full rotation.

Measurements of a head phantom (MHP) and a patient
(PAD) were acquired with SIEMENS Artis Zeego. This system
is equipped with a flat detector of 40 cm × 30 cm with 2480
pixels × 1920 pixels and a pixel size of 154 μm × 154 μm.
All scans were conducted in a circular partial scan with an
angular range of 200 which is typically used in FDCT ([18]).
Scans with 133 [see Fig. 3(c) and (e)] and 496 [see Fig. 3(d)
and (f)] projections with a 2 × 2 pixel binning were performed.
In account with the simulation data, the radius of the source
trajectory was set to 785 mm and the source-detector distance
to 1200 mm. We reconstructed the three central slices for
images of size 512 pixels × 512 pixels with a pixel size of
0.5 mm × 0.5 mm.

VII. EVALUATION
Our aim in this paper is to evaluate the presented image

features in terms of their capability of quantifying misalign-
ment. In cases of the gray-level histogram based entropy, we
converted the reconstructed images to 8 bit to achieve a 256
bins histogram. Therefore, we regarded the images using a
classical bone window with a window level of 300 HU and a
window width of 1500 HU. All other features were evaluated
using the full bit-depth and min-max scaling. For the following

operations we used the BPM with a virtual object including
200 points arranged in a sphere of radius around the isocenter.
We defined a ground truth, including nine misalignment levels
according to the back-projection mismatch (BPM). This was
achieved by manipulating the ideal geometry (BPM=0) of
each dataset with a combination of detector translations and
rotations in a proper magnitude. Fig. 4 illustrates the central
transverse slices of all nine levels in ascending order from 0 to
3 pixels for MHP with 496 projections (MHP 496). This BPM
order, including nine misalignment levels builds the ground
truth for the resulting feature sequences.

Fig. 4. The transverse cuts (z = 0) of the reconstruction result of the
MHP, performed with 496 projections over 200°. The images (a)-(i) show the
evaluated misalignment levels from 0 to 3 pixels, quantified by the BPM.

For each misalignment level and dataset the feature values
are calculated for three different transverse slices (z = 0,
z = 6.16 mm and z = −6.16 mm) and averaged to obtain
one value. We use a min-max-scaling of the feature values for
a specific dataset, for an easier comparison of the different
methods. Fig. 5 shows three examples of possible feature
sequences with a percentage of 100, 92 and 28, visualising
the analogy to the curve progression of the underlying ground
truth. The ideal image feature produces the same sequence of
misalignment levels as the corresponding BPMs and thus is
strictly monotonic increasing. Linearity is not necessary here.
For an efficient optimization method it is important to provide
local minima differing from the parameter adjustment with
minimal BPM, which forms the only global minimum. For
that reason, we focus on the sequence of the feature values
for evaluation. To improve comparability, we converted the
resulting curves into one significant percentage, using the well-
known BubbleSort algorithm ([19]). The number of permu-
tations for an increasing arithmetic of each feature vector
was enumerated, which gives an adequate approximation of
the degree of analogy with the ideal feature sequence. This
resulted in a value between zero and 36 for a maximum

The second international conference on image formation in X-ray computed tomography Page 397



number of permutations with nine vector elements. Therefore,
we achieved the percentage of the corresponding feature by
dividing the enumeration result by 0.36 and subtract that from
100.
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Fig. 5. Ground truth for feature evaluation complemented by three examples
of feature sequences with 100%, 92% and 28% of analogy to the ideal
sequence.

VIII. RESULTS
We present the feature results according to the percentage

evaluation, introduced in chapter VI. Fig. 6 illustrates the
achieved accuracy values for all regarded image features.
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Fig. 6. Accuracy of the histogram-based entropy, the Gabor entropy, the
TV-norm and the L2-norm.

IX. DISCUSSION AND CONCLUSIONS
For our evaluation we use the BPM as ground truth for the

quantification of misalignment. In Ref. [8] we have shown that
for increasing shifts and detector rotation the value of the BPM
also increases. In addition, the visual inspections have shown
a very good correlation of the strength of misalignment and
the BPM. Therefore, and lacking an alternative quantification
method for misalignment, we used the BPM to appraise the
quality of the different feature extraction methods.
Regarding Fig. 6, it becomes obvious that the gray-level
histogram based entropy meets these conditions the best. With
a 256 bins histogram and a classical bone window setting
it achieved high accuracy values for all simulated scans. It
shows small weakness in the case of 133 projections scans,
but exceeds the 90% accuracy level for all evaluated datasets.
The minimal value for the measured head phantom was at
0.125 pixel BPM, for the patient data at 0.25 pixel BPM [see

Fig. 4(b) and (c)]. The entropy calculated from the Gabor
filtered images shows also good results, apart from the patient
scan with 496 projections. A big drawback of this method is
the noticeably inferior performance compared to the histogram
based entropy calculation. TV-norm minimization shows good
results for some of the regarded scans. Nonetheless it shows
considerable differences over all evaluated scans. This high
quality fluctuation makes TV-norm improper for a general
misalignment correction approach. The L2-norm maximization
works quite well on the simulated datasets for a full circular
scan. It shows considerable inadequateness in the case of
200°angle range. The authors of Ref. [7] proposed to pre
filter the images with a low pass to overcome the influences
of noise or under sampling. Our evaluations did not show
improvements with that approach. The same is true with
respect to the alternative convolution kernels.
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An analytical geometric calibration method for circular cone-beam CT geometry

Jingyan Xu and Benjamin M.W. Tsui

I. INTRODUCTION

GEOMETRIC calibration in cone-beam x-ray CT and
SPECT or pinhole SPECT1 aims to determine the com-

plete imaging parameters that are crucial for artifact-free
image reconstruction. The importance of accurate geometrical
information is evidenced by the extensive literature on this
topic, not only in computed tomography [1]–[3], but also in
diverse fields such as robotics [4] and computer vision [5].

It is well known that seven parameters completely describe
the geometry of a circular cone-beam imaging system [3], [6].
Different but equivalent 7-parameter sets have been used in the
literature [6]–[8]. We use the following definition in this work.

• D, the focal length or the perpendicular distance from
the x-ray source or pinhole aperture to the detector;

• R, the radius of rotation or the distance from the focal
point to the rotational axis ez ;

• η, θ, φ, the 3 rotation angles that define the detector
orientation, in which η is the in-plane rotation, φ the
detector slant angle, and θ the detector tilt angle. If θ �= 0,
then the detector plane is not parallel to ez . In the object
coordinate system, the detector axes are defined by [6]:

ew = (cos θ cosφ, cos θ sin φ, sin θ); (1)

eu = cos ηα + sin ηβ, (2)

ev = − sin ηα + cos ηβ (3)

α = (− sinφ, cosφ, 0) (4)

β = (− sin θ cosφ,− sin θ sin φ, cos θ) (5)

• (uc, vc), the cone-beam projection of the object space
origin on the detector.

The first 5 parameters are identical to those in many publica-
tions, e.g., [6], [9]. When these 5 parameters are determined,
there is a simple translation to convert between the last two
parameters (uc, vc) and the perpendicular intersection from the
focal point to the detector (u0, v0) (the principal point) that
are used in other published works. The parameter definitions
are illustrated in Fig. 1.

This paper is a continuation of our recent work on deter-
mining the in-plane rotation angle using a graphical procedure
[10]. Here we use the cone-beam projection correspondence
established in [10] to determine the other 6 parameters. Our
method is general in that we do not assume any parameters,
especially the two out-of-plane angles, θ and φ, to be zero.
The proposed method uses a minimum of 3 point objects with
known distances to calculate all 7 geometrical parameters. The
method is exact in the noise-free case. It can accommodate
shorter scan ranges (≤ 360◦) and some projection trucation in
the calibration scan without affecting its accuracy.

J Xu and Benjamin M W Tsui are with the Division of Medical Physics,
Department of Radiology, Johns Hopkins University. {jxu,btsui}@jhmi.edu.

1Subsequently we use cone-beam CT to include all these modalities and
may not mention them individually each time.
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Fig. 1. The coordinate system definition. The detector orientation, defined
by the axes ew, eu, and ev , are specified by three rotation angles, θ, η, φ,
with respect to the object space. The other 4 parameters to be determined are
D, R, and (uc, vc).

II. METHOD

We first provide a brief summary of the geometric construc-
tion that finds the in-plane rotation angle η [10]. A by-product
of the graphical method is a set of point correspondence
between some characteristic points in the object space and
their cone-beam projection on the detector.

A. A graphical procedure for finding η

To determine the complete set of 7 parameters we need a
minimum of 3 point objects (p = 3), but for η, the geometric
construction uses a minimum of 2 point objects (p = 2). The
projection of different point objects traces out different ellipses
on the detector, from which we can calculate the following [6]:

• the fitted ellipses Ek, k = 1, · · · , p;
• the projection of the rotational axis e′

z ;
• the two points on e′z , (ûk, v̂k), k = 1, · · · , p from the

intersections of the radial or opposing pairs of point
projections;

• the 2 intersection points between each ellipse and e′z ,
(u±

k , v±k ), k = 1, · · · , p.

Using the above elements, we perform the following steps.

1) Draw lines that are tangent to the ellipse Ek at (u±
k , v±k ).

These lines, denoted by L
‖y,±
k in Fig. 2, k = 1, · · · , p,

should converge to the same point (uch, vch)
�
= Pφ. This

is the ”converging point” in [11] due to φ �= 0.
2) Connect Pφ with (ûk, v̂k) on the rotational axis e′z . Each

line, denoted by L
‖y,0
k , intersects with the ellipses Ek at

two points (uk,±, vk,±) [Fig. 2].
3) Draw lines that are tangent to the ellipse Ek at

(uk,±, vk,±). These ”vertical tangent” lines, denoted by
L
‖x,±
k in Fig. 2, and the rotational axis e′z have a

common intersection point O ′, which is the projection
of the origin O on the detector [Fig. 2].

4) Connect O′ with Pφ from step 1. Its slope is − tan η.

When φ = 0, the ”horizontal tangent” lines L
‖y,±
k in step

1 are parallel and Pφ is at infinity. In this case, the slope of
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Fig. 2. The graphical procedure for finding η. The left panel is on the
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L
‖y,±
k is equal to − tan η. In order to determine the point

correspondence for finding other parameters, we modify the
above step 2 as follows.

2m) In case L
‖y,±
k are parallel with each other, L

‖y,0
k then

passes (ûk, v̂k) and is parallel to L
‖y,±
k . Each L

‖y,0
k

intersects with the ellipses Ek at 2 points (uk,±, vk,±).

Once η is obtained, the projection image can be rotated by
η and subsequent analysis can proceed as if η were zero [6].

B. Finding the other six parameters
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tan φ sin θ

Fig. 3. The characteristic positions pk , k = 1, · · · , 5 of one point object and
their cone-beam projections. These are the projection locations of object points
with at least one of their (x, y, z) coordinates equal to zero. For instance,
(uk,±, vk,±) are projections of (0,±r, z). Similar positions are identified
for all other point objects. Their drawings are omitted to avoid cluttering.

Figure 3 summarizes the established correspondence from
the graphical procedure and introduces additional notations for
subsequent derivations. We define 5 characteristic positions for
each point object k and include the origin of the object space
in the point correspondence.

• (±rk, 0, zk)
p↔ (u±

k , v±k );
• (0,±rk, zk)

p↔ (uk,±, vk,±);
• (0, 0, zk)

p↔ (ûk, v̂k)

• O
�
= (0, 0, 0)

p↔ O′ = (uc, vc)

The notation
p↔ means that the left and right entities

are associated by the cone-beam projection. From the above

correspondence, we calculate the following quantities.

b̌k,±
�
= v±k − vc, b̌k,0 = v̂k − vc, (6)

ǎk,±
�
= uk,± − ûk,

ck =
b̌k,+

b̌k,+ − b̌k,0

=
b̌k,−

b̌k,0 − b̌k,−
(7)

A consequence of eqn. (7) is that b̌k,0 is the harmonic mean
of b̌k,+ and b̌k,−, i.e.,

2

b̌k,0

=
1

b̌k,+

+
1

b̌k,−
, ∀k. (8)

Note that ǎk,+ > 0 and ǎk,− < 0 by definition. The cone-beam
geometric parameters are calculated by a sequential evaluation
of eqns. (9) – (13).

tan φ = ck

(

ǎk,+ + ǎk,−
ǎk,+ − ǎk,−

)

(9)

sin θ =
1

tan φ

ûk − ûj

v̂k − v̂j
, k �= j (10)

D

cos θ
= −b̌k,0sin θ sin2 φ − 2ǎk,+ǎk,−ck cos2 φ

ǎk,+ − ǎk,−
(11)

u0 = uc − D tan φ

cos θ
, (12)

v0 = vc − D tan θ. (13)

For now we assume φ �= 0 in eqn. (10). The point object
locations, rk, zk, in units of the radius of rotation R, can be
obtained as follows.

r̃k
�
=

rk

R
=

1

ck

D/ cos θ

D/ cos θ + b̌k,0 sin θ
. (14)

z̃k
�
=

zk

R
=

v̌0 cosφ cos θ
D

cos θ + b̌k,0 sin θ
(15)

The radius of rotation R can be determined if the distance
between a pair of point objects is known. The method is similar
to that described in [6], with the consideration that θ �= 0. We
define the following quantities for each point object k at each
projection view i,

Ĩ
(i)
k

�
=

z̃k

(v
(i)
k − v0) cos θ − D sin θ

,

Ũ
(i)
k

�
=

z̃k(u
(i)
k − u0)

(v
(i)
k − v0) cos θ − D sin θ

= Ĩ
(i)
k (u

(i)
k − u0),

Ṽk
�
=

z̃k(v
(i)
k − v0)

(v
(i)
k − v0) cos θ − D sin θ

= Ĩ
(i)
k (v

(i)
k − v0),

where D, θ, u0, v0, z̃k are the estimated geometric parameters
as given in (10) – (15), and (u

(i)
k , v

(i)
k ) denotes the projected

center location of the point object k at projection view i. Let
dkj be the distance between 2 point objects k and j, k �= j,
then we can show that

d2
kj

R2
= (Ũ

(i)
k − Ũ

(i)
j )2 + +[Ĩ

(i)
k − Ĩ

(i)
j ]2D2 cos2 θ

+(z̃k − z̃j)
2 + (Ṽ

(i)
k − Ṽ

(i)
j )2 sin2 θ

+2(Ṽ
(i)
k − Ṽ

(i)
j )(Ĩ

(i)
k − Ĩ

(i)
j )D sin θ cos θ (16)
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holds for all projection view index i. The right-hand-side
(RHS) of eqn. (16) are all known values. R can then be
obtained from an averaged RHS and the known dkj [6].

Although not explicitly used for calculating the geometric
parameters, a relationship that we have rely on heavily in the
derivations is

z̃k tan θ = (1 − ck r̃k) cosφ. (17)

We omit all derivations due to space limitations. The generic
expressions eqns. (9) – (15) simplify when θ = 0. When
φ �= 0, we need a minimum of two point objects to determine
the geometric parameters since eqn. (10) needs 2 point objects,
and all the other equations need one each. However when
tan φ = 0, θ cannot be determined using eqn. (10) and
subsequent evaluations can not proceed. Another issue that
we find in numerical simulations is that even when tan φ �= 0,
calculating θ from eqn. (10) results in a large variation and
affects subsequent parameter evaluations. Next we start by
considering the issue tanφ = 0 first. Through the process,
we also discover a more stable way of estimating θ to replace
eqn. (10).

C. Finding θ

Examining the general equations (11) – (13), we observe
that the following parameters can still be obtained when φ = 0.

D

cos θ
= ckǎk,+, (18)

u0 = uc. (19)

Eqn. (18) is obtained from eqn. (11), and that φ = 0 which
results from ǎk,+ + ǎk,− = 0.

Among the remaining relationships, namely eqns. (14),
(15), and (17), only 2 are independent for each k. Counting
D/ cos θ as known, there are 3 unknowns (r̃k, z̃k, and sin θ)
in the two independent equations. If we consider using more
point objects, then each additional object will bring two more
equations but also two more unknowns of the object location
(r̃k and z̃k), hence will not help the situation.

To reduce the number of unknowns, we must have some
prior information on the point object locations. Suppose we
have 3 colinear objects such that the middle one is at a known
relative distance to the other two, then there will be in total
6 equations (two for each k) and also 6 unknowns (θ, r̃ 1,2,3

and z̃1,3, since by assumption

z̃2 = λz̃1 + (1 − λ)z̃3, 0 < λ < 1, λ known. (20)

The detector tilt angle θ can then be unambiguously resolved,
and so are all other parameters. Therefore a minimal of 3
point objects are needed when φ = 0. Moreover, using such 3-
point configurations, we can obtain an alternative, more stable
expression for sin θ even when φ �= 0 to replace eqn. (10).
The following two expressions for sin θ can be derived.

sin θ =
D

cos θ
∏3

k=1 b̌k,0

(

λb̌1,0 + (1 − λ)b̌3,0 − b̌2,0

λ
b̌1,0

+ 1−λ
b̌3,0

− 1
b̌2,0

)

(21)

for φ = 0 and

sin θ =

∏3
k=1 Ak

∏3
k=1 b̌k,0

⎛

⎝

λ
b̌1,0
A1

+ (1 − λ)
b̌3,0
A3

− b̌2,0
A2

λ A1
b̌1,0

+ (1 − λ) A3
b̌3,0

− A2
b̌2,0

⎞

⎠ (22)

for φ �= 0. In both eqns. (21) and (22), b̌k,0, for k = 1, 2, 3
are as defined in eqn.(6), and Ak in eqn. (22) are defined as

Ak
�
= −2ǎk,+ǎk,−ck

ǎk,+ − ǎk,−
, k = 1, 2, 3. (23)

The quantity λ is the known relative distance between the
middle point and the two side ones [cf. eqn. (20)]. It is easy
to see that eqn. (21) is a special case of eqn. (22) since when
φ = 0, from eqn. (11) we have

D

cos θ
= −2ǎk,+ǎk,−ck

ǎk,+ − ǎk,−
≡ Ak, ∀k. (24)

Replacing eqn. (10) with either eqn. (21) or the general case
eqn. (22), we obtain the complete parameters from eqns. (9),
(11) – (16). We also need to know the distance between any
2 point objects to calculate R by eqn. (16).

D. Summary of the method

We summarize the calibration method using the recipe in
Fig. 4. We start by the graphical procedure determining the
in-plane rotation angle η [10]. A byproduct is that we also
determine the projections of 5 characteristic positions for each
point object. The locations of these characteristic positions,
i.e., at least one of their (x, y, z) coordinates is zero, simplifies
the equations that link the unknown geometric parameters with
their projection and subsequently enable a simple inversion.

1) Use the graphical procedure to determine η;
2) Perform in-plane rotation by η, the rotation center can

be arbitrary, e.g., (0, 0) ;
3) Locate the projection of the characteristic positions

(ûk, v̂k), (u±
k , v±k ), (uk,±, vk,±), (uc, vc), for all k;

4) Calculate quantities ak,±, bk,0, ck, for all k;
5) Use eqn. (22) to calculate θ;
6) Use eqn. (9) to calculate φ;
7) Use eqn. (11) to calculate D/ cos θ, and D;
8) Use eqn. (19) to calculte u0 ;
9) Use eqn. (13) to calculate v0

10) Use eqns. (14), (15), and (16) to calculate R.
11) Perform in-plane rotation by −η to obtain u c, vc, or

u0, v0.

Fig. 4. Step-by-step recipe of the proposed geometric calibration method.

As has been observed in other publications, e.g. [6], [7],
[12], we find a 2-point object configuration is not enough
to resolve the parameter ambiguity when the detector slant
angle φ = 0. When φ �= 0, although a 2-point configuration
theoretically suffices to calculate all unkonwns, our numerical
studies show that the estimate of θ using eqn. (10) is not stable.
A 3-point colinear configuration with known relative distance
is proposed to estimate θ more reliably whether φ = 0 or
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not. The colinear requirement is an easy and practical way to
ensure the relative distance condition (20).

Both [6] and our method rely on ellipse fitting. Our param-
eterization is more ”aligned” with the object space coordinate
system hence the inversion process is simpler. One property of
these ellipse-fitting base methods is that the calibration results
depend on the input point object projection only through the
fitted ellipse parameters. In this sense, partial data acquisition
range, i.e., a short scan, or projection truncation can be handled
naturally as long as ellipse fitting can be performed. How well
it works in these partial projection situations may depend on
the specific data acquisition geometry and the noise in the
projection data, and is one of the problems we study next.

III. NUMERICAL STUDIES

We focus on two properties of the proposed method, (1)
the robustness against noise in the projection data; and (2)
the robustness against the angular acquisition range in the
calibration scan.

The parameters in Table I are used in the simulations. We
simulate cone-beam projection of 3 ideal (of radius 0) colinear
point objects at 0.5◦ interval over 360◦ acquisition range. The
objects are arranged such that λ = 1/3 in eqn. (20). The
simulated detector has 616 elements in the transaxial direction
(u) and 480 elements in the axial direction v. The flat detector
has square pixels of side length 0.616 mm. To approximate
effects of noise in the projection data, the projection location
of the point object is perturbed by Gaussian noise of standard
deviations 0.01 and 0.1 in pixel size unit. To calculate R [cf.
eqn. (16)], estimates of the object distance d12 and d23 are
obtained by perturbing their true distances (114.92 mm and
57.462 mm) with the same level Gaussian noise of 0.01 and
0.1 (pixel unit) standard deviations. These estimated distances
also provide an estimate of λ. From the 720 projection views
in a full 360◦ scan, we extract three data sets that correspond
to 200◦, 270◦, and the full 360◦ angular range. The shortest
acquisition interval 200◦ can be used as a short scan for objects
of 23 cm or smaller.

TABLE I
PARAMETERS USED IN COMPUTER SIMULATIONS.

θ [deg] φ [deg] D [mm] R [mm]

2.5 -2.2 1200.0 750.0
uc [mm] vc [mm] η [deg] # of views

-33.338 44.736 3 200◦, 270◦ , 360◦ @ 0.5◦

In our simulations, the detector tilt angle θ and the slant
angle φ are fixed at 2.5◦ and -2.2◦, respectively. We apply
the recipe in Fig. 4 to obtain the complete set of parameters.
In all cases, i.e., different noise level in projection data
and different data acquisition range, we calculate the mean
and the standard deviation of the estimated parameters using
50 independent noise realizations. The parameter estimation
results are provided in Fig. 5.

IV. RESULTS

In Fig. 5 we tabulate the estimation results. At each noise
level, the standard deviation of the estimated parameters in-

crease as the data acuqisition range shortens. Generally speak-
ing, shorter acqusition range and higher noise in projection
data have similar effects on the parameter variation. We notice
at the higher noise level (0.1 pixel standard deviation) and the
200◦ angular range, there is a sharp increase in the standard
deviation of the estimated parameters.

V. CONCLUSIONS

We have proposed a geometrical calibration method to
estimate the seven parameters in circular cone beam geometry.
The method is analytical and exact in the noise-free case. The
calibration scan requires a minimum of 3 point objects with
known distances between any 2-point combinations. A 3-point
colinear configuration can be an easy and practical way to
satisfy these requirements.

The initial steps of the calibration method are highly graph-
ical in nature, which involves ellipse fitting, and calculation
of line-ellipse intersections and tangencies. The results of
these calculations are summarized by the projection locations
of 5 characteristic positions for each point object and the
projection of the origin. The subsequent analytical calculation
of the geometrical parameters is straightforward. Due to space
limitations, the derviations of all equations are omitted.

In the noise-free case, the accuracy of the proposed method
is not affected by the angular range in the calibration scan
as long as ellipse-fitting can be performed. It could be a full
360◦ acquisition, partial scans or with calibration projection
truncation. In the presence of noise, our numerical evaluations
demonstrate that the effects of partial scans on parameter
accuracy are similar to increased noise level in projection data.
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Hybrid Scatter Correction for CT Imaging
Matthias Baer and Marc Kachelrieß,Member, IEEE

Abstract—The purpose of this study was to develop and
evaluate a hybrid scatter correction (HSC) for CT imaging.
Therefore two established ways to perform scatter correction,
physical scatter correction based on Monte Carlo simulations
and a convolution–based scatter correction algorithm, were
combined in order to perform an object–dependent, fast and
accurate scatter correction.

Based on a reconstructed CT image, patient–specific scatter
intensity is estimated by a coarse Monte Carlo simulation that
uses a reduced amount of simulated photons in order to reduce
simulation time. In a second step this high noise estimate of
the scatter intensity is used to calibrate the open parameters
in a convolution–based algorithm which is then used to correct
measured intensities for scatter.

Results show that with HSC scatter artifacts in CT images
can be strongly reduced. While the error between images
corrected with HSC and scatter–free reference images reduces
to about 10% for simulations and measurments, simulation
time can be reduced by about a factor of 50≈ 100 as compared
to a low noise Monte Carlo scatter correction.

Keywords: CT imaging, Monte Carlo simulation, scatter
correction, Convolution–based scatter correction

I. I NTRODUCTION

In the literature there exists a great amount of scatter
correction algorithms which either aim to produce estimates
of the scatter portion in the measured intensities or try
to heuristically correct images based on the well known
structure of scatter artifacts (cupping and streaks).

Recently Rührnschopf et al. [1, 2] published a review
article about scatter correction algorithms and interested
reader may refer to these publications to get a general
overview of available scatter correction algorithms.

Here we want to introduce an algorithm for a hybrid
scatter correction (HSC) of CT images that combines two
different scatter estimation methods: Physical scatter esti-
mation based on Monte Carlo simulation and convolution–
based scatter estimation. Each of these methods has its
certain disadvantages which we want to avoid by combining
the two approaches.

Physical scatter estimation based on Monte Carlo simula-
tion of photon transport through the object is considered
to be very accurate since real physics are incorporated
in the model. The drawback of these methods is their
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high computational complexity as compared to other scatter
methods [2].

Scatter estimation methods which have less computational
needs are convolution–based methods. The principle of
convolution–based algorithms is that based on measured
intensitiesIps, a so–called scatter potentialΦ = f(Ips) is
calculated which is convolved by a scatter kernelK in order
to generate an estimate of the scatter intensityIs. Different
models for calculatingΦ andK are given in [3, 4, 5, 6, 7, 8].

The drawback of convolution–based methods is that the
models contain parameters for the shape of the scatter kernel
K and the scatter potentialΦ which need to be calibrated
in advance.

The HSC algorithm which we introduce here combines
Monte Carlo–based scatter correction with a convolution–
based algorithm to do a fast, accurate, and object–dependent
scatter correction that needs no extra calibration measure-
ments or simulations. Thereby the principle of HSC is that
based on a coarse Monte Carlo simulation of the scatter
intensity open parameters in a convolution–based algorithm
are determined. The Monte Carlo–calibrated convolution–
based algorithm is then used to correct measured intensities
for scatter.

II. M ATERIALS AND METHODS

In the following the projection angle will be denoted by
α while the angles in the fan and cone are parameterized by
β andγ. Let qps(α, β, γ) be the measured projection value
including scatter, i.e.qps(α, β, γ) is given by

qps(α, β, γ) = − ln
Ip(α, β, γ) + Is(α, β, γ)

I0(α, β, γ)
.

HereIp(α, β, γ), Is(α, β, γ), andI0(α, β, γ) are the primary,
scattered and unattenuated intensity. The dependency onα,
β, andγ will be dropped in the following for convenience.

Given that we have an algorithm to generate an estimate
Îs of the real scatter intensityIs we can compute a scatter
corrected projection value

q̂p = − ln
Ip + Is − Îs

I0

that is an estimate of the real scatter–free projection value
qp = − ln Ip/I0.

Note that q̂p is only corrected for scatter and therefore
images reconstructed from̂qp will still contain artifacts that
arise from the polychromatic source spectrum of the x–ray
tube, i.e. cupping and beam hardening artifacts. To correct
those artifacts we used the Empirical Cupping Correction
(ECC) algorithm [9] for water precorrection and the Empir-
ical Beam Hardening Correction (EBHC) algorithm [10] to
remove beam hardening artifacts.
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A. Monte Carlo Simulation Tool

For HSC we used an in–house Monte Carlo simulation
tool. Based on tabulated data for the attenuation coefficient
and the cross sections of Compton scattering, Rayleigh
scattering and photo effect, photon histories through the
scanned object are simulated in order to compute a Monte
Carlo estimateÎMC

s of the scatter intensity. To reduce the
computational costs of the photon transport the Woodcock
tracking algorithm [11] for path length sampling is used. In
order to further decrease the simulation time of the Monte
Carlo scatter signal the fixed splitting technique [12] and
the Richardson–Lucy algorithm as described in [13] are
implemented and used in the software.

B. Convolution–Based Algorithm

The convolution–based algorithm we used for HSC is the
one published by Ohnesorge et al. [5]. According to this
model scatter intensity can be estimated by scaling measured
x–ray intensities with the scatter potential

Φ(qps, c0, c1) = c0 + c1 · qpse
−qps,

followed by a convolution with the scatter kernelK. There-
fore with the convolution–based model an estimateÎCB

s of
the scatter intensity along a certain ray may be estimated
using

ÎCB
s (qps, c) = Φ(qps, c0, c1) ∗K(qps, c2, c3, c4, c5)

with the scatter kernel

K(qps) =

(

∑

±

e−c2(β±c3)
2

·
∑

±

e−c4(γ±c5)
2

)

.

In the original paper [5] the open parametersci, i = 0, . . . , 5
were determined by calibration measurements. With HSC
the open parameters are determined without prior calibration
but by using a coarse Monte Carlo simulation of the scatter
intensity based on a reconstruction of the scanned object.

C. Hybrid Scatter Correction (HSC)

Since the simulation time of Monte Carlo simulations
depends on the number of simulated photons one way to
reduce simulation time is to decrease the number of simu-
lated photons. The drawback of this approach is that it comes
at the cost of a higher noise level in the simulated scatter
signal. With HSC we overcome this by using the high noise
Monte Carlo signal only to calibrate the open parameters
in a convolution–based algorithm which is then used for
the scatter correction. As compared to other approaches
were the open paramteres are calibrated by prior calibration
measurements [14] or Monte Carlo simlations of calibration
objects [15, 6, 8], we here use an estimate of the scatter
intensity that is computed based on the scanned object itself
to determine the open paramters.

The calibration of the convolution–based algorithm is then
done by minimizing the quadratic error between the high

noise Monte Carlo estimatêIMC
s and the estimatêICB

s of the
convolution–based algorithm, i.e. we have to solve

c(α) = argmin
c(α)

∫

dβ dγ
(

ÎMC
s (α, β, γ)− ÎCB

s (α, β, γ, c)
)2
.

(1)
Here c(α) =

(

c0(α), . . . , c5(α)
)

is a vector containing all
open parameters of the convolution–based algorithm which
may depend on the projection angleα.

Equation (1) can be solved by using any standard nu-
merical nonlinear minimization algorithm. We here used a
multidimensional downhill simplex algorithm [16].

Note that HSC is not restricted to the usage of a certain
convolution–based algorithm. As long as a convolution–
based algorithm contains a set of open parameters to model
the scatter potentialΦ and the scatter kernelK that need to
be calibrated in advance, it can be used in HSC. The investi-
gation which of the numerous convolution–based algorithms
that exist in literature fits best to HSC is beyond the scope
of this paper since here we only want to show the general
applicability of HSC.

D. Simulations

To validate our new method we performed simulations in
a clinical CT geometry. A typical prefiltration and typical
detector efficiencies corresponding to a clinical CT scanner
were taken into account. Additionally a one dimensional anti
scatter grid was placed on top of the detector. Simulations
were performed for a monochromatic and a polychromatic
source spectrum in order to clearly distinguish between
artifacts arising from scatter and artifacts caused by the
spectrum of the x–ray source. The polychromatic source
spectrum was modeled according to Tucker et al. [17]. Poly-
chromatic simulations were done at a typical tube voltage
of U =120 kV whereas monochromatic simulations were
performed at an energy ofE =70 keV. All simulations were
done for the Forbild thorax phantom (http://www.imp.uni-
erlangen.de/phantoms/).

1) Monochromatic Source Model:In a first experiment
the number of calibration stepsNcal needed to achieve an
accurate scatter correction was determined. The projection
anglesαn = α0 + n · 2π/Ncal for which a new parameter
vectorc(αn) was calibrated were distributed equally spaced
over 360 degree starting at the p.a. direction (α0 = 0). The
parameter vectorc(α) between two calibration angles was
computed by linear interpolation. In order to facilitate the
analysis of the pure scatter correction potential of HSC as a
function ofNcal, calibration was done based on a low noise
Monte Carlo simulation.

To determine the number of photonsNPh needed in
the Monte Carlo simulation step of HSC, scatter inten-
sity was simulated with reduced amounts of photons. The
convolution–based algorithm was calibrated based on these
coarse Monte Carlo simulations and the accuracy of the
scatter correction as a function ofNPh was investigated.
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As a quantitative measure of the scatter correction poten-
tial we use the relative errorE defined as

E =

√

∫

dr
(

fref(r)− f̂(r)
)2
/

∫

dr
(

fref(r)− f(r)
)2
.

(2)
Here,fref is the reference image reconstructed from primary
radiation only,f is the uncorrected image with scatter, andf̂

is the scatter–corrected image. The material composition and
density distribution needed for the Monte Carlo simulations
were taken from the known phantom composition.

2) Polychromatic Source Model:Based on the results for
Ncal andNPh from the preceding sections the scatter correc-
tion potential of HSC was investigated in a more realistic
simulation setup using polychromatic projection data. The
density and material information for the Monte Carlo simu-
lation were taken from a water–precorrected reconstruction
that included beam hardening and scatter artifacts. Again
artifact reduction was determined by measuring the errorE

(equation (2)).

E. Measurements

To evaluate the scatter correction potential of HSC for
measured data a scan of an head phantom was performed
with the Varian OBI CT scanner, Varian Medical Systems,
Palo Alto, USA. Tube voltage was set to 120 kV and
density and material information of the head phantom was
extracted from a water–precorrected reconstruction. For the
measurements no scatter–free reference reconstruction was
available. Therefore we used an image corrected with a low
noise Monte Carlo simulation on which we applied EBHC as
reference. In analogy to equation (2) the error between this
reference and the corrected image was used as a measure of
artifact correction.

III. R ESULTS

A. Monochromatic Source Model

Figure 1 shows the results for the scatter reduction po-
tential of HSC as a function of calibration stepsNcal. For
Ncal ≥ 16 only minor changes can be observed. Based
on this result all further experiments were performed with
Ncal = 16.

The error between an image reconstructed from primary
radiation only and an image reconstructed from scatter–
corrected projection data as a function of the number of
simulated Monte Carlo photons is depicted in figure 1. The
error increases only slightly up to a relative photon number
of NPh/NPh, ref= 0.01, whereNPh, ref is the number of pho-
tons used in a low noise reference Monte Carlo simulation. If
the photon number is further reduced a strong increase in the
error can be observed. Therefore all succeeding experiments
were performed with withNPh/NPh, ref= 0.01.

Fig. 1. Left: Error in scatter–corrected images as a function ofNcal. The
analysis forNcal was done based on a low noise Monte Carlo simulation
usingNPh, ref photons. ForNcal ≥ 16 only minor changes can be observed.
A total of 1024 projections were simulated. Right: Error in scatter–corrected
images as a function of the relative photon numberNPh/NPh, ref with
NPh, ref being the number of photons in a low noise reference Monte Carlo
simulation andNPh being the number of photons used to calibrate the
convolution–based algorithm. The analysis was done withNcal = 16.

B. Polychromatic Source Model

The results for the scatter correction potential of HSC in
case of polychromatic projection data are shown in figure 2.
With HSC scatter artifacts are strongly reduced. Since HSC
addresses only scattered radiation beam hardening artifacts
remain in the corrected image. After performing EBHC on
top of HSC the error in the corrected image stays under
15%.

C. Measurements

Results for the measurements are shown in figure 2. Com-
pared to the uncorrected image scatter and beam hardening
artifacts are strongly reduced by using HSC and EBHC. The
difference image shows only minor differences between the
reference image corrected with the full blown Monte Carlo
simulation and the HSC corrected image (figure 2).

IV. SUMMARY AND CONCLUSION

As shown, four simulated Monte Carlo projections are
sufficient to achieve an accurate scatter correction. Let us
assume that during a standard CT scan in the order of 1000
projections are acquired. Further assume that the simulation
time for one low noise Monte Carlo scatter projection is
given bytMC. As shown, with HSC we need to do the Monte
Carlo simulation only for four projections and the photon
number in the Monte Carlo simulation can be decreased by
about a factor of 100 while still achieving a good scatter
correction. The computation timetCB for fitting the open
parameters in the convolution–based algorithm was in the
same order as the simulation timetMC for one low noise
Monte Carlo scatter projection. Therefore the total speed up
due to HSC as compared to a full low noise Monte Carlo
simulation of the scatter signal can be estimated by

SpeedUp=
1000 · tMC

16 · 0.01 · tMC + 16 ·tCB
︸︷︷︸

≈tMC

≈ 50 to 100.
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Fig. 2. First and second column depict the results of the simulation study. First column top to bottom: EBHC–corrected image reconstructed from
scatter free projection data, uncorrected image containing scatter and beam hardening artifacts, image corrected for scatter with HSC, scatter– and beam
hardening–corrected image. All images are depicted at the same window setting (C=0 HU / W=200 HU). Second column: Difference to reference image.
Windowing: C=0 HU / W=200 HU. Results of the measurements are depicted in third and fourth row. Third column top to bottom: Scatter– (low noise
Monte Carlo) and EBHC–corrected reference image, uncorrected image containing scatter and beam hardening artifacts, image corrected for scatter with
HSC, scatter– and beam hardening–corrected image. All images are depicted at the same window setting (C=50 HU / W=400 HU). Fourth column:
Difference to refernce image. Windowing: C=0 HU / W=300 HU.

So in conclusion with HSC we propose a method that
exhibits the possibility to do a Monte Carlo–based, object–
dependent scatter correction with highly reduced compu-
tational needs as compared to pure Monte Carlo–based
scatter correction while still achieving a good scatter artifact
correction.
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Calculation and Comparison of Figures of Merit for
Spectral CT

David S. Rigie and Patrick J. La Rivière

Abstract—In recent years, there has been a renewed interest in
spectral CT. Advances in detector technology and post-processing
methods have made concepts which were described as early as the
1970s realizable in the clinic today. Still, there is divergence in the
field as to which approach to spectral CT is optimal, with major
vendors exploring dual-source imaging, fast kV switching, dual-
layer detectors, and photon counting detectors. In this paper we
propose two figures of merit for quantitatively comparing these
techniques: a physical SNR that is a direct measure of the data
quality, and a clinical SNR that quantifies a systems ability to
perform a clinical decision task. We believe these metrics will be
useful both in guiding the design of a spectral CT system as well
as choosing optimal parameters when performing a clinical scan
based upon the task that is being performed.

I. INTRODUCTION

There has been a great deal of interest in spectral CT over
the last few years due partly to the development of clinical
systems by major vendors and also because of the recent
advances made in photon-counting detectors. Though the
mathematical framework has been around for several decades
[1], the technology has only recently seen clinical adoption. It
has been shown that spectral CT can provide better contrast-
to-noise than conventional CT without additional dose cost
[4], and there is an ever-growing list of clinical applications,
which have been discussed extensively elsewhere [5].

The usefulness of spectral CT is unquestionable, however
the general criteria for acquiring spectral information are
quite loose, and so many different approaches have been
studied, each with its own advantages and disadvantages. In
this paper, we seek to outline some methods for evaluating
the relative performance of different spectral CT systems.
Specifically, we have looked at kV switching, dual-source
imaging, multilayer detection, and photon-counting schemes.
All of the methods discussed are readily generalizable to
generic spectral CT systems. We discuss two different figures
of merit for evaluating the performance of a specified system:
a physical SNR, which quantifies the quality of the measured
data with regard to a specific decomposition task, and a clinical
SNR which quantifies a system’s utility in making a stated
clinical decision. The physical SNR also serves as a useful
metric for optimizing a system over a range of parameters,
such as the energy thresholds in a photon-counting system.
We believe these tools will be useful in aiding design choices
during the development of a spectral CT system as well as
helping an operator choose optimal parameters on an already
existent system.

David Rigie and Patrick J. La Rivière are with the Department of Radiology
at the University of Chicago

II. OBJECT MODEL

As described by Alvarez et al. [1] we first assume that the
object function µ(r, E) can be represented by some set of
basis functions.

µ(r, E) =
N∑
i=1

ρi(r)fi(E) (1)

One option is to use the mass-attenuation coefficients of the
materials comprising the object. In this case, ρi(r) would be
the physical density distribution of the ith material and fi(E)
would be its mass attenuation at energy E. Next, we assume
that multiple, spectrally distinct measurements are acquired.
The jth such measurement along a given ray through the object
is

Mj =

∫
Sj(E)Dj(E) exp

{
−

N∑
i=1

Aifi(E)

}
dE (2)

where Sj(E) and Dj(E) represent the energy dependence
of the incident x-ray spectrum and the detector response,
respectively. Ai ≡

∫
ρi(r)d` is the integrated density of the ith

material along the measured ray. If the number of spectrally
distinct measurements is at least as great as the number of
basis materials, one can solve for the Ai and if this process
is repeated for all of the rays in the CT projection data, one
obtains the Radon transforms of the ρi(r) for each material.
Standard reconstruction methods can be applied to obtain true
density maps.

III. PHYSICAL FIGURE OF MERIT

The inversion of (2) to get A, the line integral of the
material densities, is affected by noise in the measurements
M . Given the statistical fluctuations in M , we are only able
to get a noisy estimate of the true values of A. The amount
of noise in this estimate is largely affected by how well-
posed the inverse problem is. It is straight-forward to show
that the maximum-likelihood estimator of A, denoted by Â,
is simply the value that satisfies (2), if the noise corrupted
measurements are plugged in for Mj . While it is extremely
difficult to calculate the probability distribution of Âi, one can
easily find the Cramer-Rao lower bound on the variance of Âi
[3]. In most practical situations, the CRLB is achieved [1],
and we obtain the true value of the variance of Âi. We define
the physical SNR for a given decompositon task as

SNRP ≡
Ai
σÂi

(3)
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where σÂi
is the standard deviation of Âi. This physical

SNR quantifies the minimum uncertainty we can achieve
in a sinogram-domain material decomposition for a given
projection line. It depends on the magnitude of the noise in
our raw measurements as well as the amount of unique energy
information provided by the spectral measurements.

IV. CLINICAL FIGURE OF MERIT

The clinical figure of merit seeks to assess the information
content of the spectral CT data with respect to performing a
specified clinical task. We’ve used the ideal observer formal-
ism to evaluate the quality of the raw transmission data [2].
The task is to discriminate two nonrandom signals in additive
Gaussian or Poisson noise. In spectral CT, it is often the case
that the ”shape” of the signal is known or discernable (e.g.
a blood vessel), and the goal is to determine which of two
known materials is present (e.g., Calcium or Iodine).

Mathematically, we are trying to discriminate between two
hypotheses.

H1 : g = Hf1 + n

H2 : g = Hf2 + n
(4)

Here, g is a vector containing our two different noise-
corrupted, spectral measurements. The ideal observer decides
in favor of hypothesis 1 when the likelihood ratio is greater
than 1. Using the log-likelihood ratio as a test statistic, Λ, we
can define a signal-to-noise ratio as

SNR2
C ≡

(
Λ1 − Λ2

)2
1
2σ

2
Λ1

+ 1
2σ

2
Λ2

(5)

where Λj and σ2
Λj

are the mean and variance, respectively,
of the test-statistic under hypothesis j. The SNR quantifies
how well the test-statistic is able to separate the two different
hypotheses for given measurements. For the case of meaus-
rements corrupted by Poisson noise, we get the following
expression:

SNR2 =

[∑
i(g1i − g2i) ln g1i

g2i

]
1
2

∑
i(g1i + g2i) ln2 g1i

g2i

. (6)

Using the clinical and physical SNRs we will compare the
performance of several different types of CT systems at
distinguishing materials of clinical interest.

V. SOURCE AND DETECTOR MODELS

For all of the following models, it was assumed that multiple
measurements were made along the same ray through the
object. In practice, this may not be true for kV switching or
dual-source imaging, so this idealization could artifically boost
the performance of these techniques. All x-ray tube spectra
were generated using the well-benchmarked Tucker model [6],
and overall tube outputs were adjusted so that all spectral CT
approaches would be evaluated at equal dose.

A. Dual-layer detection

Our model of the dual-layer detector is highly flexible in
terms of material types and thicknesses. However, since it is
not possible to change the composition of the detector on the
fly for different imaging tasks, we assumed a 1mm front layer
of ZnSe and a 2mm rear layer of GOS. The measurements
from the two layers were considered to be completely inde-
pendent, which in practice is difficult to achieve due to optical
and electronic cross-talk. A 120 kVp spectrum was used with
2.7mm Al filtration, and its output was scaled so that one
million photons would be incident on the object for a single
projection line.

B. Fast kV Switching

To simulate fast kV switching, we used 140 and 80 kVp
spectra with 2.7mm Al filtration. It was assumed that the 80
kVp measurement was taken with twice the integration time of
the 140 kVp measurement. This is commonly done in practice
to partially compensate for differences in tube output.

C. Dual-source Imaging

Dual-source imaging was modeled in the same manner as
the kV switching case, except the high kVp spectrum had
an additional 0.4mm tin filter for greater spectral separation.
The relative outputs of the two tubes was also left as a free
parameter, and for comparison purposes, it was optimized for
each task according to physical SNR.

D. Photon Counting

Using the same tube spectrum as in the dual-layer detector
case, the photon counting detector was assumed to have perfect
energy windowing based on defined thresholds. Though we
have not incorporated it into our model, it is straight-forward
to model bin overlap caused by imperfect energy resolution.
We used three energy bins with thresholds optimized for each
imaging task based on physical SNR.

We have compared the photon-counting system to the
others under the assumption of equal dose, which is usually
unachievable due to low count-rate capabilities of photon-
counting detectors at present. In practical situations, this would
require a very long imaging time, so the strong performance
of the photon-counting system should be interpreted with this
caveat in mind.

VI. PRELIMINARY RESULTS

A. Physical SNR

To compare the above systems, we calculated the physical
SNR associated with the determination of the integrated con-
centration of a ”contrast” material within 30g/cm2 of water
background. Specifically, we looked at calcium, iodine, gold,
gadolinium, uric acid, and struvite. Plots of the physical SNR
as a function of the mass-thickness of contrast material are
seen in fig. 1 and fig. 2. Table I gives a cross-section of such
curves for all of the materials we looked at for 0.05g/cm2 of
contrast.
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Fig. 1. Plot of physical SNR for varying amounts of Calcium in 30 g/cm2

water background

Fig. 2. Plot of physical SNR for varying amounts of Iodine in 30 g/cm2

water background

TABLE I
PHYSICAL SNR OF CONTRAST MATERIALS

Contrast
Material

Dual Layer kV Switch Dual
Source

Photon
Counting

Calcium 1.28 1.77 2.81 4.03
Iodine 2.00 5.16 7.96 9.70
Gold 0.58 1.17 2.10 8.14
Gadolinium 1.12 2.67 4.17 5.76
Uric Acid 0.05 0.02 0.03 0.05
Struvite 0.10 0.13 0.21 0.32

The relative ranking of these systems matches our intuition.
Systems with greater degree of spectral separation between
measurements perform better.

B. Clinical SNR

Using (6) for the photon-counting systems and an analogous
Gaussian noise formula for the others, we looked at the task
of distinguishing two materials of known amounts. Here, the
task is not to distinguish contrast from background, but rather
to determine which of two contrast materials is present. Table
II gives the clinical SNR assuming 0.5 cm of contrast material
in 30cm of water background. Figure 3 shows how the clinical
SNR varies with the amount of contrast material for the case
of the uric acid/calcium identification task.

Fig. 3. Uric Acid / Calcium identification task: plot of clinical SNR for
varying amounts of contrast in 30cm water background

TABLE II
CLINICAL SNR FOR IDEAL OBSERVER TASK

Contrast Material Dual
Layer

kV
Switch

Dual
Source

Photon
Counting

Ca vs. I 23.11 10.38 13.64 43.28
Ca vs. Uric Acid 7.27 7.30 8.22 11.06
Uric Acid vs Ca 0.40 0.47 0.56 0.79

Again, we see the same relative performance ranking among
systems considered.

C. Image Domain Analysis

The ideal observer model for clinical SNR does provide
some useful information, but it is a bit restrictive. Another
approach that may be more illuminating is to map the physical
SNR into the image domain. Here, we will show how this can
be done for parallel-beam geometry.

Let the integrated density of the ith material along the line
parametrized by (ξ, φ) be denoted by Ai(ξ, φ). These values
are the ones that are solved for when doing the dual energy
decomposition by inverting (2). The material density can be
obtained by performing filtered back projection,

ρi(r) =

∫ π

0

∫ ∞
−∞

h(ξ′)Ai(ξ − ξ′, φ)dξ′ (7)
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where h(ξ′) is the conventional ramp filter. Therefore, the
variance of the density at position r is simply

var {ρi(r)}
∫ π

0

∫ ∞
−∞

h2(ξ′)σ2
Ai

(ξ − ξ′, φ)dξ′ (8)

where σ2
Ai

is the same variance used in (5) obtained from the
CRLB. We can use (8) to calculate the variance images for
any arbitrary phantom. Figure 4 shows a 2D water phantom
with four disks made of calcium and associated SNR images.

Fig. 4. (Left) 30 cm water phantom with 2cm, 1cm, 0.5cm and 0.25cm
diameter calcium disks. (Top Right) SNR image for water density. (Bottom
Right) SNR image for calcium density

This approach can easily be extended to a more realistic
beam geometry.

VII. CONCLUSIONS AND FUTURE WORK

The simple physical SNR presented here is a useful tool for
quantitatively comparing different spectral CT systems, and it
can be mapped into the image domain for a more intuitive
evaluation of performance. The fact that it can be calculated
rapidly for different system parameters makes it suitable for
optimization studies.

We found that the dual-source and photon-counting systems
performed the best in every task we evaluated. This is to be
expected because of the excellent spectral separation provided
by these modalities.

In the future we would like to create a more realistic photon
counting model that accounts for bin overlap and pulse pile-
up. Furthermore, we plan on extending the 2D simulation
to model a fan-beam geometry and include other relevant
features, such as a bow-tie filter and electronic noise in the
detector. Eventually, it may be necessary to resort to Monte
Carlo simulations to account for scatter and other higher order
effects. These considerations will be important for determining
absolute performance capabilities, but we do not anticipate that
they will drastically affect the relative performance rankings
we are seeing. We are also working on developing better
clinical performance metrics.
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Multi-Material Decomposition Using Statistical

Image Reconstruction in X-Ray CT
Yong Long and Jeffrey A. Fessler

Abstract—Dual-energy (DE) CT scans provide two sets of
measurements at two different source energies. In principle, two
materials can be accurately decomposed from DECT measure-
ments. For triple-material decomposition, a third constraint, such
as volume or mass conservation, is required to solve three sets of
unknowns from two sets of measurements. An image-domain (ID)
method [1] has been proposed recently to reconstruct multiple
materials using DECT. This method assumes each pixel contains
at most three materials out of several possible materials and
decomposes a mixture pixel by pixel. We propose a penalized-
likelihood (PL) method with edge-preserving regularizers for
each material to reconstruct multi-material images using a
similar constraint. Comparing with the image-domain method the
PL method greatly reduced noise, streak and cross-talk artifacts,
and achieved much smaller root-mean-square (RMS) errors.

Index Terms—Computed tomography, dual energy, multi-
material decomposition, statistical image reconstruction

I. INTRODUCTION

Dual-energy (DE) CT reconstruction methods typically re-

construct images of two basis materials (e.g., soft-tissue and

bone) from two sets of measurements at two different X-

ray source potential. However, some applications desire three

or more component images [1], [2]. When quantifying the

concentration of iron in a fatty liver, images of three constitute

materials, iron, fat and tissue, are required [2]. For the purpose

of radiotherapy, in addition to soft-tissue and bone it is also

useful to know the distribution(s) of other materials, such as

calcium, metal (e.g., gold) and iodine.

A third criteria, such as volume conservation [1] or mass

conservation [2], can enable reconstructing three basis mate-

rials from DECT measurements. Volume (mass) conservation

assumes the sum of the volumes (masses) of the three con-

stituent materials is equivalent to the volume (mass) of the

mixture.

Mendonca et al. [1] proposed an image-domain method to

reconstruct multiple materials pixel by pixel from a DECT

scan. In addition to volume conservation assumption, this

method assumes that each pixel contains a mixture of at

most three materials and the material types can vary between

pixels. It establishes a material library containing all the

possible triplets of basis materials for a specific application. It

obtains a dual-material-density pair through projection-based

decomposition approach from DECT measurements, and then

generates a linear-attenuation-coefficient (LAC) pair for each

pixel at two selected distinct energies. Given a LAC pair, a

This work was supported in part by NIH grant HL-098686.
Y. Long and J. Fessler are with Dept. of Electrical Engineering and
Computer Science, University of Michigan, Ann Arbor, MI 48109.

material triplet and the volume conservation assumption, triple

material decomposition is solvable for each pixel. This method

sequentially decompose each pixel into different triplets in the

material library, and collects solutions of volume fractions that

satisfy a box constraint ([0 1]). If there are multiple solutions,

it determines the optimal triplet as the one which has the

smallest sum of distances between the original LAC pair and

three LAC pairs of its constituent materials at the two selected

distinct energies. If there is no feasible solution, it finds

a unique multi-material decomposition by solving a mixed

least-square optimization problem with volume conservation

constraint.

Inspired by the image-domain method [1], we propose a

penalized-likelihood (PL) method with edge-preserving regu-

larizers for each material to reconstruct multi-material images.

It is well known that statistical image reconstruction methods

based on physical models of the CT system and a statistical

model can obtain lower noise images. The proposed PL

method considers each material image as a whole, instead

of pixel by pixel, so prior knowledge, such as piecewise

smoothness, can be used to help solve the reconstruction

problem.

We evaluated the proposed PL method on a simulated object

containing fat, blood, omnipaque300 (a common contrast

agent), cortical bone and air. Comparing with the image-

domain method, the PL method was able to reconstruct

component images with lower noise, greatly reduce streak

artifacts, and effectively alleviate the cross-talk phenomenon

where a component of one material appearing in the image

of another material. The RMS errors of the PL method were

about 40% lower for fat, blood, omnipaque300 and cortical

bone compared to the image-domain method.

The organization of this paper is as follows, Section 2

introduces the physical model and the PL method, Section 3

shows the results and Section 4 presents conclusions.

II. METHOD

A. Physical Models

1) Measurement Model: We use the following general

model to describe the measurement physics for X-ray CT.

The detector measures X-ray photon emerging from the object

at M0 ≥ 1 different incident spectra. Let Yim denote the

measurement for the ray Lim which is the ith ray for the mth

energy scan, where m = 1, . . . ,M0, i = 1, . . . , Nd, and Nd

is the number of rays. For a ray Lim of infinitesimal width,

the mean of the projection measurements could be expressed
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as:

ȳim
△

=

∫

Iim(E) exp

(

−

∫

Lim

µ(~x, E) dℓ

)

dE +rim, (1)

where µ(~x, E) denotes the 3D unknown spatially- and energy-
dependent attenuation distribution,

∫

Lim
· dℓ denotes the “line

integral” function along line Lim, the incident X-ray intensity

Iim(E) incorporates the source spectrum and the detector gain,
and rim denotes the ensemble mean of background signals. We

treat each Iim(E) and rim as known nonnegative quantities.

2) Object Model: Assuming volume conservation [1] that

volume of a mixture equals to the sum of volumes of its

constituent parts, the volume fraction of the lth material at

the jth pixel is xlj = Vlj/
∑L0

l=1 Vlj , where Vlj denotes the

volume of the lth material at the jth pixel and L0 denotes

the number of materials of interest. We also assume that each

pixel contains no more than three materials and the material

types can be different among pixels. Let Θ be the triplet library
containing all physically meaningful triplets formed from L0

pre-selected materials of interest.

We describe the object model as

µ(~x, E) =

L0
∑

l=1

Np
∑

j=1

µl(E) bj(~x) xlj , (2)

subject to






∑L0
l=1 xlj = 1, ∀j,

∑L0
l=1 1{xlj 6=0} ≤ 3, ∀j

0 ≤ xlj ≤ 1, ∀l, j

(3)

where µl(E) is the energy-dependent LAC of the lth material
type and bj(~x) denotes spatial basis functions (e.g., pixels).

Let x denote the image vector x = (x1, . . . ,xl, . . . ,xL0) ∈
R

Np×L0 for xl = (xl1, . . . , xlj , . . . , xlNp) of the lth material.
Combining the general measurement model (1) and the object

model (2), the mean of the projection measurements ȳim(x)
is a function of x. The goal of the proposed reconstruction

method is to estimate x for L0 > 3 subject to (3) from noisy
measurements Yim with M0 = 2.

B. Penalized-Likelihood (PL) Reconstruction

For the case of normal clinical exposures, the X-ray CT

measurements are often modeled as independently Poisson

random variables with means (1), i.e.

Yim ∼ Poisson{ȳim(x)} .

The corresponding negative log-likelihood for independent

measurements Yim has the form

− L(x) ≡

M0
∑

m=1

Nd
∑

i=1

ȳim(x) − Yim log ȳim(x), (4)

where ≡ means “equal to within irrelevant constants indepen-
dent of x.”

Component images are estimated from the noisy measure-

ments Yim by minimizing a Penalized-Likelihood (PL) cost

function subject to constraints given in (3) on the elements of

x as follows:

x̂ = argmin
x subject to (3)

Ψ(x) (5)

Ψ(x)
△

= −L(x) +R(x). (6)

The edge-preserving regularization term R(x) is

R(x) =

L0
∑

l=1

βlRl(xl), (7)

where the regularizer for the lth material is

Rl(xl) =

Np
∑

j=1

∑

k∈Nlj

κljκlkψl(xlj − xlk) (8)

ψl(t) =
δ2l
3





√

1 + 3

(

t

δl

)2

− 1



 , (9)

where κlj and κlk are parameters encouraging uniform spatial

resolution [3] and Nlj is some neighborhood of voxel xlj . The

regularization parameters βl and δl can be chosen differently

for different materials according to their properties.

Because the cost function Ψ(x) in (6) is difficult to
minimize directly, we apply optimization transfer principles

to develop an algorithm that monotonically decreases Ψ(x)
each iteration [4]. We first find pixel-wise separable quadratic

surrogates of the cost function, and then minimize them under

constraints given in (3). We loop over all triplets in the pre-

determined material library, minimize the surrogates under box

and sum-to-one constraints in (3), and determine the optimal

triplet for each pixel as the one making the surrogate of that

pixel smallest. To obtain a good initialization for the iterative

optimization, we use the images reconstructed by the image-

domain method [1]. We use the ordered subsets approach to

accelerate the “convergence” to a good local minimum [4].

III. RESULTS

To evaluate the proposed PL method for multi-material de-

composition purpose, we reconstructed volume fractions of a

NCAT chest phantom [5] containing fat, blood, omnipaque300,

cortical bone and air from a simulated DECT scan.

Fig. 1 shows true volume fractions and monoenergetic

image at 70 keV of the simulated NCAT chest phantom.

We simulated the geometry of a GE LightSpeed X-ray CT

fan-beam system with an arc detector of 888 detector chan-

nels by 984 views over 360◦. The size of each detector
cell was 1.0239 mm. The source to detector distance was

Dsd = 949.075mm, and the source to rotation center distance
was Ds0 = 541mm. We included a quarter detector offset to
reduce aliasing. We used the distance-driven (DD) projector

[6] to generate projections of the true object. We simulated

two incident spectra of the X-ray tube voltages at 140 kVp and

80 kVp. Their corresponding effective energies were 69 keV

and 47 keV. We generated noiseless measurements ȳim of

the simulated NCAT phantom using (1) and the simulated

spectra. The simulated true images were 1024× 1024 and the
pixel size was 0.49 mm, while the reconstructed images were
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512 × 512 and the pixel size was 0.98 mm. We introduced
this model mismatch deliberately to test the multi-material

decomposition methods. To the noiseless measurements ȳim,

we added Poisson distributed noise corresponding to 2 × 105

incident photons per ray for rays corresponding to the 140 kVp

spectrum. For the 80 kVp spectrum, we added Poisson noise

corresponding to 2× 105 · Ii2/Ii1 = 6× 104 incident photons

per ray where Ii1 and Ii2 denote the total intensity of the ith

ray for the 140 kVp and 80 kVp spectrum respectively.

For this simulation we let the triplet material library Θ
contain seven triplets which formed from pre-selected five

materials: fat, blood, omnipaque300, cortical bone and air, and

which exclude the combination of omnipaque300 and cortical

bone (This is based on the fact that contrast agent does not

spread into the cortical bone area). We implemented the image-

domain method as described in [1] to initialize the PL method.

We used the conventional DE projection-based method with

polynomial approximation [7] followed by FBP to recon-

struct water-iodine density images and chose 70 keV and

140 keV to yield LAC pairs for the image-domain method. We

also tried a more sophisticated dual-material decomposition

method, the statistical sinogram restoration method proposed

in [8], but the final reconstructed component images were

very similar to those of using polynominal approximation.

For the PL method we chose βl = 28, 211, 211, 28, 24 and

δl = 0.01, 0.01, 0.005, 0.01, 0.1 for fat, blood, omnipaque300,
cortical bone and air, respectively. We ran 1000 iterations

of the optimization transfer algorithm with 41 subsets to

accelerate the convergence. Note that (5) is a nonconvex

problem so the algorithm finds a local minimum.

Fig. 2, Fig. 3, Fig. 4, Fig. 5 and Fig. 6 show estimated

volume fractions of the five materials reconstructed by the PL

method and the image-domain method. The grayscale values

represent volume fractions of each material. The big white

disks Fig. 6 were due to the elliptical reconstruction support.

The streak-like artifacts in the reconstructed images by the

image-domain method were very similar to those in Figure

4 in [1]. The PL method greatly reduces these streak-like

artifacts. The cross-talk phenomenon is evident in the image-

domain results. Fat went into the cortical bone image Fig. 5,

while cortical bone presented in the blood image Fig. 3.

The PL method alleviated this cross-talk phenomenon very

effectively. Fig. 4 shows the horizontal profiles through the

upper disk of the reconstructed omnipaque300 images on the

right. The PL method corrected the positive bias introduced

by the image-domain method. In addition, the PL method

reconstruct component images with lower noise.

We down-sampled the simulated true component images to

the sizes of the reconstructed images by linearly averaging,

and then calculated the root-mean-square (RMS) error of

the component fractions,

√

1
Np

∑Np
j=1(x̂lj − xlj) within the

reconstruct support for each material based on the down-

sampled images. Table I shows RMS errors of the component

images reconstructed by the image-domain method and the PL

method. The errors were scaled by 103 for easy comparison.

Comparing with the image-domain method, the PL method

lowered the RMS errors by about 40% for fat, blood, omni-

paque300 and cortical bone.
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Fig. 1. True volume fractions and monoenergetic image at 70 keV.
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Fig. 2. Fat component results.

Method fat blood omnipaque bone air

ID 93 73 4.4 36 46

PL 60 40 2.9 22 46

TABLE I
RMS ERROR COMPARISON OF THE RECONSTRUCTED IMAGES BY THE

IMAGE-DOMAIN (ID) METHOD AND THE PL METHOD. THE ERRORS WERE
UNITLESS AND ENLARGED BY 103 .

IV. CONCLUSIONS

We proposed a statistical image reconstruction method with

a PL cost function containing a negative log-likelihood term

and edge-preserving regularizers for each material to decom-

pose a mixture into multiple materials using DECT mea-

surements. We adopted the volume conservation assumption

and assumed each pixel contains no more than three materi-

als to help solve the multi-material reconstruction problem.
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(a) Field of view (FOV) images
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(b) Region of interest (ROI) images

Fig. 3. Bone component results.
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Fig. 4. Omnipaque300 component results. The right figure shows the
horizontal profiles through the upper disk. The red, black and blue line denote
the true, PL and ID image respectively.
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Fig. 5. Cortical bone component results.
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Fig. 6. Air component results.

Comparing with the image-domain method [1] that makes

the same assumptions, the proposed PL method reconstructed

component images with reduced noise, streak artifacts and

cross-talk. The PL method was able to lower the RMS error

by about 40% for fat, blood, omnipaque300 and cortical bone,

compared to the image-domain method.

The PL cost function has two parameters, one regularizer

coefficient βl and one edge-preserving parameter δl for each

material. We found that the choice of parameters for one

material component influenced the reconstructed image of

another component. An appropriate combination of parameters

needs to be carefully determined for each application. It is

also desirable for the regularizer to provide approximately

uniform, isotropic and material-independent spatial resolution.

Choosing regularizers for the PL method and optimizing there

parameters needs further investigation.

Future work also includes applying the PL method to real

data to decompose materials as many as the application needs.

Since the PL cost function is non-convex, a good initialization

is very important for the PL method. Future work would

investigate image domain “statistica” method which is more

practical than the PL method in terms of computation.
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Quantitative Soft Tissue Characterization from
Multi-Energy Photon Counting CT

Adam M Alessio and Lawrence R MacDonald

Abstract—The goal of this project is to quantify the con-
centration of soft-tissue components through the decomposition
of the x-ray spectral signatures in multi-energy CT images.
Decomposition of dual-energy and multi-energy x-ray data into
basis materials can be performed in the data domain, im-
age domain, or during image reconstruction. In this work,
we evaluate the ability to decompose multi-energy x-ray data
in the image domain for the application of subtle soft-tissue
characterization. We apply several proposed methods and a
novel content-aware image-based method to measured multi-
energy images. Methods were applied to measured data from
a prototype photon counting CT system with CdTe detectors
and a microfocus x-ray source. Data from phantom and ex-vivo
specimens were evaluated. Results suggest that content-aware
image-based decomposition is preferable when the number and
type of basis materials in a region can be limited based ona priori
knowledge or classification strategies. Bias in the estimation of
the concentration of water and oil components in a phantom
study was <0.16±0.15 g/cc. Decomposition of ex-vivo carotid
endarterectomy specimens demonstrates the presence of water,
lipid, and calcium deposits in the plaque walls. Results suggest
that multi-energy CT can be used to classify and quantify soft-
tissue components.

I. INTRODUCTION
Several multi-energy CT systems have been proposed and

constructed for use in small animal imaging [1], whole-body
clinical systems [2], and breast CT [3]. These systems are
based on on CdTe or CdZnTe detectors, which offer high
energy resolution and the potential to discriminate multiple
energy bands during a single acquisition.
Our current work is particularly motivated by the need to

assess atherosclerotic plaque. The detection and quantif ca-
tion of vulnerable plaque is widely accepted as one of the
leading challenges in diagnostics. Clinical in-vivo imaging
of atherosclerosis primarily focuses on assessment of lumen
diameter, which is a poor measure of risk and plaque vul-
nerability. As such, the conventional imaging modalities have
a limited role in detailed plaque characterization. An ideal
plaque imaging device would a) have high resolution to mea-
sure plaque morphology, b) offer multiple tissue classif cation
(lipid, loose f brous matrix, calcium, dense f brous tissue)
to investigate plaque composition, and c) be safe for serial
studies. While conventional dual-energy CT can provide high
resolution, it is not able to provide soft tissue classif cation [4]
and requires relatively high dose levels limiting its use for
serial evaluation.
Multi-energy CT offers the potential to decompose spectral

information for tissue classif cation and quantif cation. Multi-

A. Alessio and L. MacDonald are with the University of
Washington, Seattle, WA, USA. aalessio@u.washington.edu;
http://faculty.washington.edu/aalessio/

energy CT has been applied to plaque imaging in the context
of quantifying the concentration of contrast agents [5]. In
particular, gadolinium and gold contrast agents have been
quantif ed in phantom and mouse studies [6], [7]. Little effort
to date has been applied to quantifying soft tissue components
in plaques in the absence of contrast agents, based on the
prevailing assumption that soft-tissue components, such as
lipid versus water, do not have suff cient differences in their
mass attenuation coeff cients to enable discrimination. This
work attempts to develop methods to classify and quantify
soft tissue components of water, lipid, and calcium.
Along with tissue classif cation, photon counting x-ray de-

tectors offer the potential of improved sensitivity over conven-
tional energy integrating detectors. This sensitivity could be
translated to reduced f ux/dose acquisitions leading to photon-
counting CT as a more safe device for serial evaluation.

II. METHODS

A. Description of CT System

We have built a prototype photon-counting CT system for
the interrogation of single carotid arteries. The geometry of the
system and prototype device are presented in Figure 1. The
prototype system uses a CdTe detector (Hamamatsu Photonics,
Shimokanzo, Japan) with a 64 mm linear array of 64 pixels of
0.8 mm width (0.5mm depth, 1mm height) with pitch of 1mm.
The detector electronics support simultaneous acquisition of 5
energy thresholds. The microfocus x-ray source (L8121-03,
Hamamatsu Photonics) was operated at 120kVp with a 20µm
focal spot. The central platform rotates and translates (1mm
steps) to support step-and-shoot acquisition of multiple slices.

Fig. 1. Diagram and photograph of prototype carotid CT system.

B. Phantom Acquisitions

All objects in this study were scanned with 12 0kVp and
7 µA in a tomographic mode with 64 radial bins and 160

The second international conference on image formation in X-ray computed tomography Page 417



azimuthal angles per 360◦. The low tube current was selected
to minimize the effects of pulse-pileup, deadtime, and energy
response distortion [2]. The ability to scan with low current
is one of the benef ts of carotid-specif c imaging. Counts of
x-rays above f ve energy thresholds were subtracted to acquire
the energy windows: 30-45, 45-60, 60-80, 80-100, and >100
keV. All images were reconstructed with a fan-beam FBP
method with the ramp f lter.

C. Iodine Phantom

We imaged a phantom consisting of increasing dilutions
of iodine based contrast in saline (Dilutions of [0, 1/80,
1/40, 1/20] of Omnipaque contrast agent) and poppyseed oil
(Dilutions of [0, 1/80, 1/40, 1/20] of Lipiodol). In addition,
the phantom contained additional control regions of water and
poppyseed oil (for a total of 2 water and 2 oil only regions)
and two CaCl2 solutions with density of 1.1 g/cc and 1.2 g/cc.

D. Carotid Plaque Specimens

Two plaque specimens obtained from carotid endarterec-
tomy surgery were scanned to determine the ability to provide
tissue discrimination. Each slice was acquired for 35 seconds;
Multiple slices were acquired with 1 mm spacing (total acqui-
sition time was 27 minutes).

E. Separation of Materials

We evaluated the theoretical and measured ability to sepa-
rate two solutions. Using a method proposed by Wang et al
[8], we determined the angle of separation of two materials.
With the vector of linear attenuation coeff cients def ned as
~µm = (µe=1, µe=2, ..., µe=E)m for each energy bin, e, of a
total of E bins, the angle of separation between material, m,
1 and 2 is

θ1,2 = arccos
(

~µm=1 · ~µm=2/|~µm=1||~µm=2|
)

Vectors were theoretically determined from known concen-
trations and material properties in the iodine phantom. These
vectors were based on an estimate of the spectra in each energy
window. The vectors from the measured data were determined
from reconstructed images of linear attenuation at each energy
bin.

F. Decomposition of Images

The linear attenuation at each location in the image, ~x, can
be represented as a linear combination of the mass attenuation
coeff cients of each component material, fm(e), as µ(e, ~x) =
∑E

m=1
ρm(~x)fm(e). The goal of decomposition is to estimate

the concentration of materials at each location, ρm(~x). An
approach that can be applied directly to the image based on
weighted least squares optimization is

ρ̂m(~x) = arg min

E
∑

e=1

(µ̂(e, ~x) − ρm(~x)fm(e))2We

where µ̂(e, ~x) is an estimate of the linear attenuation coeff -
cient at energy bin e from the reconstructed multi-energy im-
ages images. This approach, without a weighting component,

was proposed previously [9]. The weights, We, can account
for variable conf dence in information from each energy bin.
Prior work by Le and Molloi, and our initial application of

this least-squares estimation, found that direct decomposition
of multiple, closely related materials from multi-energy data
is not successful [9]. They proposed a decoupled strategy
where the images are f rst segmented into different materials
and then least-squares estimation is used to determine the
material concentration. In their work, each location in the
image can only be a single material. We propose a variant
of this in which the images are f rst segmented into classes,
which can contain a few materials (for example 1-3 materi-
als). Then the weight least-squares estimation can determine
the concentration in this limited set of possible materials.
This approach benef ts from content-aware, dimensionality
reduction in which each estimated concentration is derived
from a limited set of possible bases. For example, instead
of estimating 4-5 unknown concentrations from 4-5 energy
bands, this approach can estimate 2 unknown concentrations
from 4-5 energy bands at each location and the particular
materials varies by location in the image based on a priori
knowledge or an initial automatic classif cation.

III. RESULTS

A. Separation of Materials

The angle of separation between water and each region in
the iodine phantom are presented in f gure 2. This plot contains
the theoretical and measured separation angle based on the
energy bands used during acquisition and the assumption of a
non-overlapping energy response. Of particular importance, is
that water and oil can be separated both in theory and with the
measurements. The dependence of separability and the number
of energy bins is presented in f gure 3.
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Fig. 3. Separation angle between water basis material and four materials
versus the number of energy bins. As the number of energy bins decreases,
the separability between the materials decreases. The measured separation is
plotted in solid lines, the theoretical separation is plotted in dashed lines.

B. Decomposition

We applied the decoupled decomposition strategy discussed
above. The initial classif cation was performed with a novel
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Fig. 2. Separation angle between water basis material and each solution in the iodine phantom. The measured separation angle is plotted in blue and the
theoretical separation angle, based on theoretical mass attenuation coeff cients for approximate spectra, is plotted in red. The solutions include water+omnipaque
(IV contrast) and oil+lipiodol (oil-based contrast) in different dilutions. Two concentrations of CaCl2 are included.

simple classif er based on the differences in measured linear
attenuation coeff cients at each energy band as presented in
f gure 4. Based on this classif cation scheme, each voxel in
the image was classif ed as either a combination of Oil-Water,
Water-Iodine, or Bone-Water.
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Fig. 4. Proposed simple difference classif er shown with linear attenuation
coeff cients from iodine phantom. The difference between the current energy
bin and the lowest energy bin is plotted versus the current energy bin.
Materials lie within linear bands with negative slopes.

The measured multi-energy images of the iodine phantom
are presented in f gure 5. These images are quantitative maps
of linear attenuation coeff cients at each energy level and the
mean bias, compared to theoretical, is 3±4 %. The classif -
cation image followed by weighted least squares estimation
of each concentration is presented in f gure 6. The absolute
error between the estimated densities and true densities in the
water vials was 0.15±0.14 g/cc, oil vials was 0.16±0.16 g/cc,
Omnipaque solutions was 0.08±0.01 g/cc, Lipiodol solutions
was 0.49±0.09 g/cc, and the CaCl2 was 0.64±0.02 g/cc.
Images from one of the plaque specimens are presented in

f gure 7. These multi-energy images lead to the classif ed and
decomposed image in f gure 8.

Fig. 7. Transaxial view of plaque specimen B at 5 energy levels acquired
simultaneously on prototype system.

IV. DISCUSSION

We developed and acquired data from a multi-energy CT
imaging platform. We proposed an image-based decomposi-
tion method based on f rst classifying each voxel into a limited
set of basis functions and then concentration estimation based
on weighted least squares optimization. Initial application to an
iodine phantom was partially successful. The oil only regions
(in the absence of iodine) were able to be separated from
water and quantif ed. The regions of the phantom containing
both iodine + oil (lipiodol) was not able to be distinguished
from iodine + water regions. The decomposition failed in
the Lipiodol solutions partially because these vials were near
the edge of the FOV, leading to some truncation artifacts in
that portion of the image. Also, the simple classif er we used
assumed that any region with iodine also contained water (not
oil). In short, this particular implementation does not allow for
iodine contrast in oil solutions.
The application to plaque specimens, which do not contain

iodine agents, suggests that this method is translatable to bi-
ologic tissue. The decomposition of plaque specimens reveals
regions of adipose tissue (oil/fat), water, and Ca2.
This method would benef t from extension to a more

desirable application in the data-domain or during image
reconstruction. The initial classif cation could be performed in
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Fig. 8. Decomposition of plaque specimen B. Classif cation image on left derived from proposed difference classif er. Material images are quantitative
estimates of material concentration in units of g/ml.

the image-domain and these classes could be forward projected
in the data domain for limited material decomposition prior to
reconstruction of decomposed images.
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Abstract—X-ray micro-CT is an important imaging tool for 
biomedical researchers. Our group recently proposed a hybrid 
‘true-color’ micro-CT system to improve contrast resolution with 
lower system cost and radiation dose. The system incorporates an 
energy-resolved photon-counting true color detector into a 
conventional micro-CT configuration, and can be used for 
material decomposition. In this paper, we develop an interior 
color-CT image reconstruction algorithm for this hybrid 
true-color micro-CT system. A compressive sensing-based 
statistical interior tomography (CS-SIT) method is employed to 
reconstruct each channel in the local spectral imaging chain, 
where a reconstructed global gray-scale image from the 
conventional imaging chain served as the initial guess. Principal 
component analysis was used to map the spectral reconstructions 
into the color space. The proposed algorithm was evaluated by 
numerical simulation and animal study. The results confirm the 
merits of the proposed algorithm, and demonstrate the feasibility 
of the hybrid true-color micro-CT system. Additionally, a “color 
diffusion” phenomenon was observed whereby high quality 
true-color images are produced not only inside the region of 
interest (ROI), but also in neighboring regions. 

Index Terms—Micro-CT, color/spectral-CT, photon-counting, 
statistical interior tomography, principal component analysis 
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I. INTRODUCTION 

-ray micro-CT is an important imaging tool for biomedical 
researchers. However, a major limitation of current 

micro-CT scanners is insufficient contrast resolution for 
soft-tissue due to the energy-integrating detectors[1]. In 
contrast, recently developed energy-resolved photon-counting 
detectors can resolve individual photons and their associated 
energies [2]. These photon-counting detectors have been used 
to develop true-color CT systems that dramatically improve 
contrast resolution [3-6]. True-color CT is also referred to as 
spectral, multi-energy, spectroscopic, energy-selective or 
energy-sensitive CT. 

Given innumerable potential applications of spectral x-ray 
CT, the transition from gray-scale to true-color is almost certain 
to occur sooner or later. However, there are two major 
challenges in this process: detector cost and radiation dose. 
First, the spectral detection technology is not yet mature for 
large area, and the replacement of a gray-scale x-ray detector 
array with a true-color spectral detector will be rather 
expensive in the near future. Second, x-ray spectral detection 
would requires much higher radiation dosage if each spectral 
channel requires the same exposure as that for a corresponding 
energy-integrating detector.  

Fig. 1. A 3D rendering of the hybrid true-color micro-CT system. A wide-beam 
gray-scale imaging chain and a narrow-beam true-color. 

While classic CT theory targets exact reconstruction of the 
sample’s entire cross-section from complete projections, 
biomedical applications of CT and micro-CT often focus on 
smaller, internal regions of interest (ROIs). We propose that the 
detector cost and radiation dose problems of x-ray spectral 
micro-CT can be solved by applying interior tomography. 
Recently, we designed a hybrid true-color micro-CT system 
that incorporates spectral imaging and interior tomography to 
improve micro-CT performance [7]. Our design adds a 
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narrow-beam true-color imaging chain in the current micro-CT 
system using a small energy-resolved photon-counting detector 
(Figs.1 & 2). In this paper, we demonstrate an interior color-CT 
image reconstruction algorithm developed for this hybrid 
imaging system. 

Fig. 2.  2D sketch of the hybrid true-color micro-CT system. A wide-beam 
gray-scale imaging chain and a narrow-beam  true-color imaging chain are 
combined on a rotating gantry.   

II. METHODOLOGY 

A. CS-based Statistical Interior Tomography 

We used CS-based statistical interior tomography (CS-SIT) 
algorithm [8] to reconstruct each spectral channel (energy 
threshold). First, it does not need a known sub-region within 
the ROI, which is required by landmark-based methods and 
usually difficult to be exactly obtained, especially for 
determining the exact attenuations of a sub-region on a 
different spectral channel. Second, it better accommodates the 
statistical property of the projections and performs better with 
noisy data, which is important for multi-energy data due to the 
lower counts and higher noise in each spectral channel.  

The detected photons of each spectral channel s ( 1, ,s S  , 

S  is the number of spectral channels) can be approximately 
modeled as a Poisson distribution, 

  ~ exp + 1, ,s s s s
i i i iy Poisson b l r i I  ，  (1) 

where s
iy  is the measured data of the spectral channel s  

along the thi  x-ray path, s
ib  is the blank scan factor,
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s s s
i ij i i
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l a 


     Aμ
 
is the integral of the x-ray linear 

attenuation coefficients,  ijaA  is the system matrix, 

 1 , ,
T

s s s
J μ   is a distribution of linear attenuation 

coefficients, s
ir  accounts for read-out noise, and I  and J  are 

the number of projections and pixels. 
According to the CS-based interior tomography theory, a 

piecewise constant ROI can be exactly reconstructed from the 
locally truncated projections by minimizing the image 
total-variation (TV). Combining the Poisson property of 
projection data and the TV regularization in the maximization 
of a posterior (MAP) framework, an ROI image on each 
spectral channel s  can be exactly reconstructed via 
minimizing the following objective function, 
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s s s s si
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where  2
/s s s s

i i i iw y r y   is the statistical weight for each 

x-ray path,   ˆ lns s s s
i i i il b y r   is the estimated line integral, 

s  is the regularization parameter to balance the data fidelity 

and TV terms, and  sTV   is the operator of computing TV of 

the reconstructed image. 

B. Principle Component Analysis 

The sample’s attenuation coefficients are embedded in each 

spectral channel from the spectral image set 
1

Ss

s
 . Identical 

materials should have the same pattern of attenuation change 
from one spectral channel to another (i.e. different energy 
thresholds). We aim to discriminate different materials by 
identifying these patterns through the Principle component 
analysis (PCA) method  [5, 9], which will be briefly described. 

Introduce a matrix   S J
sjM  M  , 

1

1 S
s s

sj j j
s

M
S

 


   , 

and the covariance of the images set  
1

Ss

s
  in spectral domain 

is 
1

1
T

S



C MM (the superscript “ T ” is the transpose 

operator). Applying singular value decomposition to C  and 
arranging the eigenvalues in decreasing order, the 

corresponding eigenvectors   1

S

s s
v  form a new basis, which 

are called principal components. The matrix M  can be 
transformed by this basis to form the principal components 

image (PC-image) set   1

S

k k
P , T T

k kP v M . We can use the first 

N  PC-images   1

N

k k
P

 
to discriminate between various 

materials.  

C. Overall workflow 

The overall workflow of the hybrid imaging system 
reconstruction algorithm is shown in Fig. 3. Global projection 

data is denoted as  
1

GIG
i i

y
  and GI  is the number of global 

projections. In this case, the statistical iterative reconstruction 
method with a TV regularization constraint (SIR-TV) is used to 

reconstruct the gray-scale global image Gμ  due to better 

performance for low count data. Moreover, SIR-TV and 
CS-SIT are identical except for the input data type.  
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Fig. 3. Image reconstruction workflow for the hybrid true-color micro-CT 
system 

On each spectral channel, the image sμ  is reconstructed by 

the CS-SIT with Gμ  as the initial image. Then a PCA is 

performed on this set of spectral results  
1

Ss

s
 . The first N  

PC-images   1

N

k k 
P are selected and combined with the global 

reconstruction Gμ  to render a color image C . 

III. EXPERIMENTAL RESULTS 

A. Numerical Simulation 

In this simulation, a cylindrical phantom was designed to 
evaluate the spatial and contrast resolution of the proposed 
hybrid system and reconstruction methodology; it contains 
several cylindrical inclusions of various radii and seven 
materials with different energy attenuation properties. The 
phantom parameters in transverse plane are shown in Fig. 4.  

 

Fig. 4. Transverse plane of the cylindrical phantom with seven materials

 
Both the wide-beam gray-scale imaging chain and 

narrow-beam color-scale imaging chain were simulated with a 
fan-beam geometry and equidistant detector. The virtual 
detectors were centered at the system origin and perpendicular 
to the lines from the system origin to its corresponding x-ray 
source. The distance from each source to the system origin was 
115mm. The wide-beam and narrow-beam imaging chain 
detectors have 540 and 256 detector elements, respectively, 
with an element width of 0.04mm. 600 equiangular projections 
were collected over 360o. The x-ray tube voltage was assumed 

as 120kVp; its normalized emission spectrum is shown in Fig. 
6. Taking into account the k-edges of materials in this phantom, 
which are iodine (33 keV), barium (37.4 keV), gadolinium 
(50.2 keV) and gold (80.7 keV), five spectral channels were 
selected in the color-scale imaging chain: ≤32keV, 
33keV~37keV, 38keV~42keV, 51keV~56keV and ≥81keV. In 
order to simulate various noisy scenarios, both imaging chains 
were simulated with emitted photon counts along each x-ray 
path as 105, 5×104, 2×104 and 104. The emitted photon counts 
of the true-color imaging chain were calculated by weighting 
the tube spectrum distribution; thus, each spectral channel 
contained only about 10% of the total photons and resulted in 
more noise in the projection data. 

  The reconstructed images are 600×600 pixels covering a 
region of 10×10mm; the iteration count was fixed at 20. The 
results are shown in Figs. 5. The gray-scale images are 
reconstructed from global projections via the SIR-TV method. 
In these gray-scale results, the materials 
“12.4%Ca+87.6%Water”, “1.4%Barium+98.6%Water”, 
“1.2%Iodine+98.8%Water”, “1.5%Gadolinium+98.5%Water” 
and “1.6%Gold+98.4%Water” have similar gray-scales, which 
cannot be discriminated between each other. However, in the 
true-color interior reconstructions, different materials are 
mapped into different colors and can be easily distinguished. 
Therefore, we can see that spectral scanning can provide color 
reconstructions with much higher contrast. At the same time, it 
can be seen that the true-color interior ROIs have the same 
noise and spatial resolution as the gray-scale reconstructions. 
When the emitted photon count decreases from 105 to 104, both 
the gray-scale and true-color results have increased noise and 
decreased spatial resolution. In the cases of 2×104 and 104 
photons, the smallest inclusion is contaminated by the severe 
noise and cannot be recognized. It is worth noting that although 
the spectral scanning is only performed in the ROI, high quality 
true-color reconstruction can be produced not only inside the 
ROI but also in neighboring regions.  

B. GNP Mice Study 

To evaluate the feasibility of the designed hybrid true-color 
micro-CT system for GNP based applications, two euthanized 
mice were scanned on the MARS micro-CT with a Medipix 
MXR CdTe layer detector. One mouse was injected with 0.2 
mL of 15 nm Aurovist II GNP (Nanoparticles; Yaphank, NY) 
into the tail vein and was alive for ~3 hours between injection 
and euthanasia. The second mouse was injected with 0.2 mL of 
15 nm Aurovist II GNP in a direct cardiac puncture injection 
and immediate euthanasia. The distances from source to system 
origin and source to detector are 158mm and 255mm, 
respectively. 371 equiangular projections were collected over 
360o to form a full scan. 13 energy bins were collected with the 
source tube operated with 120 kVp and 175mA. The detector 
chip was moved horizontally with overlapped pixels to cover a  
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wider FOV of 34.89 mm diameter and correct for production 
defects in the detector sensor layer. Since there was significant 
noise in the sinogram, neighboring detector bins were merged 
to form a new sinogram of size 512×371. The dataset with the 
lowest energy threshold was assumed to be the gray-scale 
projection from the global imaging chain. Other datasets were 
truncated to simulate spectral ROI scanning; the ROIs are 
indicated in Figs. 6 with a radius of 3.4 mm. 

The reconstructed images are 512×512 pixels covering a 
region of 18.41×18.41mm. The reconstructed results were 
shown in Fig. 5. These image slices are of the mouse upper 
thorax and include the front limbs, thoracic vertebra, and 

scapula. The true-color reconstructions demonstrate the GNP 
was present within the vascular structures of the upper thorax. 
It can be seen that the color interior tomography can nearly 
reproduce the same color result in ROI as with global 
reconstruction. The calcium in the bones and injected GNP 
have varying energy specific attenuation properties compared 
to the background soft tissues which is represented as color 
variation in the PCA images. 

IV. CONCLUSION 

 In conclusion, we proposed an image reconstruction method 
for a hybrid true-color micro-CT system, which has an 
additional spectral imaging chain based on a conventional 
micro-CT configuration. The spectral imaging chain 
incorporates an energy-resolving photon counting detector and 
interior tomography reconstruction technique. With the 
proposed reconstruction method, this system can provide a low 
noise, high spatial and contrast resolution true-color images 
with low system cost and radiation dose. Furthermore, the 
observed color diffusion can help to reduce the color detector 
size for a given ROI to further reduce system cost and radiation 
dose.  
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Fig. 6. The results from GNP mice studies. The 1st and 2nd rows are the 
global gray-scale and true-color reconstruction results; and the 3rd row is 
the color interior reconstructions. The left and right column are the central 
slices from the mouse with tail vein injection of GNP and with direct 
cardiac puncture injection of GNP, respectively.  

Fig. 5. Reconstructed images in numerical simulation. The 1st and 
2nd rows are the global gray-scale reconstructions and the 

true-color interior reconstructions, respectively. From 1st to 4th 
columns are the results from the projections assuming 105, 5×104, 

2×104, and 104 photons, respectively. 
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Abstract—The objective of this study was to develop a dual-

energy CT method for characterizing urinary stone 

composition in the presence of iodine contrast. A total of 75 

urinary stones were included in this phantom study. Each 

stone was placed in a 1.5-mL vial, which was filled first with 

saline and then with increasing concentrations of iodine 

contrast solution (20, 40, 60, 80, and 100 mgI/mL). For each 

condition, the tubes were put in a 35-cm water phantom 

and scanned on a dual-source CT system at 100 and 140 kV 

with tin filtration applied on the 140 kV beam. Virtual 

noncontrast images created from scans of stones in iodine-

containing solutions provided position and volume 

information. The stone map was then used to calculate a CT 

number ratio (CTR, the ratio of the CT numbers of a stone 

at 100 kV and 140 kV) for each stone to differentiate its 

composition. A region-growing method was developed to 

improve the ability to differentiate between UA and non-

UA stones in iodine contrast. 

I. INTRODUCTION 

DECT has been used in CT urograms to create virtual 
non-contrast (VNC) images for stone detection from 
pyelographic phase scans, where urinary stones are not 
distinguishable from iodine contrast since they both 
appear bright in CT images [1, 2].  In this work, we 
extended the application of urinary stone detection in 
DECT urogram to stone composition differentiation in 

iodine contrast. The challenge in stone differentiation in 
the presence of iodine was investigated and a region-
growing correction method was developed to achieve 
reliable stone characterization.  

II. MATERIALS AND METHODS 

A. Urinary stone samples 

A total of seventy five urinary stones, each collected 
from a different patient, were used in this phantom study: 
30 uric acid (UA), 15 cystine (CYS), 15 calcium oxalate 
(COX), and 15 calcium hydroxyapatite (APA). The stone 
compositions were determined with Fourier transform 
infrared spectroscopy in our institutional mineral analysis 
laboratory. For each stone, the component of interest was 
required to be 90% or more so that it can be considered as 
a single type composition. The effective diameters of 
stones range from 3 to 9 mm based on volume 
measurement from CT images.   

Five concentrations of iodine solutions were prepared 
by diluting iodine contrast medium (iodexol, Omnipaque 
350, GE healthcare) with saline: 20, 40, 60, 80 and 100 
mg/ml, which correspond to approximately 510, 905, 
1300, 1696 and 2092 HU at 100 kV. Each stone was 
placed in a 1.5 ml plastic tube and each tube was filled 
with either saline or one of the five different 
concentration iodine solutions. All tubes were then placed 

 

Figure 1. Left: Stone samples were immersed into 35-cm water phantom for DECT scan. Right: CT images of Stones 

immersed in saline scanned at 100 kV.  
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in a 35-cm water phantom to simulate realistic attenuation 
of a standard size patient. All stones were hydrated in 
distilled water for 24 hours prior to scanning. 

B. Dual energy CT acquisitions 

The phantom was scanned with a dual-source CT 
system (Definition Flash, Siemens Healthcare, 
Forchheim, Germany), as shown in Fig.1. Based on our 
clinical DECT stone composition protocol, dual energy 
scanning was performed at tube voltages of 100 and 140 
kV with tin filtration applied on 140 kV. Auto exposure 
control (CareDose 4D, Siemens Healthcare) was used 
with quality reference mAs of 240 for 100 kV and 185 for 
140 kV. Other scanning parameters including:  beam 
collimation is 32*0.6 mm, pitch is 0.6, and rotation time 
is 0.5 s.  

A non-contrast scanning was first performed with 
each tube filled with saline. The scan was then repeated 
five times with tubes filled with iodine solution at each of 
the five concentrations (20, 40, 60, 80 and 100 mg/ml). 
Same scanning parameters were used for all six scans. 
Images were reconstructed at 1 mm thickness and 0.8 mm 
increment, with a 150 mm field of view and a medium 

smooth kernel (D30). Linearly mixed images were also 
generated with equal weighting (0.5) of two energies.  

C. Post-scan image processing 

Following our routine pyelographic phase DECT 
procedure, iodine-substraction VNC images were 
generated using commercial software (Syngo, Dual 
Energy Viewer, Siemens Healthcare) from images of 100 
and 140 kV for scans with stones in iodine solutions. 

Stone segmentation was performed using mixed 
images from the non-contrast scan and VNC images from 
the scans with iodine solutions. The threshold of CT 
number was chosen at 200 HU for all images, which is 
the default value in our clinical urinary stone study. A 
commercial image processing software (Analyze 10.0, 
Mayo Clinic, Rochester, MN) was used for stone 
segmentation. The segmentation results were then 
mapped to images at 100 and 140 kV of the non-contrast 
and contrast scans for further CT number ratio (CTR) 
calculation. The CTR at every pixel of each stone was 
calculated as: CT_100kV/CT_140kV, where 
CT_100(140)kV is the CT number at 100(140)kV 
images. CTR of all pixels of each stone were averaged to 
represent the CTR of the whole stone.  

 

Figure 2. The top row shows CTR map of a uric acid stone in saline, 20, 40, 60, 80 and 100 mg/ml iodine 

solution; the bottom row shows the pixels of CTR identified by region growing correction method. 

 

Table 1. Average CTR of each stone type calculated from images of low and high energies. 

CTR Non-contrast 20 mgI/ml 40 mgI/ml 60 mgI/ml 80 mgI/ml 100 mgI/ml 

UA 0.99 ± 0.03 1.21 ± 0.04 1.33 ± 0.04 1.41 ± 0.05 1.46 ± 0.05 1.54 ± 0.05 

CYS 1.31 ± 0.04 1.36 ± 0.04 1.43 ± 0.04 1.47 ± 0.05 1.52 ± 0.04 1.57 ± 0.06 

COX 1.46 ± 0.05 1.46 ± 0.02 * 1.48 ± 0.02 1.51 ± 0.03 1.58 ± 0.03 1.61 ± 0.04 

APA 1.52 ± 0.04 1.51 ± 0.03 * 1.55 ± 0.03 1.58 ± 0.02 1.63 ± 0.02 1.65 ± 0.03 

* means results are not statistically different from that from non-contrast scan. 

Page 426 The second international conference on image formation in X-ray computed tomography



 

When stones are immersed into iodine contrast, the 
CT number around its boundary can be affected by 
surrounding iodine solution due to the partial volume 
effect. This can lead to inaccurate results of CTR 
calculation and hence stone differentiation. To correct the 
influence of iodine solution on CTR values of stones, a 
region-growing method was developed to identify the 
pixels which are not “contaminated” by iodine in stone 
CTR map. By assuming the CTR of a urinary stone is 
homogeneous and only pixels around stone boundary 
were changed by iodine solution, the region growing 
method finds pixels in the central part of the stone (Fig.2). 
This method is implemented with matlab based program 
(Matlab 7.11.0, The MathWorks, Inc.) and is fully 
automatic.  

D. Statistical analysis 

A two-tailed, unequal variance t test (Statistical toolbox, 
Matlab, The MathWorks, Inc.) was used to analyze two 
groups of data for each stone composition: 1. Calculated 
CTR of each stone from non-contrast images versus that 
from contrast scans; 2. Calculated CTR of each stone 
from non-contrast scan versus CTR of contrast scans with 
region-growing correction method. The differentiation 
between UA and non-UA stones has been reported with 
same DECT scanners and scanning protocols (100 and 
140kV) and the optimized threshold was determined 
through ROC analysis [3]. In this work, the same 
threshold was used to calculate the sensitivity and 
specificity of differentiating UA stones from non-UA 
stones for the non-contrast scan and contrast scans of five 
iodine concentrations.  

 

 

Figure 3. CTR of UA and Non-UA stones in saline and iodine solutions of five different concentrations (CTR was 

calculated by averaging over the whole stone volume). 

 

Figure 4. Using region growing correction method, CTR of all stones in saline and iodine solutions showed substantial 

reduced overlap. 
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III. RESULTS  

In non-contrast scan, average CTR of four stone types 
(UA, CYS, COX and APA) was 0.99, 1.31, 1.46 and 
1.52, respectively (Table 1). Except the COX and APA 
stones in 20 mgI/ml solution, CTR of all stones was 
increased (p<0.05) when stones were immersed into 
iodine solution (CTRiodine = 2.01) and the error 
increased as the iodine concentration. Even in the lowest 
iodine concentration 20 mg/ml, the average CTR of uric 
acid stones were enhanced to 1.21, which is quite close to 
the true CTR values of CYS stones from the non-contrast 
scan. The influence of iodine solutions on the stone CTR 
values leads to substantial overlap between UA and non-
UA stones (Fig.3). With threshold CTR at 1.17, the 
sensitivity for differentiating UA stones is 100% for non-
contrast scan, and fell to 18% with 20 mg/ml iodine 
solution and 0 for all higher concentrations.  

Using region-growing correction method, the error 
caused by iodine solution was largely reduced (Table 2). 
The overlap of CTR between UA and Non-UA stones 
were substantially reduced (Fig.4). Using the same 
threshold, the sensitivity for detecting UA stones was 
increased to 100%, 82%, 57%, 50% and 21%, for iodine 
solution at concentrations 20, 40, 60, 80 and 100 mg/ml. 

Differentiation of urinary stone composition using 
DECT is based on the ratio of CT numbers of the stone at 
the low and high energies. Non-uric acid stones with high 
atomic number elements such as calcium present higher 
CTR than uric acid stones [4]. However, this 
differentiation mechanism is challenged when iodine is 
onboard, because iodine has higher CTR than both uric 
acid and non-uric acid stones. Due to the partial volume 
effect, outer part of the stones could display substantially 
enhanced CTR (Fig.2) when surrounded by iodine. The 
region growing method was used in this work to correct 
this error by only counting the image pixels not 
influenced by iodine.   

Our results showed 100% specificity for 
differentiating UA stones, which indicates a reliable 
strategy of identifying UA stones. As the iodine 
concentration increases, the error in CTR of UA stones 

can not be completely eliminated even after region 
growing correction (Table 2), however our results showed 
that even in the highest iodine concentration (100 
mgI/ml), the corrected CTR of UA stones is about 1.25, 
which is close to the true CTR of CYS stones (around 
1.3), but still well below the true CTR of calcified stones 
(from 1.4 to 1.5). CYS stones are much rarer compared to 
UA stones and these two types can be reliably 
differentiated through urine test. Thus in practice, if the 
CTR of a UA stone falls in the range between UA and 
CYS using our region growing method, it is still possible 
to identify its true composition by ruling out the 
possibility of CYS. This can be beneficial in renal stone 
management since UA stones can be dissolved through 
urinary alkalinization, instead of shockwave lithotripsy 
for other stone types.  

In this study, stone differentiation was limited to 
separation between UA and non-UA stones. 
Differentiation of non-UA stone compositions can be 
achieved by increasing the spectral separation between 
two tube energies in DECT [4]. The energy pair (100 and 
140 kV) used in this work is our standard clinical protocol 
for CT urogram. The spectral separation can be further 
increased by using the tube energies of 80 and 140 kV. 
However, it is not clear whether this improvement will 
benefit the stone differentiation in iodine. With enhanced 
spectral separation, the CTR of iodine is also substantially 
increased, so is the error of CTR of stones caused by 
iodine. The overall effect of increased spectral separation 
and CTR error requires further investigation.  

IV. CONCLUSIONS 

In this study, the potential to characterize urinary 
stones in the presence of iodine with DECT was 
investigated. Due to the partial volume effect, the CTR of 
stone was falsely enhanced by surrounding iodine. We 
developed a region growing correction method to identify 
the uncontaminated stone pixels so that the differentiation 
between UA and non-UA stones is possible.  

 

Table 2. Calculated CTR of each stone type using region-growing method. 

CTR Non-contrast 20 mgI/ml 40 mgI/ml 60 mgI/ml 80 mgI/ml 100 mgI/ml 

UA 0.93 ± 0.04 1.05 ± 0.05 1.12 ± 0.07 1.15 ± 0.08 1.18 ± 0.11 1.25 ± 0.11 

CYS 1.26 ± 0.05 1.28 ± 0.05 1.29 ± 0.05 1.33 ± 0.07 1.32 ± 0.08 1.34 ± 0.08 

COX 1.41 ± 0.03 1.42 ± 0.03 * 1.41 ± 0.04 * 1.4 ± 0.03 * 1.42 ± 0.03 * 1.41 ± 0.06 * 

APA 1.47 ± 0.04 1.47 ± 0.04 * 1.48 ± 0.05 * 1.49 ± 0.05 * 1.52 ± 0.05 1.52 ± 0.07 

* means results are not statistically different from that from non-contrast scan. 
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Incorporation of Bone Beam Hardening Correction
into Statistical Iterative CTReconstruction

Bernhard Brendela, Thomas Koehlera, Yoad Yagilb, and Richard Thomsonc

Abstract—A number of different methods for post recon-
struction bone beam hardening (BBH) correction are available
for conventional FBP reconstruction and are used in commer-
cially available products. An incorporation of these existing
methods into statistical iterative reconstruction for CT would
be desirable. There are two ways imaginable to incorporate
the BBH correction into iterative reconstruction: The first
option is to use the beam hardening corrected projections
as input for the statistical iterative reconstruction. For this
it has to be considered that the noise level in the projection
data changes due to the correction. The second option is
to incorporate the inverse of the beam hardening correction
into the forward projection of the cost function, and derive
an update equation from this modified cost function. Both
methods are implemented and compared based on simulated
data with respect to artifact suppression, image noise, and
speed of convergence.

I. I NTRODUCTION

In recent years, the attention to iterative reconstruction
methods for CT has grown considerably, since the increasing
power of todays computation hardware decreased recon-
struction times to a tolerable level. Iterative reconstruction
methods have the advantage as compared to conventional
filtered back projection (FBP) that image quality can be
increased significantly. The incorporation of a statistical
model for the noise in the acquired data, the application of a
detailed geometrical model, and the consideration of a priori
knowledge about the image decrease noise and increase
resolution in the image [1].

To further improve image quality, also other important
physical effects (apart from noise) influencing the data
acquisition should be modeled in the iterative reconstruction
process. In conventional FBP reconstruction, a number of
these effects are already considered in pre- and postprocess-
ing steps. One of these effects is beam hardening, which
may lead to artifacts if it is not handled properly during
reconstruction [2]. In FBP based methods, it is corrected in
two steps: The beam hardening due to soft tissue is corrected
in a preprocessing step, while the beam hardening due to
bone is accounted for in a postprocessing step, which itself
includes normally at least one forward projection step and
one reconstruction step [3], [4].

Due to the sometimes severe artifacts introduced by beam
hardening, it is necessary to consider it also in iterative re-

a Philips Technologie GmbH, Innovative Technologies, Research Labo-
ratories, Hamburg, Germany

b Philips Healthcare, Haifa, Israel
c Philips Healthcare, Cleveland, OH

construction. A number of methods have been introduced to
avoid beam hardening artifacts in iterative reconstruction [5],
[6]. Most of them defer significantly from the methods used
in the pre- and postprocessing of conventional FBP recon-
struction, and extensively use knowledge about the spectral
properties of tube, detector, and scanned object. Thus, an
application of these methods may results in additional effort
regarding implementation, spectral characterization of the
CT system, and testing.

To avoid this, we discuss in the following two ways
to incorporate a beam hardening correction scheme origi-
nally designed for FBP based reconstruction, into iterative
reconstruction. The first way is to use the beam hard-
ening corrected projection data as input for the iterative
reconstruction. For this scenario, it has to be considered
that the noise level of the projection data changes during
the correction, and the noise assumptions for the iterative
reconstruction have to be adapted accordingly. This can
be done by propagating the noise through the correction
steps. The second way is to incorporate the inverse of the
correction steps in the forward projection of the cost function
for the iterative reconstruction, and derive an update equation
from this modified cost function. Both ways are explained in
the following section in detail, along with the applied beam
hardening correction scheme.

II. M ETHOD

Conventional FBP reconstruction is based on the assump-
tion that the input data represents line integrals of the X-ray
attenuationµ of an object:

li =

∫

Li

µ (x) dl (1)

Here, li denotes the line integral of theith measurement
along rayLi. A calculation of these line integrals is easy, if
the X-ray radiation used for data acquisition is monochro-
matic. According to Beer’s law, the measured intensitiesIi
at the detector are then

Ii = I0 · e
−

∫
Li

µ(x)dl
, (2)

with I0 being the intensity of the X-ray radiation before the
object. The line integrals can then simply be determined by

li = log
I0

Ii
. (3)

In reality however, the applied X-ray radiation covers
a broad spectrum of energies, and the X-ray attenuation
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depends on the energyE of the photons. Thus, the measured
intensitiesare modeled as follows:

Ii = I0 ·

∫

S (E) e
−

∫
Li

µ(x,E)dl
dE (4)

Here,S(E) is the probability, that a detected photon has the
energyE.

For a first step, we assume, that the object consists of only
one material (e.g., water), with attenuation spectrumµw(E).
Furthermore, it is assumed that the material distribution is
spatially varying and modeled byρw(x), which stands here
for the volume fraction containing water at locationx. The
energy dependent attenuation in each location is then given
by µ (x, E) = µw(E)ρw(x), and Eq. (4) can be written as

Ii = I0 ·

∫

S (E) e−Twiµw(E)dE, (5)

with Twi =
∫

Li

ρw(x)dx being the path length of water
along the ray. The line integral we are looking for isli =
µw(E) · Twi, with E being a “mean energy”, derived from
S(E) [3]. As one can see,the relationship betweenli and
log(I0/Ii) is not trivial, and depends on the spectraS(E)
and µw(E). Nevertheless,log(I0/Ii) is a monotonic and
only weakly nonlinear function inTwi. Thus, the mapping
of log(I0/Ii) onto li can be approximated by a low order
polynomial. This is conventionally done in the water beam
hardening (WBH) correction step [3]. The coefficients of the
polynomial can be calculated from Eq. (5) or derived from
a calibration measurement.

This correction step eliminates beam hardening artifacts
due to water and soft tissue, but if the object contains
additionally bone, artifacts remain due to the fact that the
attenuation spectrum of boneµb(E) differs significantly
from water. To solve this problem, we have to consider
Eq. (4) for two materials:

Ii = I0 ·

∫

S (E) e−Twiµw(E)−Tbiµb(E)dE. (6)

Now, the line integral we are looking for isli = µw(E) ·
Twi + µb(E) · Tbi, but a mapping oflog(I0/Ii) onto li
is no longer possible.For a certain value ofIi, different
combinations ofTwi and Tbi fulfill Eq. (6), but they lead
to different values forli. Thus, one common way to correct
the beam hardening for two materials is to estimate in a
preliminary image (e.g., reconstructed with WBH corrected
projection data) for each pixelρw(x) and ρb(x) based on
the reconstructed attenuation value [4].ρw(x) andρb(x) can
then be forward projected to get an estimate ofTwi andTbi.
One of both or both are then utilized in combination with
Eq. (6) to estimateli.

There are different methods described to estimateli in a
two material scenario [3], [4], [7]. We use here one, which
has similarities with [7]. It is based on the idea, that we can
do a correction similar to the WBH correction for any given
attenuation spectrum. For example, a measurement with a
certain fraction of attenuation by water with respect to the
complete attenuationR = Twi ·µw(E)/(Tbi ·µb(E) + Twi ·
µw(E)) has the effective normalized attenuation spectrum

mR(E) = R · µw(E)/µw(E) + (1 − R) · µb(E)/µb(E).
With this, Eq. (6) becomes

Ii = I0 ·

∫

S (E) e−limR(E)dE. (7)

Since mR(E) is constant for a givenR, log(I0/Ii) can
unambiguously be mapped ontoli using Eq. (7) ifR is
known.

Thus, if for a number of fraction valuesR polynomials
fR(log(I0/I)) are estimated based on Eq. (7) or on cali-
bration measurements, these can be applied to correct the
projection data.

li = fRi

(

log
I0

Ii

)

=
N
∑

n=0

αRi,n · logn
I0

Ii
(8)

Here,Ri is the fraction value formeasurementsi, which is
estimated based on preliminary reconstructions as explained
above. The correction can be applied iteratively, i.e., the
reconstruction based on the corrected data can be used to
refine the valuesRi for an improved correction of the data
and so on.

The next step is to combine the correction of Eq. (8) with
an iterative reconstruction scheme. We use a log-likelihood
approach assuming Gaussian noise on the line integral data,
resulting in the cost function [1]

C = ‖D(Aµ− l)‖2 =

M
∑

i=1

d2ii ·





J
∑

j=1

aijµj − li





2

. (9)

µ is a vector with entriesµj containing a discretized version
of the image to reconstruct,A is the forward projection
matrix, l is the vector with the line integral datali, and
D is a diagonal weighting matrix with the inverse standard
deviations of the line integral datali as entriesdii. Sums are
running over allJ image pixels and over allM measure-
ments.

For the monochromatic case, the entriesli of l are
simply log(I0/Ii). Based on the assumption that the standard
deviations of the measured intensities areσIi =

√
Ii, and

according to error propagation thestandard deviations of the
line integrals areσli = 1/

√
Ii, and thus the diagonal Matrix

D has entriesdii = 1/σli =
√
Ii (see also [1]).

There are now twooptions to incorporate the beam hard-
ening correction as given in Eq. (8) in the cost function (9).
First, we can use the corrected projection datali instead of
log(I0/Ii) in vector l. For this case, Eq. (9) is still valid,
but we have to choose the entries ofD properly. Neglecting
the influence of the projection noise on the estimation of
the valuesRi (and thus on the choice of the coefficients
for the correction polynomial), we can determine them as
dii =

√
Ii/

∑

n αRi,n · n · logn−1(I0/Ii).
Second, we canestimate polynomialsf−1

Ri
solving the

inverse problem of mappingli onto log(I0/Ii), and apply
these inverse polynomials to the forward projected values
Aµ. The cost function is then given by

C =
∑

i

Ii ·



f−1

Ri





∑

j

aijµj



− log
I0

Ii





2

. (10)
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For both cost functions we derived SPS-like update
equations according to [8]. Since Eq.(9) is quadratic and
Eq. (10) is almost quadratic (with the valid assumption that
f−1

Ri
is only weakly nonlinear), we calculate the update as

Newton-Raphson steps of a separable surrogate function of
the respective cost function. To keep equations short, we
abbreviatehi = log(I0/Ii) in the following. The update
equation for cost function (9) can be written as

µ
(k+1)

j = µ
(k)

j −

∑

i aij · d
2

ii ·
(

∑

j′ aij′µ
(k)

j′ − fRi
(hi)

)

∑

i aij · d
2

ii ·
∑

j′ aij′

(11)
with dii =

√
Ii/

∑

n αRi,n · n · hn−1

i (see above).µ(k)

j

are theimage values in thekth iteration step. For the cost
function (10) the update equation is given by

µ
(k+1)

j = µ
(k)

j −
∑

i aij · Ii ·
(

f−1

Ri

(

∑

j′ aij′µ
(k)

j′

)

− hi

)

· ḟ−1

Ri
(hi)

∑

i aij · Ii ·
∑

j′ aij′ ·
(

ḟ−1

Ri
(hi)2 + f−1

Ri
(hi)f̈

−1

Ri
(hi)

)

(12)

with ḟ−1

Ri
(hi) andf̈−1

Ri
(hi) being the first andsecond deriva-

tive of f−1

Ri
with respect tohi.

We extended the update equations to include ordered
subsets and regularization (see [8] for details). We then
implemented both iterative reconstruction methods. The
PolynomialsfR andf−1

R are estimated using a least square
fit based on Eq. (7) with a polynomial order of 11 for 500
equidistantly spaced values ofR.

For the method based on Eq. (11) we do the beam
hardening correction before iterative reconstruction, with the
“conventional” approach as follows: A FBP reconstruction
is performed based on WBH corrected projection data. The
reconstructed image is used to calculateρw(x) and ρb(x).
Based on that the valuesRi are estimated and projection
data is BBH corrected using Eq. (8). This process is repeated
a second time using the BBH corrected projection data as
input (but the observed improvement is very low). Then, the
values ofdii are calculated. The corrected projection data
of the second step as well as the valuesdii are the input
for the iterative reconstruction method, i.e., the values ofRi

are not updated during the reconstruction. This method is
named “BBH external” in the following.

For the method based on Eq. (12) uncorrected projection
data is used as input. The valuesRi are calculated during
reconstruction. This leads to one additional forward pro-
jection per update to determineTbi from ρb(x), increasing
computation time substantially. The method is called “BBH
internal” in the following.

Both methods are evaluated based on simulated 2D spec-
tral data of the FORBILD head phantom. We simulated an
axial CT scan of a single-row detector with 672 elements,
a source-detector distance of 1040 mm, source iso–center
distance of 570 mm, fan–angle of 52.138◦, and 2320 views
over 360◦. The tube spectrum is a 120kV tungsten spectrum,
filtered by 0.6 mm Titanium and 0.8 mm Aluminum. The

detector is assumed to be ideal energy integrating. The
absorption spectra of soft tissue and bone are taken from [9],
[10].

III. R ESULTS

We analyze the reconstructions of the simulated data with
respect to artifacts, noise, and speed of convergence.

For the analysis of the artifacts, we use noise free simu-
lated data. Nevertheless, the noise model described above
is used for iterative reconstruction. In Fig. 1 the FBP
reconstructions of the WBH corrected data and of the BBH
corrected data are given. One can clearly see that the BBH
correction suppresses the BBH artifacts, however there are
some weak remaining artifacts (marked by arrows).

Fig. 1. FBP reconstructions. Left: WBH corrected projection data. Right:
BBH corrected projection data. (Window/Level: 50/100 HU)

Iterative reconstructions are performed with 116 equally
distributed projection subsets. For the noise free case, a weak
Huber regularization is applied to suppress aliasing artifacts
(δ = 1 HU). For both methods the BBH corrected FBP
image is used as start image. In Fig. 2, reconstruction results
after 100 iterations are shown. While, as expected, the BBH
external reconstruction has weak remaining artifacts similar
to the BBH corrected FBP reconstruction (Fig. 1, right),
the BBH internal reconstruction suppresses bone artifacts
even better. This is due to the repeated refinement of theRi

values during reconstruction. However, the improvement of

Fig. 2. Iterative reconstructions with BBH corrected start image. Left: BBH
external method. Right:BBH internal method. Window/Level: 50/100 HU

the artifact suppression is a rather slow converging process,
as can be seen in Fig. 3. Here the reconstructed attenuation
value of one image pixel within one of the artifact regions
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is shown over the first 200 iterations. It takes roughly
100 iterations (corresponding to 11,600 updatesof the Ri

values) until the final improved artifact level is reached. The
intermediate results degrade if a WBH corrected FBP image
is used as start image.
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Fig. 3. Value of one image pixel in the artifact region denoted by the
bottom right arrow in Fig. 2 over the number of iterations for the BBH
internal method. Circles: BBH corrected FBP image as start image. Dots:
WBH corrected FBP image as start image.

To analyze the noise in the reconstructed images, Pois-
son noise was added to the simulated intensity data. For
the reconstructions the regularization strength was a bit
increased to avoid salt-and-pepper noise in the images.
Reconstruction results are shown in Fig. 4 for 100 iterations.
In the difference image it becomes obvious, that the main
differences between the two images are due to the different
artifact suppression level, while differences in the noise
pattern are very weak, even in the representation with a
5 HU window. This is verified by SNR measurements in
homogeneous regions, which show a roughly 5 % better
SNR for the BBH external method. The differences in the
bone regions are due to differences in the BBH suppression,
but it has to be kept in mind, that the window of 5 HU
is extremely low as compared to the absolute attenuation
values of bone.

Fig. 4. Iterative reconstructions from noisy projection data. Left: BBH ex-
ternal method.Middle: BBH internal method. (Window/Level: 50/100 HU)
Right: Difference image. (Window: 5 HU)

To analyze the convergence, we compared the differences
between the reconstructions of the two methods after 100
iterations (when the improvement of the bone artifact sup-
pression for the BBH internal is nearly finished) and after
1000 iterations:

∆ = µ1000

internal
− µ1000

external
− (µ100

internal
− µ100

external
) (13)

Hereµn
internal

denotes the reconstruction of the BBH internal
method aftern iterations (“external” analogous). This has
the advantage that the progress over 900 iterations can be

compared, while the differences between the reconstruction
methods due to the different BBH suppression is widely
eliminated. The∆-image is visualized in Fig. 5. Apart from
the outer rim of the skull, the differences are below a few
HU, indicating that the convergence of both methods is very
similar. The larger differences at the outer rim of the skull
can be explained by the different bone artifact suppression,
resulting especially in different attenuation values at the
outer rim of the skull (see also Fig. 4). The different
contrast between air and skull leads to different amplitudes
of overshoots for the two methods, and in consequence to
the differences observed here.

Fig. 5. The∆-image as defined by Eq. (13).(Window: 20 HU)

IV. D ISCUSSION

We introduced and compared two methods to incorporate
a BBH correction method, which is originally designed for
FBP based reconstruction methods, in an iterative recon-
struction scheme. Both perform very similar with respect to
noise and speed of convergence. The BBH internal method
has the advantage that it suppresses BBH artifacts slightly
better, but the reduction of the BBH artifacts converges quite
slowly. The advantage of the BBH external method on the
other hand is the clearly reduced computational effort due to
the avoidance of an additional forward projection per update
step.

The idea introduced here is not only applicable to BBH
correction, but also to the correction of other physical effects
in pre- or postprocessing steps of conventional FBP methods.
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Abstract—Imaging in the presence of prosthetic implants 

presents a notoriously difficult challenge to CT reconstrucion. 

Such hardware is made of alloys that are highly attenuating 

(e.g., Co-Cr-Mo) and impart severe degradation in image 

quality due to photon starvation, beam hardening, etc. An 

important clinical example is in the proliferation of total knee 

replacement, increasing the need for technologies capable of 

imaging in the presence of knee prostheses. The usefulness of 

CT in follow-up to knee replacement surgery is, however, 

extremely limited due to severe artifacts associated with the 

implant. Recent developments in likelihood-based CT 

reconstruction offer a potential solution to the problem. In 

particular, we exploit the fact that exact models of the shape 

and composition of prostheses are often available. A 

framework is proposed that extends earlier work [1,2] on 

known component reconstruction (KCR) to account for 

polyenergetic beam hardening and apply to the case of a large, 

highly attenuating object such as a knee implant. The 

proposed algorithm uses a polyenergetic object model to 

simultaneously estimate the unknown background density 

volume and the position and orientation of the known implant. 

We test the approach in studies emulating a recently 

developed, dedicated cone-beam CT scanner for extremities 

imaging. The results indicate substantial reduction of image 

artifacts and significant improvements in the visualization of 

areas adjacent to the implant. The KCR approach is found to 

outperform traditional filtered-backprojection and penalized-

likelihood methods that do not account for the implant model 

or polyenergetic object attenuation. The method suggests 

promising new capability to assess implant integrity, 

loosening, and tissue disease (osteolysis and soft-tissue 

derangement).  

Index Terms—CT Reconstruction, Extremities Imaging, 

Implant Imaging, Metal Artifact Reduction, Penalized-

Likelihood Estimation.  

I. INTRODUCTION 

The prevalence on knee replacement surgery is rapidly 

increasing, with some predictions suggesting over a million 

replacements per year by 2015 [3]. Consequently, there is a 

growing need for imaging technologies that enable follow-
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up of knee prostheses, which requires reliable visualization 

in the direct vicinity of the implant. X-ray CT would be a 

compelling candidate thanks to its excellent spatial 

resolution and numerous existing applications in orthopedic 

radiology. However, its application to implant imaging 

remains a major and largely unsolved challenge due to 

severe artifacts caused primarily by beam hardening and 

photon starvation. An example knee implant is shown in 

Fig. 1(A), along with CT images of a prosthetic knee in (B) 

and (C), clearly demonstrating the magnitude of the 

associated artifacts. (CT images are courtesy of E. Fishman, 

MD, [4]). As illustrated in Fig. 1(D), typical alloys used in 

manufacturing knee prostheses (Co-Cr-Mo, consisting of 

~60% Co, ~30% Cr and ~5% Mo) are significantly more 

attenuating to diagnostic x-rays than other common highly 

x-ray opaque materials, such as Ti or cortical bone. As a 

result, x-ray beams traversing even a short pathlength (~1-2 

mm) in such alloys suffer not only from severe photon 

starvation but also significant beam hardening. This is 

shown in Fig. 1(E), where 110 kVp x-ray spectra are 

attenuated by 2 mm of cortical bone, Ti, and Co-Cr-Mo, 

with the spectrum attenuated by Co-Cr-Mo exhibiting the 

most significant shift to high energies. 

 
Fig. 1. (A) Example of a knee implant: DePuy Sigma [5]. Such prostheses 

present a large volume of highly x-ray attenuating alloy, often Cr-Co-Mo 
containing ~60% Cobalt, and thus pose a major challenge for x-ray CT. 

Artifacts associated with the presence of knee implants in CT scans are 

shown in (B) and (C) [4]. In (D), x-ray attenuation of Co-Cr-Mo (solid 
line) is compared to Titanium (dotted line) and cortical bone (dashed line). 

Significant loss of photon flux and substantial beam hardening are 

observed even for short path lengths through the alloy, as shown in (E), 
where x-ray spectra attenuated by 2 mm of Co-Cr-Mo (solid line), Ti 

(dotted line) and cortical bone (dashed line) are compared to the un-

attenuated 110 kVp beam.  
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These extremely strong attenuation characteristics of the 

Co-Cr-Mo alloy, combined with the large size of the 

implants [Fig. 1(A)] lead to large areas of missing data 

(zero or near-zero counts) and low signal-to-noise ratio in 

the projections. They are thus extremely challenging for 

conventional metal artifact reduction methods, such as 

those based on interpolation in the projection domain [6].  

While the development of CT-compatible implants is an 

area of ongoing research, the ability to image heavy 

metallic prosthetics would be of significant immediate 

benefit to a growing population of patients. 

 The ability to image the prosthetic knee could be 

especially beneficial in the context of recently introduced 

dedicated cone-beam CT (CBCT) systems for extremities, 

such as the prototype shown in Fig. 2 [7]. Providing novel 

capabilities (e.g., load-bearing imaging), these systems 

promise to significantly expand the scope and quality of CT 

applications in orthopedics. Increasing prevalence of knee 

replacement implies that the ability to image in the presence 

of implants will be an important aspect of broad utilization 

of such dedicated devices. Moreover, the open system 

architecture of the prototype in Fig. 2 provides an ideal 

platform for development of novel reconstruction 

algorithms.  

 
Fig. 2. The recently developed flat-panel cone-beam CT system for 
extremities imaging. The scanner allows for scanning in both a weight-

bearing, standing (A) configuration and in a non-weight-bearing, sitting 

(B) configuration. Studies in cadaveric specimens indicate soft-tissue 
visibility comparable to conventional CT (C) and exquisite spatial 

resolution (D). Images in (C) and (D) were obtained from a single 80 kVp, 

9 mGy acquisition using soft-tissue and bone reconstruction kernels, 
respectively. 

  One of the unique features of implant imaging is that the 

knowledge of their shape and composition is often available 

(e.g., from CAD models). If properly leveraged in the 

reconstruction, such prior knowledge can be used to 

alleviate the effects of missing data and low signal-to-noise 

ratio. This is especially true if combined with a penalized-

likelihood (PL) approach, which properly accounts for 

projection noise, such as in the recently proposed Known 

Component Reconstruction (KCR) [1,2]. In KCR, the 

position of the known components is estimated jointly with 

the unknown background image (i.e., the underlying 

anatomy) using an alternating joint optimization method. 

This algorithm has been shown to yield excellent, near 

artifact-free reconstructions in imaging of pedicle screws 

under conditions of severe photon starvation. KCR has been 

previously developed under the assumption of a 

monoenergetic x-ray beam, which may be sufficient when 

polyenergetic effects in the object under consideration are 

relatively weak. However, as illustrated above, the heavy 

alloys used in knee implants exhibit significant beam 

hardening, and thus the KCR algorithm needs to be 

expanded to polyenergetic beams and energy-dependent 

attenuation. A number of approaches to include spectral 

effects in penalized-likelihood reconstruction have been 

proposed [8-10]. Here, we combine the algorithm of Elbakri 

et al. [9] with KCR and apply the resulting method to 

imaging in the presence of a knee prostheses. 

II. METHODS 

A. Forward Model 

We assume an energy-integrating x-ray detector with 

uniform detection efficiency and write the measured 

projection value for detector element i:  

                       
                     (1) 

where     is the total photon flux for pixel i,   is the x-ray 

energy,      is the spectral density of the x-ray 

beam,         is the mass-attenuation coefficient of the 

object,      is the object density, and x is the spatial 

dimension. We express the line integral in (1) for a 

voxelized object following Elbakri et al. [9], where we 

assume that the object consists of K materials (mass-

attenuation of k-th material given by   
    ) and that the 

fraction of k-th material in voxel j is known and denoted by 

  
 . The mean signal at pixel i is then: 

             
           

                                
   

           (2) 

where         is the system matrix. By assuming that the 

fraction    
  is known throughout the volume, the 

formulation in (2) allows the likelihood-based objective 

function for image reconstruction to have only one 

unknown per voxel, namely the density    (as opposed to a 

number of unknowns equal to the number of energy bins 

without this simplification). Elbakri et al. [9] assumed that 

the material fractions are known from segmentation of an 

initial FBP reconstruction. 

 Analogous to KCR, we will now further parameterize the 

object as a superposition of an unknown background  

image, given by density distribution   , and a known 

implant volume       undergoing an arbitrary 

transformation (registration)       . The implant 

transformation is characterized by an unknown vector   

(e.g., rotation and translation). This leads to the following 

substitution in (2): 

       
           

    
   

      
 

            

             
   (3) 

where m is a mask representing the support of the implant.  
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B. Reconstruction algorithms 

 Equation (2) with the line integral       
     given by 

(3) provides a relationship between mean measurement at 

pixel i and the object volume. To estimate the background 

density    and the parameters of the implant transformation 

 , we invoke a Poisson noise model and write the log-

likelihood: 

                          
       

         

                                                   
       

                      (4) 

The unknowns can be estimated by maximizing the 

penalized-likelihood estimator: 

                       
                   (5) 

where      is a regularization term to penalize noisy images 

(e.g., a pair-wise quadratic penalty).  The estimator in (5) 

provides a general form that encompasses a variety of 

reconstruction object models (mono and polyenergetic, with 

and without the known components). Different iterative 

algorithms are used to solve (5), depending on the exact 

choice of the reconstruction object model. The simulated 

projection data in this study were obtained using the full 

spectral model. We consider the following cases: 

 PL-Mono: if the x-ray spectrum is assumed to be 

monoenergetic (            and no implant is included 

in the reconstruction model, (5) becomes the familiar 

penalized-likelihood estimator for monoenergetic x-ray CT, 

which is solved iteratively as in [11]. 

 KCR-Mono: in this case, the spectrum is still assumed 

monoenergetic, but the implant volume is included in the 

model, as in (3). Since polyenergetic effects are neglected, 

the implant attenuation is assumed equal to its attenuation 

at 90 keV, chosen to reflect the beam hardening effect of 

the Co alloy for the 110 kVp beam. The KCR algorithm of 

Stayman et al. [1,2] is used to solve this objective by an 

alternating minimization of   and   .    
 PL-Poly: when the reconstruction uses a polyenergetic 

object model, but without knowledge of the implant 

volume, the segmentation-based polyenergetic PL 

algorithm of Elbakri et al. [9] is employed. Two cases are 

considered: PL-Poly-Single, where the segmentation (  
  in 

(2)) assumes that all the voxels are composed of soft-tissue 

(represented by       of muscle) and PL-Poly-Full with 

oracle segmentation into soft tissue, bone, and implant. 

Obtaining such segmentation from the initial FBP corrupted 

by artifacts caused by the prosthesis may be difficult; thus, 

PL-Poly-Full provides an upper bound on the performance 

of PL-Poly for such data. 

 KCR-Poly: the full model of (3) is assumed. We 

estimate the unknown background density volume and the 

position of the known implant using a polyenergetic model 

of x-ray transmission. The same update equation as in PL-

Poly is employed, but with the terms depending on the 

forward projection     computed using the separation of the 

volume into the density map    and the registered implant 

volume           , as in (3). This extension of the KCR 

methodology (aside from application to extremity imaging) 

is the main novel contribution of the current work. Similar 

to PL-Poly, segmentation needs to be provided to constrain 

the estimation of      Note however that the segmentation 

of the implant is no longer required in KCR since the a 

priori knowledge of the implant is now part of the object 

model. Two approaches are tested: a simple segmentation 

assuming that all voxels consist of soft tissue (KCR-Poly-

Single) and oracle segmentation into soft tissue and bone 

(KCR-Poly-Full, again providing the upper bound on 

algorithm performance). 

The initial studies were performed under the assumption 

that the implant transformation W is fixed -  i.e., that the 

implant location is known. The minimization over   in (5) 

is therefore omitted. While this is a simplification, the 

results presented in [1,2] indicate that the registration step is 

extremely robust for a wide range of conditions, including 

the presence of multiple known objects. We therefore 

expect that inclusion of this step in KCR-Poly (ongoing 

work) will not alter the conclusions.   

C. Phantoms, simulations, and reconstruction settings  

Fig. 3 (left) demonstrates the phantoms used in this study. 

Two slices through segmented knee volumes from the 

Virtual Population dataset [12] were used. The base 

materials included four soft tissues (skin, fat, muscle, and 

cartilage), bone marrow, and cortical bone. Circular soft 

tissue contrast inserts (4 mm radius) were placed inside the 

joint space and inside the condyles; each insert was made 

from the same material as its background, but at a 1.2x 

higher density. The knee implant was simulated by 

replacing a region of bone voxels with a Co-Cr-Mo alloy, 

shown as pink overlay in Fig. 3. Following the basic 

geometry of such implants (Fig. 1), all bone voxels were 

replaced with the alloy in the distal region of the condyles 

(top row of Fig. 2); in the proximal region of the condyles 

(bottom row) only the inner and anterior bone surfaces were 

replaced with the alloy. 

 The geometry of the extremities CBCT scanner (Fig. 2) 

was simulated. For simplicity, a single slice, fan-beam 

Fig. 3. (left) Phantoms used in the study. The knee implant (pink 

overlay) was simulated by replacing bone voxels with the Co-based 

alloy. Note the circular soft-tissue contrast inserts in the joint spaces 
and inside the condyles. (center) FBP reconstruction of the phantom 

with no implant, illustrating the magnitude of beam hardening due to 

bone. (right) Beam hardening artifacts are efficiently removed with the 
polyenergetic PL algorithm of Elbakri et al. [10] This algorithm was 

combined with Known-Component Reconstruction (KCR) [1,2] to 

yield a polyenergetic algorithm robust to the presence of implants. 
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acquisition was considered in this preliminary study. The 

SDD was 550 mm, and the SAD was 430 mm; there were 

384 detector pixels at 0.776 mm pitch. A circular orbit with 

360 projections at 1
o
 increment was assumed. The voxel 

size was 1 mm. Polyenergetic projections were simulated 

using Eq. (1) with 10
6
 photons per detector element. The x-

ray spectrum for a 110 kVp beam with 2 mm Al and 0.2 

mm Cu filtration (as in the prototype scanner) was 

computed using SPEKTR [13].  

Reconstruction by the PL and KCR methods above 

involved the same x-ray spectrum, pixel size, and voxel size 

as in the simulation. 200 iterations with 60 subsets were 

performed in each case. The regularization parameter β was 

varied to achieve similar resolution in all reconstructions. 

Matched forward- and back-projector based on separable 

footprints [14] were implemented in a CUDA-based library 

for nVidia GPUs.   

III. RESULTS 

  
Fig. 4. Monoenergetic reconstructions (from polyenergetic projection data) 

in the presence of a knee implant. (top) FBP, showing severe streaks due to 

photon starvation and beam-hardening in the presence of the implant. 

(center) PL-Mono reconstruction, demonstrating a degree of improvement 

in artifacts caused by poor photon statistics; however, significant streak 

artifacts are persistent. (bottom) KCR-Mono reconstruction, where the 

implant (pink overlay) was modeled using its attenuation at 90 keV. 

Neglecting spectral effects results in little or no improvement over PL-

Mono.  

FBP and PL-Poly reconstructions of the two phantoms 

without the prostheses are shown Fig. 3 (center and right), 

demonstrating the strength of PL-Poly in addressing beam 

hardening from common materials such as cortical bone. In 

Fig. 4, reconstructions of polyenergetic projections of the 

phantoms with the implant included are compared for 

monoenergetic algorithms. The FBP images are severely 

compromised by streak artifacts. These artifacts are 

somewhat alleviated when a likelihood-based algorithm is 

used (PL-Mono). This demonstrates the value of including 

a noise model that penalizes low-count projections in the 

reconstruction. Nevertheless, the areas surrounding the 

implant are still plagued by artifacts. Including knowledge 

of the implant morphology (KCR-Mono) is not sufficient to 

reduce the artifacts because of the mismatch between the 

monoenergetic model of implant attenuation and the 

polyenergetic nature of the measured data. 

  

In Fig. 5, reconstruction algorithms that employ a 

polyenergetic object model are compared for the same 

projection data. A simple model of object attenuation used 

in PL-Poly-Single (all voxels consisting of soft-tissue) fails 

to produce significant reduction in artifacts. Even when the 

implant is included in the initial segmentation (PL-Poly-

Full), artifacts persist in the vicinity of the prosthesis. They 

are significantly reduced with KCR-Poly-Single (third row 

in Fig. 5), as evident by the improved visualization of the 

Fig. 5. Polyenergetic PL and KCR reconstructions. (top) PL-Poly 

reconstruction of the implanted knee, where object segmentation 

consisted of only soft tissue. The single-component model is not sufficient 

to suppress streak artifacts. (second row) PL-Poly with oracle 

segmentation that included soft tissue, bone, and the implant. While 

significantly improved from either PL-Mono or PL-Poly-Single, the 

image still suffers from artifacts. Such artifacts are largely removed with 

KCR-Poly-Single (third row), which applies knowledge of the material 

and morphological characteristics of the implant and estimates the 

unknown underlying anatomy simultaneously with the position of the 

known implant. (bottom) KCR-Poly-Full gives further improvement by 

including segmentation of bone and soft tissue. 
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contrast inserts. The artifacts are further diminished when 

bone is also included in segmentation (KCR-Poly-Full, 

bottom row on Fig. 5). While traditional algorithms attempt 

to extract information from data with very few or zero 

counts (in effect a data null-space), KCR uses a priori 

implant knowledge to better condition the problem and 

select solutions from within potential null-spaces. Note also 

that KCR-Poly-Single achieves excellent artifact reduction 

while not requiring a complete segmentation of the object, 

which is likely difficult to obtain in the presence of artifacts 

caused by the prosthesis.  

 

IV. DISCUSSION 

 A novel reconstruction algorithm (KCR-Poly) that 

combines the knowledge of the material and morphological 

characteristics of the prosthesis with a polyenergetic model 

of x-ray propagation was introduced. The algorithm was 

shown to yield excellent results in reduction of severe 

image artifacts around such implants in conventional 

reconstructions. The success of KCR-Poly owes to both the 

use of a priori knowledge of the implant and the account of 

the polyenergetic nature of object attenuation, as indicated 

by the persistence of artifacts for the monoenergetic version 

of KCR.  

Ongoing work includes inclusion of the implant registration 

step as part of the joint optimization [1,2] in KCR, 

extension to segmentation-free polyenergetic reconstruction 

[10], and testing in real data, including an analysis of the 

effects of scatter [15]. The algorithm will be tested on the 

prototype extremities scanner in realistic scenarios and 

extended to other applications involving large metallic 

implants. 

REFERENCES 

[1] Stayman J. W., Otake Y., Prince J. L., Siewerdsen J. H., "Likelihood-

based CT Reconstruction of Objects Containing Known 

Components," Int’l Mtg. Fully 3D Image Recon., (2011). 
[2] Stayman J. W., Otake Y., Prince J. L., Siewerdsen J. H., "Model-

Based Tomographic Reconstruction of Objects Containing Known 

Components", IEEE Trans. Med. Im., in press (2012). 
[3] Kim, S., "Changes in Surgical Loads and Economic Burden of Hip 

and Knee Replacements in the US: 1997–2004," Arthritis & 

Rheumatism (Arthritis Care & Research), 59(4):481–488 (2008). 
[4] Fishman E. K., "Case 3563: Total Knee Replacement," 

www.ctisus.com.  

[5] DePuy Companies, "Sigma Rotating Platform Knee," 

www.depuy.com. 

[6] Kalender W. A., Hebel R., Ebersberger J., "Reduction of CT artifacts 

caused by metallic implants," Radiology, 164:576–577 (1987). 
[7] Zbijewski, W., De Jean P., Prakash P., Ding Y., Stayman J. W., 

Packard N., Senn R., Yang D., Yorkston J., Machado A., Carrino J. 

A., Siewerdsen J. H., "A dedicated cone-beam CT system for 
musculoskeletal extremities imaging: Design, optimization, and 

initial performance characterization," Med. Phys. 38(8):4700 - 4713 

(2011) 
[8] De Man, B., Nuyts, J., Dupont, P., Marchal, G., Suetens, P., "An 

iterative maximum-likelihood polychromatic algorithm for CT," 

IEEE Trans. Med. Im., 20(10):999-1008 (2001). 
[9] Elbakri, I. A., Fessler, J. A., "Statistical image reconstruction for 

polyenergetic X-ray computed tomography," IEEE Trans. Med. Im. 

21(2):89-99 (2002). 

[10] Elbakri, I. A., Fessler, J. A., " Segmentation-free statistical image 

reconstruction for polyenergetic X-ray computed tomography with 
experimental validation,” Phys. Med. Biol., 48(15):2543-78 (2003) 

[11] Erdogan, H.,  Fessler, J. A., "Ordered subsets algorithms for 

transmission tomography," Phys. Med. Biol. 44:2835-51 (1999). 
[12] IT'IS Foundation, "The Virtual Population," www.itis.ethz.ch. 

[13] Siewerdsen, J. H., Waese, A. M., Moseley, D. J., Richard, S., Jaffray, 

D. A., " Spektr: A computational tool for x-ray spectral analysis and 
imaging system optimization," Med. Phys., 31:3057 (2004). 

[14] Long, Y., Fessler, J. A., Balter, J. M., "3D forward and back-

projection or X-ray CT using separable footprints," IEEE Trans. 
Med. Im., 29:1839-50 (2010). 

[15] Zbijewski, W., Sisniega, A., Vaquero, J. J., Packard, N., Senn, R., 

Yang, D., J. Yorkston, Carrino, J. A., Siewerdsen, J. H., “Dose and 
Scatter Characteristics of a Novel Cone Beam CT system for 

Musculoskeletal Extremities,” Proc. of SPIE Medical Imaging 

(2011).  

Page 438 The second international conference on image formation in X-ray computed tomography

http://www.depuy.com/


A Model-Based Iterative Algorithm for
Dual-Energy X-Ray CT Reconstruction

Ruoqiao Zhang, Jean-Baptiste Thibault, Member, IEEE, Charles A. Bouman, Fellow, IEEE,
Ken D. Sauer, Member, IEEE, and Jiang Hsieh, Senior Member, IEEE

Abstract—Recent developments in dual-energy X-ray CT have
shown a number of benefits over standard CT for object sepa-
ration, contrast enhancement, artifact reduction, and material
composition assessment. As with traditional CT, model-based
iterative approaches to reconstruction offer the opportunity
to reduce noise and artifacts in dual energy reconstructions.
However, previous approaches to model-based dual energy re-
construction have not fully modeled the statistical dependencies
in the material-decomposed data. In this paper, we present a
method for model-based iterative reconstruction which accounts
for both the statistical dependency in the material decomposed
sinogram components, and fast-switching approaches to dual-
energy sampling. Our method also incorporates a positivity
constraint in the space domain which accurately accounts for
the true physical constraint of positive X-ray attenuation and is
computationally simple to implement. Both phantom and clinical
results show that the proposed model produces images which
compare favorably to FBP in overall image quality.

I. INTRODUCTION

Acquiring X-ray CT exposures at two distinct energy levels
can help distinguish different material types, which is of great
importance in disease diagnosis and security inspection. Dual-
energy CT reconstruction typically works by reconstructing
two density maps for two basis materials. The cross-sectional
attenuation map at any given energy can then be computed as
a linear combination of the two material density maps [1].

A typical approach to dual-energy reconstruction works by
first transforming the low and high energy photon counts into
quantities that are proportional to the integral of the material
density for two basis materials. This material-decomposed
sinogram can then be directly reconstructed using FBP to
form the material density maps in image space. The trans-
formation from photon counts to integral projections is per-
formed by a material-decomposition function, which can then
be experimentally measured through a scanner calibration
procedure. However, the processes of applying this material-
decomposition function changes the statistics of the measured
data, which results in reconstructions that have statistically
correlated noise properties.

Statistical iterative methods have the natural advantage that
they can explicitly build data statistics into the dual-energy
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problem description, and account for the significant changes
occurring during material decomposition. Some statistical ap-
proaches [2], [3] have been proposed from a rigorous theo-
retical perspective to reconstruct the material images directly
from the low- and high-energy projections. On the other hand,
Model-Based Iterative Reconstruction (MBIR), which views
the reconstruction problem as the solution of a Maximum A
Posteriori (MAP) estimation formulation, has been found to
be very effective in reconstruction of single-energy CT images
[4], [5].

In this paper, we propose an approach for applying MBIR
to the dual-energy X-ray CT problem. Our approach explicitly
accounts for the correlation of scanner noise caused by the
material-decomposition process, and it also allows for accurate
modeling of data collected using kV switching techniques,
in which low and high energy measurements are used at
alternating views. The MBIR approach incorporates a prior
model that accounts for the separation into materials, and
includes a simple positivity constraint that accurately accounts
for the true physical constraint of positive X-ray attenuation.

II. PROBLEM FORMULATION AND PROPOSED SOLUTION

A. Problem Formulation

The linear attenuation coefficient x(E) of any material as a
function of energy E can be expressed as a linear combination
of mass attenuation coefficients of two basis materials [1].
Without loss of generality, in this paper we choose the basis
materials as water and iodine. Then the relationship can be
described as

xj(E) = mj · µT (E), (1)

where j is the index of the voxel, mj , [mj,W , mj,I ]
represents the water-equivalent and iodine-equivalent densities
at voxel j and µ(E) , [µ

W
(E), µ

I
(E)] represents the known

mass attenuation coefficients for water and iodine. The task is
to reconstruct the material densities from the measurements
obtained from dual-energy acquisition.

Let m ∈ ℜN×2 represent the reconstructed images for
the selected material basis pair, where each row is given by
mj = [mj,W , mj,I ]. Furthermore, let y ∈ ℜM×2 be the
set of dual-energy sinogram measurements, where each row
given by, yi = [yi,l, yi,h], specifies the low and high energy
measurements for the ith projection.

Then the reconstruction problem can be formulated as
computing the MAP estimate given by

m̂ = arg max
m∈ΩN

{logP (y|m) + logP (m)}, (2)
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where P (y|m) is the conditional distribution of y given m,
P (m) is the prior distribution of m, and Ω is the constrained
set for each voxel.

B. Forward Model

Let p ∈ ℜM×2 be the forward projection of the material
reconstruction, with its ith row given by

pi ,

 ∫
ray i

m∗,W (r)dr,

∫
ray i

m∗,I (r)dr

 (3)

Then p can be expressed as p = Am where A is the forward
projecting matrix for the CT system.

Furthermore, we may define a vector-valued function hi :
ℜ2 → ℜ2, which transfers the material projections to the
expected photon attenuation along the ith ray, as

hi(pi) , − log

∫
R

si(E) exp
{
−piµ

T (E)
}
dE

 , (4)

where E denotes the X-ray photon energy, vector si(E)
represents the two normalized source/detector spectra for the
ith ray. Assuming hi is invertible, the corresponding inverse
function h−1

i is defined as

h−1
i (hi(pi)) , pi . (5)

Assume that for each detector, a measurement is made of
the photon counts for both the low and high energy case.
Then we can compute the associated low and high attenuation
measurement as

yi ,
[
− log

(
λi,l

λi,o,l

)
,− log

(
λi,h

λi,o,h

)]
, (6)

where λi,l and λi,h represent the measured photon counts
along the ith ray at low and high energies, respectively, and
λi,o,l and λi,o,h represent the expected air-scanned photon rate.
Then yi has approximate mean hi(pi) and approximate inverse
covariance Wi as

Wi = diag {wi,l, wi,h} . (7)

The diagonal elements wi,l and wi,h give the inverse variances
of yi,l and yi,h respectively. Zero off-diagonal entries come
from the assumption that the incident rays with different
energy levels are mutually independent. The values of wi,l and
wi,h can be estimated by using the photon count measurement
λi [6], [7], as

wi,l =
λ2
i,l

λi,l + σ2
e

, (8)

wi,h =
λ2
i,h

λi,h + σ2
e

, (9)

where σ2
e represents the variance of electronic noise in the

data acquisition [8]. The log-likelihood term can then be
approximated by a second-order Taylor series expansion using

a Poisson-Gaussian noise model [6], [7], which yields the
quadratic expression:

− logP (y|m)

≈1

2

∑
i

(yi − hi(Ai,∗m))Wi (yi − hi(Ai,∗m))
T
+ f(y),

(10)

where f(y) is a function depending on data y only. Define p̂i
as an estimate of the material projection pi, which is obtained
via the h−1

i function,

p̂i , h−1
i (yi). (11)

Then by a first order approximation, the likelihood term can
be written as

− logP (y|m) ≈ 1

2

∑
i

(p̂i −Ai,∗m)Bi (p̂i −Ai,∗m)
T
,

(12)
where the weighting matrix Bi is given by

Bi , [∇h−1
i (yi)]

−1Wi[∇h−1
i (yi)]

−T . (13)

Each Bi is a 2×2 symmetric matrix which represents the
inverse covariance of the estimated material projections p̂i.
The off-diagonal entries of Bi provide information about
the correlation between the calculated projections of distinct
materials.

This formulation also works for the fast kVp switching
data acquisition mode, in which the effective source voltage
changes from view to view. In this case, each projection only
contains one of the low- or high-kV measurements. So if a
low measurement is made, then wi,h = 0, and if a high
measurement is made, then wi,l = 0. The missing components
for the values of yi are then computed by interpolation.
However, these interpolated values are only used to compute
the gradient ∇h−1

i (yi), which consequently only have a small
effect the value of Bi. Moreover, the matrix Bi is always rank
deficient in this case, with a zero eigenvalue in the direction
of the missing information.

In practice, the h−1
i can be the same material decomposition

function used in FBP reconstruction, and it can be empirically
measured from the physical system.

C. Prior Model
We employ a Markov random field (MRF) as our prior

model with the form

− logP (m) =
∑

s∈{W,I}

∑
{j,k}∈C

bjk,sρ(mj,s −mk,s), (14)

where s is the index of material type, C represents the set of all
neighboring voxel pairs, bjk,s are regularization weights and
ρ(.) is the potential function. Our particular choice of penalty
here is the q-generalized Gaussian MRF (q-GGMRF) [4]:

ρ(∆) =
|∆|p

1 + |∆/c|p−q
. (15)

with 1 < q ≤ p ≤ 2, which guarantees strict convexity
and therefore global convergence of the cost function. The
parameter c balances the performance between noise reduction
and edge preservation [4]. We choose here to perform this
regularization independently on each of the material density
images.
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Fig. 1. This figure illustrates the feasible values of a pixel mj =
[mj.W ,mj,I ]. The set is formed by the intersection of only two half planes,
one defined by nmax and the other by nmin.

D. Constrained Optimization

An important physical constraint to the solution is that
the attenuation at every energy must be non-negative. More
precisely for all E ∈ [40, 140] keV, we know that

xj(E) = mj · µT (E) ≥ 0 , (16)

where the photon energy range [40, 140] keV is of particular
interest for medical imaging and is above the k-edge of iodine.
This constraint is then equivalent to the constraint that

mj · nT (E) ≥ 0 , (17)

where n(E) = µ(E)
||µ(E)|| is the normalized mass attenuation

vector. The constraint set is then given by mj ∈ Ω where

Ω = ∩E∈[40,140]{mj ∈ ℜ2 : mj · nT (E) ≥ 0} . (18)

So Ω is formed by the intersection of an infinite number of half
planes. However, the form of Ω can be dramatically simplified
by noticing that the direction of n(E) moves continuously
with E, therefore the constraint can be represented much more
simply by the intersection of two planes corresponding to the
minimum and maximum values of n(E) as nmin and nmax,
with

Ω =
{
m : mj · nT

min ≥ 0 and mj · nT
max ≥ 0

}
. (19)

The constraint set and the associated vectors are illustrated
graphically in Fig. 1.

Combining the log likelihood in (12) and the prior in (14)
with the above constraints, the MAP estimate of m can be
obtained by solving the following constrained optimization:

m̂ = arg min
m∈ΩN

{
1

2

∑
i

(p̂i −Ai,∗m)Bi (p̂i −Ai,∗m)
T

+
∑

s∈{W,I}

∑
{j,k}∈C

bjk,sρ(mj,s −mk,s)

 . (20)

We use iterative coordinate descent (ICD) algorithm with
an FBP initial condition to solve the problem in (20), and

TABLE I
COMPARISON OF FBP AND MBIR FOR MEASUREMENT OF NOISE AND

IN-PLANE MTF, FOR THE IMAGES IN FIG. 2. THE 10% MTF IS CHOSEN
SINCE IT GENERALLY REPRESENTS THE VISUAL RESOLUTION OF THE

IMAGE.

Noise Std. Dev. (mg/cc) 10% MTF (lp/cm)
FBP MBIR FBP MBIR

Water 21.21 9.68 6.15 11.80
Iodine 0.60 0.38 5.81 10.59

70keV Mono 14.18 13.69 6.60 11.70

with each ICD voxel update, we compute the exact solution
to the constrained voxel update with the Karush-Kuhn-Tucker
(KKT) conditions.

III. RESULTS

In this section, we apply the dual-energy MBIR algorithm to
both phantom and clinical reconstructions. Data is acquired on
a Discovery CT750 HD scanner (GE Healthcare, WI) in dual-
energy fast switching acquisition mode, rapidly alternating
source voltage between 80 kVp and 140 kVp from view
to view in 540 mAs. Each reconstructed 512×512 axial
image has a prescribed thickness of 0.625mm. The recon-
structed pixel value represents the water-equivalent or iodine-
equivalent densities in units of mg/cm3. The prior parameters
are empirically chosen to be p = 2.0, q = 1.2, and c = 10.
We will compare our method with a generic FBP method
with a standard reconstruction filter kernel, which improves the
FBP image quality via a correlation-based noise management
[9]. Our method has not been optimized to yield a particular
desired image quality performance.

Fig. 2 presents reconstructions of a GE Performance Phan-
tom with 984 views per rotation for each kVp with pitch
0.938:1. As shown in the figures, MBIR creates smoother
texture over FBP in flat regions. Fig. 3 shows the improvement
in visual resolution brought by MBIR in the monochromatic
image. Quantitative measurements also indicate that MBIR has
the ability to improve the in-plane resolution with reduced
noise over FBP, as illustrated in Table I.

Fig. 4 shows reconstructions of a clinical scan of the
abdomen with 984 views per rotation for each kVp at a
helical pitch of 0.984:1. By visual comparison to FBP, MBIR
improves the water image by reducing noise and enhancing
the overall contrast. The bone structures in the MBIR images
exhibit less blooming and sharper edges than FBP, and the
texture of the liver area is also improved. Some small lesions
in the liver area and some fine structures are also enhanced in
the MBIR images compared to the FBP images. The overall
contrast enhancement by MBIR can also be observed in the
monochromatic images. These results illustrate some potential
diagnostic benefits of iterative reconstruction from dual-energy
CT data.

IV. CONCLUSION

In this paper, we have presented a model-based iterative
reconstruction approach for dual-energy X-ray CT reconstruc-
tion. The method combines a forward model to account for
correlation between material decomposed projections with
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Fig. 2. Comparison of generic FBP vs MBIR performance on a GE Performance Phantom. All the images represent the same imaging plane in the 3D volume.
Top left: FBP water image; top middle: FBP iodine image; top right: 70keV monochromatic FBP image. Bottom left: MBIR water image; bottom middle:
MBIR iodine image; bottom right: 70keV monochromatic MBIR image. Display window for the water images: WW 1600mg/cm3 and WL 900mg/cm3; for
iodine images: WW 40mg/cm3 and WL 3mg/cm3; for mono images: WW 1000HU and WL 0HU. The monochromatic image at a particular photon energy
is generated by linearly combining water and iodine images with the corresponding mass attenuation coefficients at the given photon energy, according to
equation in (1). The white box in the image indicates the region where the noise standard deviation is evaluated.
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Fig. 3. Profile plot across the resolution bars on a GE Performance Phantom for FBP and MBIR images. Image on the LHS indicates the location of the
profile line, which passes through the resolution bars perpendicularly. Image on the RHS shows the pixel values along that particular line in FBP (blue) and
MBIR (red) images. It can be seen in the figure that the spikes in the MBIR image are much more enhanced than those in the FBP image, which makes the
resolution bars more spatially separable.

MRF regularization, and features an additional physical con-
straint over the reconstructed linear attenuation coefficients.
The proposed method has better performance than FBP in
terms of noise reduction and spatial resolution. Further inves-
tigation will assess how to further improve material separation
performance and investigate potential clinical benefits.
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Model-based CT Reconstruction from Sparse Views
Sherman J. Kisner,Eri Haneda, Charles A. Bouman, Sondre Skatter, Mikhail Kourinny, and Simon Bedford

Abstract—In this paper, we investigate the use of model-based
CT reconstruction in conjunction with limited-view scanning
architectures, and we illustrate the value of these methods
using transportation security examples. The advantage of limited
view architectures is that it has the potential to reduce the
cost and complexity of a scanning system, but its disadvantage
is that limited-view data can result in structured artifacts in
reconstructed images. Our method of reconstruction depends
on the formulation of both a forward projection model for the
system, and a prior model that accounts for the contents and
densities of typical baggage. In order to evaluate our new method,
we use realistic models of baggage with randomly inserted simple
simulated objects. Using this approach, we show that model-based
reconstruction can substantially reduce artifacts and improve
important metrics of image quality such as the accuracy of the
estimated CT numbers.

I. I NTRODUCTION

While computed tomography(CT) has developed primarily
in the context of medical applications, there has been increas-
ing utilizing of CT systems for transportation security. For
example, many airports have deployed X-ray CT systems as a
central component of baggage screening. While the underlying
theory is largely the same as for medical CT, a different set
of constraints are associated with security CT systems, such
as the physical size and diversity of the scanned objects,
the maximum acceptable X-ray energy, and the scan time
requirements. Such constraints present some new opportunities
and challenges for the CT reconstruction problem.

Scan time is a particularly important constraint for many
security screening systems in order to handle the large volume
associated with a transportation environment. One strategy
to reduce scan time in a CT system is to simply take
measurements at a fewer number of view angles, but this is
generally to the detriment of reconstruction quality due to the
ill-posed nature of the inversion problem [1]. For example, the
traditional filtered backprojection(FBP) algorithm typically
produces severe streaking artifacts in the limited view problem,
which can in turn affect the later stages of security screening.

Recently, there has been growing interest in the use of
model-based reconstruction techniques in CT security systems.
Their potential to produce high-quality reconstructions is facil-
itated by their ability to incorporate knowledge of the physical
and statistical properties of both the scanner and the targets.
These include modeling of system geometry, uncertainty in
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and Computer Engineering, Purdue University, West Lafayette, IN, USA.
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the measurements, and prior knowledge about the solution.
In particular, the modeling of the underlying image plays an
important role in compensating for the missing data in the
limited view problem.

One established class of model-based techniques applies
a regularization on the solution through aMarkov random
field (MRF) prior model, describing the statistical distribution
of a voxel given its neighbors. Such methods formulate the
reconstruction as a maximization of theposteriordistribution
(of the image, given the measurements), or aMAP estimate.
The optimization is typically solved using an iterative strategy
[2] such asiterative coordinate descent(ICD).

The particular choice of MRF prior model has a strong
influence on the character of the solution. A quadratic, or
Gaussian MRF (GMRF) prior, provides for fast convergence
but tends to over-regularize the solution. Thegeneralized
Gaussian MRF[3] (GGMRF) provides noise suppression
while preserving edges in the image. A further generalization
called theq-generalized Gaussian MRF[4] (qGGMRF) is even
more controllable while providing for fast convergence [5].

At present, only a small number of published studies have
been dedicated to CT reconstruction for transportation security
[6], [7], including the application of FBP [8] and algebraic
reconstruction (ART) [9]. In this paper, we evaluate the
performance of model-based reconstruction for parallel beam
CT in the context of transportation security. We investigate the
effect of reconstruction with a limited number of projection
angles, as well as the effect of background clutter on the
accuracy of the attenuation coefficient estimates. The FBP
algorithm is used as a baseline for comparison.

II. M ETHODS

A. Projection Model

We assume a linear forward projection model in which, in
the noiseless case, the object density image,x ∈ R

M , and the
projections,y ∈ R

N , are related by a sparse matrix operator
A,

y = Ax . (1)

The matrix coefficientAij represents the contribution of voxel
j in forming projection elementi. In a line-beam model,Aij

is calculated as the length of beami that intersects voxelj.
In a wide-beam model [10], which accounts for the fact that
photons are collected over a detectorarea, the coefficientAij

is computed as the inner product of the projection of voxelj

onto the face of sensori, with a detector efficiency kernel
which is typically a simple indicator function. All results
presented in this study use the wide-beam model.
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B. Iterative MAP reconstruction

In the statistical framework, we consider the image,x, and
the projection measurements,y, as random vectors, and our
goal is to reconstruct the image by computing the maximum
a posteriori (MAP) estimate given by

x̂ = argmin
x≥0

{− log p(y|x)− log p(x)} (2)

where p(y|x) is the likelihood function associated with the
data model, andp(x) is the prior distribution ofx. Note we
also include a positivity constraint on the solution.

In general, the received photon count,λi, corresponding to
projection i follows a Poisson distribution with mean̄λi =
λT,ie

−Ai∗x, whereλT,i denotes the input photon count for
projection i, and Ai∗ denotes theith row of the projection
matrix. Starting from the Poisson model, a second-order Taylor
expansion can be used to approximate the log likelihood term
by the following [2],

log p(y|x) ≈ −
1

2
(y −Ax)TD(y −Ax) + f(y) (3)

whereA is the forward projection matrix,D is a diagonal
weighting matrix given by diag{λ1, ..., λN}, and f(y) is a
function which depends on measurement data only. Note in
this form, the photon count,λi, acts as a weighting coefficient
for the error,(yi − Ai∗x)

2, associated with projectioni (i.e.
smaller photon counts are less reliable, so are weighted less
in the cost framework).

We will consider a Markov random field for the prior model,
p(x), where we use a standard 8-point neighborhood. An MRF
distribution is often defined implicitly in terms of conditional
densities, but the Hammersley-Clifford theorem allows the
joint density to be expressed as a Gibbs distribution of the
following form,

p(x) =
1

z
exp







−
∑

{s,r}∈C

bs,rρ(xs − xr)







(4)

where ρ is a positive and symmetric function called the
potential function,C is the set of all pairwise cliques andz is
a normalizing constant. The MAP solution then becomes,

x̂ = argmin
x≥0







1

2
‖y −Ax‖2D +

∑

{s,r}∈C

bs,rρ(xs − xr)







.

(5)
In this study, we consider two different potential functions,

ρ(·). The first is a quadratic, which corresponds to a Gaussian
Markov random field (GMRF). So defining∆ = xs − xr, we
have ρ(∆) = ∆2. The second, is a q-generalized Gaussian
MRF, or qGGMRF [4], which has the form,

ρ(∆) =
|∆|p

1 + |∆/c|p−q
. (6)

Generally, theqGGMRF potential allows more control over
the behavior sinceρ(∆) ≈ |∆|p for small values of∆ (small
voxel differences), and is proportional to|∆|q for large values

of ∆. Thec parameter controls the “transition point” between
these two cases. Of particular interest are the cases where
1 ≤ q ≤ p, which ensures convexity of the potential function.
Common values to use arep = 2 (quadratic near zero), andq
close to 1.

The reconstruction is computed by minimizing the expres-
sion in Eq. (5). We compute the solution by iterative coordinate
descent (ICD) which minimizes the cost with respect to each
voxel serially. Note because of our choice of priors, the global
cost function is convex and ICD is ensured to converge to the
global minimum.

III. R ESULTS

This section will present both qualitative and quantitative
analyses on the accuracy of model-based reconstruction. So
that we can evaluate with respect to ground truth, projection
data was simulated by applying a linear wide-beam projector
to a clean high-resolution scan of a duffel bag (see Fig-
ure 2(b)). Sinograms were generated with various numbers of
views ({64,32,16,8}views, at 800 samples per view.) Since we
are principally interested in examining the effect of a reduced
number of view angles, and the effect of clutter in the image,
no photon noise is incorporated for this study. All images were
reconstructed at 800x800 pixel resolution, and the qGGMRF
model parameters were (p=2.0, q=1.0, c=15HU).

For comparison, reconstructions are also computed using
filtered backprojection. The filter employed in these recon-
structions has a ramp frequency response multiplied by a
Hamming window, and a cutoff frequency of 0.8 times the
Nyquist rate. Source code for this reconstruction software is
available for download (See Ref. 11).

A. Effect of Limited View Angles

Figure 1 shows the reconstructions after forward projecting
a ground truth bag scan at a limited number of equally spaced
view angles between 0 and 180 degrees. Illustrated is the effect
of reducing the number of view angles on reconstruction by
filtered backprojection (FBP), and by iterative model-based
reconstruction using a Gaussian Markov random field (GMRF)
prior, and a q-generalized Gaussian MRF prior (qGGMRF).
The correspondingroot mean square error(RMSE) from
ground truth for each of these reconstructions is listed in
Table I. The RMSE was computed from only those voxels
having a density greater than air in the ground truth image.

TABLE I
ROOT MEAN SQUARE ERROR OF RECONSTRUCTIONS INFIG. 1. UNITS ARE

OFFSETHOUNSFIELD (AIR=0).

no. of views FBP GMRF qGGMRF

64 481.0 237.8 112.8
32 628.4 361.1 277.1
16 746.2 498.9 453.8
8 854.4 607.1 598.5
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Fig. 1. Image reconstructions from limited view angle projection data. Four
parallel projection data sets are considered, containing 64, 32, 16, and 8
view angles, uniformly spaced between 0 and 180 degrees. Reconstructions
include filtered backprojection (FBP) and iterative MAP reconstruction using
a Gaussian Markov random field prior (GMRF), and a q-generalized Gaussian
MRF prior (qGGMRF). The gray scale range for all results shown is [0,2000]
HU.

B. Effect of Clutter on CT Accuracy

To examine the effect of image “clutter” on the accuracy of
CT number estimates, we modified the ground truth image
in two respects. First, the contents of the bag scan were
masked out to produce alow clutter scene, and we consider
the original image as ahigh clutterscene. Second, we inserted
a single round 1.7 cm diameter target of a known uniform CT
value (1400 HU) somewhere inside the perimeter of the bag.
Figures 2(a) and 2(b) illustrate this for the low and high clutter
scenes.

Two experiments were performed. In the first, we produced
32 view angle parallel projection data from the images shown
in Figures 2(a) and 2(b) (without the highlighting box).
Reconstructions were computed using FBP and iterative MAP
reconstruction using the GMRF and qGGMRF priors. A close-
up of the reconstructions around the target region are shown
in Figure 3. Figure 4 shows the reconstructed CT numbers for
voxels along the reference line through the target.

In the second experiment we calculated the average ac-
curacy of the reconstructed target voxels after placing the
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(a) Low clutter scene (b) High clutter scene

Fig. 2. Ground truthimages for investigating the effect of clutter on CT
reconstruction accuracy. The bag contents from the ground truth image have
been masked out to create alow clutterscene in (a). For evaluation, a synthetic
target of uniform value (1400 HU) has been added, as highlighted by the box
near the center of the low and high clutter scenes. A close-up of the target in
(c) also shows a reference line highlighting voxels that will be examined in
the experiment.
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Fig. 3. Reconstructions zoomed to the target area indicated in Figs. 2(a) and
2(b). All results are from 32 view angle parallel projection data, the top row
generated from the low clutter scene of Fig. 2(a), and the bottom row from
the high clutter scene of Fig. 2(b).

target at various locations in the bag. Specifically, in each trial
we (1) place the synthetic target at a random location inside
the bag perimeter, (2) forward project to produce a 32 view
angle sinogram, (3) reconstruct, and (4) calculate the average
deviation of the target voxels from the true value, as well as
the root mean square of the deviations. Table II summarizes
the results of this procedure averaged over 60 trials of random
placement.

TABLE II
RECONSTRUCTEDCT NUMBERS FOR A RANDOMLY PLACED SYNTHETIC

TARGET. THE Dev. IS THE AVERAGE DEVIATION OF RECONSTRUCTED

TARGET VOXELS FROM THE TRUE VALUE. SIMILARLY , THE RMSEIS THE

ROOT MEAN SQUARE DEVIATION FROM THE TRUE TARGET VALUE. ALL

VALUES ARE IN OFFSETHOUNSFIELD UNITS (AIR=0).

Low clutter High clutter

Dev. RMSE Dev. RMSE
FBP -895.1 899.1 -647.8 702.7

GMRF -157.2 280.4 -179.8 332.7
qGGMRF -14.2 25.8 -87.3 209.2
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Fig. 4. CT values from limited view reconstructions of Fig. 3 for voxels
along a line through the center of the target region. Also shown are the true
voxel values from ground truth.

IV. D ISCUSSION

The most apparent advantage of model-based reconstruction
from Figure 1 is a reduced susceptibility to streaking artifacts,
whereas FBP quickly devolves into streaks as the number of
views becomes small. While streaking patterns can be seen
in dense regions of the MAP-GMRF result at 64 views, the
spatial extent of the streaks is much more localized than in
FBP, and the regularization of the qGGMRF prior further
reduces these dramatically.

In fact, for each data set in Figure 1 the qGGMRF prior
produces a result with less structured error and a clearer edges
that the GMRF prior. However, for extremely low view angles
such as the 8-views case, the advantage of the qGGMRF over
GMRF is minimal because the edge locations are not always
accurate. These points are also reflected in the RMSE values
listed in Table I. In each case, the qGGMRF RMSE is smaller
than the GMRF RMSE, with the difference becoming less
significant as the number of views decreases.

Of note in Table I is the result that, in the mean square sense,
MAP-qGGMRF produces a more accurate reconstruction than
FBP using only a quarter of the number of views. Specifically,
the RMSE of qGGMRF at 16 views is smaller than that of
FBP at 64 views, and qGGMRF at 8 views is smaller than
FBP at 32 views. If this result generalizes, this is a particularly
significant consideration since the number of views can have a
direct correlation to system cost, scan time, and reconstruction
time. Of course this marked difference in RMSE does not
necessarily translate in the qualitative sense because visual
inspection can somewhat compensate for the streaking in FBP.
It should also be noted that one reason for the relatively high
RMSE in the FBP reconstructions is a general underestimation
of the CT numbers (which is apparent in Figure 1) partly
due to image energy dispersal in the streaking. Presumably an
appropriate image-dependent rescaling could be employed to
provide a degree of compensation for this.

The 32-view synthetic target experiment of Figs. 3 and 4
reinforces several of the above observations. Namely, MAP-
qGGMRF produces a much more accurate reconstruction in
terms of both CT numbers overall, and in terms of edge clarity.
The low clutter scene results in effectively no visible streaking
in any case, with qGGMRF producing very accurate CT

numbers and very little blurring of the target boundary. In the
high clutter scene, FBP fully splits the target into two disjoint
objects, while the GMRF prior produces a recognizable object
but with highly non-uniform CT numbers. The qGGMRF prior
produces a significantly more uniform reconstruction of the
target and reproduces the edges with remarkable accuracy by
comparison.

The results of the random placement experiment summa-
rized by Table II are a more general confirmation of the
observations about the reconstructions in Fig. 3. Since the
target position is allowed to vary, the results are not strongly
dependent on any particularly strong streaking artifacts caused
by the metallic objects in the image. Of note is the factor
of 10 improvement in the accuracy in the low clutter scene,
going from the GMRF to the qGGMRF prior. As observed
in Fig. 4(a), this is due to the much more accurate edge
reconstruction afforded by the qGGMRF model. Similar, while
not as dramatic, improvements are produced for the high
clutter scene.

V. CONCLUSION

This paper presented the application of iterative model-
based reconstruction on limited view angle parallel projection
data, generated from a typical bag scan. We compared MAP
reconstructions using two different prior models, a Gaussian
Markov random field (GMRF) and a q-generalized Gaussian
Markov random field (qGGMRF), to the standard filtered
backprojection algorithm. Qualitative and quantitative mea-
sures demonstrated potentially great strengths in model-based
reconstruction applied to transportation security, both in terms
of reconstruction of form and in the CT number accuracy.
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